WO2016163182A1 - Automotive side sill - Google Patents

Automotive side sill Download PDF

Info

Publication number
WO2016163182A1
WO2016163182A1 PCT/JP2016/056584 JP2016056584W WO2016163182A1 WO 2016163182 A1 WO2016163182 A1 WO 2016163182A1 JP 2016056584 W JP2016056584 W JP 2016056584W WO 2016163182 A1 WO2016163182 A1 WO 2016163182A1
Authority
WO
WIPO (PCT)
Prior art keywords
side sill
vehicle
steel plate
tensile strength
outer panel
Prior art date
Application number
PCT/JP2016/056584
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 樋貝
平本 治郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2016163182A1 publication Critical patent/WO2016163182A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Definitions

  • the present invention relates to an automotive side sill structure that extends in the front-rear direction at the lower part of the side of the vehicle.
  • a hollow long side sill is provided at a lower position in the vehicle longitudinal direction on the side of the vehicle.
  • a general side sill 1 includes a side sill outer panel 1a and a side sill inner panel 1b, and, if necessary, between a side sill outer panel 1a and a side sill inner panel 1b. It is composed of a side sill reinforcement (not shown) provided, and is connected via a roof rail 5 and a center pillar 3 provided at an upper position in the vehicle longitudinal direction. Yes. Side sills require weight reduction of automotive bodies due to environmental issues while improving and ensuring collision safety during vehicle side crashes. .
  • Patent Document 1 when an input from the outside in the vehicle width direction to the inside acts on an intermediate portion of the center pillar at the time of a side collision, a locker (side sill) coupled to the center pillar has a torsion input. Compressive stress acts on the outer surfaces of the rocker and the rocker, and it deforms like a wave. Therefore, by providing a bead extending along the direction of compressive stress on the outer surface of the rocker to reinforce the outer surface, the deformation of the rocker is suppressed by suppressing the deformation of the outer surface and the deformation of the rocker in the twisting direction.
  • a vehicle frame structure is disclosed.
  • Patent Document 2 discloses a vehicle body lower structure in which an impact absorbing portion (impact absorpted portion) is provided in the vicinity of a joint end portion of a cross member and a side sill to reduce impact at the time of a side collision. Yes.
  • the deformation suppression by the bead application shown in the vehicle skeleton structure disclosed in Patent Document 1 is effective for a part having a constant thickness, and suppresses the twist when compared with a member having the same steel plate / thickness. It is possible, but it is difficult to reduce the weight of the vehicle.
  • the vehicle body lower structure disclosed in Patent Document 2 requires a large number of shock absorbing parts, so that the safety at the time of a side collision is improved, but there is a problem that an increase in vehicle weight is unavoidable.
  • crashworthiness can be improved by improving the tensile strength of the steel sheet of each part (part) used in the car body.
  • the effect of improving the collision performance obtained by the improvement in strength was small.
  • the improvement of the tensile strength of steel sheets will lead to an increase in steel material costs and manufacturing costs, and so-called trial and error is necessary to optimize both component performance and cost balance. Development time and cost were required.
  • the side sill outer panel and side sill inner panel are thinned using high-strength steel sheets to ensure bending strength and light weight during side impacts. It was compatible.
  • high-strength steel sheets hinders the productivity of each part by press forming, and progresses in the direction of increasing the tension of steel sheets even for parts that do not require high-strength steel sheets. In some cases, it was a factor in increasing manufacturing costs.
  • the present invention has been made in view of the above, and an object thereof is to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and further does not increase manufacturing cost. It is in.
  • the inventors of the present invention diligently studied the influence of the tensile strength and thickness of the steel sheet used in the vehicle side sill structure on the bending strength at the time of vehicle side collision, satisfying sufficient bending strength and being reduced in weight.
  • the knowledge about the vehicle side sill structure was obtained.
  • the present invention has been made based on the above findings, and specifically comprises the following configuration.
  • a vehicle side sill structure is a vehicle side sill structure including a side sill outer panel positioned on the vehicle outer side and a side sill inner panel positioned on the vehicle inner side, wherein the side sill outer panel and the side sill inner panel are mutually connected.
  • the side sill outer panel is formed of a steel plate having a tensile strength of 1180 MPa class (1180 MPa-class) or more and 1470 MPa class or less and a thickness of 0.6 mm or more and 1.6 mm or less.
  • the panel is formed of a steel plate having a tensile strength of 440 MPa or higher and a tensile strength of a steel plate forming the side sill outer panel.
  • the present invention it is possible to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and does not increase manufacturing cost.
  • FIG. 1 is a perspective view of a vehicle side part structure including a vehicle side sill according to an embodiment of the present invention, and shows a state seen from the outside of the vehicle in a state where each part is disassembled.
  • FIG. 2 is an explanatory diagram of an analysis model of FEM (Finite Element Method) analysis that simulates a side collision in the vehicle body side structure provided with the vehicle side sill according to the embodiment of the present invention.
  • FIG. 3 shows an example of an analysis result of a load due to an underpunch stroke in an FEM analysis simulating a side collision of a vehicle side structure having a vehicle side sill according to an embodiment of the present invention.
  • FIG. FIG. 4 shows a vehicle side part structure provided with a vehicle side sill according to an embodiment of the present invention.
  • FIG. 5 is a side view of a vehicle having a side sill for a vehicle according to an embodiment of the present invention.
  • the maximum of a side collision of the vehicle side structure when the tensile strength and thickness of the steel plate of the side sill inner panel are changed. It is a graph which shows the relationship between a load and a weight change rate.
  • the vehicle side sill structure is a structure of the side sill 1 disposed in the lower part of the side surface of the vehicle, and includes a side sill outer panel 1a located outside the vehicle, And a side sill inner panel 1b located inside the vehicle.
  • the side sill outer panel 1a and the side sill inner panel 1b are joined together to form a closed cross section.
  • the side sill outer panel 1a is formed of a steel plate having a tensile strength of 1180 MPa class or more and a plate thickness of 0.6 mm or more and 1.6 mm or less.
  • the side sill inner panel 1b is formed of a steel plate having a tensile strength of 440 MPa or higher and not higher than the tensile strength of the steel plate forming the side sill outer panel 1a.
  • the lower end of the center pillar 3 where the center pillar outer panel 3a and the center pillar inner panel 3b are joined is joined to the side sill 1, and the upper end of the center pillar 3 is the roof rail 5 (the roof rail outer panel 5a).
  • the roof rail inner panel 5b) is joined to form the vehicle side structure 11.
  • the tensile strength and thickness of the steel plate of the side sill outer panel 1a and the tensile strength and thickness of the steel plate of the side sill inner panel 1b were determined based on the following examination results. First, the tensile strength and thickness of the steel plate of the side sill outer panel 1a were determined from the maximum load at the time of a side collision in the vehicle side part structure 11 formed by the side sill 1, the center pillar 3, and the roof rail 5 as shown in FIG. .
  • FEM analysis of a three-point bending test in which the center pillar outer panel 3a is pushed by an under punch is performed, and the load for pushing the under punch is calculated.
