WO2016165449A1 - 一种实现测距的方法和装置 - Google Patents

一种实现测距的方法和装置 Download PDF

Info

Publication number
WO2016165449A1
WO2016165449A1 PCT/CN2016/072311 CN2016072311W WO2016165449A1 WO 2016165449 A1 WO2016165449 A1 WO 2016165449A1 CN 2016072311 W CN2016072311 W CN 2016072311W WO 2016165449 A1 WO2016165449 A1 WO 2016165449A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time difference
distance
reflected
calculating
Prior art date
Application number
PCT/CN2016/072311
Other languages
English (en)
French (fr)
Inventor
赵桀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016165449A1 publication Critical patent/WO2016165449A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • This application relates to, but is not limited to, terminal technology.
  • This paper proposes a method and device for realizing ranging, which can reduce hardware costs.
  • a method for implementing ranging includes:
  • the signal reflected by the measured object is received, and the distance from the measured object is calculated according to the measured signal and the reflected signal.
  • the method further includes:
  • the reflected signal is filtered and amplified.
  • the transmitting the measurement signal to the measured object by modulating the LED light comprises:
  • the signal transmitted by the receiving object includes:
  • the calculating the distance from the measured object according to the measured signal and the reflected signal includes:
  • calculating the distance from the measured object according to the measured signal and the reflected signal includes:
  • the calculating the distance between the measured object and the measured object includes:
  • the method further includes:
  • N is an integer greater than 1.
  • a device for realizing ranging includes:
  • the sending module is configured to: send a measurement signal to the measured object by modulating the LED light;
  • a receiving module configured to: receive a signal reflected by the object to be tested
  • the detection calculation module is configured to calculate a distance from the measured object according to the measurement signal and the reflected signal.
  • it also includes:
  • the processing module is configured to: filter and amplify the reflected signal.
  • the sending module is configured to:
  • the receiving module is set to:
  • the detection calculation module is set to:
  • the detection calculation module is set to:
  • the detection calculation module is set to:
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the technical solution of the embodiment of the present invention includes: transmitting a measurement signal to the object to be tested through the LED; receiving a signal reflected by the object, and calculating a distance from the object according to the measurement signal and the reflected signal.
  • the measurement signal is transmitted through the LED. Since the LED is a standard component of the mobile terminal, the transmission module does not need to be added, the hardware cost is reduced, and the LED light is visible light, and the security is high.
  • phase difference is used to calculate the distance from the object to be measured, thereby improving the measurement accuracy.
  • FIG. 1 is a flowchart of a method for implementing ranging according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a device for realizing ranging according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for implementing ranging, including:
  • Step 100 Send a measurement signal to the object to be measured by modulating LED (Light Emitting Diode) light.
  • LED Light Emitting Diode
  • a first electrical signal corresponding to the measurement signal is generated, and the LED light is modulated into a first optical signal by the first electrical signal and transmitted.
  • the first electrical signal may be a square wave periodic signal.
  • the measurement signal can be sent to the object through the LED after receiving an instruction from the user to start ranging.
  • the user can input an instruction to start ranging by using a virtual button or a physical button.
  • Step 101 Receive a signal reflected by the measured object, and calculate a distance from the measured object according to the measured signal and the reflected signal.
  • the method further includes: filtering and amplifying the reflected signal.
  • the signal transmitted by the received object includes:
  • Calculating the distance from the measured object based on the measured signal and the reflected signal includes:
  • a distance from the object to be measured is calculated based on the first electrical signal and the second electrical signal.
  • calculating the distance from the measured object according to the measured signal and the reflected signal includes:
  • the initial time difference refers to a time difference corresponding to the phase difference measured when the distance between the object and the object is zero.
  • calculating the distance from the measured object according to the calculated time difference includes:
  • the distance can be displayed on the display.
  • the method may further include repeating the above steps N times, and calculating an average value of the distances obtained N times; wherein N is an integer greater than 1.
  • an embodiment of the present invention further provides an apparatus for implementing ranging, including:
  • the sending module 21 is configured to: send a measurement signal to the object to be tested 25 by modulating the LED light;
  • the receiving module 22 is configured to: receive a signal reflected by the object to be tested 25;
  • the detection calculation module 23 is configured to calculate a distance from the measured object 25 based on the measurement signal and the reflected signal.
  • the processing module 24 is configured to: filter and amplify the reflected signal.
  • the processing module 24 can be implemented by using a filter and an amplifier.
  • the sending module 21 is configured to:
  • the receiving module 22 is set to:
  • the detection calculation module 23 is set to:
  • the distance from the object to be tested 25 is calculated based on the first electrical signal and the second electrical signal.
  • the sending module 21 can adopt a field programmable gate array (FPGA, Field) The Programmable Gate Array), the LED driving circuit and the LED are implemented, the first electrical signal is generated by the FPGA, the generated first electrical signal is modulated onto the LED driving circuit, and the LED is driven to emit light.
  • FPGA field programmable gate array
  • the LED driving circuit and the LED are implemented, the first electrical signal is generated by the FPGA, the generated first electrical signal is modulated onto the LED driving circuit, and the LED is driven to emit light.
  • the receiving module 22 can be implemented by using a photoelectric sensor.
  • the function of the detection calculation module 23 may be implemented by a processor (for example, a CPU) executing a program/instruction stored in the memory, or may be implemented by a hardware circuit.
  • the detection calculation module 23 is configured to:
  • the FPGA can also be used to obtain the time difference corresponding to the phase difference between the measured signal and the reflected signal.
  • the detection calculation module 23 is configured to:
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the measurement signal is transmitted by modulating the LED light. Since the LED is a standard component of the mobile terminal, the transmission module does not need to be added, the hardware cost is reduced, and the LED light is visible light, and the security is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种实现测距的方法和装置,其中该方法包括:通过调制LED光向被测物发送测量信号(100);接收被测物反射的信号,根据测量信号和反射的信号计算与被测物之间的距离(101)。该测距方法和装置通过LED发送测量信号,由于LED为移动终端的标配元件,不需要增加发送模块,降低了硬件成本,并且LED光为可见光,安全性较高。

