WO2016163458A1 - Electromotive power-generator device - Google Patents

Electromotive power-generator device Download PDF

Info

Publication number
WO2016163458A1
WO2016163458A1 PCT/JP2016/061400 JP2016061400W WO2016163458A1 WO 2016163458 A1 WO2016163458 A1 WO 2016163458A1 JP 2016061400 W JP2016061400 W JP 2016061400W WO 2016163458 A1 WO2016163458 A1 WO 2016163458A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator device
motor generator
internal combustion
combustion engine
battery
Prior art date
Application number
PCT/JP2016/061400
Other languages
French (fr)
Japanese (ja)
Inventor
金千代 寺田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680020674.5A priority Critical patent/CN107534409B/en
Publication of WO2016163458A1 publication Critical patent/WO2016163458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a motor generator device for a vehicle that includes a rotating electric machine and assists the output of an internal combustion engine or charges a battery.
  • the number of actual turns per phase is increased to provide high torque output, and when torque output at high speed is required, the number of actual turns per phase is reduced.
  • the rotating electrical machine is operated as an electric motor in order to assist the output of the internal combustion engine and contribute to the reduction of fuel consumption.
  • the relay switch cannot be operated at high speed in terms of the number of on / off lifetimes, etc. Responsiveness to is reduced. For this reason, there has been a problem that the operation of the relay switch cannot follow an operating state that changes fluidly and variably, and a sufficient fuel consumption reduction effect cannot be achieved.
  • Patent Document 3 discloses a configuration in which the maximum torque of the starter motor, which is a rotating electrical machine, is set to 60% or less of the “compression overriding maximum cranking torque” in the engine starting device.
  • this configuration is intended to improve the drivability by reducing the inertia mass, and is not considered to contribute much to the reduction in fuel consumption.
  • JP 2014-058825 A Japanese Patent No. 3968673 Japanese Patent No. 40396604
  • An object of the present disclosure is to enhance a fuel consumption reduction effect in a motor generator device for a vehicle including a rotating electrical machine in which the actual number of turns for each phase is variable.
  • the motor generator device assists the output of the internal combustion engine by generating an output by supplying power from a battery, or a voltage induced by the output of the internal combustion engine (hereinafter referred to as an induced voltage).
  • the battery is charged for the vehicle.
  • the motor generator apparatus includes the following rotating electric machine, drive circuit, and control means.
  • the rotating electrical machine operates as an electric motor that assists the output of the internal combustion engine or a generator that charges a battery.
  • an intermediate tap is provided in each phase winding so that the actual number of turns, which is the number of turns in a portion energized by power supply from the battery, is variable for each phase.
  • the drive circuit has a plurality of inverter circuits connected to the windings of each phase, and some inverter circuits are connected to the intermediate tap.
  • control means controls the operation of the rotating electrical machine by executing the following inverter operation.
  • the inverter operation is to select one that is sequentially turned on or off from among the semiconductor switches of a plurality of inverter circuits and to change the semiconductor switch to be sequentially selected.
  • a control means changes the number of real turns for every phase by performing inverter operation.
  • the number of actual turns can be increased or decreased at high speed for each phase, so the output of the motor or generator can be changed at high speed, or the operation of the rotating electrical machine can be switched between the motor and generator at high speed. can do.
  • the motor generator device for vehicles it can follow the driving state of the vehicle which changes fluidly and variably, and can improve the fuel consumption reduction effect.
  • FIG. 1 is an overall configuration diagram illustrating a motor generator device according to a first embodiment.
  • FIG. 2A is a transition diagram showing transition of on / off of the switch in the large mode operation of the first embodiment
  • FIG. 2B is a table showing an example of combinations of switches that are turned on or off in the inverter operation of the first embodiment, and output magnitudes
  • FIG. 3A is a diagram showing the correlation between the rotational speed and the torque when the rotating electrical machine of the first embodiment is operated as an electric motor
  • FIG. 3B is the rotation of the first embodiment.
  • FIG. 4 is a characteristic diagram showing an operation example of the motor generator device of the first embodiment.
  • FIG. 5 is an overall configuration diagram of the motor generator device of the second embodiment.
  • FIG. 6 is a time chart showing the switching transition of the electric motor and the generator for each stroke of the internal combustion engine of the second embodiment,
  • FIG. 7 is a block diagram illustrating a part of the function of the control unit in the first embodiment.
  • FIG. 8 is a block diagram for explaining a part of the functions of the control unit in the second embodiment.
  • a motor generator device (hereinafter referred to as a system) 1 is provided in a vehicle and generates an output by power feeding from an on-vehicle battery (hereinafter simply referred to as a battery) 2 to start the internal combustion engine 3. Or assisting the output of the internal combustion engine 3 or charging the battery 2 with a voltage induced by the output of the internal combustion engine 3.
  • the system 1 is provided with the rotary electric machine 4, the drive circuit 5, and the control part 6 (functioning as a control means), as shown in FIG.
  • the rotating electrical machine 4 operates as an electric motor that starts the internal combustion engine 3 or assists the output of the internal combustion engine 3 or a generator that charges the battery 2.
  • the rotating electrical machine 4 for example, U-phase, V-phase, and W-phase windings 7U, 7V, and 7W are star-connected to a stator, and a permanent magnet is built into the rotor. Note that the rotor of the rotating electrical machine 4 is directly connected to the crankshaft of the internal combustion engine 3.
  • the number of actual turns is made variable for each phase by providing intermediate taps 8U, 8V, 8W on the windings 7U, 7V, 7W.
  • the actual number of turns refers to the number of turns in each of the windings 7U, 7V, and 7W that is energized by power feeding from the battery 2 in the operation as an electric motor, or the induced voltage in the operation as a generator. Is the number of turns of the portion that supplies to the battery 2.
  • winding 7U two windings 7U1 and 7U2 are connected in series, and an intermediate tap 8U is provided at a connection portion between the winding 7U1 and the winding 7U2.
  • winding 7V two windings 7V1 and 7V2 are connected in series, and an intermediate tap 8V is provided at a connection portion between the winding 7V1 and the winding 7V2.
  • winding 7W two windings 7W1 and 7W2 are connected in series, and an intermediate tap 8W is provided at a connection portion between the winding 7W1 and the winding 7W2.
  • terminals of the windings 7U2, 7V2, and 7W2 that do not form the intermediate taps 8U, 8V, and 8W are connected as a neutral point and star-connected.
  • terminals on which the intermediate taps 8U, 8V, and 8W are not formed in the windings 7U1, 7V1, and 7W1 are referred to as a U terminal 9U, a V terminal 9V, and a W terminal 9W, respectively.
  • the number of turns of the windings 7U1, 7U2, 7V1, 7V2, 7W1, and 7W2 are all the same integer n and the same resistance value for the sake of simplicity.
  • the rotary electric machine 4 is provided with a position sensor 4a for detecting the magnet position of the rotor.
  • the position sensor 4a is composed of three hall sensors PU, PV, and PW arranged at the stator pole intervals.
  • the drive circuit 5 includes two inverter circuits 5a and 5b.
  • Each of the inverter circuits 5a and 5b is a three-phase bridge circuit in which two semiconductor switches S are connected in series, and three series connections of two semiconductor switches S are connected in parallel (hereinafter referred to as semiconductor switch S). Is referred to as a switch S).
  • one terminal connected in series is connected to the positive electrode of the battery 2, and the other terminal is connected to the ground. Further, the three midpoints of the series connection are connected to the U terminal 9U, the V terminal 9V, and the W terminal 9W, respectively.
  • one terminal connected in series is connected to the positive electrode of the battery 2, and the other terminal is connected to the ground. Further, the three midpoints of the series connection are connected to the intermediate taps 8U, 8V, and 8W, respectively.
  • a smoothing capacitor 10 is connected in parallel to the inverter circuits 5a and 5b.
  • the switch S is, for example, an N channel type power MOSFET.
  • the switch Sup1 Sometimes called Sun1.
  • the high potential side switch S and the low potential side switch S may be referred to as switches Svp1 and Svn1, respectively.
  • the high potential side switch S and the low potential side switch S may be referred to as switches Swp1 and Swn1, respectively.
  • the high potential side switch S and the low potential side switch S are respectively referred to as switches Sup2 and Sun2.
  • switches Sup2 and Sun2 are respectively referred to as switches Sup2 and Sun2.
  • switches Svp2 and Svn2 are respectively referred to as switches Svp2 and Svn2, respectively.
  • switches Swp2 and Swn2 are respectively referred to as switches Swp2 and Swn2, respectively.
  • control unit 6 is an electronic control unit (ECU: Electronic Control Unit) that controls the operation of the rotating electrical machine 4.
  • the control unit 6 includes, for example, an input circuit 6A that processes an input signal, a CPU (Central Processing Unit) 6B that performs control processing and arithmetic processing based on the input signal, and is necessary for control processing and arithmetic processing.
  • Various memories 6C for storing and holding various data, programs, etc., an output circuit 6D for outputting necessary signals based on the processing results of the CPU, and the like.
  • control part 6 controls operation
  • control part 6 changes the number of real turns for every phase by performing inverter operation. More specifically, the control unit 6 selects from three numerical values of 2n, 3n, and 4n regarding the actual number of turns in all phases in the inverter operation. For example, when power is supplied to the windings 7U and 7V in the operation as an electric motor, if the switches Sup1 and Svn1 are selected to be turned on, the windings 7U1, 7U2, 7V1 and 7V2 are supplied with power from the battery 2, The actual number of turns for each V phase is 2n and 2n, and the actual number of turns for all phases is 4n.
  • the windings 7U2 and 7V2 are supplied with power from the battery 2, so that the actual number of turns for the U phase and the V phase are n and n, respectively. Is 2n. If the switches Sup1 and Svn2 are selected to be turned on, the windings 7U1, 7U2 and 7V2 are supplied with power from the battery 2, so that the actual number of turns of the U phase and V phase is 2n and n, respectively. The number of turns is 3n.
  • the windings 7U2, 7V1 and 7V2 are supplied with power from the battery 2, so that the actual number of turns of the U phase and V phase is n and 2n, respectively.
  • the number of turns is 3n.
  • the actual number of turns in all phases when voltage is applied from the battery 2 to the two phases of the three-phase windings 7U to 7W or the induced voltage is supplied to the battery 2 from the two phases.
  • the modes for selecting 4n, 2n, and 3n are referred to as a large mode, a small mode, and a medium mode, respectively.
  • FIG. 2A shows the on / off transition of the switch S in the large mode operation as the electric motor, with the rotational speed Ne of the internal combustion engine 3 as the horizontal axis
  • FIG. 2B shows the large, small, medium In each mode, an example of a combination of 12 switches S that are turned on or off is shown.
  • the first to third patterns and the fourth to sixth patterns are sequentially repeated according to the signal of the position sensor 4a, respectively.
  • the seventh to ninth patterns or the tenth to twelfth patterns are sequentially repeated.
  • a group of the seventh to ninth patterns and a group of the tenth to twelfth patterns are alternately arranged as in the seventh pattern ⁇ the eleventh pattern ⁇ the ninth pattern ⁇ the tenth pattern ⁇ .
  • the correlation between the rotational speed and the torque when the rotating electrical machine 4 is operated as an electric motor, and the correlation between the rotational speed and the generated current when the rotating electrical machine 4 is operated as a generator are large, medium, and small. In each mode, for example, as shown in FIG.
  • the large mode is suitable for assist when the internal combustion engine 3 is started or when the rotational speed of the internal combustion engine 3 is in a low speed rotation range (for example, up to about 2500 rpm).
  • the middle mode is suitable for assist when the rotation speed of the internal combustion engine 3 is in a medium speed rotation range (for example, from 2000 rpm to around 3500 rpm).
  • the small mode is suitable for assist when the rotation speed of the internal combustion engine 3 is in a high rotation range (for example, from 3000 rpm to around 5500 rpm).
  • the induced voltage in the winding that is not supplied with power from the battery 2 during operation as a middle mode or small mode motor can be used for charging the battery 2 or short-circuited as described later. May be.
  • the battery 2 in the operation as a generator, in the large mode, can be charged from the rotational speed range (for example, around 800 rpm) where the rotational speed of the internal combustion engine 3 is low.
  • the medium mode is suitable for charging the battery 2 from the medium speed rotation region (for example, around 3000 rpm) because the generated current is reduced by reducing the actual number of turns.
  • the small mode is suitable for charging the battery 2 from a high rotation range (for example, around 5000 rpm) because the generated current is further reduced by further reducing the actual number of turns.
  • the system 1 includes a next rotation speed detector 12 (functioning as a rotation speed detection means) and a voltage detector 13 (functioning as a voltage detection means) (see FIG. 1).
  • the rotational speed detector 12 detects the rotational speed of the internal combustion engine 3 and is, for example, a crank angle sensor having a known structure for detecting the crank angle of the internal combustion engine 3.
  • the rotational speed detector 12 detects the crank angle with a protrusion provided on the outer periphery of the crankshaft, and is used for ignition control and fuel injection control of the internal combustion engine 3.
  • the voltage detector 13 detects the voltage of the battery 2, and is provided as an A / D conversion circuit having a known structure, for example.
  • the control unit 6 executes the inverter operation by selecting one of the large, small, and medium modes according to the detection values of the rotation speed detector 12 and the voltage detector 13, so that the rotating electrical machine 4 is driven by the electric motor. Or operate as a generator.
  • the control unit 6 makes a determination based on the charging balance of the battery 2 predicted using the change over time of the detection value by the voltage detector 13 or the detection value by the voltage detector 13 when the internal combustion engine 3 is started. Whether or not the rotating electrical machine 4 is operated as an electric motor is determined according to the state of charge of the battery 2 (see FIG. 7, block S1).
  • FIG. 7 illustrates a part of the functions executed by the control unit 6.
  • the CPU 6B is functionally realized by reading out and executing the control program given in the first embodiment from the memory 6C. Is done.
  • the control unit 6 determines the actual number of turns so that the voltage induced in the windings 7U to 7W is higher than the voltage of the battery 2.
  • the control unit 6 has two threshold values (a first threshold value C1 and a second threshold value C2) set in advance with respect to the rotational speed of the internal combustion engine 3.
  • the first threshold C1 is set to a rotational speed at which the torque of the large mode torque curve becomes zero as an example when the rotating electrical machine 4 is operated as an electric motor. Yes.
  • control unit 6 that is, the CPU 6B executes the control program read from the memory 6C, thereby performing the mode control B1 for driving the inverters 5a and 5b, and exhibits the function of determining the actual number of turns for each other. Therefore, when the rotating electrical machine 4 is operated as an electric motor, the control unit 6 performs a comparison determination between the detection value by the rotation speed detector 12 and the first and second threshold values C1 and C2 (FIG. 7, threshold comparison determination). The actual number of turns is determined for each phase according to the result of the determination (see FIG. 7, mode selection command B12).
  • control unit 6 has first and second threshold values C1 and C2 (C1 ⁇ C2) with respect to the rotational speed of the internal combustion engine 3. Then, when the value detected by the rotation speed detector 12 is smaller than the first threshold C1, the control unit 6 selects any one of the large mode, the medium mode, and the small mode and operates the rotating electrical machine 4 as an electric motor. Assist the output of the internal combustion engine 3 with the output of low speed and high torque.
  • control unit 6 selects the medium mode or the small mode when the value detected by the rotation speed detector 12 is equal to or greater than the first threshold C1 and smaller than the second threshold C2, and the rotating electrical machine 4 is selected. Is operated as an electric motor, and the output of the internal combustion engine 3 is assisted by the output of the medium-speed medium torque. Further, the control unit 6 employs the small mode when the value detected by the rotation speed detector 12 is equal to or higher than the threshold C2 and is equal to or lower than the limit frequency, and operates the rotating electrical machine 4 as an electric motor. Thereby, the internal combustion engine 3 is assisted with a high-speed and low-torque output.
  • control unit 6 controls the charging of the battery 2 by the parasitic diode associated with the switch S that is not selected to be turned on in the inverter operation other than the large mode (see FIG. 7, charging control B2).
  • the switches S selected to be turned on are the switches Sup2, Swp2, and Svn2, and the windings 7U2, 7V2, and 7W2 are supplied with power from the battery 2. Therefore, for example, the voltage induced in the winding 7U1 can be charged to the battery 2 by a parasitic diode associated with the switch Sup1 while controlling the voltage of the battery 2 by turning on and off the switch Sun1. (See, for example, the circled portion in FIG. 2A.)
  • FIG. 4 exemplifies operating characteristics when the rotational speed of the internal combustion engine 3 changes between N1 (> first threshold C1) and N2 (> second threshold C2).
  • the horizontal axis indicates the rotational speed Ne of the internal combustion engine 3
  • the vertical axis indicates the current I flowing between the battery 2 and the drive circuit 5, and the direction of flow when operating as a generator is positive.
  • the currents flowing as the generator and the motor are called the generated current and the motor current, respectively, and are indicated by solid lines.
  • a current flowing through another electric load is called an electric load current and indicated by a dotted line.
  • the large mode is selected so that the generated current is larger than the electric load current.
  • the medium mode is selected in the range where the rotational speed of the internal combustion engine 3 is smaller than the second threshold C2
  • the small mode is selected in the range larger than the second threshold C2.
  • the rotating electrical machine 4 is provided with the intermediate taps 8U to 8W in the windings 7U to 7W, respectively, so that the actual number of turns can be varied for each phase.
  • control unit 6 selects one that is sequentially turned on or off from the switches S that the inverter circuits 5a and 5b have, and sequentially executes an inverter operation that changes the switch S to be selected.
  • the operation of the rotating electrical machine 4 is controlled.
  • the control part 6 changes the number of real turns for every phase by performing inverter operation. As a result, the number of actual turns can be increased / decreased at high speed for each phase, so that the output of the motor or generator can be changed at high speed, or the operation of the rotating electrical machine 4 can be switched between the motor and generator at high speed. Can be.
  • the fuel consumption reduction effect can be enhanced.
  • the fuel consumption reduction effect can be enhanced by reducing the amount of the induced voltage generated at the time of high rotation that has conventionally been lost to the ground due to a short circuit and increasing the amount of charge to the battery 2.
  • the system 1 includes a rotation speed detector 12 that detects the rotation speed of the internal combustion engine 3, and the control unit 6 has threshold values C1 and C2 (C1 ⁇ C2) for the rotation speed of the internal combustion engine 3, and the rotation speed.
  • the actual number of turns is changed for each phase according to the result of comparison between the detection value by the detector 12 and the threshold values C1 and C2.
  • the output of the rotary electric machine 4 can be changed at high speed with respect to the load fluctuation of the internal combustion engine 3 or the like.
  • the system 1 also includes a voltage detector 13 that detects the voltage of the battery 2. Then, the control unit 6 rotates based on the charge balance of the battery 2 predicted using the change over time of the detection value by the voltage detector 13 or the detection value by the voltage detector 13 when starting the internal combustion engine 3. It is determined whether or not the electric machine 4 is operated as an electric motor. Thereby, the influence which the voltage fluctuation of the battery 2 by operating the rotary electric machine 4 as an electric motor has on other electric loads can be reduced.
  • control unit 6 controls the charging of the battery 2 by the parasitic diode associated with the switch S that is not selected to be turned on by the inverter operation. Thereby, charging efficiency can be improved.
  • the CPU 6B reads out and executes the control program according to the second embodiment in the memory 6C, as shown in FIG. I will provide a.
  • This function also includes a stroke determination unit 15 (see FIGS. 5 and 8: functions as a stroke determination unit) that determines the stroke of the internal combustion engine 3.
  • the control unit 3 determines whether or not to operate the rotating electrical machine 4 as an electric motor according to the determination result by the stroke determination unit 15 according to the position of the stroke (see block B21 in FIG. 8).
  • the stroke determination unit 15 determines the stroke of the internal combustion engine 3 based on, for example, a signal (a signal indicating a crank angle) output from the rotation speed detector 12 and a signal indicating the intake pressure of the internal combustion engine 3.
  • the control unit 6 operates the rotating electrical machine 4 as an electric motor.
  • the rotating electrical machine 4 is operated as an electric motor in the second half of the compression stroke, the entire explosion stroke, and the first half of the exhaust stroke, in which the output assist of the internal combustion engine 3 is considered to be particularly effective.
  • the driving feeling is optimized.
  • the control unit 6 operates the rotating electrical machine 4 as a generator (see block B22 in FIG. 8). Moreover, the control part 6 extends or shortens the period operated as an electric motor according to the charge balance of the battery 2 (refer FIG. 8, block S23). That is, when it is expected that the amount of charge of the battery 2 will decrease too much when operated as an electric motor, the control unit 6 shortens the period for operating as an electric motor and expands the period for operating as a generator.
  • the operation of the rotating electrical machine 4 is more finely switched between the electric motor and the generator according to the stroke of the internal combustion engine 3, thereby further reducing the fuel consumption. As well as the driving feeling of the vehicle.
  • one intermediate tap 8U, 8V, 8W is provided for each phase.
  • two or more intermediate taps 8U to 8W are provided, and the intermediate taps 8U to 8W are provided.
  • the windings 7U to 7W of the embodiment for example, the windings 7U1 and 7U2 are connected in series in the winding 7U, and the actual number of turns of the windings 7U1 and 7U2 is assumed to be the same n.
  • the manner of the windings 7U to 7W is not limited to this.
  • the winding 7U1 may be provided by connecting two windings having an actual number of turns n in parallel.
  • the number of poles of the rotor and the number of stators of the rotating electrical machine 4 are not limited to 12 poles and 18 poles, which are typical for a three-phase motor generator, and a delta ( ⁇ ) connection as a winding connection system. May be adopted.
  • the timing of switching the operation of the rotating electrical machine 4 between the electric motor and the generator is not limited to the embodiment, and may be appropriately changed depending on the traveling feeling of the vehicle.
  • the control unit 6 may execute the following short-circuit mode. That is, the short-circuit mode is a control mode in which the induced voltage of the windings 7U to 7W is short-circuited to the ground by an inverter operation, and is different from the control mode in which the rotating electrical machine 4 is operated as an electric motor or a generator.
  • the switches Sun1, Svn1, and Swn1 may be turned on to short-circuit the generated current, and the switches Sun2, Svn2, and Swn2 may be turned on in addition to the switches Sun1, Svn1, and Swn1.
  • the power generation, travel assist, and engine brake may be optimized by adjusting their degrees as appropriate by PWM control or the like. Further, the short-circuit mode may be executed every set time or every set interval regardless of the stroke of the internal combustion engine 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

In the present invention, windings (7U-7W) are provided with respective intermediate taps (8U-8W) so as to allow a rotating electrical machine (4) of an electromotive power-generator device (1) to vary actual turn count by phase. A drive circuit (5) has a plurality of inverter circuits (5a, 5b) that are connected to the windings (7U-7W), and, by executing an inverter operation, a control means (6) alters actual turn count by phase. Consequently, actual turn count can be rapidly increased/decreased by phase, and, as a result, the output of an electrical motor or of a power generator can be rapidly altered and the action of the rotating electrical machine (4) can be rapidly switched between the electrical motor and the power generator. Thus, the fuel consumption reduction effects of the electromotive power-generator device (1) can be improved.

