WO2016163484A1 - Humidifying device and vehicle air conditioning device - Google Patents

Humidifying device and vehicle air conditioning device Download PDF

Info

Publication number
WO2016163484A1
WO2016163484A1 PCT/JP2016/061450 JP2016061450W WO2016163484A1 WO 2016163484 A1 WO2016163484 A1 WO 2016163484A1 JP 2016061450 W JP2016061450 W JP 2016061450W WO 2016163484 A1 WO2016163484 A1 WO 2016163484A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
space
moisture
duct
Prior art date
Application number
PCT/JP2016/061450
Other languages
French (fr)
Japanese (ja)
Inventor
隆仁 中村
伊藤 功治
加藤 慎也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016163484A1 publication Critical patent/WO2016163484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/06Air-humidification, e.g. cooling by humidification by evaporation of water in the air using moving unheated wet elements

Definitions

  • the present disclosure relates to a humidifier applied to an air conditioning unit, and a vehicle air conditioner including the air conditioning unit and the humidifier.
  • a humidifier that blows humidified air into a vehicle interior using air in an air conditioning case of a vehicle air conditioning unit.
  • a moisture permeable tube that vaporizes water is disposed in a duct that guides air whose temperature has been adjusted in an air conditioning case to the passenger compartment.
  • the water stored in the tank is supplied to the moisture permeable tube, so that the air blown into the passenger compartment is humidified.
  • the vehicle interior is humidified by humidifying the air whose temperature is adjusted in the air conditioning case. Therefore, the presence of the humidification function has a great influence on the air conditioning function of the air conditioning unit. More specifically, the influence of humidification on the air heated by the heater core in the air conditioning case is large.
  • the present disclosure provides a technique for blowing humid air into a vehicle interior by a method other than humidifying air in an air conditioning case in a humidifier using air in an air conditioning case of an air conditioning unit for a vehicle. With the goal.
  • the humidifier is provided in an air conditioning unit in which a cooling unit that cools the blown air is housed in an air conditioning case that forms a ventilation path of the blown air into the vehicle interior. Applied.
  • the humidifier accommodates the adsorber having an adsorbent that adsorbs and desorbs moisture, and the adsorber, and distributes the moisture contained in the cooling air by circulating the cooling air cooled by the cooling unit.
  • a blower for flowing the humidified air from the moisture releasing space to the humidifying duct while flowing into the humid space.
  • the moisture contained in the cooling air is adsorbed to the adsorbent, and the target to be humidified with the moisture desorbed from the adsorbent is used as the inside air, Humidified air can be blown into the passenger compartment by a method other than humidifying the air.
  • the inside air used as a humidification object can be guide
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is a perspective view which shows the principal part of the humidification apparatus which concerns on 1st Embodiment.
  • FIG. 4 is an arrow view in a direction indicated by an arrow IV in FIG. 3. It is VV sectional drawing of FIG. 1, FIG. It is VI-VI sectional drawing of FIG. It is a block diagram which shows the structure of a humidifier and the control apparatus of an air conditioning unit. It is a flowchart of the control process of the humidifier which a control apparatus performs.
  • the vehicle air conditioner includes an air conditioning unit 10 and a humidifier 50 as main components.
  • the arrow which shows the top and the bottom shown in FIG. 1 has shown the up-down direction at the time of mounting a vehicle air conditioner in a vehicle. The same applies to other drawings.
  • the air conditioning unit 10 is disposed in the vehicle interior. More specifically, the air conditioning unit 10 is disposed in the dashboard and below the instrument panel (ie, the instrument panel).
  • the air conditioning unit 10 includes an evaporator 13, a heater core 14, and the like inside an air conditioning case 11 that forms an outer shell thereof.
  • the air conditioning case 11 constitutes a ventilation path for blown air to be blown into the vehicle interior.
  • the air conditioning case 11 of the present embodiment is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • FIG. 2 shows a schematic cross section of the air conditioning case 11 when the air conditioning case 11 is cut in a direction orthogonal to the air flow direction.
  • a ventilation path through which blown air flows is defined by a bottom surface portion 11a, a top surface portion 11b, and a side surface portion 11c.
  • FIG. 2 for the sake of convenience of explanation, an example in which a drain discharge unit 111 and a cold air derivation unit 112, which will be described later, are arranged in the left-right direction on the paper is illustrated, but it is needless to say that the present invention is not limited thereto.
  • the bottom surface portion 11a is a portion constituting a lower wall surface facing the bottom portions of the evaporator 13 and the heater core 14 in the air conditioning case 11.
  • the upper surface part 11 b is a part constituting an upper wall surface facing the bottom surface part 11 a in the air conditioning case 11.
  • the side surface portion 11 c is a portion constituting a wall surface other than the bottom surface portion 11 a and the top surface portion 11 b in the air conditioning case 11.
  • an air-conditioning case 11 is provided with an inside / outside air switching box 12 for switching and introducing outside air and vehicle interior air (that is, inside air) on the most upstream side of the air flow.
  • the inside / outside air switching box 12 is formed with an outside air introduction port 121 for introducing outside air and an inside air introduction port 122 for introducing vehicle interior air.
  • the inside air introduction port 122 is opened inside the dashboard, and therefore the vehicle interior air introduced from the inside air introduction port 122 is more specifically the air inside the dashboard.
  • inside / outside air switching box 12 is arranged with inside / outside air switching door 123 that adjusts the opening area of each inlet 121, 122 to change the ratio between the amount of outside air introduced and the amount of inside air introduced. Yes.
  • the inside / outside air switching door 123 is rotatably disposed between the outside air introduction port 121 and the inside air introduction port 122.
  • the inside / outside air switching door 123 is driven by an actuator (not shown).
  • the evaporator 13 which comprises the cooling part which cools the ventilation air to the vehicle interior is arrange
  • the evaporator 13 is a heat exchanger that absorbs the latent heat of evaporation of the low-temperature refrigerant circulating inside from the blown air and cools the blown air.
  • the evaporator 13 constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, and a decompression mechanism (not shown).
  • the heater core 14 is a heat exchanger that heats blown air using engine cooling water (not shown) as a heat source.
  • the heater core 14 constitutes a heating unit that heats the blown air.
  • An air mix door 18 is rotatably disposed between the evaporator 13 and the heater core 14.
  • the air mix door 18 is driven by an actuator (not shown) to adjust the ratio of the air flowing through the hot air passage 16 and the air flowing through the cold air bypass passage 17 to adjust the temperature of the blown air to be blown into the vehicle interior. It is a member to do.
  • An air-conditioning blower 19 is disposed on the downstream side of the hot air passage 16 and the cold air bypass passage 17.
  • the air-conditioning blower 19 is a device that generates an air flow that blows into the passenger compartment inside the air-conditioning case 11.
  • the air conditioner blower 19 includes a blower case 191, an air conditioner fan 192, an air conditioner motor 193, and the like.
  • the blower case 191 constitutes a part of the air conditioning case 11.
  • the blower case 191 is formed with an air suction port 191a and a discharge port 191b for discharging the air sucked through the suction port 191a.
  • the air conditioning fan 192 sucks air on the downstream side of the air flow in the hot air passage 16 and the cold air bypass passage 17 through the suction port 191a and discharges it from the discharge port 191b.
  • the air-conditioning fan 192 of this embodiment is configured by a centrifugal fan that blows air sucked in from the axial direction outward in the radial direction.
  • the air conditioning fan 192 is rotationally driven by the air conditioning motor 193.
  • the air-conditioning fan 192 is not limited to a centrifugal fan, and may be an axial fan, a cross-flow fan, or the like.
  • the air conditioning duct 20 is connected to the discharge port 191 b of the air conditioning blower 19.
  • the air conditioning duct 20 is a member that guides blown air to the face air outlet 20a, the foot air outlet 20b, and the defroster air outlet 20c at the downstream end of the air flow of the air conditioning duct 20.
  • the face air outlet 20a is an air outlet for blowing air to the upper body side of the occupant, and is disposed, for example, on the surface of the dashboard facing the upper end of the driver's seat or the upper end of the passenger seat.
  • the foot air outlet 20b is an air outlet for blowing air toward the lower body side of the occupant, and is disposed, for example, on the surface of the dashboard facing the lower side of the driver seat or the lower side of the passenger seat.
  • the defroster air outlet 20c is an air outlet that blows out air toward the window glass on the front surface of the vehicle.
  • the defroster air outlet 20c is disposed on the surface of the dashboard that is multifaceted with the window glass on the front surface of the vehicle.
  • the air conditioning duct 20 or the air blowing case 191 is provided with a mode switching door (not shown) for setting the air blowing mode from each outlet. The mode switching door is driven by an actuator (not shown).
  • the face mode is a mode in which the face air outlet 20a is fully opened and air is blown out from the face air outlet 20a toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is a mode in which both the face air outlet 20a and the foot air outlet 20b are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a mode in which air is mainly blown out from the foot outlet 20b by fully opening the foot outlet 20b and opening the defroster outlet 20c by a small opening.
  • the foot defroster mode is a mode in which the foot outlet 20b and the defroster outlet 20c are opened to the same extent and air is blown out from both the foot outlet 20b and the defroster outlet 20c.
  • a drain discharge portion 111 and a cold air derivation portion 112 are formed on the bottom surface portion 11a.
  • the drain discharge part 111 is an opening for discharging condensed water generated in the evaporator 13 to the outside of the vehicle.
  • the drain discharge part 111 of this embodiment is formed in the site
  • the cold air derivation unit 112 is an opening through which a part of the blown air (that is, cooling air) cooled by the evaporator 13 in the air conditioning case 11 is led out of the air conditioning case 11.
  • the cold air derivation unit 112 of the present embodiment is formed in a portion between the evaporator 13 and the heater core 14 in the bottom surface part 11 a of the air conditioning case 11. More specifically, the cool air derivation unit 112 is formed on the bottom surface part 11 a located between the drain discharge unit 111 and the heater core 14. It should be noted that the cold air derivation unit 112 is not closed by the air mix door 18 regardless of the position of the air mix door 18.
  • the air conditioning unit 10 of the present embodiment employs a so-called suction type configuration in which the air conditioning blower 19 is arranged on the air flow downstream side of the air conditioning case 11. For this reason, the pressure inside the air conditioning case 11 is lower than the pressure outside the air conditioning case 11. The pressure outside the air conditioning case 11 is equal to the atmospheric pressure.
  • the humidifier 50 is a component formed separately from the air conditioning unit 10, and is arranged in the dashboard and in the lower part of the instrument panel, like the air conditioning unit 10. More specifically, the humidifying device 50 is on the lower side of the air conditioning case 11 so that the cold air derivation unit 112 of the air conditioning case 11 and a cold air suction unit 52 of the humidifying device 50 described later are close to each other. Is disposed at a position close to a portion where the evaporator 13 is disposed.
  • the humidifier 50 includes an adsorption case 51, a humidifier blower 55, an adsorber 60, a driving member 70, two first partition members 542, and a second partition member 543.
  • the adsorption case 51 is a resin casing that forms the outer shell of the humidifying device 50.
  • the adsorption case 51 accommodates the adsorber 60 in the inside thereof and constitutes a ventilation path for the blown air.
  • the suction case 51 is a component separated from the air conditioning case 11 and separated from the air conditioning case 11.
  • the adsorption case 51 includes a cold air suction part 52, an inside air suction part 53, an adsorber housing part 54, and an air discharge part 56.
  • the cold air suction part 52 is a bottomless hollow rectangular pipe, and is connected to a first external introduction port 52a that communicates with the outside of the humidifying device 50, and a first internal communication that communicates with a moisture absorption space 541a of the adsorber housing part 54 described later.
  • the mouths 52b are formed at both ends.
  • the cold air suction portion 52 surrounds a rectangular parallelepiped-shaped air flow path between the first external introduction port 52a and the first internal communication port 52b.
  • the cold air suction portion 52 has a cold air door 522 that is rotatably disposed between the first external introduction port 52a and the first internal communication port 52b.
  • the cold air door 522 is driven by an actuator (not shown).
  • the cold air door 522 communicates the first external introduction port 52a and the first internal communication port 52b in the cold air suction portion 52 when the cold air door 522 is open, and in the cold air suction portion 52 when the cold air door 522 is closed. The communication between the first external introduction port 52a and the first internal communication port 52b is blocked.
  • the cold air suction part 52 is an opening / closing mechanism that switches opening and closing of the cold air door 522 that guides the cooling air cooled by the evaporator 13 to the moisture absorption space.
  • the shape of the cold air door 522 and the shape of the air flow path surrounded by the cold air suction portion 52 are not limited to the above.
  • a cold air intake duct 521 for introducing the cooling air cooled by the evaporator 13 is connected to the first external introduction port 52a.
  • the cold air intake duct 521 connects the first external introduction port 52 a of the cold air intake part 52 and the cold air outlet part 112 of the air conditioning case 11.
  • the cold air intake duct 521 is a component formed separately from the air conditioning case 11 and the suction case 51, and is configured to be detachable from the cold air derivation unit 112 by a connecting member such as a snap fit (not shown).
  • the inside air suction part 53 is a bottomless cylindrical pipe, and is connected to a second external introduction port 53a that communicates with the outside of the humidifying device 50 and a second moisture communication space 541b of the adsorber housing part 54 described later.
  • a mouth 53b is formed.
  • the inside air suction portion 53 surrounds a cylindrical air flow path between the second external introduction port 53a and the second internal communication port 53b.
  • the second external introduction port 53a of the inside air suction portion 53 is open inside the dashboard, and therefore, more specifically, the vehicle interior air enters the inside air suction portion 53 from the second external introduction port 53a. Air inside the dashboard is introduced. Further, the shape of the inside air suction portion 53 and the shape of the air flow path surrounded by the inside air suction portion 53 are not limited to the above.
  • the adsorber accommodating portion 54 is a member of a portion that accommodates the adsorber 60 in the adsorption case 51. As shown in FIGS. 3 and 4, the adsorber accommodating portion 54 of the present embodiment has a hollow cylindrical outer shape. The adsorber accommodating portion 54 has an adsorber accommodating space 541 of the adsorber 60 formed therein.
  • the adsorber accommodating part 54 there are a space through which the cooling air introduced through the cold air suction part 52 circulates and a space through which the inside air introduced through the inside air suction part 53 circulates as the adsorber accommodating space 541. Is set.
  • the adsorber housing space 541 includes a space in which cooling air circulates and an internal air by the first and second partition members 542 and 543 provided on both the upstream side and the downstream side of the air flow of the adsorber 60.
  • the space where circulates is partitioned.
  • the first partition member 542 is a member that is provided on the upstream side of the air flow of the adsorber 60 and partitions the space on the upstream side of the air flow of the adsorber 60 between the flow path of the cooling air and the flow path of the inside air.
  • the first partition member 542 is integrally formed on the inner side of the upper surface portion of the adsorber accommodating portion 54 (that is, the side facing the adsorber 60).
  • the first partition member 542 includes a ring portion immediately outside the rotation shaft 71 described later, and the ring portion to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541. And two plate members extending in the radial direction around the rotation shaft 71.
  • the ring portion is not fixed to the rotating shaft 71 and is not in contact with the rotating shaft 71.
  • the angle formed by the two plate members around the rotation axis 71 is, for example, 120 °.
  • the second partition member 543 is a member that is provided on the downstream side of the air flow of the adsorber 60 and partitions the space on the downstream side of the air flow of the adsorber 60 from the cooling air flow path and the inside air flow path.
  • the second partition member 543 is integrally formed on the inner side of the bottom surface portion of the adsorber housing portion 54 (that is, the side facing the adsorber 60).
  • the second partition member 543 is a member in which the first upstream partition portion 543a, the first downstream partition portion 543b, the second upstream partition portion 543c, and the ring portion 543e are integrally formed.
  • the ring portion 543 e is a member that surrounds the rotation shaft 71 in the circumferential direction just outside the rotation shaft 71.
  • the ring portion 543 e is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54, and is not fixed to the rotating shaft 71 and is not in contact with the rotating shaft 71.
  • the first upstream partition portion 543a is a plate member that extends in the radial direction around the rotation shaft 71 from the ring portion 543e to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541.
  • the first upstream partition portion 543a is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54.
  • the first downstream partition portion 543b is a plate member that extends from the end of the ring portion 543e and the first upstream partition portion 543a opposite to the adsorber 60 so as to approach the humidifier blower 55 and away from the adsorber 60. .
  • the first upstream partition portion 543a and the first downstream partition portion 543b form the same single flat plate.
  • the first downstream partition 543 b extends to the inside of the humidifier blower 55 through a hole surrounded by the air discharge unit 56. More specifically, the inside of the humidifier blower 55 here is very close to the fan boss 552a in the fan suction space 555 described later. Therefore, the length in the radial direction around the rotation shaft 71 of the first downstream partition portion 543b is shorter than that of the first upstream partition portion 543a.
  • the second upstream partitioning portion 543c is a plate member that extends in the radial direction around the rotation shaft 71 from the ring portion 543e to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541.
  • the second upstream partition portion 543c is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54.
  • the second downstream partition portion 543d is a plate member that extends from the end of the ring portion 543e and the second upstream partition portion 543c opposite to the adsorber 60 so as to approach the humidifier blower 55 and away from the adsorber 60. .
  • the second upstream partition 543c and the second downstream partition 543d form the same single flat plate.
  • the second downstream partition portion 543 d extends to the inside of the humidifier blower 55 through a hole surrounded by the air discharge portion 56. More specifically, the inside of the humidifier blower 55 here is very close to the fan boss 552a in the fan suction space 555 described later.
  • the radial length around the rotation shaft 71 of the second downstream partition portion 543d is shorter than that of the second upstream partition portion 543c.
  • the first downstream partition 543b and the second downstream partition 543d are integrated between the rotation shaft 71 and the humidifier blower 55 on the extension line of the rotation center axis of the rotation shaft 71 and on the fan shaft core CL described later. Connected to.
  • an adsorber 60 is disposed so as to straddle both the space through which the cooling air circulates and the space through which the inside air circulates.
  • the space through which the cooling air flows in the adsorber housing 54 constitutes a moisture absorption space 541a that adsorbs moisture contained in the cooling air to the adsorbent 61 of the adsorber 60.
  • the space where the inside air in the adsorber housing 54 circulates constitutes a moisture releasing space 541b that desorbs moisture adsorbed by the adsorbent 61 of the adsorber 60 and humidifies the inside air.
  • the moisture adsorption rate per unit mass tends to be about twice as slow as the moisture desorption rate per unit mass. If the moisture adsorbed on the adsorbent 61 is small, the amount of moisture desorbed from the adsorbent 61 is also small, and there is a concern that it is difficult to ensure a sufficient amount of humidification in the passenger compartment by the humidifier.
  • the adsorber of the adsorber 60 so that the amount of the adsorbent 61 present in the moisture absorption space 541a is larger than the amount of the adsorbent 61 present in the moisture release space 541b.
  • the housing space 541 is partitioned by first and second partition members 542 and 543. Specifically, by using members bent in an L shape as the first and second partition members 542 and 543, the moisture absorption space 541 a is 2 in the adsorber accommodation space 541 of the adsorber 60 than the moisture release space 541 b.
  • the setting is about twice as large.
  • the angle formed by the two plate members constituting the first partition member 542 toward the moisture release space 541b with the rotation shaft 71 as the center is 120 °.
  • the angle formed between the flat plate formed by the first upstream partition portion 543a and the flat plate formed by the second upstream partition portion 543c on the moisture release space 541b side with the rotation shaft 71 as the center is 120. °.
  • the details of the adsorber 60 will be described later.
  • the air discharge part 56 is a member that forms a single hole communicating with both the moisture absorption space 541 a and the moisture release space 541 b of the adsorber housing part 54.
  • the air discharge unit 56 discharges the dehumidified air from which moisture has been removed through the moisture absorption space 541a and the humidified air that has been humidified through the moisture release space 541b to the outside of the adsorption case 51 through this hole.
  • the humidified air corresponds to an example of the first fluid
  • the dehumidified air corresponds to an example of the second fluid.
  • the air discharge unit 56 is connected to the humidifier blower 55 so that the dehumidified air and the humidified air discharged to the outside of the adsorption case 51 through the hole are sucked into the humidifier blower 55. .
  • the humidifier blower 55 sucks the dehumidified air and humidified air from the adsorption case 51 through the hole surrounded by the air discharge part 56, blows out the sucked humidified air to the humidifying duct 571, and removes the sucked dehumidified air into the dehumidified air duct. Exhale to 573.
  • the humidifying duct 571 guides humidified air that is humidified in the moisture releasing space 541b of the adsorption case 51 to the vehicle interior.
  • the humidifying duct 571 of the present embodiment is a separate component from the air conditioning duct 20 that is a blowout duct of the air conditioning unit 10.
  • the humidifying duct 571 faces the headrest of the driver's seat at a part where the outlet opening 572, which is the downstream end thereof, exists in the vicinity of the occupant's face on the instrument panel (for example, near the meter in the instrument panel). It is open. And the blowing opening part 572 is opening in the position away from the above-mentioned face blower outlet 20a, the foot blower outlet 20b, and the defroster blower outlet 20c (for example, 10 cm or more). Thereby, the humidified air flowing through the humidifying duct 571 is blown out toward the occupant's face without being disturbed by the air discharged from the blowout opening 572 and from the blowout ports 20a, 20b, and 20c. The space around the occupant's face is humidified.
  • a duct having a channel diameter of ⁇ 50 mm and a channel length of about 1000 mm is employed as the humidifying duct 571.
  • the humidified air having a high temperature and a high relative humidity that has passed through the adsorber 60 is cooled by exchanging heat with the air outside the humidifying duct 571, so that the relative humidity of the humidified air can be increased. It becomes possible.
  • the outlet opening 572 of the humidifying duct 571 is set to have an opening diameter and a distance to the occupant's face so that the blown air reaches the face in a high relative humidity state.
  • the blowing opening 572 of the present embodiment has an opening diameter of 75 mm so that the air reaching the face has a relative humidity of about 40%, a temperature of about 20 ° C., and a wind speed of about 0.5 m / s.
  • the air is blown out at an air volume of about 10 m 3 / h (ie, wind speed of 0.6 m / s).
  • the distance to the passenger's face is set to about 600 mm.
  • the wind speed of 0.6 m / s is 10% or less of the minimum air volume of the air exiting from the air outlets 20a, 20b, 20c of the air conditioning unit 10. That is, in the present embodiment, a duct in which the opening area of the blowing opening 572 is larger than the channel cross-sectional area of the channel reaching the blowing opening 572 is used as the humidifying duct 571. According to the humidifying duct 571 configured as described above, the wind speed reaching the occupant is as low as 1 m / s or less, so that it is possible to suppress the diffusion of the humidified air and to ensure that the humidified air reaches the face. it can.
  • the humidifying duct 571 of the present embodiment is configured to be thinner than the cold air intake duct 521 so that the air flowing inside and the air existing outside can exchange heat.
  • the dehumidified air duct 573 is a duct that guides dehumidified air that is cooling air from which moisture has been removed in the moisture absorbing space 541 a of the adsorption case 51.
  • An opening 574 of the dehumidified air duct 573 opened before the dehumidified air is guided by the dehumidified air duct 573 is opened inside the dashboard, thereby preventing the dehumidified air from blowing directly to the passenger. .
  • the destination where the dehumidified air is guided by the dehumidified air duct 573 is inside the dashboard in the vehicle interior, but the destination where the dehumidified air is guided by the dehumidified air duct 573 and blows out from the opening 574 is as shown in FIG. It may be outside the vehicle or inside the air conditioning case 11.
  • the adsorber 60 has a structure in which an adsorbent 61 that adsorbs and desorbs moisture (that is, releases moisture) is supported on a metal plate-like member (not shown). Each plate-like member is laminated and arranged at intervals so that a flow path along the axial direction of the rotation shaft 71 described later is formed between the plate-like members.
  • the adsorber 60 of the present embodiment increases the contact area between the blown air and the adsorbent 61 by stacking and arranging the plate-like members carrying the adsorbent 61.
  • the adsorbent 61 employs a polymer adsorbent that absorbs and releases moisture according to a relative humidity difference. When air having a high relative humidity passes through, the water adsorbs moisture in the air, and when air having a low relative humidity passes through the air, It has the characteristic of releasing moisture inside.
  • the adsorbent 61 the amount of moisture adsorbed when the relative humidity of the blown air passing through the adsorber 60 is changed by 50% within the temperature range assumed as the temperature of the blown air (that is, the amount of adsorption). It is preferable to have an adsorption characteristic that changes at least 3 wt%. More preferably, the adsorbent 61 preferably has an adsorbing characteristic in which the adsorbing amount changes in the range of 3 wt% to 10 wt% under the same conditions as described above.
  • the adsorber 60 of this embodiment is accommodated in an adsorber accommodating portion 54 whose internal space is partitioned into a moisture absorbing space 541a and a moisture releasing space 541b.
  • the adsorber 60 is disposed so as to straddle both the moisture absorbing space 541a and the moisture releasing space 541b, but the amount of moisture adsorbable by the adsorbent 61 existing in the moisture absorbing space is finite. . Further, the amount of moisture desorbed by the adsorbent 61 present in the moisture release space 541b is also finite.
  • the humidifying device 50 is provided with a drive member 70 as a moving mechanism for moving the adsorbent 61 of the adsorber 60 between the moisture absorbing space 541a and the moisture releasing space 541b.
  • the drive member 70 moves at least a part of the adsorbent 61 present in the moisture release space 541b of the adsorber 60 to the hygroscopic space 541a and at least a part of the adsorbent 61 present in the hygroscopic space 541a of the adsorber 60. It is a device moved to the moisture release space 541b.
  • the drive member 70 has a configuration that includes a rotation shaft 71 that passes through the center of the suction device 60 and is connected to the suction device 60, and an electric motor 72 with a speed reducer that rotationally drives the rotation shaft 71.
  • the rotating shaft 71 is rotatably supported by the suction case 51, and rotates together with the suction device 60 inside the suction case 51 when a driving force is transmitted from the electric motor 72.
  • the electric motor 72 of the present embodiment continuously drives the rotating shaft 71 to rotate in one direction.
  • the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture releasing space 541b of the adsorber 60 is moved to the moisture absorbing space 541a, and the adsorbent 61 having sufficiently adsorbed moisture in the moisture absorbing space 541a of the adsorber 60 is released. It can be moved to the wet space 541b.
  • the humidifier blower 55 includes a motor 551, a single centrifugal fan 552, and a scroll fan casing 553.
  • the humidifier blower 55 sucks dehumidified air and humidified air in the direction of the fan shaft core CL, divides the dehumidified air and humidified air in a plurality of directions away from the fan shaft core CL, and blows them out to different spaces. It is a resin member for mediating heat exchange.
  • a part of the motor 551 is accommodated in the centrifugal fan 552 and an output shaft is connected to the centrifugal fan 552.
  • the centrifugal fan 552 is connected to the centrifugal fan 552. Rotate around the axis CL.
  • the centrifugal fan 552 is a centrifugal multiblade fan, that is, an impeller of a centrifugal blower, more specifically, a turbo fan.
  • the centrifugal fan 552 includes a fan boss 552a, a plurality of blades 552b, and a top plate 552c.
  • the centrifugal fan 552 sucks dehumidified air and humidified air in the direction of the fan shaft core CL and blows them in a plurality of directions away from the fan shaft core CL, and mediates heat exchange between the dehumidified air and the humidified air.
  • the fan boss 552a corresponding to an example of the connecting member is a plate-like member connected to the output shaft of the motor 551.
  • the fan boss 552a has a thermal conductivity of 10 W / (m ⁇ K) or more.
  • the fan boss 552a may be made of a metal having a thermal conductivity of 10 W / (m ⁇ K) or higher, or a material other than a metal having a thermal conductivity of 10 W / (m ⁇ K) or higher (for example, carbon (Nanofiber, resin).
  • the plurality of blades 552b are flat plates arranged circumferentially at equal intervals in the circumferential direction around a columnar fan suction space 555 centered on the fan axis CL.
  • the fan suction space 555 is a space including the fan shaft center CL and a space near the fan shaft center CL.
  • Each blade 552b guides air in a direction perpendicular or non-parallel to the fan boss 552a and away from the fan axis CL (that is, does not become perpendicular to the radial direction around the fan axis CL). And so on) and connected to the fan boss 552a.
  • the thermal conductivity of each of the blades 552b is 10 W / (m ⁇ K) or more.
  • each of the blades 552b may be made of a metal having a thermal conductivity of 10 W / (m ⁇ K) or more, or a material other than a metal having a thermal conductivity of 10 W / (m ⁇ K) or more (for example, (Carbon nanofiber, resin).
  • the plurality of blades 552b have the same size, shape, and surface area.
  • the top plate 552c corresponding to an example of the connection member is a ring-shaped member facing the fan boss 552a with the blade 552b interposed therebetween, and all the blades 552b are connected and fixed to the top plate 552c.
  • the thermal conductivity of the top plate 552c is 10 W / (m ⁇ K) or more.
  • the top plate 552c may be made of a metal having a thermal conductivity of 10 W / (m ⁇ K) or higher, or a material other than a metal having a thermal conductivity of 10 W / (m ⁇ K) or higher (for example, carbon (Nanofiber, resin).
  • the thermal conductivity of the top plate 552c may be less than 10 W / (m ⁇ K).
  • the thickness of the fan boss 552a is larger than the thickness of each of the blades 552b and the top plate 552c.
  • the heat capacity of the fan boss 552a is larger than the heat capacity of the entire blades 552b and the top plate 552c. Therefore, naturally, the heat capacity of the fan boss 552a is larger than any one of the plurality of blades 552b. Further, the heat capacity of the fan boss 552a is larger than the heat capacity of the top plate 552c.
  • the scroll fan casing 553 is a housing that houses a part of the motor 551 and the centrifugal fan 552.
  • the scroll fan casing 553 may be made of resin or metal, but has lower thermal conductivity than the fan boss 552a, the blade 552b, and the top plate 552c.
  • the scroll fan casing 553 has a shape in which the dehumidified air that has passed through the moisture absorbing space 541a and the humidified air that has passed through the moisture releasing space 541b are independently blown to the dehumidified air duct 573 and the humidifying duct 571, respectively.
  • the scroll fan casing 553 has an upper bottom wall 553a, a lower bottom wall 553b, and an outer peripheral wall 553c.
