WO2016163046A1 - Electrical discharge nozzle to be used in electrospray ionization - Google Patents

Electrical discharge nozzle to be used in electrospray ionization Download PDF

Info

Publication number
WO2016163046A1
WO2016163046A1 PCT/JP2015/079979 JP2015079979W WO2016163046A1 WO 2016163046 A1 WO2016163046 A1 WO 2016163046A1 JP 2015079979 W JP2015079979 W JP 2015079979W WO 2016163046 A1 WO2016163046 A1 WO 2016163046A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
tip
discharge nozzle
capillary
cylindrical
Prior art date
Application number
PCT/JP2015/079979
Other languages
French (fr)
Japanese (ja)
Inventor
正美 村田
Original Assignee
旭サナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015182324A external-priority patent/JP2016198756A/en
Application filed by 旭サナック株式会社 filed Critical 旭サナック株式会社
Publication of WO2016163046A1 publication Critical patent/WO2016163046A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Definitions

  • the present invention relates to an electrolysis method in which a high voltage is applied between a discharge nozzle having a capillary that is a capillary tube and a counter electrode to form a liquid supplied through the capillary into fine droplets with excess charge and sprayed toward the counter electrode.
  • the present invention relates to a discharge nozzle used in a spray ionization method.
  • Electrospray ionization is a liquid spray technique that uses the electrospray phenomenon, also called electrostatic spraying. A high voltage is applied between the pointed liquid and the counter electrode to make the liquid into fine droplets with excess charge. This is a technique for spraying toward the counter electrode.
  • electrostatic spraying a technique for spraying toward the counter electrode.
  • the application range has expanded to coating organic EL and biopolymers on substrates, formation of nanometer-sized fibers, electrostatic coating, sample introduction in mass spectrometers, and the like.
  • the electrospray phenomenon has many unclear points, it is generally considered as follows.
  • a high voltage of several thousand volts is applied between the metal capillary 50 that is a thin tube and the counter electrode 51, and the sample liquid 52 is caused to flow through the capillary 50.
  • the liquid 52 coming out from the capillary tip forms a liquid pool 52a.
  • a strong electric field toward the counter electrode 51 exists at the capillary tip.
  • positive ions in the liquid pool are electrophoresed on the liquid surface side, and negative ions are electrophoresed on the inside.
  • the negative ions electrophoresed on the inside reach the surface of the metal capillary 50 and cause an oxidation reaction under a high electric field.
  • the negative ions that is, electrons, are imparted to the metal capillary 50 to be neutralized.
  • the positive ions electrophoresed on the surface of the liquid pool at the tip receive a strong electromagnetic attraction force toward the counter electrode 51, and the tip of the liquid pool 52a tends to extend in the direction of the counter electrode 51.
  • surface tension acts on the liquid 52 in the liquid pool 52a. Since the surface tension is a force that reduces the surface area of the liquid, it acts in a direction that prevents the tip of the liquid pool 52a from extending.
  • the liquid pool 52a at the tip of the capillary has a conical shape with a vertex angle of 90 °.
  • This conical shape is called a Taylor cone.
  • the tip of the Taylor cone extends toward the counter electrode 51 and finally separates into a droplet 53 charged with excess charge.
  • excess charge is discharged by the separation, the tip of the liquid pool 52a once returns to a rounded shape. Thereafter, a Taylor cone is formed again, and the droplet 53 charged with excess charge is separated and released.
  • the excess positive ions on the droplet 53 that have separated and jumped out repel each other by the Coulomb force and gather on the surface of the droplet 53. Since the volume of the droplet 53 is small and the excess charge is large, a large force acts outward on the surface of the droplet 53.
  • the droplet 53 is reduced in volume due to the evaporation of the solvent during the flight. As the volume decreases, the charge density increases and the outward force on the surface increases. When the limit called the Rayleigh limit is reached, it breaks up into a large number of fine droplets 53a. Since the fine droplets generated by the splitting are also charged with excessive charges, they reach the Rayleigh limit again by solvent evaporation and re-split. By repeating such splitting, gas phase ions are finally generated and sprayed on the counter electrode 51. The generation of gas phase ions by repeating such splitting is also called Coulomb explosion because of Coulomb repulsion.
  • a high voltage is applied between the capillary 50 and the counter electrode 51 to generate a strong electric field at the tip of the capillary, and an electromagnetic attractive force that overcomes the surface tension is generated in the liquid pool 52a. It is necessary to let The required voltage is several thousand volts. A liquid such as water requires a particularly high voltage because of its high surface tension. The applied voltage is preferably lower due to the configuration of the power supply device 54. In addition, when the voltage applied to the capillary 50 is high, corona discharge occurs near the capillary tip, preventing the formation of a stable Taylor cone.
  • An object of the present invention is to provide a discharge nozzle used in an electrospray ionization method that is also effective in suppressing the generation of corona discharge.
  • the invention according to claim 1 for solving the above problem is a discharge nozzle used in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle, wherein the needle Is attached to the center of the cylindrical tubule while being electrically connected to the cylindrical tubule, and the tip of the needle protrudes from the discharge side opening of the cylindrical tubule, and the protruding length of the tip of the needle is:
  • a discharge nozzle characterized in that it is dimensioned to fit within a Taylor cone generated at the tip of a cylindrical thin tube.
  • the needle tip protruding from the capillary tip which is a cylindrical tubule, has a larger curvature and is closer to the counter electrode than the capillary tip, so a stronger electric field is formed than the cylindrical tip of the capillary tip. Is done.
  • a stronger electric field is generated even when the applied voltage is the same as that of a conventional nozzle without a needle. Therefore, the voltage causing the electrospray phenomenon can be made lower than that of the conventional type, and the burden on the power source can be reduced.
  • the voltage applied to the discharge nozzle can be lowered, there is an effect that the generation of corona discharge near the tip of the discharge nozzle is also suppressed.
  • the invention described in claim 2 is a discharge nozzle used in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle, and the needle has an outer diameter. Is slightly smaller than the inner diameter of the cylindrical tubule and forms a gap for allowing the sample liquid to pass between the inner surface of the cylindrical tubule, and the tip of the needle protruding from the opening of the cylindrical tubule has a truncated cone shape.
  • a discharge nozzle having a shape.
  • the cylindrical tubule is formed of a nonconductive material instead of a metal, and an applied voltage is supplied to the needle.
  • the discharge nozzle is configured as described above.
  • the capillary which is a cylindrical thin tube of the discharge nozzle, is made of a non-conductive material, the generation of corona discharge near the capillary tip can be more effectively suppressed.
  • FIG. 3 is a view showing a state in which a liquid pool 7 of a sample liquid is formed at the tip of a capillary 2.
  • FIG. It is a figure which shows the state from which the charged droplet 8 protruded from the front-end
  • FIG. It is a figure which shows the electric field generation
  • FIG. 1 is a longitudinal sectional view of a discharge nozzle according to the first embodiment.
  • the discharge nozzle 1 includes a capillary 2, a needle 3, and a support block 4.
  • the capillary 2 of this embodiment is a thin metal cylindrical tube, and is attached to and supported by a metal support block 4.
  • the needle 3 is a thin metal needle formed with a sharp tip, and is inserted through the support block 4 into the center of the capillary 2. The tip of the needle 3 protrudes slightly from the opening of the capillary 2.
  • the support block 4 supports the capillary 2 and the needle 3 in an electrically connected state.
  • a flow path 5 through which the sample liquid supplied to the capillary 2 passes is formed inside.
  • a DC high voltage is applied to the support block 4 from the power source 6.
  • a DC high voltage is applied from the power source 6 between the discharge nozzle 1 and a counter electrode (not shown).
  • the sample liquid is supplied into the capillary 2 through the flow path 5 formed in the support block 4.
  • the sample liquid forms a liquid pool 7 at the tip of the capillary 2 as shown in FIG. Since a high voltage is applied between the capillary 2 and the needle 3 of the discharge nozzle 1, a high electric field is generated at the tip of the discharge nozzle 1.
  • the applied voltage to the discharge nozzle 1 is positive, the electric field is directed to the counter electrode.
  • the positive ions present in the liquid pool 7 move to the counter electrode side surface of the liquid pool 7 by this high electric field.
  • negative ions are directed toward the capillary 2 and the needle 3 side.
  • the negative ions that reach the surfaces of the metal capillary 2 and the needle 3 cause an oxidation reaction under a high electric field, and give electrons to the capillary 2 and the needle 3 to be neutralized.
  • the four electrons moved to the nozzle 1 and moved to the power source 6 and the counter electrode via the wiring cable as the droplets charged with positive ions, which will be described later, flew toward the counter electrode, and were charged with positive ions.
  • the positive charge carried to the counter electrode by the droplet is neutralized.
  • the positive ions that have moved to the surface of the liquid pool 7 facing the counter electrode have a strong attractive force toward the counter electrode due to a strong electric field. By this strong suction force, the tip of the liquid pool 7 extends toward the counter electrode.
  • surface tension is applied to the liquid pool 7, and the surface tension acts in a direction to prevent the tip of the liquid pool from extending toward the counter electrode.
  • the liquid puddle 7 has a conical shape called a Taylor cone with a vertex angle of 90 °.
  • the applied voltage is higher than the voltage at which the Taylor cone is formed, the tip of the Taylor cone further extends toward the counter electrode. Finally, the liquid at the tip is separated from the liquid pool 7, and as shown in FIG.
  • the feature of the discharge nozzle 1 of the present embodiment is that a metal needle 3 is provided at the center of the capillary 2.
  • the tip of the needle 3 is sharpened and the tip is projected from the opening of the capillary 2.
  • a positive potential is applied to the discharge nozzle 1
  • the metal surface of the discharge nozzle 1 is positively charged and an electric field directed to the counter electrode is generated.
  • the electric field on the metal surface becomes stronger as the sharp portion has a larger curvature and the portion closer to the counter electrode at a negative potential.
  • a strong electric field indicated by an arrow is generated at the cylindrical end of the capillary 2 tip.
  • a strong electric field indicated by an arrow is generated at the tip of the needle in addition to the cylindrical end of the capillary as shown in FIG.
  • the tip of the needle 3 has a sharp shape, and is closer to the counter electrode than the tip of the capillary, so that a stronger electric field is formed than the cylindrical end of the capillary tip. For this reason, the positive ions in the liquid pool are likely to concentrate on the tip of the needle 3 where a stronger electric field is generated. That is, in the discharge nozzle 1 of the present embodiment having the needle 3, a stronger electric field is generated at the tip of the needle 3 even if the applied voltage is the same as that of the nozzle without the conventional needle 3.
  • the voltage causing the electrospray phenomenon is lower than that of the conventional type. If the voltage applied to the discharge nozzle 1 can be lowered, the burden on the power source 6 is reduced. Further, if the voltage applied to the discharge nozzle 1 can be lowered, the occurrence of corona discharge near the tip of the discharge nozzle can be suppressed. Thus, in the discharge nozzle 1 having the needle 3 of the present embodiment, the voltage that causes the electrospray phenomenon can be made lower than that of the conventional type, and the effect of suppressing the occurrence of corona discharge can be achieved.
  • FIG. 6 is a photograph of the prototype discharge nozzle 1
  • FIG. 7 is a photograph of a state in which a Taylor cone 8 is formed at the tip of the discharge nozzle 1 and droplets are discharged from the tip
  • FIG. It is the whole photograph of the state which the droplet which caused the Coulomb explosion has become the countless fine droplet, and is sprayed on the counter electrode.
  • the metal capillary of the discharge nozzle used has an outer diameter of 0.64 mm and an inner diameter of 0.34 mm.
  • the diameter of the central needle is 0.12 mm.
  • the protruding length of the needle from the capillary tip is 0.5 to 0.6 mm.
  • the distance between the capillary and the counter electrode is 30 mm.
  • the protruding length of the needle 3 from the opening of the capillary 2 is set to a size that fits inside the Taylor cone generated at the tip of the capillary. If the protruding length of the needle 3 is too long, the Taylor cone is not formed well, and the discharge becomes unstable. On the other hand, if it is too short, the effect of lowering the applied voltage cannot be obtained sufficiently.
  • (1) and (2) in FIG. 9 are comparisons of the state of the Taylor cone when the applied voltage is changed with the protruding length of the needle 3 being the same.
  • the outer diameter of the capillary 2 was 0.71 mm
  • the protrusion length of the needle 3 was 0.75 mm
  • the applied voltage was 3250V for (1) and 3050V for (2).
  • the Taylor cone is longer in (2), and the Taylor cone is longer when the applied voltage is lower. This may be due to the following reasons. That is, when the applied voltage is high, a strong electric field gives a sufficient positive charge density to the sample liquid near the tip of the needle 3, and the sample liquid is separated into droplets at an early stage. On the other hand, when the applied voltage is low, a sufficient positive charge density is not provided near the tip of the needle 3, and the Taylor cone is elongated due to gravity. When the tip of the Taylor cone is pointed, the positive charge density at the tip increases and the electromagnetic attractive force from the counter electrode increases, and at the same time, the surface tension to be pulled up by the taper is weakened and separated.
  • the protruding length of the needle 3 and the applied voltage are set to dimensions and voltages such that the needle 3 is housed in the Taylor cone and a stable Taylor cone is formed and discharge is stably generated.
  • the optimum set value also varies depending on the type of sample liquid and the distance between the nozzle and the counter electrode.
  • FIG. 10 is a longitudinal sectional view of the discharge nozzle 10 according to the third embodiment.
  • This discharge nozzle 10 is different from the discharge nozzle 1 according to the first embodiment shown in FIG. 1 in the shape of a needle 13 that passes through the center of a capillary 2 that is a cylindrical capillary.
  • the needle 13 is a needle that is thicker than the needle 3.
  • the shape of the tip of the needle 13 is different from the shape of the tip of the needle 3. That is, the outer diameter of the needle 13 is made thick so that it is slightly smaller than the inner diameter of the capillary 2.
  • the gap between the outer surface of the needle 13 and the inner surface of the capillary 2 is narrowed to such an extent that the required amount of sample liquid can be passed.
  • the tip portion of the needle 13 protruding from the opening of the capillary 2 is formed in a downward truncated cone shape.
  • FIG. 11 is a photograph of a state in which discharge is performed by causing an electrospray phenomenon using the discharge nozzle 10 of the present embodiment.
  • the characteristic of the electrospray phenomenon using the discharge nozzle 10 of the present embodiment is that the sample liquid comes into contact with the needle 13 to which a high voltage is applied before reaching a droplet in a wide area.
  • An electrochemical reaction occurs on the surface of the needle 13. That is, when the applied voltage is positive, the negative ions in the sample liquid give electrons to the needle 13 and are neutralized. Neutral molecules are separated into positive ions and negative ions to give negative ions to the needle 13, and the positive ions go to the tip of the Taylor cone. The amount of this electrochemical reaction is determined by the contact area between the sample liquid and the needle 13.
  • the discharge nozzle 10 of the present embodiment that is in contact with the needle 13 over a wide area, the amount of electrochemical reaction that occurs until the tail cone 14 at the tip is reached increases. For this reason, when the amount of positive ions per unit flow rate of the droplets reaching the tailor cone 14 at the tip is the same, the first type using a conventional discharge nozzle having no needle or a thin needle 3 is used. Compared to the discharge nozzle 1 according to the embodiment, it becomes very large. Since it is considered that the amount of positive ions carried away by one droplet ejected from the tip of the Taylor cone is almost constant, this means that the discharge nozzle 10 of this embodiment can discharge a large amount of droplets.
  • the discharge nozzle 1 according to the first embodiment and the discharge nozzle 10 of the present embodiment were tested and compared, the following results were obtained.
  • the inner diameter of the capillary 2 is 1.83 mm
  • the outer diameter of the needle 3 is 0.12 mm.
  • the inner diameter of the capillary 2 is 1.83 mm
  • the outer diameter of the needle 13 is 1.0 mm.
  • the protruding lengths of the needle 3 and the needle 13 were the same, the applied voltage was the same, and isopropyl alcohol was used as the sample liquid.
  • the discharge nozzle 1 and the discharge nozzle 10 were compared with each other in terms of the flow rate of the sample liquid capable of causing normal discharge, and the discharge nozzle 1 according to the first embodiment was 0.02 mmL / min. On the other hand, in the discharge nozzle 10 of this embodiment, it was 0.50 mmL / min, and the flow volume of 25 times compared with the discharge nozzle 1 was able to flow. Thus, the discharge nozzle 10 of this embodiment has a great effect that a large discharge nozzle capable of increasing the flow rate of the sample liquid can be manufactured.
  • the discharge nozzle according to the third embodiment has the same structure as the discharge nozzle 1 of FIG. 1 according to the first embodiment or the discharge nozzle 10 of FIG. 10 according to the second embodiment, and the material of the capillary 2 Is changed from a metal to a non-conductive material.
  • glass is suitable as the non-conductive material, a non-conductive synthetic resin may be used. If the capillary of the discharge nozzle is made of a non-conductive material, the generation of corona discharge near the tip of the capillary can be more effectively suppressed.
  • 1 and 10 are discharge nozzles
  • 2 is a cylindrical capillary (capillary)
  • 3 is a needle
  • 4 is a support block
  • 5 is a flow path
  • 6 is a power source
  • 7 is a liquid pool
  • 8 is a charged droplet
  • 14 is Shows Taylor Cone.

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

An electrical discharge nozzle is configured by being provided with a metal cylindrical capillary tube and a metal needle. The needle is installed in the center of the cylindrical capillary tube, electrically connected to the cylindrical capillary tube. The tip of the needle is made to protrude from the electrical discharge-end opening of the cylindrical capillary tube. The length of protrusion of the needle tip is a dimension that fits within the Taylor cone generated at the tip of the cylindrical capillary tube.

Description

エレクトロスプレーイオン化法に用いる放電ノズルDischarge nozzle for electrospray ionization
 本発明は、細管であるキャピラリーを備えた放電ノズルと対向電極との間に高電圧を印加してキャピラリーを通して供給した液体を過剰電荷を帯びた微細液滴にし、対向電極に向けて噴霧させるエレクトロスプレーイオン化法に用いる放電ノズルに関する。 The present invention relates to an electrolysis method in which a high voltage is applied between a discharge nozzle having a capillary that is a capillary tube and a counter electrode to form a liquid supplied through the capillary into fine droplets with excess charge and sprayed toward the counter electrode. The present invention relates to a discharge nozzle used in a spray ionization method.
 エレクトロスプレーイオン化法は静電噴霧とも呼ばれるエレクトロスプレー現象を利用した液体噴霧技術であり、点状の液体と対向電極との間に高電圧を印加して液体を過剰電荷を帯びた微細液滴にして対向電極に向けて噴霧させる技術である。近年、有機ELや生体高分子の基板上へのコーティング、ナノメートルサイズのファイバーの形成、静電塗装、質量分析計における試料導入等に応用範囲が拡大している。 Electrospray ionization is a liquid spray technique that uses the electrospray phenomenon, also called electrostatic spraying. A high voltage is applied between the pointed liquid and the counter electrode to make the liquid into fine droplets with excess charge. This is a technique for spraying toward the counter electrode. In recent years, the application range has expanded to coating organic EL and biopolymers on substrates, formation of nanometer-sized fibers, electrostatic coating, sample introduction in mass spectrometers, and the like.
 エレクトロスプレー現象は未解明な点も多いが大略次のように考えられている。図12の原理図に示すように、細管である金属キャピラリー50と対向電極51との間に数千Vの高電圧を印加し、キャピラリー50に試料液体52を流す。キャピラリー先端に出た液体52は液だまり52aを形成する。キャピラリー先端部には対向電極51に向かう強い電場が存在する。キャピラリー50側が正電位の場合、液だまり中の正イオンは液表面側に、負イオンは内側に電気泳動する。内側に電気泳動した負イオンは、金属キャピラリー50の表面に到達して高電場の下で酸化反応を起こし、負電荷つまり電子を金属キャピラリー50に与えて中性化する。先端の液だまり表面に電気泳動した正イオンは、対向電極51に向けて強い電磁吸引力を受け、液だまり52aの先端部が対向電極51方向に伸びようとする。一方、液だまり52aの液体52には表面張力が働く。表面張力は液体表面積を小さくする力のため、液だまり52aの先端部が伸びるのを阻止する方向に働く。電磁吸引力と表面張力による力とが釣り合ったとき、キャピラリー先端の液だまり52aは頭頂角90°の円錐形状を呈する。この円錐形状は、テイラーコーンと呼ばれる。電磁吸引力がテイラーコーンが形成される電圧より高いと、テイラーコーン先端は対向電極51に向けて伸びていき、遂には過剰電荷を帯電した液滴53となって分離する。分離により過剰電荷が排出されると液だまり52aの先端は丸みを帯びた形に一旦、戻る。その後、再びテイラーコーンを形成し、過剰電荷を帯電した液滴53を分離、放出させる。分離して飛び出した液滴53上の過剰正イオンは、クーロン力で反発しあって液滴53の表面に集まる。液滴53の体積は小さく、過剰電荷は多いため、液滴53表面には外向きに大きな力が働く。液滴53は飛行中に溶媒が気化して体積が減少する。体積が減少すると電荷密度が増加し、表面の外向きの力は大きくなっていく。そしてRaylrigh極限と呼ばれる極限に達すると、多数の微細な液滴53aに分裂する。分裂で生じた微細液滴も過剰電荷を帯電しているため、溶媒気化により再びRaylrigh極限に達して再分裂する。このような分裂の繰り返しにより、最終的に気相イオンが生成されて対向電極51に噴霧される。このような分裂の繰り返しによる気相イオンの生成はクーロン斥力によるためクーロン爆発とも呼ばれる。 Although the electrospray phenomenon has many unclear points, it is generally considered as follows. As shown in the principle diagram of FIG. 12, a high voltage of several thousand volts is applied between the metal capillary 50 that is a thin tube and the counter electrode 51, and the sample liquid 52 is caused to flow through the capillary 50. The liquid 52 coming out from the capillary tip forms a liquid pool 52a. A strong electric field toward the counter electrode 51 exists at the capillary tip. When the capillary 50 side has a positive potential, positive ions in the liquid pool are electrophoresed on the liquid surface side, and negative ions are electrophoresed on the inside. The negative ions electrophoresed on the inside reach the surface of the metal capillary 50 and cause an oxidation reaction under a high electric field. The negative ions, that is, electrons, are imparted to the metal capillary 50 to be neutralized. The positive ions electrophoresed on the surface of the liquid pool at the tip receive a strong electromagnetic attraction force toward the counter electrode 51, and the tip of the liquid pool 52a tends to extend in the direction of the counter electrode 51. On the other hand, surface tension acts on the liquid 52 in the liquid pool 52a. Since the surface tension is a force that reduces the surface area of the liquid, it acts in a direction that prevents the tip of the liquid pool 52a from extending. When the electromagnetic attraction force and the force due to surface tension are balanced, the liquid pool 52a at the tip of the capillary has a conical shape with a vertex angle of 90 °. This conical shape is called a Taylor cone. When the electromagnetic attraction force is higher than the voltage at which the Taylor cone is formed, the tip of the Taylor cone extends toward the counter electrode 51 and finally separates into a droplet 53 charged with excess charge. When excess charge is discharged by the separation, the tip of the liquid pool 52a once returns to a rounded shape. Thereafter, a Taylor cone is formed again, and the droplet 53 charged with excess charge is separated and released. The excess positive ions on the droplet 53 that have separated and jumped out repel each other by the Coulomb force and gather on the surface of the droplet 53. Since the volume of the droplet 53 is small and the excess charge is large, a large force acts outward on the surface of the droplet 53. The droplet 53 is reduced in volume due to the evaporation of the solvent during the flight. As the volume decreases, the charge density increases and the outward force on the surface increases. When the limit called the Rayleigh limit is reached, it breaks up into a large number of fine droplets 53a. Since the fine droplets generated by the splitting are also charged with excessive charges, they reach the Rayleigh limit again by solvent evaporation and re-split. By repeating such splitting, gas phase ions are finally generated and sprayed on the counter electrode 51. The generation of gas phase ions by repeating such splitting is also called Coulomb explosion because of Coulomb repulsion.
 こうしたエレクトロスプレー現象を生じさせるには、キャピラリー50と対向電極51との間に高電圧を印加してキャピラリー先端部に強力な電場を発生させ、表面張力に打ち勝つ電磁吸引力を液だまり52aに生じさせる必要がある。必要な電圧は数千Vになる。水のような液体は表面張力が強いため、特に高い電圧を必要とする。印加電圧は電源装置54の構成上、低い方が好ましい。また、キャピラリー50に印加する電圧が高いと、キャピラリー先端付近でコロナ放電が発生し、安定したテイラーコーンの形成が妨げられる。 In order to cause such an electrospray phenomenon, a high voltage is applied between the capillary 50 and the counter electrode 51 to generate a strong electric field at the tip of the capillary, and an electromagnetic attractive force that overcomes the surface tension is generated in the liquid pool 52a. It is necessary to let The required voltage is several thousand volts. A liquid such as water requires a particularly high voltage because of its high surface tension. The applied voltage is preferably lower due to the configuration of the power supply device 54. In addition, when the voltage applied to the capillary 50 is high, corona discharge occurs near the capillary tip, preventing the formation of a stable Taylor cone.
特開2014-223491号公報JP 2014-223491 A
 本発明は、従来技術のこうした問題点を解決するためになされたもので、その課題はエレクトロスプレー現象を生じさせるに必要な放電ノズルへの印加電圧を低くすることができ、キャピラリー先端付近でのコロナ放電の発生抑止にも効果のあるエレクトロスプレーイオン化法に用いる放電ノズルを提供することにある。 The present invention has been made to solve these problems of the prior art, and the problem is that the voltage applied to the discharge nozzle required to cause the electrospray phenomenon can be lowered, and the vicinity of the capillary tip is reduced. An object of the present invention is to provide a discharge nozzle used in an electrospray ionization method that is also effective in suppressing the generation of corona discharge.
 前記課題を解決するための請求項1に記載の発明は、エレクトロスプレーイオン化法に用いる放電ノズルであって、金属製の円筒状細管と、金属製の針と、を備えて構成され、前記針は、円筒状細管に電気的に接続された状態で円筒状細管の中心に取り付けられ、前記針の先端は、円筒状細管の放電側開口から突出し、前記針の先端部の突出長さは、円筒状細管の先端部に生ずるテイラーコーンの内部に納まる寸法にしてあることを特徴とする放電ノズルである。 The invention according to claim 1 for solving the above problem is a discharge nozzle used in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle, wherein the needle Is attached to the center of the cylindrical tubule while being electrically connected to the cylindrical tubule, and the tip of the needle protrudes from the discharge side opening of the cylindrical tubule, and the protruding length of the tip of the needle is: A discharge nozzle characterized in that it is dimensioned to fit within a Taylor cone generated at the tip of a cylindrical thin tube.
 このような構成によれば、円筒状細管であるキャピラリー先端から突出した針先端部は曲率が大きく、且つキャピラリー先端よりも対向電極に近い距離にあるためキャピラリー先端の円筒端よりも強い電界が形成される。これにより従来型の針のないノズルに比べて印加電圧が同じでも強い電界が生ずる。そのためエレクトロスプレー現象を生じさせる電圧を従来型よりも低くすることができ電源の負担を軽減できる。また、放電ノズルへの印加電圧を低くできるので放電ノズル先端付近でのコロナ放電の発生も抑制される効果を奏する。 According to such a configuration, the needle tip protruding from the capillary tip, which is a cylindrical tubule, has a larger curvature and is closer to the counter electrode than the capillary tip, so a stronger electric field is formed than the cylindrical tip of the capillary tip. Is done. As a result, a stronger electric field is generated even when the applied voltage is the same as that of a conventional nozzle without a needle. Therefore, the voltage causing the electrospray phenomenon can be made lower than that of the conventional type, and the burden on the power source can be reduced. In addition, since the voltage applied to the discharge nozzle can be lowered, there is an effect that the generation of corona discharge near the tip of the discharge nozzle is also suppressed.
 また、請求項2に記載の発明は、エレクトロスプレーイオン化法に用いる放電ノズルであって、金属製の円筒状細管と、金属製の針と、を備えて構成され、前記針は、その外径が円筒状細管の内径より僅かに小さく、円筒状細管の内面との間に試料液体を通過させる隙間を形成しており、前記針のうち円筒状細管の開口から突出する先端部分は、円錐台形形状に形成してあることを特徴とする放電ノズルである。 The invention described in claim 2 is a discharge nozzle used in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle, and the needle has an outer diameter. Is slightly smaller than the inner diameter of the cylindrical tubule and forms a gap for allowing the sample liquid to pass between the inner surface of the cylindrical tubule, and the tip of the needle protruding from the opening of the cylindrical tubule has a truncated cone shape. A discharge nozzle having a shape.
 このような構成とすれば、供給する試料液体の流量を大幅に増加させることができる。  With such a configuration, the flow rate of the sample liquid to be supplied can be greatly increased.
 また、請求項3に記載の発明は、請求項1又は2に記載の放電ノズルにおいて、前記円筒状細管は金属製に代えて非導電性材料で形成してあり、印加電圧は前記針に供給されるように構成してあることを特徴とする放電ノズルである。 According to a third aspect of the present invention, in the discharge nozzle according to the first or second aspect, the cylindrical tubule is formed of a nonconductive material instead of a metal, and an applied voltage is supplied to the needle. The discharge nozzle is configured as described above.
 このように放電ノズルの円筒状細管であるキャピラリーを非導電性材料で形成した構成とすれば、キャピラリー先端近くでのコロナ放電の発生を一層効果的に抑制することができる。 Thus, if the capillary, which is a cylindrical thin tube of the discharge nozzle, is made of a non-conductive material, the generation of corona discharge near the capillary tip can be more effectively suppressed.
第1の実施形態に係る放電ノズルの縦断面図である。It is a longitudinal cross-sectional view of the discharge nozzle which concerns on 1st Embodiment. キャピラリー2の先端に試料液体の液だまり7が形成された状態を示す図である。3 is a view showing a state in which a liquid pool 7 of a sample liquid is formed at the tip of a capillary 2. FIG. テイラーコーン形状になった液だまり7の先端から帯電液滴8が飛び出した状態を示す図である。It is a figure which shows the state from which the charged droplet 8 protruded from the front-end | tip of the liquid pool 7 used as the Taylor cone shape. 中心に針が設けてない従来の放電ノズル10における電界発生状況を示す図である。It is a figure which shows the electric field generation | occurrence | production condition in the conventional discharge nozzle 10 in which the needle | hook is not provided in the center. 中心に針3を設けた放電ノズル1における電界発生状況を示す図である。It is a figure which shows the electric field generation condition in the discharge nozzle 1 which provided the needle | hook 3 in the center. 試作した放電ノズル1の先端部の写真を示す図である。It is a figure which shows the photograph of the front-end | tip part of the discharge nozzle 1 made as an experiment. 試作した放電ノズル1の先端にテイラーコーンが形成されて液滴が放出されている状態の写真を示す図である。It is a figure which shows the photograph of the state in which the Taylor cone was formed in the front-end | tip of the prototype discharge nozzle 1, and the droplet was discharge | released. 放電ノズル1から放出された液滴がクーロン爆発を起こして無数の微細液滴となって対向電極に噴霧されている状態の全体写真を示す図である。It is a figure which shows the whole photograph of the state by which the droplet discharge | released from the discharge nozzle 1 raise | generates a Coulomb explosion, becomes an infinite number of fine droplets, and is sprayed on the counter electrode. 印加電圧を変化させた場合のテイラーコーンの比較実験結果を写真により示す図である。It is a figure which shows the comparison experiment result of the Taylor cone at the time of changing an applied voltage with a photograph. 第3の実施形態に係る放電ノズル10の縦断面図である。It is a longitudinal cross-sectional view of the discharge nozzle 10 which concerns on 3rd Embodiment. 第3の実施形態に係る放電ノズル10を使用してエレクトロスプレー現象を生じさせている状態の写真を示す図である。It is a figure which shows the photograph of the state which is producing the electrospray phenomenon using the discharge nozzle 10 which concerns on 3rd Embodiment. エレクトロスプレー現象の説明図である。It is explanatory drawing of an electrospray phenomenon.
 以下、本発明に係るエレクトロスプレーイオン化法に用いる放電ノズルの構成例を実施形態に分けて図面を参照して説明する。
 (第1の実施形態)
 図1は第1の実施形態に係る放電ノズルの縦断面図である。放電ノズル1はキャピラリー2、針3、支持ブロック4を備えて構成される。本実施形態のキャピラリー2は金属製の細い円筒管であり、金属製の支持ブロック4に取り付けて支持されている。針3は先端が尖った形状に形成された金属製の細い針であり、支持ブロック4を貫通してキャピラリー2の中心に挿入されている。針3の先端はキャピラリー2の開口より僅かに突出させてある。支持ブロック4はキャピラリー2と針3を電気的に接続した状態で支持する。その内部にはキャピラリー2に供給される試料液体を通す流路5が形成されている。支持ブロック4には電源6より直流高電圧が印加される。
Hereinafter, a configuration example of a discharge nozzle used in an electrospray ionization method according to the present invention will be described in an embodiment with reference to the drawings.
(First embodiment)
FIG. 1 is a longitudinal sectional view of a discharge nozzle according to the first embodiment. The discharge nozzle 1 includes a capillary 2, a needle 3, and a support block 4. The capillary 2 of this embodiment is a thin metal cylindrical tube, and is attached to and supported by a metal support block 4. The needle 3 is a thin metal needle formed with a sharp tip, and is inserted through the support block 4 into the center of the capillary 2. The tip of the needle 3 protrudes slightly from the opening of the capillary 2. The support block 4 supports the capillary 2 and the needle 3 in an electrically connected state. A flow path 5 through which the sample liquid supplied to the capillary 2 passes is formed inside. A DC high voltage is applied to the support block 4 from the power source 6.
 この放電ノズル1と図示しない対向電極との間に電源6より直流高電圧を印加する。その状態で支持ブロック4に形成された流路5を通してキャピラリー2内に試料液体を供給する。試料液体は図2に示すようにキャピラリー2の先端に液だまり7を形成する。放電ノズル1のキャピラリー2と針3との間には高電圧が印加されているので放電ノズル1の先端部には高電界が生じている。放電ノズル1への印加電圧が正の場合、その電界は対向電極に向かう。液だまり7の中に存在する正イオンは、この高電界により液だまり7の対向電極側表面に移動する。負イオンは反対にキャピラリー2と針3側に向かう。 A DC high voltage is applied from the power source 6 between the discharge nozzle 1 and a counter electrode (not shown). In this state, the sample liquid is supplied into the capillary 2 through the flow path 5 formed in the support block 4. The sample liquid forms a liquid pool 7 at the tip of the capillary 2 as shown in FIG. Since a high voltage is applied between the capillary 2 and the needle 3 of the discharge nozzle 1, a high electric field is generated at the tip of the discharge nozzle 1. When the applied voltage to the discharge nozzle 1 is positive, the electric field is directed to the counter electrode. The positive ions present in the liquid pool 7 move to the counter electrode side surface of the liquid pool 7 by this high electric field. On the other hand, negative ions are directed toward the capillary 2 and the needle 3 side.
 金属製キャピラリー2と針3の表面に到達した負イオンは高電界の下で酸化反応を起こし、電子をキャピラリー2、針3に与えて中性化する。例えば、水酸化イオンの場合、4個の水酸化イオンの酸化反応により2個の水分子、1個の酸素分子、4個の電子が生成される。4個の電子はノズル1に移り、後述する正イオンに帯電した液滴の対向電極に向けての飛翔に伴って、配線ケーブル経由で電源6、対向電極へと移動し、正イオンに帯電した液滴により対向電極に運ばれた正電荷を中和する。 The negative ions that reach the surfaces of the metal capillary 2 and the needle 3 cause an oxidation reaction under a high electric field, and give electrons to the capillary 2 and the needle 3 to be neutralized. For example, in the case of hydroxide ions, two water molecules, one oxygen molecule, and four electrons are generated by an oxidation reaction of four hydroxide ions. The four electrons moved to the nozzle 1 and moved to the power source 6 and the counter electrode via the wiring cable as the droplets charged with positive ions, which will be described later, flew toward the counter electrode, and were charged with positive ions. The positive charge carried to the counter electrode by the droplet is neutralized.
 液だまり7の対向電極側表面に移動した正イオンには、強い電界により対向電極に向かう強い吸引力が働く。この強い吸引力により液だまり7の先端部は対向電極に向けて伸びる。一方、液だまり7には表面張力が働き、その表面張力は液だまり先端部が対向電極に向けて伸びるのを阻止する方向に働く。両者の力が釣り合ったとき、図2に示すように、液だまり7はテイラーコーンと呼ばれる頭頂角90°の円錐形状をなす。印加電圧がこのテイラーコーンが形成される電圧より高いと、テイラーコーンの先端が対向電極に向けて更に伸びる。そして、遂には先端部の液が液だまり7から分離し、図3に示すように、正イオンで帯電した液滴8となって対向電極に向かって飛び出す。エレクトロスプレー現象の開始である。帯電した液滴8が飛び出すと、液だまり7は帯電量が減少するため吸引力が弱まって先端が丸みを帯びる。その後、再びテイラーコーンが形成され、正イオンで帯電した液滴8が再び対向電極に向かって放出される。このような動作が繰り返される。 The positive ions that have moved to the surface of the liquid pool 7 facing the counter electrode have a strong attractive force toward the counter electrode due to a strong electric field. By this strong suction force, the tip of the liquid pool 7 extends toward the counter electrode. On the other hand, surface tension is applied to the liquid pool 7, and the surface tension acts in a direction to prevent the tip of the liquid pool from extending toward the counter electrode. When the two forces are balanced, as shown in FIG. 2, the liquid puddle 7 has a conical shape called a Taylor cone with a vertex angle of 90 °. When the applied voltage is higher than the voltage at which the Taylor cone is formed, the tip of the Taylor cone further extends toward the counter electrode. Finally, the liquid at the tip is separated from the liquid pool 7, and as shown in FIG. 3, it becomes droplets 8 charged with positive ions and jumps toward the counter electrode. It is the start of the electrospray phenomenon. When the charged droplet 8 is ejected, the charge amount of the liquid pool 7 is reduced, so that the suction force is weakened and the tip is rounded. Thereafter, a Taylor cone is formed again, and the droplet 8 charged with positive ions is discharged again toward the counter electrode. Such an operation is repeated.
 本実施形態の放電ノズル1の特徴は、キャピラリー2の中心に金属製の針3が設けてある点にある。針3の先端を尖った形状にしてキャピラリー2の開口から先端部を突出させてある。この放電ノズル1に正電位を与えた場合、放電ノズル1の金属表面は正に帯電して対向電極に向かう電界が生ずる。金属表面上の電界は曲率の大きい尖った部分ほど、また負電位にある対向電極に近い部分ほど強くなる。中心に針3が設けてない図4に示す従来の放電ノズル10では、キャピラリー2先端の円筒端に矢印で示す強い電界が生ずる。これに対して本実施形態の放電ノズル1では、図5に示すようにキャピラリー先端の円筒端に加え、針先端部に矢印で示す強い電界が生ずる。そして、この針3の先端部は尖った形状にしてあり、更にキャピラリー先端よりも対向電極に近い距離にあるため、キャピラリー先端の円筒端よりも強い電界が形成される。このため液だまり中の正イオンは、より強い電界が発生している針3の先端部に集中しやすい。即ち、針3を有する本実施形態の放電ノズル1では、従来型の針3のないノズルに比べて印加電圧が同じでも強い電界が針3の先端部に生ずる。 The feature of the discharge nozzle 1 of the present embodiment is that a metal needle 3 is provided at the center of the capillary 2. The tip of the needle 3 is sharpened and the tip is projected from the opening of the capillary 2. When a positive potential is applied to the discharge nozzle 1, the metal surface of the discharge nozzle 1 is positively charged and an electric field directed to the counter electrode is generated. The electric field on the metal surface becomes stronger as the sharp portion has a larger curvature and the portion closer to the counter electrode at a negative potential. In the conventional discharge nozzle 10 shown in FIG. 4 in which the needle 3 is not provided at the center, a strong electric field indicated by an arrow is generated at the cylindrical end of the capillary 2 tip. In contrast, in the discharge nozzle 1 of the present embodiment, a strong electric field indicated by an arrow is generated at the tip of the needle in addition to the cylindrical end of the capillary as shown in FIG. The tip of the needle 3 has a sharp shape, and is closer to the counter electrode than the tip of the capillary, so that a stronger electric field is formed than the cylindrical end of the capillary tip. For this reason, the positive ions in the liquid pool are likely to concentrate on the tip of the needle 3 where a stronger electric field is generated. That is, in the discharge nozzle 1 of the present embodiment having the needle 3, a stronger electric field is generated at the tip of the needle 3 even if the applied voltage is the same as that of the nozzle without the conventional needle 3.
 これは、裏返せばエレクトロスプレー現象を生じさせる電圧は従来型よりも低い電圧で済むことを意味する。放電ノズル1への印加電圧を低くできれば、電源6の負担は軽減される。また、放電ノズル1への印加電圧を低くできれば、放電ノズル先端付近でのコロナ放電の発生も抑制される。このように本実施形態の針3を有する放電ノズル1では、エレクトロスプレー現象を生じさせる電圧を従来型より低くでき、コロナ放電の発生も抑制できる効果を奏する。 This means that, if reversed, the voltage causing the electrospray phenomenon is lower than that of the conventional type. If the voltage applied to the discharge nozzle 1 can be lowered, the burden on the power source 6 is reduced. Further, if the voltage applied to the discharge nozzle 1 can be lowered, the occurrence of corona discharge near the tip of the discharge nozzle can be suppressed. Thus, in the discharge nozzle 1 having the needle 3 of the present embodiment, the voltage that causes the electrospray phenomenon can be made lower than that of the conventional type, and the effect of suppressing the occurrence of corona discharge can be achieved.
 図6は試作した放電ノズル1の写真、図7はその放電ノズル1の先端にテイラーコーン8が形成されて先端から液滴が放出されている状態の写真、図8は放電ノズル1から放出された液滴がクーロン爆発を起こして無数の微細液滴となって対向電極に噴霧されている状態の全体写真である。用いた放電ノズルの金属製キャピラリーは、外径0.64mm、内径0.34mmである。中心の針の直径は0.12mmである。この針のキャピラリー先端からの突出長さは0.5~0.6mmである。キャピラリーと対向電極間の距離は30mmである。そして、試料液体としてイソプロピルアルコールを流して実験をした。この条件下で安定したエレクトロスプレー現象が開始された電圧は2,900Vであった。これに対して針なしで同じキャピラリーを用いた場合のエレクトロスプレー現象の開始電圧は3,500Vであった。針を設けたことにより印加電圧を600Vも低下させることができた。 FIG. 6 is a photograph of the prototype discharge nozzle 1, FIG. 7 is a photograph of a state in which a Taylor cone 8 is formed at the tip of the discharge nozzle 1 and droplets are discharged from the tip, and FIG. It is the whole photograph of the state which the droplet which caused the Coulomb explosion has become the countless fine droplet, and is sprayed on the counter electrode. The metal capillary of the discharge nozzle used has an outer diameter of 0.64 mm and an inner diameter of 0.34 mm. The diameter of the central needle is 0.12 mm. The protruding length of the needle from the capillary tip is 0.5 to 0.6 mm. The distance between the capillary and the counter electrode is 30 mm. And it experimented by flowing isopropyl alcohol as a sample liquid. The voltage at which the stable electrospray phenomenon started under these conditions was 2,900V. On the other hand, when the same capillary was used without a needle, the starting voltage of the electrospray phenomenon was 3,500V. By providing the needle, the applied voltage could be reduced by 600V.
 キャピラリー2の開口からの針3の突出長さは、キャピラリーの先端部に生ずるテイラーコーンの内部に納まる寸法とする。針3の突出長さが長すぎるとテイラーコーンは上手く形成されず、放電が不安定になる。一方、短すぎると印加電圧を下げる効果が十分には得られない。図9の(1)、(2)は、針3の突出長さを同じにして印加電圧を変化させた場合のテイラーコーンの状態を比較したものである。キャピラリー2の外径を0.71mm、針3の突出長さを0.75mmとし、印加電圧を(1)は3250V、(2)は3050Vとした。テイラーコーンは(2)の方が長くなっており、印加電圧が低い方がテイラーコーンは長くなる。これは以下の理由によるからではないかと思われる。即ち、印加電圧が高い場合は強電界により針3の先端近くで試料液体に十分な正電荷密度が与えられて早い段階で試料液体が液滴となって分離する。一方、印加電圧が低い場合は針3の先端近くでは十分な正電荷密度が与えられず、重力によりテイラーコーンが長く伸びる。そして、テイラーコーンの先端が尖ると先端部の正電荷密度が高まって対極からの電磁吸引力が高まり、同時に先細りにより引き上げようとする表面張力も弱まって分離する。 The protruding length of the needle 3 from the opening of the capillary 2 is set to a size that fits inside the Taylor cone generated at the tip of the capillary. If the protruding length of the needle 3 is too long, the Taylor cone is not formed well, and the discharge becomes unstable. On the other hand, if it is too short, the effect of lowering the applied voltage cannot be obtained sufficiently. (1) and (2) in FIG. 9 are comparisons of the state of the Taylor cone when the applied voltage is changed with the protruding length of the needle 3 being the same. The outer diameter of the capillary 2 was 0.71 mm, the protrusion length of the needle 3 was 0.75 mm, and the applied voltage was 3250V for (1) and 3050V for (2). The Taylor cone is longer in (2), and the Taylor cone is longer when the applied voltage is lower. This may be due to the following reasons. That is, when the applied voltage is high, a strong electric field gives a sufficient positive charge density to the sample liquid near the tip of the needle 3, and the sample liquid is separated into droplets at an early stage. On the other hand, when the applied voltage is low, a sufficient positive charge density is not provided near the tip of the needle 3, and the Taylor cone is elongated due to gravity. When the tip of the Taylor cone is pointed, the positive charge density at the tip increases and the electromagnetic attractive force from the counter electrode increases, and at the same time, the surface tension to be pulled up by the taper is weakened and separated.
 一方、図示しないが、印加電圧を同じにして針3の突出長さを変えた場合には、針3を長くした方がテイラーコーンは長くなる。但し、長すぎるとテイラーコーンは上手く形成されない。こうしたことから針3の突出長さと印加電圧とは、針3がテイラーコーンの内部に納まり、且つ、安定したテイラーコーンが形成されて放電が安定して生ずるような寸法と電圧に設定する。最適な設定値は試料液体の種類、ノズルと対向電極間の距離によっても変化する。 On the other hand, although not shown, when the applied voltage is the same and the protruding length of the needle 3 is changed, the Taylor cone becomes longer when the needle 3 is lengthened. However, if it is too long, the Taylor cone will not be formed well. For this reason, the protruding length of the needle 3 and the applied voltage are set to dimensions and voltages such that the needle 3 is housed in the Taylor cone and a stable Taylor cone is formed and discharge is stably generated. The optimum set value also varies depending on the type of sample liquid and the distance between the nozzle and the counter electrode.
 (第2の実施形態)
 図10は第3の実施形態に係る放電ノズル10の縦断面図である。この放電ノズル10が図1に示した第1の実施形態に係る放電ノズル1と異なる点は、円筒状細管であるキャピラリ-2の中心に通す針13の形状にある。針13は、針3よりも太い針である。また、針13の先端部の形状は、針3の先端部の形状と異なっている。即ち、針13の外径はキャピラリー2の内径より僅かに小さい程度に太くしてある。針13の外面とキャピラリー2の内面との隙間は、試料液体の必要量を通過させられる程度にまで狭くしてある。そして、キャピラリー2の開口からから突出する針13の先端部分は、下向きの円錐台形形状に形成してある。
(Second Embodiment)
FIG. 10 is a longitudinal sectional view of the discharge nozzle 10 according to the third embodiment. This discharge nozzle 10 is different from the discharge nozzle 1 according to the first embodiment shown in FIG. 1 in the shape of a needle 13 that passes through the center of a capillary 2 that is a cylindrical capillary. The needle 13 is a needle that is thicker than the needle 3. The shape of the tip of the needle 13 is different from the shape of the tip of the needle 3. That is, the outer diameter of the needle 13 is made thick so that it is slightly smaller than the inner diameter of the capillary 2. The gap between the outer surface of the needle 13 and the inner surface of the capillary 2 is narrowed to such an extent that the required amount of sample liquid can be passed. The tip portion of the needle 13 protruding from the opening of the capillary 2 is formed in a downward truncated cone shape.
 試料液体は、針13の外表面とキャピラリー2の内面との間の狭い隙間を通過する際に、太い針13の広い外表面と接触する。隙間を通過してキャピラリー2の開口端に達した試料液体は、今度は針13の円錐台形部の広い側面に接触した状態で円錐台形先端部まで流れ下る。針13に高電圧が印加してあると円錐台形先端部に小さなテイラーコーン14が形成されてエレクトロスプレー現象が生じ、試料液体は帯電液滴となって対向電極に向かって飛び出してゆく。図11は、本実施形態の放電ノズル10を使用してエレクトロスプレー現象を起させ、放電を行なっている状態の写真である。 When the sample liquid passes through a narrow gap between the outer surface of the needle 13 and the inner surface of the capillary 2, the sample liquid comes into contact with the wide outer surface of the thick needle 13. The sample liquid that has passed through the gap and reached the open end of the capillary 2 now flows down to the frustoconical tip while contacting the wide side surface of the frustoconical portion of the needle 13. When a high voltage is applied to the needle 13, a small Taylor cone 14 is formed at the tip of the frustoconical shape, causing an electrospray phenomenon, and the sample liquid is ejected as a charged droplet toward the counter electrode. FIG. 11 is a photograph of a state in which discharge is performed by causing an electrospray phenomenon using the discharge nozzle 10 of the present embodiment.
 本実施形態の放電ノズル10を使用したエレクトロスプレー現象の特徴は、液滴となって飛びゆく前に試料液体が高電圧を印加された針13と広い面積で接触する点にある。針13の表面では電気化学反応が生ずる。即ち、印加電圧が正の場合、試料液体中の負イオンは電子を針13に与えて中性化する。中性分子は正イオンと負イオンに分離して負イオンの電子を針13に与え、正イオンはテイラーコーン先端部に向かう。この電気化学反応の生ずる量は、試料液体と針13との接触面積により決まる。広い面積で針13と接触させる本実施形態の放電ノズル10では、先端のテイラーコーン14に達するまでの間で生ずる電気化学反応の量が大きくなる。このため先端のテイラーコーン14に達した液滴が持つ単位流量当たり正イオンの量が、流量を同じとした場合には、針を有しない従来型放電ノズルや細い針3を使用する第1の実施形態に係る放電ノズル1に比べて非常に大きくなる。テイラーコーン先端から飛びだす1個の液滴が持ち去る正イオンの量はほぼ一定と考えられるので、このことは、本実施形態の放電ノズル10では大量の液滴を放出させられることを意味する。 The characteristic of the electrospray phenomenon using the discharge nozzle 10 of the present embodiment is that the sample liquid comes into contact with the needle 13 to which a high voltage is applied before reaching a droplet in a wide area. An electrochemical reaction occurs on the surface of the needle 13. That is, when the applied voltage is positive, the negative ions in the sample liquid give electrons to the needle 13 and are neutralized. Neutral molecules are separated into positive ions and negative ions to give negative ions to the needle 13, and the positive ions go to the tip of the Taylor cone. The amount of this electrochemical reaction is determined by the contact area between the sample liquid and the needle 13. In the discharge nozzle 10 of the present embodiment that is in contact with the needle 13 over a wide area, the amount of electrochemical reaction that occurs until the tail cone 14 at the tip is reached increases. For this reason, when the amount of positive ions per unit flow rate of the droplets reaching the tailor cone 14 at the tip is the same, the first type using a conventional discharge nozzle having no needle or a thin needle 3 is used. Compared to the discharge nozzle 1 according to the embodiment, it becomes very large. Since it is considered that the amount of positive ions carried away by one droplet ejected from the tip of the Taylor cone is almost constant, this means that the discharge nozzle 10 of this embodiment can discharge a large amount of droplets.
 第1の実施形態に係る放電ノズル1と本実施形態の放電ノズル10を実験して比較したところ、次の結果が得られた。第1の実施形態の放電ノズル1はキャピラリー2の内径を1.83mm、針3の外径を0.12mmとした。一方、本実施形態の放電ノズル10はキャピラリー2の内径を1.83mm、針13の外径を1.0mmとした。なお、針3および針13の突出長さは同じとし、印加電圧は同じとし、試料液体にイソプロピルアルコールを使用した。そして、放電ノズル1および放電ノズル10について、正常な放電を生じさせることができる試料液体の流量を比較したところ、第1の実施形態に係る放電ノズル1では0.02mmL/minであった。これに対して、本実施形態の放電ノズル10では0.50mmL/minであり、放電ノズル1に比べ25倍もの流量を流すことができた。このように本実施形態の放電ノズル10は、試料液体の流量を大きくできる大型の放電ノズルを製作できるという大きな効果を奏する。 When the discharge nozzle 1 according to the first embodiment and the discharge nozzle 10 of the present embodiment were tested and compared, the following results were obtained. In the discharge nozzle 1 of the first embodiment, the inner diameter of the capillary 2 is 1.83 mm, and the outer diameter of the needle 3 is 0.12 mm. On the other hand, in the discharge nozzle 10 of the present embodiment, the inner diameter of the capillary 2 is 1.83 mm, and the outer diameter of the needle 13 is 1.0 mm. The protruding lengths of the needle 3 and the needle 13 were the same, the applied voltage was the same, and isopropyl alcohol was used as the sample liquid. The discharge nozzle 1 and the discharge nozzle 10 were compared with each other in terms of the flow rate of the sample liquid capable of causing normal discharge, and the discharge nozzle 1 according to the first embodiment was 0.02 mmL / min. On the other hand, in the discharge nozzle 10 of this embodiment, it was 0.50 mmL / min, and the flow volume of 25 times compared with the discharge nozzle 1 was able to flow. Thus, the discharge nozzle 10 of this embodiment has a great effect that a large discharge nozzle capable of increasing the flow rate of the sample liquid can be manufactured.
 (第3の実施形態)
 第3の実施形態に係る放電ノズルは、構造を第1の実施形態に係る図1の放電ノズル1、又は、第2の実施形態に係る図10の放電ノズル10と同じにし、キャピラリー2の材質のみを金属から非導電性材料に変えたものである。非導電性材料としてはガラスが適しているが非導電性の合成樹脂でもよい。放電ノズルのキャピラリーを非導電性材料で形成すればキャピラリー先端近くでのコロナ放電の発生を一層効果的に抑制することができる。
(Third embodiment)
The discharge nozzle according to the third embodiment has the same structure as the discharge nozzle 1 of FIG. 1 according to the first embodiment or the discharge nozzle 10 of FIG. 10 according to the second embodiment, and the material of the capillary 2 Is changed from a metal to a non-conductive material. Although glass is suitable as the non-conductive material, a non-conductive synthetic resin may be used. If the capillary of the discharge nozzle is made of a non-conductive material, the generation of corona discharge near the tip of the capillary can be more effectively suppressed.
 図面中、1、10は放電ノズル、2は円筒状細管(キャピラリー)、3は針、4は支持ブロック、5は流路、6は電源、7は液だまり、8は帯電液滴、14はテイラーコーンを示す。 In the drawings, 1 and 10 are discharge nozzles, 2 is a cylindrical capillary (capillary), 3 is a needle, 4 is a support block, 5 is a flow path, 6 is a power source, 7 is a liquid pool, 8 is a charged droplet, 14 is Shows Taylor Cone.

Claims (3)

  1.  エレクトロスプレーイオン化法に用いる放電ノズルであって、金属製の円筒状細管と、金属製の針と、を備え、
     前記針は、前記円筒状細管に電気的に接続された状態で該円筒状細管の中心に取り付けられ、
     前記針の先端は、前記円筒状細管の放電側開口から突出し、
     前記針の先端部の突出長さは、前記円筒状細管の先端部に生ずるテイラーコーンの内部に納まる寸法である放電ノズル。
    A discharge nozzle for use in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle,
    The needle is attached to the center of the cylindrical tubule in a state of being electrically connected to the cylindrical tubule,
    The tip of the needle protrudes from the discharge side opening of the cylindrical tubule,
    A discharge nozzle having a protruding length at the tip of the needle that is within a Taylor cone formed at the tip of the cylindrical capillary.
  2.  エレクトロスプレーイオン化法に用いる放電ノズルであって、金属製の円筒状細管と、金属製の針と、を備え、
     前記針は、その外径が前記円筒状細管の内径より僅かに小さく、前記円筒状細管の内面との間に試料液体を通過させる隙間を形成しており、
     前記針のうち前記円筒状細管の開口から突出する先端部分は、円錐台形形状である放電ノズル。
    A discharge nozzle for use in an electrospray ionization method, comprising a metal cylindrical tubule and a metal needle,
    The needle has an outer diameter slightly smaller than the inner diameter of the cylindrical tubule, and forms a gap for allowing the sample liquid to pass between the inner surface of the cylindrical tubule,
    The tip of the needle protruding from the opening of the cylindrical capillary is a frustoconical shape.
  3.  請求項1又は2に記載の放電ノズルにおいて、前記円筒状細管は金属製に代えて非導電性材料で形成され、印加電圧は前記針に供給される放電ノズル。 3. The discharge nozzle according to claim 1 or 2, wherein the cylindrical tubule is formed of a non-conductive material instead of metal, and an applied voltage is supplied to the needle.
PCT/JP2015/079979 2015-04-09 2015-10-23 Electrical discharge nozzle to be used in electrospray ionization WO2016163046A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-080454 2015-04-09
JP2015080454 2015-04-09
JP2015-182324 2015-09-15
JP2015182324A JP2016198756A (en) 2015-04-09 2015-09-15 Electric discharge nozzle used for electrospray ionization method

Publications (1)

Publication Number Publication Date
WO2016163046A1 true WO2016163046A1 (en) 2016-10-13

Family

ID=57071818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079979 WO2016163046A1 (en) 2015-04-09 2015-10-23 Electrical discharge nozzle to be used in electrospray ionization

Country Status (1)

Country Link
WO (1) WO2016163046A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872940A (en) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 A kind of ion source device using dielectric barrier discharge assist ionization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330985B2 (en) * 1979-08-23 1988-06-21 Yunaitetsudo Kingudamu Atomitsuku Enaaji Oosoritei
JP2005296753A (en) * 2004-04-08 2005-10-27 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2006088127A (en) * 2004-09-27 2006-04-06 Matsushita Electric Works Ltd Electrostatic aerification device and manufacturing method of liquid transfer section used therefor
JP2006159030A (en) * 2004-12-03 2006-06-22 Dainippon Printing Co Ltd Manufacturing method of patterned matter
JP2009274069A (en) * 2009-07-13 2009-11-26 Panasonic Electric Works Co Ltd Electrostatic atomizing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330985B2 (en) * 1979-08-23 1988-06-21 Yunaitetsudo Kingudamu Atomitsuku Enaaji Oosoritei
JP2005296753A (en) * 2004-04-08 2005-10-27 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2006088127A (en) * 2004-09-27 2006-04-06 Matsushita Electric Works Ltd Electrostatic aerification device and manufacturing method of liquid transfer section used therefor
JP2006159030A (en) * 2004-12-03 2006-06-22 Dainippon Printing Co Ltd Manufacturing method of patterned matter
JP2009274069A (en) * 2009-07-13 2009-11-26 Panasonic Electric Works Co Ltd Electrostatic atomizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109872940A (en) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 A kind of ion source device using dielectric barrier discharge assist ionization

Similar Documents

Publication Publication Date Title
CA2436524C (en) Device and procedure to generate steady compound jets of immiscible liquids and micro/nanometric sized capsules
Pongrác et al. Influence of water conductivity on particular electrospray modes with dc corona discharge—optical visualization approach
JP2016198756A (en) Electric discharge nozzle used for electrospray ionization method
WO2016117641A1 (en) Electrostatic spraying device
KR100947028B1 (en) Nonconductor Electrostatic Spray Apparatus and Method Thereof
WO2016163046A1 (en) Electrical discharge nozzle to be used in electrospray ionization
Elele et al. Detection of a dynamic cone-shaped meniscus on the surface of fluids in electric fields
KR100947029B1 (en) Multiplexed Grooved Nozzles Electrospray Apparatus Having Extractor of Insulated Electric Potential and Method Thereof
Pongrác et al. Effects of corona space charge polarity and liquid phase ion mobility on the shape and velocities of water jets in the spindle jet and precession modes of water electro-spray
WO2018008063A1 (en) Electric discharge nozzle for electrospray
US10370777B2 (en) Nanofiber manufacturing device and nanofiber manufacturing method
KR101263591B1 (en) Cone-Jet Mode Electrostatic Spray Deposition Apparatus
EP3737506B1 (en) Spray nozzle assembly and spray plume shaping method
US9216573B2 (en) Apparatus for controlling droplet motion in electric field and method of the same
US10471446B2 (en) Enhancing stability and throughput of an electrohydrodynamic spray
PL224862B1 (en) Method for the agro-technical spraying using chemical substances, especially agrochemicals, a head for the agro-technical spraying using chemical substances, especially agrochemicals
Ko Development of electrohydrodynamic (EHD) jet technology
US20140246507A1 (en) Method and apparatus for monidisperse liquid particle generation
JP2020100920A (en) Electrospinning nozzle
JP6672575B2 (en) Electrostatic spraying device
Ishida et al. Properties of ink-droplet formation in double-gate electrospray
Chen et al. Interaction of sequential pulsed electrohydrodynamic jets in drop-on-demand printing
JP5833781B1 (en) Electrostatic spraying equipment
KR100455718B1 (en) Electrospray apparatus for guiding sprayed particles without coagulation and sticking
JP6743345B2 (en) Electrostatic spraying device and electrostatic spraying method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888537

Country of ref document: EP

Kind code of ref document: A1