WO2016163828A1 - Polymer support for increasing binding between cells, and method for culturing cells by using same - Google Patents

Polymer support for increasing binding between cells, and method for culturing cells by using same Download PDF

Info

Publication number
WO2016163828A1
WO2016163828A1 PCT/KR2016/003739 KR2016003739W WO2016163828A1 WO 2016163828 A1 WO2016163828 A1 WO 2016163828A1 KR 2016003739 W KR2016003739 W KR 2016003739W WO 2016163828 A1 WO2016163828 A1 WO 2016163828A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
polymer
peptide
present
Prior art date
Application number
PCT/KR2016/003739
Other languages
French (fr)
Korean (ko)
Inventor
이근용
이재원
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority claimed from KR1020160043529A external-priority patent/KR20160121780A/en
Publication of WO2016163828A1 publication Critical patent/WO2016163828A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/40Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing ingredients of undetermined constitution or reaction products thereof, e.g. plant or animal extracts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention was made by the task number NRF-2013R1A2A2A03010055 under the support of the Ministry of Science, ICT and Future Planning, the research management specialized organization of the project is the Korea Research Foundation, the research project name is "medium-level researcher support project,” Tissue regeneration using sensitized microgels ”, the host institution is Hanyang University Industry-Academic Cooperation Group, and the research period is from 06.01.
  • the present invention relates to a polymeric cell support that induces binding between cells.
  • tissue engineering and regenerative medicine cell therapy is commonly used to restore damaged tissue and regeneration.
  • various treatments using stem cells have been carried out.
  • simple injection of cells has low engraftment rate and difficulty in controlling differentiation, and many studies have been conducted to maximize such effects.
  • various methods have been developed to maximize the engraftment rate and differentiation capacity of cells in vivo. It is essential to use a support for effective cell delivery and tissue regeneration, and recently, cell-bound support using polymers has been developed.
  • Most of the polymer scaffolds are used to fix the cell binding material in order to increase the cell binding capacity, or to fix the growth factor and growth factor-derived peptides to induce differentiation of cells, but have not reached a satisfactory level.
  • Such conventional polymer scaffolds are focused on enhancing the binding force between cells and extra cellular matrix.
  • none of the cells in vivo exist only by the binding between the extracellular matrix, but exists in an environment that binds to various other cells. Therefore, there is a need for the development of a support that can provide cell-to-cell binding in culturing cells in vitro and in vivo .
  • the inventors have made intensive research efforts to develop polymeric cell scaffolds that provide cell-cell binding.
  • a polymer support conjugated with a cadherin-attached oligopeptide not only the cell-supporting bond is formed, but also the cell-cell binding is induced to be useful for cell culture and stem cell differentiation.
  • Another object of the present invention to provide a cell colonization culture method.
  • Still another object of the present invention is to provide a composition for inducing stem cell differentiation.
  • Another object of the present invention to provide a stem cell culture method for differentiation into chondrocytes.
  • Another object of the present invention to provide a cell composition for implantation in the body.
  • the invention provides a polymeric cell support for forming a cell population comprising:
  • the inventors have made intensive research efforts to develop polymeric cell scaffolds that provide cell-cell binding.
  • a polymer support conjugated with a cadherin-attached oligopeptide not only the cell-supporting bond is formed, but also the cell-cell binding is induced to be useful for cell culture and stem cell differentiation. It was found possible.
  • the polymer cell support of the present invention includes a cDHERIN-attached oligopeptide, thereby forming a bond with CADHERIN protein on the surface of the cultured cell, and inducing cell-cell binding, thereby enabling clustering of cultured cells.
  • CADHERIN protein is a type 1 transmembrane protein, a protein that plays an important role in forming interhesion.
  • biocompatible polymer backbone refers to a structure made of a biocompatible polymer that has affinity upon contact with a cell and does not exhibit a rejection reaction, and is a material of a structure such as a scaffold for conventional cell culture.
  • Various materials known to be used may be used without limitation. However, it is necessary to include a functional group for binding a caherin adherent peptide, or to be surface modified to include such a functional group.
  • the polymer backbone may be prepared in various forms by various methods, and is not particularly limited.
  • the polymer backbone of the present invention may be prepared, for example, in the form of microspheres, and for this, a water-in-oil emulsion method may be used. See the embodiments on this specification for specific methods.
  • cadherin adherent oligopeptide refers to an oligopeptide sequence capable of forming a bond with a cadherin protein of a cultured cell, wherein the oligopeptide sequence forms a bond with a cadherin protein on a cell. It will be obviously understood that the effects of the present invention are significantly exerted only if so. Identification of oligopeptides that form bonds with Cadherin proteins can be carried out through a variety of methods known in the art, such as two-hybrid analysis or three-hybrid analysis (US Pat. No. 5,283,317; Zervos et. al., Cell 72, 223-232, 1993; Madura et al., J.
  • an oligopeptide that binds to the cadrerin protein can be screened by using the cadrerin protein as a bait protein.
  • Two-hybrid systems are based on the modular nature of the transcription factors composed of cleavable DNA-binding and activation domains. For simplicity, this assay uses two DNA constructs.
  • a cadrine-encoding polynucleotide is fused to a DNA binding domain-encoding polynucleotide of a known transcription factor (eg, GAL-4).
  • a DNA sequence encoding an oligopeptide (“prey” or “test material”) of interest is fused to a polynucleotide encoding the activation domain of the known transcription factor. If bait and prey interact in in vivo to form a complex, the DNA-binding and activation domains of the transcription factors are contiguous, which triggers transcription of the reporter gene (eg, luciferase). As a result, the expression of the reporter gene can be detected, which indicates that the prey can bind with the cadrerin protein, which means that the prey can be used as the cadrerin adherent oligopeptide of the present invention.
  • the reporter gene eg, luciferase
  • the bond between the polymer backbone and the catherine attachable oligopeptide of the present invention is an amide bond formed between the biocompatible polymer backbone described above and the catherine attachable oligopeptide described above.
  • Cadherin adherent oligopeptides can be associated with the polymeric backbone using N-terminal or C-terminal amino or carboxyl groups.
  • the polymer backbone of the present invention is required to include a functional group capable of forming an amide bond with a cadmin attached oligopeptide.
  • the biocompatible polymer backbone of the present invention comprises a carboxyl group, hydroxyl group or amino group for forming the amide bond.
  • the polymer backbone of the present invention not only includes a carboxyl group or a hydroxyl group capable of binding to the amino group of the caherin-adhering oligopeptide, or an amino group capable of bonding to the carboxyl group of the caherin-adhering oligopeptide, It is understood to include surface modified to include carboxyl, hydroxyl, or amino groups.
  • amide bond formation between carboxyl group and amino group is more generally known
  • amide bond formation between hydroxyl group and amino group is also known by using an organometallic catalyst (Kim Ki-Chul et al., Such as amide using an organometallic catalyst from an alcohol and an amine).
  • an organometallic catalyst Kim Ki-Chul et al., Such as amide using an organometallic catalyst from an alcohol and an amine.
  • the polymer backbone of the present invention may include a carboxyl group or hydroxyl group, or a surface modified to include a carboxyl group or hydroxyl group.
  • the polymer backbone of the present invention may form an amide bond with the N-terminal amino group of the cadherin-attached oligopeptide, or form a bond with the C-terminal carboxyl group of the cadherin-attached oligopeptide via a linker. It is possible.
  • Linkers capable of forming bonds between carboxyl groups in the present invention are specifically, for example, diamine, divinylsulfone, 1,4-butanediol, diglycidyl ether (BDDE) and glutaraldehyde, Carbodiimide, hydroxysuccinimide, imidoester, maleimide, haloacetyl, disulfide, hydroazide, or alkoxyamine may be used, but is not limited thereto.
  • the polymeric backbone of the present invention is any one or more selected from the group consisting of alginic acid polymers, chitosan polymers and hyaluronic acid polymers.
  • the “alginic acid polymer” of the present invention is a polymer polymer represented by Formula 1, and is a polymer suitable for forming a bond with a cadmin adherent oligopeptide of the present invention including a carboxyl group.
  • the "chitosan polymer” of the present invention is a polymer polymer represented by the formula (2), and includes a hydroxyl group and an amino group, and is a polymer suitable for forming a bond with the cardherin adherent oligopeptide of the present invention.
  • the "hyaluronic acid polymer” of the present invention is a polymer represented by the formula (3), and includes a hydroxyl group and a carboxyl group, and is a polymer suitable for forming a bond with the cardherin adhesion oligopeptide of the present invention.
  • a polymer polymer surface-modified to include a carboxyl group, hydroxyl group or amino group can be suitably used.
  • a method described in the prior art can be used without limitation, and specifically, introducing a carboxyl group to the surface of the polymer polymer by graft using acrylic acid (AAc), for example, It is possible.
  • the caherin adherent oligopeptide of the present invention is an LRP5 peptide consisting of SEQ ID NO: 1 or HAV peptide consisting of SEQ ID NO: 2.
  • LRP5 peptide of the present invention is a sequence of the first part of the sequence list as a part of the amino acid sequence of the low-density lipoprotein receptor-related protein 5 (LRP5) that binds effectively to the cardherin protein.
  • LRP5 peptide is a sequence of the amino acid sequence of a specific site of the cardinin protein directly participating in the tight junction (tight junction) of the cell consisting of the second sequence of the sequence listing. The inventors anticipated that the effect of the present invention would be caused by caherin adhesion, independent of sequence specificity, and demonstrated this using two sequences of caherin attachment peptides that were not related to each other.
  • the LRP5 peptide or HAV peptide of the present invention forms a bond with the cardherin protein of the cell.
  • Cadherin protein is a protein that plays an important role of directly participating in the intercellular adhesion (adhesion), as described above, the present inventors target the cadherin protein oligopeptides, specifically examples For example, using the LRP5 peptide and / or HAV peptide, a polymer cell support capable of forming a cell population was prepared.
  • the cell support of the present invention further comprises (c) an integrin adherent oligopeptide bound to the above-described polymer backbone.
  • the "integrin” of the present invention is a transmembrane receptor that acts as a bridge of cell-cell and extracellular matrix (ECM) interactions.
  • ECM extracellular matrix
  • the term "integrin adherent oligopeptide” refers to a peptide strand consisting of approximately 2-20 amino acids that form a bond with the aforementioned integrins.
  • the cell population is more compact in spherical form. It was confirmed that it was formed.
  • the integrin adherent oligopeptides of the invention are RGD, PSHRN, FHRRIKA, YIGSR, KGD, RHD, NGR, SDGR, KQAGDV, LDV, DGEA, YGYYGDALR, FYFDLR, DALR, DLR, RLD, KRLDGS, IDA, IDAPS and REDV.
  • PSHRN (Benoit and Anseth, 2005), FHRRIKA (Rezania and Healy, 1999), YIGSR (Massia and Hubbell, 1990), KGD (Plow et al, 1985; Scarborough et al 1993), RHD (Ghiso et al 1992, Saporito-Irwin & van Nostrand 1995), NGR, SDGR (Yamada & Kennedy 1987), KQAGDV (Kloczewiak et al, 1984; Lam et al 1987), LDV (Guan & Hynes 1990, Mold et al 1990), DGEA (Staatz et al 1991), YGYYGDALR, FYFDLR (Underwood et al 1995), DALR, DLR, RLD (Altieri et al, 1993; Koivunen et al, 1995), KRLDGS (Alfieri et al 1993), LDV, IDA, IDAPS and REDV (Mould) et al,
  • the present invention provides a cell colonization culture method comprising the step of culturing the cells in contact with the cell support described above.
  • a feeder cell layer for cell attachment.
  • the polymer cell support of the present invention acts like a feeder cell layer, and not only forms a cell-supporter bond, but also induces a cell-cell bond to form cells in a cell population. It can be cultured. There is no particular limitation on the cells that can be cultured by the method of the present invention.
  • Cell culture of the present invention can be made in conventionally used cell culture medium.
  • the cell culture medium may be appropriately selected and used depending on the type of cultured cell and the purpose of the culture.
  • the basal medium constituting the medium of the present invention is a conventional medium in the art, such as DMEM (Dulbecco's modification of Eagle's medium, Dulbecco, R. et al., Virology 8: 396 (1959)), Eagle's MEM [Eagle's minimum essensial medium, Eagle, H. Science 130: 142 (1959)], ⁇ -MEM [Stanner, CP et al., NAT. New Biol . 230: 52 (1971)], Iscove's MEM [Iscove, N.
  • DMEM Dulbecco's modification of Eagle's medium, Dulbecco, R. et al., Virology 8: 396 (1959)
  • Eagle's MEM Eagle's minimum essensial
  • the medium of the present invention may additionally include antibiotics, and may include, but are not limited to, for example, penicillin, streptomycin, gentamycin, neomycin, polymyxin or amphotericin B.
  • the present invention provides a composition for inducing stem cell differentiation comprising the above-described cell support.
  • the "stem cells” of the present invention are not particularly limited, and all of the cells having the characteristics of stem cells, that is, undifferentiated, indefinite proliferation and differentiation into specific cells are cells that can be applied to the present invention.
  • Stem cells to which the present invention is applied are largely divided into pluripotent stem cells and multipotent stem cells, including embryonic stem cells (ES) and embryonic germ cells (EG).
  • Embryonic stem cells are derived from the internal cell mass (ICM) of the blastocyst, and embryonic germ cells are derived from primordial germ cells of the 5-10 week old gonadal ridge.
  • Pluripotent stem cells are found in embryonic, fetal and adult tissues, including adult stem cells. Pluripotent stem cells proliferate indefinitely in vitro and have the ability to differentiate into a variety of cells derived from all three embryonic layers (ectoderm, mesoderm and endoderm). Pluripotent stem cells, on the other hand, have the ability to differentiate into the specific tissue from which they originate, and the ability to autoreproduce is typically limited to the life of the organism. Sources of pluripotent stem cells are all tissue types and are primarily isolated from bone marrow, blood, liver, skin, intestine, pancreas, brain, skeletal muscle and pulp.
  • the present invention is characterized by inducing colonization regardless of the concentration of cultured cells using the above-described cell support, and promoting cell differentiation by cell-cell binding formed at this time, and other culture conditions are greatly limited. Instead, the cells can be appropriately selected and adjusted according to the cultured cells and the culture purpose.
  • the composition of the present invention may include a conventionally known stem cell differentiation condition medium, the differentiation condition medium can be used by appropriately selecting a conventionally known medium according to the type of cells to be obtained as a result of differentiation.
  • the present invention comprises the step of contacting the stem cell differentiation induction composition and the stem cells described above and culturing in chondrocyte differentiation conditions medium, stem cell culture method for differentiation into chondrocytes To provide.
  • chondrocyte differentiation condition medium refers to a medium under conditions that induce differentiation of stem cells into chondrocytes, and as a representative example, insulin, transferrin, selenium acid, woo supplemented with growth factors Serum-deficient media (Johnstone et al., 1998) comprising serum albumin, linoleic acid, pyruvate, ascorbate and / or dexamethasone, and DMEM / F12, dexamethasone, L used in one embodiment of the present invention.
  • a medium containing ascorbic acid, insulin and / or TGF- ⁇ 1 may be used, but is not limited thereto.
  • stem cell culture method for differentiation into chondrocytes of the present invention in particular, in the case of using a cell support further comprising an integrin-attached oligopeptide, as well as a cadrerin-attached oligopeptide, a cadherin- or integrin-attached Gene expression of chondrocyte differentiation factor was significantly increased as compared with the case of using a cell support including sex oligoptide alone. Therefore, preferably, stem cells may be cultured using a cell support including both a caherin-adhering oligopeptide and an integrin-adhering oligopeptide, and more effectively differentiated into chondrocytes.
  • the present invention provides a composition for transplantation in vivo cells comprising (a) the cell support described above, (b) cells for transplantation in vivo bound to the cell support.
  • Cells for transplantation of the present invention are specifically, for example, chondrocytes, myoblasts, hepatocytes, osteoblasts, embryonic stem cells, embryonic germ cells (embryonic) germ cells, adult stem cells, mesenchymal stem cells, neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, liver stem cells, heart stem cells, pancreatic stem cells, endothelial progenitors, growth Outgrowth endothelial cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells, satellite cells, intestinal epithelial cells, smooth muscle cells and fibers There are blasts, but not limited thereto.
  • the cell composition for implantation of the body of the present invention can be injected at a desired location using, for example, injection or surgical methods.
  • the cells for transplantation in the body of the invention are stem cells.
  • the stem cells are as described above in the present specification, and may be used in a conventionally known use mode for stem cell therapy for treating diseases by introducing stem cells into the body.
  • the cells for transplantation in the body of the present invention are chondrocytes differentiated from stem cells.
  • composition of the present invention may additionally include a pharmaceutically acceptable carrier, the pharmaceutically acceptable carrier included in the therapeutic composition of the present invention is commonly used in the formulation, lactose, dextrose, sucrose, Sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzo 8, talc, magnesium stearate, mineral oil, and the like.
  • a pharmaceutically acceptable carrier included in the therapeutic composition of the present invention is commonly used in the formulation, lactose, dextrose, sucrose, Sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxy
  • compositions of the present invention may further comprise lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • lubricants wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • Pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
  • compositions of the present invention can be administered parenterally, and local injection is the most preferred method of administration.
  • Suitable dosages of the compositions of the present invention may be prescribed in various ways depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of the patient, food, time of administration, route of administration, rate of excretion and response to reaction. have.
  • the dosage of the composition is preferably 1 times 1 x 10 5 - 5 x 10 8 cells / ml and can be adjusted by the amount required.
  • compositions of the present invention allow for excellent formation of intercellular networking to fully exert the function of the cells to be transplanted, thereby actually exhibiting improved therapeutic efficacy in diseased animals.
  • Intracellular graft cell compositions of the present invention can be used for the treatment of cartilage-injury diseases, specifically, for example, osteoarthritis, rheumatoid arthritis, meniscus cartilage injury (Meniscus Injury), It can be used for the treatment of Costoschondritis, Relapsing polychondritis, and Chondrosacoma.
  • the present invention provides a polymer cell support for forming cell populations.
  • the present invention provides a cell colonization culture method.
  • the present invention provides a composition for inducing stem cell differentiation.
  • the present invention provides a stem cell culture method for differentiation into chondrocytes.
  • the present invention provides a cell composition for implantation in the body.
  • the polymer cell support of the present invention can induce cell-cell conjugation to form cell populations even when small concentrations of cells are used in cell culture.
  • composition for inducing stem cell differentiation of the present invention and the stem cell culture method, it is possible to effectively differentiate the stem cells into desired cells.
  • Figure 1 schematically shows the attachment process of the cells using the support to which the cell adhesion peptide of the present invention is immobilized.
  • Figure 2 shows the process and predicted structure of the cell-adhesive peptide of the present invention binds to the polymer structure of the polymer support.
  • Figure 3 shows the results of confirming that the cell-adhesive peptide is bound to the polymer support as a result of the IR analysis of the polymer support to which the cell-adhesive peptide is bound.
  • Figure 4 shows the results of measuring the physical properties of the polymer support bound to the cell-adhesive peptide of the present invention.
  • Figure 5 shows the results of observing the phenotype of each cell by attaching a variety of cells to the polymer support to which the cell adhesion peptide of the present invention is bound.
  • Figure 6 shows the results of observing the binding force between cells of the cells attached to the polymer support to which the cell-adhesive peptide of the present invention is bound.
  • Figure 7 shows the effect of the cell-adhesive peptides of the present invention on the phenotype of stem cells, and shows the results confirmed that they are attached by a specific binding force between cells.
  • Figure 8 shows the results of observing the phenotype of the stem cells and the binding force between the cells when differentiating stem cells into chondrocytes using a low concentration of the cell number of the cell adhesion peptide conjugated polymer support of the present invention.
  • Figure 9 shows the results of analyzing the differentiation capacity when differentiating stem cells to chondrocytes using low concentration of the cell-adhesive peptide conjugated polymer support of the present invention.
  • Figure 10 shows the results of observing the phenotype and the intercellular binding force of the stem cells when the high concentration of stem cells to the chondrocytes using the polymer support conjugated to the cell-adhesive peptide of the present invention.
  • Figure 11 shows the results of analyzing the differentiation power when differentiation of high concentration of stem cells into chondrocytes using the polymer support to which the cell-adhesive peptide of the present invention is bound.
  • FIG. 12 shows a method for forming a polymer microsphere and a process of binding a cell-adhesive peptide to the polymer microsphere.
  • Figure 13 shows the process of forming aggregates using the polymer microspheres and stem cells of the present invention.
  • Figure 14 shows the results of measuring the physical properties of the aggregates formed of the polymer microspheres and stem cells of the present invention.
  • Figure 15 shows the results of observing the phenotype of the stem cells in the aggregate formed of the polymer microspheres and stem cells of the present invention.
  • Figure 16 shows the results of observing the survival rate of stem cells in the aggregate formed of the polymer microspheres and stem cells of the present invention.
  • Figure 17 shows the results of histological evaluation (Alcian blue, serious red) to analyze the differentiation ability of stem cells into cartilage cells in aggregates formed of the polymer microspheres and stem cells of the present invention.
  • Figure 18 shows the results of analyzing the differentiation power when differentiating stem cells into chondrocytes in the aggregate formed of the polymer microspheres and stem cells of the present invention.
  • Figure 19 shows the results of analyzing the growth ability of the stem cells according to the concentration of the card herin peptide of the present invention.
  • Figure 20 shows the results of analyzing the phenotype and adhesion of stem cells according to the concentration of the cardinin peptide of the present invention.
  • Synthesis was performed using alginic acid, a natural polymer, and the EDC / NHS reaction was used to bind the carboxyl group of alginic acid to the amine group of the cell-adhesive peptide.
  • Alginic acid was dissolved in MES buffer at pH 6.5, and peptides were bound using EDC and NHS, and then the peptide-bound alginic acid solution was dialyzed with distilled water and NaCl for 3 days.
  • Activated carbon was added to the aqueous solution of alginic acid to complete dialysis to remove impurities for 30 minutes, filtered through a 0.22 ⁇ l filter, and lyophilized (see FIG. 2).
  • the amino acid analysis was performed on the polymer support to which the LRP5 peptide was attached to determine whether amino acids were efficiently bound (see Table 1).
  • HSC hematopoietic cells
  • M3T3 osteoblasts
  • D1 stem cells adult stem cells
  • NIH3T3 fibroblasts
  • Observation of cell adhesion and cell phenotype in the RGD peptide-bound polymer scaffold confirmed the binding to hematopoietic cells (HSC), osteoblasts (MC3T3), adult stem cells (D1 stem cells) and fibroblasts (NIH3T3). And evenly binding to single cells (see FIG. 5A).
  • HSC hematopoietic cells
  • M3T3 osteoblasts
  • D1 stem cells adult stem cells
  • NIH3T3T3 fibroblasts
  • each cell was combined to form a cell population in the polymer support to which the LRP5 peptides provided intercellular binding (see FIG. 5B).
  • HSC Hepatoblasts
  • M3T3 osteoblasts
  • D1 stem cells adult stem cells
  • fibroblasts NIH3T3
  • Example 2 Evaluation of Chondrocyte Differentiation Ability of Stem Cells Using Polymer Supports Providing Cell-to-Cell Binding
  • the adult stem cells (D1 stem cell, CRL-12424, ATCC) used are adult stem cells derived from mouse bone marrow, and are very suitable for the study of differentiation into bone, cartilage and adipocytes.
  • the peptide was not bound as a result of binding to the support after inhibiting cell-cell binding by treating EGTA solution. Cell adhesion similar to that of the polymeric support could be observed (see FIG. 7). This is a result showing that the polymer support into which the catherine-adherent oligopeptide of the present invention is introduced provides cell-cell binding.
  • chondrocyte differentiation medium conditions DMEM / F12, 10 nM dexamethasone, 50 ⁇ g / ml L-ascorbic acid, 5 ⁇ l / ml Insulin, 10 ng / ml TGF-beta1
  • concentration of the stem cells used was incubated with the number of cells (1.0 x 10 6 cells / ml) of a concentration lower than one tenth of the cell concentration used in the general three-dimensional cell culture method.
  • the cell phenotype was observed.
  • stem cells existed as single cells and immunostained beta-catenin, a protein that can confirm cell-to-cell binding. In contrast, it was confirmed that the binding was not performed, but in contrast, the polymer support in which the LRP5 peptide was introduced showed that the stem cells were clustered, and the beta-catenin protein expression was also markedly increased. (See FIG. 8).
  • Stem cells (D1 stem cell, CRL-) were cultured in chondrocyte differentiation medium (DMEM / F12, 10 nM dexamethasone, 50 ⁇ g / ml L-ascorbic acid, 5 ⁇ l / ml Insulin, 10 ng / ml TGF-beta1) for 2 weeks. 12424, ATCC) induced the differentiation of chondrocytes, and it was observed that RGD peptides were also forming a cell population in the polymer scaffold to which the RGD peptides provided the binding between the cell and the support. In the polymer scaffold to which the LRP5 peptide was bound, more cells were observed to form colonies (see FIG. 10).
  • chondrocyte differentiation medium DMEM / F12, 10 nM dexamethasone, 50 ⁇ g / ml L-ascorbic acid, 5 ⁇ l / ml Insulin, 10 ng / ml TGF-beta
  • Example 3 cell Intercellular Polymeric microspheres that provide a bond ( microsphere Cartilage cells of stem cells differentiation Ability evaluation
  • GGGGSHAVSS specific site peptide
  • Microspheres were prepared using alginic acid, a natural polymer, and a water-in-oil emulsion was used to prepare alginic acid microspheres.
  • Alginate polymer was dissolved in an organic solvent containing isooctane, SPAN 80, and Tween 80, and reacted in an aqueous solution of 20 wt% CaCl 2 for one hour to prepare microspheres. Thereafter, an EDC / NHS reaction was used to bind the carboxyl group of the alginic acid microspheres to the amine group of the caherin-adhesive oligopeptide (HAV peptide).
  • HAV peptide caherin-adhesive oligopeptide
  • Alginic acid microspheres were dissolved in MES buffer at pH 6.5, peptides were bound using EDC and NHS, and the peptide-alginated aqueous alginic acid solution was dialyzed with distilled water and NaCl for 3 days. Alginate aqueous solution completed dialysis was added to activated carbon to remove impurities for 30 minutes, filtered through a 0.22 ⁇ m filter and lyophilized (see Fig. 12).
  • a hydrogel was prepared by introducing peptides of various concentrations (7, 14, 28, 70 ⁇ g / mg) into the alginic acid, to each hydrogel Stem cells were attached at a concentration of 2.0 ⁇ 10 6 cells / ml and the experiment was performed for a total of 5 days.
  • the hydrogel was removed with a solution containing EDTA, and after the polymer support was removed, the number of cells was measured by a hemocytometer to evaluate the growth ability of the stem cells for 5 days. .
  • Agglomerates composed of stem cells and polymer microspheres were prepared by mixing the polymer microspheres and the stem cells having the binding force with the cells.
  • the polymer microspheres were used at a concentration of 1.0 x 10 8 / ml at 10 wt%, and the cells were 1.0 x 10.
  • Aggregates were formed using a concentration of 7 / ml. Aggregates thus formed were also incubated using round bottom well plates (see FIG. 13).
  • RGD-alg represents the RGD peptide introduced polymer microspheres
  • Cadherin-alg represents the HAV peptide introduced polymer microspheres
  • Alginate represents a polymer microsphere control group without the peptide introduced
  • solid line is the elastic modulus ( G ') and the dotted line represent the loss modulus (G ").
  • Polymeric scaffolds with RGD peptides alone which provide the binding between cells and scaffolds, to assess the binding capacity of stem cells and to identify cell phenotype and cell-cell binding using polymer microspheres that provide cell-to-cell binding. Experiment was carried out using as a comparison group.
  • RGD-alginate represents the RGD peptide introduced polymer microspheres
  • CAD-alginate represents the HAV peptide introduced polymer microspheres
  • R / C-alginate refers to the polymer microspheres to which the RGD peptide and HAV peptide is simultaneously bonded
  • Alginate indicates a polymer microsphere control group without peptide.
  • the survival rate of stem cells in the aggregates formed from the polymer microspheres and the stem cells was evaluated.
  • the aggregates using the polymer microspheres to which the RGD peptide and / or the HAV peptide were not bound can be observed that the aggregates did not form because there was no binding force between the cells and the microspheres, and the cell survival rate was lower than that of the other groups.
  • the aggregates using the polymer microspheres in which the RGD peptide or the HAV peptide were respectively bound it was confirmed that a specific volume of aggregates were formed by the binding force between the cells and the microspheres, and the cell survival rate was also high.
  • stem cells were mixed to form aggregates and cultured under chondrocyte differentiation medium conditions for 2 weeks (DMEM / F12, 10 nM dexamethasone, 50 ⁇ g / ml L-ascorbic acid, 5 ⁇ l / ml Insulin, 10 ng / ml TGF). -beta1).
  • RGD-Alginate represents RGD peptide-introduced polymer microspheres
  • Cadherin-Alginate represents HAV peptide-introduced polymer microspheres
  • Alginate represents a polymer microsphere control in which no peptide is introduced.

Abstract

The present invention relates to a polymer cell support for inducing binding between cells. The polymer cell support of the present invention allows culture cell-cell adhesion to be induced, thereby providing a composition for inducing cell differentiation, a composition for cell transplantation, or the like.

Description

세포와 세포간의 결합 증진을 위한 고분자 지지체 및 이를 이용한 세포 배양 방법Polymer support for enhancing cell-to-cell binding and cell culture method using the same
본 발명은 대한민국 미래창조과학부의 지원 하에서 과제번호 NRF-2013R1A2A2A03010055에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 (재)한국연구재단, 연구사업명은 “중견연구자지원사업”, 연구과제명은 “자기장 감응형 마이크로젤을 이용한 조직재생”, 주관기관은 한양대학교 산학협력단, 연구기간은 2014. 06. 01 ~ 2015. 05. 31 이다.The present invention was made by the task number NRF-2013R1A2A2A03010055 under the support of the Ministry of Science, ICT and Future Planning, the research management specialized organization of the project is the Korea Research Foundation, the research project name is "medium-level researcher support project," Tissue regeneration using sensitized microgels ”, the host institution is Hanyang University Industry-Academic Cooperation Group, and the research period is from 06.01.
본 특허출원은 2015년 4월 9일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10-2015-0050380호 및 2016년 4월 8일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2016-0043529호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application is filed with the Korean Patent Application No. 10-2015-0050380 filed with the Korean Patent Office on April 9, 2015 and the Korean Patent Application No. 10-2016-0043529 filed with the Korean Patent Office on April 8, 2016. Priority is claimed, the disclosures of which are incorporated herein by reference.
본 발명은 세포 간의 결합을 유도하는 고분자 세포 지지체에 관한 것이다.The present invention relates to a polymeric cell support that induces binding between cells.
일반적으로 조직공학 및 재생 의학에서 세포를 이용한 치료는 손상된 조직과 재생을 복원하는데 많이 사용되어지고 있다. 현재는 줄기세포를 이용한 다양한 치료법이 시행되고 있으나, 세포의 단순 주입의 경우 낮은 생착률 및 분화조절의 어려움을 가지고 있으며, 이러한 효과를 극대화하는데 많은 연구가 진행되어지고 있다. 또한 줄기세포를 치료제로 사용함에 있어서 세포의 생착률 및 분화조정능을 생체 내에서 극대화시키기 위해서 다양한 방법이 개발되어지고 있다. 효과적인 세포의 전달 및 조직재생을 위하여 지지체를 이용하는 것이 필수적이며, 최근 고분자를 이용한 세포결합 지지체가 개발되어 지고 있다. 대부분의 고분자 지지체가 세포결합력을 증가시키기 위하여 세포결합물질을 고정하거나, 세포의 분화를 유도하기 위하여 성장인자 및 성장인자 유래 펩타이드를 고정하여 사용하고 있으나, 아직까지 만족스러운 수준에 이르지 못하고 있다.In tissue engineering and regenerative medicine, cell therapy is commonly used to restore damaged tissue and regeneration. Currently, various treatments using stem cells have been carried out. However, simple injection of cells has low engraftment rate and difficulty in controlling differentiation, and many studies have been conducted to maximize such effects. In addition, in the use of stem cells as therapeutic agents, various methods have been developed to maximize the engraftment rate and differentiation capacity of cells in vivo. It is essential to use a support for effective cell delivery and tissue regeneration, and recently, cell-bound support using polymers has been developed. Most of the polymer scaffolds are used to fix the cell binding material in order to increase the cell binding capacity, or to fix the growth factor and growth factor-derived peptides to induce differentiation of cells, but have not reached a satisfactory level.
이러한 종래의 고분자 지지체는 세포와 세포외 기질(Extra cellular matrix)간의 결합력을 증진시키는데 초점을 맞추어 진행하고 있다. 하지만 생체내 어느 세포도 세포외 기질간의 결합만으로 존재하는 경우는 없으며, 다양한 여러 세포와 결합하는 환경 속에 존재하고 있다. 따라서 세포를 In vitroIn vivo에서 배양하는데 있어서 세포와 세포간의 결합을 제공할 수 있는 지지체의 개발이 필요하다. Such conventional polymer scaffolds are focused on enhancing the binding force between cells and extra cellular matrix. However, none of the cells in vivo exist only by the binding between the extracellular matrix, but exists in an environment that binds to various other cells. Therefore, there is a need for the development of a support that can provide cell-to-cell binding in culturing cells in vitro and in vivo .
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.
본 발명자들은 세포-세포 간의 결합을 제공하는 고분자 세포 지지체를 개발하고자 예의 연구 노력하였다. 그 결과 카드헤린(cadherin) 부착성 올리고펩타이드가 결합된 고분자 지지체를 이용하는 경우, 세포-지지체 간의 결합을 형성하는 것 뿐만 아니라, 세포-세포 간의 결합도 유도되어 세포 배양, 줄기세포 분화 등에 유용하게 이용할 수 있음을 규명함으로써, 본 발명을 완성하게 되었다. The inventors have made intensive research efforts to develop polymeric cell scaffolds that provide cell-cell binding. As a result, in the case of using a polymer support conjugated with a cadherin-attached oligopeptide, not only the cell-supporting bond is formed, but also the cell-cell binding is induced to be useful for cell culture and stem cell differentiation. By clarifying that the present invention has been completed, the present invention has been completed.
따라서, 본 발명의 목적은 세포 군집 형성을 위한 고분자 세포 지지체를 제공하는데 있다. Accordingly, it is an object of the present invention to provide a polymeric cell support for cell population formation.
본 발명의 다른 목적은 세포 군집형성 배양 방법을 제공하는데 있다.Another object of the present invention to provide a cell colonization culture method.
본 발명의 또 다른 목적은 줄기세포 분화 유도용 조성물을 제공하는데 있다.Still another object of the present invention is to provide a composition for inducing stem cell differentiation.
본 발명의 또 다른 목적은 연골세포로의 분화를 위한 줄기세포 배양 방법을 제공하는데 있다.Another object of the present invention to provide a stem cell culture method for differentiation into chondrocytes.
본 발명의 또 다른 목적은 체내 이식용 세포 조성물을 제공하는데 있다.Another object of the present invention to provide a cell composition for implantation in the body.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은 다음을 포함하는 세포 군집 형성을 위한 고분자 세포 지지체를 제공한다:According to one aspect of the invention, the invention provides a polymeric cell support for forming a cell population comprising:
(a) 생체 적합성 고분자 백본;(a) a biocompatible polymeric backbone;
(b) 상기 고분자 백본에 결합된 카드헤린(cadherin) 부착성 올리고펩타이드.(b) Cadherin adherent oligopeptide bound to the polymer backbone.
본 발명자들은 세포-세포 간의 결합을 제공하는 고분자 세포 지지체를 개발하고자 예의 연구 노력하였다. 그 결과 카드헤린(cadherin) 부착성 올리고펩타이드가 결합된 고분자 지지체를 이용하는 경우, 세포-지지체 간의 결합을 형성하는 것 뿐만 아니라, 세포-세포 간의 결합도 유도되어 세포 배양, 줄기세포 분화 등에 유용하게 이용할 수 있음을 규명하였다. The inventors have made intensive research efforts to develop polymeric cell scaffolds that provide cell-cell binding. As a result, in the case of using a polymer support conjugated with a cadherin-attached oligopeptide, not only the cell-supporting bond is formed, but also the cell-cell binding is induced to be useful for cell culture and stem cell differentiation. It was found possible.
종래의 세포 배양용 고분자 지지체들은 세포와 지지체 간의 결합을 제공하기는 하지만, 세포와 세포간의 결합을 유도하는 효과를 제공하지는 못하였다. 그러나 본 발명의 고분자 세포 지지체는 카드헤린 부착성 올리고펩타이드를 포함함으로써, 배양 세포 표면의 카드헤린(cadherin) 단백질과 결합을 형성하고, 세포-세포 간의 결합을 유도함으로써, 배양 세포의 군집 형성을 가능케 하는 특징이 있다. “카드헤린 단백질”은 타입-1 막통과 단백질의 일종으로서, 세포 간 접착(adhesion)을 형성하는데 중요한 역할을 수행하는 단백질이다. Conventional cell culture polymer supports provide binding between cells and supports, but do not provide the effect of inducing binding between cells. However, the polymer cell support of the present invention includes a cDHERIN-attached oligopeptide, thereby forming a bond with CADHERIN protein on the surface of the cultured cell, and inducing cell-cell binding, thereby enabling clustering of cultured cells. There is a characteristic. "Cardherin protein" is a type 1 transmembrane protein, a protein that plays an important role in forming interhesion.
본 명세서 상의 용어 “생체 적합성 고분자 백본”은 세포와 접촉시 친화성을 가지며 거부반응을 나타내지 않는 생체친화성 고분자로 이루어진 구조체를 의미하고, 종래 세포 배양을 위한 스캐폴드(scaffold)와 같은 구조체의 소재로 이용되는 것으로 알려진 다양한 소재를 제한없이 이용가능하다. 다만 카드헤린 부착성 펩타이드를 결합시키기 위한 기능기를 포함하거나, 그러한 기능기를 포함하도록 표면 개질되는 것이 필요하다. 고분자 백본은 다양한 방법에 의해 다양한 형태로 제조될 수 있으며, 특별히 제한되지 않는다. 본 발명의 고분자 백본은, 예를 들면 미립구 형태로 제조될 수 있고, 이를 위해 유중수형 에멀젼(Water-in-oil emulsion) 방법을 이용할 수 있다. 구체적인 방법은 본 명세서 상의 실시예를 참조할 수 있다. As used herein, the term “biocompatible polymer backbone” refers to a structure made of a biocompatible polymer that has affinity upon contact with a cell and does not exhibit a rejection reaction, and is a material of a structure such as a scaffold for conventional cell culture. Various materials known to be used may be used without limitation. However, it is necessary to include a functional group for binding a caherin adherent peptide, or to be surface modified to include such a functional group. The polymer backbone may be prepared in various forms by various methods, and is not particularly limited. The polymer backbone of the present invention may be prepared, for example, in the form of microspheres, and for this, a water-in-oil emulsion method may be used. See the embodiments on this specification for specific methods.
본 명세서 상의 용어 “카드헤린(cadherin) 부착성 올리고펩타이드”는 배양 세포의 카드헤린 단백질과 결합을 형성할 수 있는 올리고펩타이드 서열을 의미하고, 상기 올리고펩타이드 서열이 세포 상의 카드헤린 단백질과 결합을 형성하기만 하면, 본 발명의 효과가 유의하게 발휘되는 것으로 자명하게 이해된다. 카드헤린 단백질과 결합을 형성하는 올리고펩타이드의 동정은 당업계에 공지된 다양한 방법, 예를 들어 투-하이브리드 분석 또는 쓰리-하이브리드 분석 방법을 통해 실시될 수 있다(U.S. Pat. No. 5,283,317; Zervos et al., Cell 72, 223-232, 1993; Madura et al., J. Biol . Chem . 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; 및 W0 94/10300). 이 경우, 카드헤린 단백질을 베이트(bait) 단백질로 이용하여 카드헤린 단백질에 결합하는 올리고펩타이드를 스크리닝 할 수 있다. 투-하이브리드 시스템은 분할 가능한 DNA-결합 및 활성화 도메인으로 구성된 전사인자의 모듈 특성에 기초한다. 간단하게는, 이 분석 방법은 두 가지 DNA 컨스트럭트를 이용한다. 예컨대, 하나의 컨스트럭트에서, 카드헤린-인코딩 폴리뉴클레오타이드를 공지의 전사 인자(예컨대, GAL-4)의 DNA 결합 도메인-인코딩 폴리뉴클레오타이드에 융합시킨다. 다른 컨스트럭트에서, 분석 대상의 올리고펩타이드("프레이" 또는 "시험물질")를 코딩하는 DNA 서열을 상기 공지의 전사인자의 활성화 도메인을 인코딩하는 폴리뉴클레오타이드에 융합시킨다. 만일, 베이트 및 프레이가 인 비보에서 상호작용하여 복합체를 형성하면, 전사인자의 DNA-결합 및 활성화 도메인이 인접하게 되며, 이는 리포터 유전자(예컨대, 루시퍼라제)의 전사를 촉발하게 된다. 그 결과 리포터 유전자의 발현을 검출할 수 있으며, 이는 프레이가 카드헤린 단백질과 결합할 수 있음을 나타내는 것이며, 상기 프레이는 본 발명의 카드헤린 부착성 올리고펩타이드로 이용될 수 있음을 의미한다. As used herein, the term “cadherin adherent oligopeptide” refers to an oligopeptide sequence capable of forming a bond with a cadherin protein of a cultured cell, wherein the oligopeptide sequence forms a bond with a cadherin protein on a cell. It will be obviously understood that the effects of the present invention are significantly exerted only if so. Identification of oligopeptides that form bonds with Cadherin proteins can be carried out through a variety of methods known in the art, such as two-hybrid analysis or three-hybrid analysis (US Pat. No. 5,283,317; Zervos et. al., Cell 72, 223-232, 1993; Madura et al., J. Biol . Chem . 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; and WO 94/10300). In this case, an oligopeptide that binds to the cadrerin protein can be screened by using the cadrerin protein as a bait protein. Two-hybrid systems are based on the modular nature of the transcription factors composed of cleavable DNA-binding and activation domains. For simplicity, this assay uses two DNA constructs. For example, in one construct, a cadrine-encoding polynucleotide is fused to a DNA binding domain-encoding polynucleotide of a known transcription factor (eg, GAL-4). In another construct, a DNA sequence encoding an oligopeptide (“prey” or “test material”) of interest is fused to a polynucleotide encoding the activation domain of the known transcription factor. If bait and prey interact in in vivo to form a complex, the DNA-binding and activation domains of the transcription factors are contiguous, which triggers transcription of the reporter gene (eg, luciferase). As a result, the expression of the reporter gene can be detected, which indicates that the prey can bind with the cadrerin protein, which means that the prey can be used as the cadrerin adherent oligopeptide of the present invention.
본 발명의 일 구현예에 있어서, 본 발명의 고분자 백본과 카드헤린 부착성 올리고펩타이드의 결합은 상술한 생체 적합성 고분자 백본과 상술한 카드헤린 부착성 올리고펩타이드 사이에 형성된 아마이드 결합이다. 카드헤린 부착성 올리고펩타이드는 N-말단 또는 C-말단의 아미노기 또는 카복실기를 이용하여 고분자 백본과 결합될 수 있다. 이때 본발명의 고분자 백본은 카드헤린 부착성 올리고펩타이드와 아마이드 결합을 형성할 수 있는 기능기를 포함하는 것이 요구된다. In one embodiment of the present invention, the bond between the polymer backbone and the catherine attachable oligopeptide of the present invention is an amide bond formed between the biocompatible polymer backbone described above and the catherine attachable oligopeptide described above. Cadherin adherent oligopeptides can be associated with the polymeric backbone using N-terminal or C-terminal amino or carboxyl groups. At this time, the polymer backbone of the present invention is required to include a functional group capable of forming an amide bond with a cadmin attached oligopeptide.
본 발명의 일 구현예에 있어서, 본 발명의 생체 적합성 고분자 백본은 상기 아마이드 결합을 형성하기 위한, 카복실기, 히드록실기 또는 아미노기를 포함한다. 구체적으로 본 발명의 고분자 백본은 카드헤린 부착성 올리고펩타이드의 아미노기와 결합할 수 있는 카복실기 또는 히드록실기, 또는 카드헤린 부착성 올리고펩타이드의 카복실기와 결합할 수 있는 아미노기를 포함하는 것 뿐만아니라, 카복실기, 히드록실기, 또는 아미노기를 포함하도록 표면 개질된 것을 포함하는 것으로 이해된다. 카복실기와 아미노기 사이의 아마이드 결합 형성이 보다 일반적으로 알려져 있지만, 히드록실기와 아미노기 간의 아마이드 결합 형성도 유기금속촉매를 이용하는 방법 등이 종래 알려져 있고(김기철 등, 알코올과 아민으로부터 유기금속촉매를 이용한 아마이드 결합 형성 반응 개발, 화학세계, 2013. 3), 종래 알려진 다양한 방법을 통해 본 발명의 고분자 백본에 카드헤린 부착성 올리고펩타이드를 도입할 수 있다. 구체적으로 예를 들면, 본 발명의 일 실시예에서 이용된 EDC/NHS 반응을 이용할 수 있다. 한편 본 발명의 고분자 백본과 카드헤린 부착성 올리고펩타이드 사이의 결합은 펩타이드 링커를 통해 이루어질 수 있다. In one embodiment of the present invention, the biocompatible polymer backbone of the present invention comprises a carboxyl group, hydroxyl group or amino group for forming the amide bond. Specifically, the polymer backbone of the present invention not only includes a carboxyl group or a hydroxyl group capable of binding to the amino group of the caherin-adhering oligopeptide, or an amino group capable of bonding to the carboxyl group of the caherin-adhering oligopeptide, It is understood to include surface modified to include carboxyl, hydroxyl, or amino groups. Although amide bond formation between carboxyl group and amino group is more generally known, amide bond formation between hydroxyl group and amino group is also known by using an organometallic catalyst (Kim Ki-Chul et al., Such as amide using an organometallic catalyst from an alcohol and an amine). The development of bond formation reactions, the chemical world, 2013. 3), through the various known methods can be introduced caherin adhesion oligopeptide to the polymer backbone of the present invention. Specifically, for example, the EDC / NHS reaction used in one embodiment of the present invention can be used. On the other hand, the binding between the polymer backbone of the present invention and the cadherin oligopeptide may be made through a peptide linker.
본 발명의 일 구체예에서, 본 발명의 고분자 백본은 카복실기 또는 히드록실기를 포함하거나, 카복실기 또는 히드록실기를 포함하도록 표면개질된 것을 이용할 수 있다. 본 구체예에서 본 발명의 고분자 백본은 카드헤린 부착성 올리고펩타이드의 N-말단의 아미노기와 아마이드 결합을 형성하거나, 링커를 통해 카드헤린 부착성 올리고펩타이드의 C-말단의 카복실기와 결합을 형성하는 것도 가능하다. 본 발명에서의 카복실기 간의 결합을 형성할 수 있는 링커는 구체적으로 예를 들면, 다이아민, 다이비닐설폰, 1,4-뷰테인다이올, 다이글리시딜 에테르(BDDE) 및 글루타르알데히드, 카보다이이미드, 하이드록시석신이미드, 이미도에스터, 말레이미드, 할로아세틸, 다이설파이드, 하이드로아자이드, 또는 알콕시아민을 이용할 수 있으나 이에 한정되는 것은 아니다. In one embodiment of the present invention, the polymer backbone of the present invention may include a carboxyl group or hydroxyl group, or a surface modified to include a carboxyl group or hydroxyl group. In the present embodiment, the polymer backbone of the present invention may form an amide bond with the N-terminal amino group of the cadherin-attached oligopeptide, or form a bond with the C-terminal carboxyl group of the cadherin-attached oligopeptide via a linker. It is possible. Linkers capable of forming bonds between carboxyl groups in the present invention are specifically, for example, diamine, divinylsulfone, 1,4-butanediol, diglycidyl ether (BDDE) and glutaraldehyde, Carbodiimide, hydroxysuccinimide, imidoester, maleimide, haloacetyl, disulfide, hydroazide, or alkoxyamine may be used, but is not limited thereto.
본 발명의 일 구체예에 있어서, 본 발명의 고분자 백본은 알긴산 중합체, 키토산 중합체 및 히알루론산 중합체로 구성된 군에서 선택되는 어느 하나 이상이다. 본 발명의 “알긴산 중합체”는 화학식 1로 표시되는 고분자 중합체로서, 카복실기를 포함하여 본 발명의 카드헤린 부착성 올리고펩타이드와 결합을 형성하는데 적합한 고분자이다. In one embodiment of the present invention, the polymeric backbone of the present invention is any one or more selected from the group consisting of alginic acid polymers, chitosan polymers and hyaluronic acid polymers. The “alginic acid polymer” of the present invention is a polymer polymer represented by Formula 1, and is a polymer suitable for forming a bond with a cadmin adherent oligopeptide of the present invention including a carboxyl group.
[화학식 1][Formula 1]
Figure PCTKR2016003739-appb-I000001
Figure PCTKR2016003739-appb-I000001
또한 본 발명의 “키토산 중합체”는 화학식 2로 표시되는 고분자 중합체로서, 히드록실기 및 아미노기를 포함하고 본 발명의 카드헤린 부착성 올리고펩타이드와 결합을 형성하는데 적합한 고분자이다. In addition, the "chitosan polymer" of the present invention is a polymer polymer represented by the formula (2), and includes a hydroxyl group and an amino group, and is a polymer suitable for forming a bond with the cardherin adherent oligopeptide of the present invention.
[화학식 2][Formula 2]
Figure PCTKR2016003739-appb-I000002
Figure PCTKR2016003739-appb-I000002
또한 본 발명의 “히알루론산 중합체”는 화학식 3로 표시되는 고분자 중합체로서, 히드록실기와 카복실기를 포함하고 본 발명의 카드헤린 부착성 올리고펩타이드와 결합을 형성하는데 적합한 고분자이다.In addition, the "hyaluronic acid polymer" of the present invention is a polymer represented by the formula (3), and includes a hydroxyl group and a carboxyl group, and is a polymer suitable for forming a bond with the cardherin adhesion oligopeptide of the present invention.
[화학식 3][Formula 3]
이 밖에도 카복실기, 히드록실기 또는 아미노기를 포함하도록 표면 개질된 고분자 중합체를 적합하게 이용 가능하다. 표면 개질의 방법에 대하여는 종래 기술된 방법을 제한없이 이용가능하며, 구체적으로 예를 들면, 아크릴 산(acrylic acid, AAc)을 이용한 그라프트(graft)에 의해 고분자 중합체의 표면에 카복실기를 도입하는 것이 가능하다. In addition, a polymer polymer surface-modified to include a carboxyl group, hydroxyl group or amino group can be suitably used. As for the method of surface modification, a method described in the prior art can be used without limitation, and specifically, introducing a carboxyl group to the surface of the polymer polymer by graft using acrylic acid (AAc), for example, It is possible.
본 발명의 일 구체예에 있어서, 본 발명의 카드헤린 부착성 올리고펩타이드는 서열목록 제1서열로 이루어진 LRP5 펩타이드 또는 서열목록 제2서열로 이루어진 HAV 펩타이드이다. 본 발명의 “LRP5 펩타이드”는 LRP5(low-density lipoprotein receptor-related protein 5)의 아미노산 서열 중 카드헤린 단백질에 효과적으로 결합하는 일부 서열로서 서열목록 제1서열로 이루어진다. 본 발명의 “HAV 펩타이드”는 세포의 밀착연접(tight junction)에 직접적으로 참여하는 카드헤린 단백질의 특정 부위의 아미노산 서열로 이루어진 펩타이드로서 서열목록 제2서열로 이루어진다. 본 발명자들은 본 발명의 효과는 서열 특이성과 상관없이 카드헤린 부착능에 의해 발생하는 것으로 예상하였으며, 서로 연관성이 없는 두 서열의 카드헤린 부착 펩타이드를 이용하여 이를 입증하였다. In one embodiment of the present invention, the caherin adherent oligopeptide of the present invention is an LRP5 peptide consisting of SEQ ID NO: 1 or HAV peptide consisting of SEQ ID NO: 2. "LRP5 peptide" of the present invention is a sequence of the first part of the sequence list as a part of the amino acid sequence of the low-density lipoprotein receptor-related protein 5 (LRP5) that binds effectively to the cardherin protein. "HAV peptide" of the present invention is a peptide consisting of the amino acid sequence of a specific site of the cardinin protein directly participating in the tight junction (tight junction) of the cell consisting of the second sequence of the sequence listing. The inventors anticipated that the effect of the present invention would be caused by caherin adhesion, independent of sequence specificity, and demonstrated this using two sequences of caherin attachment peptides that were not related to each other.
본 발명의 일 구현예에 있어서, 본 발명의 LRP5 펩타이드 또는 HAV 펩타이드는 세포의 카드헤린 단백질과 결합을 형성한다. 카드헤린 단백질은 상술한 바와 같이 세포 간 접착(adhesion)에 직접적으로 참여하는 중요한 역할을 수행하는 단백질로서, 본 발명자들은 카드헤린 단백질을 타겟팅하여 결합을 형성하는 카드헤린 부착성 올리고펩타이드, 구체적으로 예를 들어 LRP5 펩타이드 및/또는 HAV 펩타이드를 이용하여, 세포 군집을 형성시킬 수 있는 고분자 세포 지지체를 제조하였다. In one embodiment of the present invention, the LRP5 peptide or HAV peptide of the present invention forms a bond with the cardherin protein of the cell. Cadherin protein is a protein that plays an important role of directly participating in the intercellular adhesion (adhesion), as described above, the present inventors target the cadherin protein oligopeptides, specifically examples For example, using the LRP5 peptide and / or HAV peptide, a polymer cell support capable of forming a cell population was prepared.
본 발명의 일 구현예에 있어서, 본 발명의 세포 지지체는 (c) 상술한 고분자 백본에 결합된 인테그린(integrin) 부착성 올리고펩타이드를 추가적으로 더 포함한다. 본 발명의 “인테그린(integrin)”은 세포-세포 및 세포-세포외 기질(extracellular matrix, ECM) 상호작용의 가교(bridge) 역할을 하는 막관통 수용체(transmembrane receptor)이다. 본 명세서 상의 용어 “인테그린 부착성 올리고펩타이드”는 상술한 인테그린과 결합을 형성하는 대략 2-20 개의 아미노산으로 이루어진 펩타이드 가닥을 의미한다. 본 발명의 생체 적합성 고분자 백본에 상술한 카드헤린(cadherin) 부착성 올리고펩타이드 외에 추가적으로 인테그린 부착성 올리고펩타이드를 함께 포함하는 세포 지지체를 이용하여 세포를 배양하는 경우, 보다 더 밀집된 구형 형태로 세포 군집이 형성되는 것을 확인하였다.In one embodiment of the present invention, the cell support of the present invention further comprises (c) an integrin adherent oligopeptide bound to the above-described polymer backbone. The "integrin" of the present invention is a transmembrane receptor that acts as a bridge of cell-cell and extracellular matrix (ECM) interactions. As used herein, the term "integrin adherent oligopeptide" refers to a peptide strand consisting of approximately 2-20 amino acids that form a bond with the aforementioned integrins. In the case of culturing cells using a cell support including integrin-attached oligopeptides in addition to the cadherin-attached oligopeptides described above in the biocompatible polymer backbone of the present invention, the cell population is more compact in spherical form. It was confirmed that it was formed.
본 발명의 일 구체예에 있어서, 본 발명의 인테그린 부착성 올리고펩타이드는 RGD, PSHRN, FHRRIKA, YIGSR, KGD, RHD, NGR, SDGR, KQAGDV, LDV, DGEA, YGYYGDALR, FYFDLR, DALR, DLR, RLD, KRLDGS, IDA, IDAPS 및 REDV로 이루어진 군으로부터 선택된다. 상술한 PSHRN(Benoit and Anseth, 2005), FHRRIKA(Rezania and Healy, 1999), YIGSR(Massia and Hubbell, 1990), KGD(Plow et al, 1985; Scarborough et al 1993), RHD(Ghiso et al 1992, Saporito-Irwin & van Nostrand 1995), NGR, SDGR(Yamada & Kennedy 1987), KQAGDV(Kloczewiak et al, 1984; Lam et al 1987), LDV(Guan & Hynes 1990, Mould et al 1990), DGEA(Staatz et al 1991), YGYYGDALR, FYFDLR(Underwood et al 1995), DALR, DLR, RLD(Altieri et al, 1993; Koivunen et al, 1995), KRLDGS(Alfieri et al 1993), LDV, IDA, IDAPS 및 REDV(Mould et al, 1990; Mould & Humphries, 1991)는 RGD 펩타이드와 같이 인테그린에 결합하는 올리고펩타이드이다. In one embodiment of the invention, the integrin adherent oligopeptides of the invention are RGD, PSHRN, FHRRIKA, YIGSR, KGD, RHD, NGR, SDGR, KQAGDV, LDV, DGEA, YGYYGDALR, FYFDLR, DALR, DLR, RLD, KRLDGS, IDA, IDAPS and REDV. PSHRN (Benoit and Anseth, 2005), FHRRIKA (Rezania and Healy, 1999), YIGSR (Massia and Hubbell, 1990), KGD (Plow et al, 1985; Scarborough et al 1993), RHD (Ghiso et al 1992, Saporito-Irwin & van Nostrand 1995), NGR, SDGR (Yamada & Kennedy 1987), KQAGDV (Kloczewiak et al, 1984; Lam et al 1987), LDV (Guan & Hynes 1990, Mold et al 1990), DGEA (Staatz et al 1991), YGYYGDALR, FYFDLR (Underwood et al 1995), DALR, DLR, RLD (Altieri et al, 1993; Koivunen et al, 1995), KRLDGS (Alfieri et al 1993), LDV, IDA, IDAPS and REDV (Mould) et al, 1990; Mold & Humphries, 1991) are oligopeptides that bind to integrins, such as RGD peptides.
본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 세포 지지체와 세포를 접촉시켜 배양하는 단계를 포함하는 세포 군집형성 배양 방법을 제공한다. According to another aspect of the present invention, the present invention provides a cell colonization culture method comprising the step of culturing the cells in contact with the cell support described above.
종래 세포 배양을 위하여는 세포 부착을 위한 피더 세포 층(feeder cell layer)을 이용하는 것이 일반적이다. 그러나, 본 발명의 고분자 세포 지지체를 이용하는 경우, 피더 세포 층과 같은 역할을 하여, 단지 세포-지지체 간의 결합을 형성하는데 그치는 것이 아니라, 세포-세포 간의 결합을 유도하여 세포 군집이 형성된 상태에서 세포를 배양할 수 있게 된다. 본 발명의 방법에 의해 배양할 수 있는 세포에는 특별한 제한이 없다. For conventional cell culture, it is common to use a feeder cell layer for cell attachment. However, in the case of using the polymer cell support of the present invention, it acts like a feeder cell layer, and not only forms a cell-supporter bond, but also induces a cell-cell bond to form cells in a cell population. It can be cultured. There is no particular limitation on the cells that can be cultured by the method of the present invention.
본 발명의 세포 배양은 종래 이용되는 세포 배양 배지 내에서 이루어질 수 있다. 세포 배양 배지는 배양 세포의 종류 및 배양 목적에 따라 적절하게 선정하여 사용할 수 있다. 본 발명의 배지를 이루는 기본배지는 당업계의 통상적인 배지, 예컨대 DMEM[Dulbecco's modification of Eagle's medium, Dulbecco, R. et al., virology 8: 396(1959)], Eagle’s MEM[Eagle’s minimum essensial medium, Eagle, H. Science 130:142(1959)], α-MEM[Stanner, C.P. et al., NAT. New Biol . 230: 52(1971)], Iscove's MEM[Iscove, N. et al., J. Exp . Med . 147:923(1978)], 199 medium[Morgan et al., Proc . Soc . Exp . BioMed ., 73: 1(1950)], CMRL 1066, RPMI 1640[Moore et al., J. Amer . Med . Assoc . 199: 519(1967)], F12[Ham, Pro. Natl. Acad . Sci . USA 53: 288(1965)], F10[Ham, R.G. Exp . Cell Res. 29: 515(1963)], DMEM 및 F12의 혼합물[Barnes, D. et al., Anal. Biochem . 102: 225(1980)], Way-mouth's MB752/1[Waymouth, C. J. Natl . Cancer Inst . 22:1003(1959)], 이스코브 변형 둘베코 배지(Iscove’s modified Dulbecco’s medium), 이스코브 변형 피셔 배지 또는 이스코브 변형 이글 배지, McCoy's 5A [McCoy, T. A., et al, Pro. soc. Exp . Bio. Med . 100: 115(1959)], MCDB의 시리즈[Ham, R.G et al., In Vitro 14: 11(1978)], AIM-V 배지 및 이의 변형배지를 포함한다. 배지의 상세한 설명은 R. Ian Freshney, Culture of Animal Cells, A Manual of Basic Technique, Alan R. Liss, Inc., New York에서 알 수 있으며, 상기 내용은 본 명세서에 참조로 포함된다. 또한, 본 발명의 배지는 항생제를 추가적으로 포함할 수 있으며, 예를 들어 페니실린, 스트렙토마이신, 젠타마이신, 네오마이신, 폴리믹신 또는 암포테리신 B를 포함할 수 있지만, 이에 한정되는 것은 아니다.Cell culture of the present invention can be made in conventionally used cell culture medium. The cell culture medium may be appropriately selected and used depending on the type of cultured cell and the purpose of the culture. The basal medium constituting the medium of the present invention is a conventional medium in the art, such as DMEM (Dulbecco's modification of Eagle's medium, Dulbecco, R. et al., Virology 8: 396 (1959)), Eagle's MEM [Eagle's minimum essensial medium, Eagle, H. Science 130: 142 (1959)], α-MEM [Stanner, CP et al., NAT. New Biol . 230: 52 (1971)], Iscove's MEM [Iscove, N. et al., J. Exp . Med . 147: 923 (1978), 199 medium [Morgan et al., P roc . Soc. Exp . BioMed . 73: 1 (1950), CMRL 1066, RPMI 1640 [Moore et al., J. Amer . Med . Assoc . 199: 519 (1967)], F 12 [Ham, Pro. Natl. Acad . Sci . USA 53: 288 (1965)], F 10 [Ham, RG Exp . Cell Res. 29: 515 (1963)], a mixture of DMEM and F12 [Barnes, D. et al., Anal. Biochem . 102: 225 (1980), Way-mouth's MB752 / 1 [Waymouth, CJ Natl . Cancer Inst . 22: 1003 (1959)], Dulbecco's modified device Cove medium (Iscove's modified Dulbecco's medium), device Cove modified Fischer medium or device Cove modified Eagle's medium, McCoy's 5A [McCoy, TA, et al, Pro. soc. Exp . Bio. Med . 100: 115 (1959)], MCDB's series (Ham, RG et al., In Vitro 14: 11 (1978)), AIM-V medium and its modified medium. A detailed description of the medium can be found in R. Ian Freshney, Culture of Animal Cells, A Manual of Basic Technique, Alan R. Liss, Inc., New York, the contents of which are incorporated herein by reference. In addition, the medium of the present invention may additionally include antibiotics, and may include, but are not limited to, for example, penicillin, streptomycin, gentamycin, neomycin, polymyxin or amphotericin B.
본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 세포 지지체를 포함하는 줄기세포 분화 유도용 조성물을 제공한다. 본 발명의 “줄기세포”는 특별한 제한이 없으며, 줄기세포의 특성, 즉 미분화, 무한정 증식 및 특정세포로의 분화능을 갖는 세포는 모두 본 발명에 적용될 수 있는 세포이다. 본 발명이 적용되는 줄기세포는 크게 배아줄기세포(ES) 및 배아생식세포(EG)를 포함하는 전능성 줄기세포(pluripotent stem cell)와 다능성 줄기세포 (multipotent stem cell)로 구분된다. 배아줄기세포는 배반포의 내부세포괴(ICM)로부터 유래되고, 배아생식세포는 5-10 주령의 생식융기(gonadal ridge)의 원시생식세포로부터 유래된다. 한편, 다능성 줄기세포는 배아 조직, 태아조직 및 성체 조직에서 발견되며, 이는 성체줄기세포를 포함한다. 전능성 줄기세포는 인 비트로에서 무한정 증식되며, 3종류의 모든 배아층(외배엽, 중배엽과 내배엽)으로부터 유래되는 다양한 세포로 분화될 수 있는 능력을 갖는다. 한편, 다능성 줄기세포는 그가 유래된 특정 조직으로 분화될 수 있는 능력을 가지며, 자가재생산 능력은 전형적으로 유기체의 라이프타임으로 제한된다. 다능성 줄기세포의 소스는 모든 조직 종류이고, 특히 골수, 혈액, 간, 피부, 장, 췌장, 뇌, 골격근 및 치수로부터 주로 분리된다.According to another aspect of the invention, the present invention provides a composition for inducing stem cell differentiation comprising the above-described cell support. The "stem cells" of the present invention are not particularly limited, and all of the cells having the characteristics of stem cells, that is, undifferentiated, indefinite proliferation and differentiation into specific cells are cells that can be applied to the present invention. Stem cells to which the present invention is applied are largely divided into pluripotent stem cells and multipotent stem cells, including embryonic stem cells (ES) and embryonic germ cells (EG). Embryonic stem cells are derived from the internal cell mass (ICM) of the blastocyst, and embryonic germ cells are derived from primordial germ cells of the 5-10 week old gonadal ridge. Pluripotent stem cells, on the other hand, are found in embryonic, fetal and adult tissues, including adult stem cells. Pluripotent stem cells proliferate indefinitely in vitro and have the ability to differentiate into a variety of cells derived from all three embryonic layers (ectoderm, mesoderm and endoderm). Pluripotent stem cells, on the other hand, have the ability to differentiate into the specific tissue from which they originate, and the ability to autoreproduce is typically limited to the life of the organism. Sources of pluripotent stem cells are all tissue types and are primarily isolated from bone marrow, blood, liver, skin, intestine, pancreas, brain, skeletal muscle and pulp.
본 발명은 상술한 세포 지지체를 이용하여 배양 세포의 농도와 상관없이 군집 형성을 유도하고, 이 때 형성된 세포-세포 간 결합에 의해 세포 분화를 촉진하는 데 특징이 있는 것으로서, 다른 배양 조건들은 크게 제한되지 않고, 배양 세포, 배양 목적에 따라 적절히 선택 및 조절 가능하다. 본 발명의 조성물은 종래 알려진 줄기세포 분화 조건 배지를 포함할 수 있고, 분화 조건 배지는 분화의 결과로 얻고자 하는 세포의 종류에 따라 종래 공지된 배지를 적절히 선택하여 이용 가능하다. The present invention is characterized by inducing colonization regardless of the concentration of cultured cells using the above-described cell support, and promoting cell differentiation by cell-cell binding formed at this time, and other culture conditions are greatly limited. Instead, the cells can be appropriately selected and adjusted according to the cultured cells and the culture purpose. The composition of the present invention may include a conventionally known stem cell differentiation condition medium, the differentiation condition medium can be used by appropriately selecting a conventionally known medium according to the type of cells to be obtained as a result of differentiation.
본 발명의 다른 일 양태에 따르면, 본 발명은 상술한 줄기세포 분화 유도용 조성물과 줄기세포를 접촉시켜 연골세포 분화 조건 배지에서 배양하는 단계를 포함하는, 연골세포로의 분화를 위한 줄기세포 배양 방법을 제공한다. According to another aspect of the present invention, the present invention comprises the step of contacting the stem cell differentiation induction composition and the stem cells described above and culturing in chondrocyte differentiation conditions medium, stem cell culture method for differentiation into chondrocytes To provide.
본 발명의 용어 “연골세포 분화 조건 배지”란 줄기세포의 연골세포로의 분화를 유도하는 조건의 배지를 의미하고, 대표적인 예로서, 성장인자가 보충된 인슐린, 트랜스페린, 셀레니우스 액시드, 우혈청 알부민, 리놀레산, 파이루베이트, 아스코베이트 및/또는 덱사메타손을 포함하는 혈청-결여 배지(Johnstone et al., 1998)를 들 수 있고, 본 발명의 일 실시예에서 사용한 DMEM/F12, 덱사메타손, L-아스코르브산, 인슐린 및/또는 TGF-β1을 포함하는 배지를 이용할 수 있으나 이에 한정되는 것은 아니다.The term "chondrocyte differentiation condition medium" of the present invention refers to a medium under conditions that induce differentiation of stem cells into chondrocytes, and as a representative example, insulin, transferrin, selenium acid, woo supplemented with growth factors Serum-deficient media (Johnstone et al., 1998) comprising serum albumin, linoleic acid, pyruvate, ascorbate and / or dexamethasone, and DMEM / F12, dexamethasone, L used in one embodiment of the present invention. A medium containing ascorbic acid, insulin and / or TGF-β1 may be used, but is not limited thereto.
본 발명의 연골세포로의 분화를 위한 줄기세포 배양 방법에 있어서, 특히 카드헤린 부착성 올리고펩타이드 뿐만아니라, 인테그린 부착성 올리고펩타이드를 추가적으로 더 포함하는 세포 지지체를 이용하는 경우, 카드헤린 부착성 또은 인테그린 부착성 올리고텝타이드를 단독으로 포함하는 세포 지지체를 이용하는 경우에 비하여, 연골세포 분화인자의 유전자 발현이 유의하게 상승하였다. 따라서 바람직하게는 카드헤린 부착성 올리고펩타이드 및 인테그린 부착성 올리고펩타이드 모두를 포함하는 세포 지지체를 이용하여 줄기세포를 배양하고, 더욱 효과적으로 연골세포로 분화 시킬 수 있다. In the stem cell culture method for differentiation into chondrocytes of the present invention, in particular, in the case of using a cell support further comprising an integrin-attached oligopeptide, as well as a cadrerin-attached oligopeptide, a cadherin- or integrin-attached Gene expression of chondrocyte differentiation factor was significantly increased as compared with the case of using a cell support including sex oligoptide alone. Therefore, preferably, stem cells may be cultured using a cell support including both a caherin-adhering oligopeptide and an integrin-adhering oligopeptide, and more effectively differentiated into chondrocytes.
본 발명의 다른 일 양태에 따르면, 본발명은 (a) 상술한 세포 지지체, (b) 상기 세포 지지체에 결합된 체내 이식을 위한 세포를 포함하는 체내 세포 이식용 조성물을 제공한다. According to another aspect of the present invention, the present invention provides a composition for transplantation in vivo cells comprising (a) the cell support described above, (b) cells for transplantation in vivo bound to the cell support.
본 발명의 이식을 위한 세포는 구체적으로 예를 들면 연골세포(chondrocytes), 근아세포(myoblasts), 간세포(hepatocytes), 골아세포(osteoblasts), 배아줄기세포(embryonic stem cells), 배아생식세포(embryonic germ cells), 성체줄기세포(adult stem cells), 중간엽줄기세포, 신경줄기세포, 혈관내피줄기세포, 조혈모세포, 간줄기세포, 심장줄기세포, 췌장줄기세포, 내피전구세포(endothelial progenitors), 성장내피세포(outgrowth endothelial cells), 간엽줄기세포(mesenchymal stem cells), 조혈줄기세포(hematopoietic stem cells), 인간신경줄기세포(neural stem cells), 위성세포(satellite cells), 장 상피세포, 평활근세포 및 섬유아세포가 있고, 이에 제한되는 것은 아니다. 본 발명의 체내 이식용 세포 조성물은 예를 들어 주사 또는 외과적 수술방법을 이용하여 원하는 위치에 주입할 수 있다. Cells for transplantation of the present invention are specifically, for example, chondrocytes, myoblasts, hepatocytes, osteoblasts, embryonic stem cells, embryonic germ cells (embryonic) germ cells, adult stem cells, mesenchymal stem cells, neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, liver stem cells, heart stem cells, pancreatic stem cells, endothelial progenitors, growth Outgrowth endothelial cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells, satellite cells, intestinal epithelial cells, smooth muscle cells and fibers There are blasts, but not limited thereto. The cell composition for implantation of the body of the present invention can be injected at a desired location using, for example, injection or surgical methods.
본 발명의 일 구현예에 있어서, 본 발명의 체내 이식을 위한 세포는 줄기세포이다. 줄기세포에 대하여는 본 명세서 상에서 상술한 바와 같으며, 줄기세포를 체내 도입하여 질병을 치료하는 줄기세포치료를 위해 종래 알려진 사용 양태로 이용될 수 있다. In one embodiment of the invention, the cells for transplantation in the body of the invention are stem cells. The stem cells are as described above in the present specification, and may be used in a conventionally known use mode for stem cell therapy for treating diseases by introducing stem cells into the body.
본 발명의 일 구현예에 있어서, 본 발명의 체내 이식을 위한 세포는 줄기세포로부터 분화된 연골세포이다.In one embodiment of the present invention, the cells for transplantation in the body of the present invention are chondrocytes differentiated from stem cells.
본 발명의 조성물은 추가적으로 약제학적으로 허용되는 담체를 포함할 수 있고, 본 발명의 치료제 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 치료제 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다.The composition of the present invention may additionally include a pharmaceutically acceptable carrier, the pharmaceutically acceptable carrier included in the therapeutic composition of the present invention is commonly used in the formulation, lactose, dextrose, sucrose, Sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzo 8, talc, magnesium stearate, mineral oil, and the like. Therapeutic compositions of the present invention may further comprise lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components. Pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 조성물은 비경구로 투여할 수 있고, 국소 주입(local injection)이 가장 바람직한 투여방법이다.The compositions of the present invention can be administered parenterally, and local injection is the most preferred method of administration.
본 발명의 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 조성물의 투여량은 바람직하게는 1회 1 x 105- 5 x 108 세포/ml이고 그 양은 필요에 의해 조정될 수 있다.Suitable dosages of the compositions of the present invention may be prescribed in various ways depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of the patient, food, time of administration, route of administration, rate of excretion and response to reaction. have. On the other hand, the dosage of the composition is preferably 1 times 1 x 10 5 - 5 x 10 8 cells / ml and can be adjusted by the amount required.
본 발명의 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태일 수 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. The compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient, according to methods which can be easily carried out by those skilled in the art. It can be prepared by incorporation into a multi-dose container. The formulations may then be in the form of solutions, suspensions or emulsions in oil or aqueous media, and may further comprise dispersants or stabilizers.
본 발명의 조성물은 이식되는 세포의 기능을 충분히 발휘할 수 있도록 세포간 네트워킹을 탁월하게 형성케 하여 실제적으로 질환 동물에서 개선된 치료 효능을 나타낸다. The compositions of the present invention allow for excellent formation of intercellular networking to fully exert the function of the cells to be transplanted, thereby actually exhibiting improved therapeutic efficacy in diseased animals.
본 발명의 체내 이식용 세포 조성물은 연골-손상 질환의 치료를 위해 이용될 수 있고, 구체적으로 예를 들면, 퇴행성 관절염(Osteoarthritis), 류마티스 관절염(Rheumatoid arthritis), 반월상 연골 손상(Meniscus Injury), 늑연골염(Costochondritis), 다연골염(Relapsing polychondritis), 및 연골육종(Chondrosarcoma)의 치료에 이용될 수 있다. Intracellular graft cell compositions of the present invention can be used for the treatment of cartilage-injury diseases, specifically, for example, osteoarthritis, rheumatoid arthritis, meniscus cartilage injury (Meniscus Injury), It can be used for the treatment of Costoschondritis, Relapsing polychondritis, and Chondrosacoma.
본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 세포 군집 형성을 위한 고분자 세포 지지체를 제공한다. (a) The present invention provides a polymer cell support for forming cell populations.
(b) 본 발명은 세포 군집형성 배양 방법을 제공한다.(b) The present invention provides a cell colonization culture method.
(c) 본 발명은 줄기세포 분화 유도용 조성물을 제공한다.(c) The present invention provides a composition for inducing stem cell differentiation.
(d) 본 발명은 연골세포로의 분화를 위한 줄기세포 배양 방법을 제공한다.(d) The present invention provides a stem cell culture method for differentiation into chondrocytes.
(e) 본 발명은 체내 이식용 세포 조성물을 제공한다.(e) The present invention provides a cell composition for implantation in the body.
(f) 본 발명의 고분자 세포 지지체를 이용하면 세포 배양시 적은 농도의 세포를 이용하는 경우에도 세포-세포 접합을 유도하여 세포 군집을 형성시킬 수 있다. (f) The polymer cell support of the present invention can induce cell-cell conjugation to form cell populations even when small concentrations of cells are used in cell culture.
(g) 본 발명의 줄기세포 분화 유도용 조성물, 줄기세포 배양 방법을 이용하면, 효과적으로 줄기세포를 원하는 세포로 분화 시키는 것이 가능하다. (g) Using the composition for inducing stem cell differentiation of the present invention and the stem cell culture method, it is possible to effectively differentiate the stem cells into desired cells.
도 1은 본 발명의 세포부착성 펩타이드가 고정화된 지지체를 이용하여 세포의 부착과정을 도식적으로 나타낸다.Figure 1 schematically shows the attachment process of the cells using the support to which the cell adhesion peptide of the present invention is immobilized.
도 2는 본 발명의 세포부착성 펩타이드가 고분자 지지체의 고분자 구조에 결합하는 과정 및 예측되는 구조를 나타낸다.Figure 2 shows the process and predicted structure of the cell-adhesive peptide of the present invention binds to the polymer structure of the polymer support.
도 3은 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체의 IR분석 결과로 고분자 지지체에 세포부착성 펩타이드가 결합되어 있는 것을 확인한 결과를 나타낸다.Figure 3 shows the results of confirming that the cell-adhesive peptide is bound to the polymer support as a result of the IR analysis of the polymer support to which the cell-adhesive peptide is bound.
도 4는 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체의 물성을 측정한 결과를 나타낸다.Figure 4 shows the results of measuring the physical properties of the polymer support bound to the cell-adhesive peptide of the present invention.
도 5는 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체에 다양한 세포를 부착시켜 각각의 세포의 표현형을 관찰한 결과를 나타낸다.Figure 5 shows the results of observing the phenotype of each cell by attaching a variety of cells to the polymer support to which the cell adhesion peptide of the present invention is bound.
도 6은 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체에 부착한 세포의 세포간의 결합력을 관찰한 결과를 나타낸다.Figure 6 shows the results of observing the binding force between cells of the cells attached to the polymer support to which the cell-adhesive peptide of the present invention is bound.
도 7은 본 발명의 세포부착성 펩타이드가 줄기세포의 표현형에 미치는 영향을 확인하고, 세포와 세포간의 특이적 결합력에 의해 부착되어지는 것을 확인한 결과를 나타낸다.Figure 7 shows the effect of the cell-adhesive peptides of the present invention on the phenotype of stem cells, and shows the results confirmed that they are attached by a specific binding force between cells.
도 8은 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체에 낮은 농도의 세포수를 이용하여 줄기세포를 연골세포로 분화시켰을 때의 줄기세포의 표현형 및 세포간의 결합력을 관찰한 결과를 나타낸다. Figure 8 shows the results of observing the phenotype of the stem cells and the binding force between the cells when differentiating stem cells into chondrocytes using a low concentration of the cell number of the cell adhesion peptide conjugated polymer support of the present invention.
도 9는 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체를 이용하여 낮은 농도의 줄기세포를 연골세포로 분화시켰을 때의 분화력을 분석한 결과를 나타낸다.Figure 9 shows the results of analyzing the differentiation capacity when differentiating stem cells to chondrocytes using low concentration of the cell-adhesive peptide conjugated polymer support of the present invention.
도 10은 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체를 이용하여 높은 농도의 줄기세포를 연골세포로 분화시켰을 때의 줄기세포의 표현형 및 세포간으이 결합력을 관찰한 결과를 나타낸다. Figure 10 shows the results of observing the phenotype and the intercellular binding force of the stem cells when the high concentration of stem cells to the chondrocytes using the polymer support conjugated to the cell-adhesive peptide of the present invention.
도 11은 본 발명의 세포부착성 펩타이드가 결합된 고분자 지지체를 이용하여 높은 농도의 줄기세포를 연골세포로 분화시켰을 때의 분화력을 분석한 결과를 나타낸다. Figure 11 shows the results of analyzing the differentiation power when differentiation of high concentration of stem cells into chondrocytes using the polymer support to which the cell-adhesive peptide of the present invention is bound.
도 12는 본 발명의 고분자 미립구의 형성 방법 및 고분자 미립구에 세포부착성 펩타이드를 결합하는 과정을 나타낸다.12 shows a method for forming a polymer microsphere and a process of binding a cell-adhesive peptide to the polymer microsphere.
도 13은 본 발명의 고분자 미립구와 줄기세포를 이용하여 응집체를 형성하는 과정을 나타낸다. Figure 13 shows the process of forming aggregates using the polymer microspheres and stem cells of the present invention.
도 14는 본 발명의 고분자 미립구와 줄기세포로 형성한 응집체의 물성을 측정한 결과를 나타낸다.Figure 14 shows the results of measuring the physical properties of the aggregates formed of the polymer microspheres and stem cells of the present invention.
도 15는 본 발명의 고분자 미립구와 줄기세포로 형성한 응집체 안에서 줄기세포의 표현형을 관찰한 결과를 나타낸다.Figure 15 shows the results of observing the phenotype of the stem cells in the aggregate formed of the polymer microspheres and stem cells of the present invention.
도 16은 본 발명의 고분자 미립구와 줄기세포로 형성한 응집체 안에서 줄기세포의 생존율을 관찰한 결과를 나타낸다.Figure 16 shows the results of observing the survival rate of stem cells in the aggregate formed of the polymer microspheres and stem cells of the present invention.
도 17은 본 발명의 고분자 미립구와 줄기세포로 형성한 응집체 안에서 줄기세포를 연골세포로의 분화능을 분석하기 위하여 조직학적 평가(알시안 블루, 시리어스 레드)를 한 결과를 나타낸다.Figure 17 shows the results of histological evaluation (Alcian blue, serious red) to analyze the differentiation ability of stem cells into cartilage cells in aggregates formed of the polymer microspheres and stem cells of the present invention.
도 18은 본 발명의 고분자 미립구와 줄기세포로 형성한 응집체 안에서 줄기세포를 연골세포로 분화시켰을 때의 분화력을 분석한 결과를 나타낸다. Figure 18 shows the results of analyzing the differentiation power when differentiating stem cells into chondrocytes in the aggregate formed of the polymer microspheres and stem cells of the present invention.
도 19는 본 발명의 카드헤린 펩타이드의 농도에 따른 줄기세포의 생장능을 분석한 결과를 나타낸다.Figure 19 shows the results of analyzing the growth ability of the stem cells according to the concentration of the card herin peptide of the present invention.
도 20는 본 발명의 카드헤린 펩타이드의 농도에 따른 줄기세포의 표현형 및 부착능을 분석한 결과를 나타낸다.Figure 20 shows the results of analyzing the phenotype and adhesion of stem cells according to the concentration of the cardinin peptide of the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
실시예 1: 카드헤린 부착성 올리고펩타이드가 결합된 고분자 지지체의 제조 및 세포 부착능 평가Example 1 Preparation of Cellular Adhesion Oligopeptide-Assembled Polymer Support and Evaluation of Cell Adhesion
1.1 고분자 지지체의 제조1.1 Preparation of Polymer Support
1.1.1 펩타이드의 선정1.1.1 Selection of Peptides
생체내 존재하는 세포와 세포간의 결합력을 제공할 수 있는 고분자 지지체를 개발하기 위하여 고분자 지지체에 세포의 카드헤린(cadherin) 단백질과 특이적으로 결합하는 LRP5 펩타이드(DSCPPSPATERSYFHLFPPPPSPCTDSS)를 도입한 지지체를 개발하고자 하였다(참조: 도 1).In order to develop a polymer scaffold that can provide the cell-to-cell binding force in vivo, we tried to develop a scaffold incorporating LRP5 peptide (DSCPPSPATERSYFHLFPPPPSPCTDSS) that specifically binds to the cell's cadherin protein. (See FIG. 1).
1.1.2 펩타이드의 결합1.1.2 Binding of Peptides
천연 고분자인 알긴산을 이용하여 합성을 진행하였으며, 알긴산의 카르복실기와 세포부착성 펩타이드의 아민기를 결합시키기 위하여 EDC/NHS 반응을 사용하였다. 알긴산을 pH 6.5의 MES 완충액에 용해시키고, EDC와 NHS를 이용하여 펩타이드를 결합시킨 후, 펩타이드가 결합된 알긴산 수용액을 증류수와 NaCl을 이용하여 3일간 투석시켰다. 투석을 완료한 알긴산 수용액에 활성탄을 넣어 30분간 불순물을 제거한뒤 0.22 μl 필터로 여과시키고 동결건조시켰다(참조: 도 2).Synthesis was performed using alginic acid, a natural polymer, and the EDC / NHS reaction was used to bind the carboxyl group of alginic acid to the amine group of the cell-adhesive peptide. Alginic acid was dissolved in MES buffer at pH 6.5, and peptides were bound using EDC and NHS, and then the peptide-bound alginic acid solution was dialyzed with distilled water and NaCl for 3 days. Activated carbon was added to the aqueous solution of alginic acid to complete dialysis to remove impurities for 30 minutes, filtered through a 0.22 μl filter, and lyophilized (see FIG. 2).
1.1.3 고분자 표면 분석(아미노산 분석)1.1.3 Polymer Surface Analysis (Amino Acid Analysis)
상기 실시예에 따라 LRP5 펩타이드를 부착한 고분자 지지체에 대하여, 아미노산 분석을 실시하여 효율적으로 아미노산이 결합되었는지 확인하였다(참조: 표 1).According to the above embodiment, the amino acid analysis was performed on the polymer support to which the LRP5 peptide was attached to determine whether amino acids were efficiently bound (see Table 1).
[표 1]TABLE 1
Figure PCTKR2016003739-appb-I000004
Figure PCTKR2016003739-appb-I000004
펩타이드를 부착하지 않은 고분자 지지체에서는 어떤 아미노산도 관찰되지 않았으며, 세포부착성 LRP5 펩타이드가 결합된 고분자 지지체에서는 펩타이드에 포함된 아미노산이 관찰되는 것을 확인할 수 있다.No amino acid was observed in the polymer support without the peptide attached, and the amino acid included in the peptide was observed in the polymer support to which the cell-adhesive LRP5 peptide was bound.
1.1.4 고분자 표면 분석(IR분석)1.1.4 Polymer Surface Analysis (IR Analysis)
상기 실시예에 따라 LRP5 펩타이드를 부착한 고분자 지지체의 IR분석을 통하여, 펩타이드가 결합되지 않은 고분자 지지체와 펩타이드가 결합된 고분자 지지체를 확인한 결과, 펩타이드가 결합된 고분자 지지체에서 아마이드 결합(1450 cm-1)이 관찰되는 것을 확인할 수 있다(참조: 도 3).As a result of confirming the polymer support to which the peptide is not bound and the peptide to which the peptide is bound through IR analysis of the polymer support to which the LRP5 peptide is attached, the amide bond (1450 cm -1) on the peptide is bonded to the polymer support. ) Can be observed (see FIG. 3).
1.1.5 고분자 지지체의 물성1.1.5 Properties of Polymer Support
상기 실시예에 따라 LRP5 펩타이드가 부착된 고분자 지지체의 복소 탄성률을 측정한 결과 펩타이드가 결합되지 않은 고분자 지지체가 펩타이드가 부착된 고분자 지지체에 비해 약간 높은 복소 탄성률을 가지고 있는 것이 관찰되었다. 이는 알긴산 고분자의 구조에서 펩타이드가 결합되는 부위가 알긴산 하이드로겔을 형성하는 결합 부위와 일치하므로, 펩타이드의 결합에 따라 발생하는 복소 탄성률의 저하로 예상된다(참조: 도 4).As a result of measuring the complex elastic modulus of the LRP5 peptide-attached polymer support, it was observed that the polymer support to which the peptide was not bound had a slightly higher complex elastic modulus than the polymer support to which the peptide was attached. This is because the site where the peptide is bound in the structure of the alginic acid polymer coincides with the binding site for forming the alginic acid hydrogel, which is expected to decrease the complex elastic modulus caused by the binding of the peptide (see FIG. 4).
1.2 다양한 세포의 부착능 평가1.2 Evaluation of Adhesion of Various Cells
1.2.1 고분자 지지체를 이용한 다양한 세포의 부착능 평가 및 세포 표현형 관찰1.2.1 Evaluation of Adhesion of Various Cells and Observation of Cell Phenotypes Using Polymer Supports
세포와 세포간의 결합을 제공하는 고분자 지지체의 세포 부착능 및 표현형을 관찰하기 위하여, 일반적으로 세포와 지지체간의 결합을 제공하는 RGD 펩타이드가 단독으로 결합된 고분자 지지체를 비교군으로 사용하여 실험을 진행하였으며, 혈액모세포(HSC), 골모세포(MC3T3), 성체줄기세포(D1 stem cell) 및 섬유아세포(NIH3T3)를 사용하여 다양한 세포에서의 부착능을 평가하였다.In order to observe the cell adhesion ability and phenotype of the polymer support that provides the cell-to-cell binding, experiments were conducted using a polymer support in which RGD peptides alone provided the binding between the cell and the support. Adherence in various cells was evaluated using hematopoietic cells (HSC), osteoblasts (MC3T3), adult stem cells (D1 stem cells) and fibroblasts (NIH3T3).
RGD 펩타이드가 결합된 고분자 지지체에서의 세포 부착능 및 세포 표현형을 관찰한 결과 혈액모세포(HSC), 골모세포(MC3T3), 성체줄기세포(D1 stem cell) 및 섬유아세포(NIH3T3)에 결합되는 것을 확인할 수 있었으며, 단일 세포로 골고루 결합하고 있는 것을 관찰할 수 있었다(참조: 도 5a).Observation of cell adhesion and cell phenotype in the RGD peptide-bound polymer scaffold confirmed the binding to hematopoietic cells (HSC), osteoblasts (MC3T3), adult stem cells (D1 stem cells) and fibroblasts (NIH3T3). And evenly binding to single cells (see FIG. 5A).
상기 결과와 비교하여 세포간 결합을 제공하는 LRP5 펩타이드가 결합된 고분자 지지체에서는 각각의 세포가 결합되어 세포군집을 형성하고 있는 것을 관찰할 수 있었다(참조: 도 5b)In comparison with the above results, it was observed that each cell was combined to form a cell population in the polymer support to which the LRP5 peptides provided intercellular binding (see FIG. 5B).
1.2.2 카드헤린 부착성 올리고펩타이드가 결합된 고분자 지지체의 세포간 결합 유도능 평가1.2.2 Evaluation of Intercellular Binding Induction Capacity of Cadherin-Adhesive Oligopeptide-Bound Polymer Supports
카드헤린 부착성 LRP5 펩타이드가 결합된 고분자 지지체의 표면에 혈액모세포(HSC), 골모세포(MC3T3), 성체줄기세포(D1 stem cell) 및 섬유아세포(NIH3T3)를 부착하여 세포간 결합을 유도한 결과, 각각의 세포가 세포군집을 형성하여 부착되어 있는 것을 확인할 수 있었으며, 세포간 결합 단백질인 n-카드헤린(cadherin)을 면역염색법을 통하여 관찰한 결과 세포간의 결합에 관여하고 있는 것을 관찰할 수 있었다(참조: 도 6).Hepatoblasts (HSC), osteoblasts (MC3T3), adult stem cells (D1 stem cells) and fibroblasts (NIH3T3) were attached to the surface of the polymer support conjugated with the caherin-adhesive LRP5 peptide to induce intercellular binding. In addition, it was confirmed that each cell formed and attached to the cell population, and the intercellular binding protein, n-cadherin, was observed through immunostaining. (See FIG. 6).
실시예 2: 세포-세포간 결합을 제공하는 고분자 지지체를 이용한 줄기세포의 연골세포 분화능 평가Example 2: Evaluation of Chondrocyte Differentiation Ability of Stem Cells Using Polymer Supports Providing Cell-to-Cell Binding
2.1 줄기세포의 부착능 평가 2.1 Evaluation of Adhesion Capacity of Stem Cells
세포와 세포간의 결합을 제공하는 고분자 지지체를 이용하여 성체줄기세포(D1 stem cell)(D1 stem cell, CRL-12424, ATCC)의 결합력을 평가하고 세포의 표현형 및 세포-세포 간의 결합을 확인하기 위하여 세포와 지지체간의 결합을 제공하는 RGD 펩타이드가 단독으로 결합된 고분자 지지체를 비교군으로 사용하여 실험을 진행하였다. 사용되어진 성체줄기세포(D1 stem cell, CRL-12424, ATCC)는 마우스 골수 유래 성체줄기세포로서, 뼈, 연골, 지방 세포로의 분화연구에 매우 적합한 성체줄기세포이다.To evaluate the binding ability of the adult stem cells (D1 stem cell, CRL-12424, ATCC) using a polymer support that provides cell-to-cell binding, and to identify the phenotype of the cell and cell-cell binding. Experiments were carried out using a polymer scaffold in which RGD peptides alone were provided to provide a binding between the cell and the scaffold. The adult stem cells (D1 stem cell, CRL-12424, ATCC) used are adult stem cells derived from mouse bone marrow, and are very suitable for the study of differentiation into bone, cartilage and adipocytes.
LRP5 또는 RGD 펩타이드 어느 것도 결합되지 않은 고분자 지지체에서 줄기세포의 부착력이 낮아 상대적으로 적은 양의 세포가 부착된 것을 확인할 수 있으며, 세포-세포간의 결합력을 확인시켜주는 카테닌(catenin) 단백질의 발현도 나타나지 않는 것을 확인 할 수 있었다(참조: 도 7). 이와 대조적으로 RGD 펩타이드와 LRP5 펩타이드가 각각 결합된 고분자 지지체에서는 많은 수의 세포가 부착된 것을 관찰 할 수 있었으며, LRP5 펩타이드가 결합된 고분자 지지체에서는 세포와 세포가 결합하는 형태를 나타내며 세포군집을 형성하는 모습을 관찰 할 수 있었다.In the polymer support to which neither LRP5 or RGD peptide is bound, the adhesion of stem cells is low, and thus a relatively small amount of cells are attached. Also, the expression of catenin protein, which confirms cell-cell binding ability, also appears. It could be confirmed that it does not (see Fig. 7). In contrast, in the polymer scaffold to which the RGD peptide and the LRP5 peptide were respectively bound, a large number of cells were attached. In the polymer scaffold to which the LRP5 peptide was bound, the cells and the cells bound to each other and formed a cell population. I could observe the appearance.
LRP5 펩타이드가 결합된 고분자 지지체가 카드헤린 단백질을 이용한 세포-세포간의 결합을 제공한다는 것을 확인하기 위하여, EGTA 용액을 처리하여 세포-세포간의 결합을 억제 한 뒤 지지체와 결합시킨 결과 펩타이드가 결합되지 않은 고분자 지지체와 비슷한 세포 부착능을 관찰할 수 있었다(참조: 도 7). 이는 본 발명의 카드헤린 부착성 올리고펩타이드가 도입된 고분자 지지체가 세포-세포간의 결합을 제공하는 것을 보여주는 결과이다.In order to confirm that the LRP5 peptide-bound polymer support provides cell-cell binding using Cadherin protein, the peptide was not bound as a result of binding to the support after inhibiting cell-cell binding by treating EGTA solution. Cell adhesion similar to that of the polymeric support could be observed (see FIG. 7). This is a result showing that the polymer support into which the catherine-adherent oligopeptide of the present invention is introduced provides cell-cell binding.
2.2 줄기세포의 연골세포 분화능 평가2.2 Evaluation of Chondrocyte Differentiation Capacity of Stem Cells
2.2.1 낮은 농도의 세포를 이용한 고분자 지지체에서의 연골분화능 평가2.2.1 Evaluation of Cartilage Differentiation Capacity in Polymer Supports Using Low Concentration Cells
세포와 지지체간의 결합을 제공하는 RGD 펩타이드 만 도입된 고분자 지지체와 세포와 세포간의 결합을 제공하는 LRP5 펩타이드가 도입된 고분자 지지체를 이용하여 줄기세포의 연골세포로의 분화능을 평가하기 위하여 고분자 지지체 안에 세포를 캡슐화 하여 2주간 연골세포 분화 배지 조건(DMEM/F12, 10 nM dexamethasone, 50 μg/ml L-ascorbic acid, 5 μl/ml Insulin, 10 ng/ml TGF-beta1)하에서 배양하였다. 이때 사용되어진 줄기세포의 농도는 일반적인 3차원적 세포 배양법에 사용되어지는 세포 농도보다 10분의 1의 낮은 농도의 세포 수(1.0 x 106 세포/ml)로 배양하였다. To evaluate the differentiation ability of stem cells into chondrocytes using a polymer support incorporating only RGD peptides that provide binding between cells and support and a polymer support incorporating LRP5 peptides providing binding between cells and cells, Were encapsulated and cultured under chondrocyte differentiation medium conditions (DMEM / F12, 10 nM dexamethasone, 50 μg / ml L-ascorbic acid, 5 μl / ml Insulin, 10 ng / ml TGF-beta1) for 2 weeks. At this time, the concentration of the stem cells used was incubated with the number of cells (1.0 x 10 6 cells / ml) of a concentration lower than one tenth of the cell concentration used in the general three-dimensional cell culture method.
2주간 배양한 후 세포의 표현형을 관찰한 결과 RGD 펩타이드가 도입된 고분자 지지체에서는 줄기세포가 단일 세포로 존재하며 세포간의 결합을 확인할 수 있는 단백질인 beta-카테닌을 면역염색하여 확인한 결과 세포-세포간의 결합이 이루어지지 않는 것을 확인할 수 있었으나, 이와 대조적으로 LRP5 펩타이드가 도입된 고분자 지지체에서는 줄기세포가 군집을 이루고 있는 것을 확인할 수 있었으며 beta-카테닌 단백질의 발현 역시 눈에 띄게 증가하여 나타나는 것을 관찰할 수 있었다(참조: 도 8).After culturing for 2 weeks, the cell phenotype was observed. In the polymer scaffold in which the RGD peptide was introduced, stem cells existed as single cells and immunostained beta-catenin, a protein that can confirm cell-to-cell binding. In contrast, it was confirmed that the binding was not performed, but in contrast, the polymer support in which the LRP5 peptide was introduced showed that the stem cells were clustered, and the beta-catenin protein expression was also markedly increased. (See FIG. 8).
줄기세포의 연골세포 분화능을 평가하기 위하여 연골세포 분화인자인 콜라겐 타입2(collagen type2)와 sox-9의 유전자 발현양을 측정하여 비교한 결과, LRP5 펩타이드가 결합된 고분자 지지체에서 RGD 펩타이드가 결합된 고분자 지지체와 비교하여 많은 양의 유전자가 발현된 것을 확인할 수 있었다(참조: 도 9). 또한 이는 일반적인 3차원적 세포 배양에 사용되어지는 농도보다 10분의 1의 낮은 농도의 세포 수에서 배양한 조건으로 낮은 농도에서의 세포 배양 및 세포 분화는 잘 이루어지지 않는다는 결과에 반대되는 결과이다. 즉, 세포와 세포간의 결합을 제공하는 고분자 지지체를 이용한 세포 배양은 낮은 농도의 세포 배양에서도 세포간의 결합을 제공해주는 지지체의 역할을 하여 세포의 배양이 보다 효과적인 것을 확인할 수 있었으며, 줄기세포의 분화에도 큰 영향을 미치는 것을 확인할 수 있었다.In order to evaluate the chondrocyte differentiation ability of stem cells, gene expression levels of collagen type2 (collagen type2) and sox-9, which are chondrocyte differentiation factors, were measured. As a result, the RGD peptide was bound to the LRP5 peptide-coupled polymer scaffold. Compared with the polymer support, it was confirmed that a large amount of genes were expressed (see FIG. 9). In addition, this is in contrast to the result that cell culture and cell differentiation at low concentration are not performed well under the condition that the cells were cultured at the lower cell number of 1/10 than the concentration used for general three-dimensional cell culture. In other words, cell culture using a polymer support that provides cell-to-cell binding acts as a supporter that provides cell-to-cell binding even at low concentrations of cell culture. It was confirmed that it has a big impact.
2.2.2 높은 농도의 세포를 이용한 고분자 지지체에서의 연골분화능 평가2.2.2 Evaluation of Cartilage Differentiation Capacity in Polymer Supports Using High Concentration Cells
줄기세포의 3차원적 배양에 이용한 연골세포 분화능을 평가하기 위하여, 일반적으로 사용하는 세포 농도인 1.0 x 107 세포/ml에서 실험을 진행하였으며, 위의 실험과 비교 분석하기 위하여 RGD 펩타이드가 결합된 고분자 지지체와 LRP5 펩타이드가 결합된 고분자 지지체를 이용하여 실험을 진행하였다.In order to evaluate the differentiation ability of chondrocytes used for three-dimensional culture of stem cells, experiments were carried out at a concentration of 1.0 x 10 7 cells / ml, which is a commonly used cell concentration. The experiment was conducted using a polymer support in which a polymer support and an LRP5 peptide were bound.
2주간 연골세포 분화 배지(DMEM/F12, 10 nM dexamethasone, 50 μg/ml L-ascorbic acid, 5 μl/ml Insulin, 10 ng/ml TGF-beta1)에 배양하여 줄기세포(D1 stem cell, CRL-12424, ATCC)의 연골세포의 분화를 유도한 결과, 세포와 지지체간의 결합을 제공하는 RGD 펩타이드가 결합된 고분자 지지체에서 역시 세포 군집을 형성하고 있는 것을 관찰 할 수 있었으며, 세포와 세포간의 결합을 제공하는 LRP5 펩타이드가 결합된 고분자 지지체에서는 보다 많은 세포가 군집을 형성하고 있는 것을 관찰할 수 있었다(참조: 도 10).Stem cells (D1 stem cell, CRL-) were cultured in chondrocyte differentiation medium (DMEM / F12, 10 nM dexamethasone, 50 μg / ml L-ascorbic acid, 5 μl / ml Insulin, 10 ng / ml TGF-beta1) for 2 weeks. 12424, ATCC) induced the differentiation of chondrocytes, and it was observed that RGD peptides were also forming a cell population in the polymer scaffold to which the RGD peptides provided the binding between the cell and the support. In the polymer scaffold to which the LRP5 peptide was bound, more cells were observed to form colonies (see FIG. 10).
연골세포 분화인자인 콜라겐 타입2 와 sox-9의 유전자 발현양을 측정한 결과, LRP5 펩타이드가 결합된 고분자 지지체에서 유전자가 발현량이 약간 상승한 것을 확인할 수 있었으나, 그 차이가 낮은 농도의 세포를 이용한 실험과 비교하여 크지 않은 것을 확인할 수 있었다. 이는 세포의 농도가 높아짐에 따라서 세포와 세포간의 결합을 제공하지 않는 RGD 펩타이드가 결합된 고분자 지지체에서도 세포와 세포간의 결합이 존재하여 세포의 군집을 형성하는 것을 보여주고, 이에 따라 줄기세포의 연골분화능 역시 세포의 농도의 증가에 따라 LRP5 펩타이드가 결합된 고분자 지지체와 큰 차이가 나지 않는 것으로 보여진다.As a result of measuring the gene expression levels of the chondrocyte differentiation factors collagen type 2 and sox-9, it was confirmed that the expression level of the gene was slightly increased in the polymer scaffold to which the LRP5 peptide was bound, but the experiment using the low concentration of the cells It was confirmed that it is not large in comparison with. This shows that as the concentration of the cells increases, even in the polymer scaffold to which the RGD peptide is bound, which does not provide the cell-to-cell binding, the cell-to-cell binding exists to form cell clusters. As the concentration of cells increases, LRP5 peptides do not appear to differ significantly from the polymer scaffold to which they are bound.
실시예Example 3: 세포- 3: cell 세포간Intercellular 결합을 제공하는 고분자 미립구( Polymeric microspheres that provide a bond ( microspheremicrosphere )를 이용한 줄기세포의 연골세포 Cartilage cells of stem cells 분화differentiation 능 평가Ability evaluation
3.1 고분자 미립구의 제조 및 세포와의 응집체 형성3.1 Preparation of Polymer Microspheres and Aggregation with Cells
3.1.1 펩타이드의 선정3.1.1 Selection of Peptides
세포와 세포간의 결합력을 제공할 수 있는 고분자 미립구를 개발하기 위하여 고분자 지지체에 세포 밀착연접(tight junction)에 직접적으로 참여하는 카드헤린자체의 특정부위 펩타이드(GGGGSHAVSS)(HAV 펩타이드)를 선정하여 단독 또는 RGD 펩타이드와 함께 고분자 지지체에 결합시킴으로써, 배양 세포의 세포막에 존재하는 카드헤린 단백질과 직접적인 결합을 할 수 있는 고분자 미립구를 제작하였다.In order to develop polymer microspheres that can provide the cell-to-cell binding force, a specific site peptide (GGGGSHAVSS) (HAV peptide) of CHERIN itself, which directly participates in a cell tight junction to a polymer support, is selected or alone. By binding to the polymer support together with the RGD peptide, polymer microspheres capable of direct binding with the cardherin protein present in the cell membrane of the cultured cells were prepared.
3.1.2 펩타이드의 결합3.1.2 Binding of Peptides
천연 고분자인 알긴산을 이용하여 미립구를 제작하였으며, 알긴산 미립구를 제조하기 위하여 유중수형 에멀젼(Water-in-oil emulsion)을 이용하였다. 알긴산 고분자를 이소옥탄(Isooctane), SPAN 80, Tween 80이 포함된 유기용매에 녹인후 20 wt%의 CaCl2 수용액에서 한시간동안 반응시켜 미립구를 제조하였다. 이후 알긴산 미립구의 카르복실기와 카드헤린 부착성 올리고펩타이드(HAV 펩타이드)의 아민기와의 결합을 위하여 EDC/NHS 반응을 사용하였다. 알긴산 미립구를 pH 6.5의 MES 완충액에 용해하고, EDC와 NHS를 이용하여 펩타이드를 결합시킨 후, 펩타이드가 결합된 알긴산 수용액을 증류수와 NaCl을 이용하여 3일간 투석시켰다. 투석을 완료한 알긴산 수용액을 활성탄을 넣어 30분간 불순물을 제거한뒤 0.22 μm 필터로 여과시킨 후 동결건조 시켜주었다(참조: 도 12).Microspheres were prepared using alginic acid, a natural polymer, and a water-in-oil emulsion was used to prepare alginic acid microspheres. Alginate polymer was dissolved in an organic solvent containing isooctane, SPAN 80, and Tween 80, and reacted in an aqueous solution of 20 wt% CaCl 2 for one hour to prepare microspheres. Thereafter, an EDC / NHS reaction was used to bind the carboxyl group of the alginic acid microspheres to the amine group of the caherin-adhesive oligopeptide (HAV peptide). Alginic acid microspheres were dissolved in MES buffer at pH 6.5, peptides were bound using EDC and NHS, and the peptide-alginated aqueous alginic acid solution was dialyzed with distilled water and NaCl for 3 days. Alginate aqueous solution completed dialysis was added to activated carbon to remove impurities for 30 minutes, filtered through a 0.22 μm filter and lyophilized (see Fig. 12).
3.1.3 카드헤린 부착성 펩타이드 농도에 따른 줄기세포 성장능 평가 3.1.3 Evaluation of Stem Cell Growth Capacity by Cadherin Adhesion Peptide Concentration
카드헤린 부착성 펩타이드의 농도에 따른 줄기세포 성장능을 평가하기 위하여, 다양한 농도 (7, 14, 28, 70 μg/mg)의 펩타이드를 알긴산에 도입시켜 하이드로젤을 제조하였으며, 각각의 하이드로젤에 줄기세포의 농도를 2.0 x 106 세포/ml로 부착시켜 총 5일간 실험을 진행하였다. 하이드로젤에 부착된 세포의 수를 측정하기 위하여, EDTA가 포함된 용액으로 하이드로젤을 제거하였으며, 고분자 지지체가 제거된 후 세포의 수를 Hemocytometer로 측정하여 5일간의 줄기세포의 성장능을 평가하였다. 카드헤린 부착성 펩타이드가 도입된 알긴산에 줄기세포를 부착시켜 생장능을 평가한 결과, 펩타이드가 도입되지 않은 알긴산과 비교하여 생장능이 증가하는 것을 확인할 수 있었다. 또한 펩타이드 농도가 높아짐에 따라서 비례하여 증가하였으나, 14 μg/mg 농도 이상으로 결합시키는 경우 효율이 가장 높게 나타나는 것을 확인할 수 있었다(참고: 도 19). 또한 줄기세포를 부착시켜 세포를 관찰한 결과, 펩타이드의 농도가 높아짐에 따라 세포의 부착이 보다 활발하게 이루어진 것을 확인할 수 있었으며, 각각의 세포가 결합되어 세포군집을 형성하고 있는 것을 관찰할 수 있었다(참조: 도 20).In order to evaluate the stem cell growth ability according to the concentration of the caffeine adherent peptide, a hydrogel was prepared by introducing peptides of various concentrations (7, 14, 28, 70 μg / mg) into the alginic acid, to each hydrogel Stem cells were attached at a concentration of 2.0 × 10 6 cells / ml and the experiment was performed for a total of 5 days. In order to measure the number of cells attached to the hydrogel, the hydrogel was removed with a solution containing EDTA, and after the polymer support was removed, the number of cells was measured by a hemocytometer to evaluate the growth ability of the stem cells for 5 days. . As a result of assessing growth ability by attaching stem cells to alginic acid to which the caherin-adhesive peptide was introduced, it was confirmed that the growth capacity was increased compared to alginic acid without the peptide. In addition, as the peptide concentration was increased in proportion to the increase, it was confirmed that the efficiency appears to be the highest when binding to more than 14 μg / mg concentration (reference: Figure 19). In addition, as a result of observing cells by attaching stem cells, it was confirmed that cell attachment was more active as the concentration of peptide increased, and that each cell was combined to form a cell population ( See FIG. 20).
3.1.4 줄기세포와 고분자 미립구의 응집체 형성3.1.4 Aggregation of Stem Cells and Polymer Microspheres
세포와 결합력을 가지고 있는 고분자 미립구와 줄기세포를 혼합하여 줄기세포와 고분자 미립구로 이루어진 응집체를 제조하였으며, 고분자 미립구는 10 wt%로 1.0 x 108/ml의 농도로 사용하였으며, 세포는 1.0 x 107/ml의 농도를 사용하여 응집체를 형성하였다. 또한 이렇게 형성된 응집체는 바닥이 둥근 웰 플레이트를 사용하여 배양하였다(참조: 도 13).Agglomerates composed of stem cells and polymer microspheres were prepared by mixing the polymer microspheres and the stem cells having the binding force with the cells. The polymer microspheres were used at a concentration of 1.0 x 10 8 / ml at 10 wt%, and the cells were 1.0 x 10. Aggregates were formed using a concentration of 7 / ml. Aggregates thus formed were also incubated using round bottom well plates (see FIG. 13).
3.1.5 줄기세포와 고분자 미립구로 형성된 응집체의 물성3.1.5 Properties of Aggregates Formed from Stem Cells and Polymer Microspheres
상기 실시예에 따라 HAV 펩타이드가 부착된 고분자 미립구와 줄기세포로 형성된 응집체의 형성 유무를 확인하기 위하여, 각각의 응집체를 유동계를 사용하여 전단탄성율을 측정하였다. 그 결과 펩타이드가 결합되지 않은 고분자 미립구를 이용한 응집체와 비교하여 RGD 펩타이드와 HAV 펩타이드가 부착된 고분자 미립구를 이용한 응집체의 탄성율(G’)이 더 높은 것으로 관찰되었다. 이는 고분자에 결합된 펩타이드와 세포간의 결합력이 존재하며 이러한 결합력으로 인하여 미립구와 세포의 응집체를 형성하는 것을 알 수 있었다(참조: 도 14). 도 14에서 "RGD-alg"는 RGD 펩타이드 도입 고분자 미립구를 나타내고, "Cadherin-alg"는 HAV 펩타이드 도입 고분자 미립구를 나타내며, "Alginate"는 펩타이드가 도입되지 않은 고분자 미립구 대조군을 나타내고, 실선은 탄성율(G‘), 점선은 손실 탄성율(G“)을 나타낸다. In order to confirm the formation of aggregates formed of polymer microspheres attached to HAV peptides and stem cells according to the above examples, the shear modulus of each aggregate was measured using a flow meter. As a result, it was observed that the elastic modulus (G ′) of the aggregate using the polymer microspheres to which the RGD peptide and the HAV peptide were attached was higher than that of the aggregate using the polymer microspheres to which the peptide was not bound. It was found that there is a binding force between the peptide and the cell bound to the polymer, and due to this binding force it forms an aggregate of microspheres and cells (see Fig. 14). In Figure 14, "RGD-alg" represents the RGD peptide introduced polymer microspheres, "Cadherin-alg" represents the HAV peptide introduced polymer microspheres, "Alginate" represents a polymer microsphere control group without the peptide introduced, solid line is the elastic modulus ( G ') and the dotted line represent the loss modulus (G ").
3.2 줄기세포와 고분자 미립구로 형성한 응집체의 세포 분화능 평가3.2 Evaluation of Cell Differentiation Capacity of Aggregates Formed from Stem Cells and Polymer Microspheres
3.2.1 줄기세포의 부착능 평가 및 세포 표현형 관찰3.2.1 Evaluation of Adhesion of Stem Cells and Observation of Cell Phenotypes
세포와 세포간의 결합을 제공하는 고분자 미립구를 이용하여 줄기세포의 결합력을 평가하고 세포의 표현형 및 세포-세포 간의 결합을 확인하기 위하여 세포와 지지체간의 결합을 제공하는 RGD 펩타이드가 단독으로 결합된 고분자 지지체를 비교군으로 사용하여 실험을 진행하였다.Polymeric scaffolds with RGD peptides alone, which provide the binding between cells and scaffolds, to assess the binding capacity of stem cells and to identify cell phenotype and cell-cell binding using polymer microspheres that provide cell-to-cell binding. Experiment was carried out using as a comparison group.
RGD 펩타이드 및/또는 HAV 펩타이드가 결합되지 않은 고분자 미립구와 줄기세포를 함께 배양한 경우 줄기세포의 부착력이 낮아 상대적으로 적은 양의 세포가 부착되어 생장하는 것을 확인할 수 있었으며, 이와 대조적으로 RGD 펩타이드 및/또는 HAV 펩타이드가 결합된 고분자 미립구에서는 많은 수의 세포가 생장하고 있는 것을 관찰 할 수 있었다. HAV 펩타이드가 단독으로 결합된 고분자 미립구에서는 세포와 세포가 결합하는 형태를 나타내며 세포군집을 형성하는 모습을 관찰 할 수 있었으며, RGD 펩타이드와 HAV 펩타이드가 동시에 결합된 고분자 미립구에서 역시 세포군집을 형성하는 모습을 관찰할 수 있었다. 대조적으로 RGD 펩타이드가 단독으로 결합된 고분자 미립구에서는 세포가 미립구 표면을 뻗어서 생장하고 있는 모습을 관찰 할 수 있었다(참조: 도 15). 도 15에서 “RGD-alginate”는 RGD 펩타이드 도입 고분자 미립구를 나타내고, “CAD-alginate”는 HAV 펩타이드 도입 고분자 미립구를 나타내며, “R/C-alginate”는 RGD 펩타이드와 HAV 펩타이드가 동시에 결합된 고분자 미립구를 나타내고, “alginate”는 펩타이드가 도입되지 않은 고분자 미립구 대조군을 나타낸다.When RGD peptides and / or HAV peptides were not incubated with polymer microspheres and stem cells, it was confirmed that relatively small amount of cells adhered and grew due to low adhesion of stem cells. In contrast, RGD peptides and / or In addition, it was observed that a large number of cells were growing in the microparticles conjugated with the HAV peptide. In the polymer microspheres in which the HAV peptides were combined alone, the cells and the cells showed the form of binding, and the cell populations could be observed. In the polymer microspheres in which the RGD peptides and the HAV peptides were simultaneously bound, the cell populations were also formed. Could be observed. In contrast, in the polymer microspheres to which RGD peptides were bound alone, it was possible to observe the cells growing on the surface of the microspheres (see FIG. 15). In Figure 15, "RGD-alginate" represents the RGD peptide introduced polymer microspheres, "CAD-alginate" represents the HAV peptide introduced polymer microspheres, "R / C-alginate" refers to the polymer microspheres to which the RGD peptide and HAV peptide is simultaneously bonded "Alginate" indicates a polymer microsphere control group without peptide.
3.2.2 줄기세포와 고분자 미립구 응집체의 세포 생존율 평가3.2.2 Evaluation of Cell Viability of Stem Cells and Polymer Microsphere Aggregates
고분자 미립구와 줄기세포로 형성된 응집체에서의 줄기세포의 생존율을 평가하였다. RGD 펩타이드 및/또는 HAV 펩타이드가 결합되지 않은 고분자 미립구를 이용한 응집체는 세포와 미립구간의 결합력이 존재하지 않아 응집체를 형성하지 못한 것을 관찰할 수 있으며, 세포의 생존율도 다른 그룹에 비하여 낮은 것을 확인할 수 있었다. 이와 대조적으로 RGD 펩타이드 또는 HAV 펩타이드가 각각 결합된 고분자 미립구를 이용한 각각의 응집체에서는 세포와 미립구간의 결합력에 의하여 특정 부피의 응집체를 형성하고 있는 것을 확인할 수 있으며, 세포의 생존율도 높은 것을 확인할 수 있었다. 또한, RGD펩타이드와 HAV 펩타이드가 동시에 결합된 고분자 미립구를 이용한 응집체에서는 높은 결합력으로 구형에 가까운 응집체를 형성하고 있었으며, 응집체 내부에 세포의 생존율도 높은 것을 확인할 수 있었다(참조: 도 16). 도 16에서 “RGD-alginate”는 RGD 펩타이드 도입 고분자 미립구를 나타내고, “Cadherin-alginate”는 HAV 펩타이드 도입 고분자 미립구를 나타내며, “R/C-alginate”는 RGD 펩타이드와 HAV 펩타이드가 동시에 결합된 고분자 미립구를 나타내고, “alginate”는 펩타이드가 도입되지 않은 고분자 미립구 대조군을 나타낸다.The survival rate of stem cells in the aggregates formed from the polymer microspheres and the stem cells was evaluated. The aggregates using the polymer microspheres to which the RGD peptide and / or the HAV peptide were not bound can be observed that the aggregates did not form because there was no binding force between the cells and the microspheres, and the cell survival rate was lower than that of the other groups. . In contrast, in the aggregates using the polymer microspheres in which the RGD peptide or the HAV peptide were respectively bound, it was confirmed that a specific volume of aggregates were formed by the binding force between the cells and the microspheres, and the cell survival rate was also high. In addition, in the aggregate using the polymer microspheres in which the RGD peptide and the HAV peptide were simultaneously bound, the aggregates were formed with high binding force, and spherical aggregates were close, and the survival rate of the cells in the aggregate was also high (see FIG. 16). In Figure 16, "RGD-alginate" represents the RGD peptide introduced polymer microspheres, "Cadherin-alginate" represents the HAV peptide introduced polymer microspheres, "R / C-alginate" refers to the polymer microspheres to which the RGD peptide and HAV peptide is simultaneously bonded "Alginate" indicates a polymer microsphere control group without peptide.
3.2.3 줄기세포와 고분자 미립구 응집체의 연골세포 분화능 평가3.2.3 Evaluation of Chondrocyte Differentiation Capacity of Stem Cells and Polymer Microsphere Aggregates
세포와 지지체간의 결합을 제공하는 RGD 펩타이드가 단독으로 도입된 고분자 미립구와 세포와 세포간의 결합을 제공하는 HAV 펩타이드가 도입된 고분자 미립구를 이용하여 줄기세포의 연골세포로의 분화능을 평가하기 위하여 고분자 미립구와 줄기세포를 혼합하여 응집체를 형성하였고, 2주간 연골세포 분화 배지 조건하에 배양하였다(DMEM/F12, 10 nM dexamethasone, 50 μg/ml L-ascorbic acid, 5 μl/ml Insulin, 10 ng/ml TGF-beta1). 2주간 배양한 후 조직학적으로 관찰한 결과 펩타이드가 도입되지 않은 알긴산 미립구의 경우 응집체의 형성이 되지 않은 것을 확인할 수 있었으며, RGD 펩타이드가 단독으로 도입된 고분자 미립구보다 HAV 펩타이드가 도입된 고분자 미립구를 이용한 응집체에서 연골조직의 분화능을 평가하는 알시안블루(alcian blue)와 시리어스 레드(sirius red)에서 연골조직으로 분화가 보다 활발히 이루어진 것을 관찰할 수 있다(참조: 도 17). 도 17에서 "RGD-Alginate"는 RGD 펩타이드 도입 고분자 미립구를 나타내고, "Cadherin-Alginate"는 HAV 펩타이드 도입 고분자 미립구를 나타내며, "Alginate"는 펩타이드가 도입되지 않은 고분자 미립구 대조군을 나타낸다. To evaluate the differentiation ability of stem cells into chondrocytes using polymer microspheres in which RGD peptides that provide binding between cells and supports are introduced alone, and polymer microspheres in which HAV peptides that provide cell-to-cell binding are used. And stem cells were mixed to form aggregates and cultured under chondrocyte differentiation medium conditions for 2 weeks (DMEM / F12, 10 nM dexamethasone, 50 μg / ml L-ascorbic acid, 5 μl / ml Insulin, 10 ng / ml TGF). -beta1). As a result of histological observation after incubation for 2 weeks, it was confirmed that the aggregates were not formed in the alginate microspheres without the peptide introduced, and the HAV peptide-introduced polymer microspheres introduced with the RGD peptide alone were not used. It can be seen that the differentiation of cartilage tissues from alcian blue and sirius red, which evaluates the differentiation ability of cartilage tissues in aggregates, was more actively performed (see FIG. 17). In FIG. 17, "RGD-Alginate" represents RGD peptide-introduced polymer microspheres, "Cadherin-Alginate" represents HAV peptide-introduced polymer microspheres, and "Alginate" represents a polymer microsphere control in which no peptide is introduced.
줄기세포의 연골세포 분화능을 평가하기 위하여 연골세포 분화인자인 콜라겐 타입2와 아그레칸(aggrecan)의 유전자 발현양을 측정하여 비교한 결과, HAV 펩타이드가 결합된 고분자 미립구를 이용한 응집체에서 RGD 펩타이드가 단독으로 결합된 고분자 미립구를 이용한 응집체와 비교하여 많은 양의 유전자가 발현된 것을 확인할 수 있었다. 또한 RGD 펩타이드와 HAV 펩타이드를 동시에 결합시킨 고분자 미립구를 이용한 응집체는 다른 그룹과 비교할 때 연골세포 분화인자의 유전자 발현이 보다 높은 것을 확인할 수 있었다. 이를 통해 세포와 세포간의 결합을 제공하는 고분자 미립구를 이용한 줄기세포 배양이, 세포와 지지체간의 결합만을 제공하는 고분자 미립구를 이용한 경우와 비교하여, 연골세포의 배양에 보다 효과적인 것을 확인할 수 있었다(참조: 도 18). 도 18에서 "RGD"는 RGD 펩타이드 도입 고분자 미립구를 나타내고, "CAD"는 HAV 펩타이드 도입 고분자 미립구를 나타내며, “R/C“는 RGD펩타이드와 HAV 펩타이드가 동시에 결합된 고분자 미립구를 나타내고, "Alg"는 펩타이드가 도입되지 않은 고분자 미립구 대조군을 나타낸다. In order to evaluate the chondrocyte differentiation ability of stem cells, gene expression levels of collagen type 2 and aggrecan, which are chondrocyte differentiation factors, were measured and compared, and as a result, RGD peptides were expressed in aggregates using high-molecular microparticles combined with HAV peptides. It was confirmed that a large amount of genes were expressed as compared with aggregates using polymer microspheres bound alone. In addition, it was confirmed that the aggregates using polymer microspheres in which RGD peptides and HAV peptides were combined at the same time have higher gene expression of chondrocyte differentiation factors than other groups. Through this, it was confirmed that stem cell culture using polymer microspheres providing cell-to-cell binding is more effective in culturing chondrocytes compared to the case of using polymer microspheres providing only cell-to-support binding (see: 18). In Figure 18, "RGD" represents the RGD peptide introduced polymer microspheres, "CAD" represents the HAV peptide introduced polymer microspheres, "R / C" represents the polymer microspheres to which the RGD peptide and HAV peptides are simultaneously bonded, "Alg" Denotes a macromolecular control group to which no peptide is introduced.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that the specific technology is merely a preferred embodiment, and the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
서열목록 제 1 서열 : DSCPPSPATERSYFHLFPPPPSPCTDSSSequence Listing First Sequence: DSCPPSPATERSYFHLFPPPPSPCTDSS
서열목록 제 2 서열 : GGGGSHAVSSSequence Listing Second Sequence: GGGGSHAVSS

Claims (15)

  1. 다음을 포함하는 세포 군집 형성을 위한 고분자 세포 지지체:Polymeric cell scaffolds for forming cell colonies comprising:
    (a) 생체 적합성 고분자 백본;(a) a biocompatible polymeric backbone;
    (b) 상기 고분자 백본에 결합된 카드헤린(cadherin) 부착성 올리고펩타이드.(b) Cadherin adherent oligopeptide bound to the polymer backbone.
  2. 제 1 항에 있어서, 상기 결합은 상기 생체 적합성 고분자 백본과 상기 카드헤린 부착성 올리고펩타이드 사이에 형성된 아마이드 결합인 것을 특징으로 하는, 세포 지지체.The cell support of claim 1, wherein the bond is an amide bond formed between the biocompatible polymer backbone and the caherin adherent oligopeptide.
  3. 제 2 항에 있어서, 상기 생체 적합성 고분자 백본은 상기 아마이드 결합을 형성하기 위한, 카복실기, 히드록실기 또는 아미노기를 포함하는 것을 특징으로 하는, 세포 지지체.The cell support according to claim 2, wherein the biocompatible polymer backbone comprises a carboxyl group, hydroxyl group or amino group for forming the amide bond.
  4. 제 3 항에 있어서, 상기 고분자 백본은 카복실기 또는 히드록실기를 포함하거나, 카복실기 또는 히드록실기를 포함하도록 표면개질된 것을 특징으로 하는, 세포 지지체.The cell support according to claim 3, wherein the polymer backbone comprises a carboxyl group or a hydroxyl group or is surface modified to include a carboxyl group or a hydroxyl group.
  5. 제 4 항에 있어서, 상기 고분자 백본은 알긴산 중합체, 키토산 중합체 및 히알루론산 중합체로 구성된 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는, 세포 지지체. The cell support according to claim 4, wherein the polymer backbone is at least one selected from the group consisting of an alginic acid polymer, a chitosan polymer and a hyaluronic acid polymer.
  6. 제 1 항에 있어서, 상기 카드헤린 부착성 올리고펩타이드는 서열목록 제1서열로 이루어진 LRP5 펩타이드 또는 서열목록 제2서열로 이루어진 HAV 펩타이드인 것을 특징으로 하는, 세포 지지체.The cell support according to claim 1, wherein the cardherin-attached oligopeptide is an LRP5 peptide consisting of SEQ ID NO: 1 or HAV peptide consisting of SEQ ID NO: 2.
  7. 제 6 항에 있어서, 상기 LRP5 펩타이드 또는 상기 HAV 펩타이드는 상기 세포의 카드헤린 단백질과 결합을 형성하는 것을 특징으로 하는, 세포 지지체.The cell support according to claim 6, wherein the LRP5 peptide or the HAV peptide forms a bond with a cardherin protein of the cell.
  8. 제 1 항에 있어서, 상기 세포 지지체는 (c) 상기 고분자 백본에 결합된 인테그린(integrin) 부착성 올리고펩타이드를 추가적으로 더 포함하는 것을 특징으로 하는, 세포 지지체.The cell support of claim 1, wherein the cell support further comprises (c) an integrin adherent oligopeptide bound to the polymeric backbone.
  9. 제 8 항에 있어서, 상기 인테그린 부착성 올리고펩타이드는 RGD, PSHRN, FHRRIKA, YIGSR, KGD, RHD, NGR, SDGR, KQAGDV, LDV, DGEA, YGYYGDALR, FYFDLR, DALR, DLR, RLD, KRLDGS, IDA, IDAPS 및 REDV로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 세포 지지체.The method of claim 8, wherein the integrin adherent oligopeptide is RGD, PSHRN, FHRRIKA, YIGSR, KGD, RHD, NGR, SDGR, KQAGDV, LDV, DGEA, YGYYGDALR, FYFDLR, DALR, DLR, RLD, KRLDGS, IDA, IDAPS And REDV, wherein the cell support.
  10. 제 1 항 내지 제 9 항 중 어느 한 항의 세포 지지체와 세포를 접촉시켜 배양하는 단계를 포함하는 세포 군집형성 배양 방법.A method for culturing a cell population comprising the step of culturing the cells in contact with the cell support of any one of claims 1 to 9.
  11. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 세포 지지체를 포함하는 줄기세포 분화 유도용 조성물.A composition for inducing stem cell differentiation comprising the cell support according to any one of claims 1 to 9.
  12. 제 11 항에 따른 줄기세포 분화 유도용 조성물과 줄기세포를 접촉시켜 연골세포 분화 조건 배지에서 배양하는 단계를 포함하는, 연골세포로의 분화를 위한 줄기세포 배양 방법.Comprising the step of contacting the stem cell differentiation inducing composition according to claim 11 and the stem cells, and culturing in chondrocyte differentiation conditions medium, stem cell culture method for differentiation into chondrocytes.
  13. (a) 제 1 항 내지 제 9 항 중 어느 한 항에 따른 세포 지지체, (b) 상기 세포 지지체에 결합된 체내 이식을 위한 세포를 포함하는 체내 세포 이식용 조성물.A cell support according to any one of claims 1 to 9, (b) a composition for intracellular cell transplantation comprising a cell for in vivo transplantation bound to the cell support.
  14. 제 13 항에 있어서, 상기 체내 이식을 위한 세포는 줄기세포인 것을 특징으로 하는 조성물.The composition of claim 13, wherein the cells for transplantation in the body are stem cells.
  15. 제 13 항에 있어서, 상기 체내 이식을 위한 세포는 줄기세포로부터 분화된 연골세포인 것을 특징으로 하는 조성물.The composition of claim 13, wherein the cells for transplantation in the body are chondrocytes differentiated from stem cells.
PCT/KR2016/003739 2015-04-09 2016-04-08 Polymer support for increasing binding between cells, and method for culturing cells by using same WO2016163828A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0050380 2015-04-09
KR20150050380 2015-04-09
KR10-2016-0043529 2016-04-08
KR1020160043529A KR20160121780A (en) 2015-04-09 2016-04-08 Polymer Scaffolds for Promoting the Cell-cell Adhesion and Method for Cell Culture Using the Same

Publications (1)

Publication Number Publication Date
WO2016163828A1 true WO2016163828A1 (en) 2016-10-13

Family

ID=57072829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003739 WO2016163828A1 (en) 2015-04-09 2016-04-08 Polymer support for increasing binding between cells, and method for culturing cells by using same

Country Status (1)

Country Link
WO (1) WO2016163828A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446120B2 (en) * 2000-01-24 2008-11-04 Adherex Technologies, Inc. Peptidomimetic modulators of cell adhesion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446120B2 (en) * 2000-01-24 2008-11-04 Adherex Technologies, Inc. Peptidomimetic modulators of cell adhesion

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEE, JAE - WON ET AL.: "(108-16) A Control of Stem Cell Phenotype Using Cell-interactive Hydrogels", THE POLYMER SOCIETY OF KOREA, vol. 39, no. 2, 2014, pages 43 *
LEE, JAE - WON ET AL.: "Controlling Chondrogenic Differentiation of Stem Cell-instructive Hydrogels", THE POLYMER SOCIETY OF KOREA, vol. 39, no. 1, 2014, pages 143 *
SCHENSE, JASON C. ET AL.: "Enzymatic Incorporation of Bioactive Peptides into Fibrin Matrices Enhances Neurite Extension", NATURE BIOTECHNOLOGY, vol. 18, no. 4, 2000, pages 415 - 419, XP001134964 *
ZHANG, JIANJUN ET AL.: "Physically Associated Synthetic Hydrogels with Long-term Covalent Stabilization for Cell Culture and Stem Cell Transplantation", ADVANCED MATERIALS, vol. 23, no. 43, 2011, pages 5098 - 5103, XP055320633 *

Similar Documents

Publication Publication Date Title
AU755657B2 (en) Lineage-restricted neuronal precursors
WO2011049414A2 (en) Method for inducing migration of adult stem cells derived from adipose tissue
US20090087851A1 (en) Lineage-Restricted Neuronal Precursors
WO2018026198A1 (en) Composition for cartilage regeneration and preparation method therefor
KR20080091832A (en) Methods of preparing and characterizing mesenchymal stem cell aggregates and uses thereof
WO2015012582A1 (en) Preparation method for therapeutic agent of bead-type chondrocyte
WO2016153256A1 (en) Adhesive peptide and use therefor
WO2018117569A1 (en) Multilayer cardiac stem cell sheet and method for manufacturing same
WO2012008733A2 (en) Stem cells derived from primary placenta tissue and cellular therapeutic agent containing same
WO2017022981A1 (en) Method for producing induced pluripotent stem cells by using synthetic peptide
WO2020004893A1 (en) Method for preparing pellets of chondrocytes from human induced pluripotent stem cells, and use thereof
KR20220118709A (en) Composition for inducing proliferation and/or migration of mesenchymal stem cells
WO2016163828A1 (en) Polymer support for increasing binding between cells, and method for culturing cells by using same
WO2017034211A1 (en) Protein adhesive for inorganic surface adhesion or coating
KR20180129726A (en) Polymer Scaffolds for Promoting the Cell-cell Adhesion and Method for Cell Culture Using the Same
WO2013165120A1 (en) Method for culturing neural crest stem cells, and use thereof
WO2022239909A1 (en) Stem cell induction into prechondrocytes and differentiation into chondrocytes by ciprofloxacin
WO2011037416A9 (en) Method of manufacturing cell spheroids which are mixed cellular complexes for cell transplantation and usage thereof
WO2022114798A1 (en) Composition for increasing natural killer cell activity and preventing and treating infectious diseases and cancer using peptide derived from sars-cov-2 s protein that binds to nkg2d receptor on natural killer cells
WO2021187745A1 (en) Pharmaceutical composition, for preventing or treating charcot-marie-tooth disorder, comprising mesenchymal stem cells or insulin secreted by mesenchymal stem cells
WO2021162530A1 (en) Decellularized heart extracellular matrix-derived scaffold for culturing and transplanting heart organoid, and preparation method therefor
WO2019221477A1 (en) Composition for promoting stem cell differentiation, comprising progenitor cell culture solution and multilayer graphene film, and use thereof
WO2019190175A9 (en) Method for differentiating motor neurons from tonsil-derived mesenchymal stem cells
WO2024053985A1 (en) Composition for cryoprotection of exosomes including biocombatible polymer including network structure
WO2021101198A2 (en) Injectable hydrogel composition capable of capturing endogenous progenitor cells or stem cells, and inducing vascular differentiation of captured cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776931

Country of ref document: EP

Kind code of ref document: A1