  • the upper bottom wall 553a is a plate-like member corresponding to the upper lid of the scroll fan casing 553, and has an opening connected to the air discharge portion 56 at the inner peripheral end thereof.
  • the opening is a member that forms a hole for introducing dehumidified air and humidified air from the adsorber housing space 541.
  • the lower bottom wall 553b is a plate-shaped member that faces the upper bottom wall 553a in the direction of the fan shaft core CL.
  • the outer peripheral wall 553c is a plate-shaped member that forms the outer periphery of the scroll fan casing 553, and is connected to the outer peripheral end of the upper bottom wall 553a at the upper end thereof (that is, the end closer to the adsorber accommodating portion 54), The lower end (that is, the end far from the adsorber housing 54) is connected to the outer peripheral end of the lower bottom wall 553b. Therefore, the outer peripheral wall 553c is a member that connects the upper bottom wall 553a and the lower bottom wall 553b.
  • the inner surface of the outer peripheral wall 553c on the fan housing space side (that is, the space housing the centrifugal fan 552) includes two scroll nose portions, a first nose portion N1 and a second nose portion N2.
  • a first scroll inner wall surface S1 and a second scroll inner wall surface S2 are provided.
  • the first scroll inner wall surface S1 corresponds to an example of a first inner wall surface
  • the second scroll inner wall surface S2 corresponds to an example of a second inner wall surface.
  • the first nose portion N1 is connected to an end portion of the first scroll inner wall surface S1 opposite to the rotation direction of the centrifugal fan 552.
  • the second nose portion N2 is connected to the end portion of the second scroll inner wall surface S2 in the direction opposite to the rotation direction of the centrifugal fan 552.
  • the first nose portion N1 forms a boundary between the inner surface of the outer peripheral wall 553c and the dehumidified air duct 573 and is a scroll start portion.
  • the second nose portion N2 forms a boundary between the inner surface of the outer peripheral wall 553c and the humidifying duct 571 and is a winding start portion of the scroll.
  • the first scroll inner wall surface S1 extends from the first nose portion N1 to the humidifying duct 571 so that the distance from the fan axis CL increases in accordance with a well-known logarithmic spiral function with respect to the winding angle about the rotation axis S.
  • the wall surface extends around the fan shaft core CL in a spiral shape.
  • the second scroll inner wall surface S2 extends from the second nose portion N2 to the dehumidified air duct 573 so that the distance from the fan shaft core CL increases according to a well-known logarithmic spiral function with respect to the winding angle about the rotation axis S.
  • the wall surface extends around the fan shaft core CL in a spiral shape.
  • each of the plurality of blades 552b is between the fan shaft core CL and the first inner wall surface S1 in some cases, and the fan shaft core in other cases. Between CL and the second inner wall surface S2.
  • the scroll fan casing 553 has two outlets, one of the two outlets is connected to the humidifying duct 571, and the other outlet is connected to the dehumidified air duct 573. ing.
  • the first downstream partition 543 b and the second downstream partition 543 d are both disposed in the fan suction space 555.
  • both the first downstream partition 543b and the second downstream partition 543d are sucked into the fan suction space 555 by passing the humid air through the centrifugal fan 552 and the dehumidified air through the centrifugal fan 552. Partition into space.
  • directions 81 and 82 in which the first downstream partition portion 543b and the second downstream partition portion 543d extend straight from the fan shaft core CL in a plane perpendicular to the fan shaft core CL are formed.
  • the angle is 120 °.
  • the direction 81 is also the direction of the end portion of the first downstream partitioning portion 543b that is farthest from the fan shaft core CL as viewed from the fan shaft core CL in a plane perpendicular to the fan shaft core CL.
  • the direction 82 is also a direction in which the end portion of the second downstream partitioning portion 543d that is farthest from the fan axis CL in the plane perpendicular to the fan axis CL is viewed from the fan axis CL.
  • the range of 120 ° is a range from the first downstream partition 543b to the second downstream partition 543d along the rotation direction of the centrifugal fan 552, and is a space through which humidified air is sucked into the centrifugal fan 552.
  • a range of 240 ° from the second downstream partition 543d to the first downstream partition 543b along the rotation direction of the centrifugal fan 552 is a space through which dehumidified air passes and is sucked into the centrifugal fan 552.
  • the angle formed by the direction 83 from the fan shaft core CL to the first nose portion N1 and the direction 84 from the fan shaft core CL to the second nose portion N2 in a plane perpendicular to the fan shaft core CL is 120 °. is there.
  • the direction 81 of the first downstream partition 543b is different from the direction of rotation 80 of the centrifugal fan 552 by a first deviation angle ⁇ that is greater than 0 ° and less than 90 ° with respect to the direction 83 of the first nose portion N1. It is shifted to the opposite side. Further, the direction 82 of the second downstream partition portion 543d is shifted to the opposite side to the rotation direction 80 of the centrifugal fan 552 by the substantially same second shift angle ⁇ z with respect to the direction 84 of the second nose portion N2. .
  • the absolute value of the difference between the first deviation angle ⁇ and the second deviation angle ⁇ z is most preferably 0 °, but if it is 15 ° or less, the effect described later (that is, the separation effect of humidified air and dehumidified air). ) Can be achieved to some extent.
  • the direction 81 and the direction 84 are also shifted from each other, and the direction 82 and the direction 83 are also shifted from each other.
  • the total contact area Q of the plurality of blades 552b and the height H of each of the plurality of blades 552b are defined as follows.
  • the height H of each blade 552b is the maximum value of the length of the blade 552b in the direction parallel to the fan shaft core CL, as shown in FIG.
  • the maximum value here is the maximum value in one blade.
  • the contact area Q of the plurality of blades 552b is the sum of the contact areas of all the blades 552b connected to the fan boss 552a and the fan boss 552a.
  • the contact area Q of the plurality of blades 552b in FIG. It is the same as the total cross-sectional area.
  • H ⁇ Q1 / 2 When defined in this way, H ⁇ Q1 / 2 .
  • a control device 100 shown in FIG. 7 includes a microcomputer including a CPU, a storage unit such as a ROM and a RAM, and peripheral circuits thereof.
  • the control device 100 performs various calculations and processes based on the control program stored in the storage unit, and controls the operation of various devices connected to the output side.
  • the control device 100 of this embodiment is a device in which a control device that controls the operation of various devices of the air conditioning unit 10 and a control device that controls the operation of various devices of the humidifying device 50 are combined into one.
  • the various sensor groups 101 for air conditioning control, the various sensor groups 102 for humidification control, and the operation panel 103 for air conditioning control and humidification control are connected to the input side of the control device 100.
  • an inside air temperature sensor that detects an inside air temperature
  • an outside air temperature sensor that detects an outside air temperature
  • a solar radiation sensor that detects the amount of solar radiation in a vehicle interior
  • an evaporator that detects the temperature of the evaporator 13.
  • the various sensor groups 102 for humidification control include a first temperature sensor that detects the temperature of air blown from the humidification duct 571, a second temperature sensor that detects the temperature of air blown from the cold air discharge duct, and the like. .
  • the operation panel 103 is provided with an air conditioning operation switch 103a, a humidification operation switch 103b, a temperature setting switch 103c, and the like.
  • the air conditioning operation switch 103 a is a switch for switching on and off of the air conditioning operation by the air conditioning unit 10.
  • the humidifying operation switch 103b is a switch that switches on / off of the humidifying operation of the humidifying device 50.
  • the temperature setting switch 103c is a switch for setting a target temperature of air blown from the air conditioning unit 10 or the humidifier 50.
  • the actuator of the air mix door 18, the air conditioning motor 193 of the air conditioning blower 19, the actuator of the inside / outside air switching door 123, the motor 551 of the humidifier blower 55, and the electric motor of the driving member 70 are provided on the output side of the control device 100.
  • the actuator of the air mix door 18, the air conditioning motor 193 of the air conditioning blower 19, the actuator of the inside / outside air switching door 123, the motor 551 of the humidifier blower 55, and the electric motor of the driving member 70 are provided on the output side.
  • the air-conditioning unit 10 targets the blown air that the control device 100 blows into the vehicle interior based on the detection signals of the various air-conditioning control sensor groups 101 and the set temperature of the temperature setting switch 103c.
  • the blowing temperature TAO is calculated.
  • the control apparatus 100 controls the action
  • control device 100 controls various devices in accordance with the detection signals of the various sensor groups 101 for air conditioning control, thereby realizing appropriate temperature adjustment in the vehicle interior requested by the user. be able to.
  • the evaporator 13 cools the inside air or the outside air, and as a result, the temperature in the passenger compartment is kept at 25 ° C., and the relative humidity in the passenger compartment is kept at 20%.
  • the control device 100 executes the process shown in FIG.
  • the control device 100 first determines whether or not there is a humidification request by detecting on / off of the humidification operation switch 103b in step S10. In this determination process, it is determined that there is no humidification request when the humidification operation switch 103b is off, and it is determined that there is a humidification request when the humidification operation switch 103b is on. If it is determined that there is no humidification request, step S10 is repeated again.
  • step S10 when it is determined that there is a humidification request, the control device 100 proceeds to step S20 and starts the humidification process in the vehicle interior by the humidification device 50. Specifically, the control device 100 moves the cold air door 522 to the fully open position, operates the motor 551 of the humidifier blower 55 to rotate the centrifugal fan 552, and operates the drive member 70 to operate the adsorber 60. Rotate. Thereby, the humidification driving
  • the control device 100 uses the minimum air volume of the air-conditioning blower 19 as the reference air volume
  • the cooling air introduced through the cold air intake duct 521 has an air volume that is smaller than the reference air volume (for example, 20 m 3 / h
  • the humidifier blower 55 is controlled so as to be about 20% of the reference air volume.
  • the control device 100 may control the air volume of the air-conditioning blower 19 based on the detection values of the various sensor groups 102 for humidification control.
  • control device 100 controls the electric motor 72 of the drive member 70 so that the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture release space 541b moves relative to the moisture absorption space 541a of the adsorber housing 54. To do. For example, when the time required for desorption of moisture from the adsorbent 61 in the moisture release space 541b is set as the reference time, the control device 100 moves the adsorbent 61 to the moisture release space 541b and then passes the reference time.
  • the electric motor 72 is controlled to move to the moisture absorption space 541a.
  • the electric motor 72 is controlled so that the adsorber 60 rotates at a predetermined constant rotation speed of 5 rpm to 10 rpm. Even if the adsorber 60 rotates, the adsorber accommodating portion 54, the first partition member 542, and the second partition member 543 do not rotate.
  • the operation state of the humidifying device 50 when the control device 100 executes the humidifying process will be described.
  • a part of the low-temperature, high-relative-humidity cooling air (for example, temperature 5 ° C., relative humidity 70%) cooled by the evaporator 13 is sucked by the suction force of the humidifier blower 55 and passes through the cold-air suction duct 521. It is introduced into the suction case 51.
  • the cooling air introduced into the adsorption case 51 adsorbs moisture contained in the cooling air by the adsorbent 61 present in the moisture absorption space 541a of the adsorber 60. As a result, the cooling air becomes dehumidified air.
  • the adsorber 60 rotates in the adsorber accommodation space 541, the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture release space 541b of the adsorber 60 moves to the moisture absorption space 541a.
  • moisture contained in the cooling air introduced into the adsorption case 51 is continuously adsorbed by the adsorbent 61 present in the moisture absorption space 541a of the adsorber 60.
  • the dehumidified air that has passed through the moisture absorption space 541 a is sucked by the suction force of the humidifier blower 55 and flows into the fan suction space 555 of the humidifier blower 55 via the air discharge unit 56.
  • the air inside the dashboard in the passenger compartment has a temperature of 25 ° C. and a relative humidity of 20%. Part of this air is sucked by the suction force of the humidifier blower 55 and introduced into the suction case 51 from the inside air suction portion 53.
  • the inside air introduced into the adsorption case 51 is humidified by desorption of moisture adsorbed by the adsorbent 61 present in the moisture release space 541b of the adsorber 60, and the temperature is 21 ° C. and the relative humidity is 57%. It becomes humidified air.
  • the adsorber 60 rotates in the adsorber accommodation space 541, the adsorbent 61 that has sufficiently adsorbed moisture in the moisture absorption space 541a in the adsorber 60 moves to the moisture release space 541b.
  • the inside air introduced into the adsorption case 51 is continuously humidified by the moisture release of the adsorbent 61 present in the moisture absorption space 541a in the adsorber 60.
  • the dehumidification of the cooling air in the moisture absorption space 541a and the humidification of the inside air in the moisture release space 541b are simultaneously and continuously realized.
  • the humidified air that has passed through the moisture release space 541 b is sucked by the suction force of the humidifier blower 55 and flows into the fan suction space 555 of the humidifier blower 55 through the air discharge unit 56.
  • the humidified air and the dehumidified air flowing into the humidifier blower 55 from the air discharge unit 56 are hardly mixed as shown in the humidified air flowing along the solid line arrow and the dehumidified air flowing along the broken line arrow in FIG. It flows toward the fan boss 552a in the fan suction space 555 while being separated.
  • the humidified air and the dehumidified air are separated from each other while being hardly mixed with each other, as indicated by the solid line arrows and the broken line arrows in FIG. 6, from the fan suction space 555 along the fan boss 552a, It flows into the space surrounded by the top plate 552c.
  • the thermal conductivity of the centrifugal fan 552 is high, the humidified air and the dehumidified air exchange heat with each other via the centrifugal fan 552 while being hardly mixed and separated.
  • humidified air having a temperature higher than that of dehumidified air has a temperature of 21 ° C. and a relative humidity of 57%.
  • the air flows into a space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c, and the humidified air mainly hits the fan boss 552a and the blade 552b while circulating in the space.
  • the heat of the humidified air is transmitted from the humidified air to the fan boss 552a and the blade 552b.
  • the humidified air is deprived of heat, for example, the temperature is lowered to 18 ° C., and the relative humidity is increased to about 65% accordingly.
  • the heat transmitted to the blade 552b is transmitted to the fan boss 552a having a higher heat capacity than the blade 552b, and is temporarily stored in the fan boss 552a.
  • the temperature inside the fan boss 552a is kept substantially uniform throughout the fan boss 552a due to its high thermal conductivity.
  • dehumidified air having a temperature lower than that of the humidified air has a temperature of 5 ° C. and a relative humidity of 30%. While this air flows into the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c and flows through the space, the dehumidified air mainly hits the fan boss 552a and the blade 552b. Thereby, heat is transmitted from the fan boss 552a and the blade 552b to the dehumidified air. As a result, the dehumidified air receives heat and rises in temperature to 9 ° C., for example, and the relative humidity is lowered to about 28%. Then, heat is transferred from the fan boss 552a having a higher heat capacity than the blade 552b to the blade 552b from which heat has been removed.
  • the centrifugal fan 552 sucks humidified air from the adsorption case 51 and blows it out to the humidifying duct 571, and simultaneously sucks dehumidified air from the adsorption case 51 and blows it out to the dehumidified air duct 573, thereby taking air from the humidified air. Pass the deprived heat to dehumidified air.
  • the centrifugal fan 552 can suck dehumidified air and humidified air from the fan suction space 555 and blow out, and can mediate heat exchange between the dehumidified air and humidified air. And no need to arrange a humidified air heat exchanger.
  • the number of blowers is only one (that is, only the humidifier blower 55). As a result, the number of parts of the humidifying device 50 can be reduced, and as a result, the humidifying device 50 can be reduced in size.
  • the inside air is used instead of the air in the air conditioning case 11 as the air for passing the moisture release space 541b, the influence on the air conditioning function on the air conditioning unit 10 side due to the presence of the humidifying device 50 can be reduced. .
  • the humid air 91 represented by a substantially oval shape filled with black is discharged from the narrower space partitioned by the first downstream partition 543b and the second downstream partition 543d from the fan boss. It is assumed that the gas flows into a space surrounded by 552a, blade 552b, and top plate 552c.
  • the dehumidified air 92 represented by a hatched substantially oval shape is separated from the wider space partitioned by the first downstream partition 543b and the second downstream partition 543d from the fan boss 552a, It is assumed that the gas flows into a space surrounded by the blade 552b and the top plate 552c.
  • the humidified air 91 and the dehumidified air 92 try to flow out from the outermost end of the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c as shown in FIG.
  • the centrifugal fan 552 rotates while proceeding from the time point of FIG. 9 to the time point of FIG.
  • the angle at which the centrifugal fan 552 rotates during the time from the innermost end to the outermost end of the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c is specified in advance through experiments or the like. Keep it.
  • the rotational speed of the centrifugal fan 552 and the wind speed of the air blown out to the centrifugal fan 552 are in a proportional relationship. Therefore, the above angle hardly depends on the rotational speed of the centrifugal fan 552 and largely depends on the shape of the centrifugal fan 552, but is generally larger than 0 ° and smaller than 90 °.
  • the first deviation angle ⁇ in which the direction 81 of the first downstream partition portion 543b is shifted to the opposite side of the rotation direction 80 of the centrifugal fan 552 with respect to the direction 83 of the first nose portion N1 is defined as the specified angle.
  • the arrangement and the like of the first nose portion N1 are determined so as to be the same.
  • the second deviation angle ⁇ z in which the direction 82 of the second downstream partition portion 543d is shifted to the opposite side to the rotation direction 80 of the centrifugal fan 552 with respect to the direction 84 of the second nose portion N2 is defined as the specified angle.
  • the arrangement or the like of the second nose portion N2 is determined so as to be the same.
  • the direction 81 of the first downstream partition portion 543b coincides with the direction 83 of the first nose portion N1
  • the direction 82 of the second downstream partition portion 543d is the direction 84 of the second nose portion N2.
  • the degree of mixing of the humidified air and the dehumidified air can be further reduced as compared with the case where the deviation angle is not different.
  • the relationship between the height H of the blade and the total contact area Q of the plurality of blades 552b is H ⁇ Q1 / 2. Since heat conduction from the fan boss 552a to the fan boss 552a can be performed more quickly, the efficiency of heat exchange between the humidified air and the dehumidified air can be further improved.
  • the humidified air that has flowed into the centrifugal fan 552 is divided almost without being mixed with the dehumidified air, and heat exchange with the dehumidified air lowers the temperature and the relative humidity increases, and flows into the humidifying duct 571. . Further, the humidified air is blown out from the blowing opening 572 at the downstream end of the air flow of the humidifying duct 571 toward the occupant's face through the humidifying duct 571, and is discharged from the outlets 20a, 20b, and 20c. Without being disturbed by the air, the air is blown toward the occupant's face, and the space around the occupant's face is humidified.
  • the dehumidified air that has flowed into the centrifugal fan 552 is separated almost without being mixed with the humidified air, and heat exchange with the humidified air increases the temperature and the relative humidity increases, and flows into the dehumidified air duct 573. Further, the dehumidified air flows into the passenger compartment, outside the vehicle, or inside the air conditioning case 11 through the humidifying duct 571. When dehumidified air is allowed to flow into the air conditioning case 11, the load of the refrigeration cycle can be reduced because the dehumidified air has a lower temperature than the inside air.
  • step S20 it is determined whether there is a humidification stop request in step S30 while continuing the humidification process started in step S20.
  • step S30 it is determined that there is no humidification stop request when each of the operation switches 103a and 103b is on, and it is determined that there is a humidification stop request when one of the operation switches 103a and 103b is off. To do. If it is determined that there is no humidification stop request, the determination in step S30 is repeated while continuing the humidification process.
  • step S30 when it is determined that there is a humidification stop request, the control device 100 proceeds to step S40 and performs a desorption process for desorbing moisture adsorbed on the adsorbent 61 of the adsorber 60. Execute. Thereby, the desorption operation of the humidifier 50 is realized.
  • the control device 100 In the desorption process, the control device 100 fully closes the cold air door 522 while the adsorber 60 is rotated by the driving member 70. As a result, the cooling air does not flow from the cold air outlet 112 to the first internal communication port 52b. Therefore, the adsorbent 61 does not adsorb moisture in the hygroscopic space 541a. On the other hand, the inside air is sucked by the suction force of the centrifugal fan 552, introduced into the suction case 51, and moisture is desorbed from the adsorbent 61 in the moisture release space 541b.
  • the control device 100 continues the desorption process until a preset processing duration elapses.
  • the control device 100 stops the operation of the humidifier blower 55 and returns to step S10.
  • processing continuation time is just to set to the time required for the dehumidification apparatus 50 to desorb
  • the vehicle interior can be humidified using the moisture of the cooling air cooled by the air conditioning unit 10. So there is no need to supply water from the outside.
  • the water contained in the cooling air is adsorbed to the adsorbent 61 using the cooling air in the air conditioning case 11. That is, since moisture is supplied from the cooling air of the evaporator 13, the humidifier 50 can be simply configured without preparing a separate moisture supply source. Moreover, as long as the refrigeration cycle is operating, humidification is possible almost all seasons.
  • the humidified air can be blown into the vehicle interior by a method other than humidifying the air in the air conditioning case. Further, by providing a blower that sucks the inside air into the moisture release space 541b and sucks humidified air from the adsorption case 51 and blows it out to the humidifying duct 571, the inside air that is to be humidified can be appropriately guided.
  • the humidifier 50 moves a part of the adsorbent 61 in the moisture releasing space 541b of the adsorber 60 to the moisture absorbing space 541a and also dehumidifies a part of the adsorbent 61 present in the moisture absorbing space 541a of the adsorber 60.
  • a driving member 70 that moves to the space 541b is provided.
  • moisture adsorbed by the adsorbent 61 in the moisture absorbing space 541a is desorbed by the moisture releasing space 541b to humidify the heated air, and at the same time, the moisture absorbing space 541a by the adsorbent 61 from which moisture has been desorbed by the moisture releasing space 541b. It is possible to adsorb the moisture of the cooling air that circulates.
  • the humidifier 50 and the vehicle air conditioner of the present embodiment it is possible to realize continuous humidification in the vehicle interior without water supply.
  • the humidifying duct 571 constituting the first derivation unit is a separate component from the air conditioning duct 20 whose temperature is adjusted by the air conditioning unit 10. According to this, the air whose temperature has been adjusted by the air conditioning unit 10 and the humidified air humidified by the humidifying device 50 are less likely to be mixed, so that humid air with high humidity can be supplied into the vehicle interior.
  • the suction case 51 and the cold air suction duct 521 are separate components from the air conditioning case 11, and the cold air suction duct 521 is detachable from the air conditioning case 11.
  • the humidifier 50 can be retrofitted to the air conditioning unit 10. That is, the humidifier 50 can be an option (ie, an add-on part) for the vehicle air conditioner.
  • the centrifugal fan 552 mediates heat exchange between the humidified air and the dehumidified air. According to this, the humidified air that has passed through the moisture release space 541b can be cooled with the dehumidified air that has passed through the moisture absorption space 541a, and the relative humidity of the humidified air that is led into the vehicle interior can be increased. As a result, passenger comfort is improved by humidification of the passenger compartment.
  • the control device 100 executes a desorption process for desorbing the moisture adsorbed on the adsorbent 61. According to this, when the humidifier 50 is stopped, it is possible to suppress propagation of germs due to moisture remaining in the adsorbent 61, and it is possible to ensure passenger comfort due to humidification in the passenger compartment.
  • the moisture adsorption rate per unit mass tends to be slower than the moisture desorption rate per unit mass.
  • the accommodation space in the adsorption case 51 is set so that the amount of the adsorbent 61 existing in the moisture absorption space 541a is larger than the amount of the adsorbent 61 existing in the moisture release space 541b.
  • the first partition member 542 and the second partition member 543 are used for partitioning.
  • the moisture adsorbed to the adsorbent 61 in the moisture absorption space 541a can be sufficiently secured, the moisture adsorbed to the adsorbent 61 in the moisture release space 541b can be efficiently desorbed, A sufficient amount of humidification can be secured.
  • the humidifier blower 55 of the present embodiment realizes sensible heat exchange between the humidified air and the dehumidified air, but does not perform latent heat exchange between the humidified air and the dehumidified air. Therefore, it is possible to adjust the relative humidity of the two fluids having different humidity, that is, humidified air and dehumidified air. Specifically, the relative humidity of the humidified air is further increased by cooling the high-temperature humidified air with the low-temperature dehumidified air, and the relative humidity of the dehumidified air is increased by warming the low-temperature dehumidified air with the high-temperature humidified air. It can be further reduced.
  • the lower one of the first fluid and the second fluid passes the heat from the connection member and the blade when passing through the fan, and the temperature rises and is blown out from the fan.
  • the higher one of the first fluid and the second fluid is deprived of heat from the connecting member and the blade when passing through the fan, and the temperature is lowered and blown out from the centrifugal fan. That is, the fan mediates heat exchange between the first fluid and the second fluid by sucking and blowing out the first fluid and the second fluid.
  • the fan for blowing and sucking out the two fluids also mediates heat exchange between the two fluids. Therefore, in the configuration for heat exchange, only one blower is required.
  • the present embodiment is different from the first embodiment in that the humidifying device 50 is applied to the air conditioning unit 10A in which the air conditioner blower 19A is disposed on the upstream side of the air flow of the evaporator 13.
  • the humidifying device 50 is applied to the air conditioning unit 10A in which the air conditioner blower 19A is disposed on the upstream side of the air flow of the evaporator 13.
  • description of the same or equivalent parts as in the first embodiment will be omitted or simplified.
  • the air conditioning unit 10 ⁇ / b> A of the present embodiment has an air conditioning blower 19 ⁇ / b> A disposed on the downstream side of the air flow of the inside / outside air switching box 12 and on the upstream side of the air flow of the evaporator 13.
  • the suction port 191 a opens toward the inside / outside air switching box 12, and the discharge port 191 b opens toward the evaporator 13.
  • a portion 114 is formed.
  • the air conditioning unit 10 ⁇ / b> A of the present embodiment employs a so-called push-type configuration in which the air conditioning blower 19 ⁇ / b> A is disposed on the upstream side of the air flow of the evaporator 13. For this reason, the pressure after the discharge side of the air conditioning fan 19 ⁇ / b> A inside the air conditioning case 11 is higher than the pressure outside the air conditioning case 11. Therefore, the power consumed by the humidifier blower 55 for reducing the amount of cooling air having the same air volume as that of the first embodiment from the cold air derivation unit 112 to the adsorber 60 is reduced.
  • an axial fan that guides the inside air from the dashboard into the inside air suction portion 53 may be provided in the second external introduction port 53a.
  • the axial fan corresponds to an example of a blower.
  • a separate blower for guiding the cooling right from the cold air suction part 52 to the dehumidified air duct 573 via the moisture absorption space 541a is also required.
  • a heat exchanger that performs heat exchange between the dehumidified air and the humidified air may be additionally arranged or may not be arranged.
  • the fan boss 552a and the blade 552b may be made of a resin having a thermal conductivity of less than 10 W / (m ⁇ K).
  • an additional heat exchanger for exchanging heat between the dehumidified air and the humidified air may or may not be arranged.
  • the amount of the adsorbent 61 existing in the moisture absorption space 541a is less than the amount of the adsorbent 61 present in the moisture release space 541b in consideration of the difference between the adsorption speed and the desorption speed of the adsorbent 61.
  • the example which partitions off adsorption machine accommodation space 541 was explained so that it may become, it is not limited to this.
  • the air volume of the cooling air flowing through the moisture absorption space 541a may be made larger than the air volume of the heating air flowing through the moisture release space 541b. According to this, even if the amount of the adsorbent 61 present in the moisture absorption space 541a is equal to the amount of the adsorbent 61 present in the moisture release space 541b, a sufficient amount of moisture is adsorbed on the adsorbent 61 in the moisture absorption space 541a. It becomes possible to do.
  • the adsorber 60 is not limited thereto.
  • the adsorber 60 may have a configuration in which the adsorbent 61 is supported inside a structure having a honeycomb structure.
  • adsorbent 61 for example, an adsorbent such as silica gel or zeolite may be employed.
  • the adsorber 60 is continuously rotated in one direction by the electric motor 72 of the driving member 70 so that the adsorbent 61 of the adsorber 60 is disposed between the moisture absorbing space 541a and the moisture releasing space 541b.
  • the present invention is not limited to this.
  • the adsorbent 61 of the adsorber 60 is moved between the moisture absorbing space 541a and the moisture releasing space 541b. Good.
  • the rotation direction of the adsorber 60 by the electric motor 72 of the driving member 70 is not limited to one direction, and may be rotated in a direction opposite to the one direction.
  • the adsorbent 60 of the adsorber 60 is moved between the moisture absorbing space 541a and the moisture releasing space 541b by switching the rotation direction of the adsorber 60 between one direction and a direction opposite to the one direction every predetermined time. May be.
  • the adsorber housing space 541 is partitioned such that the moisture absorption space 541a and the moisture release space 541b have the same size, all the adsorbents 61 existing in the moisture absorption space 541a and the moisture release space 541b are used. All the adsorbents 61 may be replaced. In this case, the adsorber 60 may be intermittently rotated 180 ° by the driving member 70.
  • the driving member 70 that rotates the adsorber 60 is employed as a moving mechanism that moves the adsorbent 61 of the adsorber 60 between the moisture absorption space 541a and the moisture release space 541b.
  • the present invention is not limited to this.
  • a configuration in which the adsorber 60 is configured by a plurality of adsorbing units and each adsorbing unit is slid between the moisture absorbing space 541a and the moisture releasing space 541b may be employed as the moving mechanism.
  • the humidifying duct 571 constituting the outlet portion may be a separate component from the air-conditioning duct 20 that is temperature-adjusted by the air-conditioning unit 10, but is not limited thereto.
  • the humidifying duct 571 may be an integral component of the air conditioning duct 20 on the air conditioning unit 10 side.
  • the suction case 51 and the cold air suction duct 521 may be configured as separate components from the air conditioning case 11, and the cold air suction duct 521 may be detachable from the air conditioning case 11, but this is not limitative.
  • the suction case 51 and the cold air suction duct 521 may be integrated components with the air conditioning case 11.

