WO2016165415A1 - 一种连接装置及利用其进行参数匹配的方法 - Google Patents

一种连接装置及利用其进行参数匹配的方法 Download PDF

Info

Publication number
WO2016165415A1
WO2016165415A1 PCT/CN2016/070041 CN2016070041W WO2016165415A1 WO 2016165415 A1 WO2016165415 A1 WO 2016165415A1 CN 2016070041 W CN2016070041 W CN 2016070041W WO 2016165415 A1 WO2016165415 A1 WO 2016165415A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
port
antenna
connection device
layers
Prior art date
Application number
PCT/CN2016/070041
Other languages
English (en)
French (fr)
Inventor
张晓瑜
赵丽娟
朱道虹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016165415A1 publication Critical patent/WO2016165415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • This application relates to, but is not limited to, the field of communication technology.
  • the mobile communication system has been developed from the third generation mobile communication system such as WCDMA (Wideband Code Division Multiple Access) and CDMA2000 (Code Division Multiple Access 2000) to LTE (Long Term Evolution).
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • LTE Long Term Evolution
  • the fourth generation of communication systems is developing.
  • the base station faces the situation where multiple systems share the site, so that it is inevitable that multiple systems use the same antenna together.
  • an electrical adjustment antenna a continuous electrical adjustment base station antenna
  • the real-time adjustment is realized by the ESC antenna according to the change of the traffic volume in the coverage area of each time period.
  • FIG. 1 shows the logical block diagram of the RRU (Radio Remote Unit) base station and the ESC antenna.
  • the RRU provides a hardware interface to support the ESC antenna.
  • the data and control information between the RRU and the ESC antenna are transmitted and received through the ESC antenna interface.
  • the control circuit and power supply circuit of the ESC antenna are implemented on the RRU.
  • the calibration of the RF channel is required.
  • the main purpose of RF channel calibration is to ensure the consistency of the amplitude and phase of the RF transmit channels of multiple RRUs.
  • Calibration of the RF channel can be done by RRU internal calibration or antenna calibration. The only difference is whether the calibration network is placed at the RRU RF end or at the antenna end. For a 2-channel, 4-channel antenna, it is not necessary to form a broadcast beam by means of beamforming between multiple channels (ie, beamforming), so only RRU internal calibration is required. For an 8-channel antenna, since the broadcast beam is multi-channel beam-combined by broadcast weight, it is necessary to ensure the amplitude and phase consistency of the antenna side (that is, between the RF exit of the RRU and the antenna transmit port). The calibration network must be moved inside the antenna to complete. Currently, regardless of TD-SCDMA (Time Division-Synchronous Code Division Multiple Access) or TD-LTE (Time Division Long Term Evolution) system, all 8-channel antennas use this type of antenna. The way the antenna is calibrated.
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • TD-LTE Time Division Long Term Evolution
  • the related art routing method is that the ESC feed network and the RF correction channel are directly connected at the socket, which inevitably affects the standing wave of the calibration port in the RF band, and the impedance of the power line is not controlled.
  • the EST feed line uses a single-layer microstrip line, which results in insufficient current flow capability, and if the single-layer microstrip line needs to be matched to 50 ohms, it will increase the line width of the microstrip line and occupy a large space area. .
  • the present invention provides a connection device and a method for parameter matching thereof, which are used to solve the problem that the circuit structure of the related art is difficult to meet the requirements of the matching of the ESC feeding circuit and the antenna correction RF channel.
  • an embodiment of the present invention provides a connection apparatus, including:
  • the first port has one end connected to the microstrip line and the other end serving as a data interface
  • a second port one end is connected to the microstrip line, and the other end is used as a connection interface of the electrical adjustment antenna feeding circuit;
  • the third port has one end connected to the microstrip line and the other end serving as an antenna to correct the connection interface of the radio frequency channel.
  • the microstrip line includes:
  • a multilayer metal microstrip line and a via disposed on the microstrip line, wherein the adjacent metal microstrip lines are filled by the dielectric substrate.
  • the number of layers of the metal microstrip line is at least equal to or greater than two layers, and is less than or equal to the number of layers of the circuit board.
  • the second port is connected to the microstrip line by a choke inductor.
  • the second port is connected to the choke inductor through a lightning protection circuit.
  • the third port is connected to the microstrip line by a DC blocking capacitor.
  • the DC blocking capacitor is a high voltage blocking DC capacitor, wherein the withstand voltage range is greater than 380 volts.
  • the first port is a socket.
  • an embodiment of the present invention further provides a method for performing parameter matching by using the foregoing connecting device, including:
  • the flow capacity parameters and lightning resistance parameters of the ESC antenna feeding circuit are matched by adjusting the number of vias on the microstrip line and/or the pitch of the vias.
  • the method further comprises: matching the parameters of the antenna correction radio frequency channel by adjusting a line width of the microstrip line, a number of layers, and/or a dielectric constant of the dielectric substrate between the microstrip lines.
  • the electronically tuned antenna feeding circuit and the antenna-corrected RF channel are connected to the first port through the microstrip line, and the antenna can be ensured while ensuring the flow capacity of the common wiring portion and the lightning strike resistance requirement. Correct the matching requirements of the RF channel.
  • FIG. 1 is a schematic diagram of a connection between an RRU and an ESC antenna in the related art
  • FIG. 2 is a schematic structural view of a connecting device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a microstrip line in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the connection logic of a feed network of a tower and a lightning protection circuit according to an embodiment of the present invention
  • Fig. 5 is a structural schematic view showing the application of the connecting device to the tower in the embodiment of the present invention.
  • an embodiment of the present invention relates to a connection apparatus, including:
  • the first port 21 has one end connected to the microstrip line 24 and the other end serving as a data interface;
  • the second port 22 has one end connected to the microstrip line 24 and the other end serving as a connection interface of the electric adjustable antenna feeding circuit 25;
  • the third port 23 has one end connected to the microstrip line 24 and the other end serving as an antenna to correct the connection interface of the radio frequency channel 26.
  • the microstrip line 24 is used as a common trace.
  • the structure of the microstrip line 24 in the case of satisfying both the flow capacity and the lightning strike resistance requirement of the RRU base station ESC antenna feeding circuit 25, It can meet the matching requirements of the antenna correction RF channel 26.
  • the microstrip line specifically includes:
  • a multilayer metal microstrip line and a via disposed on the microstrip line, wherein the adjacent metal microstrip lines are filled by the dielectric substrate.
  • the line width and/or the number of layers of the microstrip line can be determined; it can be obtained by simulation or according to experience, for example, three layers, five layers, seven layers Etc.; generally speaking, the number of layers of the metal microstrip line is at least equal to or greater than two layers, less than or equal to the number of layers of the circuit board.
  • the number and/or spacing of vias it is also possible to adjust the flow requirements and lightning protection requirements.
  • the appropriate number of vias can be determined by simulation or experiment.
  • the vias are equally spaced, for example, the spacing of adjacent vias is 2.5 times the aperture.
  • the number of vias can be increased by adjusting the spacing between the vias to meet the requirements.
  • the spacing is such that it meets the matching requirements required for the antenna RF channel.
  • the first port 21 is an external interface, and is an external interface for the external electrical tune antenna feeding and antenna correction of the RRU base station, and is implemented by a socket; the socket is connected to the multi-layer microstrip line 24 that distributes multiple via holes as a common line. section.
  • the second port 22 is an interface of the ESC antenna feeding circuit 25, and is connected to the common line through the lightning protection circuit 28 and the choke inductor 27; the third port 33 is an antenna for correcting the RF channel 26 interface, and the high voltage blocking capacitor 29 is used.
  • the common traces are connected; wherein the DC blocking capacitor 29 has a withstand voltage range greater than 380 volts.
  • connection device of the embodiment of the present invention can be applied to the tower amplifier 41 (hereinafter referred to as tower discharge) in addition to the electric adjustment antenna feeding and antenna correction of the RRU, and the lightning protection circuit 42 can be simplified.
  • tower discharge the tower amplifier 41
  • the lightning protection circuit 42 can be simplified.
  • control signals, RF signals and power supplies on the tower 41 which are also fed through the coaxial.
  • the first port 21 is a feeding and radio frequency common interface of the tower, and the multi-layer microstrip line distributing a plurality of via holes is used as a common routing part;
  • the second port 22 is a tower feeding
  • the electrical circuit 51 interface is connected to the common trace through the lightning protection circuit 28 and the choke inductor 27;
  • the third port 23 is the RF channel 52 interface, and is connected to the common trace through the high voltage blocking DC capacitor 29.
  • an embodiment of the present invention further relates to a method for performing parameter matching by using the foregoing connecting device, including:
  • the flow capacity parameter requirements and lightning strike resistance requirements of the ESC antenna feed circuit are matched;
  • the parameter requirements of the antenna-corrected RF channel are matched by adjusting the line width of the microstrip line, the number of layers, and/or the dielectric constant of the dielectric substrate between the microstrip lines.
  • the connecting device of the embodiment of the present invention is a routing structure in which an RRU base station electric adjusting antenna feeding circuit and an antenna correcting radio frequency channel are commonly connected, and the electric adjusting antenna feeding circuit and the antenna correcting RF channel are connected to the first port through the microstrip line.
  • a plurality of via holes are distributed on the multi-layer microstrip line to ensure the flow-through capability and lightning strike resistance requirements of the common trace portion, and the antenna is corrected by adjusting the spacing of the multi-layer microstrip lines and the spacing between the via holes. Channel matching requirements.
  • the above technical solution can reduce the cost of complicated port transmission lines and connectors, and occupy a small volume.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the electric adjustable antenna feeding circuit and the antenna correcting RF channel are connected to the first port through the microstrip line, and the antenna correcting the radio frequency can be ensured while ensuring the flow capacity of the common wiring part and the lightning strike resistance requirement. Channel matching requirements.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本文公布一种连接装置及利用其进行参数匹配的方法,其中,连接装置包括:第一端口,一端与微带线连接,另一端作为数据接口;第二端口,一端与所述微带线连接,另一端作为电调天线馈电电路的连接接口;第三端口,一端与所述微带线连接,另一端作为天线校正射频通道的连接接口。

Description

一种连接装置及利用其进行参数匹配的方法 技术领域
本申请涉及但不限于通讯技术领域。
背景技术
随着移动通信技术的迅猛发展,移动通信越来越多地为人们的工作和生活提供方便和快捷。移动通信系统已经由WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、CDMA2000(Code Division Multiple Access2000)等第三代移动通信系统,发展到以LTE(Long Term Evolution,长期演进)为代表的第四代通信系统发展。但是由于站址资源的紧缺、站址空间狭小以及绿色基站的倡导,未来基站面临多个系统共用站址的情况,这样多个系统共同使用同一副天线成为必然。
在城镇繁华区域,不但多径反射复杂,而且频率复用规划的站址相互制约、相互干扰严重。还有,一些场景的话务量变化复杂,比如一天中白天和夜晚的话务量来自不同的局部区域,或者平时和节假日的话务量来自不同的局部区域等等。要平衡和解决这些矛盾,较好办法是采用连续电调基站天线(以下简称电调天线)。根据每个时段覆盖区域内话务量的变化,通过电调天线实现实时的调节。
图1给出了RRU(Radio Remote Unit,射频拉远单元)基站与电调天线连接的逻辑框图。RRU提供一个硬件接口支持电调天线,RRU和电调天线间的数据和控制信息都是通过电调天线接口来发送和接收。电调天线的控制电路、供电电路均在RRU上实现。
在TDD(Time Division Duplexing,时分双工)系统中,为了消除射频接收和发送通道之间的偏差对信道的影响,保证RF(Radio Frequency,射频)通道的互易性,需要采用射频通道的校准技术。射频通道校准的主要目的是保证多个RRU的RF发送通道幅度和相位的一致性。
射频通道的校准可以通过RRU内部校准或天线校准两种方式来完成。 差别仅在于校准网络所放置的位置在RRU射频端,还是在天线端。对于2通道、4通道天线而言,无需通过多个通道间波束合成的方式(也就是波束赋形)形成广播波束,因此仅需要采用RRU内部校准即可。对于8通道天线而言,由于广播波束是通过广播权值进行多个通道波束合成而来的,因此必须保证天线侧(也就是RRU的射频出口到天线发射端口之间)的幅度和相位一致性,必须将校准网络上移到天线内部来完成。目前,无论TD-SCDMA(时分同步码分多址,Time Division-Synchronous Code Division Multiple Access)还是TD-LTE(Time Division Long Term Evolution,分时长期演进)系统,所有的8通道天线都采用这种天线校准的方式。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
相关技术的走线方式是电调的馈电网络与射频校正通道在插座处直接相连,必然会影响校正口在射频频段范围内的驻波,电源线的阻抗得不到控制。或者是电调的馈电走线使用单层微带线,导致了通流能力不够,并且单层微带线如果需要匹配到50欧姆的话,会增加微带线的线宽,占用空间面积大。
本文提供一种连接装置及利用其进行参数匹配的方法,用以解决相关技术的电路结构难以同时满足连接电调天线馈电电路与天线校正射频通道匹配要求的问题。
一方面,本发明实施例提供一种连接装置,包括:
第一端口,一端与微带线连接,另一端作为数据接口;
第二端口,一端与所述微带线连接,另一端作为电调天线馈电电路的连接接口;
第三端口,一端与所述微带线连接,另一端作为天线校正射频通道的连接接口。
可选地,所述微带线包括:
多层金属微带线,以及分布设置在微带线上的过孔,其中,相邻金属微带线间由介质基板填充。
可选地,所述金属微带线的层数至少大于等于二层,小于等于电路板的层数。
可选地,所述第二端口通过扼流电感与所述微带线连接。
可选地,所述第二端口通过防雷电路与所述扼流电感连接。
可选地,所述第三端口通过隔直电容与所述微带线连接。
可选地,所述隔直电容为耐高压隔直电容,其中,耐压范围大于380伏特。
可选地,所述第一端口为插座。
另一方面,本发明实施例还提供一种利用上述连接装置进行参数匹配的方法,包括:
通过调整微带线上的过孔数量和/或过孔的间距,来匹配电调天线馈电电路的通流能力参数和抗雷击参数。
可选地,所述方法还包括:通过调整微带线的线宽、层数和/或微带线之间介质基板的介电常数,来匹配天线校正射频通道的参数。
本发明实施例技术方案中,电调天线馈电电路和天线校正射频通道通过微带线与第一端口连接,在保证公共走线部分的通流能力和抗雷击要求的同时,也能保证天线校正射频通道的匹配要求。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术中RRU与电调天线连接逻辑示意图;
图2是本发明实施例中一种连接装置的结构示意图;
图3是本发明实施例中微带线的结构示意图;
图4是本发明实施例中塔放与防雷电路的馈电网络的连接逻辑示意图;
图5是本发明实施例中连接装置应用于塔放的结构示意图。
本发明的实施方式
以下结合附图对本发明的实施方式进行说明。
如图2所示,本发明实施例涉及一种连接装置,包括:
第一端口21,一端与微带线24连接,另一端作为数据接口;
第二端口22,一端与微带线24连接,另一端作为电调天线馈电电路25的连接接口;
第三端口23,一端与微带线24连接,另一端作为天线校正射频通道26的连接接口。
本实施例中,将微带线24作为公共走线,通过调整微带线24的结构,在既满足RRU基站电调天线馈电电路25的通流能力和抗雷击的要求的情况下,又能满足天线校正射频通道26的匹配要求。
如图3所示,微带线具体包括:
多层金属微带线,以及分布设置在微带线上的过孔,其中,相邻金属微带线间由介质基板填充。
根据RRU基站电调天线馈电电路的通流能力和抗雷击要求,来确定微带线的线宽和/或层数;可以利用仿真或者根据经验获得,例如,三层、五层、七层等;通常来说,金属微带线的层数至少大于等于二层,小于等于电路板的层数。
另外,调整过孔个数和/或间距,也能调整通流要求和防雷击要求决定。过孔个数越多,其通流能力越大。根据通流的要求,通过仿真或者试验,确定合适的过孔数即可。通常来说,过孔是等间距的,例如,相邻过孔的间距为2.5倍孔径。但当电路板长度不足时,可以通过调整过孔间的间距来增加过孔数,以满足要求。
在满足通流能力和防雷击要求的条件下,通过调节多层金属微带线的线宽、层数和/或微带线之间介质基板的介电常数、以及分布过孔的个数、间距,使之满足天线射频通道所需的匹配要求。
另外,第一端口21为对外接口,为RRU基站对外的电调天线馈电和天线校正公共接口,由插座实现;插座与分布多个过孔的多层微带线24相连,作为公共走线部分。第二端口22为电调天线馈电电路25接口,通过防雷电路28、扼流电感27与公共走线相连;第三端口33为天线校正射频通道26接口,通过耐高压隔直电容29与公共走线相连;其中,隔直电容29的耐压范围大于380伏特。
本发明实施例的连接装置除了应用于RRU的电调天线馈电和天线校正之外,还可以应用于塔顶放大器41(以下简称塔放),可以简化防雷电路42,参见附图4,塔放41上面也有控制信号、RF射频信号与电源,也通过同轴馈电。参见图5,3个端口中,第一端口21为塔放的馈电和射频公共接口,由分布多个过孔的多层微带线作为公共走线部分;第二端口22为塔放馈电电路51接口,通过防雷电路28、扼流电感27与公共走线相连;第三端口23为射频通道52接口,通过耐高压隔直电容29与公共走线相连。
另外,本发明实施例还涉及一种利用上述的连接装置进行参数匹配的方法,包括:
通过调整微带线上的过孔数量和/或过孔的间距,来匹配电调天线馈电电路的通流能力参数要求和抗雷击参数要求;
通过调整微带线的线宽、层数和/或微带线之间介质基板的介电常数,来匹配天线校正射频通道的参数要求。
本发明实施例的连接装置是一种RRU基站电调天线馈电电路与天线校正射频通道共接口的走线结构,电调天线馈电电路和天线校正射频通道通过微带线与第一端口连接,在多层微带线上分布多个过孔,从而保证公共走线部分的通流能力和抗雷击要求,同时通过调节多层微带线间距和过孔之间的间距,保证天线校正射频通道的匹配要求。在RRU系统中,采用上述技术方案,可减少复杂的端口传输线和连接器的成本,并且占用体积小。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例中,电调天线馈电电路和天线校正射频通道通过微带线与第一端口连接,在保证公共走线部分的通流能力和抗雷击要求的同时,也能保证天线校正射频通道的匹配要求。

Claims (10)

  1. 一种连接装置,包括:
    第一端口,一端与微带线连接,另一端作为数据接口;
    第二端口,一端与所述微带线连接,另一端作为电调天线馈电电路的连接接口;
    第三端口,一端与所述微带线连接,另一端作为天线校正射频通道的连接接口。
  2. 如权利要求1所述的连接装置,其中,所述微带线包括:
    多层金属微带线,以及分布设置在微带线上的过孔,其中,相邻金属微带线间由介质基板填充。
  3. 如权利要求2所述的连接装置,其中,所述金属微带线的层数至少大于等于二层,小于等于电路板的层数。
  4. 如权利要求1~3任一项所述的连接装置,其中,所述第二端口通过扼流电感与所述微带线连接。
  5. 如权利要求4所述的连接装置,其中,所述第二端口通过防雷电路与所述扼流电感连接。
  6. 如权利要求1、2、3或5所述的连接装置,其中,所述第三端口通过隔直电容与所述微带线连接。
  7. 如权利要求6所述的连接装置,其中,所述隔直电容为耐高压隔直电容。
  8. 如权利要求1、2、3、5或7所述的连接装置,其中,所述第一端口为插座。
  9. 一种利用权利要求1~8任一项所述的连接装置进行参数匹配的方法,包括:
    通过调整微带线上的过孔数量和/或过孔的间距,来匹配电调天线馈电电路的通流能力参数和抗雷击参数。
  10. 如权利要求9所述的方法,还包括:
    通过调整微带线的线宽、层数和/或微带线之间介质基板的介电常数,来匹配天线校正射频通道的参数。
PCT/CN2016/070041 2015-09-29 2016-01-04 一种连接装置及利用其进行参数匹配的方法 WO2016165415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510632145.8A CN106558759B (zh) 2015-09-29 2015-09-29 一种连接装置及利用其进行参数匹配的方法
CN201510632145.8 2015-09-29

Publications (1)

Publication Number Publication Date
WO2016165415A1 true WO2016165415A1 (zh) 2016-10-20

Family

ID=57125750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070041 WO2016165415A1 (zh) 2015-09-29 2016-01-04 一种连接装置及利用其进行参数匹配的方法

Country Status (2)

Country Link
CN (1) CN106558759B (zh)
WO (1) WO2016165415A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201374699Y (zh) * 2009-03-16 2009-12-30 中国移动通信集团公司 一种电调天线接口设备
CN101740864A (zh) * 2008-11-21 2010-06-16 中兴通讯股份有限公司 一种电调天线通信系统和方法
CN103973336A (zh) * 2013-01-30 2014-08-06 中兴通讯股份有限公司 实现设备间信号传输的装置、方法、电子设备及通讯系统
CN203910958U (zh) * 2014-05-16 2014-10-29 京信通信技术(广州)有限公司 电调天线馈电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231201A (ja) * 1985-08-01 1987-02-10 Dx Antenna Co Ltd マイクロストリツプ・アンテナ装置
US20100134376A1 (en) * 2008-12-01 2010-06-03 Toyota Motor Engineering & Manufacturing North America, Inc. Wideband rf 3d transitions
US8854265B1 (en) * 2011-04-28 2014-10-07 Airgain, Inc. L-shaped feed for a matching network for a microstrip antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740864A (zh) * 2008-11-21 2010-06-16 中兴通讯股份有限公司 一种电调天线通信系统和方法
CN201374699Y (zh) * 2009-03-16 2009-12-30 中国移动通信集团公司 一种电调天线接口设备
CN103973336A (zh) * 2013-01-30 2014-08-06 中兴通讯股份有限公司 实现设备间信号传输的装置、方法、电子设备及通讯系统
CN203910958U (zh) * 2014-05-16 2014-10-29 京信通信技术(广州)有限公司 电调天线馈电装置

Also Published As

Publication number Publication date
CN106558759B (zh) 2020-03-17
CN106558759A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
US10044109B2 (en) Multi-polarization substrate integrated waveguide antenna
CN108768549B (zh) 一种应用于5g通信的多天线校准网络装置
WO2011078029A1 (ja) アンテナ素子への配線距離を最短にするアレイアンテナ装置
US11985761B2 (en) Calibration circuit board and antenna apparatus including the same
US20130181880A1 (en) Low profile wideband multibeam integrated dual polarization antenna array with compensated mutual coupling
US11705614B2 (en) Coupling device and antenna
US11469516B2 (en) Multiband antenna system
CN107302130A (zh) 天线阵列、天线模块及其微带天线单元
JP6557732B2 (ja) 移動通信基地局のアンテナ装置内の信号分配/結合装置
CN106558764B (zh) 一种馈电结构及双频共口径天线
WO2016165415A1 (zh) 一种连接装置及利用其进行参数匹配的方法
EP2954594B1 (en) Integrated stripline feed network for linear antenna array
US11699852B2 (en) Phased array antenna systems
CN109301465B (zh) 一种应用于毫米波通讯的无源天线阵列及其设计方法
CA2803456C (en) Feed network and antenna
WO2016022182A1 (en) Multiple-input smart bias tee
CN110061362A (zh) 有源相控阵天线单元级内监测装置
CN112993549B (zh) 天线及电子设备
CN107611609B (zh) 一种小型化微组装可变相位有源天线振子
US8923011B2 (en) Interconnect board
US20230216179A1 (en) Antenna module and electronic device including the same
CN211980895U (zh) 校准电路板及包含该校准电路板的天线装置
US20220123481A1 (en) Antenna device
CN104425900A (zh) 天线装置、用于设置天线装置的方法和电子设备
CN117121294A (zh) 天线结构和包括该天线结构的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779390

Country of ref document: EP

Kind code of ref document: A1