WO2016165053A1 - 光交叉互连节点和光信号交换的方法 - Google Patents

光交叉互连节点和光信号交换的方法 Download PDF

Info

Publication number
WO2016165053A1
WO2016165053A1 PCT/CN2015/076426 CN2015076426W WO2016165053A1 WO 2016165053 A1 WO2016165053 A1 WO 2016165053A1 CN 2015076426 W CN2015076426 W CN 2015076426W WO 2016165053 A1 WO2016165053 A1 WO 2016165053A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
optical
dimension
wavelength
wave
Prior art date
Application number
PCT/CN2015/076426
Other languages
English (en)
French (fr)
Inventor
王大伟
钱懿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15888758.8A priority Critical patent/EP3267604B1/en
Priority to CN201580077722.XA priority patent/CN107431551B/zh
Priority to PCT/CN2015/076426 priority patent/WO2016165053A1/zh
Publication of WO2016165053A1 publication Critical patent/WO2016165053A1/zh
Priority to US15/728,751 priority patent/US10291971B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Definitions

  • the present invention relates to the field of optical communication technologies and, more particularly, to optical cross-connect nodes and methods of optical signal exchange.
  • the optical fiber communication technology begins to infiltrate the communication network, and since the optical signal of the All Optical Network (AON) is always transmitted in the form of light in the network, it does not need to pass light/electricity and electricity. /Optical conversion, fiber-optic communication has a tendency to fully advance to the all-optical network.
  • AON All Optical Network
  • Optical Cross-connect is an important part of the all-optical network.
  • the main functions of the OXC node include: exchange between dimensions, exchange between wavelengths in a certain dimension, and up and down waves of local wavelengths.
  • the wavelength between the exchange between the dimensions and the exchange between the wavelengths in a certain dimension is called a punch-through wave; the local wavelength is added to a certain dimension, called the upper wave; the wavelength of a certain dimension is downloaded to the node, called the lower wave.
  • the network requirements for OXC nodes are: large switching capacity, transparency to wavelength and data formats, low blocking rate, low power consumption, high integration, and low cost.
  • the key components of the OXC node, such as optical switches, are mainly used for the exchange of optical signals, that is, the input signals are output from the corresponding output ports according to the mapping relationship of the routing configuration.
  • the wavelengths of other network nodes share an optical switch for wavelength switching when the wave is at the lower wave and the wavelength of the local node. Since the through wave will give up the free port to the upper wave when the down wave is in the lower wave, the signal of the same wavelength may go up and down at the same time in the optical switch. Therefore, the presence of such the same wavelength can cause crosstalk.
  • Embodiments of the present invention provide an optical cross-connect node and a method for optical signal exchange, which can reduce crosstalk in an optical cross-connect node.
  • an optical cross-connect node includes: a first optical switch, a second optical switch, a lower wavelength switch, an upper wavelength switch, and a feedthrough dimension switch, wherein a first optical switch for receiving an optical signal, the optical signal including the first optical signal And/or a second optical signal, transmitting the first optical signal to the lower wavelength switching switch, and transmitting the second optical signal to the through dimension switching switch; the lower wavelength switching switch is configured to switch from the first optical switch The first optical signal of the switch performs wavelength exchange; the upper wavelength switching switch is configured to perform wavelength exchange on the locally generated third optical signal, and send the wavelength switch to the second optical switching switch after the wavelength switching switch a third optical signal; the punch-through dimension switching switch is configured to perform dimension exchange on the second optical signal from the first optical switch, and send the second optical signal after the dimension exchange to the second optical switch; And a second optical switch for receiving and transmitting a second optical signal from the punch-through dimension switch and a third optical signal from the upper wavelength switch.
  • a first output port of the first optical switch is connected to an input port of the punch-through dimension switch, and a second switch of the first switch An output port is connected to an input port of the lower wavelength switch, and a first input port of the second optical switch is connected to an output port of the punch-through dimension switch, and a second input port of the second switch The output ports of the wave wavelength switch are connected.
  • the method further includes: a lower wave dimension switching switch, configured to perform a first optical signal from the first optical switch Transmitting and transmitting the dimension-switched first optical signal to the lower-wavelength-switching switch, wherein the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, the first light a second output port of the switch is connected to an input port of the lower wave dimension switch, and an output port of the lower wave dimension switch is connected to an input port of the lower wave switch, and the first input of the second switch The port is connected to an output port of the punch-through dimension switch, and the second input port of the second optical switch is connected to an output port of the upper wave switch.
  • a lower wave dimension switching switch configured to perform a first optical signal from the first optical switch Transmitting and transmitting the dimension-switched first optical signal to the lower-wavelength-switching switch, wherein the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, the first light a second output port of the
  • the method further includes: an upper wave dimension switching switch, wherein the upper wave dimension switching switch is configured to perform wavelength switching on the upper wavelength switching switch
  • the third optical signal is dimension exchanged, and the third optical signal after the dimension exchange is sent to the second optical switch, wherein the first output port of the first optical switch is connected to the input port of the punch-through dimension switch
  • the second output port of the first optical switch is connected to the input port of the lower wavelength switch, and the first input port of the second switch is connected to the output port of the punch-through dimension switch, the second light
  • the second input port of the switch is connected to the output port of the upper wave dimension switch, and the input port of the upper wave dimension switch is connected to the output port of the upper wave switch.
  • the method further includes: an upper wave dimension switching switch and a lower wave dimension switching switch, where the lower wave dimension switching switch is used to switch from the first optical switching switch Dimming the first optical signal and transmitting the dimension-switched first optical signal to the lower-wavelength switching switch, wherein the upper-wave dimension switching switch is configured to perform wavelength switching on the upstream wavelength-switching switch
  • the third optical signal is dimension exchanged, and the third optical signal after the dimension exchange is sent to the second optical switch, wherein the first output port of the first optical switch is connected to the input port of the punch-through dimension switch a second output port of the first optical switch is connected to an input port of the lower wave dimension switch, and an output port of the lower wave dimension switch is connected to an input port of the lower wave switch, the second optical switch a first input port of the switch is connected to an output port of the punch-through dimension switch, and a second input port of the second optical switch and the upper wave Output switching switch connected port, the input port
  • the first optical switch It is a 1 ⁇ 2 switch.
  • the second optical switch It is a 2 ⁇ 1 switch.
  • the method further includes: demultiplexing a multiplexer, an upper wave port switching switch, and a lower wave port switching switch, wherein the demultiplexer is configured to demultiplex the wavelength division multiplexed signal from the network node and demultiplex the same Transmitting the optical signal to the first optical switch, the output port of the demultiplexer being connected to the input port of the first optical switch; the multiplexer is configured to receive the second optical signal from the second optical switch And multiplexing a third optical signal from the second optical switch to obtain a wavelength division multiplexed signal, wherein an input port of the multiplexer is connected to an output port of the second optical switch; the upper wave port switch is used for Performing packet and port switching on the locally generated optical signal to obtain the third optical signal and transmitting the third optical signal to the upper wavelength switching switch, and the output port of the upper wave port switching switch is switched to the upstream
  • a method for optical signal exchange includes a first optical switch, a second optical switch, a lower wavelength switch, an upper wavelength switch, and a feedthrough dimension switch.
  • the method includes: the first optical switch receives an optical signal, the optical signal includes a first optical signal and/or a second optical signal, and sends the first optical signal to the lower wavelength switch, to the through-division switch Transmitting the second optical signal; the lower wavelength switching switch performs wavelength exchange on the first optical signal from the first optical switch; the upper wavelength switching switch performs wavelength exchange on the locally generated third optical signal, and
  • the second optical switch transmits a third optical signal after the wavelength exchange by the upper wavelength switching switch; the punch-through dimension switching switch performs dimension exchange on the second optical signal from the first optical switch and to the second
  • the optical switch transmits the second optical signal after the dimension exchange; the second optical switch receives and transmits the second from the punch-through dimension switch An optical signal and a third optical signal from the upstream wavelength switch.
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second switch of the first switch An output port is connected to an input port of the lower wavelength switch, and a first input port of the second optical switch is connected to an output port of the punch-through dimension switch, and a second input port of the second switch The output ports of the wave wavelength switch are connected.
  • the node further includes a lower-wave dimension switching switch
  • the transmitting the first optical signal to the lower-wavelength wavelength switching switch includes: the first optical switching The switch sends the first optical signal to the lower wave dimension switching switch; the lower wave dimension switching switch performs dimension exchange on the first optical signal from the first optical switching switch and sends the dimension to the lower wavelength switching switch
  • the first optical signal of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first optical switch is switched with the lower-wave dimension switch.
  • the input port of the lower wave dimension switching switch is connected to the input port of the lower wave wavelength switching switch, and the first input port of the second optical switching switch is connected to the output port of the punching dimension switching switch, the first The second input port of the two-light switch is connected to the output port of the upper wave wavelength switch.
  • the node further includes an upper wave dimension switching switch, where the second optical switching switch transmits the wavelength exchange after the uplink wavelength switching switch
  • the third optical signal includes: the upper wave wavelength switching switch sends the third optical signal after the wavelength exchange of the upper wavelength switching switch to the upper wave dimension switching switch; the upper wave dimension switching switch passes the upper optical switch The third optical signal after wavelength exchange of the wavelength switching switch And performing a dimension exchange and transmitting the third optical signal after the dimension exchange to the second optical switch; wherein, the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, the first a second output port of the optical switch is connected to an input port of the lower wavelength switch, and a first input port of the second switch is connected to an output port of the punch-through dimension switch, and the second switch The two input port is connected to the output port of the upper wave dimension switch, and the input port of the upper wave dimension switch is connected to the output port of the upper wave switch.
  • the node further includes an upper wave dimension switching switch and a lower wave dimension switching switch, wherein the first light is sent to the lower wave wavelength switching switch
  • the signal includes: the first optical switch transmits the first optical signal to the lower-wave dimension switching switch; the lower-wave dimension switching switch performs dimension exchange on the first optical signal from the first optical switch, and And transmitting, by the wave wavelength switching switch, the first optical signal after the dimension exchange; the transmitting the third optical signal after the wavelength switching by the second wavelength switching switch to the second optical switching switch comprises: the upper wavelength switching switch The third optical signal after the wavelength exchange of the upper wavelength switching switch is sent to the upper wave dimension switching switch; the upper wave dimension switching switch performs the wavelength switching of the third optical signal after the wavelength switching switch Performing dimension exchange and transmitting the third optical signal after the dimension exchange to the second optical switch; wherein, the first output of the first optical switch The port is connected to the input port of the punch-through dimension switch, and the second output port of the first optical switch is connected to
  • the first optical switch It is a 1 ⁇ 2 switch.
  • the second optical switch It is a 2 ⁇ 1 switch.
  • the node further includes a demultiplexer, a multiplexer, an upper wave port switch switch, and a lower wave port switch switch, the method further comprising: the demultiplexer demultiplexing the wavelength division multiplexed signal from the network node, and performing the The optical signal obtained by demultiplexing is sent to the first optical switch, and an output port of the demultiplexer is connected to an input port of the first optical switch; the multiplexer is connected to the second optical switch The second optical signal and the third optical signal from the second optical switch are multiplexed to obtain a wavelength division multiplexed signal, and an input port of the multiplexer is connected to an output port of the second optical switch; the upper wave The port switching switch performs packet and port switching on the locally generated optical signal, obtains the third optical signal, and sends the third optical signal to the upper wavelength switching switch, and the output port of the upper wave port
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • Figure 1 is a schematic block diagram of an OXC node.
  • FIG. 2 is a schematic block diagram showing the structure of an OXC node.
  • FIG. 3 is a schematic block diagram of an optical cross-connect node in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • FIG. 8 is a schematic perspective structural view of an optical cross-connect node according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the planar structure of an optical cross-connect node according to an embodiment of the present invention.
  • FIG. 10 is a schematic perspective structural view of an optical cross-connect node according to another embodiment of the present invention.
  • FIG. 11 is a perspective view showing the structure of an optical cross-connect node according to another embodiment of the present invention.
  • FIG. 12 is a schematic perspective structural view of an optical cross-connect node according to another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a method for optical signal exchange according to an embodiment of the present invention.
  • Figure 14 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • the optical switching device of the embodiment of the present invention can be applied to various optical networks, including a Passive Optical Network ("PON"), for example, Gigabit-capable Passive Optical. Networks, referred to as “GPON” systems, 10G bit/S Ethernet Passive Optical Network (10GPON), and 10Gigabit-capable Passive Optical Network (10Gbit-capable Passive Optical Network) Referred to as "XG PON").
  • PON Passive Optical Network
  • GPON 10G bit/S Ethernet Passive Optical Network
  • 10Gbit-capable Passive Optical Network 10Gbit-capable Passive Optical Network
  • XG PON 10Gigabit-capable Passive Optical Network
  • the optical switching device of the embodiment of the present invention can be applied to an Orbital Angular Momentum (OAM) network, and can also be applied to a non-OAM network such as a WDM network.
  • OFAM Orbital Angular Momentum
  • WDM Wavelength Division Multiplexing
  • 3D-MEMS Three-dimensional micro-electromechanical system
  • WSS Wavelength Selective Switch
  • ROADM Reconfigurable Optical Add Drop Multiplexer
  • OXC node in the embodiment of the present invention may be based on an optical switch of a cross-through structure.
  • Figure 1 is a schematic block diagram of an OXC node.
  • the number of dimensions of the OXC node may correspond to the number of ports of the OXC node, and may also correspond to other optical nodes in the network.
  • the OXC node shown in Figure 1 can be an N x M optical switch, i.e., N input dimensions and M output dimensions.
  • the optical node can be used for dimension exchange, for example, the optical signal of the first input dimension can be output from the third output dimension after passing through the OXC optical switch. Take the five-dimensional OXC node as an example, enter the dimension.
  • the degree may include a first input dimension, a second input dimension, a third input dimension, a fourth input dimension, and a fifth input dimension.
  • the output dimension may include a first output dimension, a second output dimension, a third output dimension, a fourth output dimension, and a fifth output dimension.
  • the optical signal of the first input dimension can be output from any of the output dimensions via the OXC node.
  • the key component of the OXC node is an optical switch, wherein the optical switch is used for the exchange of optical signals, that is, the input optical signals are switched to the corresponding output ports according to the mapping relationship of the routing configuration.
  • the number of wavelengths per dimension is L
  • the number of input ports and the number of output ports of an N-dimensional OXC node are both N ⁇ L, where N and L are positive integers.
  • One is a three-dimensional micro-electromechanical system (Three Dimension Micro-Electro-Mechanical System, 3D-MEMS) based on micro-mirror reflective technology optical switch.
  • the optical switch collimates the input optical signal through the collimator array and then enters the MEMS micromirror array in parallel.
  • the micromirror of the MEMS micromirror array rotates under the control of the control signal to reflect the incident light to the corresponding output port. It is then focused through the focusing mirror to the output port array. Therefore, the optical switch using 3D-MEMS based on micromirror reflective technology is a micro-motion mechanical device that is susceptible to mechanical vibration and requires additional damping measures for damping.
  • One is an optical switch based on a Wavelength Selective Switch (WSS) of a Reconfigurable Optical Add Drop Multiplexer (ROADM).
  • WSS Wavelength Selective Switch
  • ROADM Reconfigurable Optical Add Drop Multiplexer
  • the optical switch is typically a combination of many small WSS multiplexers/demultiplexers, each WSS multiplexer/demultiplexer consisting of a WDM multiplexer/demultiplexer and many small WSS units.
  • the principle of the WSS unit is similar to that of MEMS, using a grating or micromirror to reflect the incoming optical signal to an output port. Due to its structural characteristics, ROADMs are easier to upgrade to larger switches, but at a higher cost.
  • Another disadvantage of ROADM is that wavelength blocking is prone to occur in the upper and lower waves.
  • Still another commonly used optical switching device is an optical switch based on a cross-bar structure.
  • An optical switch based on a cross-bar structure generally consists of several small switching units.
  • Each small switch unit is a 2 ⁇ 2 structure with two states: cross CROSS, the output is crossed with the input (input 1 -> output 2; input 2 -> output 1); through BAR, the output is directly connected to the input Status (input 1 -> output 1, input 2 -> output 2).
  • Each small switching unit can also have only one input (1 ⁇ 2). It also has two states: cross CROSS, the output is crossed with the input (input 1 -> output 2); through BAR, the output is in the through state ( Enter 1->Output 1).
  • Each small switching unit can also have only one output (2 ⁇ 1), also has two states: cross CROSS, output and input into Cross state (input 2 -> output 1); pass through BAR, the output is in direct state with the input (input 1 -> output 1).
  • Each small switching unit is usually based on a Mach-Zehnder (MZ) optical interference structure, which enables large-scale integration with Silicon Photonics Integration (SPI) technology.
  • MZ Mach-Zehnder
  • SPI Silicon Photonics Integration
  • the integrated crossbar optical switch will be significantly less expensive than 3D-MEMS and ROADM technology.
  • the crossbar optical switch is the most powerful candidate for the all-optical network OXC node.
  • optical node The structure of the optical node will be described below with reference to FIG.
  • the OXC node shown in FIG. 2 includes a first optical switch 210, a second optical switch 220, a third optical switch 230, and a fourth optical switch 240.
  • the first optical switch 210 is a 1 ⁇ 2 optical switch, and includes an input port, an upper output port, and a lower output port.
  • the second optical switch 220 is a 1 ⁇ 2 optical switch, and includes an input port, an upper output port, and a lower output port.