Abstract

A humidifying device applied to an air conditioning unit (10) having a cooling unit (13) that cools blown air, said cooling unit being housed inside an air conditioning case (11) constituting a ventilation path for air blown inside a vehicle compartment. The humidifying device comprises: an adsorber (60) having an adsorbing material (61) that adsorbs and eliminates moisture; an adsorption case (54) housing the adsorber and surrounding a moisture-absorption space (541a) and a moisture-release space (541b), said moisture-absorption space (541a) causing cooled air cooled by a cooling unit to flow therethrough and causing moisture included in cooled air to be adsorbed by the adsorbing material and said moisture-release space (541b) causing internal air guided thereto from inside the vehicle compartment to flow therethrough and causing the moisture adsorbed by the adsorbing material to be released; a humidification duct (571) that guides, to inside the vehicle compartment, humidified air being internal air humidified by the moisture released in the moisture-release space; a dehumidified air duct (573) that guides dehumidified air being cooled air having the moisture removed therefrom in the moisture-absorption space; and a ventilator (55) that causes internal air to flow into the moisture-release space and causes humidified air to flow from the moisture-release space to the humidification duct.

Description

加湿装置および車両用空調装置Humidifier and air conditioner for vehicle 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年4月9日に出願された日本特許出願番号2015-80160号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2015-80160 filed on April 9, 2015, the description of which is incorporated herein by reference.
 本開示は、空調ユニットに適用される加湿装置、および空調ユニットと加湿装置とを備える車両用空調装置に関する。 The present disclosure relates to a humidifier applied to an air conditioning unit, and a vehicle air conditioner including the air conditioning unit and the humidifier.
 従来、車両用の空調ユニットの空調ケース内の空気を利用して車室内に加湿空気を吹き出す加湿器が知られている。例えば、特許文献1に記載の空調ユニットでは、空調ケース内で温度調整された空気を車室内へ導くダクト内に、水を気化する透湿性チューブが配置されている。そしてこの空調ユニットでは、タンク内に溜めた水が透湿性チューブに供給されることにより、車室内へ吹き出す空気が加湿される。 Conventionally, a humidifier that blows humidified air into a vehicle interior using air in an air conditioning case of a vehicle air conditioning unit is known. For example, in the air conditioning unit described in Patent Document 1, a moisture permeable tube that vaporizes water is disposed in a duct that guides air whose temperature has been adjusted in an air conditioning case to the passenger compartment. In this air conditioning unit, the water stored in the tank is supplied to the moisture permeable tube, so that the air blown into the passenger compartment is humidified.
特開2005-282992号公報JP 2005-282929 A
 このような技術では、空調ケース内で温度調整された空気を加湿することで車室内の加湿を行っている。したがって、加湿機能が存在することによる空調ユニットの空調機能への影響が大きい。より具体的には、空調ケース内のヒータコアによって暖められた空気に対する加湿の影響が大きい。 In such a technique, the vehicle interior is humidified by humidifying the air whose temperature is adjusted in the air conditioning case. Therefore, the presence of the humidification function has a great influence on the air conditioning function of the air conditioning unit. More specifically, the influence of humidification on the air heated by the heater core in the air conditioning case is large.
 本開示は上記点に鑑み、車両用の空調ユニットの空調ケース内の空気を利用する加湿器において、空調ケース内の空気を加湿する以外の方法で車室内に加湿空気を吹き出す技術を提供することを目的とする。 In view of the above points, the present disclosure provides a technique for blowing humid air into a vehicle interior by a method other than humidifying air in an air conditioning case in a humidifier using air in an air conditioning case of an air conditioning unit for a vehicle. With the goal.
 上記目的を達成するための1つの観点によれば、加湿装置は、車室内への送風空気の通風路を構成する空調ケースの内部に前記送風空気を冷却する冷却部が収容された空調ユニットに適用される。加湿装置は、水分を吸着して脱離する吸着材を有する吸着器と、前記吸着器を収容すると共に、前記冷却部で冷却された冷却空気を流通させて前記冷却空気に含まれる水分を前記吸着材に吸着させる吸湿空間、および前記車室内から導入された内気を流通させて前記吸着材に吸着された水分を脱離させる放湿空間を囲む吸着ケースと、前記放湿空間で脱離した水分により加湿された前記内気である加湿空気を前記車室内へ導く加湿用ダクトと、前記吸湿空間で水分が奪われた前記冷却空気である除湿空気を導く除湿空気ダクトと、前記内気を前記放湿空間に流すと共に前記加湿空気を前記放湿空間から前記加湿用ダクトに流す送風機と、を備える。 According to one aspect for achieving the above object, the humidifier is provided in an air conditioning unit in which a cooling unit that cools the blown air is housed in an air conditioning case that forms a ventilation path of the blown air into the vehicle interior. Applied. The humidifier accommodates the adsorber having an adsorbent that adsorbs and desorbs moisture, and the adsorber, and distributes the moisture contained in the cooling air by circulating the cooling air cooled by the cooling unit. A moisture absorbing space to be adsorbed by the adsorbent, an adsorption case surrounding the moisture releasing space for allowing the inside air introduced from the passenger compartment to circulate and desorbing the moisture adsorbed to the adsorbent, and the desorbing in the moisture releasing space A humidifying duct that guides humidified air that is the inside air humidified by moisture into the vehicle interior, a dehumidifying air duct that guides the dehumidified air that is the cooling air deprived of moisture in the moisture absorbing space, and releases the inside air. And a blower for flowing the humidified air from the moisture releasing space to the humidifying duct while flowing into the humid space.
 このように、空調ケース内の冷却空気を利用して、冷却空気に含まれる水分を吸着材に吸着させ、吸着材から脱離する水分で加湿する対象を内気とすることで、空調ケース内の空気を加湿する以外の方法で車室内に加湿空気を吹き出すことができる。また、内気を放湿空間に流すと共に加湿空気を放湿空間から加湿用ダクトに流す送風機を備えることで、加湿対象となる内気を適切に導くことができる。 In this way, by using the cooling air in the air conditioning case, the moisture contained in the cooling air is adsorbed to the adsorbent, and the target to be humidified with the moisture desorbed from the adsorbent is used as the inside air, Humidified air can be blown into the passenger compartment by a method other than humidifying the air. Moreover, the inside air used as a humidification object can be guide | induced appropriately by providing the air blower which flows humid air into a humidification space while flowing inside air into a moisture release space.
第1実施形態に係る加湿装置を備える車両用空調装置の全体構成を示す模式的な断面図である。It is typical sectional drawing which shows the whole structure of a vehicle air conditioner provided with the humidification apparatus which concerns on 1st Embodiment. 図1のII-II断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 第1実施形態に係る加湿装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the humidification apparatus which concerns on 1st Embodiment. 図3の矢印IVに示す方向の矢視図である。FIG. 4 is an arrow view in a direction indicated by an arrow IV in FIG. 3. 図1、図6のV-V断面図である。It is VV sectional drawing of FIG. 1, FIG. 図5のVI-VI断面図である。It is VI-VI sectional drawing of FIG. 加湿装置および空調ユニットの制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a humidifier and the control apparatus of an air conditioning unit. 制御装置が実行する加湿装置の制御処理のフローチャートである。It is a flowchart of the control process of the humidifier which a control apparatus performs. ある時点においてブレード間に流入した空気を示す図である。It is a figure which shows the air which flowed in between the blades at a certain time. 図9よりも後の時点においてブレード間に流入した空気を示す図である。It is a figure which shows the air which flowed in between the blades at the time later than FIG. 第2実施形態に係る加湿装置を備える車両用空調装置の全体構成を示す模式的な断面図である。It is typical sectional drawing which shows the whole structure of a vehicle air conditioner provided with the humidification apparatus which concerns on 2nd Embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の各実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、各実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that, in each of the following embodiments, parts that are the same as or equivalent to the matters described in the preceding embodiment are denoted by the same reference numerals, and the description thereof may be omitted. Moreover, in each embodiment, when only a part of the component is described, the component described in the preceding embodiment can be applied to the other part of the component.
 (第1実施形態)
 本実施形態では、車室内の空調を行う車両用空調装置を図示しない内燃機関から車両走行用の駆動力を得る車両に適用した例を説明する。図1に示すように、車両用空調装置は、主たる構成要素として、空調ユニット10、および加湿装置50を備える。なお、図1に示す上と下とを示す矢印は、車両用空調装置を車両に搭載した際の上下方向を示している。このことは、その他の図面においても同様である。
(First embodiment)
In this embodiment, an example will be described in which a vehicle air conditioner that performs air conditioning of a vehicle interior is applied to a vehicle that obtains driving force for vehicle travel from an internal combustion engine (not shown). As shown in FIG. 1, the vehicle air conditioner includes an air conditioning unit 10 and a humidifier 50 as main components. In addition, the arrow which shows the top and the bottom shown in FIG. 1 has shown the up-down direction at the time of mounting a vehicle air conditioner in a vehicle. The same applies to other drawings.
 まず、空調ユニット10について説明する、空調ユニット10は、車室内に配置されている。より具体的は、空調ユニット10は、ダッシュボード内かつ計器盤(すなわちインストルメントパネル)の下方部に配置されている。空調ユニット10は、その外殻を形成する空調ケース11の内部に、蒸発器13、ヒータコア14等を収容したものである。 First, the air conditioning unit 10 will be described. The air conditioning unit 10 is disposed in the vehicle interior. More specifically, the air conditioning unit 10 is disposed in the dashboard and below the instrument panel (ie, the instrument panel). The air conditioning unit 10 includes an evaporator 13, a heater core 14, and the like inside an air conditioning case 11 that forms an outer shell thereof.
 空調ケース11は、車室内へ送風する送風空気の通風路を構成する。本実施形態の空調ケース11は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)により成形されている。 The air conditioning case 11 constitutes a ventilation path for blown air to be blown into the vehicle interior. The air conditioning case 11 of the present embodiment is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
 ここで、図2は、空調ケース11を空気流れ方向に対して直交する方向に切断した際の空調ケース11の模式的な断面を示している。本実施形態の空調ケース11は、図2に示すように、底面部11a、上面部11b、側面部11cにより、送風空気が流れる通風路が区画形成される。なお、図2では、説明の便宜上、後述するドレイン排出部111および冷風導出部112が紙面左右方向に並ぶ例を図示しているが、これに限定されないことはいうまでもない。 Here, FIG. 2 shows a schematic cross section of the air conditioning case 11 when the air conditioning case 11 is cut in a direction orthogonal to the air flow direction. As shown in FIG. 2, in the air conditioning case 11 of the present embodiment, a ventilation path through which blown air flows is defined by a bottom surface portion 11a, a top surface portion 11b, and a side surface portion 11c. In FIG. 2, for the sake of convenience of explanation, an example in which a drain discharge unit 111 and a cold air derivation unit 112, which will be described later, are arranged in the left-right direction on the paper is illustrated, but it is needless to say that the present invention is not limited thereto.
 底面部11aは、空調ケース11における蒸発器13やヒータコア14等の底部と対向する下方側の壁面を構成する部位である。また、上面部11bは、空調ケース11における底面部11aに対向する上方側の壁面を構成する部位である。さらに、側面部11cは、空調ケース11における底面部11aおよび上面部11b以外の壁面を構成する部位である。 The bottom surface portion 11a is a portion constituting a lower wall surface facing the bottom portions of the evaporator 13 and the heater core 14 in the air conditioning case 11. Further, the upper surface part 11 b is a part constituting an upper wall surface facing the bottom surface part 11 a in the air conditioning case 11. Furthermore, the side surface portion 11 c is a portion constituting a wall surface other than the bottom surface portion 11 a and the top surface portion 11 b in the air conditioning case 11.
 図1に戻り、空調ケース11の空気流れ最上流側には、外気と車室内空気(すなわち内気)とを切替導入する内外気切替箱12が配置されている。内外気切替箱12には、外気を導入する外気導入口121、および車室内空気を導入する内気導入口122が形成されている。内気導入口122は、ダッシュボード内部において開口しており、そのため、内気導入口122から導入される車室内空気は、より具体的には、ダッシュボード内部の空気である。 Referring back to FIG. 1, an air-conditioning case 11 is provided with an inside / outside air switching box 12 for switching and introducing outside air and vehicle interior air (that is, inside air) on the most upstream side of the air flow. The inside / outside air switching box 12 is formed with an outside air introduction port 121 for introducing outside air and an inside air introduction port 122 for introducing vehicle interior air. The inside air introduction port 122 is opened inside the dashboard, and therefore the vehicle interior air introduced from the inside air introduction port 122 is more specifically the air inside the dashboard.
 さらに、内外気切替箱12の内部には、各導入口121、122の開口面積を調整して、外気の導入量と内気の導入量とを割合を変化させる内外気切替ドア123が配置されている。内外気切替ドア123は、外気導入口121と内気導入口122との間に回動自在に配置されている。内外気切替ドア123は、図示しないアクチュエータにより駆動される。 Furthermore, inside / outside air switching box 12 is arranged with inside / outside air switching door 123 that adjusts the opening area of each inlet 121, 122 to change the ratio between the amount of outside air introduced and the amount of inside air introduced. Yes. The inside / outside air switching door 123 is rotatably disposed between the outside air introduction port 121 and the inside air introduction port 122. The inside / outside air switching door 123 is driven by an actuator (not shown).
 内外気切替箱12の空気流れ下流側には、車室内への送風空気を冷却する冷却部を構成する蒸発器13が配置されている。蒸発器13は、内部を流通する低温冷媒の蒸発潜熱を送風空気から吸熱して、送風空気を冷却する熱交換器である。蒸発器13は、図示しない圧縮機、凝縮器、減圧機構と共に蒸気圧縮式の冷凍サイクルを構成する。 The evaporator 13 which comprises the cooling part which cools the ventilation air to the vehicle interior is arrange | positioned in the downstream of the air flow of the inside / outside air switching box 12. The evaporator 13 is a heat exchanger that absorbs the latent heat of evaporation of the low-temperature refrigerant circulating inside from the blown air and cools the blown air. The evaporator 13 constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, and a decompression mechanism (not shown).
 蒸発器13の空気流れ下流側には、蒸発器13で冷却された空気をヒータコア14側へ流す温風通路16、および蒸発器13で冷却された空気を、ヒータコア14を迂回して流す冷風バイパス通路17が形成されている。 On the downstream side of the air flow of the evaporator 13, there is a hot air passage 16 through which the air cooled by the evaporator 13 flows to the heater core 14 side, and a cold air bypass that flows the air cooled by the evaporator 13 bypassing the heater core 14. A passage 17 is formed.
 ヒータコア14は、図示しないエンジンの冷却水を熱源として、送風空気を加熱する熱交換器である。本実施形態では、ヒータコア14が送風空気を加熱する加熱部を構成する。 The heater core 14 is a heat exchanger that heats blown air using engine cooling water (not shown) as a heat source. In the present embodiment, the heater core 14 constitutes a heating unit that heats the blown air.
 蒸発器13とヒータコア14との間には、エアミックスドア18が回動自在に配置されている。エアミックスドア18は、図示しないアクチュエータにより駆動されて、温風通路16を流通させる空気と冷風バイパス通路17を流通させる空気との割合を調整して、車室内へ送風する送風空気の温度を調整する部材である。 An air mix door 18 is rotatably disposed between the evaporator 13 and the heater core 14. The air mix door 18 is driven by an actuator (not shown) to adjust the ratio of the air flowing through the hot air passage 16 and the air flowing through the cold air bypass passage 17 to adjust the temperature of the blown air to be blown into the vehicle interior. It is a member to do.
 温風通路16、および冷風バイパス通路17の空気流れ下流側には、空調用送風機19が配置されている。空調用送風機19は、空調ケース11の内部に車室内へ吹き出す空気流を発生させる機器である。空調用送風機19は、送風ケース191、空調用ファン192、空調用モータ193等で構成されている。 An air-conditioning blower 19 is disposed on the downstream side of the hot air passage 16 and the cold air bypass passage 17. The air-conditioning blower 19 is a device that generates an air flow that blows into the passenger compartment inside the air-conditioning case 11. The air conditioner blower 19 includes a blower case 191, an air conditioner fan 192, an air conditioner motor 193, and the like.
 送風ケース191は、空調ケース11の一部を構成している。送風ケース191には、空気の吸込口191a、吸込口191aを介して吸い込んだ空気を吐出する吐出口191bが形成されている。 The blower case 191 constitutes a part of the air conditioning case 11. The blower case 191 is formed with an air suction port 191a and a discharge port 191b for discharging the air sucked through the suction port 191a.
 空調用ファン192は、吸込口191aを介して温風通路16および冷風バイパス通路17の空気流れ下流側の空気を吸い込み、吐出口191bから吐出する。本実施形態の空調用ファン192は、軸方向から吸い込んだ空気を径方向外側に吹き出す遠心ファンで構成されている。空調用ファン192は、空調用モータ193によって、回転駆動される。なお、空調用ファン192は、遠心ファンに限らず、軸流ファンや貫流ファン等で構成されていてもよい。 The air conditioning fan 192 sucks air on the downstream side of the air flow in the hot air passage 16 and the cold air bypass passage 17 through the suction port 191a and discharges it from the discharge port 191b. The air-conditioning fan 192 of this embodiment is configured by a centrifugal fan that blows air sucked in from the axial direction outward in the radial direction. The air conditioning fan 192 is rotationally driven by the air conditioning motor 193. The air-conditioning fan 192 is not limited to a centrifugal fan, and may be an axial fan, a cross-flow fan, or the like.
 空調用送風機19の吐出口191bには、空調用ダクト20が接続されている。空調用ダクト20は、空調用ダクト20の空気流れ下流端にあるフェイス吹出口20a、フット吹出口20b、デフロスタ吹出口20cへ送風空気を導く部材である。 The air conditioning duct 20 is connected to the discharge port 191 b of the air conditioning blower 19. The air conditioning duct 20 is a member that guides blown air to the face air outlet 20a, the foot air outlet 20b, and the defroster air outlet 20c at the downstream end of the air flow of the air conditioning duct 20.
 フェイス吹出口20aは、乗員の上半身側に空気を吹き出すための吹出口であり、例えば、ダッシュボードの表面のうち運転席の上端部または助手席の上端部に対向する面に配置されている。フット吹出口20bは、乗員の下半身側に空気を吹き出すための吹出口であり、例えば、ダッシュボードの表面のうち運転席よりも下方または助手席よりも下方に対向する面に配置されている。デフロスタ吹出口20cは、車両前面の窓ガラスに向けて空気を吹き出す吹出口であり、例えば、ダッシュボードの表面のうち車両前面の窓ガラスに多項する面に配置されている。また、空調用ダクト20または送風ケース191には、各吹出口からの空気の吹出モードを設定する図示しないモード切替ドアが設けられている。モード切替ドアは、図示しないアクチュエータにより駆動する。 The face air outlet 20a is an air outlet for blowing air to the upper body side of the occupant, and is disposed, for example, on the surface of the dashboard facing the upper end of the driver's seat or the upper end of the passenger seat. The foot air outlet 20b is an air outlet for blowing air toward the lower body side of the occupant, and is disposed, for example, on the surface of the dashboard facing the lower side of the driver seat or the lower side of the passenger seat. The defroster air outlet 20c is an air outlet that blows out air toward the window glass on the front surface of the vehicle. For example, the defroster air outlet 20c is disposed on the surface of the dashboard that is multifaceted with the window glass on the front surface of the vehicle. Further, the air conditioning duct 20 or the air blowing case 191 is provided with a mode switching door (not shown) for setting the air blowing mode from each outlet. The mode switching door is driven by an actuator (not shown).
 また、吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、フットデフロスタモードがある。フェイスモードは、フェイス吹出口20aを全開してフェイス吹出口20aから車室内乗員の上半身に向けて空気を吹き出すモードである。バイレベルモードは、フェイス吹出口20aとフット吹出口20bの両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すモードである。フットモードは、フット吹出口20bを全開するとともにデフロスタ吹出口20cを小開度だけ開口して、フット吹出口20bから主に空気を吹き出すモードである。フットデフロスタモードは、フット吹出口20bおよびデフロスタ吹出口20cを同程度開口して、フット吹出口20bおよびデフロスタ吹出口20cの双方から空気を吹き出すモードである。 Also, there are face mode, bi-level mode, foot mode, and foot defroster mode as outlet modes. The face mode is a mode in which the face air outlet 20a is fully opened and air is blown out from the face air outlet 20a toward the upper body of the passenger in the passenger compartment. The bi-level mode is a mode in which both the face air outlet 20a and the foot air outlet 20b are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment. The foot mode is a mode in which air is mainly blown out from the foot outlet 20b by fully opening the foot outlet 20b and opening the defroster outlet 20c by a small opening. The foot defroster mode is a mode in which the foot outlet 20b and the defroster outlet 20c are opened to the same extent and air is blown out from both the foot outlet 20b and the defroster outlet 20c.
 ここで、本実施形態の空調ケース11には、その底面部11aにドレイン排出部111、冷風導出部112が形成されている。ドレイン排出部111は、蒸発器13で生ずる凝縮水を車両外部へ排出する開口部である。本実施形態のドレイン排出部111は、空調ケース11の底面部11aにおける蒸発器13における下端部に対向する部位に形成されている。 Here, in the air conditioning case 11 of the present embodiment, a drain discharge portion 111 and a cold air derivation portion 112 are formed on the bottom surface portion 11a. The drain discharge part 111 is an opening for discharging condensed water generated in the evaporator 13 to the outside of the vehicle. The drain discharge part 111 of this embodiment is formed in the site | part facing the lower end part in the evaporator 13 in the bottom face part 11a of the air-conditioning case 11. FIG.
 冷風導出部112は、空調ケース11内で蒸発器13にて冷却された送風空気(すなわち冷却空気)の一部を空調ケース11の外部へ導出する開口部である。本実施形態の冷風導出部112は、空調ケース11の底面部11aにおける蒸発器13とヒータコア14との間の部位に形成されている。より具体的には、冷風導出部112は、ドレイン排出部111とヒータコア14との間に位置する底面部11aに形成されている。なお、エアミックスドア18がどのような位置にあっても、エアミックスドア18によって冷風導出部112が閉鎖されることはない。 The cold air derivation unit 112 is an opening through which a part of the blown air (that is, cooling air) cooled by the evaporator 13 in the air conditioning case 11 is led out of the air conditioning case 11. The cold air derivation unit 112 of the present embodiment is formed in a portion between the evaporator 13 and the heater core 14 in the bottom surface part 11 a of the air conditioning case 11. More specifically, the cool air derivation unit 112 is formed on the bottom surface part 11 a located between the drain discharge unit 111 and the heater core 14. It should be noted that the cold air derivation unit 112 is not closed by the air mix door 18 regardless of the position of the air mix door 18.
 ここで、本実施形態の空調ユニット10は、空調ケース11における空気流れ下流側に空調用送風機19を配置する、いわゆる吸込タイプの構成を採用している。このため、空調ケース11の内部は、空調ケース11外部の圧力よりも低い圧力となっている。空調ケース11外部の圧力は、大気圧に等しい。 Here, the air conditioning unit 10 of the present embodiment employs a so-called suction type configuration in which the air conditioning blower 19 is arranged on the air flow downstream side of the air conditioning case 11. For this reason, the pressure inside the air conditioning case 11 is lower than the pressure outside the air conditioning case 11. The pressure outside the air conditioning case 11 is equal to the atmospheric pressure.
 続いて、加湿装置50について説明する。加湿装置50は、空調ユニット10とは別体に形成された構成部品であり、空調ユニット10と同様に、ダッシュボード内かつ計器盤の下方部に配置されている。より具体的には、加湿装置50は、空調ケース11の冷風導出部112と後述する加湿装置50の冷風吸入部52とが近接するように、空調ケース11の下方側であって、空調ケース11における蒸発器13が配置された部位に近接する位置に配置されている。 Subsequently, the humidifier 50 will be described. The humidifier 50 is a component formed separately from the air conditioning unit 10, and is arranged in the dashboard and in the lower part of the instrument panel, like the air conditioning unit 10. More specifically, the humidifying device 50 is on the lower side of the air conditioning case 11 so that the cold air derivation unit 112 of the air conditioning case 11 and a cold air suction unit 52 of the humidifying device 50 described later are close to each other. Is disposed at a position close to a portion where the evaporator 13 is disposed.
 この加湿装置50は、吸着ケース51、加湿器用送風機55、吸着器60、駆動部材70、2つの第1仕切部材542、第2仕切部材543を備えている。吸着ケース51は、加湿装置50の外殻を形成する樹脂製の筐体であり、その内部に吸着器60を収容していると共に、送風空気の通風路を構成する。吸着ケース51は、空調ケース11から分離した、空調ケース11とは別体の構成部品である。この吸着ケース51は、冷風吸入部52、内気吸入部53、吸着器収容部54、空気排出部56を有している。 The humidifier 50 includes an adsorption case 51, a humidifier blower 55, an adsorber 60, a driving member 70, two first partition members 542, and a second partition member 543. The adsorption case 51 is a resin casing that forms the outer shell of the humidifying device 50. The adsorption case 51 accommodates the adsorber 60 in the inside thereof and constitutes a ventilation path for the blown air. The suction case 51 is a component separated from the air conditioning case 11 and separated from the air conditioning case 11. The adsorption case 51 includes a cold air suction part 52, an inside air suction part 53, an adsorber housing part 54, and an air discharge part 56.
 冷風吸入部52は、無底中空直方体形状の配管であり、加湿装置50の外部に連通する第1外部導入口52a、および後述する吸着器収容部54の吸湿空間541aに連通する第1内部連通口52bが両端に形成されている。この冷風吸入部52は、第1外部導入口52aと第1内部連通口52bの間において直方体形状の空気流路を囲んでいる。 The cold air suction part 52 is a bottomless hollow rectangular pipe, and is connected to a first external introduction port 52a that communicates with the outside of the humidifying device 50, and a first internal communication that communicates with a moisture absorption space 541a of the adsorber housing part 54 described later. The mouths 52b are formed at both ends. The cold air suction portion 52 surrounds a rectangular parallelepiped-shaped air flow path between the first external introduction port 52a and the first internal communication port 52b.
 また、冷風吸入部52は、第1外部導入口52aと第1内部連通口52bとの間に回動自在に配置された冷風ドア522を有している。この冷風ドア522は、図示しないアクチュエータにより駆動される。そしてこの冷風ドア522は、開いているときに当該冷風吸入部52内において第1外部導入口52aと第1内部連通口52bとを連通させ、閉じているときに当該冷風吸入部52内において第1外部導入口52aと第1内部連通口52bとの連通を遮断する。 Further, the cold air suction portion 52 has a cold air door 522 that is rotatably disposed between the first external introduction port 52a and the first internal communication port 52b. The cold air door 522 is driven by an actuator (not shown). The cold air door 522 communicates the first external introduction port 52a and the first internal communication port 52b in the cold air suction portion 52 when the cold air door 522 is open, and in the cold air suction portion 52 when the cold air door 522 is closed. The communication between the first external introduction port 52a and the first internal communication port 52b is blocked.
 つまり、冷風吸入部52は、蒸発器13で冷却された冷却空気を吸湿空間に導く冷風ドア522の開閉を切り替える開閉機構である。なお、冷風ドア522の形状および冷風吸入部52によって囲まれる空気流路の形状は、上記のようなものに限られない。 That is, the cold air suction part 52 is an opening / closing mechanism that switches opening and closing of the cold air door 522 that guides the cooling air cooled by the evaporator 13 to the moisture absorption space. Note that the shape of the cold air door 522 and the shape of the air flow path surrounded by the cold air suction portion 52 are not limited to the above.
 また、第1外部導入口52aには、蒸発器13で冷却された冷却空気を導入する冷風吸入ダクト521が接続されている。冷風吸入ダクト521は、冷風吸入部52の第1外部導入口52aと空調ケース11の冷風導出部112とを接続する。冷風吸入ダクト521は、空調ケース11とも吸着ケース51とも別体に形成された構成部品であり、冷風導出部112に対して、図示しないスナップフィット等の連結部材により脱着可能に構成されている。 Further, a cold air intake duct 521 for introducing the cooling air cooled by the evaporator 13 is connected to the first external introduction port 52a. The cold air intake duct 521 connects the first external introduction port 52 a of the cold air intake part 52 and the cold air outlet part 112 of the air conditioning case 11. The cold air intake duct 521 is a component formed separately from the air conditioning case 11 and the suction case 51, and is configured to be detachable from the cold air derivation unit 112 by a connecting member such as a snap fit (not shown).
 内気吸入部53は、無底円筒形状の配管であり、加湿装置50の外部に連通する第2外部導入口53a、および後述する吸着器収容部54の放湿空間541bに連通する第2内部連通口53bが形成されている。この内気吸入部53は、第2外部導入口53aと第2内部連通口53bの間において円柱形状の空気流路を囲んでいる。 The inside air suction part 53 is a bottomless cylindrical pipe, and is connected to a second external introduction port 53a that communicates with the outside of the humidifying device 50 and a second moisture communication space 541b of the adsorber housing part 54 described later. A mouth 53b is formed. The inside air suction portion 53 surrounds a cylindrical air flow path between the second external introduction port 53a and the second internal communication port 53b.
 なお、内気吸入部53の第2外部導入口53aは、ダッシュボード内部において開口しており、そのため、第2外部導入口53aから内気吸入部53内に、車室内空気が、より具体的にはダッシュボード内部の空気が、導入される。また、内気吸入部53の形状および内気吸入部53によって囲まれる空気流路の形状は、上記のようなものに限られない。 Note that the second external introduction port 53a of the inside air suction portion 53 is open inside the dashboard, and therefore, more specifically, the vehicle interior air enters the inside air suction portion 53 from the second external introduction port 53a. Air inside the dashboard is introduced. Further, the shape of the inside air suction portion 53 and the shape of the air flow path surrounded by the inside air suction portion 53 are not limited to the above.
 吸着器収容部54は、吸着ケース51のうち吸着器60を収容する部位の部材である。本実施形態の吸着器収容部54は、図3、図4に示すように、中空円筒状の外形を有している。吸着器収容部54は、その内部に吸着器60の吸着器収容空間541が形成されている。 The adsorber accommodating portion 54 is a member of a portion that accommodates the adsorber 60 in the adsorption case 51. As shown in FIGS. 3 and 4, the adsorber accommodating portion 54 of the present embodiment has a hollow cylindrical outer shape. The adsorber accommodating portion 54 has an adsorber accommodating space 541 of the adsorber 60 formed therein.
 吸着器収容部54には、吸着器収容空間541として、冷風吸入部52を介して導入された冷却空気が流通する空間と、内気吸入部53を介して導入された内気が流通する空間とが設定されている。 In the adsorber accommodating part 54, there are a space through which the cooling air introduced through the cold air suction part 52 circulates and a space through which the inside air introduced through the inside air suction part 53 circulates as the adsorber accommodating space 541. Is set.
 具体的には、吸着器収容空間541は、吸着器60の空気流れ上流側、および下流側の双方に設けられた第1、第2仕切部材542、543により、冷却空気が流通する空間および内気が流通する空間が仕切られている。 Specifically, the adsorber housing space 541 includes a space in which cooling air circulates and an internal air by the first and second partition members 542 and 543 provided on both the upstream side and the downstream side of the air flow of the adsorber 60. The space where circulates is partitioned.
 第1仕切部材542は、吸着器60の空気流れ上流側に設けられて、吸着器60の空気流れ上流側の空間を冷却空気の流路と内気の流路を仕切る部材である。第1仕切部材542は、吸着器収容部54の上面部の内側(すなわち吸着器60に対面する側)に一体に成形されている。 The first partition member 542 is a member that is provided on the upstream side of the air flow of the adsorber 60 and partitions the space on the upstream side of the air flow of the adsorber 60 between the flow path of the cooling air and the flow path of the inside air. The first partition member 542 is integrally formed on the inner side of the upper surface portion of the adsorber accommodating portion 54 (that is, the side facing the adsorber 60).
 より具体的には、第1仕切部材542は、後述する回転軸71のすぐ外側にあるリング部と、当該リング部から、吸着器収容空間541のうち回転軸71から最も離れた最外周部まで、回転軸71を中心とする径方向に延びる2つの板部材とから成る。なお、リング部は、回転軸71に固定されておらず、回転軸71と接触もしていない。2つの板部材が回転軸71を中心として成す角度は、例えば120°である。 More specifically, the first partition member 542 includes a ring portion immediately outside the rotation shaft 71 described later, and the ring portion to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541. And two plate members extending in the radial direction around the rotation shaft 71. The ring portion is not fixed to the rotating shaft 71 and is not in contact with the rotating shaft 71. The angle formed by the two plate members around the rotation axis 71 is, for example, 120 °.
 第2仕切部材543は、吸着器60の空気流れ下流側に設けられて、吸着器60の空気流れ下流側の空間を冷却空気の流路と内気の流路を仕切る部材である。第2仕切部材543は、吸着器収容部54の底面部の内側(すなわち吸着器60に対面する側)に一体に成形されている。 The second partition member 543 is a member that is provided on the downstream side of the air flow of the adsorber 60 and partitions the space on the downstream side of the air flow of the adsorber 60 from the cooling air flow path and the inside air flow path. The second partition member 543 is integrally formed on the inner side of the bottom surface portion of the adsorber housing portion 54 (that is, the side facing the adsorber 60).
 より具体的には、第2仕切部材543は、第1上流仕切部543a、第1下流仕切部543b、第2上流仕切部543c、リング部543eが一体に形成された部材である。 More specifically, the second partition member 543 is a member in which the first upstream partition portion 543a, the first downstream partition portion 543b, the second upstream partition portion 543c, and the ring portion 543e are integrally formed.
 リング部543eは、回転軸71のすぐ外側で回転軸71を周方向に取り囲む部材である。このリング部543eは、吸着器収容部54の底面部の上記内側に一体に成形されており、回転軸71に固定されておらず、回転軸71と接触もしていない。 The ring portion 543 e is a member that surrounds the rotation shaft 71 in the circumferential direction just outside the rotation shaft 71. The ring portion 543 e is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54, and is not fixed to the rotating shaft 71 and is not in contact with the rotating shaft 71.
 第1上流仕切部543aは、リング部543eから、吸着器収容空間541のうち回転軸71から最も離れた最外周部まで、回転軸71を中心とする径方向に延びる板部材である。この第1上流仕切部543aは、吸着器収容部54の底面部の上記内側に一体に成形されている。 The first upstream partition portion 543a is a plate member that extends in the radial direction around the rotation shaft 71 from the ring portion 543e to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541. The first upstream partition portion 543a is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54.
 第1下流仕切部543bは、リング部543eと第1上流仕切部543aの吸着器60とは反対側の端部から、加湿器用送風機55に近づいて吸着器60から離れるように延びる板部材である。第1上流仕切部543aと第1下流仕切部543bは同じ1枚の平板を形成する。第1下流仕切部543bは空気排出部56によって囲まれた孔を通って加湿器用送風機55の内部まで延びている。ここでいう加湿器用送風機55の内部とは、より具体的には、後述するファン吸込空間555におけるファンボス552aのごく近傍である。そのため、第1下流仕切部543bの回転軸71を中心とする径方向の長さは、第1上流仕切部543aに比べて短い。 The first downstream partition portion 543b is a plate member that extends from the end of the ring portion 543e and the first upstream partition portion 543a opposite to the adsorber 60 so as to approach the humidifier blower 55 and away from the adsorber 60. . The first upstream partition portion 543a and the first downstream partition portion 543b form the same single flat plate. The first downstream partition 543 b extends to the inside of the humidifier blower 55 through a hole surrounded by the air discharge unit 56. More specifically, the inside of the humidifier blower 55 here is very close to the fan boss 552a in the fan suction space 555 described later. Therefore, the length in the radial direction around the rotation shaft 71 of the first downstream partition portion 543b is shorter than that of the first upstream partition portion 543a.
 第2上流仕切部543cは、リング部543eから、吸着器収容空間541のうち回転軸71から最も離れた最外周部まで、回転軸71を中心とする径方向に延びる板部材である。この第2上流仕切部543cは、吸着器収容部54の底面部の上記内側に一体に成形されている。 The second upstream partitioning portion 543c is a plate member that extends in the radial direction around the rotation shaft 71 from the ring portion 543e to the outermost peripheral portion farthest from the rotation shaft 71 in the adsorber housing space 541. The second upstream partition portion 543c is integrally formed on the inside of the bottom surface portion of the adsorber housing portion 54.
 第2下流仕切部543dは、リング部543eと第2上流仕切部543cの吸着器60とは反対側の端部から、加湿器用送風機55に近づいて吸着器60から離れるように延びる板部材である。第2上流仕切部543cと第2下流仕切部543dは同じ1枚の平板を形成する。第2下流仕切部543dは空気排出部56によって囲まれた孔を通って加湿器用送風機55の内部まで延びている。ここでいう加湿器用送風機55の内部とは、より具体的には、後述するファン吸込空間555におけるファンボス552aのごく近傍である。そのため、第2下流仕切部543dの回転軸71を中心とする径方向の長さは、第2上流仕切部543cに比べて短い。なお、第1下流仕切部543bと第2下流仕切部543dは、回転軸71と加湿器用送風機55の間において、回転軸71の回転中心軸の延長線上および後述するファン軸芯CL上で、一体に接続している。 The second downstream partition portion 543d is a plate member that extends from the end of the ring portion 543e and the second upstream partition portion 543c opposite to the adsorber 60 so as to approach the humidifier blower 55 and away from the adsorber 60. . The second upstream partition 543c and the second downstream partition 543d form the same single flat plate. The second downstream partition portion 543 d extends to the inside of the humidifier blower 55 through a hole surrounded by the air discharge portion 56. More specifically, the inside of the humidifier blower 55 here is very close to the fan boss 552a in the fan suction space 555 described later. Therefore, the radial length around the rotation shaft 71 of the second downstream partition portion 543d is shorter than that of the second upstream partition portion 543c. The first downstream partition 543b and the second downstream partition 543d are integrated between the rotation shaft 71 and the humidifier blower 55 on the extension line of the rotation center axis of the rotation shaft 71 and on the fan shaft core CL described later. Connected to.
 吸着器収容部54には、冷却空気が流通する空間、および内気が流通する空間の双方を跨ぐように吸着器60が配置されている。吸着器収容部54における冷却空気が流通する空間は、冷却空気に含まれる水分を吸着器60の吸着材61に吸着する吸湿空間541aを構成する。また、吸着器収容部54における内気が流通する空間は、吸着器60の吸着材61に吸着された水分を脱離して、内気を加湿する放湿空間541bを構成する。 In the adsorber housing 54, an adsorber 60 is disposed so as to straddle both the space through which the cooling air circulates and the space through which the inside air circulates. The space through which the cooling air flows in the adsorber housing 54 constitutes a moisture absorption space 541a that adsorbs moisture contained in the cooling air to the adsorbent 61 of the adsorber 60. In addition, the space where the inside air in the adsorber housing 54 circulates constitutes a moisture releasing space 541b that desorbs moisture adsorbed by the adsorbent 61 of the adsorber 60 and humidifies the inside air.
 ここで、吸着材61は、単位質量当りの水分の吸着速度が、単位質量当りの水分の脱離速度よりも2倍程度遅くなる傾向がある。吸着材61に吸着される水分が少ないと、吸着材61から脱離させる水分も少なくなり、加湿装置による車室内の加湿量を充分に確保することが難しくなってしまうことが懸念される。 Here, in the adsorbent 61, the moisture adsorption rate per unit mass tends to be about twice as slow as the moisture desorption rate per unit mass. If the moisture adsorbed on the adsorbent 61 is small, the amount of moisture desorbed from the adsorbent 61 is also small, and there is a concern that it is difficult to ensure a sufficient amount of humidification in the passenger compartment by the humidifier.
 この点を加味して、本実施形態では、吸湿空間541aに存在する吸着材61の量が、放湿空間541bに存在する吸着材61の量よりも多くなるように、吸着器60の吸着器収容空間541を第1、第2仕切部材542、543により仕切っている。具体的には、第1、第2仕切部材542、543としてL字状に曲折した部材を用いることで、吸着器60の吸着器収容空間541について、吸湿空間541aが放湿空間541bよりも2倍程度大きくなる設定としている。 In consideration of this point, in the present embodiment, the adsorber of the adsorber 60 so that the amount of the adsorbent 61 present in the moisture absorption space 541a is larger than the amount of the adsorbent 61 present in the moisture release space 541b. The housing space 541 is partitioned by first and second partition members 542 and 543. Specifically, by using members bent in an L shape as the first and second partition members 542 and 543, the moisture absorption space 541 a is 2 in the adsorber accommodation space 541 of the adsorber 60 than the moisture release space 541 b. The setting is about twice as large.
 より具体的には、第1仕切部材542を構成する上記の2つの板部材が回転軸71を中心として放湿空間541b側に成す角度は、120°である。また、第2仕切部材543において、第1上流仕切部543aが形成する平板と、第2上流仕切部543cが形成する平板が、回転軸71を中心として放湿空間541b側に成す角度は、120°である。なお、吸着器60の詳細については後述する。 More specifically, the angle formed by the two plate members constituting the first partition member 542 toward the moisture release space 541b with the rotation shaft 71 as the center is 120 °. In the second partition member 543, the angle formed between the flat plate formed by the first upstream partition portion 543a and the flat plate formed by the second upstream partition portion 543c on the moisture release space 541b side with the rotation shaft 71 as the center is 120. °. The details of the adsorber 60 will be described later.
 図1に戻り、空気排出部56は、吸着器収容部54の吸湿空間541aおよび放湿空間541bの両方に連通する1個の孔を形成する部材である。空気排出部56は、吸湿空間541aを通過して水分が奪われた除湿空気および放湿空間541bを通過して加湿された加湿空気が、この孔を介して吸着ケース51の外部に排出される。この加湿空気は、第1の流体の一例に相当し、この除湿空気が、第2の流体の一例に相当する。 Returning to FIG. 1, the air discharge part 56 is a member that forms a single hole communicating with both the moisture absorption space 541 a and the moisture release space 541 b of the adsorber housing part 54. The air discharge unit 56 discharges the dehumidified air from which moisture has been removed through the moisture absorption space 541a and the humidified air that has been humidified through the moisture release space 541b to the outside of the adsorption case 51 through this hole. . The humidified air corresponds to an example of the first fluid, and the dehumidified air corresponds to an example of the second fluid.
 この空気排出部56は、加湿器用送風機55に接続されることで、上記孔を介して吸着ケース51の外部に排出された除湿空気および加湿空気が加湿器用送風機55に吸い込まれるようになっている。 The air discharge unit 56 is connected to the humidifier blower 55 so that the dehumidified air and the humidified air discharged to the outside of the adsorption case 51 through the hole are sucked into the humidifier blower 55. .
 加湿器用送風機55は、空気排出部56に囲まれる上記孔を介して吸着ケース51から除湿空気および加湿空気を吸い込み、吸い込んだ加湿空気を加湿用ダクト571に吹き出すと共に吸い込んだ除湿空気を除湿空気ダクト573に吐き出す。 The humidifier blower 55 sucks the dehumidified air and humidified air from the adsorption case 51 through the hole surrounded by the air discharge part 56, blows out the sucked humidified air to the humidifying duct 571, and removes the sucked dehumidified air into the dehumidified air duct. Exhale to 573.
 加湿用ダクト571は、吸着ケース51の放湿空間541bで加湿された内気である加湿空気を車室内へ導出する。本実施形態の加湿用ダクト571は、空調ユニット10の吹出ダクトである空調用ダクト20とは別体の構成部品となっている。 The humidifying duct 571 guides humidified air that is humidified in the moisture releasing space 541b of the adsorption case 51 to the vehicle interior. The humidifying duct 571 of the present embodiment is a separate component from the air conditioning duct 20 that is a blowout duct of the air conditioning unit 10.
 また、加湿用ダクト571は、その下流端である吹出開口部572が計器盤における乗員の顔部付近に存在する部位(例えば、インストルメントパネル内のメータ近傍)において、運転席のヘッドレストを向いて開口している。そして、吹出開口部572は、上述のフェイス吹出口20a、フット吹出口20b、デフロスタ吹出口20cから(例えば10cm以上)離れた位置に開口している。これにより、加湿用ダクト571を流れる加湿空気は、吹出開口部572から出て、上記吹出口20a、20b、20cから出た空気によって乱されることなく、乗員の顔部に向けて吹き出され、乗員の顔部周囲の空間が加湿される。 Further, the humidifying duct 571 faces the headrest of the driver's seat at a part where the outlet opening 572, which is the downstream end thereof, exists in the vicinity of the occupant's face on the instrument panel (for example, near the meter in the instrument panel). It is open. And the blowing opening part 572 is opening in the position away from the above-mentioned face blower outlet 20a, the foot blower outlet 20b, and the defroster blower outlet 20c (for example, 10 cm or more). Thereby, the humidified air flowing through the humidifying duct 571 is blown out toward the occupant's face without being disturbed by the air discharged from the blowout opening 572 and from the blowout ports 20a, 20b, and 20c. The space around the occupant's face is humidified.
 本実施形態では、加湿用ダクト571として流路径がφ50mm、流路長さが1000mm程度のダクトを採用している。これによれば、吸着器60を通過した高温で高相対湿度の加湿空気が、加湿用ダクト571の外側の空気と熱交換して冷却されることで、加湿空気の相対湿度を高くすることが可能となる。 In this embodiment, a duct having a channel diameter of φ50 mm and a channel length of about 1000 mm is employed as the humidifying duct 571. According to this, the humidified air having a high temperature and a high relative humidity that has passed through the adsorber 60 is cooled by exchanging heat with the air outside the humidifying duct 571, so that the relative humidity of the humidified air can be increased. It becomes possible.
 また、加湿用ダクト571の吹出開口部572は、吹出空気が高相対湿度状態で顔部に到達するように、その開口径、および乗員の顔部までの距離に設定されている。本実施形態の吹出開口部572は、顔部に到達する空気が、相対湿度40%程度、温度20℃程度、風速0.5m/s程度となるように、吹出開口部572の開口径が75mm程度で構成され、風量10m/h(すなわち風速0.6m/s)程度で吹き出される。乗員の顔部までの距離が600mm程度に設定されている。風速0.6m/sは、空調ユニット10の各吹出口20a、20b、20cから出る空気の最低風量の10%以下である。つまり、本実施形態では、加湿用ダクト571として、吹出開口部572の開口面積が、吹出開口部572に至る流路の流路断面積よりも大きいダクトを採用している。このように構成される加湿用ダクト571によれば、乗員に到達する風速が1m/s以下と低くなるので、加湿空気の拡散を抑制して、加湿空気を顔部に確実に到達させることができる。 Further, the outlet opening 572 of the humidifying duct 571 is set to have an opening diameter and a distance to the occupant's face so that the blown air reaches the face in a high relative humidity state. The blowing opening 572 of the present embodiment has an opening diameter of 75 mm so that the air reaching the face has a relative humidity of about 40%, a temperature of about 20 ° C., and a wind speed of about 0.5 m / s. The air is blown out at an air volume of about 10 m 3 / h (ie, wind speed of 0.6 m / s). The distance to the passenger's face is set to about 600 mm. The wind speed of 0.6 m / s is 10% or less of the minimum air volume of the air exiting from the air outlets 20a, 20b, 20c of the air conditioning unit 10. That is, in the present embodiment, a duct in which the opening area of the blowing opening 572 is larger than the channel cross-sectional area of the channel reaching the blowing opening 572 is used as the humidifying duct 571. According to the humidifying duct 571 configured as described above, the wind speed reaching the occupant is as low as 1 m / s or less, so that it is possible to suppress the diffusion of the humidified air and to ensure that the humidified air reaches the face. it can.
 さらに、本実施形態の加湿用ダクト571は、内部を流通する空気と外部に存在する空気とが熱交換するように、冷風吸入ダクト521に比べて厚みが薄くなるように構成されている。 Furthermore, the humidifying duct 571 of the present embodiment is configured to be thinner than the cold air intake duct 521 so that the air flowing inside and the air existing outside can exchange heat.
 除湿空気ダクト573は、吸着ケース51の吸湿空間541aで水分が奪われた冷却空気である除湿空気を導くダクトである。除湿空気ダクト573によって除湿空気が導かれる先に開けられた除湿空気ダクト573の開口部574は、ダッシュボード内部に開口しており、これにより、除湿空気が乗員に直接吹き出ない構成となっている。 The dehumidified air duct 573 is a duct that guides dehumidified air that is cooling air from which moisture has been removed in the moisture absorbing space 541 a of the adsorption case 51. An opening 574 of the dehumidified air duct 573 opened before the dehumidified air is guided by the dehumidified air duct 573 is opened inside the dashboard, thereby preventing the dehumidified air from blowing directly to the passenger. .
 この場合、除湿空気ダクト573によって除湿空気が導かれる先は車室内のダッシュボード内部であるが、除湿空気ダクト573によって除湿空気が導かれて開口部574から吹き出る先は、図1に示すように、車両の外部でもよいし、空調ケース11の内部でもよい。 In this case, the destination where the dehumidified air is guided by the dehumidified air duct 573 is inside the dashboard in the vehicle interior, but the destination where the dehumidified air is guided by the dehumidified air duct 573 and blows out from the opening 574 is as shown in FIG. It may be outside the vehicle or inside the air conditioning case 11.
 吸着器60は、水分を吸着して脱離(すなわち放湿)する吸着材61を金属製の図示しない板状部材に担持させた構成となっている。各板状部材は、各板状部材の間に後述する回転軸71の軸方向に沿った流路が形成されるように間隔をあけて積層配置されている。本実施形態の吸着器60は、吸着材61を担持した各板状部材を積層配置することで、送風空気と吸着材61との接触面積を増加させている。 The adsorber 60 has a structure in which an adsorbent 61 that adsorbs and desorbs moisture (that is, releases moisture) is supported on a metal plate-like member (not shown). Each plate-like member is laminated and arranged at intervals so that a flow path along the axial direction of the rotation shaft 71 described later is formed between the plate-like members. The adsorber 60 of the present embodiment increases the contact area between the blown air and the adsorbent 61 by stacking and arranging the plate-like members carrying the adsorbent 61.
 吸着材61は、相対湿度差によって吸湿・放湿を行う高分子吸着材を採用し、相対湿度が高い空気が通る際は空気内の水分を吸収し、相対湿度が低い空気が通る際は空気内に水分を放湿させる特徴を持つ。吸着材61としては、送風空気の温度として想定される温度範囲内で、吸着器60を通過する送風空気の相対湿度を50%変化させた際に、吸着している水分量(すなわち吸着量)が少なくとも3wt%以上変化する吸着特性を有するものが好ましい。より好ましくは、吸着材61としては、前述と同条件の環境下で、吸着量が3wt%~10wt%の範囲で変化する吸着特性を有するものが好ましい。 The adsorbent 61 employs a polymer adsorbent that absorbs and releases moisture according to a relative humidity difference. When air having a high relative humidity passes through, the water adsorbs moisture in the air, and when air having a low relative humidity passes through the air, It has the characteristic of releasing moisture inside. As the adsorbent 61, the amount of moisture adsorbed when the relative humidity of the blown air passing through the adsorber 60 is changed by 50% within the temperature range assumed as the temperature of the blown air (that is, the amount of adsorption). It is preferable to have an adsorption characteristic that changes at least 3 wt%. More preferably, the adsorbent 61 preferably has an adsorbing characteristic in which the adsorbing amount changes in the range of 3 wt% to 10 wt% under the same conditions as described above.
 本実施形態の吸着器60は、内部空間が吸湿空間541aと放湿空間541bに仕切られた吸着器収容部54に収容されている。前述のように、吸着器60は、吸湿空間541aおよび放湿空間541bの双方を跨ぐように配置されているが、吸湿空間に存在する吸着材61で吸着可能な水分の吸着量は有限である。また、放湿空間541bに存在する吸着材61で脱離させる水分の量も有限である。 The adsorber 60 of this embodiment is accommodated in an adsorber accommodating portion 54 whose internal space is partitioned into a moisture absorbing space 541a and a moisture releasing space 541b. As described above, the adsorber 60 is disposed so as to straddle both the moisture absorbing space 541a and the moisture releasing space 541b, but the amount of moisture adsorbable by the adsorbent 61 existing in the moisture absorbing space is finite. . Further, the amount of moisture desorbed by the adsorbent 61 present in the moisture release space 541b is also finite.
 そこで、加湿装置50には、吸着器60の吸着材61を吸湿空間541aと放湿空間541bとの間で移動させる移動機構として駆動部材70が設けられている。駆動部材70は、吸着器60における放湿空間541bに存在する吸着材61の少なくとも一部を吸湿空間541aに移動させると共に、吸着器60における吸湿空間541aに存在する吸着材61の少なくとも一部を放湿空間541bに移動させる装置である。 Therefore, the humidifying device 50 is provided with a drive member 70 as a moving mechanism for moving the adsorbent 61 of the adsorber 60 between the moisture absorbing space 541a and the moisture releasing space 541b. The drive member 70 moves at least a part of the adsorbent 61 present in the moisture release space 541b of the adsorber 60 to the hygroscopic space 541a and at least a part of the adsorbent 61 present in the hygroscopic space 541a of the adsorber 60. It is a device moved to the moisture release space 541b.
 駆動部材70は、吸着器60の中心を貫通すると共に吸着器60に連結された回転軸71、および回転軸71を回転駆動させる減速機付きの電動モータ72を有する構成となっている。回転軸71は、回転可能に吸着ケース51に支持されており、電動モータ72から駆動力が伝達されると、吸着ケース51の内部で吸着器60と共に回転する。これにより、吸着器60において放湿空間541bにある吸着材61の一部が吸湿空間541aに移動し、吸着器60において吸湿空間541aにある吸着材61の一部が放湿空間541bに移動する。 The drive member 70 has a configuration that includes a rotation shaft 71 that passes through the center of the suction device 60 and is connected to the suction device 60, and an electric motor 72 with a speed reducer that rotationally drives the rotation shaft 71. The rotating shaft 71 is rotatably supported by the suction case 51, and rotates together with the suction device 60 inside the suction case 51 when a driving force is transmitted from the electric motor 72. Thereby, a part of the adsorbent 61 in the moisture release space 541b moves to the moisture absorption space 541a in the adsorber 60, and a part of the adsorbent 61 in the moisture absorption space 541a moves to the moisture release space 541b in the adsorber 60. .
 本実施形態の電動モータ72は、回転軸71を一方向に連続的に回転駆動する。これにより、吸着器60における放湿空間541bで充分に水分を脱離した吸着材61を吸湿空間541aに移動させると共に、吸着器60における吸湿空間541aで充分に水分を吸着した吸着材61を放湿空間541bに移動させることができる。 The electric motor 72 of the present embodiment continuously drives the rotating shaft 71 to rotate in one direction. As a result, the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture releasing space 541b of the adsorber 60 is moved to the moisture absorbing space 541a, and the adsorbent 61 having sufficiently adsorbed moisture in the moisture absorbing space 541a of the adsorber 60 is released. It can be moved to the wet space 541b.
 ここで、加湿器用送風機55の詳細について説明する。加湿器用送風機55は、図5、図6に示すように、モータ551、単一の遠心ファン552、およびスクロールファンケーシング553を備えている。この加湿器用送風機55は、ファン軸芯CLの方向に除湿空気および加湿空気を吸い込んでファン軸芯CLから離れる複数方向に除湿空気および加湿空気を分けて異なる空間に吹き出すと共に、除湿空気と加湿空気の熱交換を媒介するための樹脂製の部材である。 Here, the details of the humidifier blower 55 will be described. As shown in FIGS. 5 and 6, the humidifier blower 55 includes a motor 551, a single centrifugal fan 552, and a scroll fan casing 553. The humidifier blower 55 sucks dehumidified air and humidified air in the direction of the fan shaft core CL, divides the dehumidified air and humidified air in a plurality of directions away from the fan shaft core CL, and blows them out to different spaces. It is a resin member for mediating heat exchange.
 モータ551は、一部が遠心ファン552内に収容され、出力軸が遠心ファン552と接続されており、出力軸を介して遠心ファン552に回転駆動力を伝達することで、遠心ファン552をファン軸芯CLの周りに回転させる。 A part of the motor 551 is accommodated in the centrifugal fan 552 and an output shaft is connected to the centrifugal fan 552. By transmitting a rotational driving force to the centrifugal fan 552 via the output shaft, the centrifugal fan 552 is connected to the centrifugal fan 552. Rotate around the axis CL.
 遠心ファン552は、遠心式多翼ファンすなわち遠心式送風機の羽根車であり、より具体的にはターボファンである。この遠心ファン552は、ファンボス552a、複数枚のブレード552b、および天板552cを有している。この遠心ファン552は、除湿空気および加湿空気をファン軸芯CLの方向に吸い込んでファン軸芯CLから離れる複数方向に吹き出すと共に、除湿空気と加湿空気の熱交換を媒介する。 The centrifugal fan 552 is a centrifugal multiblade fan, that is, an impeller of a centrifugal blower, more specifically, a turbo fan. The centrifugal fan 552 includes a fan boss 552a, a plurality of blades 552b, and a top plate 552c. The centrifugal fan 552 sucks dehumidified air and humidified air in the direction of the fan shaft core CL and blows them in a plurality of directions away from the fan shaft core CL, and mediates heat exchange between the dehumidified air and the humidified air.
 接続部材の一例に相当するファンボス552aは、モータ551の出力軸に接続された板形状の部材である。このファンボス552aの熱伝導率は、10W/(m・K)以上である。例えば、ファンボス552aは、熱伝導率が10W/(m・K)以上の金属から成っていてもよいし、熱伝導率が10W/(m・K)以上の金属以外の材料(例えば、カーボンナノファイバー、樹脂)から成っていてもよい。 The fan boss 552a corresponding to an example of the connecting member is a plate-like member connected to the output shaft of the motor 551. The fan boss 552a has a thermal conductivity of 10 W / (m · K) or more. For example, the fan boss 552a may be made of a metal having a thermal conductivity of 10 W / (m · K) or higher, or a material other than a metal having a thermal conductivity of 10 W / (m · K) or higher (for example, carbon (Nanofiber, resin).
 複数枚のブレード552bは、ファン軸心CLを中心とする円柱状のファン吸込空間555のまわりに周方向に等間隔で周状に配置された平板である。ファン吸込空間555は、ファン軸心CLおよびファン軸心CLの近傍の空間を含む空間である。そして各ブレード552bは、ファンボス552aに対して垂直にまたは非平行に、かつ、空気がファン軸芯CLから離れる方向に導くよう(すなわち、ファン軸芯CLを中心とした径方向に垂直にならないよう)、ファンボス552aに接続かつ固定されている。このブレード552bの各々の熱伝導率は、10W/(m・K)以上である。例えば、ブレード552bの各々は、熱伝導率が10W/(m・K)以上の金属から成っていてもよいし、熱伝導率が10W/(m・K)以上の金属以外の材料(例えば、カーボンナノファイバー、樹脂)から成っていてもよい。なお、複数枚のブレード552bの大きさ、形状、表面積は、すべて同じである。 The plurality of blades 552b are flat plates arranged circumferentially at equal intervals in the circumferential direction around a columnar fan suction space 555 centered on the fan axis CL. The fan suction space 555 is a space including the fan shaft center CL and a space near the fan shaft center CL. Each blade 552b guides air in a direction perpendicular or non-parallel to the fan boss 552a and away from the fan axis CL (that is, does not become perpendicular to the radial direction around the fan axis CL). And so on) and connected to the fan boss 552a. The thermal conductivity of each of the blades 552b is 10 W / (m · K) or more. For example, each of the blades 552b may be made of a metal having a thermal conductivity of 10 W / (m · K) or more, or a material other than a metal having a thermal conductivity of 10 W / (m · K) or more (for example, (Carbon nanofiber, resin). The plurality of blades 552b have the same size, shape, and surface area.
 接続部材の一例に相当する天板552cは、ブレード552bを挟んでファンボス552aと対向する円環板形状の部材であり、すべてのブレード552bが天板552cに接続かつ固定されている。この天板552cの熱伝導率は、10W/(m・K)以上である。例えば、天板552cは、熱伝導率が10W/(m・K)以上の金属から成っていてもよいし、熱伝導率が10W/(m・K)以上の金属以外の材料(例えば、カーボンナノファイバー、樹脂)から成っていてもよい。あるいは、この天板552cの熱伝導率は、10W/(m・K)未満であってもよい。 The top plate 552c corresponding to an example of the connection member is a ring-shaped member facing the fan boss 552a with the blade 552b interposed therebetween, and all the blades 552b are connected and fixed to the top plate 552c. The thermal conductivity of the top plate 552c is 10 W / (m · K) or more. For example, the top plate 552c may be made of a metal having a thermal conductivity of 10 W / (m · K) or higher, or a material other than a metal having a thermal conductivity of 10 W / (m · K) or higher (for example, carbon (Nanofiber, resin). Alternatively, the thermal conductivity of the top plate 552c may be less than 10 W / (m · K).
 なお、ブレード552bの各々および天板552cの板厚よりもファンボス552aの板厚の方が大きい。そして、複数枚のブレード552bおよび天板552cの全体の熱容量よりも、ファンボス552aの熱容量の方が大きい。したがって当然、複数枚のブレード552bのうちどの一枚よりも、ファンボス552aの熱容量の方が大きい。また、天板552cの熱容量よりも、ファンボス552aの熱容量の方が大きい。 Note that the thickness of the fan boss 552a is larger than the thickness of each of the blades 552b and the top plate 552c. The heat capacity of the fan boss 552a is larger than the heat capacity of the entire blades 552b and the top plate 552c. Therefore, naturally, the heat capacity of the fan boss 552a is larger than any one of the plurality of blades 552b. Further, the heat capacity of the fan boss 552a is larger than the heat capacity of the top plate 552c.
 スクロールファンケーシング553は、モータ551の一部および遠心ファン552を収容する筐体である。スクロールファンケーシング553は、樹脂から成っていてもよいし金属から成っていてもよいが、ファンボス552a、ブレード552b、天板552cよりも熱伝導率は低い。このスクロールファンケーシング553は、吸湿空間541aを通った除湿空気と放湿空間541bを通った加湿空気を独立してそれぞれ除湿空気ダクト573、加湿用ダクト571に吹き出す形状となっている。 The scroll fan casing 553 is a housing that houses a part of the motor 551 and the centrifugal fan 552. The scroll fan casing 553 may be made of resin or metal, but has lower thermal conductivity than the fan boss 552a, the blade 552b, and the top plate 552c. The scroll fan casing 553 has a shape in which the dehumidified air that has passed through the moisture absorbing space 541a and the humidified air that has passed through the moisture releasing space 541b are independently blown to the dehumidified air duct 573 and the humidifying duct 571, respectively.
 このスクロールファンケーシング553は、上側底壁553a、下側底壁553b、外周壁553cを有している。上側底壁553aは、スクロールファンケーシング553の上蓋に相当する板形状の部材であり、その内周端部に空気排出部56と接続する開口部を有している。開口部は、吸着器収容空間541から除湿空気および加湿空気を導入するための孔を形成する部材である。下側底壁553bは、上側底壁553aとファン軸芯CLの方向に対向する板形状の部材である。 The scroll fan casing 553 has an upper bottom wall 553a, a lower bottom wall 553b, and an outer peripheral wall 553c. The upper bottom wall 553a is a plate-like member corresponding to the upper lid of the scroll fan casing 553, and has an opening connected to the air discharge portion 56 at the inner peripheral end thereof. The opening is a member that forms a hole for introducing dehumidified air and humidified air from the adsorber housing space 541. The lower bottom wall 553b is a plate-shaped member that faces the upper bottom wall 553a in the direction of the fan shaft core CL.
 外周壁553cは、スクロールファンケーシング553の外周を構成する板形状の部材であり、その上端(すなわち、吸着器収容部54に近い側の端)において上側底壁553aの外周端部と接続し、その下端(すなわち、吸着器収容部54から遠い側の端)において下側底壁553bの外周端部と接続している。したがって、外周壁553cは上側底壁553aと下側底壁553bを繋ぐ部材である。 The outer peripheral wall 553c is a plate-shaped member that forms the outer periphery of the scroll fan casing 553, and is connected to the outer peripheral end of the upper bottom wall 553a at the upper end thereof (that is, the end closer to the adsorber accommodating portion 54), The lower end (that is, the end far from the adsorber housing 54) is connected to the outer peripheral end of the lower bottom wall 553b. Therefore, the outer peripheral wall 553c is a member that connects the upper bottom wall 553a and the lower bottom wall 553b.
 また、外周壁553cのうちファン収容空間側(すなわち、遠心ファン552を収容する空間の側)の内面は、第1ノーズ部N1、第2ノーズ部N2という2つのスクロールノーズ部を備え、更に、第1スクロール内壁面S1、第2スクロール内壁面S2を備えている。第1スクロール内壁面S1が第1内壁面の一例に相当し、第2スクロール内壁面S2が第2内壁面の一例に相当する。 The inner surface of the outer peripheral wall 553c on the fan housing space side (that is, the space housing the centrifugal fan 552) includes two scroll nose portions, a first nose portion N1 and a second nose portion N2. A first scroll inner wall surface S1 and a second scroll inner wall surface S2 are provided. The first scroll inner wall surface S1 corresponds to an example of a first inner wall surface, and the second scroll inner wall surface S2 corresponds to an example of a second inner wall surface.
 第1ノーズ部N1は、第1スクロール内壁面S1の端部のうち、遠心ファン552の回転方向とは反対方向の端部と接続している。第2ノーズ部N2は、第2スクロール内壁面S2の端部のうち、遠心ファン552の回転方向とは反対方向の端部と接続している。 The first nose portion N1 is connected to an end portion of the first scroll inner wall surface S1 opposite to the rotation direction of the centrifugal fan 552. The second nose portion N2 is connected to the end portion of the second scroll inner wall surface S2 in the direction opposite to the rotation direction of the centrifugal fan 552.
 第1ノーズ部N1は、外周壁553cの上記内面と除湿空気ダクト573との境界を成すと共にスクロールの巻き始め部分である。 The first nose portion N1 forms a boundary between the inner surface of the outer peripheral wall 553c and the dehumidified air duct 573 and is a scroll start portion.
 第2ノーズ部N2は、外周壁553cの上記内面と加湿用ダクト571との境界を成すと共にスクロールの巻き始め部分である。 The second nose portion N2 forms a boundary between the inner surface of the outer peripheral wall 553c and the humidifying duct 571 and is a winding start portion of the scroll.
 第1スクロール内壁面S1は、ファン軸芯CLからの距離が回転軸Sを中心とする巻き角に対して周知の対数螺旋関数に従って増大するように、第1ノーズ部N1から加湿用ダクト571へ、ファン軸芯CLの周りを取り巻いて渦巻き状に延びている壁面である。 The first scroll inner wall surface S1 extends from the first nose portion N1 to the humidifying duct 571 so that the distance from the fan axis CL increases in accordance with a well-known logarithmic spiral function with respect to the winding angle about the rotation axis S. The wall surface extends around the fan shaft core CL in a spiral shape.
 第2スクロール内壁面S2は、ファン軸芯CLからの距離が回転軸Sを中心とする巻き角に対して周知の対数螺旋関数に従って増大するように、第2ノーズ部N2から除湿空気ダクト573へ、ファン軸芯CLの周りを取り巻いて渦巻き状に延びている壁面である。 The second scroll inner wall surface S2 extends from the second nose portion N2 to the dehumidified air duct 573 so that the distance from the fan shaft core CL increases according to a well-known logarithmic spiral function with respect to the winding angle about the rotation axis S. The wall surface extends around the fan shaft core CL in a spiral shape.
 複数枚のブレード552bがファン軸心CLの周りに回転することで、複数枚のブレード552bの各々は、あるときにはファン軸芯CLと第1内壁面S1の間にあり、別のときにはファン軸芯CLと第2内壁面S2の間にある。 By rotating the plurality of blades 552b around the fan axis CL, each of the plurality of blades 552b is between the fan shaft core CL and the first inner wall surface S1 in some cases, and the fan shaft core in other cases. Between CL and the second inner wall surface S2.
 このように、スクロールファンケーシング553には2つの出口が形成されており、それら2つのうち一方の出口には加湿用ダクト571が接続されており、他方の出口には除湿空気ダクト573が接続されている。 Thus, the scroll fan casing 553 has two outlets, one of the two outlets is connected to the humidifying duct 571, and the other outlet is connected to the dehumidified air duct 573. ing.
 ここで、スクロールファンケーシング553、加湿用ダクト571、除湿空気ダクト573の形状と、第2仕切部材543の第1下流仕切部543b、第2下流仕切部543dの配置との関係について説明する。 Here, the relationship between the shape of the scroll fan casing 553, the humidifying duct 571, and the dehumidified air duct 573 and the arrangement of the first downstream partitioning portion 543b and the second downstream partitioning portion 543d of the second partitioning member 543 will be described.
 図5、図6に示す通り、第1下流仕切部543bと第2下流仕切部543dは共に、ファン吸込空間555内に配置される。これにより、第1下流仕切部543bと第2下流仕切部543dは共に、ファン吸込空間555を、加湿空気が通って遠心ファン552に吸い込まれる空間と、除湿空気が通って遠心ファン552に吸い込まれる空間とに、仕切る。 As shown in FIGS. 5 and 6, the first downstream partition 543 b and the second downstream partition 543 d are both disposed in the fan suction space 555. As a result, both the first downstream partition 543b and the second downstream partition 543d are sucked into the fan suction space 555 by passing the humid air through the centrifugal fan 552 and the dehumidified air through the centrifugal fan 552. Partition into space.
 より具体的には、図5に示す通り、ファン軸芯CLに垂直な平面内で第1下流仕切部543b、第2下流仕切部543dがファン軸芯CLからそれぞれ真っ直ぐ延びる方向81、82が成す角は、120°である。なお方向81は、ファン軸芯CLに垂直な平面内において、第1下流仕切部543bのうちファン軸芯CLから最も離れた端部を、ファン軸芯CLから見た方向でもある。また方向82は、ファン軸芯CLに垂直な平面内において、第2下流仕切部543dのうちファン軸芯CLから最も離れた端部を、ファン軸芯CLから見た方向でもある。 More specifically, as shown in FIG. 5, directions 81 and 82 in which the first downstream partition portion 543b and the second downstream partition portion 543d extend straight from the fan shaft core CL in a plane perpendicular to the fan shaft core CL are formed. The angle is 120 °. The direction 81 is also the direction of the end portion of the first downstream partitioning portion 543b that is farthest from the fan shaft core CL as viewed from the fan shaft core CL in a plane perpendicular to the fan shaft core CL. Further, the direction 82 is also a direction in which the end portion of the second downstream partitioning portion 543d that is farthest from the fan axis CL in the plane perpendicular to the fan axis CL is viewed from the fan axis CL.
 この120°の範囲は、遠心ファン552の回転方向に沿って第1下流仕切部543bから第2下流仕切部543dまでの範囲であり、加湿空気が通って遠心ファン552に吸い込まれる空間である。また、遠心ファン552の回転方向に沿って第2下流仕切部543dから第1下流仕切部543bまでの240°の範囲が、除湿空気が通って遠心ファン552に吸い込まれる空間である。 The range of 120 ° is a range from the first downstream partition 543b to the second downstream partition 543d along the rotation direction of the centrifugal fan 552, and is a space through which humidified air is sucked into the centrifugal fan 552. A range of 240 ° from the second downstream partition 543d to the first downstream partition 543b along the rotation direction of the centrifugal fan 552 is a space through which dehumidified air passes and is sucked into the centrifugal fan 552.
 また、ファン軸芯CLに垂直な平面内でファン軸芯CLから第1ノーズ部N1への方向83とファン軸芯CLから第2ノーズ部N2への方向84とが成す角も、120°である。 Further, the angle formed by the direction 83 from the fan shaft core CL to the first nose portion N1 and the direction 84 from the fan shaft core CL to the second nose portion N2 in a plane perpendicular to the fan shaft core CL is 120 °. is there.
 そして、第1下流仕切部543bの方向81は、第1ノーズ部N1の方向83に対して、0°より大きくかつ90°より小さい第1ずれ角度θだけ、遠心ファン552の回転方向80とは反対側に、ずれている。また、第2下流仕切部543dの方向82は、第2ノーズ部N2の方向84に対して、ほぼ同じ第2ずれ角度θzだけ、遠心ファン552の回転方向80とは反対側に、ずれている。ここで、第1ずれ角度θと第2ずれ角度θzの差の絶対値は、0°であれば最も好ましいが、15°以下であれば後述する効果(すなわち、加湿空気と除湿空気の分離効果)をある程度達成できる。なお、方向81と方向84も互いにずれており、方向82と方向83も互いにずれている。 The direction 81 of the first downstream partition 543b is different from the direction of rotation 80 of the centrifugal fan 552 by a first deviation angle θ that is greater than 0 ° and less than 90 ° with respect to the direction 83 of the first nose portion N1. It is shifted to the opposite side. Further, the direction 82 of the second downstream partition portion 543d is shifted to the opposite side to the rotation direction 80 of the centrifugal fan 552 by the substantially same second shift angle θz with respect to the direction 84 of the second nose portion N2. . Here, the absolute value of the difference between the first deviation angle θ and the second deviation angle θz is most preferably 0 °, but if it is 15 ° or less, the effect described later (that is, the separation effect of humidified air and dehumidified air). ) Can be achieved to some extent. The direction 81 and the direction 84 are also shifted from each other, and the direction 82 and the direction 83 are also shifted from each other.
 また、複数枚のブレード552bの総接触面積Qと、複数枚のブレード552bの各々の高さHとを、以下のように定義する。各ブレード552bの高さHは、図6に示すように、ファン軸芯CLに平行な方向の当該ブレード552bの長さの最大値である。ここでいう最大値とは、1枚のブレード内における最大値である。複数枚のブレード552bの接触面積Qは、ファンボス552aに接続されたすべてのブレード552bとファンボス552aとの接触面積の総和であり、本実施形態では、図5における当該複数枚のブレード552bの総断面積と同じである。このように定義したとき、H<Q1/2である。 Further, the total contact area Q of the plurality of blades 552b and the height H of each of the plurality of blades 552b are defined as follows. The height H of each blade 552b is the maximum value of the length of the blade 552b in the direction parallel to the fan shaft core CL, as shown in FIG. The maximum value here is the maximum value in one blade. The contact area Q of the plurality of blades 552b is the sum of the contact areas of all the blades 552b connected to the fan boss 552a and the fan boss 552a. In this embodiment, the contact area Q of the plurality of blades 552b in FIG. It is the same as the total cross-sectional area. When defined in this way, H <Q1 / 2 .
 なお、図1では、図5のVI-VI断面における加湿装置50が表されている。 In addition, in FIG. 1, the humidification apparatus 50 in the VI-VI cross section of FIG. 5 is represented.
 続いて、車両用空調装置の電気制御部である制御装置100について図6を用いて説明する。図7に示す制御装置100は、CPU、ROMやRAM等の記憶部を含んで構成されるマイクロコンピュータ、およびその周辺回路から構成されている。制御装置100は、記憶部に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。 Subsequently, the control device 100 which is an electric control unit of the vehicle air conditioner will be described with reference to FIG. A control device 100 shown in FIG. 7 includes a microcomputer including a CPU, a storage unit such as a ROM and a RAM, and peripheral circuits thereof. The control device 100 performs various calculations and processes based on the control program stored in the storage unit, and controls the operation of various devices connected to the output side.
 本実施形態の制御装置100は、空調ユニット10の各種機器の作動を制御する制御装置と加湿装置50の各種機器の作動を制御する制御装置を1つにまとめた装置である。なお、空調ユニット10の各種機器の作動を制御する制御装置と加湿装置50の各種機器の作動を制御する制御装置とを別個に設ける構成としてもよい。 The control device 100 of this embodiment is a device in which a control device that controls the operation of various devices of the air conditioning unit 10 and a control device that controls the operation of various devices of the humidifying device 50 are combined into one. In addition, it is good also as a structure which provides separately the control apparatus which controls the action | operation of the various apparatuses of the air conditioning unit 10, and the control apparatus which controls the action | operation of the various apparatuses of the humidification apparatus 50.
 制御装置100の入力側には、空調制御用の各種センサ群101、加湿制御用の各種センサ群102、空調制御用および加湿制御用の操作パネル103が接続されている。 The various sensor groups 101 for air conditioning control, the various sensor groups 102 for humidification control, and the operation panel 103 for air conditioning control and humidification control are connected to the input side of the control device 100.
 空調制御用の各種センサ群101としては、内気温度を検出する内気温度センサ、外気温度を検出する外気温度センサ、車室内の日射量を検出する日射センサ、蒸発器13の温度を検出する蒸発器温度センサ等が挙げられる。 As various sensor groups 101 for air conditioning control, an inside air temperature sensor that detects an inside air temperature, an outside air temperature sensor that detects an outside air temperature, a solar radiation sensor that detects the amount of solar radiation in a vehicle interior, and an evaporator that detects the temperature of the evaporator 13. A temperature sensor etc. are mentioned.
 また、加湿制御用の各種センサ群102としては、加湿用ダクト571から吹き出す空気の温度を検出する第1温度センサや、冷風排出ダクトから吹き出す空気の温度を検出する第2温度センサ等が挙げられる。 The various sensor groups 102 for humidification control include a first temperature sensor that detects the temperature of air blown from the humidification duct 571, a second temperature sensor that detects the temperature of air blown from the cold air discharge duct, and the like. .
 操作パネル103には、空調運転スイッチ103a、加湿運転スイッチ103b、温度設定スイッチ103c等が設けられている。空調運転スイッチ103aは、空調ユニット10による空調運転のオン、オフを切り替えるスイッチである。加湿運転スイッチ103bは、加湿装置50の加湿運転のオン、オフを切り替えるスイッチである。温度設定スイッチ103cは、空調ユニット10や加湿装置50から吹き出す空気の目標温度を設定するスイッチである。 The operation panel 103 is provided with an air conditioning operation switch 103a, a humidification operation switch 103b, a temperature setting switch 103c, and the like. The air conditioning operation switch 103 a is a switch for switching on and off of the air conditioning operation by the air conditioning unit 10. The humidifying operation switch 103b is a switch that switches on / off of the humidifying operation of the humidifying device 50. The temperature setting switch 103c is a switch for setting a target temperature of air blown from the air conditioning unit 10 or the humidifier 50.
 また、制御装置100の出力側には、エアミックスドア18のアクチュエータ、空調用送風機19の空調用モータ193、内外気切替ドア123のアクチュエータ、加湿器用送風機55のモータ551、駆動部材70の電動モータ72、冷風ドア522のアクチュエータ、冷凍サイクルの図示しないコンプレッサ等が接続されている。制御装置100は、これら出力側の装置を制御することができる。 Further, on the output side of the control device 100, the actuator of the air mix door 18, the air conditioning motor 193 of the air conditioning blower 19, the actuator of the inside / outside air switching door 123, the motor 551 of the humidifier blower 55, and the electric motor of the driving member 70 are provided. 72, an actuator of the cold air door 522, a compressor (not shown) of the refrigeration cycle, and the like are connected. The control device 100 can control these devices on the output side.
 次に、本実施形態の空調ユニット10および加湿装置50の作動を説明する。まず、空調ユニット10の作動の概略について説明する。空調ユニット10は、空調運転スイッチ103aがオンされると、制御装置100が空調制御用の各種センサ群101の検出信号および温度設定スイッチ103cの設定温度に基づいて、車室内へ吹き出す送風空気の目標吹出温度TAOを算出する。そして、制御装置100は、車室内へ吹き出す送風空気の温度が目標吹出温度TAOに近づくように、空調ユニット10における各種機器の作動を制御する。 Next, the operation of the air conditioning unit 10 and the humidifier 50 according to this embodiment will be described. First, an outline of the operation of the air conditioning unit 10 will be described. When the air-conditioning operation switch 103a is turned on, the air-conditioning unit 10 targets the blown air that the control device 100 blows into the vehicle interior based on the detection signals of the various air-conditioning control sensor groups 101 and the set temperature of the temperature setting switch 103c. The blowing temperature TAO is calculated. And the control apparatus 100 controls the action | operation of the various apparatuses in the air conditioning unit 10 so that the temperature of the ventilation air which blows off into a vehicle interior approaches the target blowing temperature TAO.
 このように、空調ユニット10では、制御装置100が空調制御用の各種センサ群101の検出信号等に応じて各種機器を制御することで、ユーザが要求する適切な車室内の温度調整を実現することができる。 In this way, in the air conditioning unit 10, the control device 100 controls various devices in accordance with the detection signals of the various sensor groups 101 for air conditioning control, thereby realizing appropriate temperature adjustment in the vehicle interior requested by the user. be able to.
 続いて、加湿装置50の作動について、図8に示すフローチャートを用いて説明する。制御装置100は、空調運転スイッチ103aがオンされると、図8に示すフローチャートに示す制御処理を実行する。 Subsequently, the operation of the humidifier 50 will be described using the flowchart shown in FIG. When the air conditioning operation switch 103a is turned on, the control device 100 executes the control process shown in the flowchart shown in FIG.
 なお、本実施形態では、一事例として、蒸発器13が内気または外気を冷却しており、その結果、車室内の温度が25℃に保たれ、車室内の相対湿度が20%に保たれている状況において、制御装置100が図8に示す処理を実行する場合について説明する。 In the present embodiment, as an example, the evaporator 13 cools the inside air or the outside air, and as a result, the temperature in the passenger compartment is kept at 25 ° C., and the relative humidity in the passenger compartment is kept at 20%. A case where the control device 100 executes the process shown in FIG.
 図8に示すように、制御装置100は、まずステップS10で、加湿運転スイッチ103bのオンオフを検出して加湿要求があるか否かを判定する。この判定処理では、加湿運転スイッチ103bがオフである場合に加湿要求なしと判定し、加湿運転スイッチ103bがオンである場合に加湿要求ありと判定する。加湿要求なしと判定した場合は、再度このステップS10を繰り返す。 As shown in FIG. 8, the control device 100 first determines whether or not there is a humidification request by detecting on / off of the humidification operation switch 103b in step S10. In this determination process, it is determined that there is no humidification request when the humidification operation switch 103b is off, and it is determined that there is a humidification request when the humidification operation switch 103b is on. If it is determined that there is no humidification request, step S10 is repeated again.
 ステップS10の判定処理の結果、加湿要求ありと判定された場合には、制御装置100は、ステップS20に進み、加湿装置50による車室内の加湿処理を開始する。具体的には、制御装置100は、冷風ドア522を全開位置に移動させ、加湿器用送風機55のモータ551を作動させて遠心ファン552を回転させると共に、駆動部材70を作動させて吸着器60を回転させる。これにより、加湿装置50の加湿運転が実現される。 As a result of the determination process in step S10, when it is determined that there is a humidification request, the control device 100 proceeds to step S20 and starts the humidification process in the vehicle interior by the humidification device 50. Specifically, the control device 100 moves the cold air door 522 to the fully open position, operates the motor 551 of the humidifier blower 55 to rotate the centrifugal fan 552, and operates the drive member 70 to operate the adsorber 60. Rotate. Thereby, the humidification driving | operation of the humidification apparatus 50 is implement | achieved.
 この際、制御装置100は、空調用送風機19の最小風量を基準風量としたとき、冷風吸入ダクト521を介して導入される冷却空気が、基準風量よりも少ない風量(例えば、20m3/h、基準風量の20%程度)となるように、加湿器用送風機55を制御する。この場合、冷風吸入ダクト521を介して導入される冷却空気が基準風量よりも充分に少ないことから、空調ユニット10側の空調機能への影響は殆ど生じない。なお、制御装置100は、加湿制御用の各種センサ群102の検出値等に基づいて、空調用送風機19の風量を制御するようにしてもよい。 At this time, when the control device 100 uses the minimum air volume of the air-conditioning blower 19 as the reference air volume, the cooling air introduced through the cold air intake duct 521 has an air volume that is smaller than the reference air volume (for example, 20 m 3 / h, The humidifier blower 55 is controlled so as to be about 20% of the reference air volume. In this case, since the cooling air introduced through the cold air intake duct 521 is sufficiently smaller than the reference air volume, the air conditioning function on the air conditioning unit 10 side is hardly affected. The control device 100 may control the air volume of the air-conditioning blower 19 based on the detection values of the various sensor groups 102 for humidification control.
 また、制御装置100は、吸着器収容部54の吸湿空間541aに対して、放湿空間541bで水分を充分に脱離した吸着材61が移動するように、駆動部材70の電動モータ72を制御する。例えば、制御装置100は、放湿空間541bにて吸着材61の水分の脱離に要する時間を基準時間としたとき、吸着材61を放湿空間541bに移動させてから基準時間を経過した後に吸湿空間541aに移動するように、電動モータ72を制御する。例えば、5rpm以上10rpm以下の所定の一定回転速度で吸着器60が回転するよう、電動モータ72を制御する。なお、吸着器60が回転しても、吸着器収容部54、第1仕切部材542、第2仕切部材543は回転しない。 Further, the control device 100 controls the electric motor 72 of the drive member 70 so that the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture release space 541b moves relative to the moisture absorption space 541a of the adsorber housing 54. To do. For example, when the time required for desorption of moisture from the adsorbent 61 in the moisture release space 541b is set as the reference time, the control device 100 moves the adsorbent 61 to the moisture release space 541b and then passes the reference time. The electric motor 72 is controlled to move to the moisture absorption space 541a. For example, the electric motor 72 is controlled so that the adsorber 60 rotates at a predetermined constant rotation speed of 5 rpm to 10 rpm. Even if the adsorber 60 rotates, the adsorber accommodating portion 54, the first partition member 542, and the second partition member 543 do not rotate.
 ここで、制御装置100が加湿処理を実行した際の加湿装置50の運転状態について説明する。蒸発器13で冷却された低温、高相対湿度の冷却空気(例えば、温度5℃、相対湿度70%)の一部が、加湿器用送風機55の吸引力によって吸引され、冷風吸入ダクト521を介して吸着ケース51内に導入される。そして、吸着ケース51に導入された冷却空気は、吸着器60における吸湿空間541aに存在する吸着材61により、冷却空気に含まれる水分が吸着される。この結果、冷却空気が除湿空気になる。 Here, the operation state of the humidifying device 50 when the control device 100 executes the humidifying process will be described. A part of the low-temperature, high-relative-humidity cooling air (for example, temperature 5 ° C., relative humidity 70%) cooled by the evaporator 13 is sucked by the suction force of the humidifier blower 55 and passes through the cold-air suction duct 521. It is introduced into the suction case 51. The cooling air introduced into the adsorption case 51 adsorbs moisture contained in the cooling air by the adsorbent 61 present in the moisture absorption space 541a of the adsorber 60. As a result, the cooling air becomes dehumidified air.
 この際、吸着器60が吸着器収容空間541で回転することから、吸着器60における放湿空間541bで充分に水分を脱離した吸着材61が吸湿空間541aに移動する。これにより、吸着ケース51に導入された冷却空気に含まれる水分が、吸着器60における吸湿空間541aに存在する吸着材61により連続的に吸着される。続いて、吸湿空間541aを通過した除湿空気は、加湿器用送風機55の吸引力によって吸引され、空気排出部56を介して、加湿器用送風機55のファン吸込空間555に流入する。 At this time, since the adsorber 60 rotates in the adsorber accommodation space 541, the adsorbent 61 from which moisture has been sufficiently desorbed in the moisture release space 541b of the adsorber 60 moves to the moisture absorption space 541a. Thereby, moisture contained in the cooling air introduced into the adsorption case 51 is continuously adsorbed by the adsorbent 61 present in the moisture absorption space 541a of the adsorber 60. Subsequently, the dehumidified air that has passed through the moisture absorption space 541 a is sucked by the suction force of the humidifier blower 55 and flows into the fan suction space 555 of the humidifier blower 55 via the air discharge unit 56.
 また、車室内のダッシュボード内部の空気は、本事例では温度25℃、相対湿度20%である。この空気の一部が、加湿器用送風機55の吸引力によって吸引され、内気吸入部53から吸着ケース51内に導入される。そして、吸着ケース51に導入された内気は、吸着器60における放湿空間541bに存在する吸着材61に吸着された水分が脱離することで加湿されて、温度21℃、相対湿度57%の加湿空気になる。 In this case, the air inside the dashboard in the passenger compartment has a temperature of 25 ° C. and a relative humidity of 20%. Part of this air is sucked by the suction force of the humidifier blower 55 and introduced into the suction case 51 from the inside air suction portion 53. The inside air introduced into the adsorption case 51 is humidified by desorption of moisture adsorbed by the adsorbent 61 present in the moisture release space 541b of the adsorber 60, and the temperature is 21 ° C. and the relative humidity is 57%. It becomes humidified air.
 この際、吸着器60が吸着器収容空間541で回転することから、吸着器60における吸湿空間541aで充分に水分を吸着した吸着材61が放湿空間541bに移動する。これにより、吸着ケース51に導入された内気は、吸着器60における吸湿空間541aに存在する吸着材61の放湿により連続的に加湿される。このように、吸湿空間541aにおける冷却空気の除湿と、放湿空間541bにおける内気の加湿が、同時に連続的に実現する。続いて、放湿空間541bを通過した加湿空気は、加湿器用送風機55の吸引力によって吸引され、空気排出部56を介して、加湿器用送風機55のファン吸込空間555に流入する。 At this time, since the adsorber 60 rotates in the adsorber accommodation space 541, the adsorbent 61 that has sufficiently adsorbed moisture in the moisture absorption space 541a in the adsorber 60 moves to the moisture release space 541b. Thereby, the inside air introduced into the adsorption case 51 is continuously humidified by the moisture release of the adsorbent 61 present in the moisture absorption space 541a in the adsorber 60. In this manner, the dehumidification of the cooling air in the moisture absorption space 541a and the humidification of the inside air in the moisture release space 541b are simultaneously and continuously realized. Subsequently, the humidified air that has passed through the moisture release space 541 b is sucked by the suction force of the humidifier blower 55 and flows into the fan suction space 555 of the humidifier blower 55 through the air discharge unit 56.
 なお、空気排出部56からファン吸込空間555におけるファンボス552aの近傍までの空間は、第1下流仕切部543b、第2下流仕切部543dによって仕切られているので、この空間において加湿空気と除湿空気は殆ど混ざることがなく分けられている。 In addition, since the space from the air discharge part 56 to the vicinity of the fan boss 552a in the fan suction space 555 is partitioned by the first downstream partition part 543b and the second downstream partition part 543d, humidified air and dehumidified air in this space. Are divided almost without mixing.
 したがって、空気排出部56から加湿器用送風機55に流入した加湿空気および除湿空気は、図6の実線矢印に沿って流れる加湿空気および破線矢印に沿って流れる除湿空気に示すように、殆ど混ざることなく分離したまま、ファン吸込空間555においてファンボス552aに向かって流れる。 Therefore, the humidified air and the dehumidified air flowing into the humidifier blower 55 from the air discharge unit 56 are hardly mixed as shown in the humidified air flowing along the solid line arrow and the dehumidified air flowing along the broken line arrow in FIG. It flows toward the fan boss 552a in the fan suction space 555 while being separated.
 そして、加湿空気および除湿空気は、互いに殆ど混ざらず分離したまま、図6の実線矢印、破線矢印に示すように、ファン吸込空間555から、ファンボス552aに沿って、ファンボス552a、ブレード552b、天板552cで囲まれる空間に流入する。このとき、遠心ファン552の熱伝導率が高いので、加湿空気と除湿空気は、殆ど混ざらず分離したまま、遠心ファン552を介して互いに熱交換する。 Then, the humidified air and the dehumidified air are separated from each other while being hardly mixed with each other, as indicated by the solid line arrows and the broken line arrows in FIG. 6, from the fan suction space 555 along the fan boss 552a, It flows into the space surrounded by the top plate 552c. At this time, since the thermal conductivity of the centrifugal fan 552 is high, the humidified air and the dehumidified air exchange heat with each other via the centrifugal fan 552 while being hardly mixed and separated.
 より具体的には、除湿空気よりも高温の加湿空気は、温度21℃、相対湿度57%である。この空気は、ファンボス552a、ブレード552b、天板552cで囲まれる空間に流入し、当該空間内を流通する間、加湿空気は主にファンボス552a、ブレード552bにぶつかる。これにより、加湿空気から当該ファンボス552aおよびブレード552bに、加湿空気の熱が伝達される。この結果、加湿空気は熱を奪われ、例えば18℃まで温度が低下し、それに伴い相対湿度が65%程度に高められる。 More specifically, humidified air having a temperature higher than that of dehumidified air has a temperature of 21 ° C. and a relative humidity of 57%. The air flows into a space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c, and the humidified air mainly hits the fan boss 552a and the blade 552b while circulating in the space. Thus, the heat of the humidified air is transmitted from the humidified air to the fan boss 552a and the blade 552b. As a result, the humidified air is deprived of heat, for example, the temperature is lowered to 18 ° C., and the relative humidity is increased to about 65% accordingly.
 そして、ブレード552bに伝達された熱は、ブレード552bよりも熱容量の高いファンボス552aに伝達され、一時的にファンボス552aに蓄えられる。そして、ファンボス552a内の温度は、自身の高い熱伝導率により、ファンボス552a全体においてほぼ均一に保たれる。 The heat transmitted to the blade 552b is transmitted to the fan boss 552a having a higher heat capacity than the blade 552b, and is temporarily stored in the fan boss 552a. The temperature inside the fan boss 552a is kept substantially uniform throughout the fan boss 552a due to its high thermal conductivity.
 一方、加湿空気よりも低温の除湿空気は、温度5℃、相対湿度30%である。この空気がファンボス552a、ブレード552b、天板552cで囲まれる空間に流入し、当該空間内を流通する間、除湿空気は主にファンボス552a、ブレード552bにぶつかる。これにより、当該ファンボス552aおよびブレード552bから除湿空気に、熱が伝達される。この結果、除湿空気は熱を受け取って例えば9℃まで温度が上昇し、それに伴い相対湿度が28%程度に下がる。そして、熱が奪われたブレード552bには、ブレード552bよりも熱容量の高いファンボス552aから熱が伝達される。 On the other hand, dehumidified air having a temperature lower than that of the humidified air has a temperature of 5 ° C. and a relative humidity of 30%. While this air flows into the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c and flows through the space, the dehumidified air mainly hits the fan boss 552a and the blade 552b. Thereby, heat is transmitted from the fan boss 552a and the blade 552b to the dehumidified air. As a result, the dehumidified air receives heat and rises in temperature to 9 ° C., for example, and the relative humidity is lowered to about 28%. Then, heat is transferred from the fan boss 552a having a higher heat capacity than the blade 552b to the blade 552b from which heat has been removed.
 このような作用により、除湿空気(すなわち冷風)は遠心ファン552を通る際にファンボス552aおよびブレード552bから熱を渡され温度が上昇して遠心ファン552から吹き出される。一方、加湿空気(すなわち暖風)は遠心ファン552を通る際にファンボス552aおよびブレード552bから熱を奪われ温度が下降して遠心ファン552から吹き出される。つまり、遠心ファン552は、加湿空気を吸着ケース51から吸い込んで加湿用ダクト571に吹き出すと同時に、除湿空気を吸着ケース51から吸い込んで除湿空気ダクト573に吹き出すことで、加湿空気から空気を奪うと共に奪った熱を除湿空気に渡す。 Due to such an action, when the dehumidified air (that is, cold air) passes through the centrifugal fan 552, heat is passed from the fan boss 552a and the blade 552b, and the temperature rises and is blown out from the centrifugal fan 552. On the other hand, when the humidified air (that is, warm air) passes through the centrifugal fan 552, heat is taken away from the fan boss 552 a and the blade 552 b and the temperature is lowered and blown out from the centrifugal fan 552. That is, the centrifugal fan 552 sucks humidified air from the adsorption case 51 and blows it out to the humidifying duct 571, and simultaneously sucks dehumidified air from the adsorption case 51 and blows it out to the dehumidified air duct 573, thereby taking air from the humidified air. Pass the deprived heat to dehumidified air.
 このように、遠心ファン552が除湿空気と加湿空気をファン吸込空間555から吸い込んで吹き出すと共に、除湿空気と加湿空気の間の熱交換を媒介することができるので、遠心ファン552とは別に除湿空気と加湿空気の熱交換器を配置する必要がなくなる。また、熱交換のための構成において、送風機の数は1つ(すなわち加湿器用送風機55のみ)で済む。その結果、加湿装置50の部品点数を低減することができ、ひいては、加湿装置50の小型化に寄与することができる。 In this way, the centrifugal fan 552 can suck dehumidified air and humidified air from the fan suction space 555 and blow out, and can mediate heat exchange between the dehumidified air and humidified air. And no need to arrange a humidified air heat exchanger. Further, in the configuration for heat exchange, the number of blowers is only one (that is, only the humidifier blower 55). As a result, the number of parts of the humidifying device 50 can be reduced, and as a result, the humidifying device 50 can be reduced in size.
 また、放湿空間541bを通すための空気として、空調ケース11内の空気ではなく内気を用いているので、加湿装置50の存在による空調ユニット10側の空調機能への影響を低減することができる。 Moreover, since the inside air is used instead of the air in the air conditioning case 11 as the air for passing the moisture release space 541b, the influence on the air conditioning function on the air conditioning unit 10 side due to the presence of the humidifying device 50 can be reduced. .
 また図9のように、ある時点に、黒で塗り潰した略楕円形で表す加湿空気91が、第1下流仕切部543b、第2下流仕切部543dによって仕切られた狭い方の空間から、ファンボス552a、ブレード552b、天板552cで囲まれる空間に流入したとする。また図9のように、同じ時点に、ハッチングした略楕円形で表す除湿空気92が、第1下流仕切部543b、第2下流仕切部543dによって仕切られた広い方の空間から、ファンボス552a、ブレード552b、天板552cで囲まれる空間に流入したとする。 Further, as shown in FIG. 9, at a certain point in time, the humid air 91 represented by a substantially oval shape filled with black is discharged from the narrower space partitioned by the first downstream partition 543b and the second downstream partition 543d from the fan boss. It is assumed that the gas flows into a space surrounded by 552a, blade 552b, and top plate 552c. Further, as shown in FIG. 9, at the same time, the dehumidified air 92 represented by a hatched substantially oval shape is separated from the wider space partitioned by the first downstream partition 543b and the second downstream partition 543d from the fan boss 552a, It is assumed that the gas flows into a space surrounded by the blade 552b and the top plate 552c.
 この場合、その後の時点で加湿空気91および除湿空気92は、図10に示すように、ファンボス552a、ブレード552b、天板552cで囲まれる空間の最外端から流出しようとする。 In this case, the humidified air 91 and the dehumidified air 92 try to flow out from the outermost end of the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c as shown in FIG.
 しかし、図9の時点から図10の時点に進む間に、遠心ファン552が回転する。本実施形態では、空気がファンボス552a、ブレード552b、天板552cで囲まれる空間の最内端から最外端に至るまでの時間の間に遠心ファン552が回転する角度を予め実験等で特定しておく。なお、遠心ファン552の回転速度と遠心ファン552に吹き出される空気の風速は比例関係にある。したがって、上記の角度は、遠心ファン552の回転速度に殆ど依存せず、遠心ファン552の形状に大きく依存するが、概ね0°より大きく90°よりも小さい。 However, the centrifugal fan 552 rotates while proceeding from the time point of FIG. 9 to the time point of FIG. In this embodiment, the angle at which the centrifugal fan 552 rotates during the time from the innermost end to the outermost end of the space surrounded by the fan boss 552a, the blade 552b, and the top plate 552c is specified in advance through experiments or the like. Keep it. The rotational speed of the centrifugal fan 552 and the wind speed of the air blown out to the centrifugal fan 552 are in a proportional relationship. Therefore, the above angle hardly depends on the rotational speed of the centrifugal fan 552 and largely depends on the shape of the centrifugal fan 552, but is generally larger than 0 ° and smaller than 90 °.
 そして、第1下流仕切部543bの方向81が、第1ノーズ部N1の方向83に対して、遠心ファン552の回転方向80とは反対側にずれる第1ずれ角度θを、この特定した角度と同じになるよう、第1ノーズ部N1の配置等を決める。また、第2下流仕切部543dの方向82が、第2ノーズ部N2の方向84に対して、遠心ファン552の回転方向80とは反対側にずれる第2ずれ角度θzを、この特定した角度と同じになるよう、第2ノーズ部N2の配置等を決める。 The first deviation angle θ in which the direction 81 of the first downstream partition portion 543b is shifted to the opposite side of the rotation direction 80 of the centrifugal fan 552 with respect to the direction 83 of the first nose portion N1 is defined as the specified angle. The arrangement and the like of the first nose portion N1 are determined so as to be the same. Further, the second deviation angle θz in which the direction 82 of the second downstream partition portion 543d is shifted to the opposite side to the rotation direction 80 of the centrifugal fan 552 with respect to the direction 84 of the second nose portion N2 is defined as the specified angle. The arrangement or the like of the second nose portion N2 is determined so as to be the same.
 このようになっていることで、加湿空気は殆ど全部が加湿用ダクト571に吹き出され、除湿空気は殆ど全部が除湿空気ダクト573に吹き出される。もし、本実施形態と異なり、第1下流仕切部543bの方向81が第1ノーズ部N1の方向83と一致し、かつ、第2下流仕切部543dの方向82が第2ノーズ部N2の方向84と一致していれば、加湿空気と除湿空気の混合度合いが本実施形態よりも増してしまう。また、方向81と方向83のずれ角度が方向82と方向84のずれ角度と等しいことにより、そうでない場合に比べ、加湿空気と除湿空気の混合度合いをより低減することができる。 In this way, almost all of the humidified air is blown out to the humidifying duct 571, and almost all of the dehumidified air is blown out to the dehumidified air duct 573. Unlike the present embodiment, the direction 81 of the first downstream partition portion 543b coincides with the direction 83 of the first nose portion N1, and the direction 82 of the second downstream partition portion 543d is the direction 84 of the second nose portion N2. , The degree of mixing of the humidified air and the dehumidified air increases compared to the present embodiment. Further, since the deviation angle between the direction 81 and the direction 83 is equal to the deviation angle between the direction 82 and the direction 84, the degree of mixing of the humidified air and the dehumidified air can be further reduced as compared with the case where the deviation angle is not different.
 また、ブレード552bの各々において、当該ブレードの高さHと、複数枚のブレード552b総接触面積Qと関係が、H<Q1/2となっているので、そうでない場合に比べ、各ブレード552bからファンボス552aへの熱伝導がより迅速に行えるので、加湿空気と除湿空気の熱交換の効率を更に向上させることができる。 Further, in each of the blades 552b, the relationship between the height H of the blade and the total contact area Q of the plurality of blades 552b is H <Q1 / 2. Since heat conduction from the fan boss 552a to the fan boss 552a can be performed more quickly, the efficiency of heat exchange between the humidified air and the dehumidified air can be further improved.
 このように、遠心ファン552に流入した加湿空気は、除湿空気と殆ど混ざることなく分けられ、かつ、除湿空気と熱交換して温度が下がると共に相対湿度が上昇し、加湿用ダクト571に流入する。そして更に加湿空気は、加湿用ダクト571を介して、加湿用ダクト571の空気流れ下流端にある吹出開口部572から乗員の顔部に向けて吹き出され、上記吹出口20a、20b、20cから出た空気によって乱されることなく、乗員の顔部に向けて吹き出され、乗員の顔部周囲の空間が加湿される。 In this way, the humidified air that has flowed into the centrifugal fan 552 is divided almost without being mixed with the dehumidified air, and heat exchange with the dehumidified air lowers the temperature and the relative humidity increases, and flows into the humidifying duct 571. . Further, the humidified air is blown out from the blowing opening 572 at the downstream end of the air flow of the humidifying duct 571 toward the occupant's face through the humidifying duct 571, and is discharged from the outlets 20a, 20b, and 20c. Without being disturbed by the air, the air is blown toward the occupant's face, and the space around the occupant's face is humidified.
 また、遠心ファン552に流入した除湿空気は、加湿空気と殆ど混ざることなく分けられ、かつ、加湿空気と熱交換して温度が上がると共に相対湿度が上昇し、除湿空気ダクト573に流入する。そして更に除湿空気は、加湿用ダクト571を介して車室内、車外、あるいは空調ケース11の内部に、流入する。除湿空気を空調ケース11の内部に流入させた場合は、除湿空気は内気に比べれば低い温度なので、冷凍サイクルの負荷を低減できる。 Further, the dehumidified air that has flowed into the centrifugal fan 552 is separated almost without being mixed with the humidified air, and heat exchange with the humidified air increases the temperature and the relative humidity increases, and flows into the dehumidified air duct 573. Further, the dehumidified air flows into the passenger compartment, outside the vehicle, or inside the air conditioning case 11 through the humidifying duct 571. When dehumidified air is allowed to flow into the air conditioning case 11, the load of the refrigeration cycle can be reduced because the dehumidified air has a lower temperature than the inside air.
 ステップS20に続いては、ステップS20で開始した加湿処理を継続しながら、ステップS30で、加湿停止要求があるか否かを判定する。ステップS30の判定処理では、各運転スイッチ103a、103bそれぞれがオンである場合に、加湿停止要求なしと判定し、各運転スイッチ103a、103bの一方がオフである場合に、加湿停止要求ありと判定する。加湿停止要求なしと判定した場合は、加湿処理を継続しながら、ステップS30の判定を繰り返す。 After step S20, it is determined whether there is a humidification stop request in step S30 while continuing the humidification process started in step S20. In the determination process of step S30, it is determined that there is no humidification stop request when each of the operation switches 103a and 103b is on, and it is determined that there is a humidification stop request when one of the operation switches 103a and 103b is off. To do. If it is determined that there is no humidification stop request, the determination in step S30 is repeated while continuing the humidification process.
 ステップS30の判定処理の結果、加湿停止要求ありと判定された場合には、制御装置100は、ステップS40に進み、吸着器60の吸着材61に吸着された水分を脱離させる脱離処理を実行する。これにより、加湿装置50の脱離運転が実現される。 As a result of the determination process in step S30, when it is determined that there is a humidification stop request, the control device 100 proceeds to step S40 and performs a desorption process for desorbing moisture adsorbed on the adsorbent 61 of the adsorber 60. Execute. Thereby, the desorption operation of the humidifier 50 is realized.
 脱離処理では、制御装置100は、駆動部材70により吸着器60を回転させた状態で、冷風ドア522を全閉させる。これにより、冷風導出部112から第1内部連通口52bまで冷却空気が流通しなくなる。したがって、吸湿空間541aで吸着材61が水分を吸着しなくなる。一方、内気は、遠心ファン552の吸引力によって吸引され、吸着ケース51内に導入され、放湿空間541bにある吸着材61から水分が脱離する。 In the desorption process, the control device 100 fully closes the cold air door 522 while the adsorber 60 is rotated by the driving member 70. As a result, the cooling air does not flow from the cold air outlet 112 to the first internal communication port 52b. Therefore, the adsorbent 61 does not adsorb moisture in the hygroscopic space 541a. On the other hand, the inside air is sucked by the suction force of the centrifugal fan 552, introduced into the suction case 51, and moisture is desorbed from the adsorbent 61 in the moisture release space 541b.
 このように、吸湿空間541aにおける吸着材61での水分の吸着を停止し、吸湿空間541aにおける吸着材61の水分の脱離を継続することで、吸着材61に吸着された水分を充分に脱離させることができる。 Thus, the adsorption of moisture in the adsorbent 61 in the hygroscopic space 541a is stopped, and the desorption of moisture in the adsorbent 61 in the hygroscopic space 541a is continued, so that the moisture adsorbed on the adsorbent 61 is sufficiently desorbed. Can be separated.
 制御装置100は、予め設定された処理継続時間が経過するまで、脱離処理を継続する。制御装置100は、脱離処理を開始してから当該処理継続時間が経過すると、加湿器用送風機55の作動を停止して、ステップS10に戻る。なお、処理継続時間は、放湿空間541bに存する吸着材61に吸着された水分の全量を、加湿装置50で脱離するのに要する時間に設定すればよい。 The control device 100 continues the desorption process until a preset processing duration elapses. When the processing continuation time has elapsed since the start of the desorption process, the control device 100 stops the operation of the humidifier blower 55 and returns to step S10. In addition, what is necessary is just to set processing continuation time to the time required for the dehumidification apparatus 50 to desorb | suck the whole quantity of the water | moisture content adsorbed by the adsorbent 61 existing in the moisture release space 541b.
 以上説明した本実施形態の加湿装置50、および当該加湿装置50を備える車両用空調装置によれば、空調ユニット10で冷却された冷却空気の水分を利用して、車室内を加湿することができるので、外部から水を供給する必要がない。 According to the humidifying device 50 of the present embodiment described above and the vehicle air conditioner including the humidifying device 50, the vehicle interior can be humidified using the moisture of the cooling air cooled by the air conditioning unit 10. So there is no need to supply water from the outside.
 また、空調ケース11内の冷却空気を利用して、冷却空気に含まれる水分を吸着材61に吸着させる。つまり、蒸発器13の冷却空気から水分の供給を受けるので、別途水分供給源を用意する必要なく、加湿装置50を簡易に構成できる。また、冷凍サイクルが作動している限り、ほぼオールシーズンで加湿が可能になる。 Further, the water contained in the cooling air is adsorbed to the adsorbent 61 using the cooling air in the air conditioning case 11. That is, since moisture is supplied from the cooling air of the evaporator 13, the humidifier 50 can be simply configured without preparing a separate moisture supply source. Moreover, as long as the refrigeration cycle is operating, humidification is possible almost all seasons.
 また、吸着材61から脱離する水分で加湿する対象を内気とすることで、空調ケース内の空気を加湿する以外の方法で車室内に加湿空気を吹き出すことができる。また、内気を放湿空間541bに吸引すると共に加湿空気を吸着ケース51から吸い込んで加湿用ダクト571に吹き出す送風機を備えることで、加湿対象となる内気を適切に導くことができる。 Further, by setting the target to be humidified with moisture desorbed from the adsorbent 61 as the inside air, the humidified air can be blown into the vehicle interior by a method other than humidifying the air in the air conditioning case. Further, by providing a blower that sucks the inside air into the moisture release space 541b and sucks humidified air from the adsorption case 51 and blows it out to the humidifying duct 571, the inside air that is to be humidified can be appropriately guided.
 また、デフロスタ吹出口20cから出る空気は加湿されず、加湿用ダクト571から出る空気のみ加湿されるので、乗員のみ加湿され、窓ガラスは加湿されない。したがって、窓曇りを低減することができる。 In addition, since the air exiting from the defroster outlet 20c is not humidified, only the air exiting from the humidifying duct 571 is humidified, so that only the passenger is humidified and the window glass is not humidified. Therefore, window fogging can be reduced.
 また、加湿装置50は、吸着器60における放湿空間541bにある吸着材61の一部を吸湿空間541aに移動させると共に、吸着器60における吸湿空間541aに存する吸着材61の一部を放湿空間541bに移動させる駆動部材70を備える。 Further, the humidifier 50 moves a part of the adsorbent 61 in the moisture releasing space 541b of the adsorber 60 to the moisture absorbing space 541a and also dehumidifies a part of the adsorbent 61 present in the moisture absorbing space 541a of the adsorber 60. A driving member 70 that moves to the space 541b is provided.
 これにより、吸湿空間541aにて吸着材61で吸着した水分を放湿空間541bで脱離させて加熱空気を加湿すると同時に、放湿空間541bにて水分を脱離した吸着材61で吸湿空間541aを流通する冷却空気の水分を吸着することができる。 Thus, moisture adsorbed by the adsorbent 61 in the moisture absorbing space 541a is desorbed by the moisture releasing space 541b to humidify the heated air, and at the same time, the moisture absorbing space 541a by the adsorbent 61 from which moisture has been desorbed by the moisture releasing space 541b. It is possible to adsorb the moisture of the cooling air that circulates.
 従って、本実施形態の加湿装置50および車両用空調装置によれば、無給水で車室内における連続した加湿を実現することができる。 Therefore, according to the humidifier 50 and the vehicle air conditioner of the present embodiment, it is possible to realize continuous humidification in the vehicle interior without water supply.
 また、本実施形態の加湿装置50は、第1導出部を構成する加湿用ダクト571が、空調ユニット10で温度調整された空気の空調用ダクト20とは別体の構成部品としている。これによれば、空調ユニット10で温度調整された空気と加湿装置50で加湿した加湿空気とが混ざりにくくなるので、高湿度の加湿空気を車室内に供給することができる。 Further, in the humidifying device 50 of the present embodiment, the humidifying duct 571 constituting the first derivation unit is a separate component from the air conditioning duct 20 whose temperature is adjusted by the air conditioning unit 10. According to this, the air whose temperature has been adjusted by the air conditioning unit 10 and the humidified air humidified by the humidifying device 50 are less likely to be mixed, so that humid air with high humidity can be supplied into the vehicle interior.
 さらに、本実施形態では、吸着ケース51、および冷風吸入ダクト521を空調ケース11とは別体の構成部品とし、冷風吸入ダクト521を空調ケース11に脱着可能な構成としている。 Furthermore, in this embodiment, the suction case 51 and the cold air suction duct 521 are separate components from the air conditioning case 11, and the cold air suction duct 521 is detachable from the air conditioning case 11.
 これによれば、加湿装置50を空調ユニット10に対して後付けすることが可能となる。すなわち、加湿装置50を車両用空調装置のオプション(すなわちアドオンパーツ)とすることができる。 According to this, the humidifier 50 can be retrofitted to the air conditioning unit 10. That is, the humidifier 50 can be an option (ie, an add-on part) for the vehicle air conditioner.
 また、本実施形態では、遠心ファン552が、加湿空気と除湿空気の熱交換を媒介する。これによれば、放湿空間541bを通過した加湿空気を、吸湿空間541aを通過した除湿空気で冷却し、車室内へ導出する加湿空気の相対湿度を高くすることができる。この結果、車室内の加湿による乗員の快適性が向上する。 In this embodiment, the centrifugal fan 552 mediates heat exchange between the humidified air and the dehumidified air. According to this, the humidified air that has passed through the moisture release space 541b can be cooled with the dehumidified air that has passed through the moisture absorption space 541a, and the relative humidity of the humidified air that is led into the vehicle interior can be increased. As a result, passenger comfort is improved by humidification of the passenger compartment.
 また、本実施形態では、車室内の加湿を停止する際に、制御装置100が吸着材61に吸着された水分を脱離させる脱離処理を実行するようになっている。これによれば、加湿装置50の停止時に、吸着材61に残存する水分による雑菌の繁殖を抑えることができ、車室内の加湿による乗員の快適性を確保することが可能となる。 Further, in this embodiment, when the humidification in the vehicle interior is stopped, the control device 100 executes a desorption process for desorbing the moisture adsorbed on the adsorbent 61. According to this, when the humidifier 50 is stopped, it is possible to suppress propagation of germs due to moisture remaining in the adsorbent 61, and it is possible to ensure passenger comfort due to humidification in the passenger compartment.
 ここで、吸着材61は、単位質量当りの水分の吸着速度が、単位質量当りの水分の脱離速度よりも遅くなる傾向がある。 Here, in the adsorbent 61, the moisture adsorption rate per unit mass tends to be slower than the moisture desorption rate per unit mass.
 この点を加味し、本実施形態では、吸湿空間541aに存する吸着材61の量が、放湿空間541bに存する吸着材61の量よりも多くなるように、吸着ケース51内の収容空間を第1、第2仕切部材542、543により仕切る構成としている。 In consideration of this point, in the present embodiment, the accommodation space in the adsorption case 51 is set so that the amount of the adsorbent 61 existing in the moisture absorption space 541a is larger than the amount of the adsorbent 61 existing in the moisture release space 541b. The first partition member 542 and the second partition member 543 are used for partitioning.
 これによれば、吸湿空間541aにおける吸着材61への水分の吸着量を充分に確保することができるので、放湿空間541bにて吸着材61に吸着された水分を効率よく脱離させて、充分な加湿量を確保することが可能となる。 According to this, since the amount of moisture adsorbed to the adsorbent 61 in the moisture absorption space 541a can be sufficiently secured, the moisture adsorbed to the adsorbent 61 in the moisture release space 541b can be efficiently desorbed, A sufficient amount of humidification can be secured.
 また、本実施形態の加湿器用送風機55は、加湿空気と除湿空気の顕熱交換を実現するが、加湿空気と除湿空気の潜熱交換は行わない。したがって、加湿空気と除湿空気という異なる湿度を持つ2流体の相対湿度を調整することができる。具体的には、高温の加湿空気を低温の除湿空気で冷やすことで、加湿空気の相対湿度を更に高め、かつ、低温の除湿空気を高温の加湿空気で暖めることで、除湿空気の相対湿度を更に低下させることができる。 The humidifier blower 55 of the present embodiment realizes sensible heat exchange between the humidified air and the dehumidified air, but does not perform latent heat exchange between the humidified air and the dehumidified air. Therefore, it is possible to adjust the relative humidity of the two fluids having different humidity, that is, humidified air and dehumidified air. Specifically, the relative humidity of the humidified air is further increased by cooling the high-temperature humidified air with the low-temperature dehumidified air, and the relative humidity of the dehumidified air is increased by warming the low-temperature dehumidified air with the high-temperature humidified air. It can be further reduced.
 このようになっていることで、第1の流体と第2の流体のうち低温な方の流体はファンを通る際に接続部材およびブレードから熱を渡され温度が上昇してファンら吹き出される。一方、第1の流体と第2の流体のうち高温な方の流体はファンを通る際に接続部材およびブレードから熱を奪われ温度が下降して遠心ファンから吹き出される。つまり、ファンは、第1の流体および第2の流体を吸い込んで吹き出すことで、第1の流体および第2の流体の熱交換を媒介する。このように、2つの流体を吸い込んで吹き出す送風用のファンが、これら2つの流体の熱交換の媒介も行うので、熱交換のための構成において、送風機の数は1つで済む。 As a result, the lower one of the first fluid and the second fluid passes the heat from the connection member and the blade when passing through the fan, and the temperature rises and is blown out from the fan. . On the other hand, the higher one of the first fluid and the second fluid is deprived of heat from the connecting member and the blade when passing through the fan, and the temperature is lowered and blown out from the centrifugal fan. That is, the fan mediates heat exchange between the first fluid and the second fluid by sucking and blowing out the first fluid and the second fluid. As described above, the fan for blowing and sucking out the two fluids also mediates heat exchange between the two fluids. Therefore, in the configuration for heat exchange, only one blower is required.
 (第2実施形態)
 次に、第2実施形態について、図11を用いて説明する。本実施形態では、空調用送風機19Aを蒸発器13の空気流れ上流側に配置した空調ユニット10Aに、加湿装置50を適用している点が第1実施形態と相違している。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that the humidifying device 50 is applied to the air conditioning unit 10A in which the air conditioner blower 19A is disposed on the upstream side of the air flow of the evaporator 13. In the present embodiment, description of the same or equivalent parts as in the first embodiment will be omitted or simplified.
 図11に示すように、本実施形態の空調ユニット10Aは、内外気切替箱12の空気流れ下流側であって、蒸発器13の空気流れ上流側に空調用送風機19Aを配置している。本実施形態の空調用送風機19Aは、吸込口191aが内外気切替箱12に向かって開口し、吐出口191bが蒸発器13に向かって開口している。 As shown in FIG. 11, the air conditioning unit 10 </ b> A of the present embodiment has an air conditioning blower 19 </ b> A disposed on the downstream side of the air flow of the inside / outside air switching box 12 and on the upstream side of the air flow of the evaporator 13. In the air conditioner blower 19 </ b> A of the present embodiment, the suction port 191 a opens toward the inside / outside air switching box 12, and the discharge port 191 b opens toward the evaporator 13.
 さらに、本実施形態の空調ケース11には、ヒータコア14の空気流れ下流側に、空調ケース11から温度調整された空気を、空調用ダクト20、および吹出部を介して車室内へ吹き出すための開口部114が形成されている。 Furthermore, in the air conditioning case 11 of the present embodiment, an opening for blowing the temperature-adjusted air from the air conditioning case 11 to the vehicle interior via the air conditioning duct 20 and the blowout portion on the downstream side of the air flow of the heater core 14. A portion 114 is formed.
 空調ユニット10Aにおける他の構成は、第1実施形態と同様である。本実施形態の空調ユニット10Aは、空調用送風機19Aを蒸発器13の空気流れ上流側に配置する、いわゆる押込タイプの構成を採用している。このため、空調ケース11の内部における空調用送風機19Aの吐出側以降は、空調ケース11外部の圧力よりも高い圧力となっている。したがって、第1実施形態と同じ風量の冷却空気を冷風導出部112から吸着器60に吸入するために加湿器用送風機55が消費する電力が低減される。 Other configurations in the air conditioning unit 10A are the same as those in the first embodiment. The air conditioning unit 10 </ b> A of the present embodiment employs a so-called push-type configuration in which the air conditioning blower 19 </ b> A is disposed on the upstream side of the air flow of the evaporator 13. For this reason, the pressure after the discharge side of the air conditioning fan 19 </ b> A inside the air conditioning case 11 is higher than the pressure outside the air conditioning case 11. Therefore, the power consumed by the humidifier blower 55 for reducing the amount of cooling air having the same air volume as that of the first embodiment from the cold air derivation unit 112 to the adsorber 60 is reduced.
 (他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. In particular, when a plurality of values are exemplified for a certain amount, it is also possible to adopt a value between the plurality of values unless specifically stated otherwise and in principle impossible. . Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like. The present disclosure also allows the following modifications to the above embodiments. In addition, the following modifications can select application and non-application to the said embodiment each independently. In other words, any combination of the following modifications can be applied to the above-described embodiment.
 (変形例1)
 上記各実施形態では、加湿装置50を空調ユニット10の下方側に配置する例について説明したが、これに限定されない。例えば、加湿装置50を空調ユニット10の上方側や側方側に配置するようにしてもよい。
(Modification 1)
Although each said embodiment demonstrated the example which arrange | positions the humidifier 50 in the downward side of the air conditioning unit 10, it is not limited to this. For example, the humidifier 50 may be disposed on the upper side or the side of the air conditioning unit 10.
 (変形例2)
 上記各実施形態の加湿器用送風機55に替えて、内気をダッシュボード内から内気吸入部53内に導く軸流ファンが第2外部導入口53aに備えられていてもよい。この場合、軸流ファンが送風機の一例に相当する。ただしこの場合、冷却右記を冷風吸入部52から吸湿空間541aを介して除湿空気ダクト573に導く送風機も別途必要になる。またこの場合、除湿空気と加湿空気の熱交換を行わせる熱交換器を追加で配置してもよいし、配置しなくてもよい。
(Modification 2)
Instead of the humidifier blower 55 of each of the above embodiments, an axial fan that guides the inside air from the dashboard into the inside air suction portion 53 may be provided in the second external introduction port 53a. In this case, the axial fan corresponds to an example of a blower. However, in this case, a separate blower for guiding the cooling right from the cold air suction part 52 to the dehumidified air duct 573 via the moisture absorption space 541a is also required. In this case, a heat exchanger that performs heat exchange between the dehumidified air and the humidified air may be additionally arranged or may not be arranged.
 (変形例3)
 上記各実施形態において、ファンボス552a、ブレード552bは、熱伝導率が10W/(m・K)未満の樹脂製でもよい。この場合、除湿空気と加湿空気の熱交換を行わせる熱交換器を追加で配置してもよいし、配置しなくてもよい。
(Modification 3)
In each of the above embodiments, the fan boss 552a and the blade 552b may be made of a resin having a thermal conductivity of less than 10 W / (m · K). In this case, an additional heat exchanger for exchanging heat between the dehumidified air and the humidified air may or may not be arranged.
 (変形例4)
 上述の各実施形態では、空調ケース11の底面部11aに開口する冷風導出部112に加湿装置50の冷風吸入ダクト521が接続される例について説明したが、これに限定されない。例えば、空調ケース11の上面部11bや側面部11cに設けられた冷風導出部112に冷風吸入ダクト521が接続されていてもよい。
(Modification 4)
In each of the above-described embodiments, the example in which the cold air intake duct 521 of the humidifying device 50 is connected to the cold air derivation unit 112 that opens to the bottom surface part 11a of the air conditioning case 11 is described, but the present invention is not limited to this. For example, the cold air intake duct 521 may be connected to the cold air derivation unit 112 provided on the upper surface portion 11b and the side surface portion 11c of the air conditioning case 11.
 (変形例5)
 上述の各実施形態では、空調ケース11に対して冷風吸入ダクト521を介して吸着ケース51を接続する例について説明したが、これに限定されない。例えば、空調ケース11に対して、吸着ケース51の冷風吸入部52を直接接続するようにしてもよい。この場合、冷風吸入部52が導入部の一例に相当する。
(Modification 5)
In each of the above-described embodiments, the example in which the suction case 51 is connected to the air conditioning case 11 via the cold air suction duct 521 has been described, but the present invention is not limited to this. For example, the cold air suction part 52 of the suction case 51 may be directly connected to the air conditioning case 11. In this case, the cold air suction part 52 corresponds to an example of an introduction part.
 (変形例6)
 上述の各実施形態では、吸着材61の吸着速度と脱離速度とのズレを加味し、吸湿空間541aに存する吸着材61の量が、放湿空間541bに存する吸着材61の量よりも少なくなるように、吸着器収容空間541を仕切る例について説明したが、これに限定されない。
(Modification 6)
In each of the above-described embodiments, the amount of the adsorbent 61 existing in the moisture absorption space 541a is less than the amount of the adsorbent 61 present in the moisture release space 541b in consideration of the difference between the adsorption speed and the desorption speed of the adsorbent 61. Although the example which partitions off adsorption machine accommodation space 541 was explained so that it may become, it is not limited to this.
 例えば、吸湿空間541aを流通させる冷却空気の風量を、放湿空間541bを流通させる加熱空気の風量よりも増大させるようにしてもよい。これによれば、吸湿空間541aに存する吸着材61の量と放湿空間541bに存する吸着材61の量と同等にしても、吸湿空間541aにおける吸着材61への水分の吸着量を充分に確保することが可能となる。 For example, the air volume of the cooling air flowing through the moisture absorption space 541a may be made larger than the air volume of the heating air flowing through the moisture release space 541b. According to this, even if the amount of the adsorbent 61 present in the moisture absorption space 541a is equal to the amount of the adsorbent 61 present in the moisture release space 541b, a sufficient amount of moisture is adsorbed on the adsorbent 61 in the moisture absorption space 541a. It becomes possible to do.
 (変形例7)
 上述の各実施形態では、吸着器60として複数の金属製の板状部材に吸着材61を担持させる構成とする例について説明したが、これに限定されない。吸着器60としては、例えば、ハニカム構造を有する構造体の内部に吸着材61を担持させる構成としてもよい。
(Modification 7)
In each of the above-described embodiments, the example in which the adsorbent 61 is supported on a plurality of metal plate-like members as the adsorber 60 has been described, but the adsorber 60 is not limited thereto. For example, the adsorber 60 may have a configuration in which the adsorbent 61 is supported inside a structure having a honeycomb structure.
 (変形例8)
 上述の各実施形態では、吸着材61として高分子吸着材を採用する例について説明したが、これに限定されない。吸着材61としては、例えば、シリカゲルやゼオライト等の吸着材を採用してもよい。
(Modification 8)
In each of the above-described embodiments, an example in which a polymer adsorbent is used as the adsorbent 61 has been described, but the present invention is not limited to this. As the adsorbent 61, for example, an adsorbent such as silica gel or zeolite may be employed.
 (変形例9)
 上述の各実施形態では、駆動部材70の電動モータ72により、吸着器60を一方向に連続的に回転させることで、吸着器60の吸着材61を吸湿空間541aと放湿空間541bとの間で移動させる例について説明したが、これ限定されない。
(Modification 9)
In each of the above-described embodiments, the adsorber 60 is continuously rotated in one direction by the electric motor 72 of the driving member 70 so that the adsorbent 61 of the adsorber 60 is disposed between the moisture absorbing space 541a and the moisture releasing space 541b. However, the present invention is not limited to this.
 例えば、駆動部材70の電動モータ72により、吸着器60を一方向に断続的に回転させることで、吸着器60の吸着材61を吸湿空間541aと放湿空間541bとの間で移動させてもよい。 For example, even when the adsorber 60 is intermittently rotated in one direction by the electric motor 72 of the drive member 70, the adsorbent 61 of the adsorber 60 is moved between the moisture absorbing space 541a and the moisture releasing space 541b. Good.
 また、駆動部材70の電動モータ72による吸着器60の回転方向は、一方向に限らず、当該一方向とは逆方向に回転させてもよい。例えば、吸着器60の回転方向を所定時間毎に一方向と当該一方向とは逆方向に切り替えることで、吸着器60の吸着材61を吸湿空間541aと放湿空間541bとの間で移動させてもよい。 Further, the rotation direction of the adsorber 60 by the electric motor 72 of the driving member 70 is not limited to one direction, and may be rotated in a direction opposite to the one direction. For example, the adsorbent 60 of the adsorber 60 is moved between the moisture absorbing space 541a and the moisture releasing space 541b by switching the rotation direction of the adsorber 60 between one direction and a direction opposite to the one direction every predetermined time. May be.
 また、吸湿空間541aと放湿空間541bとが同等の大きさとなるように吸着器収容空間541が仕切られている場合等には、吸湿空間541aに存する全ての吸着材61と、放湿空間541bに存する全ての吸着材61とを入れ替えるようにしてもよい。この場合には、駆動部材70により吸着器60を断続的に180°回転させればよい。 Further, when the adsorber housing space 541 is partitioned such that the moisture absorption space 541a and the moisture release space 541b have the same size, all the adsorbents 61 existing in the moisture absorption space 541a and the moisture release space 541b are used. All the adsorbents 61 may be replaced. In this case, the adsorber 60 may be intermittently rotated 180 ° by the driving member 70.
 (変形例10)上述の各実施形態では、吸着器60の吸着材61を吸湿空間541aと放湿空間541bとの間で移動させる移動機構として、吸着器60を回転させる駆動部材70を採用する例について説明したが、これに限定されない。例えば、吸着器60を複数の吸着部で構成すると共に、各吸着部を吸湿空間541aと放湿空間541bとの間でスライド移動させる構成を移動機構として採用してもよい。 (Modification 10) In each of the above-described embodiments, the driving member 70 that rotates the adsorber 60 is employed as a moving mechanism that moves the adsorbent 61 of the adsorber 60 between the moisture absorption space 541a and the moisture release space 541b. Although an example has been described, the present invention is not limited to this. For example, a configuration in which the adsorber 60 is configured by a plurality of adsorbing units and each adsorbing unit is slid between the moisture absorbing space 541a and the moisture releasing space 541b may be employed as the moving mechanism.
 (変形例11)
 上述の各実施形態の如く、出部を構成する加湿用ダクト571を、空調ユニット10で温度調整された空気の空調用ダクト20とは別体の構成部品としてもよいが、これに限定されない。例えば、加湿用ダクト571を空調ユニット10側の空調用ダクト20とは一体の構成部品としてもよい。
(Modification 11)
As in each of the above-described embodiments, the humidifying duct 571 constituting the outlet portion may be a separate component from the air-conditioning duct 20 that is temperature-adjusted by the air-conditioning unit 10, but is not limited thereto. For example, the humidifying duct 571 may be an integral component of the air conditioning duct 20 on the air conditioning unit 10 side.
 (変形例12)
 上述の各実施形態の如く、吸着ケース51および冷風吸入ダクト521を空調ケース11とは別体の構成部品とし、冷風吸入ダクト521を空調ケース11に脱着可能な構成としてもよいが、これに限定されない。例えば、吸着ケース51および冷風吸入ダクト521を空調ケース11と一体の構成部品としてもよい。
(Modification 12)
As in each of the above-described embodiments, the suction case 51 and the cold air suction duct 521 may be configured as separate components from the air conditioning case 11, and the cold air suction duct 521 may be detachable from the air conditioning case 11, but this is not limitative. Not. For example, the suction case 51 and the cold air suction duct 521 may be integrated components with the air conditioning case 11.
 (変形例13)
 上述の各実施形態の如く、車室内の加湿を停止する際に、吸着材61に吸着された水分を脱離させる脱離処理を実行してもよいが、これに限定されず、脱離処理を実行しないようにしてもよい。
(Modification 13)
As in the above-described embodiments, when the humidification in the passenger compartment is stopped, the desorption process for desorbing the moisture adsorbed on the adsorbent 61 may be performed, but the present invention is not limited to this, and the desorption process is performed. May not be executed.