  • the relationship between the under punch strokes was determined, and the maximum load within the range of 0-100 mm under punch strokes was defined as the maximum load.
  • the boundary conditions in the FEM analysis include the full constraint condition at the upper end of the center pillar 3 joined to the roof rail 5, the rotation and the vehicle width direction (downward direction in FIG. 2) at the lower end of the center pillar 3 joined to the side sill 1. ) was given a constraint that only freed deformation.
  • FIG. 3 shows an example of the analysis result of the relationship between the under punch stroke and the load obtained by the FEM analysis.
  • the analysis results are obtained when a steel plate having a 1470 MPa class and a thickness of 1.2 mm is used for the side sill outer panel 1 a and a steel plate having a thickness of 590 MPa and a thickness of 1.0 mm is used for the side sill inner panel 1 b.
  • the load increased with the increase of the under punch stroke, the load showed a maximum value when the under punch stroke was about 50 mm, and the load decreased within the range of about 50 mm to 110 mm.
  • the load increased again. From the above, the maximum load at the time of a side collision in the vehicle side part structure 11 was determined as 27.9 kN from the maximum value in the range where the under punch stroke was 0 to 100 mm.
  • a steel plate having a tensile strength of 440 MPa and a plate thickness of 1.4 mm is used for the side sill inner panel 1 b
  • a tensile strength of the steel plate used for the side sill outer panel 1 a is 590 MPa to 1470 MPa
  • a plate thickness is 0.4 mm to 1.
  • the maximum load at the time of a side collision when changing within the range of 6 mm is shown.
  • the center pillar outer panel 3a was a steel plate having a tensile strength of 1470 MPa and a thickness of 1.8 mm
  • the center pillar inner panel 3b was a steel plate having a tensile strength of 440 MPa and a thickness of 1.0 mm.
  • a steel plate having a tensile strength of 590 MPa and a thickness of 1.6 mm is used for the side sill outer panel.
  • the maximum load (62.6 kN) at the time of a side collision in a vehicle side part structure equipped with a side sill using the steel plate the result shown in FIG.
  • the side sill 1 using a .6 mm steel plate for the side sill outer panel 1a shows that the maximum load at the time of side collision satisfies the above-mentioned standard.
  • the plate thickness of the side sill outer panel 1a having a tensile strength of 590 MPa used for the vehicle side sill structure as a reference is 1.6 mm
  • the plate of the side sill outer panel 1a having a tensile strength of 1180 MPa or more is used.
  • the thickness is 0.6mm or more, it will be more than the maximum load at the time of side impact of the side sill as a standard, and it will be lighter than the standard vehicle side sill structure by using a steel plate with a thickness of 1.6mm or less It was suggested that From the above, it is preferable to use a steel plate having a tensile strength of 1180 MPa class or more and a thickness of 0.6 mm or more and 1.6 mm or less for the side sill outer panel 1a.
  • the tensile strength of the steel plate of the side sill inner panel 1b is based on the FEM analysis result of the maximum load in the three-point bending test of the vehicle side structure 11 that simulates the side collision, similarly to the tensile strength of the steel plate of the side sill outer panel 1a. Were determined.
  • the analysis model and boundary conditions of the FEM analysis are the same as those of the side sill outer panel 1a described above.
  • the side sill outer panel 1a is a steel plate having a tensile strength of 780 MPa class and a plate thickness of 1.3 mm or a steel plate having a tensile strength of 1470 MPa class and a plate thickness of 1.0 mm, and the tensile strength of the steel plate used for the side sill inner panel 1b is 440 MPa class to
  • the maximum load at the time of a side collision when the plate thickness is changed from 0.6 mm to 1.6 mm is shown.
  • the maximum load of the panel in which the tensile strength of the steel plate used for the side sill inner panel 1b was changed slightly increased with the increase in the plate thickness, the effect on the maximum load was slight at any plate thickness.
  • the steel plate used for the side sill inner panel 1b is preferably thin.
  • strength at the time of a collision from the rear of the vehicle is required, so the thickness of the side sill inner panel 1b is set to the side sill outer panel 1a.
  • the thinnest plate that satisfies the rear impact performance by comparing the amount and state of deformation when a load is applied perpendicularly to the closed cross section where the side sill inner panel 1b is joined to the conventional plate thickness Thickness is sufficient.
  • the center pillar outer panel 3a was a steel plate having a tensile strength of 1470 MPa and a thickness of 1.8 mm
  • the center pillar inner panel 3b was a steel plate having a tensile strength of 780 MPa and a thickness of 1.0 mm.
  • Table 1 shows the conditions (Invention Examples 1 to 6) in which the tensile strength and thickness of the steel plates used in the side sill outer panel 1a and the side sill inner panel 1b in the side sill 1 were changed, and the side collisions obtained under each condition.
  • the evaluation results of performance (side-crash safety performance), weight change rate and manufacturing cost are shown.
  • the side impact performance which is an evaluation item, was subjected to FEM analysis of a three-point bending test with the vehicle side structure 11 shown in FIG. 2 as an analysis target, and the under punch stroke was 0 in the three-point bending test.
  • the maximum value of the load within a range of ⁇ 100 mm is evaluated as the maximum load at the time of a side collision.
  • the side impact performance was evaluated based on the FEM analysis result (63.6 kN) of the maximum load at the time of side impact in the vehicle side part structure of the conventional example. .
  • the weight change was evaluated based on the weight change rate based on the weight (12817 g) of the conventional vehicle side structure.
  • the production cost is based on the raw material (steel plate) cost in the conventional example as long as it is cheaper than this.
  • the tensile strength or thickness of the steel plate used for the side sill outer panel 1a and the side sill inner panel 1b is outside the range of the tensile strength and thickness of the steel plate in the vehicle side sill structure according to the present invention.
  • the evaluation results of the side impact performance, weight change rate and manufacturing cost of the vehicle side sill structure are shown. Side impact performance, weight change rate, and manufacturing cost were evaluated according to the same evaluation criteria as in Table 1.
  • the side sill outer panel 1a had a steel plate with a tensile strength of less than 1180 MPa and a thickness of 0.6 mm, and the side sill inner panel 1b had a tensile strength of less than 440 MPa with a 390 MPa grade.
  • the crash performance was below the evaluation standard.
  • Comparative Example 2 the tensile strength of the steel plate of the side sill outer panel 1a was set to 780 MPa class, but since the plate thickness was increased to 1.6 mm, the side impact performance satisfied the evaluation standard, but the manufacturing cost exceeded.
  • the steel plate of the side sill outer panel 1a has a tensile strength of 1470 MPa, a plate thickness of 0.4 mm, and a significant weight reduction (weight change rate: -25%) is obtained, and the manufacturing cost is also evaluated. Although it was below the standard, the side impact performance was below the evaluation standard.
  • the side sill outer panel is a steel plate having a tensile strength of 1180 MPa class or more, the thickness of the steel plate is 0.6 mm or more and 1.6 mm or less, and the side sill inner panel is By using a steel plate with a tensile strength of 440 MPa or higher and a lower tensile strength than the steel plate of the side sill outer panel, a vehicle side sill structure that satisfies the necessary and sufficient side impact performance and can be reduced in weight without increasing manufacturing costs. It has been demonstrated that it can be realized.
  • the present invention it is possible to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and does not increase manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

In the automotive side sill according to the present invention, a side sill 1 disposed at a lower portion of the side surface of a vehicle is equipped with: a side sill outer panel 1a located on the outer side of the vehicle; and a side sill inner panel 1b located on the inner side of the vehicle. The automotive side sill is characterized in that: the side sill outer panel 1a and the side sill inner panel 1b are joined to each other to form a closed cross-section; the side sill outer panel 1a is a steel plate having a tensile strength of 1180-1470 MPa class and a thickness of 0.6-1.6 mm; and the side sill inner panel 1b is a steel plate having a tensile strength of 440 MPa class or more, the steel plate of side sill inner panel 1b being lower in tensile strength than that of the steel plate of the side sill outer panel 1a.

Description

車両用サイドシル構造Side sill structure for vehicles
 本発明は、車両側面下部に前後方向に延出して設けられる車両用(automotive)サイドシル(side sill)構造に関する。 The present invention relates to an automotive side sill structure that extends in the front-rear direction at the lower part of the side of the vehicle.
 車両の側面の車両前後方向下部位置には中空長尺形状のサイドシルが設けられている。図1に示すように、一般的なサイドシル1は、サイドシルアウターパネル(outer panel)1a及びサイドシルインナーパネル(inner panel)1bと、必要に応じてサイドシルアウターパネル1aとサイドシルインナーパネル1bとの間に設けられたサイドシルリンフォースメント(reinforcement)(図示せず)と、から構成され、車両前後方向上部位置に設けられたルーフレール(roof rail)5とセンターピラー(center pillar)3を介して結合されている。サイドシルにおいては、車両側突(side crash)時における衝突安全性(collision safety)を向上・確保しつつ、環境問題(environment issues)に起因する軽量化(weight reduction of automotive body)が要求されている。 A hollow long side sill is provided at a lower position in the vehicle longitudinal direction on the side of the vehicle. As shown in FIG. 1, a general side sill 1 includes a side sill outer panel 1a and a side sill inner panel 1b, and, if necessary, between a side sill outer panel 1a and a side sill inner panel 1b. It is composed of a side sill reinforcement (not shown) provided, and is connected via a roof rail 5 and a center pillar 3 provided at an upper position in the vehicle longitudinal direction. Yes. Side sills require weight reduction of automotive bodies due to environmental issues while improving and ensuring collision safety during vehicle side crashes. .
 これまでに、車両側突時における衝突安全性を向上・確保する技術が提案・実施されている。特許文献1には、側突時にセンターピラーの中間部分に車両幅方向外側から内側に向かう入力が作用すると、センターピラーに結合されるロッカー(locker)(サイドシル)は捩じり(torsion)入力を受け、ロッカーの各外面に圧縮応力(compressive stress)が作用して波打つ様に変形する。そこで、圧縮応力の作用方向に沿って延びるビード(bead)をロッカーの外面に設けて補強することで、外面変形を抑制してロッカーの断面崩れを抑制し、ロッカーの捩じれ方向の変形を抑制する車両骨格構造(frame structure)が開示されている。特許文献2には、クロスメンバ(cross member)とサイドシルの結合端部近傍に、側突時の衝撃(impact)を緩和する衝撃吸収部(impact absorpted portion)を設けた車体下部構造が開示されている。 So far, technologies have been proposed and implemented to improve and ensure collision safety in the event of a vehicle-side collision. In Patent Document 1, when an input from the outside in the vehicle width direction to the inside acts on an intermediate portion of the center pillar at the time of a side collision, a locker (side sill) coupled to the center pillar has a torsion input. Compressive stress acts on the outer surfaces of the rocker and the rocker, and it deforms like a wave. Therefore, by providing a bead extending along the direction of compressive stress on the outer surface of the rocker to reinforce the outer surface, the deformation of the rocker is suppressed by suppressing the deformation of the outer surface and the deformation of the rocker in the twisting direction. A vehicle frame structure is disclosed. Patent Document 2 discloses a vehicle body lower structure in which an impact absorbing portion (impact absorpted portion) is provided in the vicinity of a joint end portion of a cross member and a side sill to reduce impact at the time of a side collision. Yes.
特開2011-143762号公報JP 2011-143762 A 特開2010-215092号公報JP 2010-215092 A
 特許文献1に開示された車両骨格構造に示されるビード付与による変形抑制は、一定厚の板厚から成る部品について有効であり、同一の鋼板・板厚の部材と比較した場合に捩れを抑制することは可能であるが、車両の軽量化は困難である。特許文献2に開示された車体下部構造では、衝撃吸収部品が多数必要であるため、側突時の安全性は向上するものの、車両重量の増加が避けられないといった課題がある。 The deformation suppression by the bead application shown in the vehicle skeleton structure disclosed in Patent Document 1 is effective for a part having a constant thickness, and suppresses the twist when compared with a member having the same steel plate / thickness. It is possible, but it is difficult to reduce the weight of the vehicle. The vehicle body lower structure disclosed in Patent Document 2 requires a large number of shock absorbing parts, so that the safety at the time of a side collision is improved, but there is a problem that an increase in vehicle weight is unavoidable.
 このように、側突時における安全性の確保を達成する技術が開示されているものの、車両の大幅な軽量化は困難である。今後、車体の衝突安全性能基準(collision safety standards)の厳格化等により、要求される基準が向上した場合、上記従来技術では重量増加を防止することは困難であり、製造コストに対しても不利となる。 As described above, although a technique for ensuring safety in a side collision is disclosed, it is difficult to significantly reduce the weight of the vehicle. In the future, if the required standards improve due to stricter collision safety performance standards, etc., it will be difficult to prevent weight increase with the above-mentioned conventional technology, which is also disadvantageous to manufacturing costs. It becomes.
 従来より、車体に用いられる各部品(part)の鋼板(steel sheet)の引張強度(tensil strength)を向上させることで衝突性能(crashworthiness)の向上が可能であるとされているが、鋼板の引張強度の向上により得られる衝突性能向上の効果が小さい場合も多々あった。さらに、鋼板の引張強度の向上は、素材(steel material)コストと製造コストが上昇する方向となり、部品性能とコストバランスの双方を最適化するためには、いわゆる試行錯誤が必要であり、多大な開発時間とコストが必要であった。 Conventionally, it is said that crashworthiness can be improved by improving the tensile strength of the steel sheet of each part (part) used in the car body. There were many cases where the effect of improving the collision performance obtained by the improvement in strength was small. Furthermore, the improvement of the tensile strength of steel sheets will lead to an increase in steel material costs and manufacturing costs, and so-called trial and error is necessary to optimize both component performance and cost balance. Development time and cost were required.
 車両用サイドシルにおいては、サイドシルアウターパネルやサイドシルインナーパネルに高張力鋼板(high-strength steel sheet)を用いて薄板化(thinned)することにより、側突時の曲げ強度(bending strength)の確保と軽量化を両立していた。しかしながら、高張力鋼板を用いることは、プレス成形(press forming)による各部品の生産性を阻害し、高張力鋼板を不要とする部品に対しても鋼板を高張力化する方向に進行している場合もあったため、製造コスト増加の要因となっていた。 For vehicle side sills, the side sill outer panel and side sill inner panel are thinned using high-strength steel sheets to ensure bending strength and light weight during side impacts. It was compatible. However, the use of high-strength steel sheets hinders the productivity of each part by press forming, and progresses in the direction of increasing the tension of steel sheets even for parts that do not require high-strength steel sheets. In some cases, it was a factor in increasing manufacturing costs.
 本発明は、上記に鑑みてなされたものであって、その目的は、側突時における衝突安全性が高く、軽量化を達成し、さらには製造コストが増加しない車両用サイドシル構造を提供することにある。 The present invention has been made in view of the above, and an object thereof is to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and further does not increase manufacturing cost. It is in.
 本発明の発明者らは、車両用サイドシル構造に用いられる鋼板の引張強度と板厚が車両側突時の曲げ強度に及ぼす影響を鋭意検討し、十分な曲げ強度を満足し、かつ軽量化された車両用サイドシル構造に関する知見を得た。本発明は上記の知見に基づいてなされたものであり、具体的には以下の構成からなるものである。 The inventors of the present invention diligently studied the influence of the tensile strength and thickness of the steel sheet used in the vehicle side sill structure on the bending strength at the time of vehicle side collision, satisfying sufficient bending strength and being reduced in weight. The knowledge about the vehicle side sill structure was obtained. The present invention has been made based on the above findings, and specifically comprises the following configuration.
 本発明に係る車両用サイドシル構造は、車両外側に位置するサイドシルアウターパネルと車両内側に位置するサイドシルインナーパネルとを備える車両用サイドシル構造であって、前記サイドシルアウターパネルと前記サイドシルインナーパネルとが互いに接合されて閉断面を形成し、前記サイドシルアウターパネルは、引張強度が1180MPa級(1180MPa-class)以上1470MPa級以下で板厚が0.6mm以上1.6mm以下の鋼板で形成され、前記サイドシルインナーパネルは、引張強度が440MPa級以上で前記サイドシルアウターパネルを形成する鋼板の引張強度以下の鋼板で形成されることを特徴とする。 A vehicle side sill structure according to the present invention is a vehicle side sill structure including a side sill outer panel positioned on the vehicle outer side and a side sill inner panel positioned on the vehicle inner side, wherein the side sill outer panel and the side sill inner panel are mutually connected. The side sill outer panel is formed of a steel plate having a tensile strength of 1180 MPa class (1180 MPa-class) or more and 1470 MPa class or less and a thickness of 0.6 mm or more and 1.6 mm or less. The panel is formed of a steel plate having a tensile strength of 440 MPa or higher and a tensile strength of a steel plate forming the side sill outer panel.
 本発明によれば、側突時における衝突安全性が高く、軽量化を達成し、さらには製造コストが増加しない車両用サイドシル構造を提供することができる。 According to the present invention, it is possible to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and does not increase manufacturing cost.
図1は、本発明の実施の形態に係る車両用サイドシルを含む車両側部構造の斜視図であり、各部品を分解した状態で車両外側から見た状態を示している。FIG. 1 is a perspective view of a vehicle side part structure including a vehicle side sill according to an embodiment of the present invention, and shows a state seen from the outside of the vehicle in a state where each part is disassembled. 図2は、本発明の実施の形態に係る車両用サイドシルを備えた車体側部構造における側突時を模擬したFEM(Finite Element Method)解析の解析モデルの説明図である。FIG. 2 is an explanatory diagram of an analysis model of FEM (Finite Element Method) analysis that simulates a side collision in the vehicle body side structure provided with the vehicle side sill according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る車両用サイドシルを備えた車両側部構造の側突時を模擬したFEM解析におけるアンダーパンチ(underpunch)ストロークによる荷重(press load)の解析結果の一例を示す図である。FIG. 3 shows an example of an analysis result of a load due to an underpunch stroke in an FEM analysis simulating a side collision of a vehicle side structure having a vehicle side sill according to an embodiment of the present invention. FIG. 図4は、本発明の実施の形態に係る車両用サイドシルを備えた車両側部構造において、サイドシルアウターパネルの鋼板の引張強度と板厚を変更した時の車両側部構造の側突時の最大荷重と重量変化率の関係を示すグラフである。FIG. 4 shows a vehicle side part structure provided with a vehicle side sill according to an embodiment of the present invention. The maximum value at the time of a side collision of the vehicle side part structure when the tensile strength and thickness of the steel plate of the side sill outer panel is changed. It is a graph which shows the relationship between a load and a weight change rate. 図5は、本発明の実施の形態に係る車両用サイドシルを備えた車両側部構造において、サイドシルインナーパネルの鋼板の引張強度と板厚を変更した時の車両側部構造の側突時の最大荷重と重量変化率の関係を示すグラフである。FIG. 5 is a side view of a vehicle having a side sill for a vehicle according to an embodiment of the present invention. The maximum of a side collision of the vehicle side structure when the tensile strength and thickness of the steel plate of the side sill inner panel are changed. It is a graph which shows the relationship between a load and a weight change rate.
 本発明の一実施の形態に係る車両用サイドシル構造は、図1に示すように、車両の側面下部に配設されるサイドシル1の構造であって、車両外側に位置するサイドシルアウターパネル1aと、車両内側に位置するサイドシルインナーパネル1bとを備えている。サイドシルアウターパネル1aとサイドシルインナーパネル1bとは互いに接合されて閉断面を形成している。サイドシルアウターパネル1aは、引張強度が1180MPa級以上で板厚が0.6mm以上1.6mm以下の鋼板で形成されている。サイドシルインナーパネル1bは、引張強度が440MPa級以上でサイドシルアウターパネル1aを形成する鋼板の引張強度以下の鋼板で形成されている。 As shown in FIG. 1, the vehicle side sill structure according to the embodiment of the present invention is a structure of the side sill 1 disposed in the lower part of the side surface of the vehicle, and includes a side sill outer panel 1a located outside the vehicle, And a side sill inner panel 1b located inside the vehicle. The side sill outer panel 1a and the side sill inner panel 1b are joined together to form a closed cross section. The side sill outer panel 1a is formed of a steel plate having a tensile strength of 1180 MPa class or more and a plate thickness of 0.6 mm or more and 1.6 mm or less. The side sill inner panel 1b is formed of a steel plate having a tensile strength of 440 MPa or higher and not higher than the tensile strength of the steel plate forming the side sill outer panel 1a.
 図1に示すように、センターピラーアウターパネル3aとセンターピラーインナーパネル3bとが接合されたセンターピラー3の下端部がサイドシル1に接合し、センターピラー3の上端部がルーフレール5(ルーフレールアウターパネル5a,ルーフレールインナーパネル5b)に接合して車両側部構造11を形成している。 As shown in FIG. 1, the lower end of the center pillar 3 where the center pillar outer panel 3a and the center pillar inner panel 3b are joined is joined to the side sill 1, and the upper end of the center pillar 3 is the roof rail 5 (the roof rail outer panel 5a). , The roof rail inner panel 5b) is joined to form the vehicle side structure 11.
 サイドシルアウターパネル1aの鋼板の引張強度と板厚、ならびに、サイドシルインナーパネル1bの鋼板の引張強度と板厚は、以下の検討結果に基づいて決定された。まず、サイドシルアウターパネル1aの鋼板の引張強度と板厚は、図1に示すようなサイドシル1、センターピラー3及びルーフレール5により形成された車両側部構造11における側突時の最大荷重より決定した。 The tensile strength and thickness of the steel plate of the side sill outer panel 1a and the tensile strength and thickness of the steel plate of the side sill inner panel 1b were determined based on the following examination results. First, the tensile strength and thickness of the steel plate of the side sill outer panel 1a were determined from the maximum load at the time of a side collision in the vehicle side part structure 11 formed by the side sill 1, the center pillar 3, and the roof rail 5 as shown in FIG. .
 具体的には、図2に示す解析モデル(analysis model)を用いてセンターピラーアウターパネル3aをアンダーパンチにより押し込む3点曲げ試験(three point bending test)のFEM解析を行い、アンダーパンチを押し込む荷重とアンダーパンチストロークの関係を求め、アンダーパンチストロークが0~100mmの範囲内における荷重の極大値を最大荷重とした。前記FEM解析における境界条件には、ルーフレール5に接合するセンターピラー3上端部に完全拘束(full constraint)条件、サイドシル1に接合するセンターピラー3下端部に回転及び車幅方向(図2の下方向)の変形(deformation)のみを自由にした拘束条件を与えた。 Specifically, using the analysis model shown in FIG. 2, FEM analysis of a three-point bending test in which the center pillar outer panel 3a is pushed by an under punch is performed, and the load for pushing the under punch is calculated. The relationship between the under punch strokes was determined, and the maximum load within the range of 0-100 mm under punch strokes was defined as the maximum load. The boundary conditions in the FEM analysis include the full constraint condition at the upper end of the center pillar 3 joined to the roof rail 5, the rotation and the vehicle width direction (downward direction in FIG. 2) at the lower end of the center pillar 3 joined to the side sill 1. ) Was given a constraint that only freed deformation.
 図3に前記FEM解析により得られたアンダーパンチストロークと荷重との関係の解析結果の一例を示す。当該解析結果は、サイドシルアウターパネル1aに1470MPa級、板厚1.2mmの鋼板を用い、サイドシルインナーパネル1bに590MPa級、板厚1.0mmの鋼板を用いた場合の結果である。 FIG. 3 shows an example of the analysis result of the relationship between the under punch stroke and the load obtained by the FEM analysis. The analysis results are obtained when a steel plate having a 1470 MPa class and a thickness of 1.2 mm is used for the side sill outer panel 1 a and a steel plate having a thickness of 590 MPa and a thickness of 1.0 mm is used for the side sill inner panel 1 b.
 アンダーパンチストロークの増加に伴って荷重は増加し、アンダーパンチストロークが約50mmにおいて荷重は極大値を示し、約50mm~110mmの範囲内では荷重は減少した。そしてアンダーパンチストロークが約110mm以上では荷重は再び増加した。以上より、アンダーパンチストロークが0~100mmの範囲内における極大値から、車両側部構造11における側突時の最大荷重を27.9kNと求めた。 The load increased with the increase of the under punch stroke, the load showed a maximum value when the under punch stroke was about 50 mm, and the load decreased within the range of about 50 mm to 110 mm. When the under punch stroke was about 110 mm or more, the load increased again. From the above, the maximum load at the time of a side collision in the vehicle side part structure 11 was determined as 27.9 kN from the maximum value in the range where the under punch stroke was 0 to 100 mm.
 図4に、サイドシルインナーパネル1bに引張強度440MPa級、板厚1.4mmの鋼板を用い、サイドシルアウターパネル1aに用いる鋼板の引張強度を590MPa級~1470MPa級、板厚を0.4mm~1.6mmの範囲内で変更した時の側突時の最大荷重を示す。なお、センターピラーアウターパネル3aには引張強度1470MPa級、板厚1.8mmの鋼板を用い、センターピラーインナーパネル3bには引張強度440MPa級、板厚1.0mmの鋼板を用いた。サイドシルアウターパネル1aに用いる鋼板の引張強度の上昇に伴い、同じ板厚において側突時の最大荷重は向上した。また、同じ引張強度の鋼板では、板厚の増加に伴い側突時の最大荷重は向上した。従って、サイドシルアウターパネル1aに用いる鋼板の引張強度を向上するとともに、板厚を低減することで、側突性能を確保しつつ軽量化を達成できることがわかる。 In FIG. 4, a steel plate having a tensile strength of 440 MPa and a plate thickness of 1.4 mm is used for the side sill inner panel 1 b, a tensile strength of the steel plate used for the side sill outer panel 1 a is 590 MPa to 1470 MPa, and a plate thickness is 0.4 mm to 1. The maximum load at the time of a side collision when changing within the range of 6 mm is shown. The center pillar outer panel 3a was a steel plate having a tensile strength of 1470 MPa and a thickness of 1.8 mm, and the center pillar inner panel 3b was a steel plate having a tensile strength of 440 MPa and a thickness of 1.0 mm. With the increase in the tensile strength of the steel plate used for the side sill outer panel 1a, the maximum load at the time of a side collision improved with the same plate thickness. Moreover, with the steel plates having the same tensile strength, the maximum load at the time of side impact was improved as the plate thickness increased. Therefore, it can be seen that weight reduction can be achieved while ensuring the side impact performance by improving the tensile strength of the steel plate used for the side sill outer panel 1a and reducing the plate thickness.
 市販車(commercially available cars)に採用されている車両用サイドシル構造の例として、サイドシルアウターパネルに引張強度590MPa級、板厚1.6mmの鋼板が採用されている。該鋼板を用いたサイドシルを備えた車両側部構造における側突時の最大荷重(62.6kN)を基準とすると、図4の結果から、引張強度1180MPa級以上で板厚が0.6mm~1.6mmの鋼板をサイドシルアウターパネル1aに用いたサイドシル1は側突時の最大荷重が前記基準を満たすことがわかる。 As an example of a vehicle side sill structure used in commercially available cars, a steel plate having a tensile strength of 590 MPa and a thickness of 1.6 mm is used for the side sill outer panel. Based on the maximum load (62.6 kN) at the time of a side collision in a vehicle side part structure equipped with a side sill using the steel plate, the result shown in FIG. The side sill 1 using a .6 mm steel plate for the side sill outer panel 1a shows that the maximum load at the time of side collision satisfies the above-mentioned standard.
 さらに、図4の結果から、基準とした車両用サイドシル構造に用いられる引張強度590MPa級のサイドシルアウターパネル1aの板厚が1.6mmであるため、引張強度1180MPa級以上のサイドシルアウターパネル1aの板厚が0.6mm以上であれば、基準とした前記サイドシルの側突時の最大荷重以上となり、1.6mm以下の板厚の鋼板を用いることで基準とした車両用サイドシル構造より軽量化することができることが示唆された。以上より、サイドシルアウターパネル1aには、引張強度が1180MPa級以上で板厚が0.6mm以上1.6mm以下の鋼板を用いることが好ましい。 Furthermore, from the result of FIG. 4, since the plate thickness of the side sill outer panel 1a having a tensile strength of 590 MPa used for the vehicle side sill structure as a reference is 1.6 mm, the plate of the side sill outer panel 1a having a tensile strength of 1180 MPa or more is used. If the thickness is 0.6mm or more, it will be more than the maximum load at the time of side impact of the side sill as a standard, and it will be lighter than the standard vehicle side sill structure by using a steel plate with a thickness of 1.6mm or less It was suggested that From the above, it is preferable to use a steel plate having a tensile strength of 1180 MPa class or more and a thickness of 0.6 mm or more and 1.6 mm or less for the side sill outer panel 1a.
 次に、サイドシルインナーパネル1bの鋼板の引張強度についての検討結果を説明する。サイドシルインナーパネル1bの鋼板の引張強度は、サイドシルアウターパネル1aの鋼板の引張強度と同様に、側突時を模擬した車両側部構造11の3点曲げ試験における最大荷重のFEM解析結果に基づいて決定した。該FEM解析の解析モデル及び境界条件は、上述したサイドシルアウターパネル1aの場合と同様である。 Next, the examination result about the tensile strength of the steel plate of the side sill inner panel 1b will be described. The tensile strength of the steel plate of the side sill inner panel 1b is based on the FEM analysis result of the maximum load in the three-point bending test of the vehicle side structure 11 that simulates the side collision, similarly to the tensile strength of the steel plate of the side sill outer panel 1a. Were determined. The analysis model and boundary conditions of the FEM analysis are the same as those of the side sill outer panel 1a described above.
 図5に、サイドシルアウターパネル1aを引張強度780MPa級、板厚1.3mmの鋼板又は引張強度1470MPa級、板厚1.0mmの鋼板とし、サイドシルインナーパネル1bに用いる鋼板の引張強度を440MPa級~1470MPa級、板厚を0.6mm~1.6mmに変更した時の側突時の最大荷重を示す。サイドシルインナーパネル1bに用いる鋼板の引張強度を変更したパネルは、板厚の増加によりわずかに最大荷重は増加するが、いずれの板厚においても、最大荷重に対する影響はわずかであった。 In FIG. 5, the side sill outer panel 1a is a steel plate having a tensile strength of 780 MPa class and a plate thickness of 1.3 mm or a steel plate having a tensile strength of 1470 MPa class and a plate thickness of 1.0 mm, and the tensile strength of the steel plate used for the side sill inner panel 1b is 440 MPa class to The maximum load at the time of a side collision when the plate thickness is changed from 0.6 mm to 1.6 mm is shown. Although the maximum load of the panel in which the tensile strength of the steel plate used for the side sill inner panel 1b was changed slightly increased with the increase in the plate thickness, the effect on the maximum load was slight at any plate thickness.
 以上より、側突性能の観点から、サイドシルインナーパネル1bに用いる鋼板を高強度化しても、側突時の最大荷重の向上にはほとんど寄与せず、かえって製造コストの面から不利であり、サイドシルインナーパネル1bとして引張強度が440MPa級の鋼板を用いても十分な側突性能が得られることがわかった。 From the above, from the viewpoint of side impact performance, increasing the strength of the steel plate used for the side sill inner panel 1b hardly contributes to the improvement of the maximum load during side impact, but is disadvantageous in terms of manufacturing cost. It has been found that even when a steel plate having a tensile strength of 440 MPa is used as the inner panel 1b, sufficient side collision performance can be obtained.
 軽量化の観点から、サイドシルインナーパネル1bに用いられる鋼板の板厚としては薄い方が好ましい。ただし、車両の衝突安全性能基準としては、車両後方からの衝突時における強度(後突性能(rear-crash safety performance))が要求されるため、サイドシルインナーパネル1bの板厚は、サイドシルアウターパネル1aとサイドシルインナーパネル1bとが接合された閉断面に対して垂直に荷重を負荷した場合の変形量及び変形状態について、従来の板厚の場合と比較することで後突性能を満足する最も薄い板厚とすれば良い。 From the viewpoint of weight reduction, the steel plate used for the side sill inner panel 1b is preferably thin. However, as a vehicle crash safety performance standard, strength (rear-crash safety performance) at the time of a collision from the rear of the vehicle is required, so the thickness of the side sill inner panel 1b is set to the side sill outer panel 1a. The thinnest plate that satisfies the rear impact performance by comparing the amount and state of deformation when a load is applied perpendicularly to the closed cross section where the side sill inner panel 1b is joined to the conventional plate thickness Thickness is sufficient.
 本発明の作用効果について確認するため、具体的な実験を行ったので、これについて以下に説明する。本実施例では、サイドシルアウターパネル1aとサイドシルインナーパネル1bとを備えたサイドシル1と、センターピラー3とルーフレール5から構成される車両側部構造11(図1参照)の側突性能、重量変化率及び製造コストに関して、サイドシルアウターパネル1a及びサイドシルインナーパネル1bに用いる鋼板の引張強度と板厚を変更した場合について評価した。なお、センターピラーアウターパネル3aには、引張強度1470MPa級、板厚1.8mmの鋼板を用い、センターピラーインナーパネル3bには、引張強度780MPa級、板厚1.0mmの鋼板を用いた。 Specific experiments were conducted to confirm the effects of the present invention, which will be described below. In this embodiment, the side collision performance and weight change rate of the side sill 1 including the side sill outer panel 1a and the side sill inner panel 1b, the vehicle side structure 11 (see FIG. 1), which includes the center pillar 3 and the roof rail 5. And about the manufacturing cost, it evaluated about the case where the tensile strength and board thickness of the steel plate used for the side sill outer panel 1a and the side sill inner panel 1b were changed. The center pillar outer panel 3a was a steel plate having a tensile strength of 1470 MPa and a thickness of 1.8 mm, and the center pillar inner panel 3b was a steel plate having a tensile strength of 780 MPa and a thickness of 1.0 mm.
 表1に、サイドシル1におけるサイドシルアウターパネル1aとサイドシルインナーパネル1bに用いた鋼板の引張強度と板厚を変更した各条件(発明例1~発明例6)と、各条件において得られた側突性能(side-crash safety performance)、重量変化率及び製造コストの評価結果を示す。 Table 1 shows the conditions (Invention Examples 1 to 6) in which the tensile strength and thickness of the steel plates used in the side sill outer panel 1a and the side sill inner panel 1b in the side sill 1 were changed, and the side collisions obtained under each condition. The evaluation results of performance (side-crash safety performance), weight change rate and manufacturing cost are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 評価項目である側突性能は、実施の形態と同様に、図2に示す車両側部構造11を解析対象として3点曲げ試験のFEM解析を行い、該3点曲げ試験においてアンダーパンチストロークが0~100mmの範囲内における荷重の極大値を側突時の最大荷重として評価したものである。 As in the embodiment, the side impact performance, which is an evaluation item, was subjected to FEM analysis of a three-point bending test with the vehicle side structure 11 shown in FIG. 2 as an analysis target, and the under punch stroke was 0 in the three-point bending test. The maximum value of the load within a range of ˜100 mm is evaluated as the maximum load at the time of a side collision.
 側突性能は、従来例の車両側部構造における側突時の最大荷重のFEM解析結果(63.6kN)を基準とし、当該基準以上であれば〇、該基準以下であれば×と評価した。重量変化は、従来例の車両側部構造の重量(12817g)を基準とした重量変化率により評価した。製造コストは、従来例における素材(鋼板)費を評価基準とし、これより安価であれば良いが、高くとも+5%以内を○とした。 The side impact performance was evaluated based on the FEM analysis result (63.6 kN) of the maximum load at the time of side impact in the vehicle side part structure of the conventional example. . The weight change was evaluated based on the weight change rate based on the weight (12817 g) of the conventional vehicle side structure. The production cost is based on the raw material (steel plate) cost in the conventional example as long as it is cheaper than this.
 表2に、比較例として、サイドシルアウターパネル1aとサイドシルインナーパネル1bに用いた鋼板の引張強度又は板厚が、本発明に係る車両用サイドシル構造における鋼板の引張強度と板厚の範囲外である車両用サイドシル構造の側突性能、重量変化率及び製造コストの評価結果を示す。側突性能、重量変化率及び製造コストは、表1と同様の評価基準により評価した。 In Table 2, as a comparative example, the tensile strength or thickness of the steel plate used for the side sill outer panel 1a and the side sill inner panel 1b is outside the range of the tensile strength and thickness of the steel plate in the vehicle side sill structure according to the present invention. The evaluation results of the side impact performance, weight change rate and manufacturing cost of the vehicle side sill structure are shown. Side impact performance, weight change rate, and manufacturing cost were evaluated according to the same evaluation criteria as in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1は、サイドシルアウターパネル1aの鋼板の引張強度が1180MPa級未満の980MPa級で板厚が0.6mmで、サイドシルインナーパネル1bの鋼板の引張強度が440MPa級未満の390MPa級であったため側突性能が評価基準を下回った。 In Comparative Example 1, the side sill outer panel 1a had a steel plate with a tensile strength of less than 1180 MPa and a thickness of 0.6 mm, and the side sill inner panel 1b had a tensile strength of less than 440 MPa with a 390 MPa grade. The crash performance was below the evaluation standard.
 比較例2は、サイドシルアウターパネル1aの鋼板の引張強度を780MPa級としたものであるが、板厚を1.6mmに増加したので側突性能は評価基準を満たしたものの製造コストが上回った。 In Comparative Example 2, the tensile strength of the steel plate of the side sill outer panel 1a was set to 780 MPa class, but since the plate thickness was increased to 1.6 mm, the side impact performance satisfied the evaluation standard, but the manufacturing cost exceeded.
 比較例3は、サイドシルインナーパネル1bの鋼板の引張強度を1470MPa級としたため、側突性能及び重量変化は評価基準を満たしたが、製造コストが上回った。 In Comparative Example 3, since the tensile strength of the steel plate of the side sill inner panel 1b was set to 1470 MPa class, the side impact performance and the weight change satisfied the evaluation criteria, but the manufacturing cost exceeded.
 比較例4は、サイドシルアウターパネル1aの鋼板の引張強度を1470MPa級、板厚を0.4mmとしたものであり、大幅な軽量化(重量変化率-25%)が得られ、製造コストも評価基準を下回ったが、側突性能が評価基準を下回った。 In Comparative Example 4, the steel plate of the side sill outer panel 1a has a tensile strength of 1470 MPa, a plate thickness of 0.4 mm, and a significant weight reduction (weight change rate: -25%) is obtained, and the manufacturing cost is also evaluated. Although it was below the standard, the side impact performance was below the evaluation standard.
 以上より、本発明に係る車両用サイドシル構造においては、サイドシルアウターパネルを引張強度が1180MPa級以上の鋼板とし、該鋼板の板厚を0.6mm以上1.6mm以下とし、さらに、サイドシルインナーパネルを引張強度が440MPa級以上でサイドシルアウターパネルの鋼板よりも引張強度の低い鋼板とすることによって、必要十分な側突性能を満たし、製造コストを増加せずに軽量化が可能な車両用サイドシル構造を実現できることが実証された。 As described above, in the vehicle side sill structure according to the present invention, the side sill outer panel is a steel plate having a tensile strength of 1180 MPa class or more, the thickness of the steel plate is 0.6 mm or more and 1.6 mm or less, and the side sill inner panel is By using a steel plate with a tensile strength of 440 MPa or higher and a lower tensile strength than the steel plate of the side sill outer panel, a vehicle side sill structure that satisfies the necessary and sufficient side impact performance and can be reduced in weight without increasing manufacturing costs. It has been demonstrated that it can be realized.
 本発明によれば、側突時における衝突安全性が高く、軽量化を達成し、さらには製造コストが増加しない車両用サイドシル構造を提供することができる。 According to the present invention, it is possible to provide a vehicle side sill structure that has high collision safety at the time of a side collision, achieves weight reduction, and does not increase manufacturing cost.
 1 サイドシル
 1a サイドシルアウターパネル
 1b サイドシルインナーパネル
 3 センターピラー
 3a センターピラーアウターパネル
 3b センターピラーインナーパネル
 5 ルーフレール
 5a ルーフレールアウターパネル
 5b ルーフレールインナーパネル
 11 車両側部構造
DESCRIPTION OF SYMBOLS 1 Side sill 1a Side sill outer panel 1b Side sill inner panel 3 Center pillar 3a Center pillar outer panel 3b Center pillar inner panel 5 Roof rail 5a Roof rail outer panel 5b Roof rail inner panel 11 Vehicle side part structure

Claims (1)

  1.  車両外側に位置するサイドシルアウターパネルと車両内側に位置するサイドシルインナーパネルとを備える車両用サイドシル構造であって、
     前記サイドシルアウターパネルと前記サイドシルインナーパネルとが互いに接合されて閉断面を形成し、
     前記サイドシルアウターパネルは、引張強度が1180MPa級以上1470MPa級以下で板厚が0.6mm以上1.6mm以下の鋼板で形成され、
     前記サイドシルインナーパネルは、引張強度が440MPa級以上で前記サイドシルアウターパネルを形成する鋼板の引張強度以下の鋼板で形成されることを特徴とする車両用サイドシル構造。
    A vehicle side sill structure comprising a side sill outer panel located outside the vehicle and a side sill inner panel located inside the vehicle,
    The side sill outer panel and the side sill inner panel are joined together to form a closed cross section,
    The side sill outer panel is formed of a steel plate having a tensile strength of 1180 MPa class or more and 1470 MPa class or less and a plate thickness of 0.6 mm or more and 1.6 mm or less,
    The side sill inner panel is formed of a steel plate having a tensile strength of 440 MPa or higher and a tensile strength lower than that of the steel plate forming the side sill outer panel.
PCT/JP2016/056584 2015-04-07 2016-03-03 Automotive side sill WO2016163182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-078098 2015-04-07
JP2015078098A JP6281522B2 (en) 2015-04-07 2015-04-07 Method for determining side sill structure for vehicle

Publications (1)

Publication Number Publication Date
WO2016163182A1 true WO2016163182A1 (en) 2016-10-13

Family

ID=57072541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056584 WO2016163182A1 (en) 2015-04-07 2016-03-03 Automotive side sill

Country Status (2)

Country Link
JP (1) JP6281522B2 (en)
WO (1) WO2016163182A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172774B2 (en) 2019-03-18 2022-11-16 トヨタ自動車株式会社 vehicle undercarriage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032227A (en) * 2003-07-28 2008-02-14 Sumitomo Metal Ind Ltd Method of absorbing impact
WO2013008515A1 (en) * 2011-07-12 2013-01-17 本田技研工業株式会社 Side outer panel for vehicle
WO2014050973A1 (en) * 2012-09-27 2014-04-03 新日鐵住金株式会社 Production method for centre-pillar reinforcement
JP2015003552A (en) * 2013-06-19 2015-01-08 新日鐵住金株式会社 Lap weld member of high strength steel sheet, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032227A (en) * 2003-07-28 2008-02-14 Sumitomo Metal Ind Ltd Method of absorbing impact
WO2013008515A1 (en) * 2011-07-12 2013-01-17 本田技研工業株式会社 Side outer panel for vehicle
WO2014050973A1 (en) * 2012-09-27 2014-04-03 新日鐵住金株式会社 Production method for centre-pillar reinforcement
JP2015003552A (en) * 2013-06-19 2015-01-08 新日鐵住金株式会社 Lap weld member of high strength steel sheet, and manufacturing method thereof

Also Published As

Publication number Publication date
JP6281522B2 (en) 2018-02-21
JP2016199055A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
CN107031731B (en) The side body Structure of automobile
CN103052541B (en) The B post reinforcement of motor vehicles
CN107074292B (en) Method for producing a three-dimensional vehicle door frame interior reinforcement element, method for producing a vehicle door frame, and method for producing a vehicle reinforcement structure
US8439429B2 (en) Coupling structure between front pillar and side sill of automobile
CN107031723A (en) Car body fore part arrangement
KR101501816B1 (en) Vehicle component
TWI580601B (en) Structural member
US20120098299A1 (en) Frame for vehicle
JP6540591B2 (en) Body side structure
WO2016163182A1 (en) Automotive side sill
CN205554322U (en) Longeron, lower automobile body and automobile behind automobile body
JP4932688B2 (en) Roof reinforcement for automobile bodies
JP6292173B2 (en) Method for determining vehicle center pillar structure
WO2013105439A1 (en) Vehicle
CN201961383U (en) Automotive intermediate column assembly
JP6183475B2 (en) Automobile frame parts and front pillar lowers including the same
JP6340634B2 (en) Rear body structure of the vehicle
JP6340896B2 (en) Steel member for center pillar
JP7363829B2 (en) Vehicle side structure
WO2021010389A1 (en) Front pillar outer
WO2021010395A1 (en) Front pillar outer
EP3932750B1 (en) Structural member for vehicle
US10981601B2 (en) Impact-absorbing member and side member of automobile
JP2021187433A (en) Automobile structural component, and method for manufacture thereof
JP2016088236A (en) Automobile hood panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776351

Country of ref document: EP

Kind code of ref document: A1