Description

一种实现测距的方法和装置 技术领域
本申请涉及但不限于终端技术。
背景技术
相关技术的实现测距的方法大致包括:
通过红外线(或激光、或超声波等)向被测物发送测量信号,接收被测物反射的信号,根据发送测量信号和接收到反射的信号之间的时间差计算与被测物之间的距离并显示。
相关技术的实现测距的方法中,往往需要增加红外线(或激光、或超声波等)发送模块来实现测距,增加了硬件成本。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提出了一种实现测距的方法和装置,能够降低硬件成本。
一种实现测距的方法,包括:
通过调制发光二极管LED光向被测物发送测量信号;
接收被测物反射的信号,根据测量信号和反射的信号计算与被测物之间的距离。
可选地,所述接收被测物反射的信号后,在所述根据测量信号和反射的信号计算与被测物之间的距离之前还包括:
对所述反射的信号进行滤波和放大。
可选地,所述通过调制LED光向被测物发射测量信号包括:
产生所述测量信号对应的第一电信号,通过所述第一电信号将所述LED光调制成第一光信号并发送;
所述接收被测物发射的信号包括:
接收所述被测物反射的第二光信号,将所述第二光信号转换成第二电信号;
所述根据测量信号和反射的信号计算与被测物之间的距离包括:
根据所述第一电信号和所述第二电信号计算与所述被测物之间的距离。
可选地,所述根据测量信号和反射的信号计算与被测物之间的距离包括:
获取所述测量信号和所述反射的信号之间的相位差对应的时间差;
计算获得的时间差和初始时间差之间的时间差值;
根据计算得到的时间差值计算与所述被测物之间的距离。
可选地,所述根据计算得到的时间差值计算与被测物之间的距离包括:
按照公式
Figure PCTCN2016072311-appb-000001
计算与所述被测物之间的距离;
其中,S为与所述被测物之间的距离,c为光速,t为所述计算得到的时间差值。
可选地,该方法还包括:
重复上述步骤N次,计算N次得到的距离的平均值;其中,N为大于1的整数。
一种实现测距的装置,包括:
发送模块,设置为:通过调制LED光向被测物发送测量信号;
接收模块,设置为:接收被测物反射的信号;
检测计算模块,设置为:根据测量信号和反射的信号计算与被测物之间的距离。
可选地,还包括:
处理模块,设置为:对所述反射的信号进行滤波和放大。
可选地,所述发送模块是设置为:
产生所述测量信号对应的第一电信号,通过所述第一电信号将所述LED 光调制成第一光信号并发送;
所述接收模块是设置为:
接收所述被测物反射的第二光信号,将所述第二光信号转换成第二电信号;
所述检测计算模块是设置为:
根据所述第一电信号和所述第二电信号计算与所述被测物之间的距离。
可选地,所述检测计算模块是设置为:
获取所述测量信号和所述反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;根据计算得到的时间差值计算与所述被测物之间的距离。
可选地,所述检测计算模块是设置为:
获取所述测量信号和所述反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;按照公式
Figure PCTCN2016072311-appb-000002
计算与所述被测物之间的距离;其中,S为与所述被测物之间的距离,c为光速,t为所述计算得到的时间差值。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
与相关技术相比,本发明实施例的技术方案包括:通过LED向被测物发送测量信号;接收被测物反射的信号,根据测量信号和反射的信号计算与被测物之间的距离。通过本发明实施例的方案,通过LED来发送测量信号,由于LED为移动终端的标配元件,不需要增加发送模块,降低了硬件成本,并且LED光为可见光,安全性较高。
进一步地,采用相位差计算与被测物之间的距离,从而提高了测量精度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例实现测距的方法的流程图;
图2为本发明实施例实现测距的装置的结构组成示意图。
本发明的实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参见图1,本发明实施例提出了一种实现测距的方法,包括:
步骤100、通过调制LED(Light Emitting Diode,发光二极管)光向被测物发送测量信号。包括:
产生测量信号对应的第一电信号,通过第一电信号将LED光调制成第一光信号并发送。
其中,第一电信号可以是方波周期信号。
本步骤中,可以在接收到来自用户的开始进行测距的指令后通过LED向被测物发送测量信号。
其中,用户可以通过虚拟按钮或物理按钮来输入开始进行测距的指令。
步骤101、接收被测物反射的信号,根据测量信号和反射的信号计算与被测物之间的距离。
本步骤中,接收被测物反射的信号后,在根据测量信号和反射的信号计算与被测物之间的距离之前还包括:对反射的信号进行滤波和放大。
本步骤中,接收被测物发射的信号包括:
接收被测物反射的第二光信号,将第二光信号转换成第二电信号;
根据测量信号和反射的信号计算与被测物之间的距离包括:
根据第一电信号和第二电信号计算与被测物之间的距离。
本步骤中,根据测量信号和反射的信号计算与被测物之间的距离包括:
获取测量信号和反射的信号之间的相位差对应的时间差;计算获得的时 间差和初始时间差之间的时间差值;根据计算得到的时间差值计算与被测物之间的距离。
其中,初始时间差是指与被测物之间的距离为0时测量得到的相位差对应的时间差。
其中,根据计算得到的时间差值计算与被测物之间的距离包括:
按照公式
Figure PCTCN2016072311-appb-000003
计算与被测物之间的距离;
其中,S为与被测物之间的距离,c为光速,t为计算得到的时间差值。
本步骤中,得到距离后可以在显示屏上显示。
该方法还可包括:重复上述步骤N次,计算N次得到的距离的平均值;其中,N为大于1的整数。
参见图2,本发明实施例还提出了一种实现测距的装置,包括:
发送模块21,设置为:通过调制LED光向被测物25发送测量信号;
接收模块22,设置为:接收被测物25反射的信号;
检测计算模块23,设置为:根据测量信号和反射的信号计算与被测物25之间的距离。
本发明实施例的装置中,还可包括:
处理模块24,设置为:对反射的信号进行滤波和放大。
其中,处理模块24可以采用滤波器和放大器来实现。
本发明实施例的装置中,发送模块21是设置为:
产生测量信号对应的第一电信号,通过第一电信号将LED光调制成第一光信号并发送;
接收模块22是设置为:
接收被测物25反射的第二光信号,将第二光信号转换成第二电信号;
检测计算模块23是设置为:
根据第一电信号和第二电信号计算与被测物25之间的距离。
其中,发送模块21可以采用现场可编程门阵列(FPGA,Field  Programmable Gate Array)、LED驱动电路和LED来实现,通过FPGA来产生第一电信号,将产生的第一电信号调制到LED驱动电路上,驱动LED进行发光。
其中,接收模块22可以采用光电传感器来实现。
其中,检测计算模块23的功能可以通过处理器(例如CPU)执行存储在存储器中的程序/指令来实现,也可以通过硬件电路来实现。
本发明实施例的装置中,检测计算模块23是设置为:
获取测量信号和反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;根据计算得到的时间差值计算与被测物25之间的距离。
其中,也可以采用FPGA来获取测量信号和反射的信号之间的相位差对应的时间差。
本发明实施例的装置中,检测计算模块23是设置为:
获取测量信号和反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;按照公式
Figure PCTCN2016072311-appb-000004
计算与被测物之间的距离;其中,S为与被测物之间的距离,c为光速,t为计算得到的时间差值。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
通过本发明实施例的方案,通过调制LED光来发送测量信号,由于LED为移动终端的标配元件,不需要增加发送模块,降低了硬件成本,并且LED光为可见光,安全性较高。