Claims (13)

  1.  車室内への送風空気の通風路を構成する空調ケース(11)の内部に前記送風空気を冷却する冷却部(13)が収容された空調ユニット(10)に適用される加湿装置であって、
     水分を吸着して脱離する吸着材(61)を有する吸着器(60)と、
     前記吸着器を収容すると共に、前記冷却部で冷却された冷却空気を流通させて前記冷却空気に含まれる水分を前記吸着材に吸着させる吸湿空間(541a)、および前記車室内から導入された内気を流通させて前記吸着材に吸着された水分を脱離させる放湿空間(541b)を囲む吸着ケース(54)と、
     前記放湿空間で脱離した水分により加湿された前記内気である加湿空気を前記車室内へ導く加湿用ダクト(571)と、
     前記吸湿空間で水分が奪われた前記冷却空気である除湿空気を導く除湿空気ダクト(573)と、
     前記内気を前記放湿空間に流すと共に前記加湿空気を前記放湿空間から前記加湿用ダクトに流す送風機(55)と、を備えた加湿装置。
    A humidifier applied to an air conditioning unit (10) in which a cooling unit (13) for cooling the blown air is housed in an air conditioning case (11) that constitutes a ventilation path of the blown air into a vehicle interior,
    An adsorber (60) having an adsorbent (61) that adsorbs and desorbs moisture;
    A moisture absorption space (541a) that houses the adsorber and causes the cooling air cooled by the cooling unit to flow and adsorbs moisture contained in the cooling air to the adsorbent, and internal air introduced from the vehicle interior An adsorbing case (54) surrounding the moisture release space (541b) for desorbing the moisture adsorbed on the adsorbent by circulating
    A humidifying duct (571) for introducing humidified air, which is the inside air humidified by moisture desorbed in the moisture release space, into the vehicle interior;
    A dehumidified air duct (573) for guiding dehumidified air that is the cooling air deprived of moisture in the hygroscopic space;
    A humidifier comprising: a blower (55) for flowing the inside air into the moisture release space and flowing the humid air from the moisture release space to the humidification duct.
  2.  前記放湿空間にある前記吸着材の一部を前記吸湿空間に移動させると共に、前記吸湿空間にある前記吸着材の一部を前記放湿空間に移動させる駆動部材(70)を備えた請求項1に記載の加湿装置。 The drive member (70) which moves a part of the adsorbent in the moisture releasing space to the moisture absorbing space and moves a part of the adsorbent in the moisture absorbing space to the moisture releasing space. The humidifying device according to 1.
  3.  前記送風機は、前記内気を前記放湿空間に吸引すると共に前記加湿空気を前記吸着ケースから吸い込んで前記加湿用ダクトに吹き出すと同時に、前記除湿空気を前記吸着ケースから吸い込んで前記除湿空気ダクトに吹き出すことで、前記加湿空気から熱を奪うと共に奪った熱を前記除湿空気に渡す請求項1または2に記載の加湿装置。 The blower sucks the inside air into the moisture release space, sucks the humidified air from the adsorption case and blows it out to the humidifying duct, and simultaneously sucks the dehumidified air from the adsorption case and blows it out to the dehumidified air duct. The humidifier according to claim 1 or 2, wherein heat is taken from the humidified air and the taken heat is transferred to the dehumidified air.
  4.  前記送風機は、ファン軸芯の周りに回転する遠心ファン(552)を有し、
     前記遠心ファンは、回転するファンボス(552a)と、前記ファンボスに固定されて前記ファン軸心のまわりに配置された複数枚のブレード(552b)と、を有し、
     前記ファンボスおよび前記複数枚のブレードの熱伝導率は、10W/(m・K)以上である請求項3に記載の加湿装置。
    The blower has a centrifugal fan (552) that rotates about a fan axis;
    The centrifugal fan has a rotating fan boss (552a), and a plurality of blades (552b) fixed around the fan boss and arranged around the fan axis,
    The humidifying device according to claim 3, wherein the fan boss and the plurality of blades have a thermal conductivity of 10 W / (m · K) or more.
  5.  前記吸着ケース内に設けられ、前記収容空間を前記吸湿空間と前記放湿空間とに仕切る仕切部材(542、543)を備え、
     前記送風機は、ファン軸芯の周りに回転する遠心ファン(552)と、前記遠心ファンを収容するファンケーシング(553)とを有し、
     前記遠心ファンは、前記ファン軸心の近傍の空間を含むファン吸込空間(555)のまわりに周状に配置された複数枚のブレード(552b)を備え、前記ファン軸心のまわりを回転することで前記ファン吸込空間から前記加湿空気および前記除湿空気を吸い込み、前記加湿空気および前記除湿空気を前記ファン軸芯から離れる方向に吹き出し、
     前記ファンケーシングは、前記遠心ファンが吹き出した前記加湿空気を前記加湿用ダクトに導き、前記遠心ファンが吹き出した前記除湿空気を前記除湿空気ダクトに導き、
     前記仕切部材は、前記吸着ケースの下流側かつ前記ファン吸込空間内に共に配置されて前記ファン吸込空間を前記加湿空気が吸い込まれる空間と前記除湿空気が吸い込まれる空間に仕切る請求項1ないし3のいずれか1つに記載の加湿装置。
    Provided with a partition member (542, 543) provided in the suction case and partitioning the housing space into the moisture absorbing space and the moisture releasing space;
    The blower includes a centrifugal fan (552) that rotates around a fan shaft core, and a fan casing (553) that houses the centrifugal fan,
    The centrifugal fan includes a plurality of blades (552b) arranged circumferentially around a fan suction space (555) including a space in the vicinity of the fan axis, and rotates around the fan axis. Inhaling the humidified air and the dehumidified air from the fan suction space, and blowing out the humidified air and the dehumidified air in a direction away from the fan shaft core,
    The fan casing guides the humidified air blown out by the centrifugal fan to the humidifying duct, guides the dehumidified air blown out by the centrifugal fan to the dehumidified air duct,
    4. The partition member according to claim 1, wherein the partition member is disposed in the downstream side of the suction case and in the fan suction space, and partitions the fan suction space into a space into which the humidified air is sucked and a space into which the dehumidified air is sucked. The humidification apparatus as described in any one.
  6.  前記ファンケーシングは、前記遠心ファンが吹き出した前記加湿空気を前記加湿用ダクトに導く第1内壁面(S1)と、前記第1内壁面の前記回転方向とは反対方向の端部と接続する第1ノーズ部(N1)と、前記遠心ファンが吹き出した前記除湿空気を前記除湿空気ダクトに導く第2内壁面(S2)と、前記第2内壁面の前記回転方向とは反対方向の端部と接続する第2ノーズ部(N2)と、を有し、
     前記仕切部材は、前記吸着ケースの下流側かつ前記ファン吸込空間内に共に配置されて前記ファン吸込空間を前記加湿空気が吸い込まれる空間と前記除湿空気が吸い込まれる空間に仕切る第1下流仕切部(543b)および第2下流仕切部(543d)を備え、
     前記遠心ファンの回転方向に沿って前記第1下流仕切部から前記第2下流仕切部までの範囲が、前記加湿空気が吸い込まれる空間であり、前記遠心ファンの回転方向に沿って前記第2下流仕切部から前記第1下流仕切部までの範囲が、前記除湿空気が吸い込まれる空間であり、
     前記ファン軸芯に垂直な平面内において、前記第1下流仕切部のうち前記ファン軸芯から最も離れた端部を、前記ファン軸芯から見た方向(81)は、前記ファン軸芯から前記第1ノーズ部への方向(83)に対して、0°より大きくかつ90°より小さい第1ずれ角度(θ)だけ、前記遠心ファンの回転方向(80)とは反対側に、ずれており、
     前記ファン軸芯に垂直な平面内において、前記第2下流仕切部のうち前記ファン軸芯から最も離れた端部を、前記ファン軸芯から見た方向(82)は、前記ファン軸芯から前記第2ノーズ部への方向(84)に対して、第2ずれ角度(θz)だけ、前記遠心ファンの回転方向(80)とは反対側に、ずれている請求項5に記載の加湿装置。
    The fan casing is connected to a first inner wall surface (S1) that guides the humidified air blown out by the centrifugal fan to the humidifying duct, and an end of the first inner wall surface that is opposite to the rotation direction. A first nose portion (N1), a second inner wall surface (S2) for guiding the dehumidified air blown out by the centrifugal fan to the dehumidified air duct, and an end portion of the second inner wall surface in a direction opposite to the rotation direction A second nose portion (N2) to be connected,
    The partition member is disposed on the downstream side of the suction case and in the fan suction space, and partitions the fan suction space into a space where the humidified air is sucked and a space where the dehumidified air is sucked ( 543b) and a second downstream partition (543d),
    A range from the first downstream partition to the second downstream partition along the rotational direction of the centrifugal fan is a space into which the humidified air is sucked, and the second downstream along the rotational direction of the centrifugal fan. The range from the partition part to the first downstream partition part is a space into which the dehumidified air is sucked,
    In a plane perpendicular to the fan shaft core, an end portion of the first downstream partition that is farthest from the fan shaft core when viewed from the fan shaft core (81) extends from the fan shaft core. With respect to the direction (83) toward the first nose portion, the first deviation angle (θ) larger than 0 ° and smaller than 90 ° is shifted to the opposite side to the rotational direction (80) of the centrifugal fan. ,
    In a plane perpendicular to the fan shaft core, an end portion of the second downstream partition portion that is farthest from the fan shaft core when viewed from the fan shaft core is a direction (82) from the fan shaft core. The humidifier according to claim 5, wherein the humidifier is deviated from the direction (84) toward the second nose portion by a second deviation angle (θz) on the opposite side to the rotational direction (80) of the centrifugal fan.
  7.  前記第1ずれ角度と前記第2ずれ角度の差の絶対値は15°以下である請求項6に記載の加湿装置。 The humidifier according to claim 6, wherein an absolute value of a difference between the first shift angle and the second shift angle is 15 ° or less.
  8.  前記送風機は、ファン軸芯の周りに回転する単一の遠心ファン(552)を備え、
     前記遠心ファンは、前記ファン軸心の周りに周状に配置された複数枚のブレード(552b)を備え、
     前記ファンケーシングは、前記遠心ファンが吹き出した前記加湿空気を前記加湿用ダクトに導く第1内壁面(S1)と、前記遠心ファンが吹き出した前記除湿空気を前記除湿空気ダクトに導く第2内壁面(S2)と、を有し、
     前記複数枚のブレードが前記ファン軸心の周りに回転することで、前記複数枚のブレードの各々は、あるときには前記ファン軸芯と前記第1内壁面の間にあり、別のときには前記ファン軸芯と前記第2内壁面の間にある請求項1ないし3のいずれか1つに記載の加湿装置。
    The blower comprises a single centrifugal fan (552) that rotates about the fan axis;
    The centrifugal fan includes a plurality of blades (552b) arranged circumferentially around the fan axis.
    The fan casing includes a first inner wall surface (S1) that guides the humidified air blown by the centrifugal fan to the humidifying duct, and a second inner wall surface that guides the dehumidified air blown by the centrifugal fan to the dehumidified air duct. (S2)
    The plurality of blades rotate around the fan axis so that each of the plurality of blades is between the fan shaft core and the first inner wall surface at one time, and the fan shaft at another time. The humidifier according to any one of claims 1 to 3, wherein the humidifier is located between a core and the second inner wall surface.
  9.  ファン軸芯の周りに回転することで前記ファン軸心を含むファン吸込空間(555)から前記第1の流体および前記第2の流体を吸い込んで、吸い込んだ前記第1の流体および前記第2の流体を異なる空間に吹き出すファン(552)と、
     前記ファンを収容するファンケーシング(553)と、
     前記ファン吸込空間において、前記第1の流体が通る空間と前記第2の流体が通る空間とを仕切る仕切部(543b、543d)と、を備え、
     前記第1の流体および前記第2の流体は互いに温度差があり、
     前記ファンは、前記ファン軸芯を中心とする周方向に配置された複数枚のブレード(552b)と、前記複数枚のブレードに接続する接続部材(552a、552c)と、を有し、
     前記複数枚のブレードの熱伝導率および前記接続部材の熱伝導率は、前記ファンケーシングの熱伝導率より高く、
     前記ファンは、前記加湿空気と前記除湿空気の熱交換を媒介する請求項1ないし3のいずれか1つに記載の加湿装置。
    By rotating around the fan shaft core, the first fluid and the second fluid are sucked from the fan suction space (555) including the fan shaft center, and the sucked first fluid and second fluid are sucked. A fan (552) that blows fluid into different spaces;
    A fan casing (553) for housing the fan;
    A partition part (543b, 543d) for partitioning the space through which the first fluid passes and the space through which the second fluid passes in the fan suction space;
    The first fluid and the second fluid have a temperature difference from each other;
    The fan includes a plurality of blades (552b) arranged in a circumferential direction around the fan shaft core, and connection members (552a, 552c) connected to the plurality of blades,
    The thermal conductivity of the plurality of blades and the thermal conductivity of the connection member are higher than the thermal conductivity of the fan casing,
    The humidifier according to any one of claims 1 to 3, wherein the fan mediates heat exchange between the humidified air and the dehumidified air.
  10.  前記冷却部で冷却された前記冷却空気を前記吸湿空間に導く通路(52)の開閉を切り替える開閉機構(522)を備え、
     加湿運転において、前記開閉機構が前記通路を開くと共に、前記送風機および前記駆動部材が作動することで、前記冷却部で冷却された冷却空気に含まれる水分が前記吸湿空間で前記吸着材に吸着されると共に、前記内気が前記放湿空間を流通して前記放湿空間において前記吸着材に吸着された水分が脱離し、
     前記加湿運転の後に行われる脱離運転において、前記開閉機構が前記通路を閉じると共に、前記送風機および前記駆動部材が作動することで、前記内気が前記放湿空間を流通して前記放湿空間において前記吸着材に吸着された水分が脱離する請求項1ないし9のいずれか1つに記載の加湿装置。
    An opening / closing mechanism (522) for switching opening and closing of the passage (52) for guiding the cooling air cooled by the cooling unit to the moisture absorption space;
    In the humidification operation, the opening / closing mechanism opens the passage, and the blower and the driving member are operated, so that moisture contained in the cooling air cooled by the cooling unit is adsorbed by the adsorbent in the moisture absorption space. And the moisture is adsorbed on the adsorbent in the moisture release space through the inside air through the moisture release space,
    In the desorption operation performed after the humidification operation, the opening / closing mechanism closes the passage, and the blower and the driving member are operated, so that the inside air circulates in the moisture release space and the moisture release space. The humidifier according to any one of claims 1 to 9, wherein moisture adsorbed on the adsorbent is desorbed.
  11.  前記加湿用ダクトの空気流れ下流端にある吹出開口部(572)は、前記空調ユニットで温度調整された空気の吹出ダクト(20)の空気流れ下流端にある吹出口(20a、20b、20c)から離れた位置に開口されている請求項1ないし10のいずれか1つに記載の加湿装置。 The outlet opening (572) at the downstream end of the air flow of the humidifying duct is connected to the outlet (20a, 20b, 20c) at the downstream end of the air flow of the air outlet duct (20) whose temperature is adjusted by the air conditioning unit. The humidifier according to any one of claims 1 to 10, wherein the humidifier is opened at a position away from the humidifier.
  12.  前記吸着ケースに接続されて前記冷却空気を前記吸着ケースの前記吸湿空間に導入する導入部(521)を備え、
     前記吸着ケースおよび前記導入部は、前記空調ケースとは別体の構成部品であり、
     前記導入部は、前記空調ケースに対して脱着可能に構成されている請求項1ないし11のいずれか1つに記載の加湿装置。
    An introduction portion (521) connected to the adsorption case and introducing the cooling air into the moisture absorption space of the adsorption case;
    The suction case and the introduction part are separate components from the air conditioning case,
    The humidification device according to any one of claims 1 to 11, wherein the introduction unit is configured to be removable from the air conditioning case.
  13.  前記除湿空気ダクトによって前記除湿空気が導かれて吹き出る先は前記空調ケース(11)の内部である請求項1ないし12のいずれか1つに記載の加湿装置。 The humidifier according to any one of claims 1 to 12, wherein a destination to which the dehumidified air is guided and blown out by the dehumidified air duct is inside the air conditioning case (11).
PCT/JP2016/061450 2015-04-09 2016-04-07 Humidifying device and vehicle air conditioning device WO2016163484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080160 2015-04-09
JP2015080160A JP2018089988A (en) 2015-04-09 2015-04-09 Humidifier and air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2016163484A1 true WO2016163484A1 (en) 2016-10-13

Family

ID=57073222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061450 WO2016163484A1 (en) 2015-04-09 2016-04-07 Humidifying device and vehicle air conditioning device

Country Status (2)

Country Link
JP (1) JP2018089988A (en)
WO (1) WO2016163484A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107554243A (en) * 2017-08-02 2018-01-09 苏州蓝越软件有限公司 A kind of vehicle humidity control system
CN109895581A (en) * 2017-12-07 2019-06-18 联合汽车电子有限公司 Automobile air adjusts system and method for adjustment
CN110087919A (en) * 2016-12-14 2019-08-02 株式会社电装 Air-conditioning device
CN113276637A (en) * 2020-02-19 2021-08-20 本田技研工业株式会社 Purifying device for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1555213A1 (en) * 1967-02-09 1970-08-13 Daimler Benz Ag Process for air conditioning vehicle passenger compartments and a device for practicing this process
JPS5631812A (en) * 1979-08-20 1981-03-31 Diesel Kiki Co Ltd Automobile air conditioner
JPH11500081A (en) * 1995-02-13 1999-01-06 ジェームズ ジー.ティー. デニストン Humidification and dehumidification system using desiccant
US6029462A (en) * 1997-09-09 2000-02-29 Denniston; James G. T. Desiccant air conditioning for a motorized vehicle
JP2000264054A (en) * 1999-03-17 2000-09-26 Bosch Automotive Systems Corp Air conditioner for vehicle
US20050039481A1 (en) * 2003-08-21 2005-02-24 Eileen Chant Rotor desiccant air-conditioning system for a motor vehicle
US20060272344A1 (en) * 2005-06-06 2006-12-07 Hamilton Sundstrand Water-from-air system using desiccant wheel and exhaust
JP2008137420A (en) * 2006-11-30 2008-06-19 Denso Corp Air conditioner for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1555213A1 (en) * 1967-02-09 1970-08-13 Daimler Benz Ag Process for air conditioning vehicle passenger compartments and a device for practicing this process
JPS5631812A (en) * 1979-08-20 1981-03-31 Diesel Kiki Co Ltd Automobile air conditioner
JPH11500081A (en) * 1995-02-13 1999-01-06 ジェームズ ジー.ティー. デニストン Humidification and dehumidification system using desiccant
US6029462A (en) * 1997-09-09 2000-02-29 Denniston; James G. T. Desiccant air conditioning for a motorized vehicle
JP2000264054A (en) * 1999-03-17 2000-09-26 Bosch Automotive Systems Corp Air conditioner for vehicle
US20050039481A1 (en) * 2003-08-21 2005-02-24 Eileen Chant Rotor desiccant air-conditioning system for a motor vehicle
US20060272344A1 (en) * 2005-06-06 2006-12-07 Hamilton Sundstrand Water-from-air system using desiccant wheel and exhaust
JP2008137420A (en) * 2006-11-30 2008-06-19 Denso Corp Air conditioner for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087919A (en) * 2016-12-14 2019-08-02 株式会社电装 Air-conditioning device
CN110087919B (en) * 2016-12-14 2022-06-03 株式会社电装 Air conditioner
CN107554243A (en) * 2017-08-02 2018-01-09 苏州蓝越软件有限公司 A kind of vehicle humidity control system
CN109895581A (en) * 2017-12-07 2019-06-18 联合汽车电子有限公司 Automobile air adjusts system and method for adjustment
CN113276637A (en) * 2020-02-19 2021-08-20 本田技研工业株式会社 Purifying device for vehicle

Also Published As

Publication number Publication date
JP2018089988A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6327399B2 (en) Humidifier, vehicle air conditioner
JP6555362B2 (en) Blower
WO2016163484A1 (en) Humidifying device and vehicle air conditioning device
JP6447770B2 (en) Ventilation system
WO2016163485A1 (en) Heat exchange device
WO2016158254A1 (en) Cooling device, and vehicle air-conditioning device
JP6217522B2 (en) Humidifier
CN111201404B (en) Humidity control device
KR20110011100A (en) Air conditioning system for vehicles
EP2693132B1 (en) Humidity conditioning ventilation device
US20190111768A1 (en) Air conditioning apparatus for vehicle
JP6338013B2 (en) Humidifier, vehicle air conditioner
JP2022060875A (en) Air conditioner
JP6332551B2 (en) Humidifier, vehicle air conditioner
JP6717288B2 (en) Humidifier, air conditioner
WO2018180064A1 (en) Humidifier and air conditioning device
JP6699611B2 (en) Air conditioning case and air conditioner
JP2018162055A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP