WO2024053985A1 - Composition for cryoprotection of exosomes including biocombatible polymer including network structure - Google Patents

Composition for cryoprotection of exosomes including biocombatible polymer including network structure Download PDF

Info

Publication number
WO2024053985A1
WO2024053985A1 PCT/KR2023/013220 KR2023013220W WO2024053985A1 WO 2024053985 A1 WO2024053985 A1 WO 2024053985A1 KR 2023013220 W KR2023013220 W KR 2023013220W WO 2024053985 A1 WO2024053985 A1 WO 2024053985A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosomes
composition
cryoprotection
hyaluronic acid
exosome
Prior art date
Application number
PCT/KR2023/013220
Other languages
French (fr)
Korean (ko)
Inventor
박재형
안재윤
권승리
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2024053985A1 publication Critical patent/WO2024053985A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • the present invention was made under project number HI20C0437020022 under the support of the Ministry of Health and Welfare of the Republic of Korea.
  • the specialized research management organization for the project is the Korea Health Industry Development Institute, the research project name is “Advanced Medical Technology Development,” and the research project name is “Effectiveness of Stem Cell Exosomes.” “Evaluation and identification of mechanism of action”, the host organization is Sungkyunkwan University Industry-Academic Cooperation Foundation, and the research period is 2022.01.01-2022.12.31.
  • This invention was also made under project number 2021R1A4A1032782 under the support of the Ministry of Science and ICT of the Republic of Korea.
  • the research management agency for the project was the National Research Foundation of Korea, the research project name was “Collective Research Support (R&D),” and the research project name was “Ischemic Disease.” “Development of stem cell-derived artificial exosome vesicles for treatment”, the host institution is Sungkyunkwan University, and the research period is 2021.06.01-2022.02.28.
  • this invention was made under project number 21A0503L1-11 under the support of the Ministry of Science and ICT of the Republic of Korea.
  • the research management agency for the project was the National Research Foundation of Korea, and the research project name was “Pan-Ministry Regenerative Medicine Technology Development Project (R&D).”
  • the research project title is “Treatment of rheumatoid arthritis based on extracellular vesicles derived from inflammatory immune cell-targeted stem cells”, the host institution is Sungkyunkwan University, and the research period is 2022.02.01-2022.12.31.
  • the present invention relates to a composition for cryoprotection of exosomes, comprising a biocompatible polymer having a network structure.
  • Exosomes are membrane vesicles with a size of 30-200 nm secreted from cells and are mostly present in body fluids, including blood and urine, and are cell-specific components that reflect the biological functions unique to the cell of origin (donor cell). It contains a variety of substances showing biological activity, such as phospholipids, mRNA, miRNA, and DNA, as well as various soluble proteins, extrinsic proteins, and transmembrane protein components.
  • the lipid bilayer of exosomes has a phospholipid bilayer structure similar to that of the cell of origin (donor cell), and is a component of substances secreted extracellularly by cells, delivering bioactive substances to recipient cells to promote cell-cell communication and cellular immunity. It is known to play the role of a signal transduction mediator that regulates cell functions such as mediation.
  • exosomes have problems with long-term storage, such as changes in physical properties and stability due to limitations of the biological material itself, and stability related to the physiological activity of exosomes may be reduced.
  • the present inventors have made extensive research efforts to develop a technology that can store exosomes for a long period of time while maintaining the stability related to the physiological activity of exosomes.
  • the present invention was completed by preparing a composition for cryoprotection of exosomes containing a biocompatible polymer with a network structure and confirming that the function of exosomes was stably maintained even after long-term storage.
  • the purpose of the present invention is to provide a composition for cryoprotection of exosomes containing a biocompatible polymer having a network structure.
  • Another object of the present invention is to provide stability to exosomes during long-term storage using the composition for cryoprotection of exosomes.
  • Exosome' refers to an endoplasmic reticulum of approximately 30-200 nm in size, which has a membrane structure composed of a lipid-bilayer secreted from various cells. Inside exosomes, they contain proteins called exosomal cargo, nucleic acids (e.g., mRNA, miRNA, DNA), and a wide range of signaling factors.
  • exosomal cargo proteins called exosomal cargo, nucleic acids (e.g., mRNA, miRNA, DNA), and a wide range of signaling factors.
  • the exosome is an intercellular signaling mediator secreted by cells, and various cell signals transmitted through it affect cell behavior including activation, growth, migration, differentiation, dedifferentiation, apoptosis, and necrosis of target cells. It is known to control In particular, it can be used as a new concept bio material applicable to various diseases because it regulates the functions of cells involved in anti-aging, tissue regeneration, and various diseases depending on the characteristics of the derived cells.
  • exosomes have problems in that the overall physical properties and stability of exosomes may change depending on the storage period and method, and the activity of the effective physiologically active substances of exosomes may be reduced. Therefore, in order to effectively use the specific genetic material and physiologically active factors contained in exosomes, not only can ultra-low temperature freezing, a representative long-term storage method of exosomes, be applied, but also DMSO, which has the potential for toxicity, can be used as a cryoprotectant. Structural damage to exosomes caused by ultra-low temperature freezing can be prevented, and ultra-low temperature freezing can also be applied.
  • the present invention provides a composition for cryoprotection of exosomes, comprising a biocompatible polymer having a network structure.
  • the present inventors not only maintain the structural stability of exosomes during the freezing process by using a composition for cryoprotection of exosomes containing biocompatible polymers, but also maintain the functional stability of exosomes when stored for a long time after freeze-drying. It was confirmed that it could be maintained.
  • composition of the present invention when using the composition of the present invention, not only can the problem of structural damage to exosomes caused by ultra-low temperature freezing in the existing long-term storage method described above be overcome, but also the use of DMSO, a cryoprotectant with organic toxicity, is eliminated. I confirmed that it can be done.
  • the term 'biocompatible polymer' refers to a large molecular substance with a molecular weight of approximately 10,000 Da or more that is not toxic to the human body when administered, and has biological functionality using excellent biocompatibility and the material's inherent biological activity. It can be used as a material.
  • the biocompatible polymer is hyaluronic acid, collagen, alginate, starch, chitosan, gelatin, and dextran. ), cellulose, alginic acid, chondroitin sulfate, and heparin, but is not limited thereto.
  • the biocompatible polymer may be hyaluronic acid.
  • HA glucosamine glycans
  • the repeating unit consisting of N-acetyl glucosamine and glucuronic acid is linear. It refers to a connected biopolymer material.
  • Hyaluronic acid is present in high concentrations in the extracellular matrix, connective tissue and skin, and in particular, maintains moisture in intercellular spaces, maintains cells based on forming a jelly-like matrix within tissues, maintains tissue lubricity and flexibility, and maintains tissue lubricity and flexibility. It has many functions, including resistance to external forces such as mechanical disturbance and prevention of cell infection. In addition, it is known to be involved in the storage and diffusion of cell growth factors and nutrients, and to be synthesized by keratinocytes and fibroblasts.
  • the composition for cryoprotection of exosomes may include 0.01 to 1.0 wt% (w/v) of hyaluronic acid polymer.
  • the freeze protection composition contains 0.01 to 1.0 wt% (w/v), 0.01 to 0.08 wt% (w/v), 0.01 to 0.06 wt% (w/v), 0.01 to 0.04 wt% of hyaluronic acid polymer.
  • the hyaluronic acid polymer may be included in an amount of 0.05 wt% (w/v).
  • it is not limited thereto, as long as it contains hyaluronic acid polymer within the above-mentioned range.
  • the exosome may be a stem cell-derived exosome.
  • the “stem cell” refers to an undifferentiated cell with self-replication ability and the ability to differentiate into two or more different types of cells, that is, stemness. These stem cells are largely divided into embryonic stem cells, adult stem cells, gametes, and cancer stem cells, which can be produced using embryos. Stem cells are cells extracted from the embryonic development process and refer to the cell mass stage before forming specific organs less than 14 days after fertilization. Recently, embryonic stem cells are also manufactured from normal cells through dedifferentiation. Therefore, any cell that can differentiate into all cells and tissues that make up the body is not limited thereto.
  • Adult stem cells are extracted from umbilical cord blood, bone marrow, fat, blood, etc.
  • Germ cells are cells that transmit genetic information to the next generation through reproduction. Humans include, but are not limited to, sperm and eggs.
  • the stem cells may be autologous or allogeneic, may be derived from any type of animal, including humans and non-human mammals, may be stem cells derived from adults, or may be stem cells derived from embryos. For example, it may be selected from the group consisting of embryonic stem cells, adult stem cells, and induced pluripotent stem cells, but is not limited thereto.
  • the type of the stem cell is not limited, but as an example that does not limit the present invention, it may be an adult stem cell, for example, an adult stem cell derived from human or animal tissue, or an adult stem cell derived from human or animal tissue. It may be selected from the group consisting of mesenchymal stem cells and mesenchymal stem cells derived from induced pluripotent stem cells derived from human or animal tissue, but is not limited thereto.
  • the human or animal tissue may be selected from the group consisting of umbilical cord, cord blood, blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta, but is not limited thereto.
  • the type of adult stem cells is not limited, but as an example that does not limit the present invention, mesenchymal stem cells, for example, umbilical cord, cord blood, blood, bone marrow, fat, muscle,
  • the mesenchymal stem cells may be derived from one or more types of tissues selected from the group consisting of nerves, skin, amniotic membrane, and placenta.
  • adipose tissue is known to be a rich source of stem cells with various potentials.
  • adipose-derived stem cells are stem cells isolated from adipose tissue that can differentiate into most mesenchymal cells such as adipocytes, osteoblasts, chondroblasts, and myofibrocytes, and are known as preadipocytes. It refers to cells that have been called stromal cells, multipotent adipose-derived cells, or adipose derived adult stem cells.
  • the adipose-derived stem cells can show therapeutic effects on various diseases such as arthritis and myocardial infarction, and the cell proliferation rate is fast and the procedure for separating cells from adipose tissue is relatively easy, which has the advantage of reducing the burden on patients. It is known that The adipose-derived stem cells generally refer to adipose-derived mesenchymal stem cells.
  • the mesenchymal stem cells may be adipose-derived mesenchymal stem cells (ADSCs) isolated from adipose tissue, and more specifically, human-derived adipose mesenchyme. It could be a stem cell.
  • ADSCs adipose-derived mesenchymal stem cells
  • 'stem cell-derived exosomes' secreted by stem cells contain various physiologically active factors and genetic materials, and are involved in regulating cell behavior such as cell migration, proliferation and differentiation, and cell differentiation and tissue regeneration.
  • Stem cell characteristics are reflected, and in particular, 'human fat-derived stem cell-derived exosomes' are well known as useful substances containing bioactive substances of various genetic information that have positive effects on human health.
  • the diameter of the exosome is 10 nm to 500 nm, 10 nm to 400 nm, 10 nm to 300 nm, 10 nm to 250 nm, 10 nm to 200 nm, and 10 nm to 150 nm. , 50 nm to 500 nm, 50 nm to 400 nm, 50 nm to 300 nm, 50 nm to 200 nm, 50 nm to 150 nm, or 80 nm to 140 nm, but is not limited thereto.
  • the exosomes are 1 x 10 9 to 1 x 10 12 , 5 x 10 9 to 5 x 10 12 , 1 x 10 per 1 mL of the cryoprotection composition of the exosomes.
  • 9 to 11 1 x 10 , 9 to 5 x 10, 9 to 1 x 10 , 9 to 1 x 10 , 10 to 5 x 10 , 9 to 5 x 10 It may include 1 x 10 11 pieces, or 1 x 10 10 pieces, but is not limited thereto.
  • 'freeze protection' refers to protecting exosomes from damage that may occur during the freezing process for long-term storage of exosomes to maintain the structure, function, physical form, and/or biological activity of exosomes. do.
  • a composition for cryoprotection of exosomes containing a biocompatible polymer is characterized in that it is capable of maintaining the stability of exosomes by protecting them from damage that may occur during the freezing process.
  • 'maintenance' refers to a state in which the stability of exosomes is preserved or continues to exist, or the increase or decrease thereof is delayed.
  • hyaluronic acid which is a biocompatible polymer of the composition, binds to the exosome surface due to the CD44 receptor-ligand action, thereby maintaining the structural stability of the exosome during the freezing process.
  • the 'structural stability of exosomes' refers to maintaining the spherical structural form of exosomes before and after the freezing process, and is bound to the hyaluronic acid polymer residue through specific binding between the hyaluronic acid of the composition and the exosomes. This can be achieved by providing space between exosome particles to minimize structural damage to the phospholipid membrane caused by aggregation between exosome particles that occurs during the freezing process.
  • the structural stability of exosomes when the structural stability of exosomes is maintained during the freezing process using the composition, the structural stability of the exosomes can be continuously maintained even during long-term storage.
  • the present inventors confirmed through transmission scanning microscopy that when stored for a long period of time after freeze-drying using the composition, the spherical vesicle shape of exosomes was maintained in a similar shape to the initial form, and the aggregation phenomenon between exosomes was also observed compared to the control group. In comparison, it was confirmed that it appeared less frequently.
  • the term 'long-term storage means storage for, for example, 2 weeks or more, 1 month or more, 2 months or more, 3 months or more, 4 months or more, 5 months or more, 6 months or more, or several years.
  • the 'long-term storage' may be applied differently depending on the storage temperature of exosomes using the composition of the present invention, for example, storage at 4°C for 6 months to 1 year. It may be, specifically, for 6 months to 11 months, for 6 months to 9 months, for 6 months to 7 months, for 7 months to 1 year, for 7 months to 11 months, for 7 months to 9 months, 7 months to 8 months, 8 months to 1 year, 8 months to 11 months, 8 months to 10 months, 8 months to 9 months, 9 months to 1 year, 9 months to 11 months, 9 months It may be storeable for 10 months to 1 year, 10 months to 1 year, 10 months to 11 months, or 11 months to 1 year, or, for example, 15 to 30 days at 40°C. Can be stored, specifically, for 15 to 25 days, 15 to 20 days, 20 to 30 days, 20 to 25 days, 25 to 30 days, but is not limited thereto. No.
  • storage under long-term accelerated conditions means storage at 4°C for 1 year, which corresponds to the same conditions as storage at 40°C for 30 days, so in the embodiment of the present invention, storage at 40°C for 30 days The effect of maintaining the stability of exosomes under these conditions was evaluated.
  • storage under long-term real-time conditions means storage at 4°C for 30 days.
  • the composition is capable of maintaining the functional stability of exosomes when stored for a long period of time after freeze-drying the exosomes.
  • the functional stability is measured based on the following indicators:
  • the above indicators can be measured to determine whether the functional stability of exosomes is maintained during long-term storage after freeze-drying.
  • the functional stability of the exosomes can be determined by measuring the degree to which the values of the indicators are maintained compared to the initial values when the exosomes are stored for a long period of time.
  • the evaluation of the functional stability of the exosomes can be made by observing that when the exosomes are stored for a long period of time, the indicator (a) is maintained at a level similar to the initial value or shows a low level of increase compared to the initial value, and the indicator (a) This can be achieved through b) to (e) being maintained at a level similar to the initial value or showing a low level of decrease compared to the initial value.
  • the composition of the present invention inhibits the increase in size of the exosomes.
  • composition of the present invention inhibits a decrease in the concentration, enzyme activity ability, or total protein amount of the exosomes.
  • the functional stability of the exosome may be that when the exosome is stored at 4° C. for 6 months to 1 year, the indicator (a) increases to within 15% of the initial value, for example, 15 %, within 10%, within 5%, within 4%, within 3%, within 2%, within 1%, or 0%, or when exosomes are stored at 40°C for 15 to 30 days. , the indicator may be increased within 10% of the initial value, for example, within 9%, within 7%, within 5%, within 3%, within 1%, or 0%.
  • the stability of the exosomes may be such that when the exosomes are stored at 4°C for 6 months to 1 year, the indicators (b) to (e) are reduced to within 20% of the initial value, for example may be within 19%, within 17%, within 15%, within 13%, within 11%, within 9%, within 7%, within 5%, within 3%, within 1%, or within 0%, or exosomes
  • the indicators (b) to (e) may be reduced to within 30% of the initial value, for example, within 28%, within 25%, and within 23%. It may be within, within 20%, within 18%, within 15%, within 13%, within 10%, within 8%, within 5%, within 3%, within 1%, or 0%.
  • the present inventors also compared indicators for evaluating the functional stability of exosomes using a composition that did not contain a biocompatible polymer or contained a general freeze-drying protective agent, such as trehalose, as a control group. analyzed. As a result, compared to the control group, the values of the indicators were maintained at a similar level to the initial value in the experimental group using the composition of the present invention, or showed a lower increase or decrease, thereby demonstrating the functional stability of the exosome according to the composition of the present invention. It was confirmed that this was maintained effectively.
  • the composition containing the biocompatible polymer of the present invention can maintain high exosome stability compared to the composition not containing the biocompatible polymer.
  • the structural stability of exosomes can be maintained during the freezing process, and the functional stability of exosomes can be maintained during long-term storage after the freezing process. there is.
  • Figure 1 is a schematic diagram showing that the exosome-hyaluronic acid composition of the present invention prevents membrane damage and maintains stability between exosomes during freezing through specific binding between exosomes and hyaluronic acid polymers.
  • Figure 2 shows the results of analyzing the specific binding force between exosomes and hyaluronic acid polymer by CD44 receptor-ligand.
  • Figure 3 shows the results of measuring the change in concentration of exosomes according to the hyaluronic acid content in the exosome-hyaluronic acid composition under accelerated conditions (40°C/30 days).
  • Figure 4 shows changes in (a) size, (b) concentration, (c) enzyme activity, and (d) protein amount of exosomes in the exosome-hyaluronic acid composition under accelerated conditions (40°C/30 days). Shows the results.
  • Figure 5 shows changes in (a) size, (b) concentration, (c) enzyme activity, and (d) protein amount of exosomes in the exosome-hyaluronic acid composition under real-time conditions (4°C/30 days). Shows the results.
  • Figure 6 shows a transmission scanning microscope image for morphological analysis of exosomes according to exosome composition.
  • Figure 7a shows the results of evaluating the cell migration ability of exosomes due to specific binding of exosomes and hyaluronic acid when storing exosomes.
  • Figure 7b shows the results of quantitative evaluation of Figure 7a.
  • Figure 8a shows the results of evaluating the ability to maintain the concentration of exosomes by exosome-hyaluronic acid specific binding during exosome storage.
  • Figure 8b shows the results of evaluating the ability to maintain the size of exosomes by exosome-hyaluronic acid specific binding during exosome storage.
  • % used to indicate the concentration of a specific substance means (weight/weight) % for solid/solid, (weight/volume) % for solid/liquid, and Liquid/liquid is (volume/volume) %.
  • exosomes derived from human adipose stem cells were extracted during the process of culturing human adipose stem cells.
  • human adipose stem cells were cultured in general culture medium (Gibco, Cat#: 11995065), and 24 hours before exosome extraction, they were cultured in serum-free, antibiotic-free, phenol red-free medium (Gibco, Cat#: 31053028). It was replaced and cultured for 24 hours.
  • general culture medium Gibco, Cat#: 11995065
  • phenol red-free medium Gibco, Cat#: 31053028
  • the cell culture supernatant was recovered and centrifuged primarily at 2,000 xg for 4 to 5 minutes and secondarily centrifuged at 10,000 xg for 4 to 30 minutes to remove cell debris and waste. Then, the recovered cell culture supernatant was first centrifuged at 3,000 Afterwards, exosomes were separated and purified by filtering the filtered cell culture supernatant using a tangential flow filtration (TFF) system using a 300 kDa filter.
  • TMF tangential flow filtration
  • Exosomes reacted with CD44 antibodies that is, exosomes with the CD44 receptor blocked, were prepared by mixing 1 mL of exosome solution ( 1.5x10 particles) with 10 ⁇ l of anti-CD44 antibody solution and reacting at 4°C for 3 hours. The binding force between exosomes and hyaluronic acid was measured using the same method as above.
  • the binding force of regular exosomes to hyaluronic acid polymer was measured to be more than two times higher than that of exosomes whose receptors were blocked by CD44 antibody. Through this, it was confirmed that the presence or absence of the CD44 receptor on the surface of the exosome actually had a significant effect on specific binding to the hyaluronic acid polymer.
  • freeze-dried formulation samples of compositions for each hyaluronic acid content were analyzed using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern) for 9 days under accelerated conditions at 40°C. , UK) was used to quantitatively analyze the change in exosome concentration according to the hyaluronic acid content in the composition.
  • NanoSight LM10 Malvern Instruments, Malvern
  • hyaluronic acid (MW: 1,000 kDa) polymer was dissolved step by step in 0.25 mL of 10 mM phosphate buffer solution by content using a centrifugal mixer for co-viscosity (step 1: 0 wt) %(w/v), Step 2: 0.005 wt%(w/v), Step 3: 0.01 wt%(w/v), Step 4: 0.05 wt%(w/v), Step 5: 0.1 wt%( w/v), step 6: 0.5 wt% (w/v)), mixed with 0.25 mL of exosome solution (1 x 10 9 particles) and lyophilized for 24 hours.
  • a sample dissolved in the same amount of 10 mM phosphate buffer solution containing 0.5 wt% (w/v) of trehalose and then freeze-dried was used.
  • the freeze-dried sample was dissolved in 0.5 mL of 10 mM phosphate buffer solution, then 0.25 mL of 400 U/mL hyaluronidase solution was added, and then incubated for 10 minutes at room temperature. It was reacted for several minutes and used as a sample solution for nanoparticle tracking analysis.
  • the hyaluronic acid content (step 4, 0.05 wt%) optimized in Example 2 was used under 'accelerated conditions for 30 days at 40°C', which corresponds to 'real-time conditions for 1 year at 4°C'.
  • a freeze-dried sample of the DPBS composition was used, a composition containing trehalose (0.05 wt%, Tre), a composition containing hyaluronic acid (0.05 wt%, HA), and a composition containing hyaluronic acid (0.05 wt%) and trehalose (0.05 wt%).
  • samples of the freeze-dried formulation of the composition were used as experimental groups, respectively.
  • the exosome concentration in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK), and the efficiency of maintaining the concentration of exosomes in the composition was determined by the decrease in exosome concentration compared to the initial concentration. It was evaluated through change in concentration.
  • the 4th stage hyaluronic acid-containing sample (HA) of the present invention showed a 35% decrease compared to the initial exosome concentration, which was compared to the sample containing nothing other than exosomes (
  • the concentration maintenance efficiency was 2.3 times higher than that of DPBS and 1.8 times higher than that of the trehalose-containing sample (Tre).
  • the size of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK), and the efficiency of maintaining the size of exosomes in the composition was determined by the size of the exosomes decreasing compared to the initial level. Evaluated through changes.
  • the concentration of exosomal acetylcholinesterase (AchE) was measured using the Amplite Colorimetric Acetylcholinesterase Assay Kit (AAT Bioquest, CA, US). Enzyme activity was evaluated. By measuring the change in the enzyme activity ability of the exosomes, which decreases compared to the initial level of the exosomes in the exosome-hyaluronic acid composition, it is possible to evaluate whether the composition can maintain the enzyme activity ability of the exosomes.
  • the hyaluronic acid-containing composition of the present invention was very effective in maintaining the total protein amount of exosomes even under long-term accelerated conditions.
  • the exosome-hyaluronic acid composition containing the optimized hyaluronic acid content (step 4, 0.05 wt%) in Example 2 was used in the present invention. We sought to evaluate the effect of maintaining exosome stability.
  • a freeze-dried sample of the DPBS composition was used, and a trehalose-containing (0.05 wt%) composition (Tre), a hyaluronic acid-containing (0.05 wt%) composition, hyaluronic acid (0.05 wt%), and trehalose (0.05 wt%) were used.
  • Re trehalose-containing composition
  • a hyaluronic acid-containing composition 0.05 wt%)
  • hyaluronic acid 0.05 wt%)
  • trehalose 0.05 wt%)
  • the concentration of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Mlavern Instruments, Malvern, UK).
  • the hyaluronic acid-containing sample (HA) of the present invention showed a 20% decrease compared to the initial exosome concentration, which was compared to the sample containing nothing except exosomes (DPBS).
  • the concentration maintenance efficiency was 2.1 times higher than that of the trehalose-containing sample (Tre) and 1.7 times higher than that of the trehalose-containing sample (Tre).
  • the hyaluronic acid-containing composition of the present invention is very useful in stably maintaining exosomes under long-term real-time conditions.
  • the size of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK).
  • the hyaluronic acid-containing composition of the present invention is useful in stably maintaining the size of exosomes under long-term real-time conditions.
  • the enzymatic activity of exosomes in the composition was measured using an acetylcholine degrading enzyme assay.
  • the hyaluronic acid-containing composition of the present invention is very useful not only for maintaining the concentration of exosomes under long-term real-time conditions, but also for maintaining the enzymatic activity ability of exosomes. there was.
  • the total amount of protein of exosomes in the composition was measured using protein quantification (BCA assay). The results are shown in Figure 5d.
  • the hyaluronic acid-containing composition of the present invention is very effective in maintaining the total protein amount of exosomes even under long-term real-time conditions.
  • the exosome morphology of the hyaluronic acid-free sample (DPBS) and the trehalose-containing sample (Tre) shows a distorted, irregular shape in the form of a spherical endoplasmic reticulum, while the hyaluronic acid-containing sample of the present invention (HA, It was confirmed that the exosomes (HA+Tre) maintained a spherical shape similar to the exosomes on day 0. In addition, in terms of aggregation between exosomes, it was confirmed that less aggregation between exosomes occurred in the hyaluronic acid-containing sample (HA) compared to the control samples.
  • the hyaluronic acid-containing composition of the present invention was very effective in maintaining not only the function but also the shape of exosomes even under long-term accelerated conditions.
  • a lyophilized formulation sample of the DPBS composition was used as a negative control group, and a lyophilized formulation sample of a trehalose-containing (0.05 wt%, Tre) composition and a hyaluronic acid-containing (0.05 wt%, HA) composition was used as an experimental group, respectively. Additionally, , the CD44 receptor-blocked exosome prepared in Example 1 was applied and used as a negative control for each experimental group.
  • cell migration ability was evaluated to confirm the maintenance of exosome stability by specific binding to hyaluronic acid polymer during long-term storage of exosomes, that is, the ability to maintain the functional properties of exosomes.
  • an antigen-antibody reaction using an anti-CD44 antibody was performed under accelerated conditions (hyaluronic acid-free treatment group (DPBS) for 10 days at 40°C, trehalose treatment group ( Tre), and changes in the concentration and size of exosomes in the hyaluronic acid treatment group (HA) were measured, wherein the experimental and comparison groups were regular exosomes and exosomes that blocked the CD44 receptor that specifically binds to hyaluronic acid, respectively. was used.
  • DPBS hyaluronic acid-free treatment group
  • Tre trehalose treatment group
  • HA hyaluronic acid treatment group
  • the maintenance of functional/structural stability of exosomes according to the exosome-hyaluronic acid composition during long-term storage of exosomes of the present invention is an effect caused by CD44 receptor-ligand binding between exosomes and hyaluronic acid. I was able to confirm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a composition for cryoprotection of exosomes, the composition including a biocompatible polymer including a network structure. By using the composition for cryoprotection of exosomes of the present invention, the structural stability of exosomes can be maintained during a freezing operation, and the functional stability of exosomes can be maintained during long-term preservation following a freezing operation.

Description

네트워크 구조를 포함하는 생체적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물Composition for cryoprotection of exosomes comprising a biocompatible polymer having a network structure
본 발명은 대한민국 보건복지부의 지원 하에서 과제번호 HI20C0437020022에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국보건산업진흥원, 연구사업명은 “첨단의료기술개발”, 연구과제명은 “줄기세포 엑소좀의 유효성 평가 및 작용기전 규명”, 주관기관은 성균관대학교산학협력단, 연구기간은 2022.01.01-2022.12.31이다.The present invention was made under project number HI20C0437020022 under the support of the Ministry of Health and Welfare of the Republic of Korea. The specialized research management organization for the project is the Korea Health Industry Development Institute, the research project name is “Advanced Medical Technology Development,” and the research project name is “Effectiveness of Stem Cell Exosomes.” “Evaluation and identification of mechanism of action”, the host organization is Sungkyunkwan University Industry-Academic Cooperation Foundation, and the research period is 2022.01.01-2022.12.31.
본 발명은 또한 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2021R1A4A1032782에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “집단연구지원(R&D)”, 연구과제명은 “허혈성 질환 치료를 위한 줄기세포 유래 인공엑소좀 소포체 개발”, 주관기관은 성균관대학교, 연구기간은 2021.06.01-2022.02.28이다.This invention was also made under project number 2021R1A4A1032782 under the support of the Ministry of Science and ICT of the Republic of Korea. The research management agency for the project was the National Research Foundation of Korea, the research project name was “Collective Research Support (R&D),” and the research project name was “Ischemic Disease.” “Development of stem cell-derived artificial exosome vesicles for treatment”, the host institution is Sungkyunkwan University, and the research period is 2021.06.01-2022.02.28.
또한, 본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 21A0503L1-11에 의해 이루어진 것으로서, 상기 과제의 연구관리 전문기관은 한국연구재단, 연구사업명은 “범부처재생의료기술개발사업(R&D)”, 연구과제명은 “염증성 면역세포 표적형 줄기세포 유래 세포외소포체 기반 류마티스 관절염 치료”, 주관기관은 성균관대학교, 연구기간은 2022.02.01-2022.12.31이다.In addition, this invention was made under project number 21A0503L1-11 under the support of the Ministry of Science and ICT of the Republic of Korea. The research management agency for the project was the National Research Foundation of Korea, and the research project name was “Pan-Ministry Regenerative Medicine Technology Development Project (R&D).” , the research project title is “Treatment of rheumatoid arthritis based on extracellular vesicles derived from inflammatory immune cell-targeted stem cells”, the host institution is Sungkyunkwan University, and the research period is 2022.02.01-2022.12.31.
본 특허출원은 2022년 9월 7일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2022-0113811호에 대하여 우선권을 주장하며, 상기 특허출원의 개시사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2022-0113811 filed with the Korean Intellectual Property Office on September 7, 2022, the disclosure of which is incorporated herein by reference.
본 발명은 네트워크 구조를 포함하는 생체적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물에 관한 것이다.The present invention relates to a composition for cryoprotection of exosomes, comprising a biocompatible polymer having a network structure.
엑소좀(exosome)은 세포로부터 분비되는 30-200 nm 크기를 가지는 막 소포체로서 혈액, 소변 등을 포함한 체액에서 대부분 존재하고, 기원 세포(공여세포) 특유의 생물학적 기능을 반영하는 세포특이적 구성 성분을 함유하며, 인지질, mRNA, miRNA, DNA 외에도 다양한 수용성 단백질, 외재성 단백질 및 막관통 단백질 성분 등생물학적 활성을 보이는 다양한 물질을 포함한다. Exosomes are membrane vesicles with a size of 30-200 nm secreted from cells and are mostly present in body fluids, including blood and urine, and are cell-specific components that reflect the biological functions unique to the cell of origin (donor cell). It contains a variety of substances showing biological activity, such as phospholipids, mRNA, miRNA, and DNA, as well as various soluble proteins, extrinsic proteins, and transmembrane protein components.
엑소좀의 지질이중층은 기원 세포(공여세포)와 같은 인지질 이중막 구조로 되어 있으며, 세포가 세포외로 분비하는 물질의 구성체로 생리 활성 물질을 수용세포에 전달하여 세포-세포간의 커뮤니케이션 및 세포성 면역 중재 등 세포의 기능을 조절하는 신호전달 중재자 역할을 수행하는 것으로 알려져 있다.The lipid bilayer of exosomes has a phospholipid bilayer structure similar to that of the cell of origin (donor cell), and is a component of substances secreted extracellularly by cells, delivering bioactive substances to recipient cells to promote cell-cell communication and cellular immunity. It is known to play the role of a signal transduction mediator that regulates cell functions such as mediation.
그러나, 엑소좀은 장기간 보관에 있어서 생체물질 자체의 한계로 인해, 물성 및 안정성에 변화가 생기고 엑소좀의 생리 활성 능력과 관련된 안정성이 저하될 수 있는 문제점을 지니고 있다.However, exosomes have problems with long-term storage, such as changes in physical properties and stability due to limitations of the biological material itself, and stability related to the physiological activity of exosomes may be reduced.
현재까지 엑소좀의 장기간 보관에 대한 연구 개발이 활발이 이루어지고 있으며, 대표적인 엑소좀의 장기 보관법은 초저온 냉동법에 의한 것이다. 이는 엑소좀을 급속으로 냉동시켜 온도변화에 의한 생체물질의 변성을 막아주는 효과를 갖지만, 동결 과정에서 엑소좀 내 수분의 결정 형성으로 엑소좀의 구조적 손상을 발생시킨다는 단점이 있다. 한편, 대표적 동결보호제인 DMSO를 세포막 내부로 침투시켜 물 분자를 대체함으로써 결정 형성을 억제하여 초저온 냉동법에 의한 엑소좀의 구조적 손상을 방지할 수 있으나, 이는 유기물질 자체의 잠재적 독성에 대한 문제점을 가지고 있다.To date, research and development on long-term storage of exosomes has been actively conducted, and the representative long-term storage method of exosomes is ultra-low temperature freezing. This has the effect of rapidly freezing exosomes and preventing denaturation of biological materials due to temperature changes, but has the disadvantage of causing structural damage to exosomes due to the formation of water crystals within the exosomes during the freezing process. On the other hand, DMSO, a representative cryoprotectant, can penetrate into the cell membrane and replace water molecules, thereby suppressing crystal formation and preventing structural damage to exosomes caused by cryogenic freezing. However, this has the problem of potential toxicity of the organic material itself. there is.
따라서, 엑소좀의 생리활성 능력과 관련된 안정성을 유지하면서 엑소좀을 장기관 보관할 수 있는 새로운 동결보호 기술의 개발이 필요한 실정이다.Therefore, there is a need to develop a new cryoprotection technology that can store exosomes long-term while maintaining the stability associated with the physiological activity of exosomes.
본 발명자들은 엑소좀의 생리활성 능력과 관련된 안정성을 유지하면서 엑소좀을 장기간 보관할 수 있는 기술을 개발하고자 예의 연구 노력하였다. 그 결과, 네트워크 구조를 포함하는 생체적합성 고분자를 포함하는 엑소좀의 동결보호용 조성물을 제조하고, 이를 장기간 보관 후에도 엑소좀의 기능이 안정적으로 유지되는 것을 확인함으로써, 본 발명을 완성하였다.The present inventors have made extensive research efforts to develop a technology that can store exosomes for a long period of time while maintaining the stability related to the physiological activity of exosomes. As a result, the present invention was completed by preparing a composition for cryoprotection of exosomes containing a biocompatible polymer with a network structure and confirming that the function of exosomes was stably maintained even after long-term storage.
따라서, 본 발명의 목적은 네트워크 구조를 포함하는 생체적합성 고분자를 포함하는 엑소좀의 동결 보호용 조성물을 제공하는 것이다.Therefore, the purpose of the present invention is to provide a composition for cryoprotection of exosomes containing a biocompatible polymer having a network structure.
본 발명의 다른 목적은 상기 엑소좀의 동결 보호용 조성물을 이용하여 엑소좀의 장기간 보관시 안정성을 제공하는 것이다.Another object of the present invention is to provide stability to exosomes during long-term storage using the composition for cryoprotection of exosomes.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become clearer from the following detailed description, claims, and drawings.
'엑소좀(exosome)'은 다양한 세포들로부터 분비되는 지질-이중층으로 구성된 막 구조를 갖는, 대략 30-200 nm 크기의 소포체를 의미한다. 엑소좀 내부에는 엑소좀 카고(cargo)라고 불리는 단백질, 핵산(예컨대, mRNA, miRNA, DNA) 및 광범위한 신호전달 요소들(signaling factors)이 포함되어 있다. 'Exosome' refers to an endoplasmic reticulum of approximately 30-200 nm in size, which has a membrane structure composed of a lipid-bilayer secreted from various cells. Inside exosomes, they contain proteins called exosomal cargo, nucleic acids (e.g., mRNA, miRNA, DNA), and a wide range of signaling factors.
상기 엑소좀은 세포가 분비하는 세포 간 신호전달 매개체로서, 이를 통해 전달된 다양한 세포 신호는 표적 세포의 활성화, 성장, 이동, 분화, 탈분화, 사멸(apoptosis), 괴사(necrosis)를 포함한 세포 행동을 조절한다고 알려져 있다. 특히, 유래한 세포의 특성에 따라 항노화, 조직재생 및 각종 질병에 관여하는 세포의 기능을 조절하기 때문에 다양한 질환에 적용 가능한 신개념 바이오 소재로 사용될 수 있다. The exosome is an intercellular signaling mediator secreted by cells, and various cell signals transmitted through it affect cell behavior including activation, growth, migration, differentiation, dedifferentiation, apoptosis, and necrosis of target cells. It is known to control In particular, it can be used as a new concept bio material applicable to various diseases because it regulates the functions of cells involved in anti-aging, tissue regeneration, and various diseases depending on the characteristics of the derived cells.
그러나, 엑소좀은 보관 기간 및 방법에 따라 전체적인 엑소좀의 물성 및 안정성에 변화가 생기고 엑소좀의 유효한 생리 활성 물질들의 활성이 저하될 수 있는 문제점이 있다. 이에 엑소좀에 포함되어 있는 특이적인 유전물질과 생리 활성 인자들을 효과적으로 사용하기 위하여, 대표적인 엑소좀의 장기보관법인 초저온 냉동법을 적용할 수 있을 뿐만 아니라, 잠재적 독성 위험이 있는 DMSO를 동결보호제로 사용하여 초저온 냉동법에 따른 엑소좀의 구조적 손상을 방지하며 초저온 냉동법을 적용할 수도 있다.However, exosomes have problems in that the overall physical properties and stability of exosomes may change depending on the storage period and method, and the activity of the effective physiologically active substances of exosomes may be reduced. Therefore, in order to effectively use the specific genetic material and physiologically active factors contained in exosomes, not only can ultra-low temperature freezing, a representative long-term storage method of exosomes, be applied, but also DMSO, which has the potential for toxicity, can be used as a cryoprotectant. Structural damage to exosomes caused by ultra-low temperature freezing can be prevented, and ultra-low temperature freezing can also be applied.
따라서, 본 발명의 일 양태에 따르면, 본 발명은 네트워크 구조를 포함하는 생체 적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물을 제공한다.Therefore, according to one aspect of the present invention, the present invention provides a composition for cryoprotection of exosomes, comprising a biocompatible polymer having a network structure.
본 발명자들은 엑소좀의 동결 과정에서 생체 적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물을 사용하여 동결 과정에서 엑소좀의 구조적 안정성을 유지시킬 뿐 아니라, 동결 건조 후 장기간 보관시 엑소좀의 기능적 안정성을 유지시킬 수 있음을 확인하였다.The present inventors not only maintain the structural stability of exosomes during the freezing process by using a composition for cryoprotection of exosomes containing biocompatible polymers, but also maintain the functional stability of exosomes when stored for a long time after freeze-drying. It was confirmed that it could be maintained.
특히, 본 발명의 조성물을 사용하는 경우, 상술한 기존의 장기보관법에 있어서, 초저온 냉동시 유발되는 엑소좀의 구조적 손상 문제를 극복할 수 있을 뿐 아니라, 유기독성을 지닌 동결보호제 DMSO의 사용을 배제할 수 있음을 확인하였다.In particular, when using the composition of the present invention, not only can the problem of structural damage to exosomes caused by ultra-low temperature freezing in the existing long-term storage method described above be overcome, but also the use of DMSO, a cryoprotectant with organic toxicity, is eliminated. I confirmed that it can be done.
본 명세서에서 용어 '생체 적합성 고분자'는 투여했을 때, 인체에 독성을 나타내지 않는 분자량이 대략 10,000 Da 이상인 큰 분자 물질을 의미하는 것으로, 우수한 생체 적합성 및 물질 고유의 생물학적 활성을 이용하여 생물학적 기능성을 가지는 재료로 활용할 수 있다.As used herein, the term 'biocompatible polymer' refers to a large molecular substance with a molecular weight of approximately 10,000 Da or more that is not toxic to the human body when administered, and has biological functionality using excellent biocompatibility and the material's inherent biological activity. It can be used as a material.
본 발명의 일 구현예에 있어서, 상기 생체 적합성 고분자는 히알루론산(hyaluronic acid), 콜라겐(collagen), 알지네이트(alginate), 녹말(starch), 키토산(chitosan), 젤라틴(gelatin), 덱스트란(dextran), 셀룰로오스(cellulose), 알긴산(alginic acid), 콘드로이틴 설페이트(chondroitin sulfate), 및 헤파린(heparin)으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. In one embodiment of the present invention, the biocompatible polymer is hyaluronic acid, collagen, alginate, starch, chitosan, gelatin, and dextran. ), cellulose, alginic acid, chondroitin sulfate, and heparin, but is not limited thereto.
본 발명의 구체적인 구현예에 있어서, 상기 생체 적합성 고분자는 히알루론산(hyaluronic acid)일 수 있다.In a specific embodiment of the present invention, the biocompatible polymer may be hyaluronic acid.
본 명세서에서 용어 '히알루론산(hyaluronic acid, HA)'은 글루코사민글라이칸(glycosaminoglycan)의 하나로서, N-아세틸 글루코사민(N-acetyl glucosamine) 및 글루쿠론산(Glucuronic acid)으로 이루어진 반복 단위가 선형으로 연결되어 있는 생체 고분자 물질을 의미한다. 히알루론산은 세포 외 기질이나 결합조직 및 피부에 고농도로 존재하며, 특히, 세포 간극에서의 수분 유지, 조직 내의 젤리 형상의 매트릭스를 형성하는 것에 기초하는 세포의 유지, 조직의 윤활성과 유연성의 유지, 기계적 장해 등의 외력에 대한 저항, 및 세포 감염의 방지 등 많은 기능을 가지고 있다. 이 외에도 세포성장인자 및 영양성분의 저장 및 확산에 관여하고, 각질형성세포와 섬유아세포에 의해 합성되는 것으로 알려져 있다.In this specification, the term 'hyaluronic acid (HA)' is one of glucosamine glycans, and the repeating unit consisting of N-acetyl glucosamine and glucuronic acid is linear. It refers to a connected biopolymer material. Hyaluronic acid is present in high concentrations in the extracellular matrix, connective tissue and skin, and in particular, maintains moisture in intercellular spaces, maintains cells based on forming a jelly-like matrix within tissues, maintains tissue lubricity and flexibility, and maintains tissue lubricity and flexibility. It has many functions, including resistance to external forces such as mechanical disturbance and prevention of cell infection. In addition, it is known to be involved in the storage and diffusion of cell growth factors and nutrients, and to be synthesized by keratinocytes and fibroblasts.
본 발명의 일 구현예에 있어서, 상기 엑소좀의 동결 보호용 조성물은 히알루론산 고분자를 0.01 내지 1.0 wt%(w/v) 포함하는 것일 수 있다. 구체적으로, 상기 동결 보호용 조성물은 히알루론산 고분자를 0.01 내지 1.0 wt%(w/v), 0.01 내지 0.08 wt%(w/v), 0.01 내지 0.06 wt%(w/v), 0.01 내지 0.04 wt%(w/v), 0.02 내지 1.0 wt%(w/v), 0.02 내지 0.08 wt%(w/v), 0.02 내지 0.06 wt%(w/v), 0.02 내지 0.04 wt%(w/v), 0.04 내지 1.0 wt%(w/v), 0.04 내지 0.08 wt%(w/v), 0.04 내지 0.06 wt%(w/v), 0.06 내지 1.0 wt%(w/v), 0.06 내지 0.08 wt%(w/v) 또는 0.08 내지 1.0 wt%(w/v) 포함하는 것일 수 있다. In one embodiment of the present invention, the composition for cryoprotection of exosomes may include 0.01 to 1.0 wt% (w/v) of hyaluronic acid polymer. Specifically, the freeze protection composition contains 0.01 to 1.0 wt% (w/v), 0.01 to 0.08 wt% (w/v), 0.01 to 0.06 wt% (w/v), 0.01 to 0.04 wt% of hyaluronic acid polymer. (w/v), 0.02 to 1.0 wt%(w/v), 0.02 to 0.08 wt%(w/v), 0.02 to 0.06 wt%(w/v), 0.02 to 0.04 wt%(w/v), 0.04 to 1.0 wt% (w/v), 0.04 to 0.08 wt% (w/v), 0.04 to 0.06 wt% (w/v), 0.06 to 1.0 wt% (w/v), 0.06 to 0.08 wt% ( w/v) or 0.08 to 1.0 wt% (w/v).
보다 구체적으로, 상기 히알루론산 고분자는 0.05 wt%(w/v) 포함될 수 있다. 그러나, 본 발명의 엑소좀 동결 보호용 조성물을 제조하는 경우, 상술한 범위 내의 히알루론산 고분자를 포함하는 것이라면, 이에 제한되지 않는다.More specifically, the hyaluronic acid polymer may be included in an amount of 0.05 wt% (w/v). However, when preparing the composition for exosome cryoprotection of the present invention, it is not limited thereto, as long as it contains hyaluronic acid polymer within the above-mentioned range.
본 발명의 일 구현예에 있어서, 상기 엑소좀은 줄기세포 유래 엑소좀일 수 있다.In one embodiment of the present invention, the exosome may be a stem cell-derived exosome.
상기 "줄기세포(stem cell)"는 자기 복제 능력을 가지면서 두 개 이상의 다른 종류의 세포로 분화할 수 있는 능력, 즉, 줄기세포성(stemness)을 가진 미분화 세포를 의미한다. 이러한 줄기세포는 크게 배아를 이용하여 제조할 수 있는 배아줄기세포(embryonic stem cell), 성체줄기세포(adult stem cell), 생식세포(gamete), 암 줄기세포(cancer stem cell) 등으로 나뉘며, 배아줄기세포는 배아의 발생과정에서 추출한 세포로서, 수정 후 14일이 안된 상태의 구체적 장기를 형성하기 이전의 세포 덩어리 단계를 말하며, 최근에는 역분화를 통하여 정상세포로부터 배아줄기세포를 제조하기도 한다. 따라서, 신체를 이루는 모든 세포와 조직으로 분화할 수 있는 세포라면 이에 제한되지 않는다. 성체줄기세포는 제대혈, 골수, 지방, 혈액 등으로부터 추출해 낸 것으로 뼈, 간, 혈액 등 구체적 장기의 세포로 분화되기 직전의 원시세포를 의미하며, 필요한 때에 신체 내 조직으로 발달할 수 있는 능력을 보유한 미분화 상태의 세포를 의미한다. 생식세포란, 생식을 통해서 유전 정보를 다음 세대로 전달하는 세포로서, 인간에게는 정자와 난자가 있으나, 이에 제한되지 않는다.The “stem cell” refers to an undifferentiated cell with self-replication ability and the ability to differentiate into two or more different types of cells, that is, stemness. These stem cells are largely divided into embryonic stem cells, adult stem cells, gametes, and cancer stem cells, which can be produced using embryos. Stem cells are cells extracted from the embryonic development process and refer to the cell mass stage before forming specific organs less than 14 days after fertilization. Recently, embryonic stem cells are also manufactured from normal cells through dedifferentiation. Therefore, any cell that can differentiate into all cells and tissues that make up the body is not limited thereto. Adult stem cells are extracted from umbilical cord blood, bone marrow, fat, blood, etc. and refer to primitive cells just before differentiation into cells of specific organs such as bone, liver, and blood, and have the ability to develop into tissues within the body when necessary. It refers to cells in an undifferentiated state. Germ cells are cells that transmit genetic information to the next generation through reproduction. Humans include, but are not limited to, sperm and eggs.
상기 줄기세포는 자가 또는 동종 유래 줄기세포일 수 있고, 인간 및 비인간 포유류를 포함한 임의 유형의 동물 유래일 수 있으며, 성체로부터 유래된 줄기세포일 수 있고, 배아로부터 유래된 줄기세포일 수 있다. 예를 들어, 배아 줄기세포, 성체줄기세포 및 유도만능줄기세포로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다. The stem cells may be autologous or allogeneic, may be derived from any type of animal, including humans and non-human mammals, may be stem cells derived from adults, or may be stem cells derived from embryos. For example, it may be selected from the group consisting of embryonic stem cells, adult stem cells, and induced pluripotent stem cells, but is not limited thereto.
구체적으로, 상기 줄기세포의 종류는 제한되지 않으나, 본 발명을 한정하지 않는 하나의 예시로서, 성체줄기세포일 수 있으며, 예를 들어, 인간 또는 동물 조직 기원의 성체줄기세포, 인간 또는 동물 조직 유래 중간엽 줄기세포, 인간 또는 동물 조직 기원의 유도만능줄기세포로부터 유래된 중간엽 줄기세포로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.Specifically, the type of the stem cell is not limited, but as an example that does not limit the present invention, it may be an adult stem cell, for example, an adult stem cell derived from human or animal tissue, or an adult stem cell derived from human or animal tissue. It may be selected from the group consisting of mesenchymal stem cells and mesenchymal stem cells derived from induced pluripotent stem cells derived from human or animal tissue, but is not limited thereto.
상기 인간 또는 동물 조직은 제대, 제대혈, 혈액, 골수, 지방, 근육, 신경, 피부, 양막 및 태반 등으로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않는다.The human or animal tissue may be selected from the group consisting of umbilical cord, cord blood, blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta, but is not limited thereto.
보다 구체적으로, 본 발명에서 상기 성체줄기세포의 종류는 제한되지 않으나, 본 발명을 한정하지 않는 하나의 예시로서, 중간엽 줄기세포, 예를 들어, 제대, 제대혈, 혈액, 골수, 지방, 근육, 신경, 피부, 양막 및 태반 등으로 이루어진 군으로부터 선택되는 1종 이상의 조직으로부터 유래된 중간엽 줄기세포일 수 있다.More specifically, in the present invention, the type of adult stem cells is not limited, but as an example that does not limit the present invention, mesenchymal stem cells, for example, umbilical cord, cord blood, blood, bone marrow, fat, muscle, The mesenchymal stem cells may be derived from one or more types of tissues selected from the group consisting of nerves, skin, amniotic membrane, and placenta.
중간엽 줄기세포는 상술한 다양한 부분으로부터 얻을 수 있으나, 그 중에 지방 조직은 다양한 잠재성을 갖는 줄기세포의 풍부한 공급원으로 알려져 있다. 구체적으로, 지방 유래 줄기세포(adipose-derived stem cell, ASC)는 지방세포, 골모세포, 연골모세포, 근섬유세포 등 대부분의 중간엽 세포로 분화할 수 있는 지방 조직으로부터 분리된 줄기세포로서, 지방전구세포, 기질세포, 다분화능 지방유래 세포(multipotent adipose-derived cells) 또는 지방유래 성체줄기세포(adipose derived adult stem cell) 등으로 불려온 세포를 의미한다. 특히, 상기 지방 유래 줄기세포는 관절염, 심근 경색 등 다양한 질병에 대한 치료 효과를 나타낼 수 있으며, 세포 증식 속도가 빠르고 지방 조직에서 세포를 분리하는 절차가 비교적 용이하여 환자의 부담을 줄여주는 이점이 있는 것으로 알려져 있다. 상기 지방 유래 줄기세포는 통상적으로 지방 유래 중간엽 줄기세포를 의미한다.Mesenchymal stem cells can be obtained from various parts described above, but among them, adipose tissue is known to be a rich source of stem cells with various potentials. Specifically, adipose-derived stem cells (ASC) are stem cells isolated from adipose tissue that can differentiate into most mesenchymal cells such as adipocytes, osteoblasts, chondroblasts, and myofibrocytes, and are known as preadipocytes. It refers to cells that have been called stromal cells, multipotent adipose-derived cells, or adipose derived adult stem cells. In particular, the adipose-derived stem cells can show therapeutic effects on various diseases such as arthritis and myocardial infarction, and the cell proliferation rate is fast and the procedure for separating cells from adipose tissue is relatively easy, which has the advantage of reducing the burden on patients. It is known that The adipose-derived stem cells generally refer to adipose-derived mesenchymal stem cells.
따라서, 본 발명의 구체적인 구현예에 있어서, 상기 중간엽 줄기세포는 지방 조직으로부터 분리된 지방 유래 중간엽 줄기세포(adipose-derived stem cells, ADSCs)일 수 있으며, 보다 구체적으로, 인간 유래 지방 중간엽 줄기세포일 수 있다. 많은 연구에 따르면, 줄기세포에서 분비되는 '줄기세포 유래 엑소좀'은 여러 생리 활성 인자 및 유전물질들을 함유하고 있어 세포의 이동, 증식 및 분화와 같은 세포 거동 조절, 및 세포 분화와 조직 재생과 관련된 줄기세포 특성이 반영되어 있으며, 특히, '인간 지방 유래 줄기세포 유래 엑소좀'은 인체 건강에 긍정적인 효과를 가져오는 다양한 유전적 정보의 생리 활성 물질을 담지한 유용한 물질로 잘 알려져 있다.Therefore, in a specific embodiment of the present invention, the mesenchymal stem cells may be adipose-derived mesenchymal stem cells (ADSCs) isolated from adipose tissue, and more specifically, human-derived adipose mesenchyme. It could be a stem cell. According to many studies, 'stem cell-derived exosomes' secreted by stem cells contain various physiologically active factors and genetic materials, and are involved in regulating cell behavior such as cell migration, proliferation and differentiation, and cell differentiation and tissue regeneration. Stem cell characteristics are reflected, and in particular, 'human fat-derived stem cell-derived exosomes' are well known as useful substances containing bioactive substances of various genetic information that have positive effects on human health.
본 발명에 일 구현예에 있어서, 상기 엑소좀의 직경은 10 nm 내지 500 nm, 10 nm 내지 400 nm, 10 nm 내지 300 nm, 10 nm 내지 250 nm, 10 nm 내지 200 nm, 10 nm 내지 150 nm, 50 nm 내지 500 nm, 50 nm 내지 400 nm, 50 nm 내지 300 nm, 50 nm 내지 200 nm, 50 nm 내지 150 nm, 또는 80 nm 내지 140 nm일 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the diameter of the exosome is 10 nm to 500 nm, 10 nm to 400 nm, 10 nm to 300 nm, 10 nm to 250 nm, 10 nm to 200 nm, and 10 nm to 150 nm. , 50 nm to 500 nm, 50 nm to 400 nm, 50 nm to 300 nm, 50 nm to 200 nm, 50 nm to 150 nm, or 80 nm to 140 nm, but is not limited thereto.
본 발명의 일 구현예에 있어서, 상기 엑소좀은 상기 엑소좀의 동결 보호용 조성물 1 mL 당 1 x 109개 내지 1 x 1012개, 5 x 109개 내지 5 x 1012개, 1 x 109개 내지 1 x 1011개, 5 x 109개 내지 5 x 1011개, 1 x 109개 내지 1 x 1010개, 1 x 109개 내지 5 x 1010개, 5 x 109개 내지 1 x 1011개, 또는 1 x 1010개가 포함될 수 있으나, 이에 제한되지 않는다.In one embodiment of the present invention, the exosomes are 1 x 10 9 to 1 x 10 12 , 5 x 10 9 to 5 x 10 12 , 1 x 10 per 1 mL of the cryoprotection composition of the exosomes. 9 to 11 1 x 10 , 9 to 5 x 10, 9 to 1 x 10 , 9 to 1 x 10 , 10 to 5 x 10 , 9 to 5 x 10 It may include 1 x 10 11 pieces, or 1 x 10 10 pieces, but is not limited thereto.
본 명세서에서 용어 '동결 보호'는 엑소좀의 장기간 보관을 위한 동결 과정에서 발생할 수 있는 손상으로부터 엑소좀을 보호하여 엑소좀의 구조, 기능, 물리적 형태, 및/또는 생물학적 활성을 유지하도록 하는 것을 의미한다.As used herein, the term 'freeze protection' refers to protecting exosomes from damage that may occur during the freezing process for long-term storage of exosomes to maintain the structure, function, physical form, and/or biological activity of exosomes. do.
본 발명의 일 구현예에 있어서, 생체 적합성 고분자를 포함하는 엑소좀의 동결 보호용 조성물은 엑소좀의 동결 과정에서 발생할 수 있는 손상으로부터 보호하여 엑소좀의 안정성을 유지시킬 수 있는 것을 특징으로 한다.In one embodiment of the present invention, a composition for cryoprotection of exosomes containing a biocompatible polymer is characterized in that it is capable of maintaining the stability of exosomes by protecting them from damage that may occur during the freezing process.
본 명세서에서 용어 '유지'는 엑소좀의 안정성이 그대로 보존되거나 계속해서 존재하거나, 이의 증감이 지연되는 상태를 의미한다.As used herein, the term 'maintenance' refers to a state in which the stability of exosomes is preserved or continues to exist, or the increase or decrease thereof is delayed.
구체적으로, 본 발명의 일 구현예에 있어서, 상기 조성물의 생체 적합성 고분자인 히알루론산은 엑소좀 표면과의 CD44 수용체-리간드 작용으로 인해 상호간 결합함으로써 동결 과정에서 엑소좀의 구조적 안정성을 유지시킬 수 있다.Specifically, in one embodiment of the present invention, hyaluronic acid, which is a biocompatible polymer of the composition, binds to the exosome surface due to the CD44 receptor-ligand action, thereby maintaining the structural stability of the exosome during the freezing process. .
상기 '엑소좀의 구조적 안정성'은 동결 과정 전후 엑소좀의 구형의 구조적 형태를 유지하는 것을 의미하는 것으로, 상기 조성물의 히알루론산과 엑소좀의 상호간 특이적 결합을 통해 히알루론산 고분자 잔기에 결합되어 있는 엑소좀 입자 간의 공간을 제공하여 동결 과정에서 발생하는 엑소좀 입자 간의 응집 현상에 의한 인지질 막의 구조적 손상을 최소화시킴으로써 얻을 수 있다.The 'structural stability of exosomes' refers to maintaining the spherical structural form of exosomes before and after the freezing process, and is bound to the hyaluronic acid polymer residue through specific binding between the hyaluronic acid of the composition and the exosomes. This can be achieved by providing space between exosome particles to minimize structural damage to the phospholipid membrane caused by aggregation between exosome particles that occurs during the freezing process.
본 발명의 다른 구현예에 있어서, 상기 조성물을 활용하여 동결 과정에서 엑소좀의 구조적 안정성이 유지되는 경우, 상기 엑소좀의 구조적 안정성은 장기간 보관에서도 지속적으로 유지될 수 있다. In another embodiment of the present invention, when the structural stability of exosomes is maintained during the freezing process using the composition, the structural stability of the exosomes can be continuously maintained even during long-term storage.
본 발명자들은 실시예에서 상기 조성물에 의한 동결 건조 후 장기간 보관시, 엑소좀의 구형의 소포체 형태가 초기와 유사한 형태로 유지되는 것을 투과주사 현미경을 통해 확인하였으며, 엑소좀 간의 응집 현상 또한 대조군들과 비교하여 덜 나타나는 것을 확인하였다. In the examples, the present inventors confirmed through transmission scanning microscopy that when stored for a long period of time after freeze-drying using the composition, the spherical vesicle shape of exosomes was maintained in a similar shape to the initial form, and the aggregation phenomenon between exosomes was also observed compared to the control group. In comparison, it was confirmed that it appeared less frequently.
본 명세서에서 용어 '장기간 보관'은 예컨대 2주 이상, 1개월 이상, 2개월 이상, 3개월 이상, 4개월 이상, 5개월 이상, 6개월 이상, 또는 수년 동안 보관하는 것을 의미한다.As used herein, the term 'long-term storage' means storage for, for example, 2 weeks or more, 1 month or more, 2 months or more, 3 months or more, 4 months or more, 5 months or more, 6 months or more, or several years.
본 발명의 실시예에 따르면, 상기 '장기간 보관'은 본 발명의 조성물을 활용하여 엑소좀의 보관 온도에 따라 보관 일수가 상이하게 적용될 수 있으며, 예컨대 4℃에서 6개월 내지 1년 동안 보관이 가능한 것일 수 있으며, 구체적으로, 6개월 내지 11개월 동안, 6개월 내지 9개월 동안, 6개월 내지 7개월 동안, 7개월 내지 1년 동안, 7개월 내지 11개월 동안, 7개월 내지 9개월 동안, 7개월 내지 8개월 동안, 8개월 내지 1년 동안, 8개월 내지 11개월 동안, 8개월 내지 10개월 동안, 8개월 내지 9개월 동안, 9개월 내지 1년 동안, 9개월 내지 11개월 동안, 9개월 내지 10개월 동안, 10개월 내지 1년 동안, 10개월 내지 11개월 동안, 또는 11개월 내지 1년 동안 보관이 가능한 것일 수 있고, 또는, 예컨대, 40℃에서 15일 내지 30일 동안 보관이 가능한 것일 수 있으며, 구체적으로, 15일 내지 25일 동안, 15일 내지 20일 동안, 20일 내지 30일 동안, 20일 내지 25일 동안, 25일 내지 30일 동안 보관이 가능한 것일 수 있으나, 이에 제한되지 않는다.According to an embodiment of the present invention, the 'long-term storage' may be applied differently depending on the storage temperature of exosomes using the composition of the present invention, for example, storage at 4°C for 6 months to 1 year. It may be, specifically, for 6 months to 11 months, for 6 months to 9 months, for 6 months to 7 months, for 7 months to 1 year, for 7 months to 11 months, for 7 months to 9 months, 7 months to 8 months, 8 months to 1 year, 8 months to 11 months, 8 months to 10 months, 8 months to 9 months, 9 months to 1 year, 9 months to 11 months, 9 months It may be storeable for 10 months to 1 year, 10 months to 1 year, 10 months to 11 months, or 11 months to 1 year, or, for example, 15 to 30 days at 40°C. Can be stored, specifically, for 15 to 25 days, 15 to 20 days, 20 to 30 days, 20 to 25 days, 25 to 30 days, but is not limited thereto. No.
본 발명에서 장기간 가속 조건 하의 보관은 4℃에서 1년 동안 보관하는 것을 의미하며, 이는 40℃에서 30일 동안 보관하는 것과 동일한 조건에 해당하므로, 본 발명의 실시예에서는 40℃에서 30일 동안 보관 조건에서의 엑소좀의 안정성 유지 효과를 평가하였다.In the present invention, storage under long-term accelerated conditions means storage at 4°C for 1 year, which corresponds to the same conditions as storage at 40°C for 30 days, so in the embodiment of the present invention, storage at 40°C for 30 days The effect of maintaining the stability of exosomes under these conditions was evaluated.
또한, 본 발명에서 장기간 실시간 조건 하의 보관은 4℃에서 30일 동안 보관하는 것을 의미한다.In addition, in the present invention, storage under long-term real-time conditions means storage at 4°C for 30 days.
본 발명의 또 다른 구현예에 있어서, 상기 조성물은 엑소좀을 동결 건조 후 장기간 보관에 있어서, 엑소좀의 기능적 안정성을 유지시킬 수 있는 것을 특징으로 한다.In another embodiment of the present invention, the composition is capable of maintaining the functional stability of exosomes when stored for a long period of time after freeze-drying the exosomes.
본 발명의 구체적인 구현예에 있어서, 상기 기능적 안정성은 다음 지표를 기준으로 측정한다:In a specific embodiment of the present invention, the functional stability is measured based on the following indicators:
(a) 엑소좀의 크기; (b) 엑소좀의 농도; (c) 엑소좀의 효소활성능력; (d) 엑소좀의 총 단백질량; 또는 (e) 이들의 조합.(a) Size of exosomes; (b) concentration of exosomes; (c) Enzyme activity ability of exosomes; (d) total protein amount of exosomes; or (e) a combination thereof.
본 발명의 일 구현예에 있어서, 상기 지표를 측정하여 동결 건조 후 장기간 보관에 있어서, 엑소좀의 기능적 안정성 유지 여부를 확인할 수 있다. In one embodiment of the present invention, the above indicators can be measured to determine whether the functional stability of exosomes is maintained during long-term storage after freeze-drying.
본 발명의 실시예에 따르면, 상기 엑소좀의 기능적 안정성은 엑소좀을 장기간 보관할 시, 상기 지표들의 값이 초기 값 대비 유지되는 정도를 측정함으로써 판단할 수 있다.According to an embodiment of the present invention, the functional stability of the exosomes can be determined by measuring the degree to which the values of the indicators are maintained compared to the initial values when the exosomes are stored for a long period of time.
구체적으로, 상기 엑소좀의 기능적 안정성 평가는 엑소좀을 장기간 보관할 경우, 상기 지표 (a)가 초기 값과 유사한 수준으로 유지되거나, 초기 값 대비 낮은 증가 수준을 나타내는 것을 통해 이루어질 수 있으며, 상기 지표 (b) 내지 (e)가 초기 값과 유사한 수준으로 유지되거나, 초기 값 대비 낮은 감소 수준을 나타내는 것을 통해 이루어질 수 있다.Specifically, the evaluation of the functional stability of the exosomes can be made by observing that when the exosomes are stored for a long period of time, the indicator (a) is maintained at a level similar to the initial value or shows a low level of increase compared to the initial value, and the indicator (a) This can be achieved through b) to (e) being maintained at a level similar to the initial value or showing a low level of decrease compared to the initial value.
본 발명의 일 구현예에 있어서, 본 발명의 조성물은 상기 엑소좀의 크기가 증가하는 것을 저해한다.In one embodiment of the present invention, the composition of the present invention inhibits the increase in size of the exosomes.
본 발명의 다른 구현예에 있어서, 본 발명의 조성물은 상기 엑소좀의 농도, 효소활성능력, 또는 총 단백질량이 감소하는 것을 저해한다.In another embodiment of the present invention, the composition of the present invention inhibits a decrease in the concentration, enzyme activity ability, or total protein amount of the exosomes.
보다 구체적으로, 상기 엑소좀의 기능적 안정성은 엑소좀을 4℃에서 6개월 내지 1년 동안 보관하는 경우, 상기 지표 (a)가 초기 값의 15% 이내의 범위로 증가되는 것일 수 있고, 예컨대 15% 이내, 10% 이내, 5% 이내, 4% 이내, 3% 이내, 2% 이내, 1% 이내, 또는 0%일 수 있으며, 또는 엑소좀을 40℃에서 15일 내지 30일 동안 보관하는 경우, 상기 지표가 초기 값의 10% 이내의 범위로 증가되는 것일 수 있고, 예컨대 9% 이내, 7% 이내, 5% 이내, 3% 이내, 1% 이내, 또는 0%일 수 있다. More specifically, the functional stability of the exosome may be that when the exosome is stored at 4° C. for 6 months to 1 year, the indicator (a) increases to within 15% of the initial value, for example, 15 %, within 10%, within 5%, within 4%, within 3%, within 2%, within 1%, or 0%, or when exosomes are stored at 40°C for 15 to 30 days. , the indicator may be increased within 10% of the initial value, for example, within 9%, within 7%, within 5%, within 3%, within 1%, or 0%.
또한, 상기 엑소좀의 안정성은 엑소좀을 4℃에서 6개월 내지 1년 동안 보관하는 경우, 상기 지표 (b) 내지 (e)가 초기 값의 20% 이내의 범위로 감소되는 것일 수 있고, 예컨대 19% 이내, 17% 이내, 15% 이내, 13% 이내, 11% 이내, 9% 이내, 7% 이내, 5% 이내, 3% 이내, 1% 이내, 또는 0%일 수 있으며, 또는 엑소좀을 40℃에서 15일 내지 30일 동안 보관하는 경우, 상기 지표(b) 내지 (e)가 초기 값의 30% 이내의 범위로 감소되는 것일 수 있고, 예컨대 28% 이내, 25% 이내, 23% 이내, 20% 이내, 18% 이내, 15% 이내, 13% 이내, 10% 이내, 8% 이내, 5% 이내, 3% 이내, 1% 이내, 또는 0%일 수 있다. In addition, the stability of the exosomes may be such that when the exosomes are stored at 4°C for 6 months to 1 year, the indicators (b) to (e) are reduced to within 20% of the initial value, for example may be within 19%, within 17%, within 15%, within 13%, within 11%, within 9%, within 7%, within 5%, within 3%, within 1%, or within 0%, or exosomes When stored at 40°C for 15 to 30 days, the indicators (b) to (e) may be reduced to within 30% of the initial value, for example, within 28%, within 25%, and within 23%. It may be within, within 20%, within 18%, within 15%, within 13%, within 10%, within 8%, within 5%, within 3%, within 1%, or 0%.
한편, 본 발명자들은 본 발명의 실시예에서 생체 적합성 고분자를 포함하지 않거나, 일반적인 동결 건조 보호제, 예를 들어, 트레할로스를 포함하는 조성물을 대조군으로 사용하여 엑소좀의 기능적 안정성 평가를 위한 지표들을 또한 비교 분석하였다. 결과적으로, 상기 대조군과 비교하여, 상기 지표들의 값이 본 발명의 조성물을 이용한 실험군에서 초기 값과 유사한 수준으로 유지되거나, 더 낮은 증감을 나타내는 것을 통해, 본 발명의 조성물에 따른 엑소좀의 기능적 안정성이 효과적으로 유지되는 것을 확인하였다. Meanwhile, in the examples of the present invention, the present inventors also compared indicators for evaluating the functional stability of exosomes using a composition that did not contain a biocompatible polymer or contained a general freeze-drying protective agent, such as trehalose, as a control group. analyzed. As a result, compared to the control group, the values of the indicators were maintained at a similar level to the initial value in the experimental group using the composition of the present invention, or showed a lower increase or decrease, thereby demonstrating the functional stability of the exosome according to the composition of the present invention. It was confirmed that this was maintained effectively.
따라서, 본 발명의 생체 적합성 고분자를 포함하는 조성물은, 생체 적합성 고분자를 포함하지 않는 조성물에 비해 높은 엑소좀 안정성을 유지시킬 수 있다.Therefore, the composition containing the biocompatible polymer of the present invention can maintain high exosome stability compared to the composition not containing the biocompatible polymer.
본 발명의 생체 적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물을 활용하여 동결 과정에서 엑소좀의 구조적 안정성을 유지시킬 수 있으며, 동결 과정 후 장기간 보관에 있어서, 엑소좀의 기능적 안정성을 유지시킬 수 있다.By using a composition for cryoprotection of exosomes containing the biocompatible polymer of the present invention, the structural stability of exosomes can be maintained during the freezing process, and the functional stability of exosomes can be maintained during long-term storage after the freezing process. there is.
도 1은 본 발명의 엑소좀-히알루론산 조성물에서 엑소좀과 히알루론산 고분자 간의 특이적 결합을 통하여 동결 시 엑소좀 간의 막 손상을 방지하고 안정성을 유지함을 나타내는 개략도이다.Figure 1 is a schematic diagram showing that the exosome-hyaluronic acid composition of the present invention prevents membrane damage and maintains stability between exosomes during freezing through specific binding between exosomes and hyaluronic acid polymers.
도 2는 엑소좀과 히알루론산 고분자 간의 CD44 수용체-리간드에 의한 특이적 결합력을 분석한 결과를 나타낸다.Figure 2 shows the results of analyzing the specific binding force between exosomes and hyaluronic acid polymer by CD44 receptor-ligand.
도 3은 가속조건(40℃/30일)에서의 엑소좀-히알루론산 조성물 내 히알루론산 함량에 따른 엑소좀의 농도변화를 측정한 결과를 나타낸다.Figure 3 shows the results of measuring the change in concentration of exosomes according to the hyaluronic acid content in the exosome-hyaluronic acid composition under accelerated conditions (40°C/30 days).
도 4는 가속조건(40℃/30일)에서의 엑소좀-히알루론산 조성물 내 엑소좀의 (a)크기, (b)농도, (c)효소활성 능력 및 (d)단백질량 변화를 측정한 결과를 나타낸다.Figure 4 shows changes in (a) size, (b) concentration, (c) enzyme activity, and (d) protein amount of exosomes in the exosome-hyaluronic acid composition under accelerated conditions (40°C/30 days). Shows the results.
도 5는 실시간조건(4℃/30일)에서의 엑소좀-히알루론산 조성물 내 엑소좀의 (a)크기, (b)농도, (c)효소활성 능력 및 (d)단백질량 변화를 측정한 결과를 나타낸다.Figure 5 shows changes in (a) size, (b) concentration, (c) enzyme activity, and (d) protein amount of exosomes in the exosome-hyaluronic acid composition under real-time conditions (4°C/30 days). Shows the results.
도 6은 엑소좀 조성물에 따른 엑소좀의 형태학적 분석을 위한 투과주사현미경 이미지를 나타낸다.Figure 6 shows a transmission scanning microscope image for morphological analysis of exosomes according to exosome composition.
도 7a는 엑소좀 보관시, 엑소좀-히알루론산의 특이적 결합에 의한 엑소좀의 세포이동능력을 평가한 결과를 나타낸다.Figure 7a shows the results of evaluating the cell migration ability of exosomes due to specific binding of exosomes and hyaluronic acid when storing exosomes.
도 7b는 상기 도 7a를 정량적으로 평가한 결과를 나타낸다.Figure 7b shows the results of quantitative evaluation of Figure 7a.
도 8a는 엑소좀 보관시, 엑소좀-히알루론산 특이적 결합에 의한 엑소좀의 농도 유지능력을 평가한 결과를 나타낸다.Figure 8a shows the results of evaluating the ability to maintain the concentration of exosomes by exosome-hyaluronic acid specific binding during exosome storage.
도 8b는 엑소좀 보관시, 엑소좀-히알루론산 특이적 결합에 의한 엑소좀의 크기 유지능력을 평가한 결과를 나타낸다.Figure 8b shows the results of evaluating the ability to maintain the size of exosomes by exosome-hyaluronic acid specific binding during exosome storage.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.Throughout this specification, “%” used to indicate the concentration of a specific substance means (weight/weight) % for solid/solid, (weight/volume) % for solid/liquid, and Liquid/liquid is (volume/volume) %.
실시예Example
준비예 1. 인간 지방 줄기세포로부터 콜라겐 생성에 유효한 엑소좀의 추출 Preparation Example 1. Extraction of exosomes effective in collagen production from human adipose stem cells
먼저, 인간 지방 줄기세포 유래 엑소좀은 인간 지방 줄기세포를 배양하는 과정에서 추출하였다.First, exosomes derived from human adipose stem cells were extracted during the process of culturing human adipose stem cells.
준비예 1.1. 인간 지방 줄기세포의 배양Preparation example 1.1. Culture of human adipose stem cells
구체적으로, 인간 지방 줄기세포를 일반 배양배지(Gibco, Cat#: 11995065)에서 배양하고 엑소좀을 추출하기 24시간 전에 무혈청, 무항생제, 무페놀레드인 배지(Gibco, Cat#: 31053028)로 교체하여 24시간 동안 배양하였다.Specifically, human adipose stem cells were cultured in general culture medium (Gibco, Cat#: 11995065), and 24 hours before exosome extraction, they were cultured in serum-free, antibiotic-free, phenol red-free medium (Gibco, Cat#: 31053028). It was replaced and cultured for 24 hours.
준비예 1.2. 엑소좀의 분리 및 정제Preparation example 1.2. Isolation and purification of exosomes
세포 배양 상층액을 회수하여 일차적으로 2,000 xg로 4분 내지 5분 동안 원심분리하는 단계 및 이차적으로 10,000 xg로, 4분 내지 30분 동안 원심분리하는 단계를 거쳐 세포 잔해물 및 노폐물을 제거하였다. 그런 다음, 회수한 세포 배양 상층액은 일차적으로 3,000 xg로, 4℃에서 20분 동안 원심분리하는 하는 단계 및 이차적으로 0.22 ㎛ 필터로 여과하는 단계를 거쳐 세포 잔해물 및 노폐물을 제거해주었다. 이후 상기 여과를 거친 세포 배양 상층액을 300 kDa 필터를 이용한 접선 흐름 여과(Tangential Flow Filtration, TFF) 시스템을 이용하여 여과함으로써 엑소좀을 분리 및 정제하였다.The cell culture supernatant was recovered and centrifuged primarily at 2,000 xg for 4 to 5 minutes and secondarily centrifuged at 10,000 xg for 4 to 30 minutes to remove cell debris and waste. Then, the recovered cell culture supernatant was first centrifuged at 3,000 Afterwards, exosomes were separated and purified by filtering the filtered cell culture supernatant using a tangential flow filtration (TFF) system using a 300 kDa filter.
실시예 1. 엑소좀과 히알루론산 고분자 간의 CD44 수용체-리간드 작용에 의한 특이적 결합력 검증Example 1. Verification of specific binding force between exosomes and hyaluronic acid polymer by CD44 receptor-ligand action
생분자 반응 분석기(Bio-layer interferonmetry)를 이용하여 엑소좀 표면의 존재하는 CD44 수용체와 히알루론산 고분자 사슬에 존재하는 CD44 리간드 간의 특이적 결합력을 검증하였다.Using bio-layer interferonmetry, the specific binding force between the CD44 receptor on the surface of exosomes and the CD44 ligand on the hyaluronic acid polymer chain was verified.
먼저, 엑소좀과 히알루론산 고분자 간의 특이적 결합이 존재하는지 여부를 확인하고자 하였다. 이에, 바이오센서 기판에 히알루론산 고분자(hyaluronic acid, MW: 1,000 kDa)를 접합시킨 후, 상기 준비예 1에서 인간 지방 줄기세포에서 추출한 엑소좀의 단백질 농도별(0.2, 1 및 2 mg/mL)로 바이오센서 기판에 흘려줌으로써 생분자 반응 분석기에 나타나는 신호에 의한 히알루론산 고분자와 엑소좀 간의 결합력을 측정하였다.First, we wanted to confirm whether specific binding exists between exosomes and hyaluronic acid polymer. Accordingly, after hyaluronic acid polymer (MW: 1,000 kDa) was conjugated to the biosensor substrate, the protein concentration of exosomes extracted from human adipose stem cells in Preparation Example 1 (0.2, 1, and 2 mg/mL) was conjugated to the biosensor substrate. By flowing the sample onto the biosensor substrate, the binding force between hyaluronic acid polymer and exosomes was measured based on the signal displayed on the biomolecule reaction analyzer.
결과는 도 2의 a에 나타내었다.The results are shown in Figure 2a.
도 2의 a에 나타낸 바와 같이, 히알루론산 고분자를 접합시킨 바이오센서 기판에 농도별 엑소좀을 흘려주었을 때, 엑소좀의 농도가 증가할수록 히알루론산 고분자와 결합하는 양도 증가하는 것을 확인함으로써 두 물질 간의 특이적 결합이 존재함을 확인할 수 있었다.As shown in Figure 2 (a), when exosomes of various concentrations were flowed onto a biosensor substrate conjugated with a hyaluronic acid polymer, it was confirmed that as the concentration of exosomes increased, the amount of binding to the hyaluronic acid polymer also increased, thereby establishing a relationship between the two substances. It was confirmed that specific binding existed.
다음으로, 엑소좀 표면에 존재하는 CD44 수용체를 차단하였을 때 실제로 히알루론산 고분자와의 결합 능력에 차이를 보이는지 검증하고자, CD44 항체와 반응시킨 엑소좀을 이용하여 히알루론산과의 결합 능력을 비교하였다.Next, in order to verify whether there was actually a difference in the binding ability with hyaluronic acid polymer when blocking the CD44 receptor present on the surface of exosomes, the binding ability with hyaluronic acid was compared using exosomes reacted with CD44 antibody.
CD44 항체와 반응시킨 엑소좀, 즉, CD44 수용체가 차단된 엑소좀은 1 mL의 엑소좀 용액(1.5x1010 입자)과 10 ㎕의 항-CD44 항체 용액을 섞어 4℃에서 3시간 동안 반응시켜 준비하였으며, 엑소좀과 히알루론산 간의 결합력은 상기 동일한 방법을 통해 측정되었다.Exosomes reacted with CD44 antibodies, that is, exosomes with the CD44 receptor blocked, were prepared by mixing 1 mL of exosome solution ( 1.5x10 particles) with 10 ㎕ of anti-CD44 antibody solution and reacting at 4°C for 3 hours. The binding force between exosomes and hyaluronic acid was measured using the same method as above.
결과는 도 2의 b에 나타내었다.The results are shown in Figure 2b.
도 2의 b에 나타낸 바와 같이, 일반 엑소좀은 CD44 항체에 의해 수용체가 차단된 엑소좀과 비교하여 히알루론산 고분자와의 결합력이 2배 이상 높게 측정되었다. 이를 통해, 엑소좀 표면의 CD44 수용체의 유무가 실제로 히알루론산 고분자와의 특이적 결합에 있어 유의미한 영향을 나타내는 것을 확인할 수 있었다.As shown in Figure 2b, the binding force of regular exosomes to hyaluronic acid polymer was measured to be more than two times higher than that of exosomes whose receptors were blocked by CD44 antibody. Through this, it was confirmed that the presence or absence of the CD44 receptor on the surface of the exosome actually had a significant effect on specific binding to the hyaluronic acid polymer.
실시예 2. 엑소좀 농도 유지를 위한 조성물 내 히알루론산 함량 최적화Example 2. Optimization of hyaluronic acid content in composition for maintaining exosome concentration
엑소좀 농도 유지를 위한 조성물 내 히알루론산의 최적 함량을 확인하고자, 히알루론산 함량별 조성물의 동결건조 제형 샘플을 40℃의 가속 조건에서 9일 동안 나노입자 추적 분석 시스템(NanoSight LM10; Malvern Instruments, Malvern, UK)을 사용하여 조성물 내 히알루론산 함량에 따른 엑소좀의 농도 변화를 정량적으로 분석하였다.In order to determine the optimal content of hyaluronic acid in the composition for maintaining exosome concentration, freeze-dried formulation samples of compositions for each hyaluronic acid content were analyzed using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern) for 9 days under accelerated conditions at 40°C. , UK) was used to quantitatively analyze the change in exosome concentration according to the hyaluronic acid content in the composition.
먼저, 공점도용 공전/자전형 믹서(Centrifugal mixer)를 이용하여 히알루론산(hyaluronic acid, MW: 1,000 kDa) 고분자를 함량별로 10 mM 인산완충용액 0.25 mL에 단계별로 용해시킨 후(1 단계: 0 wt%(w/v), 2 단계: 0.005 wt%(w/v), 3 단계: 0.01 wt%(w/v), 4 단계: 0.05 wt%(w/v), 5 단계: 0.1 wt%(w/v), 6 단계: 0.5 wt%(w/v)), 0.25 mL의 엑소좀 용액(1 x 109 입자)와 섞어 24시간 동안 동결건조시켰다. 대조군으로는 트레할로스를 0.5 wt%(w/v) 포함하는 10 mM 인산완충용액을 같은 양으로 녹인 후에 동결건조한 샘플을 사용하였다. First, hyaluronic acid (MW: 1,000 kDa) polymer was dissolved step by step in 0.25 mL of 10 mM phosphate buffer solution by content using a centrifugal mixer for co-viscosity (step 1: 0 wt) %(w/v), Step 2: 0.005 wt%(w/v), Step 3: 0.01 wt%(w/v), Step 4: 0.05 wt%(w/v), Step 5: 0.1 wt%( w/v), step 6: 0.5 wt% (w/v)), mixed with 0.25 mL of exosome solution (1 x 10 9 particles) and lyophilized for 24 hours. As a control, a sample dissolved in the same amount of 10 mM phosphate buffer solution containing 0.5 wt% (w/v) of trehalose and then freeze-dried was used.
그런 다음, 나노입자 추적 분석을 위하여 상기 동결건조된 샘플을 10 mM 인산완충용액 0.5 mL에 용해시킨 후, 400 U/mL의 히알루로니다아제(hyaluronidase) 용액을 0.25 mL 추가한 뒤, 상온에서 10분 동안 반응시켜 나노입자 추적 분석용 샘플용액으로 사용하였다.Then, for nanoparticle tracking analysis, the freeze-dried sample was dissolved in 0.5 mL of 10 mM phosphate buffer solution, then 0.25 mL of 400 U/mL hyaluronidase solution was added, and then incubated for 10 minutes at room temperature. It was reacted for several minutes and used as a sample solution for nanoparticle tracking analysis.
결과는 도 3에 나타내었다.The results are shown in Figure 3.
도 3에 나타낸 바와 같이, 조성물의 보관 9일 후, 4 단계, 5 단계 및 6 단계 샘플의 엑소좀 농도는 0일 차의 초기 농도와 유사하게 유지되었지만, 트레할로스 동결건조 보호제를 포함하는 샘플 및 2단계 이하의 샘플에서는 엑소좀 농도가 30% 이상 감소된 것을 확인할 수 있었다.As shown in Figure 3, after 9 days of storage of the composition, the exosome concentration of the stage 4, 5, and 6 samples remained similar to the initial concentration on day 0, whereas the samples containing the trehalose lyophilization protectant and 2 In samples below this stage, it was confirmed that the exosome concentration was reduced by more than 30%.
실험예 1. 엑소좀-히알루론산 조성물 내 엑소좀 안정성 유지 평가Experimental Example 1. Evaluation of maintaining exosome stability in the exosome-hyaluronic acid composition
실험예 1.1. 장기간 가속 조건에서의 엑소좀-히알루론산 조성물 내 엑소좀 안정성 유지 평가Experimental Example 1.1. Evaluation of maintenance of exosome stability in exosome-hyaluronic acid composition under long-term accelerated conditions
본 실시예는'4℃에서 1년 동안의 실시간 조건'에 해당하는 '40℃에서 30일 동안의 가속조건'에서, 상기 실시예 2에서 최적화된 히알루론산 함유량(4 단계, 0.05 wt%)을 포함하는 엑소좀-히알루론산 조성물을 사용하여 본 발명에 따른 엑소좀 안정성 유지 효과를 평가하고자 하였다.In this example, the hyaluronic acid content (step 4, 0.05 wt%) optimized in Example 2 was used under 'accelerated conditions for 30 days at 40℃', which corresponds to 'real-time conditions for 1 year at 4℃'. An attempt was made to evaluate the effect of maintaining exosome stability according to the present invention using an exosome-hyaluronic acid composition containing it.
음성대조군으로는 DPBS 조성물의 동결건조제형 샘플을 사용하였고, 트레할로스 함유(0.05 wt%, Tre) 조성물, 히알루론산 함유(0.05 wt%, HA) 조성물, 및 히알루론산(0.05 wt%) 및 트레할로스(0.05 wt%)를 함께 포함하는 조성물(HA+Tre)의 동결건조제형 샘플을 각각 실험군으로 사용하였다.As a negative control, a freeze-dried sample of the DPBS composition was used, a composition containing trehalose (0.05 wt%, Tre), a composition containing hyaluronic acid (0.05 wt%, HA), and a composition containing hyaluronic acid (0.05 wt%) and trehalose (0.05 wt%). wt%), samples of the freeze-dried formulation of the composition (HA+Tre) were used as experimental groups, respectively.
실험예 1.1.1. 엑소좀-히알루론산 조성물 내 엑소좀 농도 유지 평가Experimental Example 1.1.1. Evaluation of maintenance of exosome concentration in exosome-hyaluronic acid composition
나노입자 추적 분석 시스템(NanoSight LM10; Malvern Instruments, Malvern, UK)을 이용하여 엑소좀-히알루론산 조성물 내 엑소좀 농도를 측정하였으며, 조성물 내 엑소좀의 농도 유지 효율은 초기 농도 대비 감소되는 엑소좀의 농도 변화를 통해 평가하였다. The exosome concentration in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK), and the efficiency of maintaining the concentration of exosomes in the composition was determined by the decrease in exosome concentration compared to the initial concentration. It was evaluated through change in concentration.
결과는 도 4의 a에 나타내었다.The results are shown in Figure 4a.
도 4의 a에 나타낸 바와 같이, 보관 30일 이후, 본 발명의 4단계 히알루론산 함유 샘플(HA)에서는 초기 엑소좀 농도 대비 35%의 감소량을 보여주었고, 이는 엑소좀 외에 아무것도 함유되지 않은 샘플(DPBS) 대비 2.3배, 트레할로스가 함유된 샘플(Tre) 대비 1.8배의 농도 유지 효율을 나타내었다. As shown in Figure 4 a, after 30 days of storage, the 4th stage hyaluronic acid-containing sample (HA) of the present invention showed a 35% decrease compared to the initial exosome concentration, which was compared to the sample containing nothing other than exosomes ( The concentration maintenance efficiency was 2.3 times higher than that of DPBS and 1.8 times higher than that of the trehalose-containing sample (Tre).
반면, 히알루론산과 트레할로스를 함께 포함한 샘플(HA+Tre)에서는 엑소좀 농도가 히알루론산을 함유하는 샘플(HA)과 큰 차이가 없는 것으로 나타났다. On the other hand, in the sample containing both hyaluronic acid and trehalose (HA+Tre), the exosome concentration showed no significant difference from the sample containing hyaluronic acid (HA).
상기 결과로부터, 히알루론산에 트레할로스를 추가적으로 함유시키는 것은 엑소좀의 농도 유지에 유의미한 영향을 주지 않는 것을 알 수 있었다.From the above results, it was found that additionally adding trehalose to hyaluronic acid did not have a significant effect on maintaining the concentration of exosomes.
실험예 1.1.2. 엑소좀-히알루론산 조성물 내 엑소좀 크기 유지 평가Experimental Example 1.1.2. Evaluation of exosome size maintenance in exosome-hyaluronic acid composition
나노입자 추적 분석 시스템(NanoSight LM10; Malvern Instruments, Malvern, UK)을 이용하여 엑소좀-히알루론산 조성물 내 엑소좀 크기를 측정하였으며, 조성물 내 엑소좀의 크기 유지 효율은 초기 대비 감소되는 엑소좀의 크기 변화를 통해 평가하였다.The size of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK), and the efficiency of maintaining the size of exosomes in the composition was determined by the size of the exosomes decreasing compared to the initial level. Evaluated through changes.
결과는 도 4의 c에 나타내었다. The results are shown in Figure 4c.
도 4의 c에 나타낸 바와 같이, 보관 30일 이후, 초기 0일차의 엑소좀의 크기와 비교하여, 엑소좀 외에 아무것도 함유되지 않은 샘플(DPBS)은 23%, 트레할로스가 함유된 샘플(Tre)은 15% 정도 크기가 증가함을 확인할 수 있었다. 반면, 히알루론산 함유 샘플(HA) 및 히알루론산과 트레할로스를 함께 포함한 샘플(HA+Tre)의 경우, 5% 미만의 증가량을 보여줌으로써 크기 변화에 있어 가장 우수한 유지 능력을 나타냄을 확인하였다.As shown in Figure 4c, after 30 days of storage, compared to the size of exosomes on day 0, the sample containing nothing except exosomes (DPBS) decreased by 23%, and the sample containing trehalose (Tre) decreased by 23%. It was confirmed that the size increased by about 15%. On the other hand, it was confirmed that the hyaluronic acid-containing sample (HA) and the sample containing both hyaluronic acid and trehalose (HA+Tre) showed the best maintenance ability in terms of size change by showing an increase of less than 5%.
실험예 1.1.3. 엑소좀-히알루론산 조성물 내 엑소좀 효소활성능력 유지 평가Experimental Example 1.1.3. Evaluation of maintenance of exosome enzyme activity ability in exosome-hyaluronic acid composition
Amplite Colorimetric Acetylcholinesterase Assay Kit(AAT Bioquest, CA, US)를 사용하여 엑소좀 아세틸콜린에스터라아제(AchE)의 농도를 측정하여 엑소좀의 막단백질 중 하나인 아세틸콜린에스터라아제(Acethylcholineesterase, AchE)의 효소 활성을 평가하였다. 엑소좀-히알루론산 조성물 내 엑소좀의 초기 대비 감소되는 엑소좀의 효소활성능력의 변화를 측정함으로써, 상기 조성물이 엑소좀의 효소활성능력을 유지할 수 있는지를 평가하는 것이 가능하다.The concentration of exosomal acetylcholinesterase (AchE) was measured using the Amplite Colorimetric Acetylcholinesterase Assay Kit (AAT Bioquest, CA, US). Enzyme activity was evaluated. By measuring the change in the enzyme activity ability of the exosomes, which decreases compared to the initial level of the exosomes in the exosome-hyaluronic acid composition, it is possible to evaluate whether the composition can maintain the enzyme activity ability of the exosomes.
결과는 도 4의 c에 나타내었다. The results are shown in Figure 4c.
도 4의 c에 나타낸 바와 같이, 보관 30일 이후, 본 발명의 히알루론산 함유 샘플(HA, HA+Tre)에서는 초기 0일차와 비교하여 엑소좀 효소활성능력이 14% 감소한 것을 확인하였고, 이는 엑소좀 외 미함유 샘플(DPBS) 대비 2.1배, 트레할로스가 함유된 샘플(Tre) 대비 1.6배의 효소활성능력의 유지 효율을 나타내었다. 상기 결과로부터 본 발명의 히알루론산 함유 조성물이 엑소좀의 농도를 유지하는 것 뿐만 아니라, 엑소좀의 효소활성 능력을 유지하는 데에도 매우 유용함을 알 수 있었다. As shown in Figure 4c, after 30 days of storage, it was confirmed that the exosome enzyme activity ability decreased by 14% in the hyaluronic acid-containing sample (HA, HA+Tre) of the present invention compared to the initial day 0, which is The maintenance efficiency of enzyme activity was 2.1 times higher than that of the sample without moths (DPBS) and 1.6 times higher than that of the sample containing trehalose (Tre). From the above results, it was found that the hyaluronic acid-containing composition of the present invention is very useful not only for maintaining the concentration of exosomes, but also for maintaining the enzymatic activity ability of exosomes.
실험예 1.1.4. 엑소좀-히알루론산 조성물 내 엑소좀 총 단백질량 유지 평가Experimental Example 1.1.4. Evaluation of maintenance of total exosome protein amount in exosome-hyaluronic acid composition
단백질 정량법(BCA assay)를 통해 엑소좀-히알루론산 조성물 내 엑소좀의 단백질 총량을 변화를 측정함으로써, 상기 조성물 내 엑소좀의 총 단백질량 유지 효율을 평가하였다.By measuring the change in the total amount of protein of exosomes in the exosome-hyaluronic acid composition through protein quantification (BCA assay), the efficiency of maintaining the total amount of protein of exosomes in the composition was evaluated.
결과는 도 4의 d에 나타내었다.The results are shown in Figure 4d.
도 4의 d에 나타낸 바와 같이, 보관 30일 이후, 본 발명의 히알루론산 함유 샘플(HA, HA+Tre)에서는 초기 0일차와 비교하여 엑소좀 내 단백질량이 15% 감소한 것을 확인하였고, 이는 엑소좀 외 미함유 샘플(DPBS) 대비 1.7배, 트레할로스가 함유된 샘플(Tre) 대비 1.6배의 엑소좀 내 총단백질량 유지 효율을 나타낸다.As shown in Figure 4 d, after 30 days of storage, it was confirmed that the amount of protein in exosomes decreased by 15% in the hyaluronic acid-containing samples (HA, HA+Tre) of the present invention compared to the initial day 0, which is The efficiency of maintaining the total protein amount in exosomes is 1.7 times higher than that of the sample without trehalose (DPBS) and 1.6 times higher than that of the sample containing trehalose (Tre).
상기 결과로부터, 본 발명의 히알루론산 함유 조성물은 장기간 가속조건에서도 엑소좀의 총 단백질량을 유지하는 효과가 매우 우수함을 알 수 있었다. From the above results, it was found that the hyaluronic acid-containing composition of the present invention was very effective in maintaining the total protein amount of exosomes even under long-term accelerated conditions.
실험예 1.2. 장기간 실시간 조건에서의 엑소좀-히알루론산 조성물 내 엑소좀 안정성 유지 평가Experimental Example 1.2. Evaluation of maintenance of exosome stability in exosome-hyaluronic acid composition under long-term real-time conditions
본 실시예는 '4℃의 30일 동안의 실시간 조건'에서, 상기 실시예 2에서 최적화된 히알루론산 함유량(4 단계, 0.05 wt%)을 포함하는 엑소좀-히알루론산 조성물을 사용하여 본 발명에 따른 엑소좀 안정성 유지 효과를 평가하고자 하였다.In this example, under 'real-time conditions at 4°C for 30 days', the exosome-hyaluronic acid composition containing the optimized hyaluronic acid content (step 4, 0.05 wt%) in Example 2 was used in the present invention. We sought to evaluate the effect of maintaining exosome stability.
음성대조군으로는 DPBS 조성물의 동결건조제형 샘플을 사용하였고, 트레할로스 함유(0.05 wt%) 조성물(Tre) 및 히알루론산 함유(0.05 wt%) 조성물, 히알루론산(0.05 wt%) 및 트레할로스(0.05 wt%)를 함께 포함하는 조성물(HA+Tre)의 동결건조제형 샘플을 각각 실험군으로 사용하였다.As a negative control, a freeze-dried sample of the DPBS composition was used, and a trehalose-containing (0.05 wt%) composition (Tre), a hyaluronic acid-containing (0.05 wt%) composition, hyaluronic acid (0.05 wt%), and trehalose (0.05 wt%) were used. ) Freeze-dried formulation samples of the composition (HA+Tre) containing both were used as experimental groups.
실험예 1.2.1. 엑소좀-히알루론산 조성물 내 엑소좀 농도 유지 평가Experimental Example 1.2.1. Evaluation of maintenance of exosome concentration in exosome-hyaluronic acid composition
나노입자 추적 분석 시스템(NanoSight LM10; Mlavern Instruments, Malvern, UK)을 이용하여 엑소좀-히알루론산 조성물 내 엑소좀의 농도를 측정하였다. The concentration of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Mlavern Instruments, Malvern, UK).
결과는 도 5의 a에 나타내었다.The results are shown in Figure 5a.
도 5의 a에 나타낸 바와 같이, 보관 30일 이후, 본 발명의 히알루론산 함유 샘플(HA)에서는 초기 엑소좀 농도 대비 20%의 감소량을 보여주었고, 이는 엑소좀 외에 아무것도 함유되지 않은 샘플(DPBS) 대비 2.1배, 트레할로스가 함유된 샘플(Tre) 대비 1.7배의 농도 유지 효율을 나타내었다.As shown in Figure 5 a, after 30 days of storage, the hyaluronic acid-containing sample (HA) of the present invention showed a 20% decrease compared to the initial exosome concentration, which was compared to the sample containing nothing except exosomes (DPBS). The concentration maintenance efficiency was 2.1 times higher than that of the trehalose-containing sample (Tre) and 1.7 times higher than that of the trehalose-containing sample (Tre).
상기 결과로부터 본 발명의 히알루론산 함유 조성물은 장기간 실시간 조건에서 엑소좀을 안정적으로 유지하는데 매우 유용함을 알 수 있었다. From the above results, it was found that the hyaluronic acid-containing composition of the present invention is very useful in stably maintaining exosomes under long-term real-time conditions.
실험예 1.2.2. 엑소좀-히알루론산 조성물 내 엑소좀 크기 유지 평가Experimental Example 1.2.2. Evaluation of exosome size maintenance in exosome-hyaluronic acid composition
나노입자 추적 분석 시스템(NanoSight LM10; Malvern Instruments, Malvern, UK)을 이용하여 엑소좀-히알루론산 조성물 내 엑소좀 크기를 측정하였다.The size of exosomes in the exosome-hyaluronic acid composition was measured using a nanoparticle tracking analysis system (NanoSight LM10; Malvern Instruments, Malvern, UK).
결과는 도 5의 c에 나타내었다.The results are shown in Figure 5c.
도 5의 c에 나타낸 바와 같이, 초기 0일차와 비교하여, 보관 30일 이후 히알루론산 함유 샘플(HA)의 경우, 6%의 크기 증가를 보여준 반면, 엑소좀 외 미함유 샘플(DPBS)과 트레할로스 함유 샘플(Tre)의 경우, 각각 15% 및 13% 증가함 확인하였다.As shown in Figure 5c, compared to the initial day 0, the hyaluronic acid-containing sample (HA) showed a size increase of 6% after 30 days of storage, while the sample without exosomes (DPBS) and trehalose In the case of the containing sample (Tre), increases were confirmed by 15% and 13%, respectively.
상기 결과로부터 본 발명의 히알루론산 함유 조성물은 장기간 실시간 조건에서 엑소좀의 크기를 안정적으로 유지하는데 유용성을 가짐을 알 수 있었다.From the above results, it was found that the hyaluronic acid-containing composition of the present invention is useful in stably maintaining the size of exosomes under long-term real-time conditions.
실험예 1.2.3. 엑소좀-히알루론산 조성물 내 엑소좀 효소활성능력 유지 평가Experimental Example 1.2.3. Evaluation of maintenance of exosome enzyme activity ability in exosome-hyaluronic acid composition
아세틸콜린 분해효소 분석법을 통해 조성물 내 엑소좀의 효소활성능력을 측정하였다. The enzymatic activity of exosomes in the composition was measured using an acetylcholine degrading enzyme assay.
결과는 도 5의 c에 나타내었다.The results are shown in Figure 5c.
도 5의 c에 나타낸 바와 같이, 보관 30일 이후, 본 발명의 히알루론산 함유 샘플(HA, HA+Tre) 및 트레할로스 함유 샘플(Tre)의 엑소좀의 효소활성능력은 초기 0일차와 대비하여 거의 차이가 없이 유지되는 것을 확인하였다. 반면, 엑소좀 외 미함유 샘플(DPBS)은 초기 0일차 대비 8%나 감소된 엑소좀의 효소활성능력을 나타내었다.As shown in Figure 5c, after 30 days of storage, the enzymatic activity ability of exosomes of the hyaluronic acid-containing sample (HA, HA+Tre) and trehalose-containing sample (Tre) of the present invention is almost compared to the initial day 0. It was confirmed that no difference was maintained. On the other hand, the sample containing no exosomes (DPBS) showed the enzyme activity of exosomes reduced by 8% compared to the initial day 0.
상기 결과로부터 본 발명의 히알루론산 함유 조성물은 장기간 실시간 조건에서 본 발명의 히알루론산 함유 조성물이 엑소좀의 농도를 유지하는 것 뿐만 아니라, 엑소좀의 효소활성 능력을 유지하는 데에도 매우 유용함을 알 수 있었다. From the above results, it can be seen that the hyaluronic acid-containing composition of the present invention is very useful not only for maintaining the concentration of exosomes under long-term real-time conditions, but also for maintaining the enzymatic activity ability of exosomes. there was.
실험예 1.2.4. 엑소좀-히알루론산 조성물 내 엑소좀 총 단백질량 유지 평가Experimental Example 1.2.4. Evaluation of maintenance of total exosome protein amount in exosome-hyaluronic acid composition
단백질 정량법(BCA assay)를 통해 조성물 내 엑소좀의 총 단백질량을 측정하였다. 결과는 도 5의 d에 나타내었다.The total amount of protein of exosomes in the composition was measured using protein quantification (BCA assay). The results are shown in Figure 5d.
도 5의 d에 나타낸 바와 같이, 실시간 조건에서는 보관 30일 차에서 히알루론산 함유 샘플(HA, HA+Tre), 트레할로스 함유 샘플(Tre) 및 DPBS 샘플 내 엑소좀의 단백질 총량의 변화는 거의 나타나지 않는 것을 확인하였다.As shown in Figure 5 d, under real-time conditions, there was almost no change in the total protein amount of exosomes in the hyaluronic acid-containing samples (HA, HA+Tre), trehalose-containing samples (Tre), and DPBS samples on the 30th day of storage. confirmed.
상기 결과로부터, 본 발명의 히알루론산 함유 조성물은 장기간 실시간 조건에서도 엑소좀의 총 단백질량을 유지하는 효과가 매우 우수함을 알 수 있었다. From the above results, it was found that the hyaluronic acid-containing composition of the present invention is very effective in maintaining the total protein amount of exosomes even under long-term real-time conditions.
실험예 2. 장기간 가속 조건에서의 엑소좀-히알루론산 조성물에 따른 엑소좀의 형태학적 분석Experimental Example 2. Morphological analysis of exosomes according to exosome-hyaluronic acid composition under long-term accelerated conditions
장기간 가속 조건에서의 엑소좀-히알루론산 조성물에 따른 엑소좀의 형태학적 분석을 수행하고자, 상기 실험예 1에서 사용한 각 조성물의 동결건조 제형을 동일하게 사용하여 투과 주사 현미경을 통하여 각 조성물에 따른 엑소좀의 형태 변화를 비교분석하였다. 구체적으로 각 조성물의 동결건조 제형을 40℃의 가속조건에서 30일간 보관 후, 각 조성물에 따른 엑소좀의 형태 변화를 0일차 구형의 엑소좀 형태와 비교하였다.In order to perform morphological analysis of exosomes according to the exosome-hyaluronic acid composition under long-term acceleration conditions, the same freeze-dried formulation of each composition used in Experimental Example 1 was used to analyze exosomes according to each composition through a transmission scanning microscope. Changes in the shape of the silverfish were compared and analyzed. Specifically, the freeze-dried formulation of each composition was stored for 30 days under accelerated conditions at 40°C, and then the change in the shape of exosomes according to each composition was compared with the spherical exosome shape on day 0.
결과는 도 6에 나타내었다. The results are shown in Figure 6.
도 6에 나타낸 바와 같이, 히알루론산 미함유 샘플(DPBS) 및 트레할로스 함유 샘플(Tre)의 엑소좀 형태는 구형의 소포체 형태에서 찌그러진 불규칙적의 형태를 나타내는 반면, 본 발명의 히알루론산 함유 샘플(HA, HA+Tre)의 엑소좀은 0일차의 엑소좀과 유사한 구형의 형태가 유지되는 것을 확인하였다. 또한, 엑소좀 간의 응집 현상에 있어서도 대조군 샘플들과 비교하여, 히알루론산 함유 샘플(HA)에서 엑소좀 간의 응집 현상이 덜 나타나는 것을 확인하였다.As shown in Figure 6, the exosome morphology of the hyaluronic acid-free sample (DPBS) and the trehalose-containing sample (Tre) shows a distorted, irregular shape in the form of a spherical endoplasmic reticulum, while the hyaluronic acid-containing sample of the present invention (HA, It was confirmed that the exosomes (HA+Tre) maintained a spherical shape similar to the exosomes on day 0. In addition, in terms of aggregation between exosomes, it was confirmed that less aggregation between exosomes occurred in the hyaluronic acid-containing sample (HA) compared to the control samples.
상기 결과로부터, 본 발명의 히알루론산 함유 조성물은 장기간 가속 조건에서도 엑소좀의 기능뿐만 아니라 형태를 유지하는 효과가 매우 우수함을 알 수 있었다. From the above results, it was found that the hyaluronic acid-containing composition of the present invention was very effective in maintaining not only the function but also the shape of exosomes even under long-term accelerated conditions.
실험예 3. 엑소좀의 장기간 보관시 엑소좀 내 CD44 수용체 유무 차이에 따른 엑소좀의 안정성 유지 평가Experimental Example 3. Evaluation of maintenance of exosome stability according to the presence or absence of CD44 receptor in exosomes during long-term storage of exosomes
본 실험예에서는 상기 실험예 1 및 2에서 확인한 엑소좀-히알루론산 조성물에 따른 엑소좀의 장기간 보관시 엑소좀의 안정성 유지가 히알루론산과 엑소좀 간의 CD44-특이적 결합으로 인해 나타나는 효과인지 확인하고자 하였다.In this experimental example, the purpose was to confirm whether maintaining the stability of exosomes during long-term storage of exosomes according to the exosome-hyaluronic acid composition confirmed in Experimental Examples 1 and 2 is an effect caused by CD44-specific binding between hyaluronic acid and exosomes. did.
음성대조군으로는 DPBS 조성물의 동결건조제형 샘플을 사용하였고, 트레할로스 함유(0.05 wt%, Tre) 조성물 및 히알루론산 함유(0.05 wt%, HA) 조성물의 동결건조제형 샘플을 각각 실험군으로 사용하였으며, 추가적으로, 상기 실시예 1에서 제조된 CD44 수용체가 차단된 엑소좀을 적용하여 각 실험군에 대한 음성대조군으로 사용하였다.A lyophilized formulation sample of the DPBS composition was used as a negative control group, and a lyophilized formulation sample of a trehalose-containing (0.05 wt%, Tre) composition and a hyaluronic acid-containing (0.05 wt%, HA) composition was used as an experimental group, respectively. Additionally, , the CD44 receptor-blocked exosome prepared in Example 1 was applied and used as a negative control for each experimental group.
실험예 3.1. 히알루론산과 엑소좀 간의 CD44-특이적 결합에 의한 엑소좀의 세포이동능력 평가Experimental Example 3.1. Evaluation of cell migration ability of exosomes by CD44-specific binding between hyaluronic acid and exosomes
먼저, 엑소좀의 장기간 보관시 히알루론산 고분자와의 특이적 결합에 의한 엑소좀의 안정성 유지, 즉, 엑소좀의 기능적 특성의 유지력을 확인하고자 세포이동능력을 평가하였다.First, cell migration ability was evaluated to confirm the maintenance of exosome stability by specific binding to hyaluronic acid polymer during long-term storage of exosomes, that is, the ability to maintain the functional properties of exosomes.
엑소좀의 세포이동능력를 평가하기 위해 세포를 이용한 상처치유 분석법을 수행하였다. 섬유아세포가 배양된 접시 중앙 부위를 긁어낸 후, 가속조건(40℃에서 보관 0일차 및 10일차의 일반 엑소좀 조성물 및 CD44 수용체가 차단된 엑소좀 조성물을 각각 처리한 후, 40시간 이후의 세포차지공간의 너비 차이를 현미경을 통해 확인하였다.To evaluate the cell migration ability of exosomes, a wound healing assay using cells was performed. After scraping the central area of the dish where fibroblasts were cultured, cells were treated under accelerated conditions (40°C on day 0 and day 10 of normal exosome composition and CD44 receptor-blocked exosome composition, respectively, after 40 hours) The difference in width of the occupied space was confirmed through a microscope.
결과는 도 7에 나타내었다.The results are shown in Figure 7.
도 7a에 나타낸 바와 같이, 40℃의 가속조건 내 보관 0일차의 일반 엑소좀 조성물을 섬유아세포에 처리해주었을 때, 조성물 간의 세포이동능력 및 엑소좀의 CD44 수용체 차단 유무에 의한 세포이동능력에 유의미한 차이가 없음을 확인할 수 있었다. As shown in Figure 7a, when fibroblasts were treated with a general exosome composition on day 0 of storage under accelerated conditions at 40°C, there was significant cell migration ability between compositions and cell migration ability by the presence or absence of CD44 receptor blocking of exosomes. It was confirmed that there was no difference.
그러나, 40℃의 가속조건 내 보관 10일차의 엑소좀 조성물을 처리해 주었을 때, CD44 수용체가 온전한 일반 엑소좀 조성물의 경우, 히알루론산 함유 샘플(HA/Exo)에서 히알루론산 미함유 샘플(DPBS/Exo) 대비 1.5배, 트레할로스 샘플(Tre/Exo) 대비 1.3배 이상의 세포이동능력 효율을 나타내었으며, 히알루론산 함유의 CD44 수용체가 차단된 엑소좀 샘플(HA/b-Exo)과 비교하여 1.4배 이상의 세포이동능력의 효율을 보여주었다(도 7b).However, when the exosome composition was processed on the 10th day of storage under accelerated conditions at 40°C, in the case of a general exosome composition with intact CD44 receptors, the hyaluronic acid-containing sample (HA/Exo) was changed to the hyaluronic acid-free sample (DPBS/Exo). ), the cell migration efficiency was 1.5 times higher than that of the trehalose sample (Tre/Exo), and 1.4 times higher than that of the hyaluronic acid-containing CD44 receptor-blocked exosome sample (HA/b-Exo). It showed the efficiency of movement ability (Figure 7b).
이로써, 엑소좀에 발현되어 있는 CD44 수용체와 히알루론산과의 특이적 결합은 엑소좀의 세포이동능력에 유효한 영향을 미친다는 사실을 확인할 수 있었다.As a result, it was confirmed that the specific binding between the CD44 receptor expressed in exosomes and hyaluronic acid has an effective effect on the cell migration ability of exosomes.
실험예 3.2. 히알루론산과 엑소좀 간의 CD44-특이적 결합에 의한 엑소좀의 농도 및 크기 변화 평가Experimental Example 3.2. Evaluation of changes in concentration and size of exosomes due to CD44-specific binding between hyaluronic acid and exosomes
다음으로, 엑소좀의 장기간 보관시 히알루론산 고분자와의 특이적 결합에 의한 엑소좀의 안정성 유지, 즉, 엑소좀의 물리적 특성의 유지력을 확인하고자, 엑소좀의 농도 및 크기 변화를 평가하였다.Next, in order to confirm the maintenance of exosome stability by specific binding to hyaluronic acid polymer during long-term storage of exosomes, that is, the ability to maintain the physical properties of exosomes, changes in concentration and size of exosomes were evaluated.
구체적으로, 엑소좀의 농도 및 크기 변화를 평가하고자, Anti-CD44 항체를 이용한 항원-항체 반응을 수행하여 가속조건(40℃에서 10일 동안 히알루론산 미함유 처리군(DPBS), 트레할로스 처리군(Tre), 및 히알루론산 처리군(HA) 내 엑소좀의 농도 및 크기 변화를 측정하였으며, 여기에서 실험군과 비교군으로 각각 일반 엑소좀 및 히알루론산과 특이적으로 결합하는 CD44 수용체를 차단한 엑소좀을 사용하였다.Specifically, to evaluate changes in the concentration and size of exosomes, an antigen-antibody reaction using an anti-CD44 antibody was performed under accelerated conditions (hyaluronic acid-free treatment group (DPBS) for 10 days at 40°C, trehalose treatment group ( Tre), and changes in the concentration and size of exosomes in the hyaluronic acid treatment group (HA) were measured, wherein the experimental and comparison groups were regular exosomes and exosomes that blocked the CD44 receptor that specifically binds to hyaluronic acid, respectively. was used.
그 결과는 도 8에 나타내었다.The results are shown in Figure 8.
도 8a에 나타낸 바와 같이, 보관 10일차에 CD44가 발현되어 있는 기존 엑소좀(EXO)의 경우, 히알루론산 처리군(HA)에서는 초기 0일차 대비 엑소좀의 농도가 6% 감소하였지만, 히알루론산 미함유 군(DPBS)과 트레할로스 처리군(Tre)에서는 각각 52%, 및 24% 감소함을 확인하였다. As shown in Figure 8a, in the case of existing exosomes (EXO) expressing CD44 on the 10th day of storage, the concentration of exosomes decreased by 6% in the hyaluronic acid treatment group (HA) compared to the initial day 0, but hyaluronic acid It was confirmed that the concentration group (DPBS) and the trehalose-treated group (Tre) decreased by 52% and 24%, respectively.
그러나, CD44 수용체가 차단된 엑소좀(b-EXO)의 경우, DPBS 군과 트레할로스 처리군에서의 엑소좀 농도는 CD44가 발현되어 있는 엑소좀과 비슷한 농도 감소 양상을 나타내는 것을 확인되었으나, 히알루론산 처리군(HA)에서는 35%의 농도 감소 양상을 나타내는 것을 확인하였다.However, in the case of exosomes (b-EXO) in which the CD44 receptor was blocked, it was confirmed that the exosome concentration in the DPBS group and the trehalose treatment group showed a similar decrease in concentration as that of exosomes expressing CD44, but hyaluronic acid treatment In group (HA), it was confirmed that the concentration decreased by 35%.
한편, 도 8b에 나타낸 바와 같이, 보관 10일 차에 DPBS 군과 트레할로스 처리군에서의 엑소좀의 크기는 각각 16%, 및 8% 증가함을 확인하였으며, 이는 상기 도 8a의 결과와 유사하게 DPBS 군과 트레할로스 처리군에서의 엑소좀의 크기는 CD44 수용체의 차단 유무와 관계 없이 비슷한 수준이 유지됨을 나타낸다.Meanwhile, as shown in Figure 8b, on the 10th day of storage, the size of exosomes in the DPBS group and the trehalose treated group was confirmed to increase by 16% and 8%, respectively, which is similar to the results in Figure 8a. The size of exosomes in the group and the trehalose-treated group was maintained at a similar level regardless of the presence or absence of CD44 receptor blocking.
그러나, CD44 수용체가 온전한 일반 엑소좀(EXO)에 대한 히알루론산 처리군(HA)의 경우, 엑소좀의 크기가 4% 증가함을 나타낸 반면, CD44 수용체가 차단된 엑소좀(b-EXO)에서는 12%의 크기 증가를 나타내었다.However, in the case of the hyaluronic acid treatment group (HA) for normal exosomes (EXO) with intact CD44 receptors, the size of exosomes increased by 4%, whereas for exosomes with CD44 receptors blocked (b-EXO), the size of exosomes increased by 4%. It showed a size increase of 12%.
이로써, 엑소좀에 발현되어 있는 CD44 수용체와 히알루론산과의 특이적 결합은 엑소좀의 농도 및 크기 유지에 유효한 영향을 미친다는 사실을 확인할 수 있었다.As a result, it was confirmed that the specific binding between the CD44 receptor expressed in exosomes and hyaluronic acid has an effective effect on maintaining the concentration and size of exosomes.
종합해보면, 상기 결과로부터, 본 발명의 엑소좀의 장기간 보관시 엑소좀-히알루론산 조성물에 따른 엑소좀의 기능적/구조적 안정성의 유지는 엑소좀과 히알루론산 간 CD44 수용체-리간드 결합에 의해 나타나는 효과임을 확인할 수 있었다.In summary, from the above results, the maintenance of functional/structural stability of exosomes according to the exosome-hyaluronic acid composition during long-term storage of exosomes of the present invention is an effect caused by CD44 receptor-ligand binding between exosomes and hyaluronic acid. I was able to confirm.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred implementation examples and do not limit the scope of the present invention.

Claims (13)

  1. 네트워크 구조를 포함하는 생체 적합성 고분자를 포함하는, 엑소좀의 동결 보호용 조성물.A composition for cryoprotection of exosomes, comprising a biocompatible polymer having a network structure.
  2. 제1항에 있어서, 상기 생체 적합성 고분자는 히알루론산(hyaluronic acid), 콜라겐(collagen), 알지네이트(alginate), 녹말(starch), 키토산(chitosan), 젤라틴(gelatin), 덱스트란(dextran), 셀룰로오스(cellulose), 알긴산(alginic acid), 콘드로이틴 설페이트(chondroitin sulfate), 및 헤파린(heparin)으로 이루어진 군으로부터 선택된 것인, 엑소좀의 동결 보호용 조성물.The method of claim 1, wherein the biocompatible polymer is hyaluronic acid, collagen, alginate, starch, chitosan, gelatin, dextran, and cellulose. A composition for cryoprotection of exosomes, selected from the group consisting of cellulose, alginic acid, chondroitin sulfate, and heparin.
  3. 제2항에 있어서, 상기 생체 적합성 고분자는 히알루론산인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 2, wherein the biocompatible polymer is hyaluronic acid.
  4. 제3항에 있어서, 상기 히알루론산은 엑소좀의 CD44 수용체와 결합하는 것인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 3, wherein the hyaluronic acid binds to the CD44 receptor of exosomes.
  5. 제1항에 있어서, 상기 엑소좀은 줄기세포 유래 엑소좀인 것인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 1, wherein the exosomes are stem cell-derived exosomes.
  6. 제5항에 있어서, 상기 줄기세포는 제대, 제대혈, 혈액, 골수, 지방, 근육, 신경, 피부, 양막 및 태반 등으로 이루어진 군에서 선택되는 1종 이상의 조직으로부터 유래된 중간엽 줄기세포(mesenchymal stromal cell)인 것인, 엑소좀의 동결 보호용 조성물.The method of claim 5, wherein the stem cells are mesenchymal stem cells derived from one or more types of tissues selected from the group consisting of umbilical cord, cord blood, blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta. cell), a composition for cryoprotection of exosomes.
  7. 제6항에 있어서, 상기 줄기세포는 지방 유래 줄기세포(adipose-derived stem cells, ASCs)인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 6, wherein the stem cells are adipose-derived stem cells (ASCs).
  8. 제1항에 있어서, 상기 조성물은 히알루론산 고분자를 0.01 내지 1.0 wt%(w/v) 포함하는 것인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 1, wherein the composition contains 0.01 to 1.0 wt% (w/v) of hyaluronic acid polymer.
  9. 제1항에 있어서, 상기 조성물은 전체 조성물 1 mL 당 1 x 109 내지 1 x 1012의 엑소좀을 포함하는 것인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 1, wherein the composition includes 1 x 10 9 to 1 x 10 12 exosomes per 1 mL of the total composition.
  10. 제1항에 있어서, 상기 조성물은 동결 과정에서 생체적합성 고분자를 포함하지 않는 조성물에 비해 엑소좀의 안정성 감소를 저해하는 것인, 엑소좀의 동결 보호용 조성물.The composition for cryoprotection of exosomes according to claim 1, wherein the composition inhibits the decrease in stability of exosomes during the freezing process compared to a composition not containing a biocompatible polymer.
  11. 제10항에 있어서, 상기 엑소좀의 안정성은 다음 지표를 기준으로 측정하는 것인, 엑소좀의 동결 보호용 조성물:The composition for cryoprotection of exosomes according to claim 10, wherein the stability of the exosomes is measured based on the following indicators:
    (a) 엑소좀의 크기; (a) Size of exosomes;
    (b) 엑소좀의 농도;(b) concentration of exosomes;
    (c) 엑소좀의 효소활성능력; (c) Enzyme activity ability of exosomes;
    (d) 엑소좀의 총 단백질량; 또는(d) total protein amount of exosomes; or
    (e) 이들의 조합.(e) Combination of these.
  12. 제11항에 있어서, 상기 조성물은, The method of claim 11, wherein the composition:
    (i) 4℃에서 6개월 내지 1년 동안 보관시 상기 (a)의 지표가 초기 값의 l5% 이내의 범위에서 증가되도록 저해하거나, 또는(i) When stored at 4°C for 6 months to 1 year, the indicator in (a) is inhibited to increase within 15% of the initial value, or
    (ii) 40℃에서 15일 내지 30일 동안 보관시 상기 (a)의 지표가 초기 값의 10% 이내의 범위로 증가되도록 저해하는 것인, 엑소좀의 동결 보호용 조성물.(ii) A composition for cryoprotection of exosomes, which inhibits the indicator of (a) from increasing to within 10% of the initial value when stored at 40°C for 15 to 30 days.
  13. 제11항에 있어서, 상기 조성물은, The method of claim 11, wherein the composition:
    (i) 4℃에서 6개월 내지 1년 동안 보관시 상기 (b) 내지 (e)의 지표가 초기 값의 20% 이내의 범위에서 감소되도록 저해하거나, 또는(i) When stored at 4°C for 6 months to 1 year, the indicators (b) to (e) are inhibited to decrease within 20% of the initial value, or
    (ii) 40℃에서 15일 내지 30일 동안 보관시 상기 (b) 내지 (e)의 지표가 초기 값의 30% 이내의 범위로 감소되도록 저해하는 것인, 엑소좀의 동결 보호용 조성물.(ii) A composition for cryoprotection of exosomes, which inhibits the indicators of (b) to (e) from being reduced to within 30% of the initial value when stored at 40°C for 15 to 30 days.
PCT/KR2023/013220 2022-09-07 2023-09-05 Composition for cryoprotection of exosomes including biocombatible polymer including network structure WO2024053985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220113811A KR20240034590A (en) 2022-09-07 2022-09-07 A Composition for cryoprotection of exosome comprising biocompatible polymer including network structure
KR10-2022-0113811 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053985A1 true WO2024053985A1 (en) 2024-03-14

Family

ID=90191472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013220 WO2024053985A1 (en) 2022-09-07 2023-09-05 Composition for cryoprotection of exosomes including biocombatible polymer including network structure

Country Status (2)

Country Link
KR (1) KR20240034590A (en)
WO (1) WO2024053985A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050286A (en) * 2017-11-02 2019-05-10 주식회사 엑소코바이오 Filler composition of stabilized exosome
KR102058961B1 (en) * 2018-07-28 2019-12-24 주식회사 엑소코바이오 Method for freeze-drying exosomes
US20200230174A1 (en) * 2019-01-21 2020-07-23 Vivex Biologics Group, Inc. Exosome composition and method of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050286A (en) * 2017-11-02 2019-05-10 주식회사 엑소코바이오 Filler composition of stabilized exosome
KR102058961B1 (en) * 2018-07-28 2019-12-24 주식회사 엑소코바이오 Method for freeze-drying exosomes
US20200230174A1 (en) * 2019-01-21 2020-07-23 Vivex Biologics Group, Inc. Exosome composition and method of manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALMALIK, A. et al. Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharmaceutical Journal. 2017, vol. 25, pp. 861-867. *
GURRUCHAGA H., SAENZ DEL BURGO L., ORIVE G., HERNANDEZ R.M., CIRIZA J., PEDRAZ J.L.: "Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 548, no. 1, 1 September 2018 (2018-09-01), NL , pages 206 - 216, XP093147381, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2018.06.066 *

Also Published As

Publication number Publication date
KR20240034590A (en) 2024-03-14

Similar Documents

Publication Publication Date Title
RU2306335C2 (en) Stem cells and matrices obtained from adipose tissue
WO2013009100A2 (en) Method for manufacturing umbilical cord extract and usage of same
WO2011049414A2 (en) Method for inducing migration of adult stem cells derived from adipose tissue
WO2018143552A2 (en) Injectable composition for preventing hair loss or stimulating hair growth
WO2015012582A1 (en) Preparation method for therapeutic agent of bead-type chondrocyte
WO2018117569A1 (en) Multilayer cardiac stem cell sheet and method for manufacturing same
WO2013165120A1 (en) Method for culturing neural crest stem cells, and use thereof
WO2020004893A1 (en) Method for preparing pellets of chondrocytes from human induced pluripotent stem cells, and use thereof
WO2012008733A2 (en) Stem cells derived from primary placenta tissue and cellular therapeutic agent containing same
WO2020111868A1 (en) Bio-ink composition for 3d printing, containing human-derived component and having tissue-specific cell differentiation effect, and preparation method therefor
WO2013085303A1 (en) Canine amniotic membrane-derived multipotent stem cells
WO2024053985A1 (en) Composition for cryoprotection of exosomes including biocombatible polymer including network structure
WO2022139166A1 (en) Composition for skin improvement, containing culture liquid of umbilical-cord-derived mesenchymal stem cells as active ingredient
Kalgudde Gopal et al. Wound infiltrating adipocytes are not myofibroblasts
US20240148937A1 (en) Adipose-derived hydrogel compositions and methods of use
WO2020067774A1 (en) Synovium-derived mesenchymal stem cells and use thereof
WO2022158816A1 (en) Filler composition for reducing skin wrinkles comprising stem cell-derived exosomes, hyaluronic acid, and bdde and method for preparing same
WO2022239909A1 (en) Stem cell induction into prechondrocytes and differentiation into chondrocytes by ciprofloxacin
WO2021054692A1 (en) Stem cells derived from villi adjacent to chorionic plate, and tissue regeneration cell therapeutic agent comprising same
WO2011037416A2 (en) Method of manufacturing cell spheroids which are mixed cellular complexes for cell transplantation and usage thereof
WO2019221477A1 (en) Composition for promoting stem cell differentiation, comprising progenitor cell culture solution and multilayer graphene film, and use thereof
WO2022103129A1 (en) Early mesenchymal stem cells with reduced aging and preserved stem cell ability, and culturing method therefor
WO2017039251A1 (en) Enhanced postnatal adherent cell, and use for same
WO2021201660A1 (en) Cell capsulating layer, capsulated cells, cell capsulating composition and preparation method therefor
WO2021101198A2 (en) Injectable hydrogel composition capable of capturing endogenous progenitor cells or stem cells, and inducing vascular differentiation of captured cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863457

Country of ref document: EP

Kind code of ref document: A1