Description

電動発電機装置Motor generator equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年4月7日に出願された日本出願番号2015-078197号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-078197 filed on April 7, 2015, the contents of which are incorporated herein by reference.
 本開示は、回転電機を備えて構成され、内燃機関の出力をアシストしたり、バッテリを充電したりする車両用の電動発電機装置に関する。 The present disclosure relates to a motor generator device for a vehicle that includes a rotating electric machine and assists the output of an internal combustion engine or charges a battery.
 従来から、回転電機を電動機として動作させて駆動対象を駆動する電動機装置がある。このような電動機装置では、駆動対象の負荷に応じて最適な制御を可能とするため、巻線の内、バッテリからの給電により通電される部分のターン数(以下、実ターン数と呼ぶ。)を、リレースイッチにより相毎で変更可能とする構成が開示されている(例えば、特許文献1、2参照。)。 Conventionally, there is an electric motor device that drives an object to be driven by operating a rotating electric machine as an electric motor. In such an electric motor device, in order to enable optimal control according to the load to be driven, the number of turns in the portion of the winding that is energized by power feeding from the battery (hereinafter referred to as the actual number of turns). Has been disclosed that can be changed for each phase by a relay switch (see, for example, Patent Documents 1 and 2).
 これにより、例えば、低速でのトルクの出力が必要なときには、相毎の実ターン数を増やして高トルクの出力とし、高速でのトルクの出力が必要なときには、相毎の実ターン数を減らして電動機としての動作を可能としている。
 そして、車両用の電動発電機装置でも、内燃機関の出力をアシストして燃費低減に寄与するべく、回転電機を電動機として動作させる。この場合において、相毎の実ターン数を可変にして相毎の実ターン数を操作する構成を導入することが考えられる。
Thus, for example, when torque output at low speed is required, the number of actual turns per phase is increased to provide high torque output, and when torque output at high speed is required, the number of actual turns per phase is reduced. This makes it possible to operate as an electric motor.
In the motor generator device for a vehicle, the rotating electrical machine is operated as an electric motor in order to assist the output of the internal combustion engine and contribute to the reduction of fuel consumption. In this case, it is conceivable to introduce a configuration in which the actual number of turns per phase is made variable by changing the actual number of turns per phase.
 ところで、車両の運転では、内燃機関の負荷やバッテリの電圧等、燃費に影響する因子は多い。これら因子の数値は、道路状況やドライバーの操作等の多数の外乱要因により極めて流動的、かつ、変動的である。また、車両用の電動発電機装置では、回転電機の動作を電動機と発電機との間で切り替える必要もある。 By the way, in driving a vehicle, there are many factors that affect fuel consumption, such as the load of an internal combustion engine and the voltage of a battery. The numerical values of these factors are extremely fluid and variable due to many disturbance factors such as road conditions and driver operations. Moreover, in the motor generator device for vehicles, it is necessary to switch operation | movement of a rotary electric machine between an electric motor and a generator.
 このため、相毎の実ターン数を操作するのに、上記のようにリレースイッチを用いる態様では、オン・オフの寿命回数等の点からリレースイッチを高速で動作させることができず、操作指令に対する応答性が低くなってしまう。このため、流動的かつ変動的に変化する運転状態にリレースイッチの動作を追従させることができず、十分な燃費低減効果を達成することができない、という問題があった。 For this reason, in the aspect using the relay switch as described above to operate the actual number of turns for each phase, the relay switch cannot be operated at high speed in terms of the number of on / off lifetimes, etc. Responsiveness to is reduced. For this reason, there has been a problem that the operation of the relay switch cannot follow an operating state that changes fluidly and variably, and a sufficient fuel consumption reduction effect cannot be achieved.
 なお、特許文献3には、エンジン始動装置において、回転電機であるスタータモータの最大トルクを「圧縮乗り越し最大クランキングトルク」の60%以下に設定する構成が開示されている。しかし、この構成は、慣性マスを低減してドライバビリティを改善することを目的としており、さほど燃費低減に寄与するものではないと考えられる。 Patent Document 3 discloses a configuration in which the maximum torque of the starter motor, which is a rotating electrical machine, is set to 60% or less of the “compression overriding maximum cranking torque” in the engine starting device. However, this configuration is intended to improve the drivability by reducing the inertia mass, and is not considered to contribute much to the reduction in fuel consumption.
特開2014-058825号公報JP 2014-058825 A 特許第3968673号公報Japanese Patent No. 3968673 特許第4039604号公報Japanese Patent No. 40396604
 本開示の目的は、相毎の実ターン数を可変にした回転電機を備える車両用の電動発電機装置において、燃費低減効果を高めることにある。 An object of the present disclosure is to enhance a fuel consumption reduction effect in a motor generator device for a vehicle including a rotating electrical machine in which the actual number of turns for each phase is variable.
 本開示の第一の態様において、電動発電機装置は、バッテリからの給電により出力を発生させて内燃機関の出力をアシストしたり、内燃機関の出力により誘起される電圧(以下、誘起電圧と呼ぶことがある。)によってバッテリを充電したりするものであり、車両用である。また、電動発電機装置は、以下の回転電機、駆動回路、および、制御手段を備える。 In the first aspect of the present disclosure, the motor generator device assists the output of the internal combustion engine by generating an output by supplying power from a battery, or a voltage induced by the output of the internal combustion engine (hereinafter referred to as an induced voltage). The battery is charged for the vehicle. The motor generator apparatus includes the following rotating electric machine, drive circuit, and control means.
 まず、回転電機は、内燃機関の出力をアシストする電動機、または、バッテリを充電する発電機として動作するものである。回転電機は、各相の巻線に中間タップを設けることで、バッテリからの給電により通電される部分のターン数である実ターン数を相毎で可変にしたものである。また、駆動回路は、各相の巻線に接続する複数のインバータ回路を有し、インバータ回路の中に中間タップに接続するものが存在する。 First, the rotating electrical machine operates as an electric motor that assists the output of the internal combustion engine or a generator that charges a battery. In the rotating electrical machine, an intermediate tap is provided in each phase winding so that the actual number of turns, which is the number of turns in a portion energized by power supply from the battery, is variable for each phase. Further, the drive circuit has a plurality of inverter circuits connected to the windings of each phase, and some inverter circuits are connected to the intermediate tap.
 さらに、制御手段は、次のインバータ操作を実行することで回転電機の動作を制御する。すなわち、インバータ操作とは、複数のインバータ回路が有する半導体スイッチの中から、逐次、オンまたはオフするものを選択するとともに、逐次、選択すべき半導体スイッチを変更することである。そして、制御手段は、インバータ操作を実行することで、相毎に実ターン数を変更する。 Furthermore, the control means controls the operation of the rotating electrical machine by executing the following inverter operation. In other words, the inverter operation is to select one that is sequentially turned on or off from among the semiconductor switches of a plurality of inverter circuits and to change the semiconductor switch to be sequentially selected. And a control means changes the number of real turns for every phase by performing inverter operation.
 これにより、相毎に実ターン数を高速で増減することができるので、電動機または発電機としての出力を高速で変更したり、回転電機の動作を電動機と発電機との間で高速で切り替えたりすることができる。このため、車両用の電動発電機装置において、流動的かつ変動的に変化する車両の運転状態に追従することができ、燃費低減効果を高めることができる。 As a result, the number of actual turns can be increased or decreased at high speed for each phase, so the output of the motor or generator can be changed at high speed, or the operation of the rotating electrical machine can be switched between the motor and generator at high speed. can do. For this reason, in the motor generator device for vehicles, it can follow the driving state of the vehicle which changes fluidly and variably, and can improve the fuel consumption reduction effect.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1の実施例の電動発電機装置を示す全体構成図であり、 図2Aは、第1の実施例の大モードの動作におけるスイッチのオン、オフの推移を示す推移図であり、 図2Bは、第1の実施例のインバータ操作においてスイッチの内、オンまたはオフするものの組合せ、および、出力の大きさの一例を示す表であり、 図3(a)は、第1の実施例の回転電機を電動機として動作させたときの回転数とトルクとの相関を示す図であり、図3(b)は、第1の実施例の回転電機を発電機として動作させたときの回転数と発電電流との相関を示す図であり、 図4は、第1の実施例の電動発電機装置の動作例を示す特性図であり、 図5は、第2の実施例の電動発電機装置の全体構成図であり、 図6は、第2の実施例の内燃機関の行程別の電動機と発電機との切替推移を示すタイムチャートであり、 図7は、第1の実施例における制御部の機能の一部を説明するブロック図であり、 図8は、第2の実施例における制御部の機能の一部を説明するブロック図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an overall configuration diagram illustrating a motor generator device according to a first embodiment. FIG. 2A is a transition diagram showing transition of on / off of the switch in the large mode operation of the first embodiment; FIG. 2B is a table showing an example of combinations of switches that are turned on or off in the inverter operation of the first embodiment, and output magnitudes; FIG. 3A is a diagram showing the correlation between the rotational speed and the torque when the rotating electrical machine of the first embodiment is operated as an electric motor, and FIG. 3B is the rotation of the first embodiment. It is a diagram showing the correlation between the rotational speed and the generated current when the electric machine is operated as a generator, FIG. 4 is a characteristic diagram showing an operation example of the motor generator device of the first embodiment. FIG. 5 is an overall configuration diagram of the motor generator device of the second embodiment. FIG. 6 is a time chart showing the switching transition of the electric motor and the generator for each stroke of the internal combustion engine of the second embodiment, FIG. 7 is a block diagram illustrating a part of the function of the control unit in the first embodiment. FIG. 8 is a block diagram for explaining a part of the functions of the control unit in the second embodiment.
 以下、発明を実施するための形態を、実施例を用いて説明する。なお、実施例は具体的な一例を開示するものであり、本発明が実施例に限定されないことは言うまでもない。 Hereinafter, modes for carrying out the invention will be described using examples. In addition, an Example discloses a specific example, and it cannot be overemphasized that this invention is not limited to an Example.
 〔第1の実施例〕
 第1の実施例の電動発電機装置1の構成を、図1を用いて説明する。
 電動発電機装置(以下、システムと呼ぶ。)1は、車両に設けられるものであり、車載バッテリ(以下、単にバッテリと呼ぶ。)2からの給電により出力を発生させて内燃機関3を始動したり、内燃機関3の出力をアシストしたり、内燃機関3の出力により誘起される電圧によってバッテリ2を充電したりする。
 そして、システム1は、図1に示すように、回転電機4、駆動回路5、および、制御部6(制御手段として機能する)を備える。
[First embodiment]
The configuration of the motor generator device 1 according to the first embodiment will be described with reference to FIG.
A motor generator device (hereinafter referred to as a system) 1 is provided in a vehicle and generates an output by power feeding from an on-vehicle battery (hereinafter simply referred to as a battery) 2 to start the internal combustion engine 3. Or assisting the output of the internal combustion engine 3 or charging the battery 2 with a voltage induced by the output of the internal combustion engine 3.
And the system 1 is provided with the rotary electric machine 4, the drive circuit 5, and the control part 6 (functioning as a control means), as shown in FIG.
 まず、回転電機4は、内燃機関3を始動したり、内燃機関3の出力をアシストしたりする電動機、または、バッテリ2を充電する発電機として動作するものである。回転電機4は、例えば、固定子にU相、V相およびW相の3相の巻線7U、7V、7Wがスター結線され、回転子に永久磁石が内蔵されたものである。なお、回転電機4の回転子は、内燃機関3のクランクシャフトに直結されている。 First, the rotating electrical machine 4 operates as an electric motor that starts the internal combustion engine 3 or assists the output of the internal combustion engine 3 or a generator that charges the battery 2. In the rotating electrical machine 4, for example, U-phase, V-phase, and W- phase windings 7U, 7V, and 7W are star-connected to a stator, and a permanent magnet is built into the rotor. Note that the rotor of the rotating electrical machine 4 is directly connected to the crankshaft of the internal combustion engine 3.
 また、回転電機4では、巻線7U、7V、7Wに中間タップ8U、8V、8Wを設けることで、実ターン数を相毎で可変にしている。
 ここで、実ターン数とは、巻線7U、7V、7Wのそれぞれの内、電動機としての動作においてバッテリ2からの給電により通電される部分のターン数、または、発電機としての動作において誘起電圧をバッテリ2に供給する部分のターン数である。
Further, in the rotating electrical machine 4, the number of actual turns is made variable for each phase by providing intermediate taps 8U, 8V, 8W on the windings 7U, 7V, 7W.
Here, the actual number of turns refers to the number of turns in each of the windings 7U, 7V, and 7W that is energized by power feeding from the battery 2 in the operation as an electric motor, or the induced voltage in the operation as a generator. Is the number of turns of the portion that supplies to the battery 2.
 また、回転電機4の巻線7U~7Wでは、電動機としての動作においてバッテリ2からの給電により通電される部分、または、発電機としての動作において誘起電圧をバッテリ2に供給する部分の抵抗値が相毎で可変であり、電流値が可変となる。 In addition, in the windings 7U to 7W of the rotating electrical machine 4, the resistance value of a portion that is energized by power supply from the battery 2 in the operation as an electric motor or a portion that supplies an induced voltage to the battery 2 in the operation as a generator. It is variable for each phase, and the current value is variable.
 具体的には、巻線7Uでは、2つの巻線7U1、7U2が直列接続しており、巻線7U1と、巻線7U2との接続部に中間タップ8Uが設けられている。同様に、巻線7Vでは、2つの巻線7V1、7V2が直列接続しており、巻線7V1と、巻線7V2との接続部に中間タップ8Vが設けられている。巻線7Wでは、2つの巻線7W1、7W2が直列接続しており、巻線7W1と、巻線7W2との接続部に中間タップ8Wが設けられている。これにより、回転電機4では、実ターン数が相毎に可変であり、後記するように駆動回路5によって全相の実ターン数を変更することができる。 Specifically, in the winding 7U, two windings 7U1 and 7U2 are connected in series, and an intermediate tap 8U is provided at a connection portion between the winding 7U1 and the winding 7U2. Similarly, in the winding 7V, two windings 7V1 and 7V2 are connected in series, and an intermediate tap 8V is provided at a connection portion between the winding 7V1 and the winding 7V2. In the winding 7W, two windings 7W1 and 7W2 are connected in series, and an intermediate tap 8W is provided at a connection portion between the winding 7W1 and the winding 7W2. Thereby, in the rotary electric machine 4, the actual number of turns is variable for each phase, and the actual number of turns of all phases can be changed by the drive circuit 5 as described later.
 また、巻線7U2、7V2、7W2のそれぞれにおいて中間タップ8U、8V、8Wを形成しない方の端子が中性点として接続されてスター結線されている。
 なお、以下の説明では、巻線7U1、7V1、7W1のそれぞれにおいて中間タップ8U、8V、8Wを形成しない方の端子を、U端子9U、V端子9V、W端子9Wと呼ぶ。また、巻線7U1、7U2、7V1、7V2、7W1、7W2のそれぞれのターン数は、説明を簡単にするため、全て同一の整数nで同じ抵抗値とする。
Further, terminals of the windings 7U2, 7V2, and 7W2 that do not form the intermediate taps 8U, 8V, and 8W are connected as a neutral point and star-connected.
In the following description, terminals on which the intermediate taps 8U, 8V, and 8W are not formed in the windings 7U1, 7V1, and 7W1 are referred to as a U terminal 9U, a V terminal 9V, and a W terminal 9W, respectively. In addition, the number of turns of the windings 7U1, 7U2, 7V1, 7V2, 7W1, and 7W2 are all the same integer n and the same resistance value for the sake of simplicity.
 また、回転電機4には、回転子の磁石位置を検出する位置センサ4aが付設されている。なお、位置センサ4aは、固定子の極間隔で配置された3個のホールセンサPU、PV、PWからなる。 Further, the rotary electric machine 4 is provided with a position sensor 4a for detecting the magnet position of the rotor. The position sensor 4a is composed of three hall sensors PU, PV, and PW arranged at the stator pole intervals.
 次に、駆動回路5は、2つのインバータ回路5a、5bを有する。
 インバータ回路5a、5bは、両方とも、2つの半導体スイッチSが直列に接続し、かつ、2つの半導体スイッチSの直列接続が3つ並列に接続した3相ブリッジ回路である(以下、半導体スイッチSをスイッチSと呼ぶ。)。
Next, the drive circuit 5 includes two inverter circuits 5a and 5b.
Each of the inverter circuits 5a and 5b is a three-phase bridge circuit in which two semiconductor switches S are connected in series, and three series connections of two semiconductor switches S are connected in parallel (hereinafter referred to as semiconductor switch S). Is referred to as a switch S).
 そして、一方のインバータ回路5aでは、直列接続の一方の端子がバッテリ2のプラス極に接続するとともに、他方の端子がアースに接続している。さらに、直列接続の3つの中点がそれぞれU端子9U、V端子9V、W端子9Wに接続している。また、他方のインバータ回路5bでは、直列接続の一方の端子がバッテリ2のプラス極に接続するとともに、他方の端子がアースに接続している。さらに、直列接続の3つの中点がそれぞれ中間タップ8U、8V、8Wに接続している。 In one inverter circuit 5a, one terminal connected in series is connected to the positive electrode of the battery 2, and the other terminal is connected to the ground. Further, the three midpoints of the series connection are connected to the U terminal 9U, the V terminal 9V, and the W terminal 9W, respectively. In the other inverter circuit 5b, one terminal connected in series is connected to the positive electrode of the battery 2, and the other terminal is connected to the ground. Further, the three midpoints of the series connection are connected to the intermediate taps 8U, 8V, and 8W, respectively.
 なお、インバータ回路5a、5bには平滑コンデンサ10が並列に接続している。また、スイッチSは、例えば、Nチャネル型のパワーMOSFETである。
 以下の説明では、インバータ回路5aの3つの直列接続の内、中点がU端子9Uに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSup1、Sun1と呼ぶことがある。また、中点がV端子9Vに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSvp1、Svn1と呼ぶことがある。さらに、中点がW端子9Wに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSwp1、Swn1と呼ぶことがある。
A smoothing capacitor 10 is connected in parallel to the inverter circuits 5a and 5b. The switch S is, for example, an N channel type power MOSFET.
In the following description, regarding the two switches S included in the three series connections of the inverter circuit 5a whose middle point is connected to the U terminal 9U, the switch Sup1, Sometimes called Sun1. Further, regarding the two switches S included in the middle point connected to the V terminal 9V, the high potential side switch S and the low potential side switch S may be referred to as switches Svp1 and Svn1, respectively. Further, regarding the two switches S included in the middle point connected to the W terminal 9W, the high potential side switch S and the low potential side switch S may be referred to as switches Swp1 and Swn1, respectively.
 同様に、インバータ回路5bの3つの直列接続の内、中点が中間タップ8Uに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSup2、Sun2と呼ぶことがある。また、中点が中間タップ8Vに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSvp2、Svn2と呼ぶことがある。さらに、中点が中間タップ8Wに接続するものに含まれる2つのスイッチSに関し、高電位側、低電位側のスイッチSをそれぞれスイッチSwp2、Swn2と呼ぶことがある。 Similarly, regarding the two switches S included in the three serial connections of the inverter circuit 5b whose middle point is connected to the intermediate tap 8U, the high potential side switch S and the low potential side switch S are respectively referred to as switches Sup2 and Sun2. Sometimes called. Regarding the two switches S included in the middle point connected to the intermediate tap 8V, the high-potential side and low-potential side switches S may be referred to as switches Svp2 and Svn2, respectively. Further, regarding the two switches S included in the middle point connected to the intermediate tap 8W, the high potential side switch S and the low potential side switch S may be referred to as switches Swp2 and Swn2, respectively.
 次に、制御部6(制御手段)は、回転電機4の動作を制御する電子制御ユニット(ECU:Electronic Control Unit)である。制御部6は、例えば、入力された信号を処理する入力回路6A、入力された信号に基づき制御処理や演算処理を行うCPU(Central Processing Unit:中央処理装置)6B、制御処理や演算処理に必要なデータやプログラム等を記憶して保持する各種のメモリ6C、CPUの処理結果に基づき必要な信号を出力する出力回路6D等を有する。 Next, the control unit 6 (control means) is an electronic control unit (ECU: Electronic Control Unit) that controls the operation of the rotating electrical machine 4. The control unit 6 includes, for example, an input circuit 6A that processes an input signal, a CPU (Central Processing Unit) 6B that performs control processing and arithmetic processing based on the input signal, and is necessary for control processing and arithmetic processing. Various memories 6C for storing and holding various data, programs, etc., an output circuit 6D for outputting necessary signals based on the processing results of the CPU, and the like.
 そして、制御部6は、位置センサ4aの出力に応じ、次のインバータ操作を実行することで回転電機4の動作を制御する。すなわち、インバータ操作とは、インバータ回路5a、5bが有する12個のスイッチSの中から、逐次、オンまたはオフするものを決定するとともに、逐次、オンまたはオフすべきスイッチSを駆動することである。 And the control part 6 controls operation | movement of the rotary electric machine 4 by performing the next inverter operation according to the output of the position sensor 4a. That is, the inverter operation is to determine which one of the 12 switches S included in the inverter circuits 5a and 5b is to be sequentially turned on or off and to drive the switch S that is to be sequentially turned on or off. .
 そして、制御部6は、インバータ操作を実行することで、相毎に実ターン数を変更する。より具体的には、制御部6は、インバータ操作において、全相の実ターン数に関し、2n、3n、4nの3つの数値の中から選択する。
 例えば、電動機としての動作において巻線7U、7Vに給電する場合、スイッチSup1、Svn1をオンすべきものとして選択すると、巻線7U1、7U2、7V1、7V2にバッテリ2から給電されるので、U相、V相それぞれの実ターン数は2n、2nとなり、全相の実ターン数は4nとなる。
And the control part 6 changes the number of real turns for every phase by performing inverter operation. More specifically, the control unit 6 selects from three numerical values of 2n, 3n, and 4n regarding the actual number of turns in all phases in the inverter operation.
For example, when power is supplied to the windings 7U and 7V in the operation as an electric motor, if the switches Sup1 and Svn1 are selected to be turned on, the windings 7U1, 7U2, 7V1 and 7V2 are supplied with power from the battery 2, The actual number of turns for each V phase is 2n and 2n, and the actual number of turns for all phases is 4n.
 また、スイッチSup2、Svn2をオンすべきものとして選択すると、巻線7U2、7V2にバッテリ2から給電されるので、U相、V相それぞれの実ターン数はn、nとなり、全相の実ターン数は2nとなる。
 また、スイッチSup1、Svn2をオンすべきものとして選択すると、巻線7U1、7U2、7V2にバッテリ2から給電されるので、U相、V相それぞれの実ターン数は2n、nとなり、全相の実ターン数は3nとなる。
If the switches Sup2 and Svn2 are selected to be turned on, the windings 7U2 and 7V2 are supplied with power from the battery 2, so that the actual number of turns for the U phase and the V phase are n and n, respectively. Is 2n.
If the switches Sup1 and Svn2 are selected to be turned on, the windings 7U1, 7U2 and 7V2 are supplied with power from the battery 2, so that the actual number of turns of the U phase and V phase is 2n and n, respectively. The number of turns is 3n.
 さらに、スイッチSvn1、Sup2をオンすべきものとして選択すると、巻線7U2、7V1、7V2にバッテリ2から給電されるので、U相、V相それぞれの実ターン数はn、2nとなり、全相の実ターン数は3nとなる。
 以下、インバータ操作において、3相の巻線7U~7Wの内、2相にバッテリ2から電圧を印加したり、2相から誘起電圧をバッテリ2に供給したりするときの全相の実ターン数として4n、2n、3nを選択するモードを、それぞれ、大モード、小モード、中モードと呼ぶ。
Further, if the switches Svn1 and Sup2 are selected to be turned on, the windings 7U2, 7V1 and 7V2 are supplied with power from the battery 2, so that the actual number of turns of the U phase and V phase is n and 2n, respectively. The number of turns is 3n.
Hereinafter, in the inverter operation, the actual number of turns in all phases when voltage is applied from the battery 2 to the two phases of the three-phase windings 7U to 7W or the induced voltage is supplied to the battery 2 from the two phases. The modes for selecting 4n, 2n, and 3n are referred to as a large mode, a small mode, and a medium mode, respectively.
 ここで、図2Aは、電動機としての大モードの動作におけるスイッチSのオン、オフの推移を、内燃機関3の回転数Neを横軸として示すものであり、図2Bは、大、小、中モードのそれぞれにおいて、12個のスイッチSの内、オンまたはオフするものの組合せの一例を示すものである。 Here, FIG. 2A shows the on / off transition of the switch S in the large mode operation as the electric motor, with the rotational speed Ne of the internal combustion engine 3 as the horizontal axis, and FIG. 2B shows the large, small, medium In each mode, an example of a combination of 12 switches S that are turned on or off is shown.
 すなわち、大モード、小モードでの電動機としての動作では、位置センサ4aの信号に応じて、それぞれ、第1~第3パターン、第4~第6パターンが順次繰り返される。また、中モードでは、第7~第9パターン、または、第10~第12パターンが順次繰り返される。なお、中モードでは、例えば、第7パターン→第11パターン→第9パターン→第10パターン→のように、第7~第9パターンのグループと、第10~第12パターンのグループとを交互に繰り返すことで、巻線7U~7WやスイッチSの発熱を分散させて抑制することができる。 That is, in the operation as the electric motor in the large mode and the small mode, the first to third patterns and the fourth to sixth patterns are sequentially repeated according to the signal of the position sensor 4a, respectively. In the middle mode, the seventh to ninth patterns or the tenth to twelfth patterns are sequentially repeated. In the middle mode, for example, a group of the seventh to ninth patterns and a group of the tenth to twelfth patterns are alternately arranged as in the seventh pattern → the eleventh pattern → the ninth pattern → the tenth pattern →. By repeating, the heat generation of the windings 7U to 7W and the switch S can be dispersed and suppressed.
 また、回転電機4を電動機として動作させたときの回転数とトルクとの相関、および、回転電機4を発電機として動作させたときの回転数と発電電流との相関は、大、中、小モードのそれぞれで、例えば、図3に示すようになる。 Further, the correlation between the rotational speed and the torque when the rotating electrical machine 4 is operated as an electric motor, and the correlation between the rotational speed and the generated current when the rotating electrical machine 4 is operated as a generator are large, medium, and small. In each mode, for example, as shown in FIG.
 図3によれば、電動機としての動作では、大モードは、内燃機関3の始動時や、内燃機関3の回転数が低速回転域(例えば、2500rpm付近まで)にあるときのアシストに適している。また、中モードは、内燃機関3の回転数が中速回転域(例えば、2000rpmから3500rpm付近まで)にあるときのアシストに適している。さらに、小モードは、内燃機関3の回転数が高回転域(例えば、3000rpmから5500rpm付近まで)にあるときのアシストに適している。なお、巻線7U~7Wの内、中モード、小モードの電動機としての動作においてバッテリ2から給電されない巻線における誘起電圧は、後記するように、バッテリ2の充電に使用したり、短絡したりしてもよい。 According to FIG. 3, in the operation as an electric motor, the large mode is suitable for assist when the internal combustion engine 3 is started or when the rotational speed of the internal combustion engine 3 is in a low speed rotation range (for example, up to about 2500 rpm). . Further, the middle mode is suitable for assist when the rotation speed of the internal combustion engine 3 is in a medium speed rotation range (for example, from 2000 rpm to around 3500 rpm). Further, the small mode is suitable for assist when the rotation speed of the internal combustion engine 3 is in a high rotation range (for example, from 3000 rpm to around 5500 rpm). Of the windings 7U to 7W, the induced voltage in the winding that is not supplied with power from the battery 2 during operation as a middle mode or small mode motor can be used for charging the battery 2 or short-circuited as described later. May be.
 また、図3によれば、発電機としての動作では、大モードは、内燃機関3の回転数が低い回転数域(例えば、800rpm付近)からバッテリ2への充電が可能である。また、中モードは、実ターン数の低減により発電電流が低下するので、中速回転域(例えば、3000rpm付近)からのバッテリ2の充電に適している。また、小モードは、更なる実ターン数の低減により更に発電電流が低下するので、高回転域(例えば、5000rpm付近)からのバッテリ2の充電に適している。 Further, according to FIG. 3, in the operation as a generator, in the large mode, the battery 2 can be charged from the rotational speed range (for example, around 800 rpm) where the rotational speed of the internal combustion engine 3 is low. Further, the medium mode is suitable for charging the battery 2 from the medium speed rotation region (for example, around 3000 rpm) because the generated current is reduced by reducing the actual number of turns. In addition, the small mode is suitable for charging the battery 2 from a high rotation range (for example, around 5000 rpm) because the generated current is further reduced by further reducing the actual number of turns.
 さらに、システム1は、次の回転数検出器12(回転数検出手段として機能する)および電圧検出器13(電圧検出手段として機能する)を備える(図1参照。)。
 まず、回転数検出器12は、内燃機関3の回転数を検出するものであり、例えば、内燃機関3のクランク角を検出する周知構造のクランク角センサである。すなわち、回転数検出器12は、クランクシャフトの外周に設けた突起でクランク角を検出するものであり、内燃機関3の点火制御や燃料噴射制御に使用されている。
 次に、電圧検出器13は、バッテリ2の電圧を検出するものであり、例えば、周知構造のA/D変換回路として設けられている。
Further, the system 1 includes a next rotation speed detector 12 (functioning as a rotation speed detection means) and a voltage detector 13 (functioning as a voltage detection means) (see FIG. 1).
First, the rotational speed detector 12 detects the rotational speed of the internal combustion engine 3 and is, for example, a crank angle sensor having a known structure for detecting the crank angle of the internal combustion engine 3. In other words, the rotational speed detector 12 detects the crank angle with a protrusion provided on the outer periphery of the crankshaft, and is used for ignition control and fuel injection control of the internal combustion engine 3.
Next, the voltage detector 13 detects the voltage of the battery 2, and is provided as an A / D conversion circuit having a known structure, for example.
 そして、制御部6は、回転数検出器12および電圧検出器13の検出値に応じて、大、小、中モードの中から1つを選択してインバータ操作を実行し、回転電機4を電動機または発電機として動作させる。
 まず、制御部6は、電圧検出器13による検出値の経時変化を用いて予測されるバッテリ2の充電収支、または、内燃機関3を始動させたときの電圧検出器13による検出値に基づき判断されるバッテリ2の充電状態に応じて、回転電機4を電動機として動作させるか否かを決める(図7、ブロックS1参照)。図7は、制御部6が実行する機能の一部を説明するもので、CPU6Bがメモリ6Cから、この第1の実施例において与えられた制御プログラムを読み出して実行することにより、機能的に実現される。
Then, the control unit 6 executes the inverter operation by selecting one of the large, small, and medium modes according to the detection values of the rotation speed detector 12 and the voltage detector 13, so that the rotating electrical machine 4 is driven by the electric motor. Or operate as a generator.
First, the control unit 6 makes a determination based on the charging balance of the battery 2 predicted using the change over time of the detection value by the voltage detector 13 or the detection value by the voltage detector 13 when the internal combustion engine 3 is started. Whether or not the rotating electrical machine 4 is operated as an electric motor is determined according to the state of charge of the battery 2 (see FIG. 7, block S1). FIG. 7 illustrates a part of the functions executed by the control unit 6. The CPU 6B is functionally realized by reading out and executing the control program given in the first embodiment from the memory 6C. Is done.
 具体的には、予測されるバッテリ2の充電収支がマイナスである場合、または、内燃機関3を始動させるときのバッテリ2の電圧の検出値が基準値よりも低い場合、制御部6は、バッテリ2を充電する必要性が高いものとみなし、回転電機4が、所定期間、発電機として動作するように制御し、回転電機4を電動機として動作させない。つまり、制御部6は、巻線7U~7Wで誘起される電圧がバッテリ2の電圧よりも高くなるように、実ターン数を決める。 Specifically, when the estimated charge balance of the battery 2 is negative, or when the detected value of the voltage of the battery 2 when starting the internal combustion engine 3 is lower than the reference value, the control unit 6 Therefore, the rotating electrical machine 4 is controlled to operate as a generator for a predetermined period, and the rotating electrical machine 4 is not operated as an electric motor. That is, the control unit 6 determines the actual number of turns so that the voltage induced in the windings 7U to 7W is higher than the voltage of the battery 2.
 次に、制御部6は、内燃機関3の回転数に対するあらかじめ設定された2つの閾値(第1の閾値C1、第2の閾値C2)を有する。このうち、第1の閾値C1は、図3(a)に示す如く、回転電機4を電動機として動作させる場合において、一例として、大モードのトルク曲線のトルク=0になる回転数に設定されている。この第1の閾値C1は、このトルク=0を呈する回転数以下であってもよい。また、第2の閾値C2も同様に、一例として、中モードのトルク曲線のトルク=0になる回転数に設定されている。この第2の閾値C2は、このトルク=0を呈する回転数以下であってもよい。なお、小モードにおいてトルク=0を呈する回転数は、回転駆動可能な限界回転数である。 Next, the control unit 6 has two threshold values (a first threshold value C1 and a second threshold value C2) set in advance with respect to the rotational speed of the internal combustion engine 3. Among these, as shown in FIG. 3A, the first threshold C1 is set to a rotational speed at which the torque of the large mode torque curve becomes zero as an example when the rotating electrical machine 4 is operated as an electric motor. Yes. The first threshold C1 may be equal to or less than the number of revolutions at which this torque = 0. Similarly, as an example, the second threshold C2 is set to a rotational speed at which the torque of the medium mode torque curve = 0. The second threshold C2 may be equal to or less than the number of revolutions at which this torque = 0. It should be noted that the rotational speed that exhibits torque = 0 in the small mode is a limit rotational speed that can be rotationally driven.
 そこで、制御部6、即ちCPU6Bはメモリ6Cから読み出した制御プログラムを実行することで、インバータ5a,5bの駆動のモード制御B1を行い、相互毎の実ターン数の決定機能を発揮する。このため、制御部6は、回転電機4を電動機として動作させる場合、回転数検出器12による検出値と第1、第2の閾値C1,C2との比較判断を行い(図7、閾値比較判断B11を参照)、その判断の結果に応じて、相毎に実ターン数を決定する(図7、モード選択指令B12を参照)。 Therefore, the control unit 6, that is, the CPU 6B executes the control program read from the memory 6C, thereby performing the mode control B1 for driving the inverters 5a and 5b, and exhibits the function of determining the actual number of turns for each other. Therefore, when the rotating electrical machine 4 is operated as an electric motor, the control unit 6 performs a comparison determination between the detection value by the rotation speed detector 12 and the first and second threshold values C1 and C2 (FIG. 7, threshold comparison determination). The actual number of turns is determined for each phase according to the result of the determination (see FIG. 7, mode selection command B12).
 具体的には、制御部6は、内燃機関3の回転数に対して第1、第2の2つの閾値C1、C2(C1<C2)を有する。そして、制御部6は、回転数検出器12による検出値が第1の閾値C1よりも小さいときには、大モード、中モード、及び小モードの何れかを選択して回転電機4を電動機として動作させ、低速高トルクの出力で内燃機関3の出力をアシストする。 Specifically, the control unit 6 has first and second threshold values C1 and C2 (C1 <C2) with respect to the rotational speed of the internal combustion engine 3. Then, when the value detected by the rotation speed detector 12 is smaller than the first threshold C1, the control unit 6 selects any one of the large mode, the medium mode, and the small mode and operates the rotating electrical machine 4 as an electric motor. Assist the output of the internal combustion engine 3 with the output of low speed and high torque.
 また、制御部6は、回転数検出器12による検出値が第1の閾値C1以上であって、かつ、第2の閾値C2よりも小さいときに中モード又は小モードを選択して回転電機4を電動機として動作させ、中速中トルクの出力で内燃機関3の出力をアシストする。
 さらに、制御部6は、回転数検出器12による検出値が閾値C2以上であって、限界周波数以下のときに小モードを採用して回転電機4を電動機として動作させる。これにより、高速低トルクの出力で内燃機関3をアシストする。
Further, the control unit 6 selects the medium mode or the small mode when the value detected by the rotation speed detector 12 is equal to or greater than the first threshold C1 and smaller than the second threshold C2, and the rotating electrical machine 4 is selected. Is operated as an electric motor, and the output of the internal combustion engine 3 is assisted by the output of the medium-speed medium torque.
Further, the control unit 6 employs the small mode when the value detected by the rotation speed detector 12 is equal to or higher than the threshold C2 and is equal to or lower than the limit frequency, and operates the rotating electrical machine 4 as an electric motor. Thereby, the internal combustion engine 3 is assisted with a high-speed and low-torque output.
 また、制御部6は、大モード以外のインバータ操作において、オンすべきものとして選択されていないスイッチSに付随する寄生ダイオードによるバッテリ2の充電を制御する(図7、充電制御B2を参照)。例えば、第4パターンを選択している場合、オンすべきものとして選択されているスイッチSは、スイッチSup2、Swp2、Svn2であり、巻線7U2、7V2、7W2にバッテリ2から給電される。このため、例えば、巻線7U1に誘起される電圧は、スイッチSun1をオン、オフ操作することで、バッテリ2の電圧を制御しながら、スイッチSup1に付随する寄生ダイオードによりバッテリ2に充電することができる(例えば、図2A中の丸で囲った部分を参照。)。 Further, the control unit 6 controls the charging of the battery 2 by the parasitic diode associated with the switch S that is not selected to be turned on in the inverter operation other than the large mode (see FIG. 7, charging control B2). For example, when the fourth pattern is selected, the switches S selected to be turned on are the switches Sup2, Swp2, and Svn2, and the windings 7U2, 7V2, and 7W2 are supplied with power from the battery 2. Therefore, for example, the voltage induced in the winding 7U1 can be charged to the battery 2 by a parasitic diode associated with the switch Sup1 while controlling the voltage of the battery 2 by turning on and off the switch Sun1. (See, for example, the circled portion in FIG. 2A.)
 ここで、システム1の動作特性の一例を、図4を用いて説明する。
 図4は、内燃機関3の回転数がN1(>第1の閾値C1)とN2(>第2の閾値C2)との間で推移する場合の、動作特性を例示したものである。図4において横軸は内燃機関3の回転数Neを示し、縦軸はバッテリ2と駆動回路5との間に流れる電流Iを示し、発電機として動作する場合に流れる方向をプラスとしている。また、発電機、電動機として流れる電流をそれぞれ発電電流、モータ電流と呼んで実線で示している。さらに、他の電気負荷に流れる電流を電気負荷電流と呼んで点線で示している。
Here, an example of the operating characteristics of the system 1 will be described with reference to FIG.
FIG. 4 exemplifies operating characteristics when the rotational speed of the internal combustion engine 3 changes between N1 (> first threshold C1) and N2 (> second threshold C2). In FIG. 4, the horizontal axis indicates the rotational speed Ne of the internal combustion engine 3, and the vertical axis indicates the current I flowing between the battery 2 and the drive circuit 5, and the direction of flow when operating as a generator is positive. In addition, the currents flowing as the generator and the motor are called the generated current and the motor current, respectively, and are indicated by solid lines. Furthermore, a current flowing through another electric load is called an electric load current and indicated by a dotted line.
 図4によれば、発電機としての動作では、発電電流が電気負荷電流よりも大きくなるように、大モードが選択される。また、電動機としての動作では、内燃機関3の回転数が第2の閾値C2よりも小さい範囲では例えば中モードが選択され、第2の閾値C2よりも大きい範囲では小モードが選択される。
 そして、経時的に動作を見ると、回転数Neおよび電流Iは、発電電流の実線と、モータ電流の実線との間を往来する。
According to FIG. 4, in the operation as the generator, the large mode is selected so that the generated current is larger than the electric load current. In the operation as an electric motor, for example, the medium mode is selected in the range where the rotational speed of the internal combustion engine 3 is smaller than the second threshold C2, and the small mode is selected in the range larger than the second threshold C2.
When the operation is observed over time, the rotational speed Ne and the current I travel between the solid line of the generated current and the solid line of the motor current.
 〔第1の実施例の効果〕
 第1の実施例のシステム1によれば、回転電機4は、巻線7U~7Wのそれぞれに中間タップ8U~8Wを設けることで、実ターン数を相毎で可変にしている。
[Effect of the first embodiment]
According to the system 1 of the first embodiment, the rotating electrical machine 4 is provided with the intermediate taps 8U to 8W in the windings 7U to 7W, respectively, so that the actual number of turns can be varied for each phase.
 また、制御部6は、インバータ回路5a、5bが有するスイッチSの中から、逐次、オンまたはオフするものを選択するとともに、逐次、選択すべきスイッチSを変更するインバータ操作を実行することで、回転電機4の動作を制御する。さらに、制御部6は、インバータ操作を実行することで、相毎に実ターン数を変更する。
 これにより、相毎に実ターン数を高速で増減することができるので、電動機または発電機としての出力を高速で変更したり、回転電機4の動作を電動機と発電機との間で高速で切り替えたりすることができる。このため、システム1において、燃費低減効果を高めることができる。例えば、高回転時に発生した誘起電圧の内、従来は短絡によりアースに逃していた量を低減してバッテリ2への充電量を増やすことで、燃費低減効果を高めることができる。
Further, the control unit 6 selects one that is sequentially turned on or off from the switches S that the inverter circuits 5a and 5b have, and sequentially executes an inverter operation that changes the switch S to be selected. The operation of the rotating electrical machine 4 is controlled. Furthermore, the control part 6 changes the number of real turns for every phase by performing inverter operation.
As a result, the number of actual turns can be increased / decreased at high speed for each phase, so that the output of the motor or generator can be changed at high speed, or the operation of the rotating electrical machine 4 can be switched between the motor and generator at high speed. Can be. For this reason, in the system 1, the fuel consumption reduction effect can be enhanced. For example, the fuel consumption reduction effect can be enhanced by reducing the amount of the induced voltage generated at the time of high rotation that has conventionally been lost to the ground due to a short circuit and increasing the amount of charge to the battery 2.
 また、システム1は、内燃機関3の回転数を検出する回転数検出器12を備え、制御部6は、内燃機関3の回転数に対する閾値C1、C2(C1<C2)を有し、回転数検出器12による検出値と閾値C1、C2との比較の結果に応じて、相毎に実ターン数を変更する。
 これにより、内燃機関3の負荷変動等に対し、回転電機4の出力を高速で変更することができる。
Further, the system 1 includes a rotation speed detector 12 that detects the rotation speed of the internal combustion engine 3, and the control unit 6 has threshold values C1 and C2 (C1 <C2) for the rotation speed of the internal combustion engine 3, and the rotation speed. The actual number of turns is changed for each phase according to the result of comparison between the detection value by the detector 12 and the threshold values C1 and C2.
Thereby, the output of the rotary electric machine 4 can be changed at high speed with respect to the load fluctuation of the internal combustion engine 3 or the like.
 また、システム1は、バッテリ2の電圧を検出する電圧検出器13を備える。そして、制御部6は、電圧検出器13による検出値の経時変化を用いて予測されるバッテリ2の充電収支、または、内燃機関3を始動するときの電圧検出器13による検出値に基づき、回転電機4を電動機として動作させるか否かを決める。
 これにより、回転電機4を電動機として動作させることによるバッテリ2の電圧変動が他の電気負荷に及ぼす影響を低減することができる。
The system 1 also includes a voltage detector 13 that detects the voltage of the battery 2. Then, the control unit 6 rotates based on the charge balance of the battery 2 predicted using the change over time of the detection value by the voltage detector 13 or the detection value by the voltage detector 13 when starting the internal combustion engine 3. It is determined whether or not the electric machine 4 is operated as an electric motor.
Thereby, the influence which the voltage fluctuation of the battery 2 by operating the rotary electric machine 4 as an electric motor has on other electric loads can be reduced.
 さらに、制御部6は、インバータ操作でオンすべきものとして選択されていないスイッチSに付随する寄生ダイオードによるバッテリ2の充電を制御する。これにより、充電効率を高めることができる。 Furthermore, the control unit 6 controls the charging of the battery 2 by the parasitic diode associated with the switch S that is not selected to be turned on by the inverter operation. Thereby, charging efficiency can be improved.
 〔第2の実施例〕
 第2の実施例のシステム1を説明する。この第2の実施例において、第1の実施例のシステム1と異なる構成を中心に説明し、第1の実施例で説明した構成と同じ構成には同一符号を用いて、その説明を省略又は簡略化する。
[Second Embodiment]
A system 1 of the second embodiment will be described. In the second embodiment, the description will focus on the configuration different from that of the system 1 of the first embodiment, and the same configurations as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Simplify.
 第2の実施例のシステム1の制御部6では、CPU6Bは、メモリ6Cの、第2の実施形態に係る制御プログラムを読み出して実行することにより、図8に示すように、制御部6の機能を提供する。この機能には、内燃機関3の行程を判定する行程判定部15(図5、図8を参照:行程判定手段として機能する)も含まれる。 In the control unit 6 of the system 1 of the second example, the CPU 6B reads out and executes the control program according to the second embodiment in the memory 6C, as shown in FIG. I will provide a. This function also includes a stroke determination unit 15 (see FIGS. 5 and 8: functions as a stroke determination unit) that determines the stroke of the internal combustion engine 3.
 制御部3は、行程判定部15による判定の結果に応じて、回転電機4を電動機として動作させるか否かを、行程の位置に応じて決める(図8、ブロックB21参照)。行程判定部15は、例えば、回転数検出器12から出力される信号(クランク角を示す信号)、および、内燃機関3の吸気圧を示す信号等により、内燃機関3の行程を判定する。 The control unit 3 determines whether or not to operate the rotating electrical machine 4 as an electric motor according to the determination result by the stroke determination unit 15 according to the position of the stroke (see block B21 in FIG. 8). The stroke determination unit 15 determines the stroke of the internal combustion engine 3 based on, for example, a signal (a signal indicating a crank angle) output from the rotation speed detector 12 and a signal indicating the intake pressure of the internal combustion engine 3.
 そして、例えば、制御部6は、行程判定部15により内燃機関3の行程が少なくとも圧縮行程または爆発行程であると判定されたときに、回転電機4を電動機として動作させる。例えば、図6に示すように、内燃機関3の出力のアシストが特に有効であると考えられる圧縮行程の後半、爆発行程全般、および排気行程の前半に、回転電機4を電動機として動作させ、車両の走行フィーリングを最適なものとする。 For example, when the stroke determination unit 15 determines that the stroke of the internal combustion engine 3 is at least a compression stroke or an explosion stroke, the control unit 6 operates the rotating electrical machine 4 as an electric motor. For example, as shown in FIG. 6, the rotating electrical machine 4 is operated as an electric motor in the second half of the compression stroke, the entire explosion stroke, and the first half of the exhaust stroke, in which the output assist of the internal combustion engine 3 is considered to be particularly effective. The driving feeling is optimized.
 なお、回転電機4を電動機として動作させる期間以外の時期では、制御部6は、回転電機4を発電機として動作させる(図8、ブロックB22を参照)。また、制御部6は、電動機として動作させる期間を、バッテリ2の充電収支に応じて延長したり、短縮したりする(図8、ブロックS23を参照)。つまり、電動機として動作させるとバッテリ2の充電量が低下しすぎると見込まれる場合、制御部6は、電動機として動作させる期間を短縮し、発電機として動作させる期間を拡大する。 In addition, at a time other than the period in which the rotating electrical machine 4 is operated as an electric motor, the control unit 6 operates the rotating electrical machine 4 as a generator (see block B22 in FIG. 8). Moreover, the control part 6 extends or shortens the period operated as an electric motor according to the charge balance of the battery 2 (refer FIG. 8, block S23). That is, when it is expected that the amount of charge of the battery 2 will decrease too much when operated as an electric motor, the control unit 6 shortens the period for operating as an electric motor and expands the period for operating as a generator.
 以上により、第2の実施例のシステム1によれば、内燃機関3の行程に応じて、より細かく、回転電機4の動作を電動機と発電機との間で切り替えることで、さらに、燃費低減効果を高めることができるとともに、車両の走行フィーリングを高めることができる。 As described above, according to the system 1 of the second embodiment, the operation of the rotating electrical machine 4 is more finely switched between the electric motor and the generator according to the stroke of the internal combustion engine 3, thereby further reducing the fuel consumption. As well as the driving feeling of the vehicle.
 〔変形例〕
 本願発明の態様は実施例に限定されず、種々の変形例を考えることができる。
 例えば、実施例のシステム1によれば、相毎に中間タップ8U、8V、8Wが1個ずつ設けられていたが、たとえば、中間タップ8U~8Wを各々2個以上設けるとともに、中間タップ8U~8Wの個数増加に応じてインバータ回路を増やしてもよい。
[Modification]
The aspect of the present invention is not limited to the embodiments, and various modifications can be considered.
For example, according to the system 1 of the embodiment, one intermediate tap 8U, 8V, 8W is provided for each phase. For example, two or more intermediate taps 8U to 8W are provided, and the intermediate taps 8U to 8W are provided. You may increase an inverter circuit according to the increase in the number of 8W.
 また、実施例の巻線7U~7Wによれば、例えば、巻線7Uにおいて巻線7U1、7U2が直列に接続しており、巻線7U1、7U2の実ターン数を同一のnとして説明したが、巻線7U~7Wの態様はこのようなものに限定されない。例えば、巻線7U1を、実ターン数がnである2つの巻線を並列接続することで設けてもよい。 Further, according to the windings 7U to 7W of the embodiment, for example, the windings 7U1 and 7U2 are connected in series in the winding 7U, and the actual number of turns of the windings 7U1 and 7U2 is assumed to be the same n. The manner of the windings 7U to 7W is not limited to this. For example, the winding 7U1 may be provided by connecting two windings having an actual number of turns n in parallel.
 また、回転電機4の回転子の極数および固定子の極数は、3相の電動発電機として一般的な12極、18極に限定されず、巻線の結線方式としてデルタ(Δ)結線を採用してもよい。
 また、回転電機4の動作を電動機と発電機との間で切り替える時期は、実施例に限定されず、車両の走行フィーリング等により適宜変更してもよい。
Further, the number of poles of the rotor and the number of stators of the rotating electrical machine 4 are not limited to 12 poles and 18 poles, which are typical for a three-phase motor generator, and a delta (Δ) connection as a winding connection system. May be adopted.
In addition, the timing of switching the operation of the rotating electrical machine 4 between the electric motor and the generator is not limited to the embodiment, and may be appropriately changed depending on the traveling feeling of the vehicle.
 また、減速時等にエンジンブレーキを増加させるため、制御部6に、次の短絡モードを実行させてもよい。すなわち、短絡モードとは、インバータ操作により、巻線7U~7Wの誘起電圧をアースに短絡させる制御モードであり、回転電機4を電動機や発電機として動作させる制御モードとは異なる。 Further, in order to increase the engine brake at the time of deceleration or the like, the control unit 6 may execute the following short-circuit mode. That is, the short-circuit mode is a control mode in which the induced voltage of the windings 7U to 7W is short-circuited to the ground by an inverter operation, and is different from the control mode in which the rotating electrical machine 4 is operated as an electric motor or a generator.
 例えば、短絡モードにおいて、スイッチSun1、Svn1、Swn1をオンして発電電流を短絡させてもよく、スイッチSun1、Svn1、Swn1に加えてスイッチSun2、Svn2、Swn2をオンしてもよい。 For example, in the short-circuit mode, the switches Sun1, Svn1, and Swn1 may be turned on to short-circuit the generated current, and the switches Sun2, Svn2, and Swn2 may be turned on in addition to the switches Sun1, Svn1, and Swn1.
 このとき、例えば、巻線7U1、7U2、7V1、7V2で発生した発電電流を短絡する場合、スイッチSun1、Svn1をオンすることで短絡が可能であるが、スイッチSun1、Svn1に加えてスイッチSun2、Svn2をオンすることで、短絡時の発熱を分散することができるとともに、巻線の短絡度を高めてブレーキ能力を高めることができる。 At this time, for example, when the generated current generated in the windings 7U1, 7U2, 7V1, and 7V2 is short-circuited, it is possible to short-circuit by turning on the switches Sun1 and Svn1, but in addition to the switches Sun1 and Svn1, the switch Sun2, By turning on Svn2, it is possible to disperse the heat generated at the time of a short circuit, and it is possible to increase the degree of short circuit of the windings and increase the braking capacity.
 なお、発電、走行アシストおよびエンジンブレーキは、適宜、PWM制御等により、その度合いを調節して最適化してもよい。また、短絡モードは、内燃機関3の行程に係わらず、設定した時間、または設定した間隔毎に実行してもよい。 It should be noted that the power generation, travel assist, and engine brake may be optimized by adjusting their degrees as appropriate by PWM control or the like. Further, the short-circuit mode may be executed every set time or every set interval regardless of the stroke of the internal combustion engine 3.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  バッテリ(2)からの給電により出力を発生させて内燃機関(3)の出力をアシストしたり、内燃機関(3)の出力により誘起される電圧によって前記バッテリ(2)を充電したりする車両用の電動発電機装置(1)において、
     前記内燃機関(3)の出力をアシストする電動機、または、前記バッテリ(2)を充電する発電機として動作するものであり、各相の巻線(7U~7W)に中間タップ(8U~8W)を設けることで、前記バッテリ(2)からの給電により通電される部分のターン数、または、誘起された電圧を前記バッテリ(2)に供給する部分のターン数である実ターン数を相毎で可変にした回転電機(4)と、
     前記各相の巻線(7U~7W)に接続する複数のインバータ回路(5a、5b)を有し、このインバータ回路(5a、5b)の中に前記中間タップ(8U~8W)に接続するものが存在する駆動回路(5)と、
     前記複数のインバータ回路(5a、5b)が有する半導体スイッチ(S)の中から、逐次、オンまたはオフするものを選択するとともに、逐次、選択すべき前記半導体スイッチ(S)を変更するインバータ操作を実行することで、前記回転電機(4)の動作を制御する制御手段(6)とを備え、
     この制御手段(6)は、前記インバータ操作を実行することで、相毎に前記実ターン数を変更する電動発電機装置(1)。
    A vehicle for assisting the output of the internal combustion engine (3) by generating an output by feeding power from the battery (2) or charging the battery (2) by a voltage induced by the output of the internal combustion engine (3) In the motor generator device (1) of
    The motor operates as an electric motor for assisting the output of the internal combustion engine (3) or a generator for charging the battery (2), and the intermediate taps (8U to 8W) are provided on the windings (7U to 7W) of the respective phases. By providing the number of turns of the portion energized by the power supply from the battery (2) or the actual number of turns, which is the number of turns of the portion supplying the induced voltage to the battery (2), for each phase. A variable rotating electric machine (4),
    Having a plurality of inverter circuits (5a, 5b) connected to the windings (7U to 7W) of each phase, and connecting to the intermediate tap (8U to 8W) in the inverter circuits (5a, 5b) A drive circuit (5) in which
    From among the semiconductor switches (S) of the plurality of inverter circuits (5a, 5b), one that is sequentially turned on or off is selected, and an inverter operation for sequentially changing the semiconductor switch (S) to be selected is performed. Control means (6) for controlling the operation of the rotating electrical machine (4) by executing,
    This control means (6) is a motor generator device (1) that changes the actual number of turns for each phase by executing the inverter operation.
  2.  請求項1に記載の電動発電機装置(1)において、
     前記内燃機関(3)の回転数を検出する回転数検出手段(12)を備え、
     前記制御手段(6)は、前記内燃機関(3)の回転数に対する閾値(C1、C2)を有し、前記回転数検出手段(12)による検出値と前記閾値(C1、C2)との比較の結果に応じて、相毎に前記実ターン数を変更する電動発電機装置(1)。
    In the motor generator device (1) according to claim 1,
    A rotational speed detecting means (12) for detecting the rotational speed of the internal combustion engine (3);
    The control means (6) has threshold values (C1, C2) for the rotational speed of the internal combustion engine (3), and compares the detected value by the rotational speed detection means (12) with the threshold values (C1, C2). The motor generator apparatus (1) which changes the said actual turn number for every phase according to the result of.
  3.  請求項2に記載の電動発電機装置(1)において、
     前記閾値は、第1の閾値(C1)と、この第1の閾値(C1)よりも大きい第2の閾値(C2)とを有し、前記制御手段(6)は、前記回転数検出手段(12)による検出値が前記第1の閾値(C1)よりも小さいときに前記回転電機(4)を電動機として動作させて低速高トルクの出力で内燃機関(3)の出力をアシストし、前記検出値が前記第1の閾値(C1)よりも大きく、かつ前記第2の閾値(C2)よりも小さいときに中速中トルクの出力で内燃機関(3)の出力をアシストし、または前記検出値が前記第2の閾値(C2)よりも大きいときに高速低トルクの出力で内燃機関(3)をアシストする電動発電機装置(1)。
    The motor generator device (1) according to claim 2,
    The threshold value includes a first threshold value (C1) and a second threshold value (C2) larger than the first threshold value (C1), and the control means (6) includes the rotation speed detection means ( When the detected value by 12) is smaller than the first threshold value (C1), the rotating electrical machine (4) is operated as an electric motor to assist the output of the internal combustion engine (3) with the output of low speed and high torque, and the detection When the value is larger than the first threshold value (C1) and smaller than the second threshold value (C2), the output of the internal combustion engine (3) is assisted by the output of the medium-speed medium torque, or the detected value A motor generator device (1) that assists the internal combustion engine (3) with a high-speed, low-torque output when is greater than the second threshold value (C2).
  4.  請求項1ないし請求項3の内のいずれか一つに記載の電動発電機装置(1)において、
     前記内燃機関(3)の行程を判定する行程判定手段(15)を備え、
     前記制御手段(6)は、前記行程判定手段(15)による判定の結果に応じて、前記回転電機(4)を前記電動機として動作させるか否かを決める電動発電機装置(1)。
    In the motor generator device (1) according to any one of claims 1 to 3,
    Stroke determination means (15) for determining the stroke of the internal combustion engine (3),
    The control means (6) is a motor generator device (1) that determines whether or not to operate the rotating electrical machine (4) as the electric motor according to a result of the determination by the stroke determination means (15).
  5.  請求項4に記載の電動発電機装置(1)において、
     前記回転電機(4)を前記電動機として動作させる期間には、前記行程判定手段(15)により圧縮行程であると判定された時期が含まれる電動発電機装置(1)。
    In the motor generator device (1) according to claim 4,
    The motor generator device (1) in which the period during which the rotating electrical machine (4) is operated as the electric motor includes the time determined by the stroke determination means (15) as the compression stroke.
  6.  請求項1ないし請求項5の内のいずれか1つに記載の電動発電機装置(1)において、
     前記制御手段(6)は、相毎に前記実ターン数を変更することで、全相の前記実ターン数を3通り以上の数値(2n、3n、4n)の中から選択する電動発電機装置(1)。
    In the motor generator device (1) according to any one of claims 1 to 5,
    The control means (6) changes the actual number of turns for each phase, and selects the actual number of turns for all phases from among three or more numerical values (2n, 3n, 4n). (1).
  7.  請求項1ないし請求項6の内のいずれか1つに記載の電動発電機装置(1)において、
     前記バッテリ(2)の電圧を検出する電圧検出手段(13)を備え、
     前記制御手段(6)は、前記電圧検出手段(13)による検出値の経時変化を用いて予測される前記バッテリ(2)の充電収支、または、前記内燃機関(3)を始動するときの前記電圧検出手段(13)による検出値に基づき、前記回転電機(4)を前記電動機として動作させるか否かを決める電動発電機装置(1)。
    In the motor generator device (1) according to any one of claims 1 to 6,
    Voltage detecting means (13) for detecting the voltage of the battery (2);
    The control means (6) is a charge balance of the battery (2) predicted by using a change with time of the detection value by the voltage detection means (13), or when the internal combustion engine (3) is started. A motor generator device (1) for deciding whether or not to operate the rotating electric machine (4) as the electric motor based on a detected value by the voltage detecting means (13).
  8.  請求項1ないし請求項7の内のいずれか1つに記載の電動発電機装置(1)において、
     前記制御手段(6)は、前記インバータ操作でオンすべきものとして選択されていない前記半導体スイッチ(S)に付随する寄生ダイオードによる前記バッテリ(2)の充電を制御する電動発電機装置(1)。
    In the motor generator device (1) according to any one of claims 1 to 7,
    The control means (6) is a motor generator device (1) for controlling charging of the battery (2) by a parasitic diode associated with the semiconductor switch (S) not selected to be turned on by the inverter operation.
  9.  請求項1ないし請求項8の内のいずれか1つに記載の電動発電機装置(1)において、
     前記制御手段(6)は、前記インバータ操作により、前記各相の巻線(7U~7W)に誘起される電圧を短絡させる短絡モードを有する電動発電機装置(1)。
    In the motor generator device (1) according to any one of claims 1 to 8,
    The motor generator device (1) having a short-circuit mode in which the control means (6) short-circuits voltages induced in the windings (7U to 7W) of the phases by the inverter operation.
PCT/JP2016/061400 2015-04-07 2016-04-07 Electromotive power-generator device WO2016163458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680020674.5A CN107534409B (en) 2015-04-07 2016-04-07 Motor generator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-078197 2015-04-07
JP2015078197A JP6421681B2 (en) 2015-04-07 2015-04-07 Motor generator equipment

Publications (1)

Publication Number Publication Date
WO2016163458A1 true WO2016163458A1 (en) 2016-10-13

Family

ID=57073244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061400 WO2016163458A1 (en) 2015-04-07 2016-04-07 Electromotive power-generator device

Country Status (3)

Country Link
JP (1) JP6421681B2 (en)
CN (1) CN107534409B (en)
WO (1) WO2016163458A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220094297A1 (en) * 2020-09-20 2022-03-24 The Boeing Company Protection System for Aircraft Electric Propulsion Motor and Motor Controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199984A (en) * 2010-03-18 2011-10-06 Tokyo Institute Of Technology Motor driving system
US20130175954A1 (en) * 2009-01-16 2013-07-11 International Business Machines Corporation Dynamic reconfiguration-switching of windings in an electric motor used as a generator in an electric vehicle
CN103281034A (en) * 2013-05-03 2013-09-04 哈尔滨工业大学 Multi-phase motor winding switching circuit
JP2013207919A (en) * 2012-03-28 2013-10-07 Asmo Co Ltd Coil changeover device provided to 3-phase ac electric motor, method of detecting short circuit failures of changeover switching element of coil changeover device provided to 3-phase ac electric motor, and method of detecting open circuit failures of changeover switching element of coil changeover device provided to 3-phase ac electric motor
JP2014058825A (en) * 2012-09-18 2014-04-03 Hitachi Constr Mach Co Ltd Construction machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339757B2 (en) * 2004-07-12 2009-10-07 株式会社日立製作所 Vehicle drive power generation system
US7518279B2 (en) * 2007-07-27 2009-04-14 Gm Global Technology Operations, Inc. Electric motor systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175954A1 (en) * 2009-01-16 2013-07-11 International Business Machines Corporation Dynamic reconfiguration-switching of windings in an electric motor used as a generator in an electric vehicle
JP2011199984A (en) * 2010-03-18 2011-10-06 Tokyo Institute Of Technology Motor driving system
JP2013207919A (en) * 2012-03-28 2013-10-07 Asmo Co Ltd Coil changeover device provided to 3-phase ac electric motor, method of detecting short circuit failures of changeover switching element of coil changeover device provided to 3-phase ac electric motor, and method of detecting open circuit failures of changeover switching element of coil changeover device provided to 3-phase ac electric motor
JP2014058825A (en) * 2012-09-18 2014-04-03 Hitachi Constr Mach Co Ltd Construction machine
CN103281034A (en) * 2013-05-03 2013-09-04 哈尔滨工业大学 Multi-phase motor winding switching circuit

Also Published As

Publication number Publication date
JP2016201860A (en) 2016-12-01
CN107534409B (en) 2020-03-03
CN107534409A (en) 2018-01-02
JP6421681B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US9979329B2 (en) Power converting device and power converting system
JP4483911B2 (en) Rotating electric machine for vehicles
RU2660963C1 (en) Scheme and method of controlling a reactive electrically commutated motor
CN108696215B (en) Engine generator
CN108111089B (en) Control device for switched reluctance motor
JP5174617B2 (en) Rotating electrical machine device and control device thereof
JP5008749B2 (en) Power supply
WO2016163458A1 (en) Electromotive power-generator device
CN107531232B (en) Motor device
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
CN111279607A (en) Control device for rotating electric machine
JP5225709B2 (en) Switched reluctance motor controller
JP4943719B2 (en) Switched reluctance motor regeneration control device
JP2004129379A (en) Motor control device and computer-readable recording medium stored with program for making computer execute driving control of motor
CN109831140B (en) Control device for switch reluctance motor
JP2018113784A (en) Control device of power conversion circuit and rotary electric machine unit
JP6645405B2 (en) Rotary electric machine control device, rotary electric machine unit
JP4983939B2 (en) Synchronous motor drive device
JP6541844B1 (en) Control device of rotating electric machine
JP2016201861A5 (en)
TW201814148A (en) Vehicle
US10483897B2 (en) Switched reluctance motor system, and method of controlling switched reluctance motor system
JP6058085B1 (en) Rotating electric machine and control method of rotating electric machine
JP2008245495A (en) Controller for switched reluctance motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776624

Country of ref document: EP

Kind code of ref document: A1