  • the third optical switch 230 is a 2 ⁇ 1 optical switch, including an upper output port, a lower input port, and an output port.
  • the fourth optical switch 240 is a 2 ⁇ 1 optical switch, and includes an upper output port, a lower input port, and an output port.
  • the 1 ⁇ 2 switch indicates that one of the two output ports can be selected for output.
  • the 2 ⁇ 1 switch indicates that one of the two input ports can be selected for input.
  • the solid line in FIG. 2 may be an activated connection, such as an upper output port of the first optical switch 210 as an output port.
  • the dashed line in FIG. 2 may be an inactive connection, for example, the lower output port of the first optical switch 210 has no optical signal passing through.
  • the upper output port of the first optical switch 210 can be connected to the upper input port of the third optical switch 230, and the lower output port of the second optical switch 220 can be connected to the lower input port of the fourth optical switch 240.
  • the optical signal input by the first optical switch 210 can be output from the output port of the third optical switch 230
  • the optical signal input by the second optical switch 220 can be output from the output port of the fourth optical switch 240.
  • the lower output port of the first optical switch 210 may also be connected to the upper input port of the fourth optical switch 240, and the upper output port of the second optical switch 220 may also be connected to the third.
  • the lower input port of the optical switch 230 is connected. In the activation mode of the connection, the optical signal input by the first optical switch 210 can be output from the output port of the fourth optical switch 240, and the optical signal input by the second optical switch 220 can be output from the output port of the third optical switch 230.
  • the optical cross-connect node 300 shown in FIG. 3 may include a first optical switch 301, a second optical switch 302, a lower wavelength switch 303, an upper wavelength switch 304, and a feedthrough dimension switch 305. Its in,
  • the first optical switch 301 receives the optical signal, and the optical signal includes a first optical signal and/or a second optical signal, and the first optical signal is sent by the down-wavelength switching switch 303, and the second optical signal is sent to the punch-through dimension switching switch 305.
  • the lower wavelength switching switch 303 performs wavelength exchange on the first optical signal from the first optical switch 301;
  • the upper wave wavelength switching switch 304 performs wavelength exchange on the locally generated third optical signal, and transmits the third optical signal after the wavelength exchange through the upper wave wavelength switching switch 304 to the second optical switching switch 302;
  • the through-dimension switch 305 exchanges the second optical signal from the first optical switch 301 and transmits the second optical signal after the dimension exchange to the second optical switch 302.
  • the second optical switch 302 receives and transmits a second optical signal from the punch-through dimension switch 305 and a third optical signal from the upstream wavelength switch 304.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • first optical switch 301 and the second optical switch 302 may include at least one optical switch, which may be a cross-through optical switch.
  • the number of optical switches included in the first optical switch 301 and the second optical switch 302 may be related to the configuration and function of the OXC node.
  • the upper wave wavelength switching switch 304, the lower wave wavelength switching switch 303, and the feedthrough dimension switching switch 305 in the embodiments of the present invention may be composed of a plurality of cross-bar structured optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • Different compositions may have different functions.
  • the wavelength exchange and the dimension exchange are included, wherein the wavelength exchange may be an exchange of different wavelengths in a certain same dimension, and the dimension exchange may be an exchange between different dimensions of the same wavelength.
  • the upper wave wavelength switching switch 304 can be applied to the upper wave process, and the lower wave wavelength switching switch 303 can be applied to the lower wave process.
  • the up wave process adds the wavelength of the local node to a dimension in the network; the down wave process downloads the wavelength of a certain dimension to the local node.
  • the first optical switch 301 can receive optical signals from other nodes in the network, and the first optical signals included in the received optical signals can be optical signals that need to be downlinked to the local, and the receiving
  • the second optical signal included in the optical signal may be a through wave that does not require an up wave or a down wave.
  • the third optical signal is substantially unchanged, and only the wavelengths in the same dimension are exchanged, that is, after the wavelength switching by the upper wavelength switching switch.
  • the second optical signal from the punch-through dimension switch 305 can be outputted to the second optical signal after the dimension exchange of the second optical signal received by the first optical switch 301 to the punch-through dimension exchange 305.
  • the third optical signal from the upper wavelength switching switch 304 may be a third optical signal after the wavelength of the locally generated third optical signal is exchanged by the upper wavelength switching switch 304.
  • the first output port of the first optical switch 301 can be connected to the input port of the through-dimension switch 305, and the second output port of the first switch 301 can be switched to the lower wavelength.
  • the input port of the switch 303 is connected
  • the first input port of the second optical switch 302 can be connected to the output port of the punch-through dimension switch 305
  • the second input port of the second switch 160 can be switched with the upper wavelength switch 304.
  • the output ports are connected.
  • the feedthrough dimension exchange switch 305 in the embodiment of the present invention may be composed of a plurality of cross-bar structured optical switches. For example, it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • a plurality of sets of punch-through dimension switching switches 305 may be included, and the number of slices included in each set of punch-through dimension switching switches 305 may be determined by the OXC grouping situation. Specifically, the relationship between the number of slices and the number of groups and the port correspondence relationship between the punch-through dimension exchange switch 305 and the first optical switch 301 and the second optical switch 302 will be described in detail below.
  • the optical cross-connecting node in the embodiment of the present invention may further include other devices.
  • the optical cross-connecting node in the embodiment of the present invention may further include other devices.
  • the content related to the present invention is described herein.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • FIG. 4 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention. It should be understood that the same devices in FIG. 4 as in FIG. 3 may employ the same reference.
  • the other devices in the above may include a demultiplexer 306, a multiplexer 307, an upper wave port switch switch 308, and a down wave port switch switch 309, where
  • the demultiplexer 306 demultiplexes the wavelength division multiplexed signal from the network node, and transmits the demultiplexed optical signal to the first optical switch 301, and the output port of the demultiplexer 306 is The input ports of the first optical switch 301 are connected;
  • the multiplexer 307 multiplexes the second optical signal from the second optical switch 302 and the third optical signal from the second optical switch 302 to obtain a wavelength division multiplexed signal, the input port of the multiplexer 307 and the second The output ports of the optical switch 302 are connected.
  • the upper wave port switching switch 308 performs grouping and port switching on the locally generated optical signal to obtain a third optical signal and sends the third optical signal to the upper wave wavelength switching switch 303, and the output port of the upper wave port switching switch 308
  • the input ports of the wave wavelength switching switch 304 are connected;
  • the lower wave port switching switch 309 performs packet and port switching on the second optical signal subjected to wavelength switching by the lower wavelength switching switch 303, and the input port of the lower wave port switching switch 309 is connected to the output port of the lower wave wavelength switching switch 303.
  • the demultiplexer 306 can be a WDM demultiplexer and the multiplexer 307 can be a WDM multiplexer.
  • the optical signal after demultiplexing by the demultiplexer 306 is transmitted to the first optical switch 301, and the optical signal after the demultiplexing may include the first optical signal and/or the second optical signal.
  • the first optical signal is for the lower wave and the second optical signal is the through wave.
  • the second optical signal and the third optical signal output by the second optical switch 302 are subjected to a wavelength division multiplexed signal through the multiplexer 307, and finally transmitted to other nodes in the network.
  • the optical signals of the dimensions from other nodes of the network may be demultiplexed by the demultiplexer 306 to output a plurality of wavelengths, and the multiple wavelengths may all be downloaded to the local node. It is also possible to have partial downloads to the local node, while other wavelengths are sent as punch-through waves to other network nodes.
  • the plurality of wavelengths outputted are the optical signals received by the first optical switch 301.
  • the wavelength to be downloaded to the local area ie, the first optical signal
  • the wavelength to be downloaded to the local area may be wavelength-switched through the wavelength switching switch, for example, the lower-wavelength wavelength switching switch 303 in the embodiment of the present invention, and the switched wavelength is passed through the lower-wave port switching switch 309. Perform a downstream port exchange and finally download to the local node.
  • the third optical signal from the local node can be switched by the upper wave port switch 308, and the wavelength after the port exchange is wavelength-switched by the wavelength switch, for example, the implementation of the present invention
  • the upper wavelength switching switch 304 multiplexes the wavelength-switched wavelengths in the multiplexer 307 and outputs them to the output port.
  • the first optical switch 301 can be a 1 ⁇ 2 switch.
  • the first optical switch 301 may be composed of at least one 1 ⁇ 2 switch, and the number of the 1 ⁇ 2 switches is related to the number of wavelengths of the optical signal and the grouping condition, and is included in the first optical switch 301.
  • the number of 1 x 2 switches will be described in detail below.
  • the second optical switch 302 may be a 2 ⁇ 1 switch.
  • the second optical switch 302 may be composed of at least one 2 ⁇ 1 switch, and the number of the 2 ⁇ 1 switches is related to the number of wavelengths of the optical signal and the grouping condition, and is included in the second optical switch 302.
  • the number of 2 x 1 switches will be described in detail below.
  • the embodiments of the present invention may include multiple sets of upper wave wavelength switching switches and multiple sets of lower wave wavelength switching switches.
  • the embodiment of the present invention only describes a set of upper wave wavelength switching switches and a set of lower wave wavelength switching switches.
  • the number of slices of each group of upper wave wavelength switching switches is determined by the OXC grouping condition.
  • the number of input ports and the number of output ports of the upstream wavelength switch are also determined according to the corresponding configuration.
  • the demultiplexer 306, the multiplexer 307, the upstream port switch switch 308, and the down wave port switch switch 309 shown in FIG. 4 may include a set, and the number of slices of each group will be described in detail below.
  • the first optical switch 301, the second optical switch 302, and the upper wavelength switch 304 may include a set, and the number of slices of each group will be described in detail below.
  • the lower wave wavelength switching switch 303 and the feedthrough dimension switching switch may include multiple groups, and the number of groups and the number of slices in each group may be related to the grouping of wavelengths of each dimension.
  • the number of sets of optical switches and the number of slices in each group will be described in detail below.
  • FIG. 5 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • the optical cross-connecting node in the embodiment of the present invention may further include a lower-wave dimension switching switch 310.
  • the lower wave dimension switching switch 310 performs dimension exchange on the first optical signal from the first optical switch 301 and transmits the first optical signal after the dimension exchange by the downward wave wavelength switching switch 303;
  • the first output port of the first optical switch 301 is connected to the input port of the punch-through dimension switch 305, and the second output port of the first switch 301 is connected to the input port of the lower-wave dimension switch 310.
  • the output port of the switch 310 is connected to the input port of the downstream wavelength switch 303, the first input port of the second switch 160 is connected to the output port of the punch-through dimension switch 305, and the second input of the second switch 302 is used.
  • the port is connected to the output port of the upstream wavelength switch 304.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • dimension switching switches have been added to the lower wave switching to improve the flexibility of the downstream port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the lower wave dimension exchange switch 310 in the embodiment of the present invention may be composed of a plurality of cross-bar structure optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • optical signals of multiple dimensions from other nodes of the network may be demultiplexed by the demultiplexer 306 to output multiple wavelengths, and the multiple wavelengths may all be downloaded to the local node, or may be partially Download to the local node, while other wavelengths are sent as punch-through waves to other network nodes.
  • the wavelength to be downloaded to the local area (that is, the first optical signal) may be first exchanged through a dimension switching switch, such as the lower-wave dimension switching switch 310 in the embodiment of the present invention, and then subjected to wavelength switching by using a wavelength switching switch, for example, in the embodiment of the present invention.
  • the lower wavelength switching switch 303 exchanges the switched wavelengths through the lower wave port switching switch 309 for downlink switching, and finally downloads to the local node.
  • the wavelength does not change and the dimension changes.
  • the dimension is unchanged and the wavelength changes.
  • the embodiment of the present invention may include multiple sets of down-wave dimension switching switches, and the number of slices included in each group of lower-wave dimension switching switches is determined by the OXC grouping situation. Specifically, the relationship between the number of slices and the number of groups and the port correspondence between the lower wave dimension switching switch and the lower wave wavelength switching switch will be described in detail below.
  • FIG. 6 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • the optical cross-connecting node in the embodiment of the present invention may further include an upper wave dimension switching switch 311.
  • the upper wave dimension switching switch 311 performs dimension exchange on the third optical signal after the wavelength exchange of the upper wavelength switching switch 304 and transmits the third optical signal after the dimension exchange to the second optical switching switch 302;
  • the first output port of the first optical switch 301 is connected to the input port of the punch-through dimension switch 305, and the second output port of the first switch 301 is connected to the input port of the lower-wavelength switch 303.
  • the first input port of the changeover switch 302 is connected to the output port of the feedthrough dimension switch 305, the second input port of the second optical switch 302 is connected to the output port of the upper wave dimension switch 311, and the input of the upper wave dimension switch 311
  • the port is connected to the output port of the upstream wavelength switch 304.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent, which avoids the upper and lower waves sharing a wavelength-switched optical switch, which can reduce the light crossover.
  • Crosstalk of interconnected nodes are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the dimension exchange switch is added to the upper wave exchange to improve the flexibility of the upper wave port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the upper wave dimension exchange switch 311 in the embodiment of the present invention may be composed of a plurality of cross-bar structure optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • the third optical signal from the local node may perform uplink port switching through the upper wave port switching switch 308, and the wavelength of the port exchanged wavelength is exchanged through the wavelength switching switch (for example, the implementation of the present invention)
  • the upper wavelength switching switch 304 performs the dimension exchange of the wavelength-switched wavelength through the dimension switching switch, for example, the upper-wave dimension switching switch 311 in the embodiment of the present invention, and sends the dimension-switched wavelength to the second.
  • the optical switch 302 is finally sent to the multiplexer 307 for multiplexing and output to the output port.
  • the wavelength of the locally generated third optical signal is first exchanged by the wavelength, the dimension is unchanged, the wavelength is changed, and after the dimension exchange, the wavelength is unchanged and the dimension changes.
  • the embodiment of the present invention may include multiple sets of upper wave dimension switching switches, and the number of slices included in each group of upper wave dimension switching switches is determined by the OXC grouping situation. Specifically, the relationship between the number of slices and the number of groups and the port correspondence between the upper wave dimension switching switch and the upper wave wavelength switching switch will be described in detail below.
  • FIG. 7 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • the optical cross-connecting node in the embodiment of the present invention may further include an upper wave dimension switching switch 311 and a lower wave dimension switching switch 310.
  • the lower wave dimension switching switch 310 performs dimension exchange on the first optical signal from the first optical switch 301 and transmits the first optical signal after the dimension exchange by the downward wave wavelength switching switch 303, and the upper wave dimension exchange switch 311 passes the upper
  • the third optical signal after the wavelength exchange is performed by the wavelength switching switch 304 performs dimension exchange and transmits the third optical signal after the dimension exchange to the second optical switch 302;
  • the first output port of the first optical switch 301 is connected to the input port of the punch-through dimension switch 305, and the second output port of the first switch 301 is connected to the input port of the lower-wave dimension switch 310.
  • the output port of the switch 310 is switched to the lower wavelength
  • the input port of the switch 303 is connected, the first input port of the second optical switch 302 is connected to the output port of the punch-through dimension switch 305, and the second input port of the second optical switch 302 is connected to the output port of the upper-wave dimension switch 311.
  • the input port of the upper wave dimension switching switch 311 is connected to the output port of the upper wave wavelength switching switch 304.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and the upper wave switching respectively, which can improve the flexibility of the selection of the lower wave port and the upper wave port.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the upper wave process may be as follows:
  • the optical signal from the local node can be switched by the upper wave port switch 308, and the wavelength after the port exchange is wavelength-switched by the upper-wavelength switching switch 304, and then the wavelength-switched wavelength is switched by the second optical switch.
  • the switch 302 performs port switching and is finally multiplexed in the multiplexer 307 and output to the output port.
  • the down wave process can be as follows:
  • Optical signals of multiple dimensions from other nodes of the network may be demultiplexed by demultiplexer 306 to output multiple wavelengths, which may all be downloaded to the local node, or partially downloaded to the local node, while other wavelengths Send as a through wave to other network nodes.
  • the wavelength is passed through the first optical switch 301 for port switching, wherein the through wave (ie, the second optical signal) can be dimension exchanged through the punch-through dimension switch 305, and the wavelength exchanged through the dimension is passed through the second optical switch 302.
  • the exchange is finally multiplexed by the multiplexer 307 and output to the output port.
  • the wavelength to be downloaded to the local area ie, the first optical signal
  • the upper wave process includes only the upper wave wavelength switching switch 304, The process of the lower wave wavelength switching switch 303 is the same, and the description will not be repeated here.
  • the down wave process can be as follows:
  • Optical signals of multiple dimensions from other nodes of the network may be demultiplexed by demultiplexer 306 to output multiple wavelengths, which may all be downloaded to the local node, or partially downloaded to the local node, while other wavelengths Send as a through wave to other network nodes.
  • the wavelength is passed through the first optical switch 301 for port switching, wherein the through wave (ie, the second optical signal) can be dimension exchanged through the punch-through dimension switch 305, and the wavelength exchanged through the dimension is passed through the second optical switch 302.
  • the exchange is finally multiplexed by the multiplexer 307 and output to the output port.
  • the wavelength to be downloaded to the local area may pass through the lower wave dimension switching switch 310, pass through the lower wave wavelength switching switch 303, and pass the switched wavelength to the lower wave port through the lower wave port switching switch 309. Exchange, and finally download to the local node.