Claims (12)

  1. 一种实现测距的方法,包括:
    通过调制发光二极管LED光向被测物发送测量信号;
    接收被测物反射的信号,根据测量信号和反射的信号计算与被测物之间的距离。
  2. 根据权利要求1所述的方法,其中,所述接收被测物反射的信号后,在所述根据测量信号和反射的信号计算与被测物之间的距离之前还包括:
    对所述反射的信号进行滤波和放大。
  3. 根据权利要求1所述的方法,其中,所述通过调制LED光向被测物发射测量信号包括:
    产生所述测量信号对应的第一电信号,通过所述第一电信号将所述LED光调制成第一光信号并发送;
    所述接收被测物发射的信号包括:
    接收所述被测物反射的第二光信号,将所述第二光信号转换成第二电信号;
    所述根据测量信号和反射的信号计算与被测物之间的距离包括:
    根据所述第一电信号和所述第二电信号计算与所述被测物之间的距离。
  4. 根据权利要求1或2或3所述的方法,其中,所述根据测量信号和反射的信号计算与被测物之间的距离包括:
    获取所述测量信号和所述反射的信号之间的相位差对应的时间差;
    计算获得的时间差和初始时间差之间的时间差值;
    根据计算得到的时间差值计算与所述被测物之间的距离。
  5. 根据权利要求4所述的方法,其中,所述根据计算得到的时间差值计算与被测物之间的距离包括:
    按照公式
    Figure PCTCN2016072311-appb-100001
    计算与所述被测物之间的距离;
    其中,S为与所述被测物之间的距离,c为光速,t为所述计算得到的时间差值。
  6. 根据权利要求1或2或3所述的方法,该方法还包括:
    重复上述步骤N次,计算N次得到的距离的平均值;其中,N为大于1的整数。
  7. 一种实现测距的装置,包括:
    发送模块,设置为:通过调制LED光向被测物发送测量信号;
    接收模块,设置为:接收被测物反射的信号;
    检测计算模块,设置为:根据测量信号和反射的信号计算与被测物之间的距离。
  8. 根据权利要求7所述的装置,还包括:
    处理模块,设置为:对所述反射的信号进行滤波和放大。
  9. 根据权利要求7所述的装置,其中,所述发送模块是设置为:
    产生所述测量信号对应的第一电信号,通过所述第一电信号将所述LED光调制成第一光信号并发送;
    所述接收模块是设置为:
    接收所述被测物反射的第二光信号,将所述第二光信号转换成第二电信号;
    所述检测计算模块是设置为:
    根据所述第一电信号和所述第二电信号计算与所述被测物之间的距离。
  10. 根据权利要求7或8或9所述的装置,其中,所述检测计算模块是设置为:
    获取所述测量信号和所述反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;根据计算得到的时间差值计算与所述被测物之间的距离。
  11. 根据权利要求10所述的装置,其中,所述检测计算模块是设置为:
    获取所述测量信号和所述反射的信号之间的相位差对应的时间差;计算获得的时间差和初始时间差之间的时间差值;按照公式
    Figure PCTCN2016072311-appb-100002
    计算与所述被测物之间的距离;其中,S为与所述被测物之间的距离,c为光速,t为所述计算得到的时间差值。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-6任一项的方法。
PCT/CN2016/072311 2015-08-07 2016-01-27 一种实现测距的方法和装置 WO2016165449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510484277.0A CN106443696A (zh) 2015-08-07 2015-08-07 一种实现测距的方法和装置
CN201510484277.0 2015-08-07

Publications (1)

Publication Number Publication Date
WO2016165449A1 true WO2016165449A1 (zh) 2016-10-20

Family

ID=57125554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072311 WO2016165449A1 (zh) 2015-08-07 2016-01-27 一种实现测距的方法和装置

Country Status (2)

Country Link
CN (1) CN106443696A (zh)
WO (1) WO2016165449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3754375A4 (en) * 2018-02-13 2021-08-18 SZ DJI Technology Co., Ltd. TELEMETRY SYSTEM, AUTOMATION DEVICE AND TELEMETRY METHOD
CN112153184B (zh) 2019-06-28 2022-03-22 Oppo广东移动通信有限公司 移动终端
CN112611292A (zh) * 2020-11-26 2021-04-06 广东电网有限责任公司韶关供电局 一种配电线路测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154287A1 (en) * 2001-03-06 2002-10-24 The Regents Of The University Of California Optical distance measurement device and method thereof
JP2005164482A (ja) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd 測距機能付ledランプ装置
JP2006021720A (ja) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
CN1991407A (zh) * 2005-10-28 2007-07-04 夏普株式会社 光学式测距装置
CN101101334A (zh) * 2006-07-06 2008-01-09 李代甫 普通单色光测距的系统和方法及其应用
US8311286B2 (en) * 2007-02-27 2012-11-13 Fujifilm Corporation Ranging apparatus and ranging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154287A1 (en) * 2001-03-06 2002-10-24 The Regents Of The University Of California Optical distance measurement device and method thereof
JP2005164482A (ja) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd 測距機能付ledランプ装置
JP2006021720A (ja) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
CN1991407A (zh) * 2005-10-28 2007-07-04 夏普株式会社 光学式测距装置
CN101101334A (zh) * 2006-07-06 2008-01-09 李代甫 普通单色光测距的系统和方法及其应用
US8311286B2 (en) * 2007-02-27 2012-11-13 Fujifilm Corporation Ranging apparatus and ranging method

Also Published As

Publication number Publication date
CN106443696A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Beer et al. Background light rejection in SPAD-based LiDAR sensors by adaptive photon coincidence detection
US9945936B2 (en) Reduction in camera to camera interference in depth measurements using spread spectrum
KR101955334B1 (ko) 3차원 영상 획득 장치 및 상기 3차원 영상 획득 장치에서 깊이 정보를 추출하는 방법
US8902411B2 (en) 3-dimensional image acquisition apparatus and method of extracting depth information in the 3D image acquisition apparatus
WO2016165449A1 (zh) 一种实现测距的方法和装置
JP2017508171A5 (zh)
CN113039457A (zh) 通过透射盖使用光学飞行时间技术进行深度感测
JP2011005042A5 (zh)
KR102194237B1 (ko) 깊이 영상 촬영 장치 및 깊이 정보 획득 방법
RU2014140816A (ru) Способ и устройство обработки анимированной эмограммы
US10466355B2 (en) Optoelectronic modules for distance measurements and supplemental measurements
JP2017502291A5 (zh)
CN112771408B (zh) 飞行时间的测量方法、装置、存储介质和激光雷达
JP2013160717A (ja) レーザ測距装置
US10190983B2 (en) Methods and apparatus for fluorescence lifetime imaging with pulsed light
WO2017195993A3 (en) Method and electronic device for verifying light source of images
EP2919043A3 (en) Multiple-optical-axis photoelectric sensor system, multiple-opticle-axis photoelectric sensor system control method, program, and recording medium
WO2013067711A1 (zh) 一种测距方法及系统
EP4280627A3 (en) Signal processing device with lipid interface
KR20170076477A (ko) 거리 정보를 획득하는 방법 및 디바이스
US9912934B2 (en) Determining three dimensional information using a single camera
EP3663801A1 (en) Time of flight sensor module, method, apparatus and computer program for determining distance information based on time of flight sensor data
CN107843274A (zh) 一种光纤传感系统
JP2013214260A5 (ja) 書画カメラ及び画像入力システム
Kim et al. Design of pulsed scanning lidar without mutual interferences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779424

Country of ref document: EP

Kind code of ref document: A1