  • the upper wave process may be as follows:
  • the optical signal from the local node can be exchanged by the upper wave port switch 308, and the wavelength of the port exchanged is exchanged by the upper wavelength switching switch 304, and the wavelength after the wavelength exchange is switched by the upper wave dimension.
  • the switch 311 performs dimension exchange, and then switches the wavelength after the dimension exchange to the port through the second optical switch 302, and finally multiplexes it in the multiplexer 307 and outputs it to the output port.
  • the lower wave process may include only the upper wave wavelength switching switch 304 and the lower wave wavelength switching switch 303. The process is the same, to avoid repetition, it will not be described in detail here.
  • the upper wave process may include an upper wave wavelength switching switch 304,
  • the lower wave process of the lower wave wavelength switching switch 303 and the upper wave dimension switching switch 311 is the same; the lower wave process can be followed by the lower wave process including the upper wave wavelength switching switch 304, the lower wave wavelength switching switch 303, and the lower wave dimension switching switch 310. the same. To avoid repetition, it will not be described in detail here.
  • the punch-through dimension switching switch 305, the lower-wave dimension switching switch 310, and the upper-wave dimension switching switch 311 can be implemented by using an enhanced extended Banyan (Enhanced Dilated Banyan (EDB) switch, and the upper wavelength switching is performed.
  • the switch 304 and the lower wavelength switching switch 303 can be implemented by using a path independent loss (PILOSS) switch.
  • the upper wave port switch switch 308 and the lower wave port switch switch 309 can be implemented by using an extended Bins and EDB hybrid type (EDB) switch.
  • FIG. 8 is a schematic perspective structural view of an optical cross-connect node according to an embodiment of the present invention. Referring to FIG. 8, the three-dimensional structure of the optical cross-connect node and the connection relationship between the switches will be described in detail below.
  • FIG. 8 includes an upper wave port switching switch 801, an upper wave wavelength switching switch 802, a lower wave wavelength switching switch 803, a lower wave port switching switch 804, a WDM demultiplexer group 805, a 1 ⁇ 2 optical switch group 806, 2 ⁇ . 1 optical switch group 807, WDM multiplexer group 808, through dimension switching switch 809, lower wave dimension switching switch 810 and upper wave dimension switching switch 811.
  • each dimension of the OXC has 80 wavelengths, and a total of 8 groups of 10 wavelengths each. Among them, 10 wavelengths of each group are different wavelengths.
  • the punch-through dimension switch 809 is used to achieve dimensional exchange between the same wavelengths.
  • the upper wave wavelength switching switch 802 and the lower wave wavelength switching switch 804 are used to achieve wavelength switching in the same dimension.
  • Table 1 is a table of the assignment of ports and wavelengths of the demultiplexer/multiplexer.
  • the first group of wavelengths includes 1, 9, 17, ..., 73, a total of 10 wavelengths, and the 10 different wavelengths of the first group of wavelengths respectively correspond to the demultiplexer/
  • the multiplexer has 1, 10, ..., 10 ports.
  • the grouping of such wavelengths enables the wavelength intervals in the upper wave wavelength switching switch and the lower wave wavelength switching switch of each group to be as large as possible, and crosstalk can be avoided.
  • each group of 10 different wavelengths the number of groups and the number of slices of each optical switch in the optical cross node of Fig. 8 can be determined. It should be understood that each dimension includes 8 sets of wavelengths, Figure 8 Only one of the eight sets of optical switches is shown.
  • the upper wave port switch 801 shown in Figure 8 can include a set of 32 x 32 optical switches, one set comprising six, i.e., six 32 x 32 optical switches.
  • the upper wave wavelength switch 802 can include eight sets of 6 x 10 optical switches, each set comprising four, i.e., four 6 x 10 optical switches.
  • the lower wavelength switch 803 can include eight sets of 10 x 6 optical switches, each set comprising four, ie, four 10 x 6 optical switches.
  • the lower wave port switch 804 can include a set of 32 x 32 optical switches, each set comprising six, i.e., six 32 x 32 optical switches.
  • the WDM demultiplexer group 805 can employ a Wave Demultiplexer (WDM DEMUX), and the WDM Multiplexer Group 808 can employ a Wavelength Division Multiplexer (WDM MUX).
  • the number of WDM demultiplexers in the WDM demultiplexer group 805 may be the number of dimensions in the network, and the number of WDM multiplexers in the WDM multiplexer group 808 may be the dimensions of the network. number.
  • the WDM demultiplexer group 805 may include four WDM demultiplexers, and the WDM multiplexer group 808 may include four WDM multiplexers.
  • the 1 ⁇ 2 optical switch group 806 may include 8 sets of 1 ⁇ 2 optical switches, 2 ⁇ .
  • the optical switch group 807 can include eight sets of 2 x 1 optical switches.
  • Each set of 1 ⁇ 2 optical switches may include 40 1 ⁇ 2 optical switches, and each set of 2 ⁇ 1 optical switches may include 40 2 ⁇ 1 optical switches.
  • the feedthrough dimension switch 809 can include eight sets of 4x4 optical switches, each set of 10, i.e., 10 4x4 optical switches.
  • the lower wave dimension switch 810 can include eight sets of 4x4 optical switches, each set of 10, ie, 10 4x4 optical switches.
  • the upper wave dimension switch 811 can include eight sets of 4x4 optical switches, each set of 10, ie, 10 4x4 optical switches.
  • connection relationship in the optical cross-connect node shown in FIG. 8 can be as follows:
  • the manner in which the 1x2 optical switch bank 806 is connected to the WDM demultiplexer bank 805 and the manner in which the 2x1 optical switch bank 807 and the WDM multiplexer bank 808 are connected may be symmetrical.
  • the output port of the first switch of the upper wave wavelength switch 802 can be connected to the first input port of all the switches in the upper wave dimension switch 811.
  • the output port of the second switch of the upper wave wavelength switch 802 can be connected to the second input port of all the switches in the upper wave dimension switch 811. And so on.
  • the input port of the first switch of the lower wave wavelength switch 803 is connected to the first output port of all the switches in the lower wave dimension switch 810. Second wave of the lower wavelength switching switch 803
  • the input port of the chip switch can be connected to the second output port of all switches in the lower wave dimension switching switch 810 one by one. And so on.
  • the input ports of the first switches of the first set of upper wavelength switch switches 802 can be connected to the first input ports of all switches in the upper wave port switch 801.
  • the input port of the second switch of the first wave of the upper wavelength switch 802 is connected to the second input of all the switches of the upper port switch switch 801.
  • the input port of the first switch of the second group of upper wave wavelength switch 802 is connected to the fifth input port of all switches in the upper wave port switch 801.
  • the input port of the second switch of the second group of upper wave wavelength switch 802 is connected to the sixth input port of all switches in the upper wave port switch 801. And so on.
  • the output ports of the first switches of the first set of lower wavelength switch switches 803 can be connected to the first input ports of all switches in the lower wave port switch 804.
  • the output port of the second switch of the first group of lower wave wavelength switch 803 can be connected to the second input port of all switches in the lower port switch switch 804.
  • the output ports of the first switches of the second group of lower wave wavelength switch 803 can be connected to the fifth input port of all switches in the lower port switch switch 804.
  • the output port of the second switch of the second group of lower wavelength switch 803 can be connected to the sixth input port of all switches in the lower port switch switch 804. And so on.
  • the WDM optical signal is limited to pass through the WDM demultiplexer group 805 and is divided into independent groups of 8 wavelengths.
  • Each WDM demultiplexer in WDM demultiplexer 805 can include 80 ports.
  • the input ports of 40 1 ⁇ 2 optical switches can be connected to the first group of output ports of the WDM demultiplexer group 805 (10 for each WDM demultiplexer, 4 WDM demultiplexing) Connected to 40 ports), the first output port of 40 1 ⁇ 2 optical switches is connected to the input port of the punch-through dimension switch 809, the second output port of 40 1 ⁇ 2 optical switches and the lower-wave dimension exchange switch 810 The input ports are connected.
  • the output ports of 40 2 ⁇ 1 optical switches are connected to the first group of input ports of WDM multiplexer group 806 (10 for each WDM multiplexer, 40 ports for 4 WDM multiplexers), 40 2 ⁇
  • the first input port of the optical switch is connected to the output port of the feedthrough dimension switch 809, and the second input port of the 40 2x1 optical switch is connected to the output port of the upper wave dimension switch 811.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and/or the dimension switching switch is added in the upper wave switching, which can improve the flexibility of the selection of the upper wave port and/or the lower wave port.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the OXC node be an N-dimensional node, each dimension has M wavelengths, and the M wavelengths are divided into K groups, that is, each group of L (ie, M/K) wavelengths.
  • N, M, L and K are positive integers.
  • the N-dimensional OXC node includes: a K group first optical switch, a K group second optical switch, a K group upper wave wavelength switch, a K group lower wave wavelength switch, and a K group pass through dimension switch, wherein
  • the first optical switch includes N ⁇ L 1 ⁇ 2 switches for receiving an optical signal, the optical signal includes a first optical signal and/or a second optical signal, and the downward optical wavelength switching switch sends the first optical signal to the punch-through
  • the dimension exchange switch sends the second optical signal
  • the lower wavelength switching switch includes an N-chip L ⁇ X switch for performing wavelength exchange on the first optical signal from the first optical switch, wherein X is a positive integer less than or equal to L;
  • the upper wave wavelength switching switch comprises an N-chip X ⁇ L switch for performing wavelength exchange on the locally generated third optical signal, and transmitting the third optical signal after the wavelength exchange by the upper wavelength switching switch to the second optical switching switch.
  • the punch-through dimension switch includes an L-slice N ⁇ N switch for performing dimension exchange on the second optical signal from the first optical switch and transmitting the second optical signal after the dimension exchange to the second optical switch;
  • the second optical switch includes N x L 2 x 1 switches for receiving and transmitting a second optical signal from the feedthrough dimension switch and a third optical signal from the upper wavelength switch.
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch.
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output port of the upper wave switch.
  • the N-dimensional OCT node may further include a K-group down-wave dimension switching switch, where the lower-wave dimension switching switch includes an L-slice N ⁇ N switch for the first optical switching switch.
  • the first optical signal is dimension exchanged and the first optical signal after the dimension exchange is sent by the downward wave wavelength switching switch;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wavelength switching switch, the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output of the upper wave switch.
  • the ports are connected.
  • the N-dimensional OCT node may further include a K-group upper-wave dimension switching switch, where the upper-wave dimension switching switch includes an L-slice N ⁇ N switch for performing the uplink wave switching switch.
  • the third optical signal after the wavelength exchange is dimension exchanged, and the third optical signal after the dimension exchange is sent to the second optical switch;
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch, and the second switch
  • An input port is connected to an output port of the punch-through dimension switch, and a second input port of the second optical switch is connected to an output port of the upper wave dimension switch, and an input port of the upper wave dimension switch and an output of the upper wave switch switch The ports are connected.
  • the N is an OXC node, and may further include a K group upper wave dimension switching switch and a K group lower wave dimension switching switch, wherein the lower wave dimension switching switch is used for the first optical switching switch.
  • the first optical signal is dimension exchanged and the first optical signal is exchanged for the dimension exchange by the downward wave wavelength switching switch, and the upper wave dimension switching switch is used for dimensioning the third optical signal after the wavelength exchange of the upper wavelength switching switch Exchanging and transmitting, to the second optical switch, the third optical signal after the dimension exchange;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wave wavelength switch
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch
  • the output of the second input port of the second switch is switched to the switch of the upper wave dimension switch.
  • the ports are connected, and the input port of the upper wave dimension switching switch is connected to the output port of the upper wave wavelength switching switch.
  • the upper wave wavelength switching switch includes N pieces of X ⁇ L switches
  • the lower wave ratio is X/L.
  • the N-dimensional OXC node may further include N demultiplexers, N multiplexers, an upper wave port switch switch, and a lower wave port switch switch, where the demultiplexer is used.
  • the third optical signal is multiplexed to obtain a wavelength division multiplexed signal, and an input port of the multiplexer is connected to an output port of the second optical switch;
  • the upper wave port switch includes an X slice (N ⁇ K) ⁇ (N ⁇ K)
  • the optical switch is configured to perform grouping and port switching on the locally generated optical signal, obtain a third optical signal, and send the third optical signal to the upper wavelength switching switch, and output port and upper wavelength switching switch of the upper wave port switching switch.
  • the input port is connected; the down-wave port switch includes an X-chip (N ⁇ K) ⁇ (N ⁇ K) optical switch for grouping and port-switching the second optical signal after wavelength-switching through the lower-wavelength switching switch.
  • the input port of the lower wave port switch is connected to the output port of the lower wave wavelength switch.
  • FIG. 9 is a schematic diagram showing the planar structure of an optical cross-connect node according to an embodiment of the present invention.
  • Fig. 9 the same reference numerals are used for the portions of Fig. 8, and only the planar structure of the schematic structure shown in Fig. 8 is described.
  • connection mode of the 1 ⁇ 2 optical switch group 806 and the WDM demultiplexer group 805 and the connection mode of the 2 ⁇ 1 optical switch group 807 and the WDM multiplexer group 808 are symmetrical.
  • the output port of the first switch of the upper wave wavelength switch 802 can be connected to the first input port of all the switches in the upper wave dimension switch 811.
  • the output port of the second switch of the upper wave wavelength switch 802 can be connected to the second input port of all the switches in the upper wave dimension switch 811. And so on.
  • the input port of the first switch of the lower wave wavelength switch 803 can be connected to the first output port of all the switches in the lower wave dimension switch 810.
  • the input port of the second switch of the lower wave wavelength switch 803 can be connected to the second output port of all the switches in the lower wave dimension switch 810. And so on.
  • the input port of the first switch of the first wave of the upper wavelength switch 802 is connected to the first output of all the switches of the upper port switch switch 801.
  • the input port of the second switch of the first set of upper wave wavelength switch 802 is connected to the second output port of all switches of the upper wave port switch 801.
  • the input port of the first switch of the second group of upper wave wavelength switch 802 is connected to the fifth output port of all switches in the upper wave port switch 801.
  • the input port of the second switch of the second group of upper wave wavelength switch 802 is connected to the sixth output port of all switches in the upper wave port switch 801. And so on.
  • the output ports of the first switches of the first set of downstream wave switching switches 803 are connected one-to-one with the first input ports of all switches in the lower wave port switching switch 804.
  • the output port of the second switch of the first group of lower wave wavelength switch 803 is connected to the second input port of all switches of the lower wave port switch 804.
  • the output port of the first switch of the second group of lower wave wavelength switch 803 is connected to the fifth input port of all switches in the lower port switch switch 804.
  • the output port of the second switch of the second group of lower wave wavelength switch 803 is connected to the sixth input port of all switches in the lower wave port switch 804. And so on.
  • the WDM optical signal is limited to pass through the WDM demultiplexer group 805 and is divided into independent groups of 8 wavelengths.
  • the WDM demultiplexer group 805 includes four WDM demultiplexers, each WDM demultiplexer may include 80 ports, and each WDM multiplexer may include 80 ports.
  • the input ports of 40 1 ⁇ 2 optical switches are connected to the first set of input ports of the WDM demultiplexer group 805 (ie, 4 WDM demultiplexers, each WDM demultiplexer connection 10 Ports, a total of 40 ports), the first output port of 40 1 ⁇ 2 optical switches is connected to the input port of the punch-through dimension switch 809, and the second output port of the 40 1 ⁇ 2 optical switches is switched with the lower-wave dimension switch.
  • the input ports of the 810 are connected.
  • the output ports of 40 2 ⁇ 1 optical switches are connected to the first set of input ports of the WDM multiplexer group 806 (ie, 4 WDM multiplexers, each WDM multiplexer is connected to 10 ports for 40 ports), 40
  • the first input port of the 2 ⁇ 1 optical switch is connected to the output port of the punch-through dimension switch 809, and the second input port of the 40 2 ⁇ 1 optical switch is connected to the output port of the upper wave dimension switch 811.
  • FIG. 9 actually includes a set of upper wave port switching switches 801, eight sets of upper wave wavelength switching switches 802, and eight sets of lower wave wavelength switching switches 803, one.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and/or the dimension switching switch is added in the upper wave switching, which can improve the flexibility of the selection of the upper wave port and/or the lower wave port.
  • dimension and upper The lower waves are completely independent from each other, and the through waves do not need to pass through the upper and lower wave switching switches, which not only makes the through waves not blocked, but also reduces the difference of the through waves.
  • FIG. 10 is a schematic perspective structural view of an optical cross-connect node according to another embodiment of the present invention.
  • the same portions in Fig. 10 as those in Fig. 8 are given the same reference numerals.
  • the optical cross-connecting node shown in FIG. 10 is only omitted from the upper-wave dimension switching switch 811 of FIG. 8 in comparison with FIG. 8, and the other portions of the entire structure are connected in the same manner as in FIG. Compared with FIG. 8, although the node shown in FIG. 10 sacrifices the flexibility of the selection of the upper wave port, each switch of the upper wave port switch 801 allows only one port to simultaneously wave up to a certain dimension, and the blocking rate is slightly rise.
  • the embodiment shown in Figure 10 can be compensated for by customer side crossing (C-FXC). At the same time, this embodiment uses 80 upper-wave dimension switching switches less than the embodiment shown in FIG. 8, which reduces the complexity involved in OXC.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • dimension switching switches have been added to the lower wave switching to improve the flexibility of the downstream port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • FIG. 11 is a perspective view showing the structure of an optical cross-connect node according to another embodiment of the present invention.
  • the same portions in Fig. 11 as those in Fig. 8 are given the same reference numerals.
  • the optical cross-connecting node shown in FIG. 11 is only omitted from the lower-wave dimension switching switch 810 of FIG. 8 in comparison with FIG. 8.
  • the other parts of the entire structure are connected in the same manner as in FIG. Compared with FIG. 8, the node shown in FIG. 11 sacrifices the flexibility of the selection of the lower wave port, so that each switch of the lower wave port switch 804 allows only one port to simultaneously wave down, and the blocking rate slightly increases.
  • the embodiment shown in Figure 11 can be compensated for by customer side crossing (C-FXC).
  • this embodiment uses 80 lower-wave dimension exchange switches less than the embodiment shown in FIG. 8, which reduces the complexity involved in OXC.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension exchange switch is added to the upper wave exchange to improve the flexibility of the upper wave port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • FIG. 12 is a schematic perspective structural view of an optical cross-connect node according to another embodiment of the present invention.
  • the same portions in Fig. 9 as those in Fig. 7 are given the same reference numerals.
  • the optical cross-connecting node shown in FIG. 12 is only omitted from the lower-wave dimension switching switch 810 in FIG. 10, and the other portions of the entire structure are connected in the same manner as in FIG. Compared with FIG. 10, although the node shown in FIG. 12 sacrifices the flexibility of the selection of the lower wave port, each switch of the lower wave port switch 804 allows only one port to simultaneously wave down, and the blocking rate slightly increases.
  • the embodiment shown in Figure 12 can be compensated for by customer side crossing (C-FXC). At the same time, this embodiment uses 80 lower-wave dimension exchange switches less than the embodiment shown in FIG. 10, which reduces the complexity involved in OXC.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension is completely independent from the upper and lower waves, and the through wave does not need to pass through the upper and lower wave switching switches, which not only makes the through wave not blocked, but also reduces the differential damage of the through wave.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • FIG. 13 is a schematic flowchart of a method for optical signal exchange according to an embodiment of the present invention.
  • the method illustrated in Figure 13 can be performed by an optical cross-connect node.
  • the optical cross-interconnect node of FIGS. 1 through 12 can implement the method shown in FIG. 13, and to avoid repetition, it will not be described in detail herein.
  • the node to which the method is applied includes a first optical switch, a second optical switch, a lower wavelength switch, an upper wavelength switch, and a feedthrough dimension switch, the method comprising:
  • the first optical switch receives an optical signal, where the optical signal includes a first optical signal and/or a second optical signal, and sends a first optical signal to the down-wavelength switching switch, and sends a second optical signal to the punch-through dimension switching switch.
  • the lower wavelength switching switch performs wavelength exchange on the first optical signal from the first optical switch.
  • the upper wave wavelength switching switch performs wavelength exchange on the locally generated third optical signal, and
  • the second optical switch transmits a third optical signal after the wavelength exchange by the upper wavelength switching switch;
  • the through-dimension exchange switch performs dimension exchange on the second optical signal from the first optical switch, and sends the second optical signal after the dimension exchange to the second optical switch.
  • the second optical switch receives and transmits a second optical signal from the punch-through dimension switching switch and a third optical signal from the upper wavelength switching switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • first optical switch and the second optical switch may include at least one optical switch, which may be a cross-through optical switch.
  • the number of optical switches included in the first optical switch and the second optical switch can be related to the configuration and function of the OXC node.
  • the upper wave wavelength switching switch, the lower wave wavelength switching switch, and the feedthrough dimension switching switch in the embodiments of the present invention may be composed of a plurality of cross-bar structured optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • Different compositions may have different functions.
  • the wavelength exchange and the dimension exchange are included, wherein the wavelength exchange may be an exchange of different wavelengths in a certain same dimension, and the dimension exchange may be an exchange between different dimensions of the same wavelength.
  • the feedthrough dimension exchange switch in the embodiment of the present invention may be composed of a plurality of cross-bar structure optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • a plurality of sets of punch-through dimension switching switches 305 may be included, and the number of slices included in each set of punch-through dimension switching switches may be determined by the OXC grouping situation. Specifically, the relationship between the number of slices and the number of groups and the port correspondence relationship between the punch-through dimension switching switch and the first optical switch and the second optical switch 302 will be described in detail below.
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch.
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output port of the upper wave switch.
  • the node further includes a lower wave dimension switching switch.
  • the sending the first optical signal by the downward wave wavelength switching switch may include:
  • the first optical switch transmits the first optical signal to the lower wave dimension switching switch
  • the lower wave dimension switching switch performs dimension exchange on the first optical signal from the first optical switch and transmits the first optical signal after the dimension exchange by the downward wave wavelength switch;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wavelength switching switch, the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output of the upper wave switch.
  • the ports are connected.
  • the lower wave dimension switching switch in the embodiment of the present invention may be composed of a plurality of cross-bar structured optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • the embodiment of the present invention may include multiple sets of upper wave wavelength switching switches, multiple sets of lower wave wavelength switching switches, multiple sets of lower wave dimension switching switches, and multiple sets of punching through dimension switching switches. Group situation.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • dimension switching switches have been added to the lower wave switching to improve the flexibility of the downstream port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the node may further include an upper wave dimension switching switch.
  • transmitting the third optical signal after the wavelength switching by the upper wavelength switching switch to the second optical switching switch may include:
  • the upper wave wavelength switching switch sends the third optical signal after the wavelength exchange by the upper wave wavelength switching switch to the upper wave dimension switching switch;
  • the upper wave dimension switching switch performs dimension exchange on the third optical signal after the wavelength exchange of the upper wavelength switching switch, and sends the third optical signal after the dimension exchange to the second optical switching switch;
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch, and the second switch An input port is connected to an output port of the punch-through dimension switch.
  • the second input port of the second optical switch is connected to the output port of the upper wave dimension switch, and the input port of the upper wave dimension switch is connected to the output port of the upper wave switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension exchange switch is added to the upper wave exchange to improve the flexibility of the upper wave port selection.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the upper wave dimension exchange switch 311 in the embodiment of the present invention may be composed of a plurality of cross-bar structure optical switches.
  • it may be composed of a plurality of 1 ⁇ 2 switches, 2 ⁇ 2 switches, and 2 ⁇ 1 switches.
  • the embodiment of the present invention may include multiple sets of upper wave wavelength switching switches, multiple sets of lower wave wavelength switching switches, multiple sets of upper wave wave dimension switching switches, and multiple sets of punching through dimension switching switches, which are described in the embodiment of the present invention. A group of situations.
  • the node may further include an upper wave dimension switching switch and a lower wave dimension switching switch.
  • the transmitting the first optical signal by the downward wave wavelength switching switch may include:
  • the first optical switch transmits the first optical signal to the lower wave dimension switching switch
  • the lower wave dimension switching switch performs dimension exchange on the first optical signal from the first optical switch and transmits the first optical signal after the dimension exchange by the downward wave wavelength switch;
  • the transmitting, by the second optical switch, the third optical signal after the wavelength exchange by the upper wavelength switching switch may include:
  • the upper wave wavelength switching switch sends the third optical signal after the wavelength exchange by the upper wave wavelength switching switch to the upper wave dimension switching switch;
  • the upper wave dimension switching switch performs dimension exchange on the third optical signal after the wavelength exchange of the upper wavelength switching switch, and sends the third optical signal after the dimension exchange to the second optical switching switch;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wave wavelength switch
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch
  • the output of the second input port of the second switch is switched to the switch of the upper wave dimension switch.
  • Port connected, upper wave dimension The input port of the switch is connected to the output port of the upstream wavelength switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and the upper wave switching respectively, which can improve the flexibility of the selection of the lower wave port and the upper wave port.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • the first optical switch can be a 1 ⁇ 2 switch.
  • the second optical switch can be a 2 ⁇ 1 switch.
  • a 1 ⁇ 2 switch may also be referred to as a 1 ⁇ 2 optical switch
  • a 2 ⁇ 1 switch may also be referred to as a 2 ⁇ 1 optical switch.
  • the node may further include a demultiplexer, a multiplexer, an upper wave port switching switch, and a lower wave port switching switch.
  • the method shown in FIG. 13 may further include:
  • the demultiplexer demultiplexes the wavelength division multiplexed signal from the network node, and sends the demultiplexed optical signal to the first optical switch, the output port of the demultiplexer and the first light.
  • the input ports of the switch are connected;
  • the multiplexer multiplexes the second optical signal from the second optical switch and the third optical signal of the second optical switch to obtain a wavelength division multiplexed signal, and the input port and the second light of the multiplexer The output ports of the switch are connected;
  • the upper wave port switching switch performs grouping and port switching on the locally generated optical signal to obtain a third optical signal, and sends the third optical signal to the upper wave wavelength switching switch, and the output port and the upper wavelength of the upper wave port switching switch.
  • the input ports of the switch are connected;
  • the lower wave port switching switch performs grouping and port switching on the second optical signal after wavelength switching by the lower wavelength switching switch, and the input port of the lower wave port switching switch is connected to the output port of the lower wave wavelength switching switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and/or the dimension switching switch is added in the upper wave switching, which can improve the flexibility of the selection of the upper wave port and/or the lower wave port.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • demultiplexer multiplexer, upstream port switch switch, and down wave port switch switch may be a group, and the number of slices per block and the configuration of each slice may be based on the dimension and the grouping of optical signals.
  • FIG. 14 is a schematic block diagram of an optical cross-connect node in accordance with another embodiment of the present invention.
  • the node 1400 of FIG. 14 can be used to implement the steps and methods in the foregoing method embodiments.
  • the node of FIG. 14 includes a processor 1401 and a memory 1402.
  • the processor 1401 and the memory 1402 are connected by a bus system 1409.
  • the processor 1401 controls the operation of the node 1400.
  • Memory 1402 can include read only memory and random access memory and provides instructions and data to processor 1401.
  • a portion of memory 1402 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of node 1400 are coupled together by a bus system 1409, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1409 in the figure.
  • the processor 1401 may be an integrated circuit chip with signal processing capabilities.
  • the processor 1401 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 1401 reads the information in the memory 1402 in conjunction with its hardware to control the various components of the node 1400.
  • the node 1400 includes a first optical switch, a second optical switch, a lower wavelength switch, an upper wavelength switch, and a feedthrough dimension switch. Under the control of the processor 1401, the node 1400 performs the following operations:
  • the first optical switch receives an optical signal, and the optical signal includes a first optical signal and/or a second optical signal, and the first optical signal is sent to the down-wavelength switching switch, and the second optical signal is sent to the punch-through dimension switching switch;
  • the lower wavelength switching switch performs wavelength exchange on the first optical signal from the first optical switch
  • the upper wavelength switching switch performs wavelength exchange on the locally generated third optical signal, and sends a third optical signal after the wavelength exchange by the upper wavelength switching switch to the second optical switching switch;
  • the second optical switch receives and transmits a second optical signal from the feedthrough dimension switch and a third optical signal from the upper wavelength switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch.
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output port of the upper wave switch.
  • the node further includes a lower-wave dimension switching switch.
  • the control, by the processor 1401, sending the first optical signal to the downward-wavelength wavelength switching switch may include: the first optical switching switch is configured to receive the first light. The signal is sent to the lower wave dimension switching switch; the lower wave dimension switching switch performs dimension exchange on the first optical signal from the first optical switch, and sends the first optical signal after the dimension exchange to the downward wave wavelength switching switch;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wavelength switching switch, the first input port of the second optical switch is connected to the output port of the punch-through dimension switch, and the second input port of the second switch is connected to the output of the upper wave switch.
  • the ports are connected.
  • the node further includes an upper wave dimension switching switch, and under the control of the processor 1401, transmitting, to the second optical switching switch, the third optical signal after the wavelength switching by the upper wavelength switching switch
  • the method includes: the upper wave wavelength switching switch sends the third optical signal after the wavelength exchange by the upper wave wavelength switching switch to the upper wave dimension switching switch; and the upper wave dimension switching switch performs the wavelength exchange after the upper wave wavelength switching switch
  • the optical signal is dimension exchanged and cut to the second light Transmitting a third optical signal after the dimension exchange is performed;
  • the first output port of the first optical switch is connected to the input port of the through-dimension switch, and the second output port of the first switch is connected to the input port of the lower-wavelength switch, and the second switch
  • An input port is connected to an output port of the punch-through dimension switch, and a second input port of the second optical switch is connected to an output port of the upper wave dimension switch, and an input port of the upper wave dimension switch and an output of the upper wave switch switch The ports are connected.
  • the node further includes an upper wave dimension switching switch and a lower wave dimension switching switch.
  • the sending the first optical signal to the downward wave wavelength switching switch may include: the first light The switch transmits the first optical signal to the lower-wave dimension exchange switch; the lower-wave dimension exchange switch performs dimension exchange on the first optical signal from the first optical switch, and transmits the first wave after the dimension exchange
  • the optical signal is sent to the second optical switch to transmit the third optical signal after the wavelength exchange by the upper wavelength switching switch: the upper wavelength switching switch sends the third optical signal after the wavelength exchange by the upper wavelength switching switch to The upper wave dimension switching switch; the upper wave dimension switching switch performs dimension exchange on the third optical signal after the wavelength exchange of the upper wavelength switching switch, and sends the third optical signal after the dimension exchange to the second optical switching switch;
  • the first output port of the first optical switch is connected to the input port of the punch-through dimension switch, and the second output port of the first switch is connected to the input port of the lower-wave dimension switch, and the output of the lower-wave dimension switch
  • the port is connected to the input port of the lower wave wavelength switch
  • the first input port of the second optical switch is connected to the output port of the punch-through dimension switch
  • the output of the second input port of the second switch is switched to the switch of the upper wave dimension switch.
  • the ports are connected, and the input port of the upper wave dimension switching switch is connected to the output port of the upper wave wavelength switching switch.
  • the first optical switch is a 1 ⁇ 2 switch.
  • the second optical switch is a 2 ⁇ 1 switch.
  • the node further includes a demultiplexer, a multiplexer, an upper wave port switch switch, and a lower wave port switch switch.
  • the demultiplexer pair is from the network node.
  • the wavelength division multiplexed signal is demultiplexed, and the optical signal obtained by demultiplexing is sent to the first optical switch, and the output port of the demultiplexer is connected to the input port of the first optical switch;
  • the upper wave port switching switch performs grouping and port switching on the locally generated optical signal to obtain a third optical signal and sends the third optical signal to the upper wave wavelength switching switch, and the upper wave port is switched on.
  • the output port of the switch is connected to the input port of the upstream wave switching switch; the lower port switch switch performs grouping and port switching on the second optical signal after wavelength switching by the lower wavelength switching switch, and the input port of the lower wave port switching switch Connected to the output port of the downstream wave switching switch.
  • two wavelength switching switches are used for performing the uplink wave on the wavelength of the locally generated optical signal and the wavelength of the optical signal sent by the network node.
  • the upper wave and the lower wave are completely independent from each other, and the upper and lower waves are prevented from sharing one wavelength-switched optical switch, which can reduce the crosstalk of the optical cross-connect node.
  • the dimension switching switch is added in the lower wave switching and/or the dimension switching switch is added in the upper wave switching, which can improve the flexibility of the selection of the upper wave port and/or the lower wave port.
  • the dimension is completely independent from the upper and lower waves, and the through-wave does not need to pass the upper and lower wave switching switches, which not only makes the punch-through wave not blocked, but also reduces the difference of the punch-through wave.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or such as infrared
  • DSL digital subscriber line
  • Wireless technologies such as radio and microwave transmissions from websites, servers or other remote sources, such as coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave, include fixing in the medium to which they belong. in.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光交叉互连节点(300)和光信号交换的方法。该光交叉互连节点(300)包括:第一光切换开关(301)、第二光切换开关(302)、下波波长交换开关(303)、上波波长交换开关(304)和穿通维度交换开关(305),第一光切换开关(301)接收光信号,光信号包括第一光信号和/或第二光信号,将第一光信号发送到下波波长交换开关(303),将第二光信号发送到穿通维度交换开关(305);下波波长交换开关(303)对第一光信号进行波长交换;上波波长交换开关(304)对本地生成的第三光信号进行波长交换,并将进行波长交换后的第三光信号发送到第二光切换开关(302);穿通维度交换开关(305)对第二光信号进行维度交换并发送到第二光切换开关(302)。该光交叉互连节点(300)避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点(300)的串扰。

Description

光交叉互连节点和光信号交换的方法 技术领域
本发明涉及光通信技术领域,并且更具体地,涉及光交叉互连节点和光信号交换的方法。
背景技术
随着Internet业务和多媒体应用的快速发展,网络的业务量正在以指数级的速度迅速膨胀,因而要求网络必须具有高比特率数据传输能力和大吞吐量的交叉能力。因此,光纤通信技术开始渗透于通信网,并且由于全光网(All Optical Network,AON)的光信号在网中的传输及交换时始终以光的形式存在,而不需要经过光/电、电/光转换,光纤通信有向全光网全面推进的趋势。
光交叉互连(Optical Cross-connect,OXC)是全光网的一个重要环节。OXC节点的主要功能包括:维度间的交换、某个维度中波长间的交换和本地波长的上下波等。其中,维度间的交换和某个维度中波长间的交换的波长称为穿通波;本地波长添加到某个维度,称为上波;某个维度的波长下载到节点本地,称为下波。网络对OXC节点的要求有:交换容量大、对波长和数据格式透明、阻塞率低、功耗低、集成度高、成本低等。OXC节点的关键部件光交换装置,例如光开关等主要用于光信号的交换,即将输入信号按照路由配置的映射关系从相应的输出端口输出。
现有的基于光交换装置的OXC节点中,其他网络节点的波长在下波时和本地节点的波长在进行上波时共享一个用于波长交换的光开关。由于穿通波在下波时才会给上波让出空闲端口,相同波长的信号在光开关可能同时上下波。因此,这种相同波长的存在会带来的串扰。
发明内容
本发明实施例提供了一种光交叉互连节点和光信号交换的方法,能够减少光交叉互连节点中的串扰。
第一方面,提供了一种光交叉互连节点,该节点包括:第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,其中,该第一光切换开关,用于接收光信号,该光信号包括第一光信号 和/或第二光信号,向该下波波长交换开关发送该第一光信号,向该穿通维度交换开关发送该第二光信号;该下波波长交换开关用于对来自该第一光切换开关的第一光信号进行波长交换;该上波波长交换开关用于对本地生成的第三光信号进行波长交换,并向该第二光切换开关发送经过该上波波长交换开关进行波长交换后的第三光信号;该穿通维度交换开关用于对来自该第一光切换开关的第二光信号进行维度交换并向该第二光切换开关发送该进行维度交换后的第二光信号;该第二光切换开关,用于接收并发送来自该穿通维度交换开关的第二光信号和来自该上波波长交换开关的第三光信号。
结合第一方面,在第一方面的第一种可能的实现方式中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波波长交换开关的输出端口相连。
结合第一方面,在第一方面的第二种可能的实现方式中,还包括:下波维度交换开关,该下波维度交换开关用于对来自该第一光切换开关的第一光信号进行维度交换并向该下波波长交换开关发送该进行维度交换后的第一光信号,其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波维度交换开关的输入端口相连,该下波维度交换开关的输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波波长交换开关的输出端口相连。
结合第一方面,在第一方面的第三种可能的实现方式中,还包括:上波维度交换开关,该上波维度交换开关用于对该经过该上波波长交换开关进行波长交换后的第三光信号进行维度交换并向该第二光切换开关发送该进行维度交换后的第三光信号,其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波维度交换开关的输出端口相连,该上波维度交换开关的输入端口与该上波波长交换开关的输出端口相连。
结合第一方面,在第一方面的第四种可能的实现方式中,还包括:上波维度交换开关和下波维度交换开关,该下波维度交换开关用于对来自该第一光切换开关的第一光信号进行维度交换并向该下波波长交换开关发送该进行维度交换后的第一光信号,该上波维度交换开关用于对该经过该上波波长交换开关进行波长交换后的第三光信号进行维度交换并向该第二光切换开关发送该进行维度交换后的第三光信号,其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波维度交换开关的输入端口相连,该下波维度交换开关的输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波维度交换开关的输出端口相连,该上波维度交换开关的输入端口与该上波波长交换开关的输出端口相连。
结合第一方面或第一方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该第一光切换开关为1×2开关。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该第二光切换开关为2×1开关。
结合第一方面或第一方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,还包括:解复用器,复用器,上波端口交换开关和下波端口交换开关,其中,该解复用器用于对来自网络节点的波分复用信号进行解复用,并将该进行解复用得到的该光信号发送到该第一光切换开关,该解复用器的输出端口与该第一光切换开关的输入端口相连;该复用器用于对来自该第二光切换开关的第二光信号和来自该第二光切换开关的第三光信号进行复用得到波分复用信号,该复用器的输入端口与该第二光切换开关的输出端口相连;该上波端口交换开关用于对本地生成的光信号进行分组和端口交换,得到该第三光信号并将该第三光信号发送到该上波波长交换开关,该上波端口交换开关的输出端口与该上波波长交换开关的输入端口相连;该下波端口交换开关用于对经过该下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,该下波端口交换开关的输入端口与该下波波长交换开关的输出端口相连。
第二方面,提供了一种光信号交换的方法,该方法应用的节点包括第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,该方法包括:该第一光切换开关接收光信号,该光信号包括第一光信号和/或第二光信号,并向该下波波长交换开关发送该第一光信号,向该穿通维度交换开关发送该第二光信号;该下波波长交换开关对来自该第一光切换开关的第一光信号进行波长交换;该上波波长交换开关对本地生成的第三光信号进行波长交换,并向该第二光切换开关发送经过该上波波长交换开关进行波长交换后的第三光信号;该穿通维度交换开关对来自该第一光切换开关的第二光信号进行维度交换并向该第二光切换开关发送该进行维度交换后的第二光信号;该第二光切换开关接收并发送来自该穿通维度交换开关的第二光信号和来自该上波波长交换开关的第三光信号。
结合第二方面,在第二方面的第一种可能的实现方式中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波波长交换开关的输出端口相连。
结合第二方面,在第二方面的第二种可能的实现方式中,该节点还包括下波维度交换开关,该向该下波波长交换开关发送该第一光信号包括:该第一光切换开关将该第一光信号发送到该下波维度交换开关;该下波维度交换开关对来自该第一光切换开关的第一光信号进行维度交换并向该下波波长交换开关发送该进行维度交换后的第一光信号;其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波维度交换开关的输入端口相连,该下波维度交换开关的输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波波长交换开关的输出端口相连。
结合第二方面,在第二方面的第三种可能的实现方式中,该节点还包括上波维度交换开关,该向该第二光切换开关发送经过该上波波长交换开关进行波长交换后的第三光信号包括:该上波波长交换开关将该经过该上波波长交换开关进行波长交换后的第三光信号发送到该上波维度交换开关;该上波维度交换开关对该经过该上波波长交换开关进行波长交换后的第三光信号 进行维度交换并向该第二光切换开关发送该进行维度交换后的第三光信号;其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波维度交换开关的输出端口相连,该上波维度交换开关的输入端口与该上波波长交换开关的输出端口相连。
结合第二方面,在第二方面的第四种可能的实现方式中,该节点还包括上波维度交换开关和下波维度交换开关,其中,该向该下波波长交换开关发送该第一光信号包括:该第一光切换开关将该第一光信号发送到该下波维度交换开关;该下波维度交换开关对来自该第一光切换开关的第一光信号进行维度交换并向该下波波长交换开关发送该进行维度交换后的第一光信号;该向该第二光切换开关发送经过该上波波长交换开关进行波长交换后的第三光信号包括:该上波波长交换开关将该经过该上波波长交换开关进行波长交换后的第三光信号发送到该上波维度交换开关;该上波维度交换开关对该经过该上波波长交换开关进行波长交换后的第三光信号进行维度交换并向该第二光切换开关发送该进行维度交换后的第三光信号;其中,该第一光切换开关的第一输出端口与该穿通维度交换开关的输入端口相连,该第一光切换开关的第二输出端口与该下波维度交换开关的输入端口相连,该下波维度交换开关的输出端口与该下波波长交换开关的输入端口相连,该第二光切换开关的第一输入端口与该穿通维度交换开关的输出端口相连,该第二光切换开关的第二输入端口与该上波维度交换开关的输出端口相连,该上波维度交换开关的输入端口与该上波波长交换开关的输出端口相连。
结合第二方面或第二方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,该第一光切换开关为1×2开关。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该第二光切换开关为2×1开关。
结合第二方面或第二方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该节点还包括 解复用器,复用器,上波端口交换开关和下波端口交换开关,该方法还包括:该解复用器对来自网络节点的波分复用信号进行解复用,并将该进行解复用得到的该光信号发送到该第一光切换开关,该解复用器的输出端口与该第一光切换开关的输入端口相连;该复用器对来自该第二光切换开关的第二光信号和自来该第二光切换开关的第三光信号进行复用得到波分复用信号,该复用器的输入端口与该第二光切换开关的输出端口相连;该上波端口交换开关对本地生成的光信号进行分组和端口交换,得到该第三光信号并将该第三光信号发送到该上波波长交换开关,该上波端口交换开关的输出端口与该上波波长交换开关的输入端口相连;该下波端口交换开关对经过该下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,该下波端口交换开关的输入端口与该下波波长交换开关的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种OXC节点的示意框图。
图2为一种OXC节点的结构示意框图。
图3是本发明一个实施例的光交叉互连节点的示意框图。
图4是本发明另一实施例的光交叉互连节点的示意框图。
图5是本发明另一实施例的光交叉互连节点的示意框图。
图6是本发明另一实施例的光交叉互连节点的示意框图。
图7是本发明另一实施例的光交叉互连节点的示意框图。
图8是本发明一个实施例的光交叉互连节点的立体结构示意图。
图9是本发明一个实施例的光交叉互连节点的平面结构示意图。
图10是本发明另一实施例的光交叉互连节点的立体结构示意图。
图11是本发明另一实施例的光交叉互连节点的立体结构示意图。
图12是本发明另一实施例的光交叉互连节点的立体结构示意图。
图13是本发明一个实施例的光信号交换的方法的示意性流程图。
图14是本发明另一实施例的光交叉互连节点的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的光交换装置可以应用于各种光网络,包括无源光网络(Passive Optical Network,简称为“PON”),例如:吉比特无源光网络(Gigabit-capable Passive Optical Networks,简称为“GPON”)系统、10G以太网无源光网络(10G bit/S Ethernet Passive Optical Network,简称为“10GEPON”)和10G比特无源光网络(10-Gigabit-capable Passive Optical Network,简称为“XG PON”)等。此外,从复用技术角度出发,本发明实施例的光交换装置可以应用于轨道角动量(Orbital Angular Momentum,OAM)网络,也可以应用于诸如WDM网络等非OAM网络。
当前,应用于波分复用(Wavelength Division Multiplexing,WDM)网络的光交换装置主要有三种。一种是三维微机电系统(Three Dimension Micro-Electro-Mechanical System,3D-MEMS)基于微镜反光技术的光开关。一种是可重配光分插复用(Reconfigurable Optical Add Drop Multiplexer,ROADM)基于波长选择开关(Wavelength Selective Switch,WSS)的光开关。还有一种常用的光交换装置为基于交叉-直通(cross-bar)结构的光开关。应理解,本发明实施例中的OXC节点可以基于交叉-直通结构的光开关。
图1是一种OXC节点的示意框图。
OXC节点的维度个数可以对应OXC节点的端口个数,也可以对应网络中的其他光节点。图1所示的OXC节点可以为N×M的光开关,即N个输入维度和M个输出维度。
光节点可以用于维度交换,例如,第一输入维度的光信号经过OXC光开关之后可以从第三输出维度输出。以五个维度的OXC节点为例,输入维 度可以包括第一输入维度,第二输入维度,第三输入维度,第四输入维度和第五输入维度。输出维度可以包括第一输出维度,第二输出维度、第三输出维度,第四输出维度和第五输出维度。第一输入维度的光信号经过OXC节点可以从输出维度中间的任一个输出。
OXC节点的关键部件为光开关,其中,光开关用于光信号的交换,即将输入的光信号按照路由配置的映射关系交换到相应的输出端口。假设每个维度的波长数量是L,一个N维OXC节点(即N个维度的OXC节点)的输入端口数量和输出端口数量均为N×L,其中,N和L是正整数。
当前,可用的全光网OXC节点的光开关主要有三种:
一种是三维微机电系统(Three Dimension Micro-Electro-Mechanical System,3D-MEMS)基于微镜反光技术的光开关。该光开关将输入的光信号经过准直器阵列准直后平行入射到MEMS微镜阵列,MEMS微镜阵列的微镜在控制信号的控制下转动方位,将入射光反射到相应的输出端口,而后通过聚焦镜聚焦到输出端口阵列。因此,使用3D-MEMS基于微镜反光技术的光开关是一个微动机械设备,容易受到机械振动的影响,需要额外采取减震措施进行减震。
一种是可重配光分插复用(Reconfigurable Optical Add Drop Multiplexer,ROADM)基于波长选择开关(Wavelength Selective Switch,WSS)的光开关。该光开关通常由很多小的WSS复用/解复用器组合而成,而每个WSS复用/解复用器由WDM复用/解复用器和很多小的WSS单元组成。WSS单元的原理与MEMS类似,使用光栅或者微镜将输入的光信号反射到某个输出端口。由于其结构特性,ROADM较容易升级为更大规模开关,但是成本相对较高。ROADM的另外一个缺点是上、下波时容易出现波长阻塞。还有一种常用的光交换装置为基于交叉-直通(cross-bar)结构的光开关。基于cross-bar结构的光开关一般由若干个小开关单元组成。每个小开关单元为2×2的结构,具有两种状态:交叉CROSS,输出与输入成交叉状态(输入1->输出2;输入2->输出1);直通BAR,输出与输入成直通状态(输入1->输出1,输入2->输出2)。每个小开关单元也可以只有一个输入(1×2),同样具有两种状态:交叉CROSS,输出与输入成交叉状态(输入1->输出2);直通BAR,输出与输入成直通状态(输入1->输出1)。每个小开关单元也可以只有一个输出(2×1),同样具有两种状态:交叉CROSS,输出与输入成 交叉状态(输入2->输出1);直通BAR,输出与输入成直通状态(输入1->输出1)。每个小开关单元通常基于马赫-曾德(MZ)光干涉结构制成,借助硅光集成(Silicon Photonics Integration,SPI)技术可以实现大规模集成。集成后的crossbar光开关在成本上将大大低于3D-MEMS和ROADM技术。鉴于光通信行业逐渐显现出的集成化发展,crossbar光开关是全光网OXC节点的最有力候选者。
下面结合图2对光节点的结构进行描述。
图2为一种OXC节点的结构示意框图。图2所示的OXC节点包括第一光开关210,第二光开关220,第三光开关230和第四光开关240。其中,第一光开关210为1×2光开关,包括输入端口、上输出端口和下输出端口;第二光开关220为1×2光开关,包括输入端口、上输出端口和下输出端口;第三光开关230为2×1光开关,包括上输出端口、下输入端口和输出端口;第四光开关240为2×1光开关,包括上输出端口、下输入端口和输出端口。
1×2开关表示可以从两个输出端口中选择一个端口进行输出。2×1开关表示可以从两个输入端口中选择一个端口进行输入。以图2为例,图2中的实线可以为已经激活的连接,例如第一光开关210的上输出端口作为输出端口。图2中的虚线可以为未激活的连接,例如第一光开关210的下输出端口没有光信号通过。
在图2中,第一光开关210的上输出端口可以与第三光开关230的上输入端口相连,第二光开关220的下输出端口可以与第四光开关240的下输入端口相连。这样,第一光开关210输入的光信号可以从第三光开关230的输出端口输出,第二光开关220输入的光信号可以从第四光开关240的输出端口输出。
应理解,图2中所示的OXC节点中,第一光开关210的下输出端口也可以与第四光开关240的上输入端口相连,第二光开关220的上输出端口也可以与第三光开关230的下输入端口相连。这种连接的激活方式下,第一光开关210输入的光信号可以从第四光开关240的输出端口输出,第二光开关220输入的光信号可以从第三光开关230的输出端口输出。
图3是本发明一个实施例的光交叉互连节点的示意框图。图3所示的光交叉互连节点300可以包括第一光切换开关301、第二光切换开关302、下波波长交换开关303、上波波长交换开关304和穿通维度交换开关305。其 中,
第一光切换开关301接收光信号,光信号包括第一光信号和/或第二光信号,向下波波长交换开关303发送第一光信号,向穿通维度交换开关305发送第二光信号;
下波波长交换开关303对来自第一光切换开关301的第一光信号进行波长交换;
上波波长交换开关304对本地生成的第三光信号进行波长交换,并向第二光切换开关302发送经过该上波波长交换开关304进行波长交换后的第三光信号;
穿通维度交换开关305对来自第一光切换开关301的第二光信号进行维度交换并向第二光切换开关302发送进行维度交换后的第二光信号;
第二光切换开关302接收并发送来自穿通维度交换开关305的第二光信号和来自上波波长交换开关304的第三光信号。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
应理解,第一光切换开关301和第二光切换开关302可以包括至少一个光开关,该光开关可以为交叉-直通光开关。第一光切换开关301和第二光切换开关302包括的光开关的个数可以与OXC节点的配置与功能相关。
还应理解,本发明实施例中的上波波长交换开关304、下波波长交换开关303和穿通维度交换开关305可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。不同的组成结构可能得到不同的功能。具体地,包括波长交换和维度交换,其中,波长交换可以为在某一个相同的维度中进行不同波长的交换,维度交换可以为相同波长的不同维度间的交换。
上波波长交换开关304可以应用于上波过程中,下波波长交换开关303可以应用与下波过程中。上波过程为将本地节点的波长添加到网络中的某个维度中;下波过程为将某个维度的波长下载到本地节点。
第一光切换开关301可以接收来自网络中的其他节点的光信号,该接收的光信号中包括的第一光信号可以为需要进行下波到本地的光信号,该接收 的光信号中包括的第二光信号可以为不需要进行上波或者下波的穿通波。
应理解,第三光信号进行上波波长交换开关之后,第三光信号的实质不变,仅仅将其在同一维度内的波长进行交换,即可以称为经过上波波长交换开关进行波长交换后的第三光信号。来自穿通维度交换开关305的第二光信号可以为第一光切换开关301接收的第二光信号输出到穿通维度交换305进行维度交换后的第二光信号。来自上波波长交换开关304的第三光信号可以为上波波长交换开关304对本地生成的第三光信号进行波长交换后的第三光信号。
可选地,作为另一实施例,第一光切换开关301的第一输出端口可以与穿通维度交换开关305的输入端口相连,第一光切换开关301的第二输出端口可以与下波波长交换开关303的输入端口相连,第二光切换开关302的第一输入端口可以与穿通维度交换开关305的输出端口相连,第二光切换开关302的第二输入端口可以与上波波长交换开关304的输出端口相连。
应理解,本发明实施例中的穿通维度交换开关305可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。本发明实施例中可以包括多组穿通维度交换开关305,每组穿通维度交换开关305包括的片数可以由OXC分组情况决定。具体地片数与组数的关系以及穿通维度交换开关305与第一光切换开关301和第二光切换开关302的端口对应关系将在下文中详细描述。
可选地,作为另一实施例,本发明实施例中的光交叉互连节点还可以包括其他装置,为便于理解和描述,本文仅对与本发明相关的内容进行描述。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
图4是本发明另一实施例的光交叉互连节点的示意框图。应理解,图4中与图3相同的装置可以采用相同的标识。上文中的其他装置可以包括解复用器306,复用器307,上波端口交换开关308和下波端口交换开关309,其中,
解复用器306对来自网络节点的波分复用信号进行解复用,并将进行解复用得到的光信号发送到第一光切换开关301,解复用器306的输出端口与 第一光切换开关301的输入端口相连;
复用器307对来自第二光切换开关302的第二光信号和来自第二光切换开关302的第三光信号进行复用得到波分复用信号,复用器307的输入端口与第二光切换开关302的输出端口相连。
上波端口交换开关308对本地生成的光信号进行分组和端口交换,得到第三光信号并将该第三光信号发送到上波波长交换开关303,上波端口交换开关308的输出端口与上波波长交换开关304的输入端口相连;
下波端口交换开关309对经过下波波长交换开关303进行波长交换后的第二光信号进行分组和端口交换,下波端口交换开关309的输入端口与下波波长交换开关303的输出端口相连。
应理解,解复用器306可以为WDM解复用器,复用器307可以为WDM复用器。解复用器306经过解复用之后的光信号传输到第一光切换开关301,该解复用之后的光信号可以包括第一光信号和/或第二光信号。第一光信号用于下波,第二光信号为穿通波。第二光切换开关302输出的第二光信号和第三光信号经过复用器307得到波分复用信号,最终传输到网络中的其他节点。
具体地,如图4所示,在下波过程中,来自网络其他节点的维度的光信号可以经过解复用器306的解复用输出多个波长,该多个波长可以全部下载到本地节点,也可以有部分下载到本地节点,而其他波长作为穿通波发送到其他网络节点。输出的多个波长即为第一光切换开关301接收的光信号。其中待下载到本地的波长(即第一光信号)可以经过波长交换开关进行波长交换,例如本发明实施例中的下波波长交换开关303,并将交换后的波长通过下波端口交换开关309进行下波端口交换,最终下载到本地节点。
具体地,在上波过程中,来自本地节点的第三光信号可以经过上波端口交换开关308进行上波端口交换,并将端口交换后的波长经过波长交换开关进行波长交换,例如本发明实施例中的上波波长交换开关304,并将波长交换后的波长在复用器307进行复用并输出到输出端口。
可选地,作为另一实施例,第一光切换开关301可以为1×2开关。
具体地,该第一光切换开关301可以由至少一个1×2开关组成,该1×2开关的个数与光信号的波长个数和分组情况有关,对于第一光切换开关301中包括的1×2开关的个数将在下文进行详细描述。
可选地,作为另一实施例,第二光切换开关302可以为2×1开关。
具体地,该第二光切换开关302可以由至少一个2×1开关组成,该2×1开关的个数与光信号的波长个数和分组情况有关,对于第二光切换开关302中包括的2×1开关的个数将在下文进行详细描述。
应理解,本发明实施例中可以包括多组上波波长交换开关和多组下波波长交换开关,本发明实施例仅描述一组上波波长交换开关和一组下波波长交换开关。每一组上波波长交换开关的片数由OXC分组情况决定。上波波长交换开关的输入端口数量和输出端口数量也依照相应的配置决定。同样的,图4所示的解复用器306、复用器307、上波端口交换开关308和下波端口交换开关309可以包括一组,每组的片数将在下文详细描述。第一光切换开关301、第二光切换开关302、上波波长交换开关304。下波波长交换开关303和穿通维度交换开关可以包括多组,组数与每组中的片数可以由每个维度的波长的分组情况相关。下文中将详细描述光开关的组数以及每组中的片数。
图5是本发明另一实施例的光交叉互连节点的示意框图。为便于理解,图5中与图4相同的设备可以采用相同的标号。本发明实施例中的光交叉互连节点还可以包括下波维度交换开关310。
下波维度交换开关310对来自第一光切换开关301的第一光信号进行维度交换并向下波波长交换开关303发送进行维度交换后的第一光信号;
其中,第一光切换开关301的第一输出端口与穿通维度交换开关305的输入端口相连,第一光切换开关301的第二输出端口与下波维度交换开关310的输入端口相连,下波维度交换开关310的输出端口与下波波长交换开关303的输入端口相连,第二光切换开关302的第一输入端口与穿通维度交换开关305的输出端口相连,第二光切换开关302的第二输入端口与上波波长交换开关304的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关,能够提高下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
应理解,本发明实施例中的下波维度交换开关310可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。
具体地,在下波过程中,来自网络其他节点的多个维度的光信号可以经过解复用器306的解复用输出多个波长,该多个波长可以全部下载到本地节点,也可以有部分下载到本地节点,而其他波长作为穿通波发送到其他网络节点。其中待下载到本地的波长(即第一光信号)可以先经过维度交换开关,例如本发明实施例中的下波维度交换开关310,再经过波长交换开关进行波长交换,例如本发明实施例中的下波波长交换开关303,并将交换后的波长通过下波端口交换开关309进行下波端口交换,最终下载到本地节点。
待下载到本地的第一光信号首先进行维度交换后,波长不变,维度发生变化。再经过波长交换,维度不变,波长发生变化。
应理解,本发明实施例中可以包括多组下波维度交换开关,每组下波维度交换开关包括的片数由OXC分组情况决定。具体地片数与组数的关系以及下波维度交换开关与下波波长交换开关的端口对应关系将在下文中详细描述。
图6是本发明另一实施例的光交叉互连节点的示意框图。为便于理解,图6中与图4相同的设备可以采用相同的标号。本发明实施例中的光交叉互连节点还可以包括上波维度交换开关311。
上波维度交换开关311对经过该上波波长交换开关304进行波长交换后的第三光信号进行维度交换并向第二光切换开关302发送进行维度交换后的第三光信号;
其中,第一光切换开关301的第一输出端口与穿通维度交换开关305的输入端口相连,第一光切换开关301的第二输出端口与下波波长交换开关303的输入端口相连,第二光切换开关302的第一输入端口与穿通维度交换开关305的输出端口相连,第二光切换开关302的第二输入端口与上波维度交换开关311的输出端口相连,上波维度交换开关311的输入端口与上波波长交换开关304的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉 互连节点的串扰。
另外,在上波交换中加入了维度交换开关,能够提高上波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
应理解,本发明实施例中的上波维度交换开关311可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。
具体地,在上波过程中,来自本地节点的第三光信号可以经过上波端口交换开关308进行上波端口交换,并将端口交换后的波长经过波长交换开关进行波长交换(例如本发明实施例中的上波波长交换开关304),再将波长交换后的波长经过维度交换开关进行维度交换例如本发明实施例中的上波维度交换开关311,并将维度交换后的波长发送到第二光切换开关302,最终发送到复用器307进行复用并输出到输出端口。
本地生成的第三光信号的波长首先经过波长交换,维度不变,波长发生变化,再进行维度交换后,波长不变,维度发生变化。
应理解,本发明实施例中可以包括多组上波维度交换开关,每组上波维度交换开关包括的片数由OXC分组情况决定。具体地片数与组数的关系以及上波维度交换开关与上波波长交换开关的端口对应关系将在下文中详细描述。
图7是本发明另一实施例的光交叉互连节点的示意框图。为便于理解,图7中与图4到图6中相同的设备可以采用相同的标号。本发明实施例中的光交叉互连节点还可以包括上波维度交换开关311和下波维度交换开关310。
下波维度交换开关310对来自第一光切换开关301的第一光信号进行维度交换并向下波波长交换开关303发送进行维度交换后的第一光信号,上波维度交换开关311对经过上波波长交换开关304进行波长交换后的第三光信号进行维度交换并向第二光切换开关302发送进行维度交换后的第三光信号;
其中,第一光切换开关301的第一输出端口与穿通维度交换开关305的输入端口相连,第一光切换开关301的第二输出端口与下波维度交换开关310的输入端口相连,下波维度交换开关310的输出端口与下波波长交换开 关303的输入端口相连,第二光切换开关302的第一输入端口与穿通维度交换开关305的输出端口相连,第二光切换开关302的第二输入端口与上波维度交换开关311的输出端口相连,上波维度交换开关311的输入端口与上波波长交换开关304的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换和上波交换中分别加入了维度交换开关,能够提高下波端口和上波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
对于图5至图7的三种实施例,可以归纳如下:
当本发明实施例中包括上波波长交换开关304和下波波长交换开关303时,上波过程可以如下:
来自本地节点的光信号可以经过上波端口交换开关308进行上波端口交换,并将端口交换后的波长经过上波波长交换开关304进行波长交换,再将波长交换后的波长经过第二光切换开关302进行端口交换,最终在复用器307进行复用并输出到输出端口。
下波过程可以如下:
来自网络其他节点的多个维度的光信号可以经过解复用器306的解复用输出多个波长,该多个波长可以全部下载到本地节点,也可以有部分下载到本地节点,而其他波长作为穿通波发送到其他网络节点。将波长经过第一光切换开关301进行端口交换,其中,穿通波(即第二光信号)可以经过穿通维度交换开关305进行维度交换,经过维度交换的波长再经过第二光切换开关302进行端口交换,最终经复用器307复用并输出到输出端口。其中,待下载到本地的波长(即第一光信号)可以经过下波波长交换开关303,并将波长交换后的波长通过下波端口交换开关309进行下波端口交换,最终下载到本地节点。
当本发明实施例中包括上波波长交换开关304、下波波长交换开关303和下波维度交换开关310时,其上波过程与仅包括上波波长交换开关304、 下波波长交换开关303的过程相同,此处不再重复描述。其下波过程可以如下:
来自网络其他节点的多个维度的光信号可以经过解复用器306的解复用输出多个波长,该多个波长可以全部下载到本地节点,也可以有部分下载到本地节点,而其他波长作为穿通波发送到其他网络节点。将波长经过第一光切换开关301进行端口交换,其中,穿通波(即第二光信号)可以经过穿通维度交换开关305进行维度交换,经过维度交换的波长再经过第二光切换开关302进行端口交换,最终经复用器307复用并输出到输出端口。其中,待下载到本地的波长(即第一光信号)可以经过下波维度交换开关310,再经过下波波长交换开关303,并将交换后的波长通过下波端口交换开关309进行下波端口交换,最终下载到本地节点。
当本发明实施例中包括上波波长交换开关304、下波波长交换开关303和上波维度交换开关311时,上波过程可以如下:
来自本地节点的光信号可以经过上波端口交换开关308进行上波端口交换,并将端口交换后的波长经过上波波长交换开关304进行波长交换,再将波长交换后的波长经过上波维度交换开关311进行维度交换,再将维度交换后的波长经过第二光切换开关302进行端口交换,最终在复用器307进行复用并输出到输出端口。
当本发明实施例中包括上波波长交换开关304、下波波长交换开关303和上波维度交换开关311时,其下波过程可以与仅包括上波波长交换开关304和下波波长交换开关303的过程相同,为避免重复,此处不再详细描述。
当本发明实施例中包括上波波长交换开关304、下波波长交换开关303、上波维度交换开关311和下波维度交换开关310时,其上波过程可以与包括上波波长交换开关304、下波波长交换开关303和上波维度交换开关311的上波过程相同;其下波过程可以与包括上波波长交换开关304、下波波长交换开关303和下波维度交换开关310的下波过程相同。为避免重复,此处不再详细描述。
可选地,作为另一实施例,穿通维度交换开关305,下波维度交换开关310和上波维度交换开关311可以采用增强扩展行Banyan(Enhanced Dilated Banyan,EDB)开关来实现,上波波长交换开关304和下波波长交换开关303可以采用路径无关损耗(Path independent loss,PILOSS)开关来实现, 上波端口交换开关308和下波端口交换开关309可以采用扩展Bens和EDB混合型(Hybrid Dilated Benes with EDB,HDBE)开关来实现。
图8是本发明一个实施例的光交叉互连节点的立体结构示意图。结合图8,下面详细说明光交叉互连节点的立体结构及开关之间的连接关系。
图8中包括上波端口交换开关801,上波波长交换开关802,下波波长交换开关803,下波端口交换开关804,WDM解复用器组805,1×2光开关组806,2×1光开关组807,WDM复用器组808,穿通维度交换开关809,下波维度交换开关810和上波维度交换开关811。
具体地,本发明实施例中,4维度的OXC节点中,假设OXC的每个维度有80个波长,一共8组,每组10个波长。其中,每组的10个波长为不同的波长。我们可以假设不存在波长交换功能,那么穿通维度交换开关809用来在相同波长间实现维度交换。上波波长交换开关802和下波波长交换开关804用来在同一维度中实现波长交换。
表1为解复用器/复用器的端口与波长的分配关系表。
表1解复用器/复用器的端口与波长的分配关系表
组数 解复用器/复用器的端口 波长
1 1,2,…,10 1,9,17,…,73
2 11,12,…,20 2,10,18,…,74
3 21,22,…,30 3,11,19,…,75
4 31,32,…,40 4,12,20,…,76
5 41,42,…,50 5,13,21,…,77
6 51,52,…,60 6,14,22,…,78
7 61,62,…,70 7,15,23,…,79
8 71,72,…,80 8,16,24,…,80
如表1所示,以第一组波长为例,第一组波长包括1,9,17,…,73共10个波长,第一组波长的10个不同的波长分别对应解复用器/复用器的1,2,…,10共10个端口。
本发明实施例中这种波长的分组方式能够使得每组的上波波长交换开关和下波波长交换开关中的波长间隔尽可能大,能够避免串扰。
按照上述分组方法,即每组10个不同的波长时,可以确定图8的光交叉节点中每个光开关的组数和片数。应理解,每个维度包括8组波长,图8 所示仅仅示出了8组光开关中的1组光开关。
具体地,设上波的输入端口数为6,下波的输出端口数为6。图8所示的上波端口交换开关801可以包括1组32×32光开关,一组包括6片,即6片32×32光开关。相应地,上波波长交换开关802可以包括8组6×10光开关,每组包括4片,即4片6×10光开关。对应地,下波波长交换开关803可以包括8组10×6光开关,每组包括4片,即4片10×6光开关。下波端口交换开关804可以包括1组32×32光开关,每组包括6片,即6片32×32光开关。
WDM解复用器组805可以采用波分解复用器(WDM DEMUX),WDM复用器组808可以采用波分复用器(WDM MUX)。WDM解复用器组805中的WDM解复用器的个数可以为网络中的维度的个数,WDM复用器组808中的WDM复用器的个数可以为网络中的维度的个数。例如,本发明实施例中为4个维度,则WDM解复用器组805可以包括4个WDM解复用器,WDM复用器组808可以包括4个WDM复用器。
若网络中包括4个维度,每个维度包括80个波长共分为8组,每组包括10个不同的波长,则1×2光开关组806可以包括8组1×2光开关,2×1光开关组807可以包括8组2×1光开关。其中,每组1×2光开关可以包括40片1×2光开关,每组2×1光开关可以包括40片2×1光开关。
穿通维度交换开关809可以包括8组4×4光开关,每组10片,即10片4×4光开关。下波维度交换开关810可以包括8组4×4光开关,每组10片,即10片4×4光开关。上波维度交换开关811可以包括8组4×4光开关,每组10片,即10片4×4光开关。
图8所示的光交叉互连节点中的连接关系可以如下:
1×2光开关组806与WDM解复用器组805的连接方式和2×1光开关组807与WDM复用器组808的连接方式可以是对称的。
上波波长交换开关802的第一片开关的输出端口可以与上波维度交换开关811中所有开关的第一个输入端口一一相连。上波波长交换开关802的第二片开关的输出端口可以与上波维度交换开关811中所有开关的第二个输入端口一一相连。以此类推。
下波波长交换开关803的第一片开关的输入端口与下波维度交换开关810中所有开关的第一个输出端口一一相连。下波波长交换开关803的第二 片开关的输入端口可以与下波维度交换开关810中所有开关的第二个输出端口一一相连。以此类推。
第一组上波波长交换开关802的第一片开关的输入端口可以与上波端口交换开关801中所有开关的第一个输入端口一一相连。第一组上波波长交换开关802的第二片开关的输入端口与上波端口交换开关801中所有开关的第二个输入端口一一相连。第二组上波波长交换开关802的第一片开关的输入端口与上波端口交换开关801中所有开关的第五个输入端口一一相连。第二组上波波长交换开关802的第二片开关的输入端口与上波端口交换开关801中所有开关的第六个输入端口一一相连。以此类推。
第一组下波波长交换开关803的第一片开关的输出端口可以与下波端口交换开关804中所有开关的第一个输入端口一一相连。第一组下波波长交换开关803的第二片开关的输出端口可以与下波端口交换开关804中所有开关的第二个输入端口一一相连。第二组下波波长交换开关803的第一片开关的输出端口可以与下波端口交换开关804中所有开关的第五个输入端口一一相连。第二组下波波长交换开关803的第二片开关的输出端口可以与下波端口交换开关804中所有开关的第六个输入端口一一相连。以此类推。
WDM光信号受限经过WDM解复用器组805后分成独立的8组波长。WDM解复用器805中的每个WDM解复用器可以包括80个端口。以第一组为例,40个1×2光开关的输入端口可以连接WDM解复用器组805的第一组输出端口(每个WDM解复用器连接10个,4个WDM解复用器连接40个端口),40个1×2光开关的第一输出端口与穿通维度交换开关809的输入端口相连,40个1×2光开关的第二输出端口与下波维度交换开关810的输入端口相连。40个2×1光开关的输出端口连接WDM复用器组806的第一组输入端口(每个WDM复用器连接10个,4个WDM复用器连接40个端口),40个2×1光开关的第一输入端口与穿通维度交换开关809的输出端口相连,40个2×1光开关的第二输入端口与上波维度交换开关811的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关和/或在上波交换中加入了维度交换开关,能够提高上波端口和/或下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
下面对每个装置的组数以及每组的开关个数进行详细描述。
设OXC节点为N维节点,每个维度有M个波长,该M个波长分为K组,即每组L(即M/K)个波长。其中,N、M、L和K为正整数。该N维OXC节点包括:K组第一光切换开关、K组第二光切换开关、K组上波波长交换开关、K组下波波长交换开关和K组穿通维度交换开关,其中,
第一光切换开关包括N×L个1×2开关,用于接收光信号,光信号包括第一光信号和/或第二光信号,向下波波长交换开关发送第一光信号,向穿通维度交换开关发送第二光信号;
下波波长交换开关包括N片L×X开关,用于对来自第一光切换开关的第一光信号进行波长交换,其中,X为小于或者等于L的正整数;
上波波长交换开关包括N片X×L开关,用于对本地生成的第三光信号进行波长交换,并向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号;
穿通维度交换开关包括L片N×N开关,用于对来自第一光切换开关的第二光信号进行维度交换并向第二光切换开关发送进行维度交换后的第二光信号;
第二光切换开关包括N×L个2×1开关,用于接收并发送来自穿通维度交换开关的第二光信号和来自上波波长交换开关的第三光信号。
可选地,作为另一实施例,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,N维OXC节点还可以包括K组下波维度交换开关,其中,下波维度交换开关包括L片N×N开关,用于对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,N维OXC节点还可以包括K组上波维度交换开关,其中,上波维度交换开关包括L片N×N开关,用于对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交换开关的输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,N为OXC节点还可以包括K组上波维度交换开关和K组下波维度交换开关,其中,下波维度交换开关用于对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号,上波维度交换开关用于对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交换开关的输入端口与上波波长交换开关的输出端口相连。
应理解,上波波长交换开关包括N片X×L开关时,其上波比为X/L。下波波长交换开关包括N片L×X开关时,其下波比即为X/L。
可选地,作为另一实施例,该N维OXC节点还可以包括N个解复用器、N个复用器、上波端口交换开关和下波端口交换开关,其中,解复用器用于对来自网络节点的波分复用信号进行解复用,并将进行解复用得到的光信号 发送到第一光切换开关,解复用器的输出端口与第一光切换开关的输入端口相连;复用器用于对来自第二光切换开关的第二光信号和来自第二光切换开关的第三光信号进行复用得到波分复用信号,复用器的输入端口与第二光切换开关的输出端口相连;上波端口交换开关包括X片(N×K)×(N×K)光开关,用于对本地生成的光信号进行分组和端口交换,得到第三光信号并将第三光信号发送到上波波长交换开关,上波端口交换开关的输出端口与上波波长交换开关的输入端口相连;下波端口交换开关包括X片(N×K)×(N×K)光开关,用于对经过下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,下波端口交换开关的输入端口与下波波长交换开关的输出端口相连。
下面结合图9,对图8所示的光交叉互连节点的平面结构进行描述。
图9是本发明一个实施例的光交叉互连节点的平面结构示意图。图9中与图8的部分采用相同的编号,仅仅对图8所示的立体结构示意图进行平面结构的描述。
1×2光开关组806与WDM解复用器组805的连接方式和2×1光开关组807与WDM复用器组808的连接方式是对称的。
上波波长交换开关802的第一片开关的输出端口可以与上波维度交换开关811中所有开关的第一个输入端口一一相连。上波波长交换开关802的第二片开关的输出端口可以与上波维度交换开关811中所有开关的第二个输入端口一一相连。以此类推。
下波波长交换开关803的第一片开关的输入端口可以与下波维度交换开关810中所有开关的第一个输出端口一一相连。下波波长交换开关803的第二片开关的输入端口可以与下波维度交换开关810中所有开关的第二个输出端口一一相连。以此类推。
第一组上波波长交换开关802的第一片开关的输入端口与上波端口交换开关801中所有开关的第一个输出端口一一相连。第一组上波波长交换开关802的第二片开关的输入端口与上波端口交换开关801中所有开关的第二个输出端口一一相连。第二组上波波长交换开关802的第一片开关的输入端口与上波端口交换开关801中所有开关的第五个输出端口一一相连。第二组上波波长交换开关802的第二片开关的输入端口与上波端口交换开关801中所有开关的第六个输出端口一一相连。以此类推。
第一组下波波长交换开关803的第一片开关的输出端口与下波端口交换开关804中所有开关的第一个输入端口一一相连。第一组下波波长交换开关803的第二片开关的输出端口与下波端口交换开关804中所有开关的第二个输入端口一一相连。第二组下波波长交换开关803的第一片开关的输出端口与下波端口交换开关804中所有开关的第五个输入端口一一相连。第二组下波波长交换开关803的第二片开关的输出端口与下波端口交换开关804中所有开关的第六个输入端口一一相连。以此类推。
WDM光信号受限经过WDM解复用器组805后分成独立的8组波长。WDM解复用器组805中包括4个WDM解复用器,每个WDM解复用器可以包括80个端口,每个WDM复用器可以包括80个端口。以第一组为例,40个1×2光开关的输入端口连接WDM解复用器组805的第一组输入端口(即4个WDM解复用器,每个WDM解复用器连接10个端口,共40个端口),40个1×2光开关的第一输出端口与穿通维度交换开关809的输入端口相连,40个1×2光开关的第二输出端口与下波维度交换开关810的输入端口相连。40个2×1光开关的输出端口连接WDM复用器组806的第一组输入端口(即4个WDM复用器,每个WDM复用器连接10个端口,供40个端口),40个2×1光开关的第一输入端口与穿通维度交换开关809的输出端口相连,40个2×1光开关的第二输入端口与上波维度交换开关811的输出端口相连。
应理解,图9中仅仅示出了部分装置,实际上,图9实际上包括了一组上波端口交换开关801,八组上波波长交换开关802,八组下波波长交换开关803,一组下波端口交换开关804,一个WDM解复用器组805,八组1×2光开关组806,八组2×1光开关组807,一个WDM复用器组808,八组穿通维度交换开关809,八组下波维度交换开关810,八组上波维度交换开关811。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关和/或在上波交换中加入了维度交换开关,能够提高上波端口和/或下波端口选择的灵活性。同时,维度与上 下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
图10是本发明另一实施例的光交叉互连节点的立体结构示意图。图10中与图8相同的部分采用相同的编号。
图10所示的光交叉互连节点与图8相比,仅仅省略了图8中的上波维度交换开关811,整个结构的其他部分连接方式与图8的均相同。同图8相比,图10所示的节点虽然牺牲了上波端口选择的灵活性,导致上波端口交换开关801的每片开关只允许一个端口同时上波到某个维度,阻塞率略有上升。但是,图10所示的实施例可以借助客户侧交叉(C-FXC)进行弥补。同时,该实施例比图8所示的实施例少用了80片上波维度交换开关,降低了OXC涉及的复杂度。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关,能够提高下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
图11是本发明另一实施例的光交叉互连节点的立体结构示意图。图11中与图8相同的部分采用相同的编号。
图11所示的光交叉互连节点与图8相比,仅仅省略了图8中的下波维度交换开关810,整个结构的其他部分连接方式与图8的均相同。同图8相比,图11所示的节点虽然牺牲了下波端口选择的灵活性,导致下波端口交换开关804的每片开关只允许一个端口同时下波,阻塞率略有上升。但是,图11所示的实施例可以借助客户侧交叉(C-FXC)进行弥补。同时,该实施例比图8所示的实施例少用了80片下波维度交换开关,降低了OXC涉及的复杂度。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在上波交换中加入了维度交换开关,能够提高上波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
图12是本发明另一实施例的光交叉互连节点的立体结构示意图。图9中与图7相同的部分采用相同的编号。
图12所示的光交叉互连节点与图10相比,仅仅省略了图10中的下波维度交换开关810,整个结构的其他部分连接方式与图10的均相同。同图10相比,图12所示的节点虽然牺牲了下波端口选择的灵活性,导致下波端口交换开关804的每片开关只允许一个端口同时下波,阻塞率略有上升。但是,图12所示的实施例可以借助客户侧交叉(C-FXC)进行弥补。同时,该实施例比图10所示的实施例少用了80片下波维度交换开关,降低了OXC涉及的复杂度。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
图13是本发明一个实施例的光信号交换的方法的示意性流程图。图13所示的方法可以由光交叉互连节点执行。图1至图12的光交叉互连节点可以实现图13所示的方法,为避免重复,此处不再详细描述。该方法应用的节点包括第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,该方法包括:
1301,第一光切换开关接收光信号,光信号包括第一光信号和/或第二光信号,并向下波波长交换开关发送第一光信号,向穿通维度交换开关发送第二光信号;
1302,下波波长交换开关对来自第一光切换开关的第一光信号进行波长交换;
1303,上波波长交换开关对本地生成的第三光信号进行波长交换,并向 第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号;
1304,穿通维度交换开关对来自第一光切换开关的第二光信号进行维度交换并向第二光切换开关发送进行维度交换后的第二光信号;
1305,第二光切换开关接收并发送来自穿通维度交换开关的第二光信号和来自上波波长交换开关的第三光信号。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
应理解,第一光切换开关和第二光切换开关可以包括至少一个光开关,该光开关可以为交叉-直通光开关。第一光切换开关和第二光切换开关包括的光开关的个数可以与OXC节点的配置与功能相关。
还应理解,本发明实施例中的上波波长交换开关、下波波长交换开关和穿通维度交换开关可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。不同的组成结构可能得到不同的功能。具体地,包括波长交换和维度交换,其中,波长交换可以为在某一个相同的维度中进行不同波长的交换,维度交换可以为相同波长的不同维度间的交换。
应理解,本发明实施例中的穿通维度交换开关可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。本发明实施例中可以包括多组穿通维度交换开关305,每组穿通维度交换开关包括的片数可以由OXC分组情况决定。具体地片数与组数的关系以及穿通维度交换开关与第一光切换开关和第二光切换开关302的端口对应关系将在下文中详细描述。
可选地,作为另一实施例,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,节点还包括下波维度交换开关,在1301中,向下波波长交换开关发送第一光信号可以包括:
第一光切换开关将第一光信号发送到下波维度交换开关;
下波维度交换开关对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
应理解,本发明实施例中的下波维度交换开关可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。
还应理解,本发明实施例中可以包括多组上波波长交换开关、多组下波波长交换开关、多组下波维度交换开关和多组穿通维度交换开关,本发明实施例仅描述其中一组的情况。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关,能够提高下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
可选地,作为另一实施例,节点还可以包括上波维度交换开关,在1303中,向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号可以包括:
上波波长交换开关将经过上波波长交换开关进行波长交换后的第三光信号发送到上波维度交换开关;
上波维度交换开关对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连, 第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交换开关的输入端口与上波波长交换开关的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在上波交换中加入了维度交换开关,能够提高上波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
应理解,本发明实施例中的上波维度交换开关311可以由多个交叉-直通(cross-bar)结构的光开关组成。例如,可以由多个1×2开关、2×2开关和2×1开关组成。
还应理解,本发明实施例中可以包括多组上波波长交换开关、多组下波波长交换开关、多组上波波维度交换开关和多组穿通维度交换开关,本发明实施例仅描述其中一组的情况。
可选地,作为另一实施例,该节点还可以包括上波维度交换开关和下波维度交换开关,在1301中,向下波波长交换开关发送第一光信号可以包括:
第一光切换开关将第一光信号发送到下波维度交换开关;
下波维度交换开关对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号;
在1303中,向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号可以包括:
上波波长交换开关将经过上波波长交换开关进行波长交换后的第三光信号发送到上波维度交换开关;
上波维度交换开关对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交 换开关的输入端口与上波波长交换开关的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换和上波交换中分别加入了维度交换开关,能够提高下波端口和上波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
可选地,作为另一实施例,第一光切换开关可以为1×2开关。
可选地,作为另一实施例,第二光切换开关可以为2×1开关。
应理解,1×2开关也可以称为1×2光开关,2×1开关也可以称为2×1光开关。
可选地,作为另一实施例,该节点还可以包括解复用器,复用器,上波端口交换开关和下波端口交换开关,图13所示的方法还可以包括:
1306,解复用器对来自网络节点的波分复用信号进行解复用,并将进行解复用得到的光信号发送到第一光切换开关,解复用器的输出端口与第一光切换开关的输入端口相连;
1307,复用器对来自第二光切换开关的第二光信号和自来第二光切换开关的第三光信号进行复用得到波分复用信号,复用器的输入端口与第二光切换开关的输出端口相连;
1308,上波端口交换开关对本地生成的光信号进行分组和端口交换,得到第三光信号并将第三光信号发送到上波波长交换开关,上波端口交换开关的输出端口与上波波长交换开关的输入端口相连;
1309,下波端口交换开关对经过下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,下波端口交换开关的输入端口与下波波长交换开关的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关和/或在上波交换中加入了维度交换开关,能够提高上波端口和/或下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
应理解,解复用器、复用器、上波端口交换开关和下波端口交换开关可以为一组,每组的片数和每片的配置可以基于维度以及光信号的分组情况而定。
图14是本发明另一实施例的光交叉互连节点的示意框图。图14的节点1400可用于实现上述方法实施例中各步骤及方法。图14的节点包括处理器1401和存储器1402。处理器1401和存储器1402通过总线系统1409连接。
处理器1401控制节点1400的操作。存储器1402可以包括只读存储器和随机存取存储器,并向处理器1401提供指令和数据。存储器1402的一部分还可以包括非易失行随机存取存储器(NVRAM)。节点1400的各个组件通过总线系统1409耦合在一起,其中总线系统1409除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1409。
处理器1401可能是一种集成电路芯片,具有信号的处理能力。上述的处理器1401可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器1401读取存储器1402中的信息,结合其硬件控制节点1400的各个部件。
图13的方法可以在图14的节点1400中实现,为避免重复,不再详细描述。
具体地,节点1400包括第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,在处理器1401的控制之下,节点1400完成以下操作:
第一光切换开关接收光信号,光信号包括第一光信号和/或第二光信号,并向下波波长交换开关发送第一光信号,向穿通维度交换开关发送第二光信号;
下波波长交换开关对来自第一光切换开关的第一光信号进行波长交换;
上波波长交换开关对本地生成的第三光信号进行波长交换,并向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号;
穿通维度交换开关对来自第一光切换开关的第二光信号进行维度交换并向第二光切换开关发送进行维度交换后的第二光信号;
第二光切换开关接收并发送来自穿通维度交换开关的第二光信号和来自上波波长交换开关的第三光信号。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
可选地,作为另一实施例,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,节点还包括下波维度交换开关,在处理器1401的控制下,向下波波长交换开关发送第一光信号可以包括:第一光切换开关将第一光信号发送到下波维度交换开关;下波维度交换开关对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,节点还包括上波维度交换开关,在处理器1401的控制下,向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号可以包括:上波波长交换开关将经过上波波长交换开关进行波长交换后的第三光信号发送到上波维度交换开关;上波维度交换开关对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切 换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交换开关的输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,节点还包括上波维度交换开关和下波维度交换开关,在处理器1401的控制下,向下波波长交换开关发送第一光信号可以包括:第一光切换开关将第一光信号发送到下波维度交换开关;下波维度交换开关对来自第一光切换开关的第一光信号进行维度交换并向下波波长交换开关发送进行维度交换后的第一光信号;向第二光切换开关发送经过上波波长交换开关进行波长交换后的第三光信号包括:上波波长交换开关将经过上波波长交换开关进行波长交换后的第三光信号发送到上波维度交换开关;上波维度交换开关对经过上波波长交换开关进行波长交换后的第三光信号进行维度交换并向第二光切换开关发送进行维度交换后的第三光信号;
其中,第一光切换开关的第一输出端口与穿通维度交换开关的输入端口相连,第一光切换开关的第二输出端口与下波维度交换开关的输入端口相连,下波维度交换开关的输出端口与下波波长交换开关的输入端口相连,第二光切换开关的第一输入端口与穿通维度交换开关的输出端口相连,第二光切换开关的第二输入端口与上波维度交换开关的输出端口相连,上波维度交换开关的输入端口与上波波长交换开关的输出端口相连。
可选地,作为另一实施例,第一光切换开关为1×2开关。
可选地,作为另一实施例,第二光切换开关为2×1开关。
可选地,作为另一实施例,节点还包括解复用器,复用器,上波端口交换开关和下波端口交换开关,在处理器1401的控制下,解复用器对来自网络节点的波分复用信号进行解复用,并将进行解复用得到的光信号发送到第一光切换开关,解复用器的输出端口与第一光切换开关的输入端口相连;复用器对来自第二光切换开关的第二光信号和自来第二光切换开关的第三光信号进行复用得到波分复用信号,复用器的输入端口与第二光切换开关的输出端口相连;上波端口交换开关对本地生成的光信号进行分组和端口交换,得到第三光信号并将第三光信号发送到上波波长交换开关,上波端口交换开 关的输出端口与上波波长交换开关的输入端口相连;下波端口交换开关对经过下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,下波端口交换开关的输入端口与下波波长交换开关的输出端口相连。
本发明实施例中对于本地生成的光信号的波长进行上波和网络节点发送的光信号的波长进行下波采用两个波长交换开关。这样,上波与下波之间完全独立进行,避免了上下波共享一个波长交换的光开关,能够减少光交叉互连节点的串扰。
另外,在下波交换中加入了维度交换开关和/或在上波交换中加入了维度交换开关,能够提高上波端口和/或下波端口选择的灵活性。同时,维度与上下波之间完全独立进行,穿通波不需要经过上下波交换开关,不仅使得穿通波没有阻塞,而且减小了穿通波的差损。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、 无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种光交叉互连节点,其特征在于,所述节点包括:
    第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,其中,
    所述第一光切换开关,用于接收光信号,所述光信号包括第一光信号和/或第二光信号,向所述下波波长交换开关发送所述第一光信号,向所述穿通维度交换开关发送所述第二光信号;
    所述下波波长交换开关用于对来自所述第一光切换开关的第一光信号进行波长交换;
    所述上波波长交换开关用于对本地生成的第三光信号进行波长交换,并向所述第二光切换开关发送经过所述上波波长交换开关进行波长交换后的第三光信号;
    所述穿通维度交换开关用于对来自所述第一光切换开关的第二光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第二光信号;
    所述第二光切换开关,用于接收并发送来自所述穿通维度交换开关的第二光信号和来自所述上波波长交换开关的第三光信号。
  2. 根据权利要求1所述的节点,其特征在于,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波波长交换开关的输出端口相连。
  3. 根据权利要求1所述的节点,其特征在于,还包括:
    下波维度交换开关,所述下波维度交换开关用于对来自所述第一光切换开关的第一光信号进行维度交换并向所述下波波长交换开关发送所述进行维度交换后的第一光信号,其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波维度交换开关的输入端口相连,所述下波维度交换开关的输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波波长交换开关的输出端口相连。
  4. 根据权利要求1所述的节点,其特征在于,还包括:
    上波维度交换开关,所述上波维度交换开关用于对所述经过所述上波波长交换开关进行波长交换后的第三光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第三光信号,其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波维度交换开关的输出端口相连,所述上波维度交换开关的输入端口与所述上波波长交换开关的输出端口相连。
  5. 根据权利要求1所述的节点,其特征在于,还包括:
    上波维度交换开关和下波维度交换开关,所述下波维度交换开关用于对来自所述第一光切换开关的第一光信号进行维度交换并向所述下波波长交换开关发送所述进行维度交换后的第一光信号,所述上波维度交换开关用于对所述经过所述上波波长交换开关进行波长交换后的第三光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第三光信号,其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波维度交换开关的输入端口相连,所述下波维度交换开关的输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波维度交换开关的输出端口相连,所述上波维度交换开关的输入端口与所述上波波长交换开关的输出端口相连。
  6. 根据权利要求1-5中任一项所述的节点,其特征在于,所述第一光切换开关为1×2开关。
  7. 根据权利要求1-6中任一项所述的节点,其特征在于,所述第二光切换开关为2×1开关。
  8. 根据权利要求1-7中任一项所述的节点,其特征在于,还包括:
    解复用器,复用器,上波端口交换开关和下波端口交换开关,其中,
    所述解复用器用于对来自网络节点的波分复用信号进行解复用,并将所述进行解复用得到的所述光信号发送到所述第一光切换开关,所述解复用器的输出端口与所述第一光切换开关的输入端口相连;
    所述复用器用于对来自所述第二光切换开关的第二光信号和来自所述第二光切换开关的第三光信号进行复用得到波分复用信号,所述复用器的输入端口与所述第二光切换开关的输出端口相连;
    所述上波端口交换开关用于对本地生成的光信号进行分组和端口交换,得到所述第三光信号并将所述第三光信号发送到所述上波波长交换开关,所述上波端口交换开关的输出端口与所述上波波长交换开关的输入端口相连;
    所述下波端口交换开关用于对经过所述下波波长交换开关进行波长交换后的第二光信号进行分组和端口交换,所述下波端口交换开关的输入端口与所述下波波长交换开关的输出端口相连。
  9. 一种光信号交换的方法,其特征在于,所述方法应用的节点包括第一光切换开关、第二光切换开关、下波波长交换开关、上波波长交换开关和穿通维度交换开关,所述方法包括:
    所述第一光切换开关接收光信号,所述光信号包括第一光信号和/或第二光信号,并向所述下波波长交换开关发送所述第一光信号,向所述穿通维度交换开关发送所述第二光信号;
    所述下波波长交换开关对来自所述第一光切换开关的第一光信号进行波长交换;
    所述上波波长交换开关对本地生成的第三光信号进行波长交换,并向所述第二光切换开关发送经过所述上波波长交换开关进行波长交换后的第三光信号;
    所述穿通维度交换开关对来自所述第一光切换开关的第二光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第二光信号;
    所述第二光切换开关接收并发送来自所述穿通维度交换开关的第二光信号和来自所述上波波长交换开关的第三光信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波波长交换开关的输出端口相连。
  11. 根据权利要求9所述的方法,其特征在于,所述节点还包括下波维度交换开关,所述向所述下波波长交换开关发送所述第一光信号包括:
    所述第一光切换开关将所述第一光信号发送到所述下波维度交换开关;
    所述下波维度交换开关对来自所述第一光切换开关的第一光信号进行维度交换并向所述下波波长交换开关发送所述进行维度交换后的第一光信号;
    其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波维度交换开关的输入端口相连,所述下波维度交换开关的输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波波长交换开关的输出端口相连。
  12. 根据权利要求9所述的方法,其特征在于,所述节点还包括上波维度交换开关,所述向所述第二光切换开关发送经过所述上波波长交换开关进行波长交换后的第三光信号包括:
    所述上波波长交换开关将所述经过所述上波波长交换开关进行波长交换后的第三光信号发送到所述上波维度交换开关;
    所述上波维度交换开关对所述经过所述上波波长交换开关进行波长交换后的第三光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第三光信号;
    其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波维度交换开关的输出端口相连,所述上波维度交换开关的输入端口与所述上波波长交换开关的输出端口相连。
  13. 根据权利要求9所述的方法,其特征在于,所述节点还包括上波维度交换开关和下波维度交换开关,其中,所述向所述下波波长交换开关发送所述第一光信号包括:
    所述第一光切换开关将所述第一光信号发送到所述下波维度交换开关;
    所述下波维度交换开关对来自所述第一光切换开关的第一光信号进行维度交换并向所述下波波长交换开关发送所述进行维度交换后的第一光信号;
    所述向所述第二光切换开关发送经过所述上波波长交换开关进行波长交换后的第三光信号包括:
    所述上波波长交换开关将所述经过所述上波波长交换开关进行波长交换后的第三光信号发送到所述上波维度交换开关;
    所述上波维度交换开关对所述经过所述上波波长交换开关进行波长交换后的第三光信号进行维度交换并向所述第二光切换开关发送所述进行维度交换后的第三光信号;
    其中,所述第一光切换开关的第一输出端口与所述穿通维度交换开关的输入端口相连,所述第一光切换开关的第二输出端口与所述下波维度交换开关的输入端口相连,所述下波维度交换开关的输出端口与所述下波波长交换开关的输入端口相连,所述第二光切换开关的第一输入端口与所述穿通维度交换开关的输出端口相连,所述第二光切换开关的第二输入端口与所述上波维度交换开关的输出端口相连,所述上波维度交换开关的输入端口与所述上波波长交换开关的输出端口相连。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,所述第一光切换开关为1×2开关。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,所述第二光切换开关为2×1开关。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,所述节点还包括解复用器,复用器,上波端口交换开关和下波端口交换开关,所述方法还包括:
    所述解复用器对来自网络节点的波分复用信号进行解复用,并将所述进行解复用得到的所述光信号发送到所述第一光切换开关,所述解复用器的输出端口与所述第一光切换开关的输入端口相连;
    所述复用器对来自所述第二光切换开关的第二光信号和自来所述第二光切换开关的第三光信号进行复用得到波分复用信号,所述复用器的输入端口与所述第二光切换开关的输出端口相连;
    所述上波端口交换开关对本地生成的光信号进行分组和端口交换,得到所述第三光信号并将所述第三光信号发送到所述上波波长交换开关,所述上波端口交换开关的输出端口与所述上波波长交换开关的输入端口相连;
    所述下波端口交换开关对经过所述下波波长交换开关进行波长交换后 的第二光信号进行分组和端口交换,所述下波端口交换开关的输入端口与所述下波波长交换开关的输出端口相连。
PCT/CN2015/076426 2015-04-13 2015-04-13 光交叉互连节点和光信号交换的方法 WO2016165053A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15888758.8A EP3267604B1 (en) 2015-04-13 2015-04-13 Optical cross-connect node and optical signal exchange method
CN201580077722.XA CN107431551B (zh) 2015-04-13 2015-04-13 光交叉互连节点和光信号交换的方法
PCT/CN2015/076426 WO2016165053A1 (zh) 2015-04-13 2015-04-13 光交叉互连节点和光信号交换的方法
US15/728,751 US10291971B2 (en) 2015-04-13 2017-10-10 Optical cross-connect node and optical signal switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076426 WO2016165053A1 (zh) 2015-04-13 2015-04-13 光交叉互连节点和光信号交换的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/728,751 Continuation US10291971B2 (en) 2015-04-13 2017-10-10 Optical cross-connect node and optical signal switching method

Publications (1)

Publication Number Publication Date
WO2016165053A1 true WO2016165053A1 (zh) 2016-10-20

Family

ID=57125544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076426 WO2016165053A1 (zh) 2015-04-13 2015-04-13 光交叉互连节点和光信号交换的方法

Country Status (4)

Country Link
US (1) US10291971B2 (zh)
EP (1) EP3267604B1 (zh)
CN (1) CN107431551B (zh)
WO (1) WO2016165053A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208904A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 光波导装置
WO2024017080A1 (zh) * 2022-07-22 2024-01-25 华为技术有限公司 一种计算集群及计算集群的连接方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431551B (zh) * 2015-04-13 2019-02-05 华为技术有限公司 光交叉互连节点和光信号交换的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098981A1 (en) * 2004-11-10 2006-05-11 Fujitsu Limited Optical transmitting apparatus, method of increasing the number of paths of the apparatus, and optical switch module for increasing the number of paths of the apparatus
CN201138412Y (zh) * 2007-11-23 2008-10-22 华中科技大学 2×2波长选择交叉连接器
JP2010081374A (ja) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置および光ネットワーク
CN201733410U (zh) * 2010-01-11 2011-02-02 浙江工业大学 用于光突发交换网络核心节点的光交叉连接装置
CN102696194A (zh) * 2011-07-22 2012-09-26 华为技术有限公司 可重构的光分插复用器及波长交叉连接器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878177A (en) * 1997-03-31 1999-03-02 At&T Corp. Layered switch architectures for high-capacity optical transport networks
EP1162855B1 (en) * 2000-06-05 2005-12-07 PIRELLI CAVI E SISTEMI S.p.A. Optical WDM network having combined wavelength routing and fiber routing
US20030118274A1 (en) * 2001-12-21 2003-06-26 Tetsuya Nishi Optical cross-connect device and optical network
US7340175B2 (en) * 2002-01-18 2008-03-04 Nec Corporation Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US6842554B2 (en) * 2002-03-29 2005-01-11 Fujitsu Limited Optical cross-connect device and optical network
FR2844955B1 (fr) * 2002-09-19 2005-01-14 Cit Alcatel Brasseur optique d'architecture multigranulaire
US8639069B1 (en) * 2003-06-30 2014-01-28 Calient Technologies, Inc. Wavelength dependent optical switch
CN2653792Y (zh) * 2003-07-24 2004-11-03 华中科技大学 全光波长路由交叉模块
US7983560B2 (en) * 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
US7526198B1 (en) * 2005-11-30 2009-04-28 At&T Corp. Methods of restoration in an ultra-long haul optical network
JP4672621B2 (ja) * 2006-08-30 2011-04-20 富士通株式会社 光分岐挿入機能を備えた光伝送装置
JP4882712B2 (ja) * 2006-12-07 2012-02-22 富士通株式会社 光クロスコネクト装置
EP2141842B1 (fr) * 2008-06-30 2013-07-31 Alcatel Lucent Dispositif de commutation de signaux optiques
WO2010036264A1 (en) 2008-09-26 2010-04-01 Dynamic Method Enterprises Limited A method and an apparatus to automatically verify connectivity within an optical network node
CN101742363A (zh) 2008-11-20 2010-06-16 华为技术有限公司 一种光交换的方法和装置
US8346079B2 (en) * 2009-02-27 2013-01-01 Futurewei Technologies, Inc. Path computation element protocol (PCEP) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation
US8346089B2 (en) * 2009-09-29 2013-01-01 At&T Intellectual Property I, L.P. Methods for expanding cross-connect capacity in a ROADM optical network
CN103053126B (zh) * 2010-08-24 2015-07-29 瑞典爱立信有限公司 用于波长交换光网络中的动态波长分配的方法和设备
CN104365114A (zh) * 2012-04-04 2015-02-18 瑞典爱立信有限公司 用于使用分级数据结构交换传输的信息的装置和方法
WO2014203789A1 (ja) * 2013-06-20 2014-12-24 国立大学法人名古屋大学 光クロスコネクト装置
CN104753623B (zh) * 2013-12-25 2018-04-27 华为技术有限公司 一种光交换装置
CN107431551B (zh) * 2015-04-13 2019-02-05 华为技术有限公司 光交叉互连节点和光信号交换的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098981A1 (en) * 2004-11-10 2006-05-11 Fujitsu Limited Optical transmitting apparatus, method of increasing the number of paths of the apparatus, and optical switch module for increasing the number of paths of the apparatus
CN201138412Y (zh) * 2007-11-23 2008-10-22 华中科技大学 2×2波长选择交叉连接器
JP2010081374A (ja) * 2008-09-26 2010-04-08 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置および光ネットワーク
CN201733410U (zh) * 2010-01-11 2011-02-02 浙江工业大学 用于光突发交换网络核心节点的光交叉连接装置
CN102696194A (zh) * 2011-07-22 2012-09-26 华为技术有限公司 可重构的光分插复用器及波长交叉连接器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267604A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208904A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 光波导装置
CN110208904B (zh) * 2018-02-28 2022-02-18 华为技术有限公司 光波导装置
WO2024017080A1 (zh) * 2022-07-22 2024-01-25 华为技术有限公司 一种计算集群及计算集群的连接方法

Also Published As

Publication number Publication date
CN107431551B (zh) 2019-02-05
EP3267604A4 (en) 2018-04-25
CN107431551A (zh) 2017-12-01
EP3267604A1 (en) 2018-01-10
US20180035182A1 (en) 2018-02-01
US10291971B2 (en) 2019-05-14
EP3267604B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
EP2771733B1 (en) Scalable optical switches and switching modules
JP6342894B2 (ja) 光クロスコネクト装置
US10031294B2 (en) Optical switch and wavelength division multiplexing optical system
EP2357739A1 (en) Optical switching method and device
US10256936B2 (en) Method and apparatus for optical node construction using software programmable ROADMs
EP2982066B1 (en) Optical switch
US10291971B2 (en) Optical cross-connect node and optical signal switching method
Simmons et al. Wavelength-selective CDC ROADM designs using reduced-sized optical cross-connects
Pu et al. Client-configurable eight-channel optical add/drop multiplexer using micromachining technology
JP4388681B2 (ja) 追加/ドロップ光多重化装置とチャンネルを付加する方法
JP6622113B2 (ja) 光クロスコネクト装置及びモジュール
US20030206743A1 (en) Cross connecting device and optical communication system
EP2434774B1 (en) Apparatus and method for colorless optical switch
WO2016045114A1 (zh) 光交换装置、光交叉节点和交换光信号的方法
JP6510443B2 (ja) 波長クロスコネクト装置
JP4209087B2 (ja) 光アッド/ドロップ装置
JP2003009195A (ja) クロスコネクトスイッチ
JP2009033543A (ja) 波長選択スイッチ及び光クロスコネクトスイッチ機能部及び光クロスコネクト装置
JP6387331B2 (ja) 波長選択切換装置
Gumaste et al. A novel pCDC ROADM architecture using MxN WSS
CN117956324A (zh) 全光交叉组网系统及光信号传输方法
Dorf The electrical engineering handbook series
Mukherjee Optical‐Electrical‐Optical (O‐E‐O) Switches
CN117999749A (zh) 用于宽频谱信道的roadm架构
Amaya et al. Optical node architectures for elastic networks: From static to architecture on demand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE