WO2016163004A1 - Cleaning apparatus with co2 recycling and operation method therefor - Google Patents

Cleaning apparatus with co2 recycling and operation method therefor Download PDF

Info

Publication number
WO2016163004A1
WO2016163004A1 PCT/JP2015/061121 JP2015061121W WO2016163004A1 WO 2016163004 A1 WO2016163004 A1 WO 2016163004A1 JP 2015061121 W JP2015061121 W JP 2015061121W WO 2016163004 A1 WO2016163004 A1 WO 2016163004A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied
cylinder
chamber
valve
path
Prior art date
Application number
PCT/JP2015/061121
Other languages
French (fr)
Japanese (ja)
Inventor
敦 氏家
本多 祐二
由佳利 三上
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to PCT/JP2015/061121 priority Critical patent/WO2016163004A1/en
Priority to JP2017511419A priority patent/JPWO2016163004A1/en
Publication of WO2016163004A1 publication Critical patent/WO2016163004A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass

Definitions

  • the present invention relates to a cleaning apparatus with CO 2 recycling and an operation method thereof.
  • FIG. 8 is a schematic diagram for explaining an example of a conventional cleaning apparatus.
  • This cleaning apparatus includes a cylinder (not shown) containing liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa, a nozzle 101 connected to the cylinder, and a cleaning chamber (not shown). It has a holding mechanism (not shown) for holding the substrate 102, a duct 104 having an intake port 104a, a blower (BLOWER), and a hepa filter (HEPA FILTER).
  • the holding mechanism is a mechanism that holds the substrate 102 at a position where the surface (cleaning surface) of the substrate 102 is substantially parallel to the horizontal plane and the surface of the substrate 102 faces upward (a direction opposite to the direction of gravity).
  • the above cleaning apparatus operates as follows. Liquefied CO 2 under pressure in the cylinder is supplied to the nozzle 101, the CO 2 particles 103 that liquefied CO 2 is injected into the cleaning chamber through the nozzle 101, the surface of the substrate 102 held by the holding mechanism By blowing, particles or the like adhering to the substrate 102 are blown away, and the blown particles or the like are removed by sucking from the suction port 104a on the side of the substrate 102 by a blower. Then, particles or the like passing through the duct 104 from the intake port 104a are captured by a hepa filter, and the gas from which the particles or the like are removed is supplied onto the substrate 102 again.
  • the nozzle 101 is made of stainless steel, and the substrate 102 is, for example, a silicon wafer or a glass substrate after lift-off in a semiconductor process.
  • Patent Document 1 A technique related to the above-described cleaning apparatus is disclosed in Patent Document 1.
  • liquefied CO 2 liquefied carbon dioxide
  • the liquefied carbon dioxide gas for CO 2 cleaning uses a high-purity carbon dioxide gas compared to a general grade (food grade) carbon dioxide gas, the running cost of the cleaning becomes remarkably high.
  • a general-grade carbon dioxide gas is 150 yen / kg
  • a high-purity carbon dioxide gas used for semiconductor cleaning or the like is 3800 yen / kg.
  • An object of one embodiment of the present invention is to provide a cleaning device with CO 2 recycling that can reduce the amount of CO 2 used or an operation method thereof.
  • a chamber A first liquefied CO 2 cylinder for supplying CO 2 into the chamber; A discharge mechanism for discharging the CO 2 in the chamber; A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism; A second liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism; Comprising The CO 2 contained in the second liquefied CO 2 cylinder is supplied into the chamber, A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder.
  • a chamber [3] a chamber; A second liquefied CO 2 cylinder for supplying CO 2 into the chamber; A discharge mechanism for discharging the CO 2 in the chamber; A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism; A third liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism; Comprising The third liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism , the liquefied CO 2 is accommodated in the second liquefied CO 2 cylinder, A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the second liquefied CO 2 cylinder or the third liquefied CO 2 cylinder.
  • the exhaust mechanism has a vacuum pump for evacuating the chamber, It said second liquefied CO 2 cylinder, the discharged from the vacuum pump, cleaning apparatus CO 2 with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
  • the exhaust mechanism has an exhaust fan for exhausting the chamber. Said second liquefied CO 2 cylinder, the exhaust fan is discharged from, CO 2 cleaning apparatus with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
  • the vacuum pump, CO 2 cleaning apparatus with recycling characterized in that it comprises a dry pump or a mechanical booster pump.
  • a second switching mechanism disposed between the discharge mechanism and the second liquefied CO 2 cylinder; The second switching mechanism switches a third path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and a fourth path for exhausting the CO 2 from the chamber to the exhaust port.
  • a cleaning apparatus with CO 2 recycling characterized in that
  • a fourth path is switched between a seventh path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and an eighth path for supplying the CO 2 from the chamber to the third liquefied CO 2 cylinder.
  • a cleaning apparatus with CO 2 recycling comprising a switching mechanism.
  • the supply and the second from said switching mechanism of the second liquefied CO supplies the CO 2 to 2 cylinder seventh path, the CO 2 in the third liquefied CO 2 cylinder from said second switching mechanism
  • Comprising The second switching mechanism is disposed between the discharge mechanism and the second liquefied CO 2 cylinder, The
  • the first switching mechanism includes: A first three-way valve having a first valve connected to the first liquefied CO 2 cylinder, a second valve connected to the chamber, and a third valve connected to the second liquefied CO 2 cylinder; A first control unit for controlling the first three-way valve, The first control unit opens the first valve and the second valve and closes the third valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. And when the CO 2 is supplied from the second liquefied CO 2 cylinder into the chamber, the second valve and the third valve are opened and the first valve is closed. A cleaning device with CO 2 recycling.
  • the second switching mechanism includes A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder; A second control unit for controlling the second three-way valve, The second control unit opens the first valve and the third valve and closes the second valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. Then, control is performed so that the CO 2 in the chamber discharged by the discharge mechanism is accommodated in the second liquefied CO 2 cylinder, and the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder is stored. wherein said chamber from when the CO 2 does not supply, the opening of the first valve and the second valve, and the third valve closing control CO 2 cleaning apparatus with recycling, which comprises as.
  • a first weigh scale that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by weight;
  • the first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first weigh scale becomes the first weight%, the first switching mechanism is configured to perform the first switching from the first path.
  • the cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the second path.
  • a first pressure gauge that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by pressure;
  • the first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first pressure gauge becomes a first pressure, the second switching mechanism is configured to perform the second switching from the first path.
  • the cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the path.
  • a second weigh scale that measures the remaining amount of CO 2 in the second liquefied CO 2 cylinder by weight;
  • the third switching mechanism is configured to release the fifth path from the fifth path.
  • the cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 from the third liquefied CO 2 cylinder into the chamber by switching to the path of No. 6.
  • a second pressure gauge for measuring the remaining amount of CO 2 in the second liquefied CO 2 cylinder by pressure When the remaining amount of CO 2 in the second liquefied CO 2 cylinder measured by the second pressure gauge becomes the second pressure, the third switching mechanism is configured to perform the sixth switching from the fifth path.
  • the cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 into the chamber from the third liquefied CO 2 cylinder by switching to the path.
  • a cleaning apparatus with CO 2 recycling comprising: a particle filter that removes particles in the discharge containing CO 2 discharged by the discharge mechanism; and an organic filter that removes organic matter in the discharge.
  • the cleaning device with CO 2 recycling is: A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder; A second control unit for controlling the second three-way valve, The first control unit opens the first valve and the second valve of the first three-way valve and closes the third valve, and the second control unit performs the second three-way valve.
  • the first control unit opens the second valve and the third valve of the first three-way valve, and closes the first valve, so that the second liquefied CO 2 cylinder enters the chamber.
  • the amount of CO 2 used can be reduced.
  • FIG. 6 is a view of the holding mechanism and the exhaust mechanism shown in FIG. (A) is sectional drawing of the nozzle 11 shown in FIG. 5, (B) is the figure which looked at the nozzle shown to (A) from the base end side. It is a schematic diagram for demonstrating an example of the conventional washing
  • FIG. 1 is a schematic diagram illustrating a cleaning apparatus with CO 2 recycling according to one embodiment of the present invention.
  • the vacuum chamber 27a (also referred to as a first liquefied CO 2 cylinder) replenishment CO 2 cylinder 51, also referred to as a first recycle CO 2 cylinder (second liquefied CO 2 cylinder ) 52 and a second recycled CO 2 cylinder (also referred to as a third liquefied CO 2 cylinder) 53, and an object to be cleaned (not shown) is cleaned by CO 2 supplied into the vacuum chamber 27 a. It is.
  • CO 2 cleaning apparatus with recycling the first weighing scale (load cell) 54 for measuring the CO 2 remaining in the replenishment CO 2 cylinder 51 by weight, CO 2 in the first recycle CO 2 cylinder 52
  • a second weighing scale (load cell) 55 that measures the remaining amount by weight and a third weighing scale (load cell) 56 that measures the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 by weight are provided.
  • the cleaning apparatus with CO 2 recycling includes a first pressure gauge (pressure gauge) 68 that measures the remaining amount of CO 2 in the supplementary CO 2 cylinder 51 by pressure, and a CO in the first recycled CO 2 cylinder 52.
  • the cleaning apparatus with CO 2 recycling includes first and second switching mechanisms and a switching unit 59 for switching the CO 2 path.
  • the first switching mechanism includes a first three-way valve 57 and a first control unit 60 that controls the first three-way valve 57
  • the second switching mechanism includes a second three-way valve 58 and its A second control unit 61 for controlling the second three-way valve 58 is provided.
  • the replenishment CO 2 cylinder 51 is a cylinder in which liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa is placed, and supplies CO 2 into the vacuum chamber 27a.
  • the replenishment CO 2 cylinder 51 is connected to the first valve 64 of the first three-way valve 57 of the first switching mechanism by piping.
  • the second valve 63 of the first three-way valve 57 is connected to one end of a valve 77 by piping, and the other end of the valve 77 is connected to the vacuum chamber 27a by piping.
  • the third valve 62 of the first three-way valve 57 is connected to the switching unit 59 by piping, and the switching unit 59 is connected to the first and second recycled CO 2 cylinders 52 and 53 by piping.
  • the first switching mechanism includes a first path for supplying CO 2 from the replenishment CO 2 cylinder 51 to the vacuum chamber 27a, and the first recycled CO 2 cylinder 52 or the second recycled CO 2 cylinder 53 to the vacuum chamber 27a. This is a mechanism for switching between the second path for supplying CO 2 .
  • the vacuum chamber 27a is connected to a vacuum pump 23a as a discharge mechanism by piping, and the vacuum pump 23a evacuates the inside of the vacuum chamber 27a.
  • the vacuum pump 23a may be a dry pump, or may include a dry pump and a mechanical booster pump.
  • the vacuum pump 23a is connected to the first valve 66 of the second three-way valve 58 of the second switching mechanism by piping, and the second valve 67 of the second three-way valve 58 is connected to the exhaust port 76 by piping.
  • the third valve 65 of the second three-way valve 58 is connected to the particle filter 71 by piping.
  • the second switching mechanism includes a third path for supplying CO 2 from the vacuum chamber 27a to the first recycle CO 2 cylinder 52 (ie, from the vacuum pump 23a to the particle filter 71), and from the vacuum chamber 27a to the exhaust port 76 ( That is, it is a mechanism for switching the fourth path for exhausting CO 2 from the vacuum pump 23a to the exhaust port 76).
  • the particle filter 71 is a filter that removes particles such as inorganic contamination in the discharge containing CO 2 discharged by the vacuum pump 23a.
  • the particle filter 71 is connected to an organic matter removal filter 72 by piping, and the organic matter removal filter 72 is a filter that removes organic matter in the discharged matter including CO 2 discharged by the vacuum pump 23a.
  • Organic substance removal filter 72 is connected to the CO 2 liquefying pressure pump 73 through a pipe, the CO 2 liquefying pressure pump 73 is a CO 2 gas which particles and organic matter has been removed by the filter 71 and 72 pressurized It is a pump that pressurizes and liquefies.
  • the CO 2 liquefaction pressure pump 73 is connected to a cooler 74 by piping, and the cooler 74 cools CO 2 liquefied by the pump 73.
  • a liquefaction mechanism is constituted by the cooler 74 and the CO 2 liquefaction pressure pump 73.
  • the cooler 74 is connected to a compressor 75 by piping, and the compressor 75 compresses the liquefied CO 2 cooled by the cooler 74.
  • the compressor 75 is connected to the switching unit 59 by piping, and the switching unit 59 is connected to the first and second recycled CO 2 cylinders 52 and 53 by piping.
  • the switching unit 59 has third and fourth switching mechanisms.
  • the third switching mechanism includes a fifth path for supplying CO 2 to the vacuum chamber 27a from the first recycle CO 2 cylinder 52, and supplies the CO 2 from the second recycle CO 2 cylinder 53 to the vacuum chamber 27a sixth This is a mechanism for switching between routes.
  • the fourth switching mechanism includes a seventh path for supplying CO 2 from the vacuum chamber 27a to the first recycle CO 2 cylinder 52 (ie, from the compressor 75 to the first recycle CO 2 cylinder 52), and from the vacuum chamber 27a to the first recycle CO 2 cylinder 52. This is a mechanism for switching the second path for supplying CO 2 to the second recycled CO 2 cylinder 53 (ie, from the compressor 75 to the second recycled CO 2 cylinder 53).
  • the third switching mechanism includes a third three-way valve (not shown) and a third control unit (not shown) that controls the third three-way valve.
  • the first valve of the third three-way valve is connected to the first recycled CO 2 cylinder 52, and the second valve of the third three-way valve is connected to the third valve 62 of the first three-way valve.
  • the third valve of the third three-way valve is connected to the second recycled CO 2 cylinder 53.
  • the fourth switching mechanism includes a fourth three-way valve (not shown) and a fourth control unit (not shown) that controls the fourth three-way valve.
  • the first valve of the fourth three-way valve is connected to the compressor 75, the second valve of the fourth three-way valve is connected to the first recycled CO 2 cylinder 52, and the fourth three-way valve
  • the third valve is connected to the second recycle CO 2 cylinder 53.
  • connection or “connected” includes not only direct connection but also indirect connection.
  • the replenishing CO 2 cylinder 51 contains liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa.
  • the valve 77 is closed so that CO 2 is not supplied from the replenishing CO 2 cylinder 51 into the vacuum chamber 27a.
  • the second control unit 61 opens the first valve 66 and the second valve 67 of the second three-way valve 58 and closes the third valve 65. Then, the inside of the vacuum chamber 27a is evacuated by the vacuum pump 23a, and the exhaust is exhausted from the exhaust port 76, whereby the inside of the vacuum chamber 27a is brought to a predetermined pressure.
  • the second control unit 61 opens the first valve 66 and the third valve 65 of the second three-way valve 58 and closes the second valve 67.
  • the fourth control unit opens the first and second valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the third valve. Accordingly, the fourth path for exhausting CO 2 from the vacuum chamber 27a to the exhaust port 76 is closed, the third path for supplying CO 2 from the vacuum chamber 27a to the switching unit 59 is opened, and the second three-way valve is opened.
  • a seventh path for supplying CO 2 from 58 to the first recycled CO 2 cylinder 52 is opened. That is, the fourth path is switched to the third path by the second switching mechanism, and the seventh path is opened by the fourth switching mechanism.
  • the valve 77 is opened, the first control unit 60 opens the first valve 64 and the second valve 63 of the first three-way valve 57, and closes the third valve 62.
  • CO 2 is supplied from the replenishing CO 2 cylinder 51 into the vacuum chamber 27a, and an object to be cleaned (not shown) in the vacuum chamber 27a is cleaned by this CO 2 .
  • This cleaning method for the object to be cleaned will be described in a second embodiment to be described later.
  • the CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71. In the discharge discharged by the vacuum pump 23a, particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71.
  • the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72.
  • the emission contains organic substances in addition to CO 2 .
  • This organic matter is removed by the organic matter removing filter 72.
  • the CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the first recycle CO 2 cylinder 52 through the switching unit 59.
  • the first weight% is a weight% in which the remaining amount of CO 2 in the replenishing CO 2 cylinder 51 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and preferably 5% by weight to 20% by weight.
  • % Range (for example, 10% by weight).
  • the fourth control unit opens the first and third valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the second valve.
  • the first control unit 60 opens the second valve 63 and the third valve 62 of the first three-way valve 57 and closes the first valve 64.
  • the third control unit opens the first and second valves of the third three-way valve of the third switching mechanism of the switching unit 59 and closes the third valve. This closes the first path for supplying CO 2 from the replenishing CO 2 cylinder 51 to the vacuum chamber 27a, and the second path for supplying CO 2 from the switching unit 59 to the vacuum chamber 27a and the first recycled CO 2 cylinder.
  • the fifth path for supplying CO 2 from 52 to the first three-way valve 57 is opened, and the seventh path for supplying CO 2 from the second three-way valve 58 to the first recycled CO 2 cylinder 52 is closed.
  • the eighth path for supplying CO 2 from the second three-way valve 58 to the second recycle CO 2 cylinder 53 is opened. That is, the first switching mechanism switches from the first path to the second path, the third switching mechanism opens the fifth path, and the fourth switching mechanism switches from the seventh path to the eighth path. .
  • CO 2 is supplied from the first recycled CO 2 cylinder 52 into the vacuum chamber 27a, and the object to be cleaned in the vacuum chamber 27a is cleaned by this CO 2 .
  • This cleaning method for the object to be cleaned will be described in a second embodiment to be described later.
  • the CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71.
  • particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71.
  • the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72.
  • the emission contains organic substances in addition to CO 2 . This organic matter is removed by the organic matter removing filter 72.
  • the CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the second recycle CO 2 cylinder 53 through the switching unit 59.
  • the second weight% is the weight% in which the remaining amount of CO 2 in the first recycled CO 2 cylinder 52 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and preferably 5% by weight. % To 20% by weight (for example, 10% by weight). Further, since the recovery rate of the first recycled CO 2 cylinder 52 is not 100%, the second weigh scale 55 does not show 100% by weight when the supply from the first recycled CO 2 cylinder 52 to the vacuum chamber 27a is started. .
  • the fourth control unit opens the first and second valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the third valve.
  • the third control unit opens the second valve and the third valve of the third three-way valve of the third switching mechanism of the switching unit 59 and closes the first valve.
  • the fifth path for supplying CO 2 from the first recycled CO 2 cylinder 52 to the first three-way valve 57 is closed, and CO is supplied from the second recycled CO 2 cylinder 53 to the first three-way valve 57.
  • the sixth path for supplying 2 is opened, the eighth path for supplying CO 2 from the second three-way valve 58 to the second recycled CO 2 cylinder 52 is closed, and the second three-way valve 58 opens the second path.
  • a seventh path for supplying CO 2 to one recycled CO 2 cylinder 52 is opened. That is, the third switching mechanism switches from the fifth path to the sixth path, and the fourth switching mechanism switches from the eighth path to the seventh path.
  • CO 2 is supplied from the second recycle CO 2 cylinder 53 into the vacuum chamber 27a, and the object to be cleaned in the vacuum chamber 27a is cleaned by this CO 2 .
  • This cleaning method for the object to be cleaned will be described in a second embodiment to be described later.
  • the CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71.
  • particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71.
  • the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72.
  • the emission contains organic substances in addition to CO 2 . This organic matter is removed by the organic matter removing filter 72.
  • the CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the first recycle CO 2 cylinder 52 through the switching unit 59.
  • the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 is measured by weight by the third weighing scale 56. ing.
  • the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 reaches 3% by weight, CO 2 is supplied from the first recycled CO 2 cylinder 52 as described above into the vacuum chamber 27a, The path is switched to the path for collecting the CO 2 in the vacuum chamber 27 a to the second recycle CO 2 cylinder 53.
  • the third weight% is a weight% in which the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 is reduced and CO 2 cannot be supplied into the vacuum chamber 27a at a constant pressure, and preferably 5% by weight.
  • the third weighing scale 56 does not show 100% by weight when the second recycled CO 2 cylinder 53 starts to be supplied to the vacuum chamber 27a. .
  • supplying CO 2 repeat the step of recovering the first recycle CO 2 cylinder 52. Since the recovery rate is not 100%, by repeating this several times, after there is no available CO 2 , the replenishment CO 2 cylinder 51 is replaced, and the new replenishment CO 2 cylinder 51 replaces the vacuum chamber 27a.
  • the process of supplying CO 2 is repeated. As a result, the amount of CO 2 used can be drastically reduced.
  • the CO 2 remaining amounts of the supplementary CO 2 cylinder 51, the first recycled CO 2 cylinder 52, and the second recycled CO 2 cylinder 53 are 1% by weight, 2% by weight, and 3% by weight, respectively.
  • the CO 2 path is switched, but the CO 2 remaining amount of each of the supplementary CO 2 cylinder 51, the first recycled CO 2 cylinder 52, and the second recycled CO 2 cylinder 53 is changed to the first pressure gauge.
  • the second pressure gauge 69, and the third pressure gauge 70 may be used to measure the CO 2 path as described above when the first pressure, the second pressure, and the third pressure are reached.
  • management by weight is easier than management by pressure.
  • the first pressure is a pressure at which the remaining amount of CO 2 in the replenishing CO 2 cylinder 51 becomes small, and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled.
  • the pressure value is preferably in the range of 5% to 20% (for example, 10%) with respect to the case pressure of 100%.
  • the second pressure is a pressure at which the remaining amount of CO 2 in the first recycle CO 2 cylinder 52 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled.
  • the pressure value is preferably in the range of 5% to 20% (for example, 10%).
  • the third pressure is a pressure at which the remaining amount of CO 2 in the second recycle CO 2 cylinder 53 is reduced and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled.
  • the pressure value is preferably in the range of 5% to 20% (for example, 10%).
  • the vacuum cleaning apparatus 10 has a vacuum chamber 27a which is a container for evacuating the inside, and a holding mechanism for holding the substrate 12 is disposed in the vacuum chamber 27a. ing. A nozzle 11 for ejecting CO 2 particles to the substrate 12 is disposed in the vacuum chamber 27a.
  • the vacuum cleaning apparatus 10 has a CO 2 supply mechanism that supplies pressurized liquefied carbon dioxide (liquefied CO 2 ) to the nozzle 11, and a vacuum exhaust mechanism that evacuates the vacuum chamber 27a.
  • the nozzle 11 may be a Venturi tube or a Laval nozzle.
  • the Venturi tube is a tube that applies the Venturi effect
  • the Venturi effect is an effect of increasing the flow velocity by restricting the flow of fluid
  • the Laval nozzle is in the middle of the path through which the fluid passes.
  • This is a nozzle having a narrowed pipe and a path having a shape like an hourglass, which is capable of accelerating fluid by passing through it and obtaining a supersonic speed.
  • the Venturi pipe includes a Laval nozzle.
  • the CO 2 supply mechanism has a cylinder 14 containing a liquefied carbon dioxide gas (liquefied CO 2 ) 13 pressurized to 6 MPa, and this cylinder 14 is connected to one end of a valve 16 by a pipe 15.
  • the pipe 15 may have a siphon pipe.
  • the other end of the valve 16 is connected to one end of the nozzle 11.
  • the holding mechanism includes a holding unit 17 that holds the substrate 12 and a vacuum pump (not shown) connected to the holding unit 17.
  • the substrate 12 is vacuum-sucked and held on the holding part 17 by evacuating with a vacuum pump.
  • An angle ⁇ 1 formed by a surface (back surface) 12 a opposite to the cleaning surface of the substrate 12 held by the holding unit 17 and the horizontal surface 20 is 90 °.
  • a heater 19 for heating the substrate 12 is disposed in the holding unit 17.
  • the holding mechanism has a rotation mechanism (not shown) that rotates the holding unit 17.
  • the substrate 12 is held by the holding unit 17 by vacuum suction, but is not limited to this, and the substrate 12 is held by the holding unit 17 by electrostatic chucking or a mechanical holding mechanism. It may be held.
  • the vacuum cleaning apparatus 10 has a moving mechanism 50 that moves the nozzle 11, and the moving mechanism 50 changes the relative position between the nozzle 11 and the substrate 12 held by the holding mechanism.
  • the moving mechanism 50 can use, for example, an XY table.
  • the moving mechanism 50 that moves the nozzle 11 is used to change the relative position between the nozzle 11 and the substrate 12 held by the holding mechanism.
  • the relative position of the substrate 12 held by the holding mechanism may be changed.
  • the cleaning surface of the substrate 12 is the angle theta 1 made of the surface 12a and the horizontal plane 20 of the opposite side is set to 90 °, it is not limited thereto, the angle theta 1 45 ° Any angle within the range of ⁇ 180 ° is acceptable.
  • the angle ⁇ 2 formed by the direction 21 in which the CO 2 particles are ejected from the nozzle 11 and the cleaning surface (surface) 12b of the substrate 12 is preferably in the range of 20 ° to 90 °.
  • the vacuum exhaust mechanism has an exhaust port 22a disposed below the substrate 12, and the exhaust port 22a is disposed below the substrate 12 held by the holding mechanism.
  • the exhaust hole 22a has a slit shape, and the length in the longitudinal direction of the slit shape is preferably equal to or larger than the outer diameter of the substrate 12 (see FIG. 3). As a result, particles generated when the substrate 12 is cleaned can be easily exhausted from the exhaust port 22a.
  • “downward” means the direction of gravity.
  • An exhaust path 22 is connected to the exhaust port 22a, and a filter 42a is connected to the exhaust path 22.
  • the filter 42a is preferably a metal filter. Particles and the like during cleaning can be captured by the filter 42a.
  • the filter 42a is connected to a stop valve 43a, and the stop valve 43a is connected to the pressure control valve 41.
  • the pressure control valve 41 is connected to a vacuum pump 23a as an exhaust means. The pressure of the exhaust by the vacuum pump 23a can be controlled by the pressure control valve 41.
  • the substrate 12 is held on the holding unit 17 by vacuum suction. Then, the position of the substrate 12 is set so that the angle ⁇ 1 formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface is within a range of 45 ° to 180 ° (preferably 70 ° to 110 °). Adjust. In FIG. 2, ⁇ 1 is 90 °.
  • the inside of the vacuum chamber 27a is evacuated by the evacuation mechanism. More specifically, the stop valve 43a is opened, and the vacuum chamber 27a is evacuated while the pressure of the vacuum pump 23a is controlled by the pressure control valve 41.
  • the ultimate vacuum in the vacuum chamber 27a at this time is preferably less than 1 Torr, more preferably 5 ⁇ 10 ⁇ 3 Torr or less.
  • the dew point in the vacuum chamber 27a is ⁇ 40 ° C. or lower (preferably ⁇ 75 ° C. or lower, more preferably ⁇ 100 ° C. or lower).
  • the degree of vacuum in the vacuum chamber 27a is preferably set to 1 ⁇ 10 ⁇ 5 Torr or lower.
  • the pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16 by opening the valve 16.
  • the liquefied CO 2 13 accelerated by the venturi effect of the nozzle 11 becomes CO 2 particles by adiabatic expansion, and the CO 2 particles are ejected from the nozzle 11 in a direction 21 oblique to the surface 12 b of the substrate 12.
  • the ejected CO 2 particles are sprayed on the surface 12b of the substrate 12 while being scanned as indicated by an arrow 26 shown in FIG. 3 to clean the entire surface of the substrate 12.
  • particles or the like on the surface of the substrate 12 are blown off by the CO 2 particles blown onto the surface of the substrate 12, and the blown-off particles or the like use the gravity and the exhaust port 22 a below the substrate 12 and the exhaust path. 22 and captured by the filter 42a.
  • the gas after removing particles and the like is exhausted by the vacuum pump 23a through the stop valve 43a and the pressure control valve 41.
  • the pressure in the vacuum chamber 27a during the cleaning of the surface of the substrate 12 may be less than 1 Torr, or may be 1 Torr or more and less than 1 atmosphere. The reason is that in the process of evacuating the vacuum chamber 27a before cleaning the substrate 12, the dew point in the vacuum chamber 27a is lowered to ⁇ 40 ° C. or lower, and the substrate 12 is subsequently cleaned with CO 2 particles. This is because the dew point in the vacuum chamber 27a is considered not to rise.
  • the holding unit 17 is rotated by 45 ° or 90 ° as indicated by the arrow 25 by the rotation mechanism, whereby the substrate 12 held by the holding unit 17 is rotated by 45 ° or 90 °.
  • the entire surface of the substrate 12 is cleaned by spraying CO 2 particles while scanning the surface 12 b of the substrate 12 by the same method as described above.
  • the substrate 12 is repeated. Complete the surface cleaning.
  • the dew point in the vacuum chamber 27a can be reduced to ⁇ 40 ° C. or lower by evacuating the vacuum chamber 27a before cleaning the substrate 12. For this reason, the substrate 12 can be cleaned with CO 2 particles in an atmosphere having a very low dew point. Therefore, it becomes possible to clean a substrate to be cleaned (for example, a glass substrate for organic EL) that is very weak against water.
  • a substrate to be cleaned for example, a glass substrate for organic EL
  • the vacuum chamber 27a is evacuated to create a clean cleaning atmosphere in the vacuum chamber 27a, a material that easily adsorbs moisture, such as paper, is used as in the prior art. There is no need to use a hepa filter. Therefore, the dew point at the time of cleaning can be further reduced as compared with the conventional cleaning device.
  • the cleaning effect can be improved as compared with the conventional cleaning apparatus.
  • the position of the substrate 12 when the CO 2 particles ejected from the nozzle 11 are blown onto the substrate 12 is determined by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal plane.
  • the angle ⁇ 1 to be created is in the range of 45 ° to 180 °, and the blown-off particles on the surface of the substrate 12 are exhausted from below the substrate 12 using gravity. For this reason, it can control that particles etc. adhere again to substrate 12.
  • the speed of the CO 2 particles ejected from the nozzle 11 is increased as compared with the case where the inside of the chamber is atmospheric pressure.
  • the velocity of the CO 2 particles increases if the pressure difference between the orifice in the nozzle and the nozzle is large, and decreases if the pressure difference is small.
  • Speed increases. Thereby, the cleaning effect of the CO 2 particles can be enhanced.
  • FIG. 4 is a schematic diagram illustrating a cleaning apparatus with CO 2 recycling according to an aspect of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and only different parts will be described.
  • the cleaning apparatus with CO 2 recycling in FIG. 1 has a vacuum chamber 27a and a vacuum pump 23a, and the object to be cleaned is cleaned by CO 2 supplied into the vacuum chamber 27a, whereas the CO 2 recycling in FIG.
  • the attached cleaning apparatus has a chamber 27b, an exhaust fan as an exhaust mechanism, and a nitrogen and CO 2 separation mechanism (not shown), and the object to be cleaned is cleaned by CO 2 supplied into the chamber 27b in an atmospheric pressure nitrogen atmosphere. Is different.
  • the chamber 27b is connected to an exhaust fan 23b as a discharge mechanism by piping, and the exhaust fan 23b exhausts the inside of the chamber 27b.
  • the exhaust fan 23b is connected to a separation mechanism.
  • the separation mechanism separates nitrogen and CO 2 and supplies the CO 2 to the third valve 65 of the second three-way valve 58 of the second switching mechanism. It has become.
  • the cleaning device includes a nozzle 11, a CO 2 supply mechanism that supplies liquefied carbon dioxide (liquefied CO 2 ) pressurized to the nozzle 11, a holding mechanism that holds the substrate 12, An exhaust mechanism is provided below the substrate 12.
  • a CO 2 supply mechanism that supplies liquefied carbon dioxide (liquefied CO 2 ) pressurized to the nozzle 11
  • a holding mechanism that holds the substrate 12
  • An exhaust mechanism is provided below the substrate 12.
  • the nozzle 11 may be a Venturi tube or a Laval nozzle.
  • the Venturi tube is a tube that applies the Venturi effect
  • the Venturi effect is an effect of increasing the flow velocity by restricting the flow of fluid
  • the Laval nozzle is in the middle of the path through which the fluid passes.
  • This is a nozzle having a narrowed pipe and a path having a shape like an hourglass, which is capable of accelerating fluid by passing through it and obtaining a supersonic speed.
  • the Venturi pipe includes a Laval nozzle.
  • the CO 2 supply mechanism has a cylinder 14 containing a liquefied carbon dioxide gas (liquefied CO 2 ) 13 pressurized to 6 MPa, and this cylinder 14 is connected to one end of a valve 16 by a pipe 15.
  • the pipe 15 may have a siphon pipe.
  • the other end of the valve 16 is connected to one end of the nozzle 11.
  • the holding mechanism includes a holding unit 17 that holds the substrate 12 and a vacuum pump 18 connected to the holding unit 17. By vacuuming with a vacuum pump 18, the substrate 12 is vacuum-sucked and held on the holding part 17.
  • An angle ⁇ 1 formed by a surface (back surface) 12 a opposite to the cleaning surface of the substrate 12 held by the holding unit 17 and the horizontal surface 20 is 90 °.
  • a heater 19 for heating the substrate 12 is disposed in the holding unit 17.
  • the cleaning surface of the substrate 12 is the angle theta 1 made of the surface 12a and the horizontal plane 20 of the opposite side is set to 90 °, it is not limited thereto, the angle theta 1 45 ° Any angle within the range of ⁇ 180 ° is acceptable.
  • the angle ⁇ 2 formed by the direction 21 in which the CO 2 particles are ejected from the nozzle 11 and the cleaning surface (surface) 12b of the substrate 12 is preferably in the range of 20 ° to 90 °.
  • the exhaust mechanism includes an exhaust port 22 a disposed below the substrate 12, an exhaust path 22 connected to the exhaust port 22 a, and an exhaust unit (for example, an exhaust pump) 23 b connected to the exhaust path 22. .
  • the exhaust path 22 has a path extending below the exhaust port 22a. In the present specification, “downward” means the direction of gravity.
  • a pressure control valve 41 is arranged in the exhaust path 22 so that the pressure of the exhaust gas by the exhaust means 23b can be controlled by the pressure control valve 41.
  • a hepa filter 42b is disposed in the exhaust path 22, and particles and the like in the exhaust are captured by the hepa filter 42b, and the gas after removing the particles and the like is discharged to the outside of the chamber 27b. .
  • the nozzle 11 includes a nozzle body 37, a first gasket 36, a second gasket 35, a plunger 34, a first nut 33, a gland 32, and a second gasket. It has a nut 31. Specifically, a first gasket 36, a second gasket 35, and a plunger 34 are connected to the base end side of the nozzle body 37 in this order, and the tip of the gland 32 is connected to the plunger 34. The nozzle body 37, the first gasket 36, the second gasket 35, the plunger 34, and the gland 32 are fixed by a first nut 33. A second nut 31 is attached to the base end of the gland 32. A path for passing liquefied CO 2 13 is provided inside the nozzle 11 having such a structure.
  • a hard film having a Vickers hardness of Hv 1000 to 5000 is formed on the inner wall of the nozzle 11 (the surface constituting the path for passing liquefied CO 2 13).
  • This hard film includes DLC (Diamond Like Carbon), TiN, TiCrN, CrN, TiCNi, TiAlN, Al 2 O 3 , AlCrN, ZrO 2 , SiC, Cr, NiP, WC, SiO 2 , Ta 2 O 5 , SiN, And a film containing one selected from the group of SiaAlbOcNd (sialon), in this embodiment, a DLC film having a hydrogen content of 30 atomic% or less is used as the hard film. By setting the hydrogen content to 30 atomic% or less, the DLC film can be made hard.
  • the DLC film preferably has a Vickers hardness of Hv 1200 to 3500.
  • the DLC film is formed on the inner wall of the nozzle 11 by a plasma CVD method using a high frequency output with a frequency of 10 kHz to 1 MHz (preferably 50 kHz to 800 kHz, more preferably 50 kHz to 500 kHz).
  • a hard DLC film can be formed by using a frequency of 10 kHz to 1 MHz.
  • the nozzle 11, the substrate 12, the holding mechanism, and the exhaust path 22 are arranged in a chamber 27b.
  • the cleaning device has an introduction mechanism for introducing dry air 44 or nitrogen gas into the chamber 27b, and a relief valve 43b is arranged in the chamber 27b.
  • the introduction mechanism introduces dry air 44 or nitrogen gas into the chamber 27b, and the relief valve 43b discharges the dry air or nitrogen gas to the outside of the chamber 27b.
  • the dew point is controlled to about ⁇ 20 ° C.
  • the reason for making such an atmosphere is that the CO 2 particles used for cleaning the substrate 12 are at a temperature of about ⁇ 73 ° C., so that when the CO 2 particles are blown onto the substrate 12, the substrate 12 is cooled, This is because water droplets are easily attached, so that no water droplets are attached to the substrate 12. Further, when the substrate 12 is cleaned, the substrate 12 is heated by the heater 19 to prevent water droplets from being attached to the substrate 12.
  • the substrate 12 is placed on the holding unit 17 and evacuated by the vacuum pump 18 to hold the substrate 12 on the holding unit 17 by vacuum suction. Then, the position of the substrate 12 is set so that the angle ⁇ 1 formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface is within a range of 45 ° to 180 ° (preferably 70 ° to 110 °). Adjust. In FIG. 5, ⁇ 1 is 90 °.
  • the inside of the chamber 27b is controlled to about ⁇ 20 ° C. in a dry air or nitrogen atmosphere ( ⁇ 70 ° C. to ⁇ 100 ° C.).
  • the pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16 by opening the valve 16.
  • the liquefied CO 2 13 that has flowed into the gland 32 is compressed inside the plunger 34 whose cross section becomes narrower as it flows toward the tip side, and the Venturi effect that increases the flow velocity at the orifice (most detailed) of the tip of the plunger 34.
  • the accelerated liquefied CO 2 13 is adiabatically expanded by first and second gaskets 36, 35 having a divergent cross section into CO 2 particles, and the CO 2 particles are rectified by the nozzle body 37.
  • the rectified CO 2 particles are ejected from the nozzle body 37 in a direction 21 oblique to the surface 12 b of the substrate 12.
  • the ejected CO 2 particles are sprayed while scanning the surface 12b of the substrate 12 as indicated by an arrow 26 shown in FIG. 6 to clean the entire surface of the substrate 12.
  • particles and the like on the surface of the substrate 12 are blown off by the CO 2 particles blown onto the surface of the substrate 12, and the blown particles and the like use the gravity as indicated by an arrow 24 while the exhaust port 22 a and the exhaust path.
  • Exhaust means 23b exhausts the chamber 27b through the pressure control valve 41 and hepa filter 42b.
  • the holding unit 17 is rotated by 45 ° or 90 ° as indicated by an arrow 25, whereby the substrate 12 held by the holding unit 17 is rotated by 45 ° or 90 °.
  • the entire surface of the substrate 12 is cleaned by spraying CO 2 particles while scanning the surface 12 b of the substrate 12 by the same method as described above.
  • the blown-off particles on the surface of the substrate 12 are exhausted by the exhaust means 23b through the exhaust port 22a, the exhaust path 22, the pressure control valve 41, and the hepa filter 42b as indicated by the arrow 24.
  • the substrate 12 is repeated. Complete the surface cleaning.
  • the present embodiment since a hard film having a Vickers hardness of Hv 1000 to 5000 is formed on the inner wall of the nozzle 11, when liquefied CO 2 passes through the nozzle 11, CO 2 particles collide with the inner wall of the path of the nozzle 11. Even so, it is possible to prevent the inner wall of the route from being cut. Therefore, even when the substrate was washed 12 with CO 2 particles can be suppressed surface of the substrate 12 after cleaning is contaminated by metal. Further, the life of the nozzle 11 can be extended.
  • the position of the substrate 12 when the CO 2 particles ejected from the nozzle are blown onto the substrate 12 is formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface.
  • angle theta 1 is in the range of 45 ° ⁇ 180 °, the particles or the like on the surface of the substrate 12 blown exhausting from below the substrate 12 as shown by the arrow 24 gravity while using. For this reason, it can control that particles etc. adhere again to substrate 12.
  • the particles are reattached to the surface of the substrate 12 when the particles are exhausted. Can be suppressed.
  • the substrate 12 when the substrate 12 is cleaned by blowing the CO 2 particles ejected from the nozzle onto the substrate 12, the particles blown off from the substrate 12 are removed from the exhaust port 22a, the exhaust path 22, The gas is exhausted to the outside of the chamber 27b by the exhaust means 23b through the pressure control valve 41 and the hepa filter 42b. For this reason, it can suppress that the fine particle etc. which cannot be captured with a hepa filter like a prior art reattach on a board

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[Problem] To provide a cleaning apparatus with CO2 recycling for which the amount of CO2 used can be reduced. [Solution] An embodiment of the present invention is a cleaning apparatus with CO2 recycling: which is equipped with a chamber (27a), a first liquefied CO2 cylinder (51) for supplying CO2 into said chamber (27a), a discharge mechanism (23a) for discharging the CO2 inside said chamber (27a), liquefying mechanisms (73-74) for liquefying the CO2 discharged by the discharge mechanism (23a), and a second liquefied CO2 cylinder (52) for holding the CO2 liquefied by the liquefying mechanisms (73-74); and in which the CO2 held in the second liquefied CO2 cylinder (52) is fed into the chamber (27a), and an object to be cleaned is cleaned using CO2 supplied into the chamber (27a) from the first liquefied CO2 cylinder (51) or the second liquefied CO2 cylinder (52).

Description

CO2リサイクル付洗浄装置及びその稼動方法Cleaning device with CO2 recycling and its operation method
 本発明は、COリサイクル付洗浄装置及びその稼動方法に関する。 The present invention relates to a cleaning apparatus with CO 2 recycling and an operation method thereof.
 図8は、従来の洗浄装置の一例を説明するための模式図である。
 この洗浄装置は、6MPaに加圧された液化炭酸ガス(液化CO)が入れられたボンベ(図示せず)と、そのボンベに接続されたノズル101と、洗浄室(図示せず)内で基板102を保持する保持機構(図示せず)と、吸気口104aを備えたダクト104と、ブロワー(BLOWER)と、ヘパフィルター(HEPA FILTER)を有している。保持機構は、基板102の表面(洗浄面)が水平面とほぼ平行になり、且つ基板102の表面を上向き(重力方向とは逆側の方向)にした位置に基板102を保持する機構である。
FIG. 8 is a schematic diagram for explaining an example of a conventional cleaning apparatus.
This cleaning apparatus includes a cylinder (not shown) containing liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa, a nozzle 101 connected to the cylinder, and a cleaning chamber (not shown). It has a holding mechanism (not shown) for holding the substrate 102, a duct 104 having an intake port 104a, a blower (BLOWER), and a hepa filter (HEPA FILTER). The holding mechanism is a mechanism that holds the substrate 102 at a position where the surface (cleaning surface) of the substrate 102 is substantially parallel to the horizontal plane and the surface of the substrate 102 faces upward (a direction opposite to the direction of gravity).
 上記の洗浄装置は次のように稼動する。ボンベ内の加圧された液化COがノズル101に供給され、その液化COがノズル101を通って洗浄室内に噴出されるCO粒子103を、保持機構によって保持された基板102の表面に吹きつけることで、基板102に付着するパーティクル等を吹き飛ばし、その吹き飛ばしたパーティクル等をブロワーによって基板102の横側の吸気口104aから吸気することで除去する。そして、その吸気口104aからダクト104を通ったパーティクル等はヘパフィルターで捕獲され、パーティクル等を除去した気体は再び基板102上に供給される。ノズル101はステンレス製であり、基板102は例えば半導体プロセスにおけるリフトオフ後のシリコンウエハまたはガラス基板である。なお、上記の洗浄装置に関連した技術が特許文献1に開示されている。 The above cleaning apparatus operates as follows. Liquefied CO 2 under pressure in the cylinder is supplied to the nozzle 101, the CO 2 particles 103 that liquefied CO 2 is injected into the cleaning chamber through the nozzle 101, the surface of the substrate 102 held by the holding mechanism By blowing, particles or the like adhering to the substrate 102 are blown away, and the blown particles or the like are removed by sucking from the suction port 104a on the side of the substrate 102 by a blower. Then, particles or the like passing through the duct 104 from the intake port 104a are captured by a hepa filter, and the gas from which the particles or the like are removed is supplied onto the substrate 102 again. The nozzle 101 is made of stainless steel, and the substrate 102 is, for example, a silicon wafer or a glass substrate after lift-off in a semiconductor process. A technique related to the above-described cleaning apparatus is disclosed in Patent Document 1.
 COによって被洗浄物を洗浄する装置では、上述したように一度吹き付けたCO粒子をリサイクルしないため、被洗浄物の量が多い場合に液化炭酸ガス(液化CO)を多量に使用することになる。CO洗浄用の液化炭酸ガスは一般グレード(食品グレード)の炭酸ガスに比べて高純度のものを用いるため、洗浄のランニングコストが著しく高くなる。例えば、一般グレードの炭酸ガスが150円/kgであるのに対し、半導体洗浄等に用いる高純度の炭酸ガスは3800円/kgである。 In an apparatus for cleaning an object to be cleaned with CO 2 , as described above, since CO 2 particles once sprayed are not recycled, a large amount of liquefied carbon dioxide (liquefied CO 2 ) is used when the amount of the object to be cleaned is large. become. Since the liquefied carbon dioxide gas for CO 2 cleaning uses a high-purity carbon dioxide gas compared to a general grade (food grade) carbon dioxide gas, the running cost of the cleaning becomes remarkably high. For example, a general-grade carbon dioxide gas is 150 yen / kg, whereas a high-purity carbon dioxide gas used for semiconductor cleaning or the like is 3800 yen / kg.
 また、使用後のCOを大気排出するため、地球温暖化等を含めて環境に問題を起こすおそれがある。 Moreover, since CO 2 after use is discharged into the atmosphere, there is a risk of causing environmental problems including global warming.
USP6,099,396USP 6,099,396
 本発明の一態様は、CO使用量を低減できるCOリサイクル付洗浄装置またはその稼動方法を提供することを課題とする。 An object of one embodiment of the present invention is to provide a cleaning device with CO 2 recycling that can reduce the amount of CO 2 used or an operation method thereof.
 以下に、本発明の種々の態様について説明する。
[1]チャンバーと、
 前記チャンバー内にCOを供給する第1の液化COボンベと、
 前記チャンバー内の前記COを排出する排出機構と、
 前記排出機構によって排出された前記COを液化する液化機構と、
 前記液化機構によって液化されたCOを収容する第2の液化COボンベと、
を具備し、
 前記第2の液化COボンベに収容されたCOは前記チャンバー内に供給され、
 前記第1の液化COボンベまたは前記第2の液化COボンベから前記チャンバー内に供給されるCOによって被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
Hereinafter, various aspects of the present invention will be described.
[1] a chamber;
A first liquefied CO 2 cylinder for supplying CO 2 into the chamber;
A discharge mechanism for discharging the CO 2 in the chamber;
A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism;
A second liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism;
Comprising
The CO 2 contained in the second liquefied CO 2 cylinder is supplied into the chamber,
A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder.
[2]上記[1]において、
 前記第2の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOを収容する第3の液化COボンベをさらに具備し、
 前記第3の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOは前記第2の液化COボンベに収容され、
 前記第3の液化COボンベから前記チャンバー内に供給されるCOによって前記被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
[2] In the above [1],
It said second liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism the third liquefied CO 2 cylinder for containing the liquefied CO 2 further comprising,
The third liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism The liquefied CO 2 is accommodated in the second liquefied CO 2 cylinder,
A cleaning apparatus with CO 2 recycling, wherein the object to be cleaned is cleaned with CO 2 supplied from the third liquefied CO 2 cylinder into the chamber.
[3]チャンバーと、
 前記チャンバー内にCOを供給する第2の液化COボンベと、
 前記チャンバー内の前記COを排出する排出機構と、
 前記排出機構によって排出された前記COを液化する液化機構と、
 前記液化機構によって液化されたCOを収容する第3の液化COボンベと、
を具備し、
 前記第3の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOが前記第2の液化COボンベに収容され、
 前記第2の液化COボンベまたは前記第3の液化COボンベから前記チャンバー内に供給されるCOによって被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
[3] a chamber;
A second liquefied CO 2 cylinder for supplying CO 2 into the chamber;
A discharge mechanism for discharging the CO 2 in the chamber;
A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism;
A third liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism;
Comprising
The third liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism , the liquefied CO 2 is accommodated in the second liquefied CO 2 cylinder,
A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the second liquefied CO 2 cylinder or the third liquefied CO 2 cylinder.
[4]上記[1]乃至[3]のいずれか一項において、
 前記排気機構は、前記チャンバー内を真空排気する真空ポンプを有し、
 前記第2の液化COボンベは、前記真空ポンプから排出され、前記液化機構によって液化されたCOを収容するものであることを特徴とするCOリサイクル付洗浄装置。
[4] In any one of [1] to [3] above,
The exhaust mechanism has a vacuum pump for evacuating the chamber,
It said second liquefied CO 2 cylinder, the discharged from the vacuum pump, cleaning apparatus CO 2 with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
[5]上記[1]乃至[3]のいずれか一項において、
 前記排気機構は、前記チャンバー内を排気する排気ファンを有し、
 前記第2の液化COボンベは、前記排気ファンから排出され、前記液化機構によって液化されたCOを収容するものであることを特徴とするCOリサイクル付洗浄装置。
[5] In any one of [1] to [3] above,
The exhaust mechanism has an exhaust fan for exhausting the chamber.
Said second liquefied CO 2 cylinder, the exhaust fan is discharged from, CO 2 cleaning apparatus with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
[6]上記[4]において、
 前記真空ポンプは、ドライポンプまたはメカニカルブースターポンプを有することを特徴とするCOリサイクル付洗浄装置。
[6] In the above [4],
The vacuum pump, CO 2 cleaning apparatus with recycling, characterized in that it comprises a dry pump or a mechanical booster pump.
[7]上記[1]または[2]において、
 前記第1の液化COボンベから前記チャンバー内に前記COを供給する第1経路と、前記第2の液化COボンベから前記チャンバー内に前記COを供給する第2経路とを切り替える第1の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
[7] In the above [1] or [2],
A first path for supplying the CO 2 from the first liquefied CO 2 cylinder into the chamber, the switching between the second path for supplying the CO 2 into the chamber from said second liquefied CO 2 cylinder A cleaning apparatus with CO 2 recycling, comprising a switching mechanism of 1.
[8]上記[1]、[2]及び[7]のいずれか一項において、
 前記排出機構と前記第2の液化COボンベとの間に配置された第2の切り替え機構を有し、
 前記第2の切り替え機構は、前記チャンバーから前記第2の液化COボンベに前記COを供給する第3経路と、前記チャンバーから排気口に前記COを排気する第4経路とを切り替える機構であることを特徴とするCOリサイクル付洗浄装置。
[8] In any one of [1], [2] and [7] above,
A second switching mechanism disposed between the discharge mechanism and the second liquefied CO 2 cylinder;
The second switching mechanism switches a third path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and a fourth path for exhausting the CO 2 from the chamber to the exhaust port. A cleaning apparatus with CO 2 recycling, characterized in that
[9]上記[2]または[3]において、
 前記第2の液化COボンベから前記チャンバー内に前記COを供給する第5経路と、前記第3の液化COボンベから前記チャンバー内に前記COを供給する第6経路とを切り替える第3の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
[9] In the above [2] or [3],
The switch between the the fifth path for supplying the CO 2 from the second liquefied CO 2 cylinder into the chamber, the third liquefied CO for supplying the CO 2 from 2 bomb into the chamber sixth path A cleaning apparatus with CO 2 recycling, characterized in that it has 3 switching mechanisms.
[10]上記[2]、[3]及び[9]のいずれか一項において、
 前記チャンバーから前記第2の液化COボンベに前記COを供給する第7経路と、前記チャンバーから前記第3の液化COボンベに前記COを供給する第8経路とを切り替える第4の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
[10] In any one of [2], [3] and [9] above,
A fourth path is switched between a seventh path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and an eighth path for supplying the CO 2 from the chamber to the third liquefied CO 2 cylinder. A cleaning apparatus with CO 2 recycling, comprising a switching mechanism.
[11]上記[2]において、
 前記第1の液化COボンベから前記チャンバー内に前記COを供給する第1経路と、前記第2の液化COボンベから前記チャンバー内に前記COを供給する第2経路とを切り替える第1の切り替え機構と、
 前記チャンバーから前記第2の液化COボンベに前記COを供給する第3経路と、前記チャンバーから排気口に前記COを排気する第4経路とを切り替える第2の切り替え機構と、
 前記第2の液化COボンベから前記第1の切り替え機構に前記COを供給する第5経路と、前記第3の液化COボンベから前記第1の切り替え機構に前記COを供給する第6経路とを切り替える第3の切り替え機構と、
 前記第2の切り替え機構から前記第2の液化COボンベに前記COを供給する第7経路と、前記第2の切り替え機構から前記第3の液化COボンベに前記COを供給する第8経路とを切り替える第4の切り替え機構と、
を具備し、
 前記第2の切り替え機構は前記排出機構と前記第2の液化COボンベとの間に配置され、
 前記第3の切り替え機構は前記第1の切り替え機構と前記第2の液化COボンベとの間に配置され、
 前記第4の切り替え機構は前記第2の切り替え機構と前記第2の液化COボンベとの間に配置されていることを特徴とするCOリサイクル付洗浄装置。
[11] In the above [2],
A first path for supplying the CO 2 from the first liquefied CO 2 cylinder into the chamber, the switching between the second path for supplying the CO 2 into the chamber from said second liquefied CO 2 cylinder 1 switching mechanism;
A second switching mechanism that switches between a third path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and a fourth path for exhausting the CO 2 from the chamber to an exhaust port;
The supply and the second liquefied CO 2 from said cylinder first fifth path for supplying to the switching mechanism of the CO 2, the CO 2 in the first switching mechanism from the third liquefied CO 2 cylinder A third switching mechanism for switching between six routes;
The supply and the second from said switching mechanism of the second liquefied CO supplies the CO 2 to 2 cylinder seventh path, the CO 2 in the third liquefied CO 2 cylinder from said second switching mechanism A fourth switching mechanism for switching between eight routes;
Comprising
The second switching mechanism is disposed between the discharge mechanism and the second liquefied CO 2 cylinder,
The third switching mechanism is disposed between the first switching mechanism and the second liquefied CO 2 cylinder,
The fourth switching mechanism is disposed between the second switching mechanism and the second liquefied CO 2 cylinder, and is a cleaning apparatus with CO 2 recycling.
[12]上記[7]または[11]において、
 前記第1の切り替え機構は、
 前記第1の液化COボンベに第1弁が接続され、前記チャンバーに第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第1の3方弁と、
 前記第1の3方弁を制御する第1の制御部と、を有し、
 前記第1の制御部は、前記第1の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるように制御し、前記第2の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第2弁及び前記第3弁を開き、かつ前記第1弁を閉じるように制御することを特徴とするCOリサイクル付洗浄装置。
[12] In the above [7] or [11],
The first switching mechanism includes:
A first three-way valve having a first valve connected to the first liquefied CO 2 cylinder, a second valve connected to the chamber, and a third valve connected to the second liquefied CO 2 cylinder;
A first control unit for controlling the first three-way valve,
The first control unit opens the first valve and the second valve and closes the third valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. And when the CO 2 is supplied from the second liquefied CO 2 cylinder into the chamber, the second valve and the third valve are opened and the first valve is closed. A cleaning device with CO 2 recycling.
[13]上記[8]または[11]において、
 前記第2の切り替え機構は、
 前記排気機構に第1弁が接続され、排気口に第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第2の3方弁と、
 前記第2の3方弁を制御する第2の制御部と、を有し、
 前記第2の制御部は、前記第1の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第1弁及び前記第3弁を開き、かつ前記第2弁を閉じることで、前記排出機構によって排出された前記チャンバー内の前記COを前記第2の液化COボンベに収容するように制御し、前記第1の液化COボンベまたは前記第2の液化COボンベから前記チャンバー内に前記COを供給しないときに、前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるように制御することを特徴とするCOリサイクル付洗浄装置。
[13] In the above [8] or [11],
The second switching mechanism includes
A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder;
A second control unit for controlling the second three-way valve,
The second control unit opens the first valve and the third valve and closes the second valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. Then, control is performed so that the CO 2 in the chamber discharged by the discharge mechanism is accommodated in the second liquefied CO 2 cylinder, and the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder is stored. wherein said chamber from when the CO 2 does not supply, the opening of the first valve and the second valve, and the third valve closing control CO 2 cleaning apparatus with recycling, which comprises as.
[14]上記[7]、[8]、[11]及び[12]のいずれか一項において、
 前記第1の液化COボンベ内のCO残量を重量で測定する第1の重量計を有し、
 前記第1の切り替え機構は、前記第1の重量計によって測定された前記第1の液化COボンベ内のCO残量が第1重量%となった時に、前記第1の経路から前記第2の経路に切り替えることで前記第2の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
[14] In any one of the above [7], [8], [11] and [12]
A first weigh scale that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by weight;
The first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first weigh scale becomes the first weight%, the first switching mechanism is configured to perform the first switching from the first path. The cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the second path.
[15]上記[7]、[8]、[11]及び[12]のいずれか一項において、
 前記第1の液化COボンベ内のCO残量を圧力で測定する第1の圧力計を有し、
 前記第1の切り替え機構は、前記第1の圧力計によって測定された前記第1の液化COボンベ内のCO残量が第1圧力となった時に、前記第1の経路から前記第2の経路に切り替えることで前記第2の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
[15] In any one of [7], [8], [11] and [12] above,
A first pressure gauge that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by pressure;
The first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first pressure gauge becomes a first pressure, the second switching mechanism is configured to perform the second switching from the first path. The cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the path.
[16]上記[9]乃至[11]のいずれか一項において、
 前記第2の液化COボンベ内のCO残量を重量で測定する第2の重量計を有し、
 前記第3の切り替え機構は、前記第2の重量計によって測定された前記第2の液化COボンベ内のCO残量が第2重量%となった時に、前記第5の経路から前記第6の経路に切り替えることで前記第3の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
[16] In any one of [9] to [11] above,
A second weigh scale that measures the remaining amount of CO 2 in the second liquefied CO 2 cylinder by weight;
When the remaining amount of CO 2 in the second liquefied CO 2 cylinder measured by the second weigh scale becomes 2% by weight, the third switching mechanism is configured to release the fifth path from the fifth path. The cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 from the third liquefied CO 2 cylinder into the chamber by switching to the path of No. 6.
[17]上記[9]乃至[11]のいずれか一項において、
 前記第2の液化COボンベ内のCO残量を圧力で測定する第2の圧力計を有し、
 前記第3の切り替え機構は、前記第2の圧力計によって測定された前記第2の液化COボンベ内のCO残量が第2圧力となった時に、前記第5の経路から前記第6の経路に切り替えることで前記第3の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
[17] In any one of [9] to [11] above,
A second pressure gauge for measuring the remaining amount of CO 2 in the second liquefied CO 2 cylinder by pressure;
When the remaining amount of CO 2 in the second liquefied CO 2 cylinder measured by the second pressure gauge becomes the second pressure, the third switching mechanism is configured to perform the sixth switching from the fifth path. The cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 into the chamber from the third liquefied CO 2 cylinder by switching to the path.
[18]上記[1]乃至[17]のいずれか一項において、
 前記排出機構によって排出された前記COを含む排出物中のパーティクルを除去するパーティクルフィルター及び前記排出物中の有機物を除去する有機物フィルターを有することを特徴とするCOリサイクル付洗浄装置。
[18] In any one of [1] to [17] above,
A cleaning apparatus with CO 2 recycling, comprising: a particle filter that removes particles in the discharge containing CO 2 discharged by the discharge mechanism; and an organic filter that removes organic matter in the discharge.
[19]上記[1]、[2]、[7]、[8]及び[11]乃至[15]のいずれか一項に記載のCOリサイクル付洗浄装置の稼動方法において、
 前記第1の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出し、前記排出機構によって排出された前記COを前記液化機構によって液化し、前記液化機構によって液化されたCOを前記第2の液化COボンベに収容し、
 前記第1の液化COボンベから前記チャンバー内にCOを供給するのを停止し、前記第2の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出することを特徴とするCOリサイクル付洗浄装置の稼動方法。
[19] In the operation method of the cleaning apparatus with CO 2 recycling according to any one of [1], [2], [7], [8] and [11] to [15],
Supplying CO 2 into the chamber from said first liquefied CO 2 cylinder, the said CO 2 in the chamber is discharged by the discharge mechanism, liquefying the CO 2 discharged by the discharge mechanism by the liquefaction mechanism And storing the CO 2 liquefied by the liquefaction mechanism in the second liquefied CO 2 cylinder,
Stop from the first liquefied CO 2 cylinder for supplying CO 2 into the chamber, by supplying CO 2 from the second liquefied CO 2 cylinder into the chamber, the CO 2 in the chamber The operation method of the cleaning apparatus with CO 2 recycling, wherein the discharging mechanism discharges the CO 2 recycling mechanism.
[20]上記[12]に記載のCOリサイクル付洗浄装置の稼動方法において、
 前記COリサイクル付洗浄装置は、
 前記排気機構に第1弁が接続され、排気口に第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第2の3方弁と、
 前記第2の3方弁を制御する第2の制御部と、をさらに具備し、
 前記第1の制御部によって前記第1の3方弁の前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるとともに、前記第2の制御部によって前記第2の3方弁の前記第1弁及び前記第3弁を開き、かつ前記第2弁を閉じることで、前記第1の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出し、前記排出機構によって排出された前記COを前記液化機構によって液化し、前記液化機構によって液化されたCOを前記第2の液化COボンベに収容し、
 前記第1の制御部によって前記第1の3方弁の前記第2弁及び前記第3弁を開き、かつ前記第1弁を閉じることで、前記第2の液化COボンベから前記チャンバー内に前記COを供給することを特徴とするCOリサイクル付洗浄装置の稼動方法。
[20] In the operation method of the cleaning apparatus with CO 2 recycling according to [12],
The cleaning device with CO 2 recycling is:
A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder;
A second control unit for controlling the second three-way valve,
The first control unit opens the first valve and the second valve of the first three-way valve and closes the third valve, and the second control unit performs the second three-way valve. open the first valve and the third valve, and the by closing the second valve to supply the CO 2 from the first liquefied CO 2 cylinder into the chamber, the CO 2 in the chamber Discharging by the discharge mechanism, liquefying the CO 2 discharged by the discharge mechanism by the liquefaction mechanism, storing the CO 2 liquefied by the liquefaction mechanism in the second liquefied CO 2 cylinder,
The first control unit opens the second valve and the third valve of the first three-way valve, and closes the first valve, so that the second liquefied CO 2 cylinder enters the chamber. A method of operating a cleaning apparatus with CO 2 recycling, wherein the CO 2 is supplied.
 本発明の一態様によれば、CO使用量を低減することができる。 According to one embodiment of the present invention, the amount of CO 2 used can be reduced.
本発明の一態様に係るCOリサイクル付洗浄装置を示す模式図である。Is a schematic view showing a cleaning apparatus CO 2 with recycle according to one aspect of the present invention. 本発明の一態様に係る真空式洗浄装置を模式的に示す図である。It is a figure which shows typically the vacuum type cleaning apparatus which concerns on 1 aspect of this invention. 図2に示す60-60線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line 60-60 shown in FIG. 本発明の一態様に係るCOリサイクル付洗浄装置を示す模式図である。Is a schematic view showing a cleaning apparatus CO 2 with recycle according to one aspect of the present invention. 本発明の一態様に係る洗浄装置を模式的に示す図である。It is a figure which shows typically the washing | cleaning apparatus which concerns on 1 aspect of this invention. 図5に示す保持機構及び排気機構を基板12の表面側から視た図である。FIG. 6 is a view of the holding mechanism and the exhaust mechanism shown in FIG. (A)は図5に示すノズル11の断面図、(B)は(A)に示すノズルを基端側から視た図である。(A) is sectional drawing of the nozzle 11 shown in FIG. 5, (B) is the figure which looked at the nozzle shown to (A) from the base end side. 従来の洗浄装置の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the conventional washing | cleaning apparatus.
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
 [第1の実施形態]
 図1は、本発明の一態様に係るCOリサイクル付洗浄装置を示す模式図である。
[First Embodiment]
FIG. 1 is a schematic diagram illustrating a cleaning apparatus with CO 2 recycling according to one embodiment of the present invention.
 図1のCOリサイクル付洗浄装置は、真空チャンバー27a、補給用COシリンダー(第1の液化COボンベともいう)51、第1のリサイクルCOシリンダー(第2の液化COボンベともいう)52及び第2のリサイクルCOシリンダー(第3の液化COボンベともいう)53を有し、真空チャンバー27a内に供給されるCOによって被洗浄物(図示せず)が洗浄される装置である。 CO 2 cleaning apparatus with recycling of FIG. 1, the vacuum chamber 27a, (also referred to as a first liquefied CO 2 cylinder) replenishment CO 2 cylinder 51, also referred to as a first recycle CO 2 cylinder (second liquefied CO 2 cylinder ) 52 and a second recycled CO 2 cylinder (also referred to as a third liquefied CO 2 cylinder) 53, and an object to be cleaned (not shown) is cleaned by CO 2 supplied into the vacuum chamber 27 a. It is.
 また、COリサイクル付洗浄装置は、補給用COシリンダー51内のCO残量を重量で測定する第1の重量計(ロードセル)54と、第1のリサイクルCOシリンダー52内のCO残量を重量で測定する第2の重量計(ロードセル)55と、第2のリサイクルCOシリンダー53内のCO残量を重量で測定する第3の重量計(ロードセル)56を有する。 Moreover, CO 2 cleaning apparatus with recycling, the first weighing scale (load cell) 54 for measuring the CO 2 remaining in the replenishment CO 2 cylinder 51 by weight, CO 2 in the first recycle CO 2 cylinder 52 A second weighing scale (load cell) 55 that measures the remaining amount by weight and a third weighing scale (load cell) 56 that measures the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 by weight are provided.
 また、COリサイクル付洗浄装置は、補給用COシリンダー51内のCO残量を圧力で測定する第1の圧力計(圧力ゲージ)68と、第1のリサイクルCOシリンダー52内のCO残量を圧力で測定する第2の圧力計(圧力ゲージ)69と、第3のリサイクルCOシリンダー53内のCO残量を圧力で測定する第3の圧力計(圧力ゲージ)70を有する。 In addition, the cleaning apparatus with CO 2 recycling includes a first pressure gauge (pressure gauge) 68 that measures the remaining amount of CO 2 in the supplementary CO 2 cylinder 51 by pressure, and a CO in the first recycled CO 2 cylinder 52. A second pressure gauge (pressure gauge) 69 that measures the remaining amount of 2 by pressure, and a third pressure gauge (pressure gauge) 70 that measures the remaining amount of CO 2 in the third recycled CO 2 cylinder 53 by pressure. Have.
 また、COリサイクル付洗浄装置はCOの経路を切り替える第1及び第2の切り替え機構と切り替えユニット59を有する。第1の切り替え機構は第1の3方弁57及びその第1の3方弁57を制御する第1の制御部60を有し、第2の切り替え機構は第2の3方弁58及びその第2の3方弁58を制御する第2の制御部61を有する。 The cleaning apparatus with CO 2 recycling includes first and second switching mechanisms and a switching unit 59 for switching the CO 2 path. The first switching mechanism includes a first three-way valve 57 and a first control unit 60 that controls the first three-way valve 57, and the second switching mechanism includes a second three-way valve 58 and its A second control unit 61 for controlling the second three-way valve 58 is provided.
 補給用COシリンダー51は、6MPaに加圧された液化炭酸ガス(液化CO)が入れられたボンベであって、真空チャンバー27a内にCOを供給するものである。補給用COシリンダー51は配管によって第1の切り替え機構の第1の3方弁57の第1弁64に接続されている。第1の3方弁57の第2弁63は配管によってバルブ77の一方端に接続されており、バルブ77の他方端は配管によって真空チャンバー27aに接続されている。第1の3方弁57の第3弁62は配管によって切り替えユニット59に接続されており、切り替えユニット59は配管によって第1及び第2のリサイクルCOシリンダー52,53に接続されている。 The replenishment CO 2 cylinder 51 is a cylinder in which liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa is placed, and supplies CO 2 into the vacuum chamber 27a. The replenishment CO 2 cylinder 51 is connected to the first valve 64 of the first three-way valve 57 of the first switching mechanism by piping. The second valve 63 of the first three-way valve 57 is connected to one end of a valve 77 by piping, and the other end of the valve 77 is connected to the vacuum chamber 27a by piping. The third valve 62 of the first three-way valve 57 is connected to the switching unit 59 by piping, and the switching unit 59 is connected to the first and second recycled CO 2 cylinders 52 and 53 by piping.
 第1の切り替え機構は、補給用COシリンダー51から真空チャンバー27aへCOを供給する第1経路と、第1のリサイクルCOシリンダー52または第2のリサイクルCOシリンダー53から真空チャンバー27aへCOを供給する第2経路とを切り替える機構である。 The first switching mechanism includes a first path for supplying CO 2 from the replenishment CO 2 cylinder 51 to the vacuum chamber 27a, and the first recycled CO 2 cylinder 52 or the second recycled CO 2 cylinder 53 to the vacuum chamber 27a. This is a mechanism for switching between the second path for supplying CO 2 .
 真空チャンバー27aは配管によって排出機構としての真空ポンプ23aに接続されており、真空ポンプ23aは真空チャンバー27a内を真空排気するものである。真空ポンプ23aは、ドライポンプであってもよいし、ドライポンプとメカニカルブースターポンプを有していてもよい。 The vacuum chamber 27a is connected to a vacuum pump 23a as a discharge mechanism by piping, and the vacuum pump 23a evacuates the inside of the vacuum chamber 27a. The vacuum pump 23a may be a dry pump, or may include a dry pump and a mechanical booster pump.
 真空ポンプ23aは配管によって第2の切り替え機構の第2の3方弁58の第1弁66に接続されており、第2の3方弁58の第2弁67は配管によって排気口76に接続されている。第2の3方弁58の第3弁65は配管によってパーティクルフィルター71に接続されている。第2の切り替え機構は、真空チャンバー27aから第1のリサイクルCOシリンダー52へ(即ち真空ポンプ23aからパーティクルフィルター71へ)COを供給する第3経路と、真空チャンバー27aから排気口76へ(即ち真空ポンプ23aから排気口76へ)COを排気する第4経路とを切り替える機構である。 The vacuum pump 23a is connected to the first valve 66 of the second three-way valve 58 of the second switching mechanism by piping, and the second valve 67 of the second three-way valve 58 is connected to the exhaust port 76 by piping. Has been. The third valve 65 of the second three-way valve 58 is connected to the particle filter 71 by piping. The second switching mechanism includes a third path for supplying CO 2 from the vacuum chamber 27a to the first recycle CO 2 cylinder 52 (ie, from the vacuum pump 23a to the particle filter 71), and from the vacuum chamber 27a to the exhaust port 76 ( That is, it is a mechanism for switching the fourth path for exhausting CO 2 from the vacuum pump 23a to the exhaust port 76).
 パーティクルフィルター71は真空ポンプ23aによって排出されたCOを含む排出物中の無機物のコンタミネーション等のパーティクルを除去するフィルターである。 The particle filter 71 is a filter that removes particles such as inorganic contamination in the discharge containing CO 2 discharged by the vacuum pump 23a.
 パーティクルフィルター71は配管によって有機物除去フィルター72に接続されており、有機物除去フィルター72は真空ポンプ23aによって排出されたCOを含む排出物中の有機物を除去するフィルターである。 The particle filter 71 is connected to an organic matter removal filter 72 by piping, and the organic matter removal filter 72 is a filter that removes organic matter in the discharged matter including CO 2 discharged by the vacuum pump 23a.
 有機物除去フィルター72は配管によってCO液化用加圧ポンプ73に接続されており、このCO液化用加圧ポンプ73はフィルター71,72によってパーティクル及び有機物が除去された後のCOガスを加圧して液化するポンプである。 Organic substance removal filter 72 is connected to the CO 2 liquefying pressure pump 73 through a pipe, the CO 2 liquefying pressure pump 73 is a CO 2 gas which particles and organic matter has been removed by the filter 71 and 72 pressurized It is a pump that pressurizes and liquefies.
 CO液化用加圧ポンプ73は配管によって冷却機74に接続されており、この冷却機74はポンプ73によって液化されたCOを冷却するものである。冷却機74及びCO液化用加圧ポンプ73によって液化機構を構成する。冷却機74は配管によってコンプレッサー75に接続されており、コンプレッサー75は冷却機74によって冷却された液化COを圧縮するものである。 The CO 2 liquefaction pressure pump 73 is connected to a cooler 74 by piping, and the cooler 74 cools CO 2 liquefied by the pump 73. A liquefaction mechanism is constituted by the cooler 74 and the CO 2 liquefaction pressure pump 73. The cooler 74 is connected to a compressor 75 by piping, and the compressor 75 compresses the liquefied CO 2 cooled by the cooler 74.
 コンプレッサー75は配管によって切り替えユニット59に接続されており、切り替えユニット59は配管によって第1及び第2のリサイクルCOシリンダー52,53に接続されている。 The compressor 75 is connected to the switching unit 59 by piping, and the switching unit 59 is connected to the first and second recycled CO 2 cylinders 52 and 53 by piping.
 切り替えユニット59は第3及び第4の切り替え機構を有する。第3の切り替え機構は、第1のリサイクルCOシリンダー52から真空チャンバー27aへCOを供給する第5経路と、第2のリサイクルCOシリンダー53から真空チャンバー27aへCOを供給する第6経路とを切り替える機構である。第4の切り替え機構は、真空チャンバー27aから第1のリサイクルCOシリンダー52へ(即ちコンプレッサー75から第1のリサイクルCOシリンダー52へ)COを供給する第7経路と、真空チャンバー27aから第2のリサイクルCOシリンダー53へ(即ちコンプレッサー75から第2のリサイクルCOシリンダー53へ)COを供給する第8経路とを切り替える機構である。 The switching unit 59 has third and fourth switching mechanisms. The third switching mechanism includes a fifth path for supplying CO 2 to the vacuum chamber 27a from the first recycle CO 2 cylinder 52, and supplies the CO 2 from the second recycle CO 2 cylinder 53 to the vacuum chamber 27a sixth This is a mechanism for switching between routes. The fourth switching mechanism includes a seventh path for supplying CO 2 from the vacuum chamber 27a to the first recycle CO 2 cylinder 52 (ie, from the compressor 75 to the first recycle CO 2 cylinder 52), and from the vacuum chamber 27a to the first recycle CO 2 cylinder 52. This is a mechanism for switching the second path for supplying CO 2 to the second recycled CO 2 cylinder 53 (ie, from the compressor 75 to the second recycled CO 2 cylinder 53).
 第3の切り替え機構は、図示せぬ第3の3方弁と、第3の3方弁を制御する第3の制御部(図示せず)を有する。第3の3方弁の第1弁は第1のリサイクルCOシリンダー52に接続されており、第3の3方弁の第2弁は第1の3方弁の第3弁62に接続されており、第3の3方弁の第3弁は第2のリサイクルCOシリンダー53に接続されている。 The third switching mechanism includes a third three-way valve (not shown) and a third control unit (not shown) that controls the third three-way valve. The first valve of the third three-way valve is connected to the first recycled CO 2 cylinder 52, and the second valve of the third three-way valve is connected to the third valve 62 of the first three-way valve. The third valve of the third three-way valve is connected to the second recycled CO 2 cylinder 53.
 第4の切り替え機構は、図示せぬ第4の3方弁と、第4の3方弁を制御する第4の制御部(図示せず)を有する。第4の3方弁の第1弁はコンプレッサー75に接続されており、第4の3方弁の第2弁は第1のリサイクルCOシリンダー52に接続されており、第4の3方弁の第3弁は第2のリサイクルCOシリンダー53に接続されている。 The fourth switching mechanism includes a fourth three-way valve (not shown) and a fourth control unit (not shown) that controls the fourth three-way valve. The first valve of the fourth three-way valve is connected to the compressor 75, the second valve of the fourth three-way valve is connected to the first recycled CO 2 cylinder 52, and the fourth three-way valve The third valve is connected to the second recycle CO 2 cylinder 53.
 なお、本明細書において「接続する」または「接続される」とは、直接的に接続する場合の他に、間接的に接続する場合も含む意味である。 In this specification, “connect” or “connected” includes not only direct connection but also indirect connection.
 次に、図1のCOリサイクル付洗浄装置の稼動方法について説明する。
<補給用COシリンダー51→第1のリサイクルCOシリンダー52>
 補給用COシリンダー51には6MPaに加圧された液化炭酸ガス(液化CO)が入れられている。この補給用COシリンダー51から真空チャンバー27a内にCOが供給されないようにバルブ77を閉じる。また第2の制御部61によって第2の3方弁58の第1弁66及び第2弁67を開き、かつ第3弁65を閉じる。そして真空チャンバー27a内を真空ポンプ23aによって真空排気し、その排気を排気口76から排気することで、真空チャンバー27a内を所定の圧力にする。
Next, the operation method of the cleaning apparatus with CO 2 recycling in FIG. 1 will be described.
<Supplying CO 2 cylinder 51 → first recycling CO 2 cylinder 52>
The replenishing CO 2 cylinder 51 contains liquefied carbon dioxide (liquefied CO 2 ) pressurized to 6 MPa. The valve 77 is closed so that CO 2 is not supplied from the replenishing CO 2 cylinder 51 into the vacuum chamber 27a. The second control unit 61 opens the first valve 66 and the second valve 67 of the second three-way valve 58 and closes the third valve 65. Then, the inside of the vacuum chamber 27a is evacuated by the vacuum pump 23a, and the exhaust is exhausted from the exhaust port 76, whereby the inside of the vacuum chamber 27a is brought to a predetermined pressure.
 次いで、第2の制御部61によって第2の3方弁58の第1弁66及び第3弁65を開き、かつ第2弁67を閉じる。第4の制御部によって切り替えユニット59の第4の切り替え機構の第4の3方弁の第1弁及び第2弁を開き、かつ第3弁を閉じる。これにより、真空チャンバー27aから排気口76にCOを排気する第4経路が閉じられ、真空チャンバー27aから切り替えユニット59にCOを供給する第3経路が開かれるとともに、第2の3方弁58から第1のリサイクルCOシリンダー52にCOを供給する第7経路が開かれる。つまり、第2の切り替え機構によって第4の経路から第3の経路に切り替えら、第4の切り替え機構によって第7経路が開かれる。これとともに、バルブ77を開き、第1の制御部60によって第1の3方弁57の第1弁64及び第2弁63を開き、かつ第3弁62を閉じる。これにより、補給用COシリンダー51から真空チャンバー27a内にCOを供給し、このCOによって真空チャンバー27a内の被洗浄物(図示せず)を洗浄する。この被洗浄物の洗浄方法については後述する第2の実施形態で説明する。真空チャンバー27a内のCOは真空ポンプ23aによって排出され、その排出されたCOはパーティクルフィルター71に送られる。真空ポンプ23aによって排出された排出物中にはCOの他に無機物のコンタミネーション等のパーティクルが含まれている。このパーティクルはパーティクルフィルター71によって除去される。そして真空ポンプ23aによって排出された排出物は有機物除去フィルター72に送られる。排出物中にはCOの他に有機物が含まれている。この有機物は有機物除去フィルター72によって除去される。パーティクル及び有機物が除去されたCOはCO液化用加圧ポンプ73によって加圧されて液化され、その液化されたCOは冷却機74によって冷却され、その冷却された液化COはコンプレッサー75によって圧縮され、切り替えユニット59を通って第1のリサイクルCOシリンダー52に回収され貯蔵される。 Next, the second control unit 61 opens the first valve 66 and the third valve 65 of the second three-way valve 58 and closes the second valve 67. The fourth control unit opens the first and second valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the third valve. Accordingly, the fourth path for exhausting CO 2 from the vacuum chamber 27a to the exhaust port 76 is closed, the third path for supplying CO 2 from the vacuum chamber 27a to the switching unit 59 is opened, and the second three-way valve is opened. A seventh path for supplying CO 2 from 58 to the first recycled CO 2 cylinder 52 is opened. That is, the fourth path is switched to the third path by the second switching mechanism, and the seventh path is opened by the fourth switching mechanism. At the same time, the valve 77 is opened, the first control unit 60 opens the first valve 64 and the second valve 63 of the first three-way valve 57, and closes the third valve 62. Thus, CO 2 is supplied from the replenishing CO 2 cylinder 51 into the vacuum chamber 27a, and an object to be cleaned (not shown) in the vacuum chamber 27a is cleaned by this CO 2 . This cleaning method for the object to be cleaned will be described in a second embodiment to be described later. The CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71. In the discharge discharged by the vacuum pump 23a, particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71. Then, the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72. The emission contains organic substances in addition to CO 2 . This organic matter is removed by the organic matter removing filter 72. The CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the first recycle CO 2 cylinder 52 through the switching unit 59.
 上記のように補給用COシリンダー51から真空チャンバー27a内にCOを供給し、そのCOによって真空チャンバー27a内の被洗浄物を洗浄した後、真空チャンバー27a内のCOを真空ポンプ23aによって排気し、その排気したCOを液化し、その液化COを第1のリサイクルCOシリンダー52に回収する。その回収の間に、第1の重量計54によって補給用COシリンダー51内のCO残量を重量で測定している。 Supplying CO 2 into the vacuum chamber 27a from the replenishment CO 2 cylinder 51 as described above, the after washing the object to be cleaned in the vacuum chamber 27a by CO 2, the vacuum pump 23a of CO 2 in the vacuum chamber 27a The exhausted CO 2 is liquefied, and the liquefied CO 2 is collected in the first recycle CO 2 cylinder 52. During the collection, the remaining amount of CO 2 in the supplementary CO 2 cylinder 51 is measured by weight with the first weigh scale 54.
<第1のリサイクルCOシリンダー52→第2のリサイクルCOシリンダー53>
 次いで、補給用COシリンダー51内のCO残量が第1重量%となった時に次のようにCOの経路を切り替える。第1重量%は、補給用COシリンダー51内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる重量%であり、好ましくは5重量%~20重量%の範囲(例えば10重量%)である。
<First Recycled CO 2 Cylinder 52 → Second Recycled CO 2 Cylinder 53>
Next, when the remaining amount of CO 2 in the replenishment CO 2 cylinder 51 reaches the first weight%, the CO 2 path is switched as follows. The first weight% is a weight% in which the remaining amount of CO 2 in the replenishing CO 2 cylinder 51 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and preferably 5% by weight to 20% by weight. % Range (for example, 10% by weight).
 第4の制御部によって切り替えユニット59の第4の切り替え機構の第4の3方弁の第1弁及び第3弁を開き、かつ第2弁を閉じる。第1の制御部60によって第1の3方弁57の第2弁63及び第3弁62を開き、かつ第1弁64を閉じる。第3の制御部によって切り替えユニット59の第3の切り替え機構の第3の3方弁の第1弁及び第2弁を開き、かつ第3弁を閉じる。これにより、補給用COシリンダー51から真空チャンバー27aにCOを供給する第1経路が閉じられ、切り替えユニット59から真空チャンバー27aにCOを供給する第2経路と第1のリサイクルCOシリンダー52から第1の3方弁57にCOを供給する第5経路が開かれるとともに、第2の3方弁58から第1のリサイクルCOシリンダー52にCOを供給する第7経路が閉じられ、第2の3方弁58から第2のリサイクルCOシリンダー53にCOを供給する第8経路が開かれる。つまり、第1の切り替え機構によって第1の経路から第2の経路に切り替えら、第3の切り替え機構によって第5経路が開かれ、第4の切り替え機構によって第7経路から第8経路に切り替えられる。 The fourth control unit opens the first and third valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the second valve. The first control unit 60 opens the second valve 63 and the third valve 62 of the first three-way valve 57 and closes the first valve 64. The third control unit opens the first and second valves of the third three-way valve of the third switching mechanism of the switching unit 59 and closes the third valve. This closes the first path for supplying CO 2 from the replenishing CO 2 cylinder 51 to the vacuum chamber 27a, and the second path for supplying CO 2 from the switching unit 59 to the vacuum chamber 27a and the first recycled CO 2 cylinder. The fifth path for supplying CO 2 from 52 to the first three-way valve 57 is opened, and the seventh path for supplying CO 2 from the second three-way valve 58 to the first recycled CO 2 cylinder 52 is closed. The eighth path for supplying CO 2 from the second three-way valve 58 to the second recycle CO 2 cylinder 53 is opened. That is, the first switching mechanism switches from the first path to the second path, the third switching mechanism opens the fifth path, and the fourth switching mechanism switches from the seventh path to the eighth path. .
 上記の切り替えにより、第1のリサイクルCOシリンダー52から真空チャンバー27a内にCOを供給し、このCOによって真空チャンバー27a内の被洗浄物を洗浄する。この被洗浄物の洗浄方法については後述する第2の実施形態で説明する。真空チャンバー27a内のCOは真空ポンプ23aによって排出され、その排出されたCOはパーティクルフィルター71に送られる。真空ポンプ23aによって排出された排出物中にはCOの他に無機物のコンタミネーション等のパーティクルが含まれている。このパーティクルはパーティクルフィルター71によって除去される。そして真空ポンプ23aによって排出された排出物は有機物除去フィルター72に送られる。排出物中にはCOの他に有機物が含まれている。この有機物は有機物除去フィルター72によって除去される。パーティクル及び有機物が除去されたCOはCO液化用加圧ポンプ73によって加圧されて液化され、その液化されたCOは冷却機74によって冷却され、その冷却された液化COはコンプレッサー75によって圧縮され、切り替えユニット59を通って第2のリサイクルCOシリンダー53に回収され貯蔵される。 By the above switching, CO 2 is supplied from the first recycled CO 2 cylinder 52 into the vacuum chamber 27a, and the object to be cleaned in the vacuum chamber 27a is cleaned by this CO 2 . This cleaning method for the object to be cleaned will be described in a second embodiment to be described later. The CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71. In the discharge discharged by the vacuum pump 23a, particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71. Then, the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72. The emission contains organic substances in addition to CO 2 . This organic matter is removed by the organic matter removing filter 72. The CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the second recycle CO 2 cylinder 53 through the switching unit 59.
 上記のように第1リサイクルCOシリンダー52から真空チャンバー27a内にCOを供給し、そのCOによって真空チャンバー27a内の被洗浄物を洗浄した後、真空チャンバー27a内のCOを真空ポンプ23aによって排気し、その排気したCOを液化し、その液化COを第2のリサイクルCOシリンダー53に回収する。このようにして一度使用されたCOをリサイクルすることができる。液化COを真空チャンバー27a内で気化した後に再びCOを液化して回収するため、純度の高いCOに精製されて回収することができる。 After feeding CO 2 into the vacuum chamber 27a from the first recycle CO 2 cylinder 52 as described above, washing the object to be cleaned in the vacuum chamber 27a by the CO 2, the vacuum pump of CO 2 in the vacuum chamber 27a The exhausted CO 2 is liquefied, and the liquefied CO 2 is collected in the second recycle CO 2 cylinder 53. In this way, CO 2 once used can be recycled. Since the liquefied CO 2 is vaporized in the vacuum chamber 27a and then CO 2 is liquefied and recovered again, it can be purified and recovered with high purity CO 2 .
<第2のリサイクルCOシリンダー53→第1のリサイクルCOシリンダー52>
 上記のように第2のリサイクルCOシリンダー53に液化COが回収されている間に、第2の重量計55によって第1のリサイクルCOシリンダー52内のCO残量を重量で測定している。そして、第1のリサイクルCOシリンダー52内のCO残量が第2重量%となった時に次のようにCOの経路を切り替える。なお、第2重量%は、第1のリサイクルCOシリンダー52内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる重量%であり、好ましくは5重量%~20重量%の範囲(例えば10重量%)である。また、第1のリサイクルCOシリンダー52の回収率は100%ではないので、第1のリサイクルCOシリンダー52から真空チャンバー27aに供給し始める時に第2の重量計55は100重量%を示さない。
<Second Recycled CO 2 Cylinder 53 → First Recycled CO 2 Cylinder 52>
While the liquefied CO 2 is being collected in the second recycled CO 2 cylinder 53 as described above, the remaining amount of CO 2 in the first recycled CO 2 cylinder 52 is measured by weight by the second weigh scale 55. ing. Then, when the remaining amount of CO 2 in the first recycled CO 2 cylinder 52 becomes the second weight%, the CO 2 route is switched as follows. The second weight% is the weight% in which the remaining amount of CO 2 in the first recycled CO 2 cylinder 52 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and preferably 5% by weight. % To 20% by weight (for example, 10% by weight). Further, since the recovery rate of the first recycled CO 2 cylinder 52 is not 100%, the second weigh scale 55 does not show 100% by weight when the supply from the first recycled CO 2 cylinder 52 to the vacuum chamber 27a is started. .
 第4の制御部によって切り替えユニット59の第4の切り替え機構の第4の3方弁の第1弁及び第2弁を開き、かつ第3弁を閉じる。第3の制御部によって切り替えユニット59の第3の切り替え機構の第3の3方弁の第2弁及び第3弁を開き、かつ第1弁を閉じる。これにより、第1のリサイクルCOシリンダー52から第1の3方弁57にCOを供給する第5経路が閉じられ、第2のリサイクルCOシリンダー53から第1の3方弁57にCOを供給する第6経路が開かれるとともに、第2の3方弁58から第2のリサイクルCOシリンダー52にCOを供給する第8経路が閉じられ、第2の3方弁58から第1のリサイクルCOシリンダー52にCOを供給する第7経路が開かれる。つまり、第3の切り替え機構によって第5経路から第6経路に切り替えられ、第4の切り替え機構によって第8経路から第7経路に切り替えられる。 The fourth control unit opens the first and second valves of the fourth three-way valve of the fourth switching mechanism of the switching unit 59 and closes the third valve. The third control unit opens the second valve and the third valve of the third three-way valve of the third switching mechanism of the switching unit 59 and closes the first valve. As a result, the fifth path for supplying CO 2 from the first recycled CO 2 cylinder 52 to the first three-way valve 57 is closed, and CO is supplied from the second recycled CO 2 cylinder 53 to the first three-way valve 57. The sixth path for supplying 2 is opened, the eighth path for supplying CO 2 from the second three-way valve 58 to the second recycled CO 2 cylinder 52 is closed, and the second three-way valve 58 opens the second path. A seventh path for supplying CO 2 to one recycled CO 2 cylinder 52 is opened. That is, the third switching mechanism switches from the fifth path to the sixth path, and the fourth switching mechanism switches from the eighth path to the seventh path.
 上記の切り替えにより、第2のリサイクルCOシリンダー53から真空チャンバー27a内にCOを供給し、このCOによって真空チャンバー27a内の被洗浄物を洗浄する。この被洗浄物の洗浄方法については後述する第2の実施形態で説明する。真空チャンバー27a内のCOは真空ポンプ23aによって排出され、その排出されたCOはパーティクルフィルター71に送られる。真空ポンプ23aによって排出された排出物中にはCOの他に無機物のコンタミネーション等のパーティクルが含まれている。このパーティクルはパーティクルフィルター71によって除去される。そして真空ポンプ23aによって排出された排出物は有機物除去フィルター72に送られる。排出物中にはCOの他に有機物が含まれている。この有機物は有機物除去フィルター72によって除去される。パーティクル及び有機物が除去されたCOはCO液化用加圧ポンプ73によって加圧されて液化され、その液化されたCOは冷却機74によって冷却され、その冷却された液化COはコンプレッサー75によって圧縮され、切り替えユニット59を通って第1のリサイクルCOシリンダー52に回収され貯蔵される。 By the above switching, CO 2 is supplied from the second recycle CO 2 cylinder 53 into the vacuum chamber 27a, and the object to be cleaned in the vacuum chamber 27a is cleaned by this CO 2 . This cleaning method for the object to be cleaned will be described in a second embodiment to be described later. The CO 2 in the vacuum chamber 27a is discharged by the vacuum pump 23a, and the discharged CO 2 is sent to the particle filter 71. In the discharge discharged by the vacuum pump 23a, particles such as inorganic contamination are contained in addition to CO 2 . These particles are removed by the particle filter 71. Then, the discharge discharged by the vacuum pump 23 a is sent to the organic matter removal filter 72. The emission contains organic substances in addition to CO 2 . This organic matter is removed by the organic matter removing filter 72. The CO 2 from which particles and organic substances have been removed is pressurized and liquefied by a CO 2 liquefaction pressure pump 73, the liquefied CO 2 is cooled by a cooler 74, and the cooled liquefied CO 2 is compressed by a compressor 75. And is collected and stored in the first recycle CO 2 cylinder 52 through the switching unit 59.
 上記のように第2リサイクルCOシリンダー53から真空チャンバー27a内にCOを供給し、そのCOによって真空チャンバー27a内の被洗浄物を洗浄した後、真空チャンバー27a内のCOを真空ポンプ23aによって排気し、その排気したCOを液化し、その液化COを第1のリサイクルCOシリンダー52に回収する。このようにして二度使用されたCOをリサイクルすることができる。液化COを真空チャンバー27a内で気化した後に再びCOを液化して回収するため、純度の高いCOに精製されて回収することができる。 After feeding CO 2 into the vacuum chamber 27a from the second recycle CO 2 cylinder 53 as described above, washing the object to be cleaned in the vacuum chamber 27a by the CO 2, the vacuum pump of CO 2 in the vacuum chamber 27a The exhausted CO 2 is liquefied, and the liquefied CO 2 is collected in the first recycle CO 2 cylinder 52. In this way, the CO 2 used twice can be recycled. Since the liquefied CO 2 is vaporized in the vacuum chamber 27a and then CO 2 is liquefied and recovered again, it can be purified and recovered with high purity CO 2 .
 上記のように第1のリサイクルCOシリンダー52に液化COが回収されている間に、第3の重量計56によって第2のリサイクルCOシリンダー53内のCO残量を重量で測定している。そして、第2のリサイクルCOシリンダー53内のCO残量が第3重量%となった時に、前述したような第1のリサイクルCOシリンダー52から真空チャンバー27a内にCOを供給し、真空チャンバー27a内のCOを第2のリサイクルCOシリンダー53に回収する経路に切り替える。なお、第3重量%は、第2のリサイクルCOシリンダー53内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる重量%であり、好ましくは5重量%~20重量%の範囲(例えば10重量%)である。なお、第2のリサイクルCOシリンダー53の回収率は100%ではないので、第2のリサイクルCOシリンダー53から真空チャンバー27aに供給し始める時に第3の重量計56は100重量%を示さない。 While the liquefied CO 2 is being collected in the first recycled CO 2 cylinder 52 as described above, the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 is measured by weight by the third weighing scale 56. ing. When the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 reaches 3% by weight, CO 2 is supplied from the first recycled CO 2 cylinder 52 as described above into the vacuum chamber 27a, The path is switched to the path for collecting the CO 2 in the vacuum chamber 27 a to the second recycle CO 2 cylinder 53. Note that the third weight% is a weight% in which the remaining amount of CO 2 in the second recycled CO 2 cylinder 53 is reduced and CO 2 cannot be supplied into the vacuum chamber 27a at a constant pressure, and preferably 5% by weight. % To 20% by weight (for example, 10% by weight). Since the recovery rate of the second recycled CO 2 cylinder 53 is not 100%, the third weighing scale 56 does not show 100% by weight when the second recycled CO 2 cylinder 53 starts to be supplied to the vacuum chamber 27a. .
 上記の第1のリサイクルCOシリンダー52から真空チャンバー27a内にCOを供給し、第2のリサイクルCOシリンダー53に回収する工程と、第2のリサイクルCOシリンダー53から真空チャンバー27a内にCOを供給し、第1のリサイクルCOシリンダー52に回収する工程を繰り返す。回収率が100%ではないので、これを複数回繰り返すことで、利用できるCOが無くなった後に、補給用COシリンダー51を交換し、新しい補給用COシリンダー51によって上記の真空チャンバー27aにCOを供給する工程を繰り返す。その結果、COの使用量を飛躍的に低減することができる。 The step of supplying CO 2 from the first recycled CO 2 cylinder 52 into the vacuum chamber 27a and collecting it into the second recycled CO 2 cylinder 53, and the second recycled CO 2 cylinder 53 into the vacuum chamber 27a. supplying CO 2, repeat the step of recovering the first recycle CO 2 cylinder 52. Since the recovery rate is not 100%, by repeating this several times, after there is no available CO 2 , the replenishment CO 2 cylinder 51 is replaced, and the new replenishment CO 2 cylinder 51 replaces the vacuum chamber 27a. The process of supplying CO 2 is repeated. As a result, the amount of CO 2 used can be drastically reduced.
 本実施形態では、補給用COシリンダー51、第1のリサイクルCOシリンダー52及び第2のリサイクルCOシリンダー53それぞれのCO残量が第1重量%、第2重量%、第3重量%となった時にCOの経路を切り替えているが、補給用COシリンダー51、第1のリサイクルCOシリンダー52及び第2のリサイクルCOシリンダー53それぞれのCO残量を第1の圧力計68、第2の圧力計69、第3の圧力計70によって測定し、第1圧力、第2圧力、第3圧力となった時にCOの経路を前述したように切り替えてもよい。ただし、圧力は、温度等によって値が変動するため、圧力で管理するよりも重量で管理する方が管理が容易である。 In the present embodiment, the CO 2 remaining amounts of the supplementary CO 2 cylinder 51, the first recycled CO 2 cylinder 52, and the second recycled CO 2 cylinder 53 are 1% by weight, 2% by weight, and 3% by weight, respectively. At this time, the CO 2 path is switched, but the CO 2 remaining amount of each of the supplementary CO 2 cylinder 51, the first recycled CO 2 cylinder 52, and the second recycled CO 2 cylinder 53 is changed to the first pressure gauge. 68, the second pressure gauge 69, and the third pressure gauge 70 may be used to measure the CO 2 path as described above when the first pressure, the second pressure, and the third pressure are reached. However, since the value of the pressure varies depending on the temperature or the like, management by weight is easier than management by pressure.
 なお、第1圧力は、補給用COシリンダー51内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる圧力であり、シリンダーに満タンに充填された場合の圧力を100%としたのに対する圧力値で5%~20%の範囲(例えば10%)であることが好ましい。
 また、第2圧力は、第1のリサイクルCOシリンダー52内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる圧力であり、シリンダーに満タンに充填された場合の圧力を100%としたのに対する圧力値で5%~20%の範囲(例えば10%)であることが好ましい。
 また、第3圧力は、第2のリサイクルCOシリンダー53内のCO残量が少なくなって真空チャンバー27a内に一定の圧力でCOを供給できなくなる圧力であり、シリンダーに満タンに充填された場合の圧力を100%としたのに対する圧力値で5%~20%の範囲(例えば10%)であることが好ましい。
The first pressure is a pressure at which the remaining amount of CO 2 in the replenishing CO 2 cylinder 51 becomes small, and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled. The pressure value is preferably in the range of 5% to 20% (for example, 10%) with respect to the case pressure of 100%.
The second pressure is a pressure at which the remaining amount of CO 2 in the first recycle CO 2 cylinder 52 becomes small and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled. When the pressure is 100%, the pressure value is preferably in the range of 5% to 20% (for example, 10%).
The third pressure is a pressure at which the remaining amount of CO 2 in the second recycle CO 2 cylinder 53 is reduced and CO 2 cannot be supplied to the vacuum chamber 27a at a constant pressure, and the cylinder is fully filled. When the pressure is 100%, the pressure value is preferably in the range of 5% to 20% (for example, 10%).
 [第2の実施形態]
 本実施形態では、図1の真空チャンバー27a内で被洗浄物をCOによって洗浄する方法等を説明する。従って、第1の実施形態に第2の実施形態を適宜組み合わせて実施することが可能となる。
[Second Embodiment]
In the present embodiment, a method or the like for cleaning the cleaning object by the CO 2 in a vacuum chamber 27a in FIG. Therefore, the first embodiment can be implemented by appropriately combining the second embodiment.
 図2及び図3に示すように、真空式洗浄装置10は内部を真空にするための容器である真空チャンバー27aを有し、この真空チャンバー27a内には基板12を保持する保持機構が配置されている。また、真空チャンバー27a内には基板12にCO粒子を噴出させるノズル11が配置されている。真空式洗浄装置10は、ノズル11に加圧した液化炭酸ガス(液化CO)を供給するCO供給機構と、真空チャンバー27a内を真空排気する真空排気機構を有する。 As shown in FIGS. 2 and 3, the vacuum cleaning apparatus 10 has a vacuum chamber 27a which is a container for evacuating the inside, and a holding mechanism for holding the substrate 12 is disposed in the vacuum chamber 27a. ing. A nozzle 11 for ejecting CO 2 particles to the substrate 12 is disposed in the vacuum chamber 27a. The vacuum cleaning apparatus 10 has a CO 2 supply mechanism that supplies pressurized liquefied carbon dioxide (liquefied CO 2 ) to the nozzle 11, and a vacuum exhaust mechanism that evacuates the vacuum chamber 27a.
 ノズル11は、ベンチュリ管またはラバールノズルであるとよい。なお、本明細書において、ベンチュリ管とはベンチュリ効果を応用した管であり、ベンチュリ効果とは流体の流れを絞ることによって、流速を増加させる効果であり、ラバールノズルとは流体が通る経路の中ほどが狭まっている管で、砂時計のような形状の経路を有するノズルであって、流体をこれに通すことで加速させ、超音速を得ることができるノズルをいい、ベンチュリ管はラバールノズルを含むものである。 The nozzle 11 may be a Venturi tube or a Laval nozzle. In this specification, the Venturi tube is a tube that applies the Venturi effect, and the Venturi effect is an effect of increasing the flow velocity by restricting the flow of fluid, and the Laval nozzle is in the middle of the path through which the fluid passes. This is a nozzle having a narrowed pipe and a path having a shape like an hourglass, which is capable of accelerating fluid by passing through it and obtaining a supersonic speed. The Venturi pipe includes a Laval nozzle.
 CO供給機構は、6MPaに加圧された液化炭酸ガス(液化CO)13が入れられたボンベ14を有し、このボンベ14は配管15によってバルブ16の一方端に接続されている。配管15はサイフォン管を有するとよい。バルブ16の他方端はノズル11の一方端に接続されている。バルブ16を開くことによってボンベ14内の加圧された液化CO13が配管15及びバルブ16を通してノズル11に供給され、ノズル11の他方端からCO粒子が噴出されるようになっている。 The CO 2 supply mechanism has a cylinder 14 containing a liquefied carbon dioxide gas (liquefied CO 2 ) 13 pressurized to 6 MPa, and this cylinder 14 is connected to one end of a valve 16 by a pipe 15. The pipe 15 may have a siphon pipe. The other end of the valve 16 is connected to one end of the nozzle 11. By opening the valve 16, pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16, and CO 2 particles are ejected from the other end of the nozzle 11.
 保持機構は、基板12を保持する保持部17と、保持部17に接続された真空ポンプ(図示せず)を有している。真空ポンプによって真空引きすることで保持部17に基板12を真空吸着して保持するようになっている。保持部17に保持された基板12の洗浄面とは逆側の面(裏面)12aと水平面20とで作る角度θは90°である。また、保持部17には基板12を加熱するヒーター19が配置されている。また、保持機構は、保持部17を回転させる回転機構(図示せず)を有する。なお、本実施の形態では、真空吸着により基板12を保持部17に保持しているが、これに限定されるものではなく、静電吸着または機械的な保持機構により基板12を保持部17に保持してもよい。 The holding mechanism includes a holding unit 17 that holds the substrate 12 and a vacuum pump (not shown) connected to the holding unit 17. The substrate 12 is vacuum-sucked and held on the holding part 17 by evacuating with a vacuum pump. An angle θ 1 formed by a surface (back surface) 12 a opposite to the cleaning surface of the substrate 12 held by the holding unit 17 and the horizontal surface 20 is 90 °. In addition, a heater 19 for heating the substrate 12 is disposed in the holding unit 17. The holding mechanism has a rotation mechanism (not shown) that rotates the holding unit 17. In the present embodiment, the substrate 12 is held by the holding unit 17 by vacuum suction, but is not limited to this, and the substrate 12 is held by the holding unit 17 by electrostatic chucking or a mechanical holding mechanism. It may be held.
 また、真空式洗浄装置10はノズル11を移動させる移動機構50を有し、この移動機構50は、ノズル11と保持機構に保持された基板12との相対位置を変化させるものである。移動機構50は例えばXYテーブルを用いることができる。なお、本実施形態では、ノズル11を移動させる移動機構50を用いてノズル11と保持機構に保持された基板12との相対位置を変化させるが、保持機構を移動させる移動機構を用いてノズル11と保持機構に保持された基板12との相対位置を変化させてもよい。 The vacuum cleaning apparatus 10 has a moving mechanism 50 that moves the nozzle 11, and the moving mechanism 50 changes the relative position between the nozzle 11 and the substrate 12 held by the holding mechanism. The moving mechanism 50 can use, for example, an XY table. In this embodiment, the moving mechanism 50 that moves the nozzle 11 is used to change the relative position between the nozzle 11 and the substrate 12 held by the holding mechanism. However, the nozzle 11 that is moved using the moving mechanism that moves the holding mechanism. And the relative position of the substrate 12 held by the holding mechanism may be changed.
 なお、本実施形態では、基板12の洗浄面とは逆側の面12aと水平面20とで作る角度θを90°としているが、これに限定されるものではなく、角度θを45°~180°の範囲内であれば、いずれの角度としてもよい。 In the present embodiment, the cleaning surface of the substrate 12 is the angle theta 1 made of the surface 12a and the horizontal plane 20 of the opposite side is set to 90 °, it is not limited thereto, the angle theta 1 45 ° Any angle within the range of ˜180 ° is acceptable.
 ノズル11からCO粒子が噴出される方向21と基板12の洗浄面(表面)12bとで作る角度θは20°~90°の範囲内であるとよい。 The angle θ 2 formed by the direction 21 in which the CO 2 particles are ejected from the nozzle 11 and the cleaning surface (surface) 12b of the substrate 12 is preferably in the range of 20 ° to 90 °.
 真空排気機構は、基板12の下方に配置された排気口22aを有し、この排気口22aは、保持機構に保持された基板12の下方に配置されている。排気孔22aはスリット形状を有し、そのスリット形状の長手方向の長さが基板12の外径以上であることが好ましい(図3参照)。これにより、基板12を洗浄した際に発生するパーティクル等を排気口22aから排気しやすくすることができる。なお、本明細書において「下方」とは重力方向を意味する。 The vacuum exhaust mechanism has an exhaust port 22a disposed below the substrate 12, and the exhaust port 22a is disposed below the substrate 12 held by the holding mechanism. The exhaust hole 22a has a slit shape, and the length in the longitudinal direction of the slit shape is preferably equal to or larger than the outer diameter of the substrate 12 (see FIG. 3). As a result, particles generated when the substrate 12 is cleaned can be easily exhausted from the exhaust port 22a. In the present specification, “downward” means the direction of gravity.
 排気口22aには排気経路22が接続されており、排気経路22にはフィルター42aが接続されている。このフィルター42aは金属フィルターであることが好ましい。フィルター42aによって洗浄時のパーティクル等を捕獲できる。また、フィルター42aはストップバルブ43aに接続されており、ストップバルブ43aは圧力コントロールバルブ41に接続されている。圧力コントロールバルブ41は排気手段としての真空ポンプ23aに接続されている。圧力コントロールバルブ41によって真空ポンプ23aによる排気の圧力を制御することができる。 An exhaust path 22 is connected to the exhaust port 22a, and a filter 42a is connected to the exhaust path 22. The filter 42a is preferably a metal filter. Particles and the like during cleaning can be captured by the filter 42a. The filter 42a is connected to a stop valve 43a, and the stop valve 43a is connected to the pressure control valve 41. The pressure control valve 41 is connected to a vacuum pump 23a as an exhaust means. The pressure of the exhaust by the vacuum pump 23a can be controlled by the pressure control valve 41.
 次に、図2に示す洗浄装置を用いて基板を洗浄する方法について説明する。
 まず、保持部17に基板12を真空吸着して保持する。そして、基板12の表面(洗浄面)とは逆側の面と水平面とで作る角度θが45°~180°(好ましくは70°~110°)の範囲内となるように基板12の位置を調整する。なお、図2ではθが90°である。
Next, a method for cleaning a substrate using the cleaning apparatus shown in FIG. 2 will be described.
First, the substrate 12 is held on the holding unit 17 by vacuum suction. Then, the position of the substrate 12 is set so that the angle θ 1 formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface is within a range of 45 ° to 180 ° (preferably 70 ° to 110 °). Adjust. In FIG. 2, θ 1 is 90 °.
 次いで、真空チャンバー27a内を真空排気機構によって真空排気する。詳細には、ストップバルブ43aを開け、圧力コントロールバルブ41によって真空ポンプ23aの排気の圧力を制御しながら真空チャンバー27a内を真空排気する。この際の真空チャンバー27a内の到達真空度は、1Torr未満であることが好ましく、より好ましくは5×10-3Torr以下である。このように真空排気することで、真空チャンバー27a内の水分をほとんど除去することができ、真空チャンバー27a内の露点を-40℃以下(好ましくは-75℃以下、より好ましくは-100℃以下)にすることができる。なお、露点を-100℃以下にするには真空チャンバー27a内の真空度を1×10-5Torr以下にすることが好ましい。 Next, the inside of the vacuum chamber 27a is evacuated by the evacuation mechanism. More specifically, the stop valve 43a is opened, and the vacuum chamber 27a is evacuated while the pressure of the vacuum pump 23a is controlled by the pressure control valve 41. The ultimate vacuum in the vacuum chamber 27a at this time is preferably less than 1 Torr, more preferably 5 × 10 −3 Torr or less. By evacuating in this way, almost all the water in the vacuum chamber 27a can be removed, and the dew point in the vacuum chamber 27a is −40 ° C. or lower (preferably −75 ° C. or lower, more preferably −100 ° C. or lower). Can be. In order to set the dew point to −100 ° C. or lower, the degree of vacuum in the vacuum chamber 27a is preferably set to 1 × 10 −5 Torr or lower.
 次いで、バルブ16を開くことによってボンベ14内の加圧された液化CO13を配管15及びバルブ16を通してノズル11に供給する。ノズル11のベンチュリ効果によって加速された液化CO13が断熱膨張によりCO粒子になり、そのCO粒子をノズル11から基板12の表面12bに対して斜めの方向21に噴出する。この噴出したCO粒子を、図3に示す矢印26のように基板12の表面12bにスキャンしながら吹き付け、基板12の表面全体を洗浄する。この際、基板12の表面に吹きつけられたCO粒子によって基板12の表面のパーティクル等が吹き飛ばされ、その吹き飛ばされたパーティクル等は重力も利用しつつ基板12の下方の排気口22a及び排気経路22を通ってフィルター42aで捕獲される。そして、パーティクル等を除去した後の気体は、ストップバルブ43a及び圧力コントロールバルブ41を通って真空ポンプ23aによって排気される。 Next, the pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16 by opening the valve 16. The liquefied CO 2 13 accelerated by the venturi effect of the nozzle 11 becomes CO 2 particles by adiabatic expansion, and the CO 2 particles are ejected from the nozzle 11 in a direction 21 oblique to the surface 12 b of the substrate 12. The ejected CO 2 particles are sprayed on the surface 12b of the substrate 12 while being scanned as indicated by an arrow 26 shown in FIG. 3 to clean the entire surface of the substrate 12. At this time, particles or the like on the surface of the substrate 12 are blown off by the CO 2 particles blown onto the surface of the substrate 12, and the blown-off particles or the like use the gravity and the exhaust port 22 a below the substrate 12 and the exhaust path. 22 and captured by the filter 42a. The gas after removing particles and the like is exhausted by the vacuum pump 23a through the stop valve 43a and the pressure control valve 41.
 上記の基板12の表面を洗浄している間の真空チャンバー27a内の圧力は、1Torr未満であってもよいし、1Torr以上1気圧未満であるとよい。その理由は、基板12を洗浄する前に真空チャンバー27a内を真空排気した工程で、真空チャンバー27a内の露点を-40℃以下に下げているため、その後にCO粒子によって基板12を洗浄しても、真空チャンバー27a内の露点は上昇しないと考えられるからである。 The pressure in the vacuum chamber 27a during the cleaning of the surface of the substrate 12 may be less than 1 Torr, or may be 1 Torr or more and less than 1 atmosphere. The reason is that in the process of evacuating the vacuum chamber 27a before cleaning the substrate 12, the dew point in the vacuum chamber 27a is lowered to −40 ° C. or lower, and the substrate 12 is subsequently cleaned with CO 2 particles. This is because the dew point in the vacuum chamber 27a is considered not to rise.
 その後、保持部17を回転機構によって矢印25のように45°または90°回転させることで、保持部17に保持された基板12を45°または90°回転させる。 Thereafter, the holding unit 17 is rotated by 45 ° or 90 ° as indicated by the arrow 25 by the rotation mechanism, whereby the substrate 12 held by the holding unit 17 is rotated by 45 ° or 90 °.
 次いで、上記と同様の方法で、基板12の表面12bにスキャンしながらCO粒子を吹き付け、基板12の表面全体を洗浄する。 Next, the entire surface of the substrate 12 is cleaned by spraying CO 2 particles while scanning the surface 12 b of the substrate 12 by the same method as described above.
 その後、上記と同様の方法で保持部17に保持された基板12を45°または90°回転させることと、上記と同様の方法で基板12の表面全体を洗浄することを繰り返すことにより、基板12の表面の洗浄を完了する。 Thereafter, by repeatedly rotating the substrate 12 held by the holding unit 17 by 45 ° or 90 ° by the same method as described above and cleaning the entire surface of the substrate 12 by the same method as described above, the substrate 12 is repeated. Complete the surface cleaning.
 本実施形態によれば、基板12を洗浄する前に真空チャンバー27a内を真空排気することで、真空チャンバー27a内の露点を-40℃以下にすることができる。このため、非常に低い露点の雰囲気でCO粒子による基板12の洗浄を行うことができる。従って、水に非常に弱い被洗浄基板(例えば有機EL用ガラス基板等)を洗浄することが可能となる。 According to this embodiment, the dew point in the vacuum chamber 27a can be reduced to −40 ° C. or lower by evacuating the vacuum chamber 27a before cleaning the substrate 12. For this reason, the substrate 12 can be cleaned with CO 2 particles in an atmosphere having a very low dew point. Therefore, it becomes possible to clean a substrate to be cleaned (for example, a glass substrate for organic EL) that is very weak against water.
 また、本実施形態では、真空チャンバー27a内を真空排気することで、真空チャンバー27a内に清浄な洗浄雰囲気を造るため、従来技術のように、紙等の水分が吸着しやすい材料が使われているヘパフィルターを用いる必要がない。従って、従来の洗浄装置に比べて洗浄時の露点をより低くすることができる。 In the present embodiment, since the vacuum chamber 27a is evacuated to create a clean cleaning atmosphere in the vacuum chamber 27a, a material that easily adsorbs moisture, such as paper, is used as in the prior art. There is no need to use a hepa filter. Therefore, the dew point at the time of cleaning can be further reduced as compared with the conventional cleaning device.
 また、本実施形態では、真空チャンバー27a内で基板12の洗浄を行うため、パーティクル等の発生源がほとんどない。従って、従来の洗浄装置に比べて洗浄効果を向上させることができる。 In this embodiment, since the substrate 12 is cleaned in the vacuum chamber 27a, there are almost no generation sources of particles or the like. Therefore, the cleaning effect can be improved as compared with the conventional cleaning apparatus.
 また、本実施形態によれば、ノズル11から噴出させたCO粒子を基板12に吹きつける際の基板12の位置を、基板12の表面(洗浄面)とは逆側の面と水平面とで作る角度θが45°~180°の範囲内とし、吹き飛ばされた基板12の表面のパーティクル等を重力も利用しつつ基板12の下方から排気する。このため、パーティクル等が基板12に再付着するのを抑制できる。 In addition, according to the present embodiment, the position of the substrate 12 when the CO 2 particles ejected from the nozzle 11 are blown onto the substrate 12 is determined by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal plane. The angle θ 1 to be created is in the range of 45 ° to 180 °, and the blown-off particles on the surface of the substrate 12 are exhausted from below the substrate 12 using gravity. For this reason, it can control that particles etc. adhere again to substrate 12.
 また、本実施形態では、洗浄時のチャンバー内が真空のため、ノズル11から噴出するCO粒子の速度はチャンバー内が大気圧の場合と比べて増加する。CO粒子の速度については、ノズル内のオリフィスとノズル内の気圧差が大きければ増加し、小さくなれば減少するが、チャンバー内を真空引きすると、ノズル内気圧が低くなり、それにつれてCO粒子の速度が上昇する。これにより、CO粒子の洗浄効果を高めることができる。 In this embodiment, since the inside of the chamber at the time of cleaning is vacuum, the speed of the CO 2 particles ejected from the nozzle 11 is increased as compared with the case where the inside of the chamber is atmospheric pressure. The velocity of the CO 2 particles increases if the pressure difference between the orifice in the nozzle and the nozzle is large, and decreases if the pressure difference is small. However, when the chamber is evacuated, the pressure inside the nozzle decreases, and the CO 2 particles decrease accordingly. Speed increases. Thereby, the cleaning effect of the CO 2 particles can be enhanced.
 [第3の実施形態]
 図4は、本発明の一態様に係るCOリサイクル付洗浄装置を示す模式図であり、図1と同一部分には同一符号を付し、異なる部分についてのみ説明する。
[Third Embodiment]
FIG. 4 is a schematic diagram illustrating a cleaning apparatus with CO 2 recycling according to an aspect of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and only different parts will be described.
 図1のCOリサイクル付洗浄装置は、真空チャンバー27a及び真空ポンプ23aを有し、真空チャンバー27a内に供給されるCOによって被洗浄物が洗浄されるのに対し、図4のCOリサイクル付洗浄装置は、チャンバー27b、排気機構としての排気ファン及び図示せぬ窒素とCOの分離機構を有し、常圧窒素雰囲気のチャンバー27b内に供給されるCOによって被洗浄物が洗浄される点が異なる。 The cleaning apparatus with CO 2 recycling in FIG. 1 has a vacuum chamber 27a and a vacuum pump 23a, and the object to be cleaned is cleaned by CO 2 supplied into the vacuum chamber 27a, whereas the CO 2 recycling in FIG. The attached cleaning apparatus has a chamber 27b, an exhaust fan as an exhaust mechanism, and a nitrogen and CO 2 separation mechanism (not shown), and the object to be cleaned is cleaned by CO 2 supplied into the chamber 27b in an atmospheric pressure nitrogen atmosphere. Is different.
 チャンバー27bは配管によって排出機構としての排気ファン23bに接続されており、排気ファン23bはチャンバー27b内を排気するものである。排気ファン23bは分離機構に接続されており、この分離機構によって窒素とCOを分離し、COを第2の切り替え機構の第2の3方弁58の第3弁65に供給するようになっている。 The chamber 27b is connected to an exhaust fan 23b as a discharge mechanism by piping, and the exhaust fan 23b exhausts the inside of the chamber 27b. The exhaust fan 23b is connected to a separation mechanism. The separation mechanism separates nitrogen and CO 2 and supplies the CO 2 to the third valve 65 of the second three-way valve 58 of the second switching mechanism. It has become.
 本実施形態においても第1の実施形態と同様の効果を得ることができる。 In this embodiment, the same effect as that of the first embodiment can be obtained.
 [第4の実施形態]
 本実施形態では、図4のチャンバー27b内で被洗浄物をCOによって洗浄する方法等を説明する。従って、第3の実施形態に第4の実施形態を適宜組み合わせて実施することが可能となる。
[Fourth Embodiment]
In the present embodiment, a method of cleaning an object to be cleaned with CO 2 in the chamber 27b of FIG. 4 will be described. Therefore, the fourth embodiment can be implemented by appropriately combining the third embodiment with the fourth embodiment.
 図5及び図6に示すように、洗浄装置は、ノズル11と、ノズル11に加圧した液化炭酸ガス(液化CO)を供給するCO供給機構と、基板12を保持する保持機構と、基板12の下方に配置された排気機構を有している。 As shown in FIGS. 5 and 6, the cleaning device includes a nozzle 11, a CO 2 supply mechanism that supplies liquefied carbon dioxide (liquefied CO 2 ) pressurized to the nozzle 11, a holding mechanism that holds the substrate 12, An exhaust mechanism is provided below the substrate 12.
 ノズル11は、ベンチュリ管またはラバールノズルであるとよい。なお、本明細書において、ベンチュリ管とはベンチュリ効果を応用した管であり、ベンチュリ効果とは流体の流れを絞ることによって、流速を増加させる効果であり、ラバールノズルとは流体が通る経路の中ほどが狭まっている管で、砂時計のような形状の経路を有するノズルであって、流体をこれに通すことで加速させ、超音速を得ることができるノズルをいい、ベンチュリ管はラバールノズルを含むものである。 The nozzle 11 may be a Venturi tube or a Laval nozzle. In this specification, the Venturi tube is a tube that applies the Venturi effect, and the Venturi effect is an effect of increasing the flow velocity by restricting the flow of fluid, and the Laval nozzle is in the middle of the path through which the fluid passes. This is a nozzle having a narrowed pipe and a path having a shape like an hourglass, which is capable of accelerating fluid by passing through it and obtaining a supersonic speed. The Venturi pipe includes a Laval nozzle.
 CO供給機構は、6MPaに加圧された液化炭酸ガス(液化CO)13が入れられたボンベ14を有し、このボンベ14は配管15によってバルブ16の一方端に接続されている。配管15はサイフォン管を有するとよい。バルブ16の他方端はノズル11の一方端に接続されている。バルブ16を開くことによってボンベ14内の加圧された液化CO13が配管15及びバルブ16を通してノズル11に供給され、ノズル11の他方端からCO粒子が噴出されるようになっている。 The CO 2 supply mechanism has a cylinder 14 containing a liquefied carbon dioxide gas (liquefied CO 2 ) 13 pressurized to 6 MPa, and this cylinder 14 is connected to one end of a valve 16 by a pipe 15. The pipe 15 may have a siphon pipe. The other end of the valve 16 is connected to one end of the nozzle 11. By opening the valve 16, pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16, and CO 2 particles are ejected from the other end of the nozzle 11.
 保持機構は、基板12を保持する保持部17と、保持部17に接続された真空ポンプ18を有している。真空ポンプ18によって真空引きすることで保持部17に基板12を真空吸着して保持するようになっている。保持部17に保持された基板12の洗浄面とは逆側の面(裏面)12aと水平面20とで作る角度θは90°である。また、保持部17には基板12を加熱するヒーター19が配置されている。 The holding mechanism includes a holding unit 17 that holds the substrate 12 and a vacuum pump 18 connected to the holding unit 17. By vacuuming with a vacuum pump 18, the substrate 12 is vacuum-sucked and held on the holding part 17. An angle θ 1 formed by a surface (back surface) 12 a opposite to the cleaning surface of the substrate 12 held by the holding unit 17 and the horizontal surface 20 is 90 °. In addition, a heater 19 for heating the substrate 12 is disposed in the holding unit 17.
 なお、本実施形態では、基板12の洗浄面とは逆側の面12aと水平面20とで作る角度θを90°としているが、これに限定されるものではなく、角度θを45°~180°の範囲内であれば、いずれの角度としてもよい。 In the present embodiment, the cleaning surface of the substrate 12 is the angle theta 1 made of the surface 12a and the horizontal plane 20 of the opposite side is set to 90 °, it is not limited thereto, the angle theta 1 45 ° Any angle within the range of ˜180 ° is acceptable.
 ノズル11からCO粒子が噴出される方向21と基板12の洗浄面(表面)12bとで作る角度θは20°~90°の範囲内であるとよい。 The angle θ 2 formed by the direction 21 in which the CO 2 particles are ejected from the nozzle 11 and the cleaning surface (surface) 12b of the substrate 12 is preferably in the range of 20 ° to 90 °.
 排気機構は、基板12の下方に配置された排気口22aと、この排気口22aに接続された排気経路22と、排気経路22に接続された排気手段(例えば排気ポンプ)23bを有している。排気経路22は排気口22aの下方に延びる経路を有している。なお、本明細書において「下方」とは重力方向を意味する。 The exhaust mechanism includes an exhaust port 22 a disposed below the substrate 12, an exhaust path 22 connected to the exhaust port 22 a, and an exhaust unit (for example, an exhaust pump) 23 b connected to the exhaust path 22. . The exhaust path 22 has a path extending below the exhaust port 22a. In the present specification, “downward” means the direction of gravity.
 また、排気経路22には圧力コントロールバルブ41が配置されており、圧力コントロールバルブ41によって排気手段23bによる排気の圧力を制御できるようになっている。また、排気経路22にはヘパフィルター42bが配置されており、ヘパフィルター42bによって排気中のパーティクル等が捕獲され、パーティクル等を除去した後の気体をチャンバー27bの外部へ排出するようになっている。 Further, a pressure control valve 41 is arranged in the exhaust path 22 so that the pressure of the exhaust gas by the exhaust means 23b can be controlled by the pressure control valve 41. Further, a hepa filter 42b is disposed in the exhaust path 22, and particles and the like in the exhaust are captured by the hepa filter 42b, and the gas after removing the particles and the like is discharged to the outside of the chamber 27b. .
 図7(A),(B)に示すように、ノズル11は、ノズル本体37、第1のガスケット36、第2のガスケット35、プランジャー34、第1のナット33、グランド32及び第2のナット31を有している。詳細には、ノズル本体37の基端側には第1のガスケット36、第2のガスケット35、プランジャー34の順に接続されており、プランジャー34にはグランド32の先端が接続されている。ノズル本体37と、第1のガスケット36、第2のガスケット35、プランジャー34及びグランド32とは第1のナット33によって固定されている。グランド32の基端には第2のナット31が取り付けられている。このような構造のノズル11の内側には液化CO13を通すための経路が設けられている。 As shown in FIGS. 7A and 7B, the nozzle 11 includes a nozzle body 37, a first gasket 36, a second gasket 35, a plunger 34, a first nut 33, a gland 32, and a second gasket. It has a nut 31. Specifically, a first gasket 36, a second gasket 35, and a plunger 34 are connected to the base end side of the nozzle body 37 in this order, and the tip of the gland 32 is connected to the plunger 34. The nozzle body 37, the first gasket 36, the second gasket 35, the plunger 34, and the gland 32 are fixed by a first nut 33. A second nut 31 is attached to the base end of the gland 32. A path for passing liquefied CO 2 13 is provided inside the nozzle 11 having such a structure.
 ノズル11の内壁(液化CO13を通すための経路を構成する面)にはHv1000~5000のビッカース硬さを有する硬質膜が形成されている。この硬質膜は、DLC(Diamond Like Carbon)、TiN、TiCrN、CrN、TiCNi、TiAlN、Al、AlCrN、ZrO、SiC、Cr、NiP、WC、SiO、Ta、SiN、及びSiaAlbOcNd(サイアロン)の群から選択された一つを含む膜であるとよいが、本実施形態では、水素含有量が30原子%以下であるDLC膜を硬質膜として用いる。水素含有量を30原子%以下とすることにより、DLC膜を硬質なものとすることができる。また、DLC膜は、Hv1200~3500のビッカース硬さを有するとよい。 A hard film having a Vickers hardness of Hv 1000 to 5000 is formed on the inner wall of the nozzle 11 (the surface constituting the path for passing liquefied CO 2 13). This hard film includes DLC (Diamond Like Carbon), TiN, TiCrN, CrN, TiCNi, TiAlN, Al 2 O 3 , AlCrN, ZrO 2 , SiC, Cr, NiP, WC, SiO 2 , Ta 2 O 5 , SiN, And a film containing one selected from the group of SiaAlbOcNd (sialon), in this embodiment, a DLC film having a hydrogen content of 30 atomic% or less is used as the hard film. By setting the hydrogen content to 30 atomic% or less, the DLC film can be made hard. The DLC film preferably has a Vickers hardness of Hv 1200 to 3500.
 上記のDLC膜は、ノズル11の内壁に、周波数が10kHz~1MHz(好ましくは50kHz~800kHz、より好ましくは50kHz~500kHz)の高周波出力を用いたプラズマCVD法によって成膜したものである。このように10kHz~1MHzの周波数を用いることにより硬質なDLC膜を成膜することができる。 The DLC film is formed on the inner wall of the nozzle 11 by a plasma CVD method using a high frequency output with a frequency of 10 kHz to 1 MHz (preferably 50 kHz to 800 kHz, more preferably 50 kHz to 500 kHz). Thus, a hard DLC film can be formed by using a frequency of 10 kHz to 1 MHz.
 図5に示すように、ノズル11、基板12、保持機構及び排気経路22はチャンバー27b内に配置されている。また、洗浄装置は、チャンバー27b内にドライエアー44または窒素ガスを導入する導入機構を有しており、チャンバー27b内にはリリーフバルブ43bが配置されている。基板12の洗浄を行う際に上記導入機構によってチャンバー27b内にドライエアー44または窒素ガスを導入し、リリーフバルブ43bによってチャンバー27bの外部へドライエアーまたは窒素ガスを排出することで、ドライエアーまたは窒素(-70℃~-100℃)の雰囲気で、露点が-20℃程度に制御される。このような雰囲気にする理由は、基板12を洗浄するために用いるCO粒子が-73℃程度の温度であるため、CO粒子を基板12に吹きつけると基板12が冷却され、基板12に水滴が付きやすくなるので、基板12に水滴が付かないようにするためである。また、基板12の洗浄を行う際にヒーター19によって基板12を加熱することにより、基板12に水滴が付くのを防止することができる。 As shown in FIG. 5, the nozzle 11, the substrate 12, the holding mechanism, and the exhaust path 22 are arranged in a chamber 27b. Further, the cleaning device has an introduction mechanism for introducing dry air 44 or nitrogen gas into the chamber 27b, and a relief valve 43b is arranged in the chamber 27b. When the substrate 12 is cleaned, the introduction mechanism introduces dry air 44 or nitrogen gas into the chamber 27b, and the relief valve 43b discharges the dry air or nitrogen gas to the outside of the chamber 27b. In an atmosphere of (−70 ° C. to −100 ° C.), the dew point is controlled to about −20 ° C. The reason for making such an atmosphere is that the CO 2 particles used for cleaning the substrate 12 are at a temperature of about −73 ° C., so that when the CO 2 particles are blown onto the substrate 12, the substrate 12 is cooled, This is because water droplets are easily attached, so that no water droplets are attached to the substrate 12. Further, when the substrate 12 is cleaned, the substrate 12 is heated by the heater 19 to prevent water droplets from being attached to the substrate 12.
 次に、図5に示す洗浄装置を用いて基板を洗浄する方法について説明する。
 まず、保持部17に基板12を載置し、真空ポンプ18によって真空引きすることで保持部17に基板12を真空吸着して保持する。そして、基板12の表面(洗浄面)とは逆側の面と水平面とで作る角度θが45°~180°(好ましくは70°~110°)の範囲内となるように基板12の位置を調整する。なお、図5ではθが90°である。
Next, a method for cleaning a substrate using the cleaning apparatus shown in FIG. 5 will be described.
First, the substrate 12 is placed on the holding unit 17 and evacuated by the vacuum pump 18 to hold the substrate 12 on the holding unit 17 by vacuum suction. Then, the position of the substrate 12 is set so that the angle θ 1 formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface is within a range of 45 ° to 180 ° (preferably 70 ° to 110 °). Adjust. In FIG. 5, θ 1 is 90 °.
 次いで、チャンバー27b内にドライエアー44または窒素ガスを導入することで、チャンバー27b内をドライエアーまたは窒素(-70℃~-100℃)の雰囲気で、露点が-20℃程度に制御する。 Next, by introducing dry air 44 or nitrogen gas into the chamber 27b, the inside of the chamber 27b is controlled to about −20 ° C. in a dry air or nitrogen atmosphere (−70 ° C. to −100 ° C.).
 次いで、バルブ16を開くことによってボンベ14内の加圧された液化CO13を配管15及びバルブ16を通してノズル11に供給する。そして、グランド32内に流入した液化CO13が、先端側に流れるにつれて断面が狭くなるプランジャー34の内部で圧縮され、プランジャー34の先端のオリフィス(最細部)で流速が増加するベンチュリ効果によって加速される。その加速された液化CO13が、末広がりの断面を持つ第1及び第2のガスケット36,35によって断熱膨張されてCO粒子になり、そのCO粒子がノズル本体37によって整流される。その整流されたCO粒子をノズル本体37から基板12の表面12bに対して斜めの方向21に噴出する。この噴出したCO粒子を、図6に示す矢印26のように基板12の表面12bにスキャンしながら吹き付け、基板12の表面全体を洗浄する。この際、基板12の表面に吹きつけられたCO粒子によって基板12の表面のパーティクル等が吹き飛ばされ、その吹き飛ばされたパーティクル等は矢印24のように重力も利用しつつ排気口22a、排気経路22、圧力コントロールバルブ41及びヘパフィルター42bを通って排気手段23bによってチャンバー27bの外部へ排気される。 Next, the pressurized liquefied CO 2 13 in the cylinder 14 is supplied to the nozzle 11 through the pipe 15 and the valve 16 by opening the valve 16. Then, the liquefied CO 2 13 that has flowed into the gland 32 is compressed inside the plunger 34 whose cross section becomes narrower as it flows toward the tip side, and the Venturi effect that increases the flow velocity at the orifice (most detailed) of the tip of the plunger 34. Is accelerated by. The accelerated liquefied CO 2 13 is adiabatically expanded by first and second gaskets 36, 35 having a divergent cross section into CO 2 particles, and the CO 2 particles are rectified by the nozzle body 37. The rectified CO 2 particles are ejected from the nozzle body 37 in a direction 21 oblique to the surface 12 b of the substrate 12. The ejected CO 2 particles are sprayed while scanning the surface 12b of the substrate 12 as indicated by an arrow 26 shown in FIG. 6 to clean the entire surface of the substrate 12. At this time, particles and the like on the surface of the substrate 12 are blown off by the CO 2 particles blown onto the surface of the substrate 12, and the blown particles and the like use the gravity as indicated by an arrow 24 while the exhaust port 22 a and the exhaust path. 22, Exhaust means 23b exhausts the chamber 27b through the pressure control valve 41 and hepa filter 42b.
 その後、保持部17を矢印25のように45°または90°回転させることで、保持部17に保持された基板12を45°または90°回転させる。 Thereafter, the holding unit 17 is rotated by 45 ° or 90 ° as indicated by an arrow 25, whereby the substrate 12 held by the holding unit 17 is rotated by 45 ° or 90 °.
 次いで、上記と同様の方法で、基板12の表面12bにスキャンしながらCO粒子を吹き付け、基板12の表面全体を洗浄する。この際、吹き飛ばされた基板12の表面のパーティクル等を矢印24のように排気口22a、排気経路22、圧力コントロールバルブ41及びヘパフィルター42bを通って排気手段23bによって排気する。 Next, the entire surface of the substrate 12 is cleaned by spraying CO 2 particles while scanning the surface 12 b of the substrate 12 by the same method as described above. At this time, the blown-off particles on the surface of the substrate 12 are exhausted by the exhaust means 23b through the exhaust port 22a, the exhaust path 22, the pressure control valve 41, and the hepa filter 42b as indicated by the arrow 24.
 その後、上記と同様の方法で保持部17に保持された基板12を45°または90°回転させることと、上記と同様の方法で基板12の表面全体を洗浄することを繰り返すことにより、基板12の表面の洗浄を完了する。 Thereafter, by repeatedly rotating the substrate 12 held by the holding unit 17 by 45 ° or 90 ° by the same method as described above and cleaning the entire surface of the substrate 12 by the same method as described above, the substrate 12 is repeated. Complete the surface cleaning.
 本実施形態によれば、ノズル11の内壁にHv1000~5000のビッカース硬さを有する硬質膜を形成するため、液化COがノズル11を通る際に、ノズル11の経路内壁にCO粒子が衝突しても当該経路内壁が削られることを抑制できる。このため、CO粒子によって基板12を洗浄しても、洗浄後の基板12の表面が金属によって汚染されることを抑制できる。また、ノズル11の寿命を長くできる。 According to the present embodiment, since a hard film having a Vickers hardness of Hv 1000 to 5000 is formed on the inner wall of the nozzle 11, when liquefied CO 2 passes through the nozzle 11, CO 2 particles collide with the inner wall of the path of the nozzle 11. Even so, it is possible to prevent the inner wall of the route from being cut. Therefore, even when the substrate was washed 12 with CO 2 particles can be suppressed surface of the substrate 12 after cleaning is contaminated by metal. Further, the life of the nozzle 11 can be extended.
 また、本実施形態によれば、ノズルから噴出させたCO粒子を基板12に吹きつける際の基板12の位置を、基板12の表面(洗浄面)とは逆側の面と水平面とで作る角度θが45°~180°の範囲内とし、吹き飛ばされた基板12の表面のパーティクル等を重力も利用しつつ矢印24のように基板12の下方から排気する。このため、パーティクル等が基板12に再付着するのを抑制できる。 In addition, according to the present embodiment, the position of the substrate 12 when the CO 2 particles ejected from the nozzle are blown onto the substrate 12 is formed by the surface opposite to the surface (cleaning surface) of the substrate 12 and the horizontal surface. angle theta 1 is in the range of 45 ° ~ 180 °, the particles or the like on the surface of the substrate 12 blown exhausting from below the substrate 12 as shown by the arrow 24 gravity while using. For this reason, it can control that particles etc. adhere again to substrate 12.
 つまり、角度θが45°~180°の範囲内となる位置に基板12を配置し、且つ排気経路22及び排気手段23bを基板12の下方に配置するため、パーティクル等を排気する際に、排気手段23bの排気力だけでなく、重力も利用して排気することができる。その結果、CO粒子によって基板12上のパーティクル等が吹き飛ばされた後に、そのパーティクル等が基板12の表面に再付着するのを抑制することができる。従って、パーティクル等の再付着による洗浄効果の低下を抑制できる。 In other words, to place the substrate 12 at a position angle theta 1 is in the range of 45 ° ~ 180 ° are arranged, and the exhaust path 22 and exhaust unit 23b below the substrate 12, when evacuating the particles or the like, Exhaust force can be exhausted using not only the exhaust force of the exhaust means 23b but also gravity. As a result, after particles or the like on the substrate 12 are blown off by the CO 2 particles, the particles or the like can be prevented from reattaching to the surface of the substrate 12. Therefore, it is possible to suppress a reduction in cleaning effect due to reattachment of particles or the like.
 また、本実施の形態によれば、排気機構の排気経路22が排気口22aの下方に延びる経路を有するため、パーティクル等を排気する際に、そのパーティクル等が基板12の表面に再付着するのを抑制することができる。 Further, according to the present embodiment, since the exhaust path 22 of the exhaust mechanism has a path extending below the exhaust port 22a, the particles are reattached to the surface of the substrate 12 when the particles are exhausted. Can be suppressed.
 また、本実施の形態によれば、ノズルから噴出させたCO粒子を基板12に吹きつけて基板12を洗浄する際に、基板12から吹き飛ばされたパーティクル等を排気口22a、排気経路22、圧力コントロールバルブ41及びヘパフィルター42bを通って排気手段23bによってチャンバー27bの外部へ排気する。このため、従来技術のようにヘパフィルターで捕獲できない微小のパーティクル等が基板上に再付着することを抑制できる。その結果、基板の表面の洗浄効果が低下を抑制できる。 In addition, according to the present embodiment, when the substrate 12 is cleaned by blowing the CO 2 particles ejected from the nozzle onto the substrate 12, the particles blown off from the substrate 12 are removed from the exhaust port 22a, the exhaust path 22, The gas is exhausted to the outside of the chamber 27b by the exhaust means 23b through the pressure control valve 41 and the hepa filter 42b. For this reason, it can suppress that the fine particle etc. which cannot be captured with a hepa filter like a prior art reattach on a board | substrate. As a result, a reduction in the cleaning effect on the surface of the substrate can be suppressed.
 なお、上述した第1~第4の実施形態を互いに組み合わせて実施してもよい。 Note that the first to fourth embodiments described above may be combined with each other.
 10  真空式洗浄装置
 11  ノズル
 12  基板
 12a 基板の洗浄面(表面)とは逆側の面(裏面)
 12b 基板の洗浄面(表面)
 13  液化炭酸ガス(液化CO
 14  ボンベ
 15  配管
 16  バルブ
 17  保持部
 18  真空ポンプ
 19  ヒーター
 20  水平面
 21  ノズルからCO粒子が噴出される方向
 22  排気経路
 22a 排気口
 23a 真空ポンプ
 23b 排気手段
 24,25,26  矢印
 27a 真空チャンバー
 27b チャンバー
 31  第2のナット
 32  グランド
 33  第1のナット
 34  プランジャー
 35  第2のガスケット
 36  第1のガスケット
 37  ノズル本体
 41  圧力コントロールバルブ
 42a フィルター
 42b ヘパフィルター
 43a ストップバルブ
 43b リリーフバルブ
 44  ドライエアー
 51  補給用COシリンダー(第1の液化COボンベ)
 52  第1のリサイクルCOシリンダー(第2の液化COボンベ)
 53  第2のリサイクルCOシリンダー(第3の液化COボンベ)
 54  第1の重量計(ロードセル)
 55  第2の重量計(ロードセル)
 56  第3の重量計(ロードセル)
 57  第1の3方弁
 58  第2の3方弁
 59  切り替えユニット
 60  第1の制御部
 61  第2の制御部
 62  第1の3方弁の第3弁
 63  第1の3方弁の第2弁
 64  第1の3方弁の第1弁
 65  第2の3方弁の第3弁
 66  第2の3方弁の第1弁
 67  第2の3方弁の第2弁
 68  第1の圧力計(圧力ゲージ)
 69  第2の圧力計(圧力ゲージ)
 70  第3の圧力計(圧力ゲージ)
 71  パーティクルフィルター
 72  有機物除去フィルター
 73  CO液化用加圧ポンプ
 74  冷却機
 75  コンプレッサー
 76  排気口
 77  バルブ
101  ノズル
102  基板
103  CO粒子
104  ダクト
104a 吸気口
DESCRIPTION OF SYMBOLS 10 Vacuum type cleaning apparatus 11 Nozzle 12 Board | substrate 12a The surface (back surface) on the opposite side to the cleaning surface (front surface) of a substrate
12b Substrate cleaning surface (surface)
13 Liquefied carbon dioxide (liquefied CO 2 )
14 cylinder 15 piping 16 valve 17 holding part 18 vacuum pump 19 heater 20 horizontal surface 21 direction in which CO 2 particles are ejected from the nozzle 22 exhaust path 22a exhaust port 23a vacuum pump 23b exhaust means 24, 25, 26 arrow 27a vacuum chamber 27b chamber 31 Second nut 32 Gland 33 First nut 34 Plunger 35 Second gasket 36 First gasket 37 Nozzle body 41 Pressure control valve 42a Filter 42b Hepa filter 43a Stop valve 43b Relief valve 44 Dry air 51 Supplementary CO 2 cylinders (first liquefied CO 2 cylinder)
52 First recycled CO 2 cylinder (second liquefied CO 2 cylinder)
53 Second recycled CO 2 cylinder (third liquefied CO 2 cylinder)
54 First weighing scale (load cell)
55 Second weighing scale (load cell)
56 Third weighing scale (load cell)
57 first three-way valve 58 second three-way valve 59 switching unit 60 first control unit 61 second control unit 62 third valve of the first three-way valve 63 second of the first three-way valve Valve 64 First valve of the first three-way valve 65 Third valve of the second three-way valve 66 First valve of the second three-way valve 67 Second valve of the second three-way valve 68 First pressure Meter (pressure gauge)
69 Second pressure gauge (pressure gauge)
70 Third pressure gauge (pressure gauge)
71 Particle filter 72 Organic substance removal filter 73 CO 2 liquefaction pressure pump 74 Cooler 75 Compressor 76 Exhaust port 77 Valve 101 Nozzle 102 Substrate 103 CO 2 particle 104 Duct 104a Inlet port

Claims (20)

  1.  チャンバーと、
     前記チャンバー内にCOを供給する第1の液化COボンベと、
     前記チャンバー内の前記COを排出する排出機構と、
     前記排出機構によって排出された前記COを液化する液化機構と、
     前記液化機構によって液化されたCOを収容する第2の液化COボンベと、
    を具備し、
     前記第2の液化COボンベに収容されたCOは前記チャンバー内に供給され、
     前記第1の液化COボンベまたは前記第2の液化COボンベから前記チャンバー内に供給されるCOによって被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
    A chamber;
    A first liquefied CO 2 cylinder for supplying CO 2 into the chamber;
    A discharge mechanism for discharging the CO 2 in the chamber;
    A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism;
    A second liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism;
    Comprising
    The CO 2 contained in the second liquefied CO 2 cylinder is supplied into the chamber,
    A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder.
  2.  請求項1において、
     前記第2の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOを収容する第3の液化COボンベをさらに具備し、
     前記第3の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOは前記第2の液化COボンベに収容され、
     前記第3の液化COボンベから前記チャンバー内に供給されるCOによって前記被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
    In claim 1,
    It said second liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism the third liquefied CO 2 cylinder for containing the liquefied CO 2 further comprising,
    The third liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism The liquefied CO 2 is accommodated in the second liquefied CO 2 cylinder,
    A cleaning apparatus with CO 2 recycling, wherein the object to be cleaned is cleaned with CO 2 supplied from the third liquefied CO 2 cylinder into the chamber.
  3.  チャンバーと、
     前記チャンバー内にCOを供給する第2の液化COボンベと、
     前記チャンバー内の前記COを排出する排出機構と、
     前記排出機構によって排出された前記COを液化する液化機構と、
     前記液化機構によって液化されたCOを収容する第3の液化COボンベと、
    を具備し、
     前記第3の液化COボンベに収容されたCOが前記チャンバー内に供給され、そのチャンバー内のCOが前記排出機構によって排出され、その排出された前記COが前記液化機構によって液化され、その液化されたCOが前記第2の液化COボンベに収容され、
     前記第2の液化COボンベまたは前記第3の液化COボンベから前記チャンバー内に供給されるCOによって被洗浄物が洗浄されることを特徴とするCOリサイクル付洗浄装置。
    A chamber;
    A second liquefied CO 2 cylinder for supplying CO 2 into the chamber;
    A discharge mechanism for discharging the CO 2 in the chamber;
    A liquefaction mechanism for liquefying the CO 2 discharged by the discharge mechanism;
    A third liquefied CO 2 cylinder containing CO 2 liquefied by the liquefaction mechanism;
    Comprising
    The third liquefied CO CO 2 contained in the 2 cylinder is supplied to the chamber, the CO 2 in the chamber is discharged by the discharge mechanism, are liquefied by that discharged the CO 2 is the liquefaction mechanism , the liquefied CO 2 is accommodated in the second liquefied CO 2 cylinder,
    A cleaning apparatus with CO 2 recycling, wherein an object to be cleaned is cleaned by CO 2 supplied into the chamber from the second liquefied CO 2 cylinder or the third liquefied CO 2 cylinder.
  4.  請求項1乃至3のいずれか一項において、
     前記排気機構は、前記チャンバー内を真空排気する真空ポンプを有し、
     前記第2の液化COボンベは、前記真空ポンプから排出され、前記液化機構によって液化されたCOを収容するものであることを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 1 thru | or 3,
    The exhaust mechanism has a vacuum pump for evacuating the chamber,
    It said second liquefied CO 2 cylinder, the discharged from the vacuum pump, cleaning apparatus CO 2 with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
  5.  請求項1乃至3のいずれか一項において、
     前記排気機構は、前記チャンバー内を排気する排気ファンを有し、
     前記第2の液化COボンベは、前記排気ファンから排出され、前記液化機構によって液化されたCOを収容するものであることを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 1 thru | or 3,
    The exhaust mechanism has an exhaust fan for exhausting the chamber.
    Said second liquefied CO 2 cylinder, the exhaust fan is discharged from, CO 2 cleaning apparatus with recycling, characterized in that it is intended to accommodate the CO 2 that is liquefied by the liquefaction mechanism.
  6.  請求項4において、
     前記真空ポンプは、ドライポンプまたはメカニカルブースターポンプを有することを特徴とするCOリサイクル付洗浄装置。
    In claim 4,
    The vacuum pump, CO 2 cleaning apparatus with recycling, characterized in that it comprises a dry pump or a mechanical booster pump.
  7.  請求項1または2において、
     前記第1の液化COボンベから前記チャンバー内に前記COを供給する第1経路と、前記第2の液化COボンベから前記チャンバー内に前記COを供給する第2経路とを切り替える第1の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
    In claim 1 or 2,
    A first path for supplying the CO 2 from the first liquefied CO 2 cylinder into the chamber, the switching between the second path for supplying the CO 2 into the chamber from said second liquefied CO 2 cylinder A cleaning apparatus with CO 2 recycling, comprising a switching mechanism of 1.
  8.  請求項1、2及び7のいずれか一項において、
     前記排出機構と前記第2の液化COボンベとの間に配置された第2の切り替え機構を有し、
     前記第2の切り替え機構は、前記チャンバーから前記第2の液化COボンベに前記COを供給する第3経路と、前記チャンバーから排気口に前記COを排気する第4経路とを切り替える機構であることを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 1, 2, and 7,
    A second switching mechanism disposed between the discharge mechanism and the second liquefied CO 2 cylinder;
    The second switching mechanism switches a third path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and a fourth path for exhausting the CO 2 from the chamber to the exhaust port. A cleaning apparatus with CO 2 recycling, characterized in that
  9.  請求項2または3において、
     前記第2の液化COボンベから前記チャンバー内に前記COを供給する第5経路と、前記第3の液化COボンベから前記チャンバー内に前記COを供給する第6経路とを切り替える第3の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
    In claim 2 or 3,
    The switch between the the fifth path for supplying the CO 2 from the second liquefied CO 2 cylinder into the chamber, the third liquefied CO for supplying the CO 2 from 2 bomb into the chamber sixth path A cleaning apparatus with CO 2 recycling, characterized in that it has 3 switching mechanisms.
  10.  請求項2、3及び9のいずれか一項において、
     前記チャンバーから前記第2の液化COボンベに前記COを供給する第7経路と、前記チャンバーから前記第3の液化COボンベに前記COを供給する第8経路とを切り替える第4の切り替え機構を有することを特徴とするCOリサイクル付洗浄装置。
    In any one of claims 2, 3 and 9,
    A fourth path is switched between a seventh path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and an eighth path for supplying the CO 2 from the chamber to the third liquefied CO 2 cylinder. A cleaning apparatus with CO 2 recycling, comprising a switching mechanism.
  11.  請求項2において、
     前記第1の液化COボンベから前記チャンバー内に前記COを供給する第1経路と、前記第2の液化COボンベから前記チャンバー内に前記COを供給する第2経路とを切り替える第1の切り替え機構と、
     前記チャンバーから前記第2の液化COボンベに前記COを供給する第3経路と、前記チャンバーから排気口に前記COを排気する第4経路とを切り替える第2の切り替え機構と、
     前記第2の液化COボンベから前記第1の切り替え機構に前記COを供給する第5経路と、前記第3の液化COボンベから前記第1の切り替え機構に前記COを供給する第6経路とを切り替える第3の切り替え機構と、
     前記第2の切り替え機構から前記第2の液化COボンベに前記COを供給する第7経路と、前記第2の切り替え機構から前記第3の液化COボンベに前記COを供給する第8経路とを切り替える第4の切り替え機構と、
    を具備し、
     前記第2の切り替え機構は前記排出機構と前記第2の液化COボンベとの間に配置され、
     前記第3の切り替え機構は前記第1の切り替え機構と前記第2の液化COボンベとの間に配置され、
     前記第4の切り替え機構は前記第2の切り替え機構と前記第2の液化COボンベとの間に配置されていることを特徴とするCOリサイクル付洗浄装置。
    In claim 2,
    A first path for supplying the CO 2 from the first liquefied CO 2 cylinder into the chamber, the switching between the second path for supplying the CO 2 into the chamber from said second liquefied CO 2 cylinder 1 switching mechanism;
    A second switching mechanism that switches between a third path for supplying the CO 2 from the chamber to the second liquefied CO 2 cylinder and a fourth path for exhausting the CO 2 from the chamber to an exhaust port;
    The supply and the second liquefied CO 2 from said cylinder first fifth path for supplying to the switching mechanism of the CO 2, the CO 2 in the first switching mechanism from the third liquefied CO 2 cylinder A third switching mechanism for switching between six routes;
    The supply and the second from said switching mechanism of the second liquefied CO supplies the CO 2 to 2 cylinder seventh path, the CO 2 in the third liquefied CO 2 cylinder from said second switching mechanism A fourth switching mechanism for switching between eight routes;
    Comprising
    The second switching mechanism is disposed between the discharge mechanism and the second liquefied CO 2 cylinder,
    The third switching mechanism is disposed between the first switching mechanism and the second liquefied CO 2 cylinder,
    The fourth switching mechanism is disposed between the second switching mechanism and the second liquefied CO 2 cylinder, and is a cleaning apparatus with CO 2 recycling.
  12.  請求項7または11において、
     前記第1の切り替え機構は、
     前記第1の液化COボンベに第1弁が接続され、前記チャンバーに第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第1の3方弁と、
     前記第1の3方弁を制御する第1の制御部と、を有し、
     前記第1の制御部は、前記第1の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるように制御し、前記第2の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第2弁及び前記第3弁を開き、かつ前記第1弁を閉じるように制御することを特徴とするCOリサイクル付洗浄装置。
    In claim 7 or 11,
    The first switching mechanism includes:
    A first three-way valve having a first valve connected to the first liquefied CO 2 cylinder, a second valve connected to the chamber, and a third valve connected to the second liquefied CO 2 cylinder;
    A first control unit for controlling the first three-way valve,
    The first control unit opens the first valve and the second valve and closes the third valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. And when the CO 2 is supplied from the second liquefied CO 2 cylinder into the chamber, the second valve and the third valve are opened and the first valve is closed. A cleaning device with CO 2 recycling.
  13.  請求項8または11において、
     前記第2の切り替え機構は、
     前記排気機構に第1弁が接続され、排気口に第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第2の3方弁と、
     前記第2の3方弁を制御する第2の制御部と、を有し、
     前記第2の制御部は、前記第1の液化COボンベから前記チャンバー内に前記COを供給するときに、前記第1弁及び前記第3弁を開き、かつ前記第2弁を閉じることで、前記排出機構によって排出された前記チャンバー内の前記COを前記第2の液化COボンベに収容するように制御し、前記第1の液化COボンベまたは前記第2の液化COボンベから前記チャンバー内に前記COを供給しないときに、前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるように制御することを特徴とするCOリサイクル付洗浄装置。
    In claim 8 or 11,
    The second switching mechanism includes
    A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder;
    A second control unit for controlling the second three-way valve,
    The second control unit opens the first valve and the third valve and closes the second valve when supplying the CO 2 into the chamber from the first liquefied CO 2 cylinder. Then, control is performed so that the CO 2 in the chamber discharged by the discharge mechanism is accommodated in the second liquefied CO 2 cylinder, and the first liquefied CO 2 cylinder or the second liquefied CO 2 cylinder is stored. wherein said chamber from when the CO 2 does not supply, the opening of the first valve and the second valve, and the third valve closing control CO 2 cleaning apparatus with recycling, which comprises as.
  14.  請求項7、8、11及び12のいずれか一項において、
     前記第1の液化COボンベ内のCO残量を重量で測定する第1の重量計を有し、
     前記第1の切り替え機構は、前記第1の重量計によって測定された前記第1の液化COボンベ内のCO残量が第1重量%となった時に、前記第1の経路から前記第2の経路に切り替えることで前記第2の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
    In any one of claims 7, 8, 11 and 12,
    A first weigh scale that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by weight;
    The first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first weigh scale becomes the first weight%, the first switching mechanism is configured to perform the first switching from the first path. The cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the second path.
  15.  請求項7、8、11及び12のいずれか一項において、
     前記第1の液化COボンベ内のCO残量を圧力で測定する第1の圧力計を有し、
     前記第1の切り替え機構は、前記第1の圧力計によって測定された前記第1の液化COボンベ内のCO残量が第1圧力となった時に、前記第1の経路から前記第2の経路に切り替えることで前記第2の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
    In any one of claims 7, 8, 11 and 12,
    A first pressure gauge that measures the remaining amount of CO 2 in the first liquefied CO 2 cylinder by pressure;
    The first switching mechanism is configured such that when the remaining amount of CO 2 in the first liquefied CO 2 cylinder measured by the first pressure gauge becomes a first pressure, the second switching mechanism is configured to perform the second switching from the first path. The cleaning apparatus with CO 2 recycling is controlled to supply the CO 2 into the chamber from the second liquefied CO 2 cylinder by switching to the path.
  16.  請求項9乃至11のいずれか一項において、
     前記第2の液化COボンベ内のCO残量を重量で測定する第2の重量計を有し、
     前記第3の切り替え機構は、前記第2の重量計によって測定された前記第2の液化COボンベ内のCO残量が第2重量%となった時に、前記第5の経路から前記第6の経路に切り替えることで前記第3の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 9 thru | or 11,
    A second weigh scale that measures the remaining amount of CO 2 in the second liquefied CO 2 cylinder by weight;
    When the remaining amount of CO 2 in the second liquefied CO 2 cylinder measured by the second weigh scale becomes 2% by weight, the third switching mechanism is configured to release the fifth path from the fifth path. The cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 from the third liquefied CO 2 cylinder into the chamber by switching to the path of No. 6.
  17.  請求項9乃至11のいずれか一項において、
     前記第2の液化COボンベ内のCO残量を圧力で測定する第2の圧力計を有し、
     前記第3の切り替え機構は、前記第2の圧力計によって測定された前記第2の液化COボンベ内のCO残量が第2圧力となった時に、前記第5の経路から前記第6の経路に切り替えることで前記第3の液化COボンベから前記チャンバー内に前記COを供給するように制御されることを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 9 thru | or 11,
    A second pressure gauge for measuring the remaining amount of CO 2 in the second liquefied CO 2 cylinder by pressure;
    When the remaining amount of CO 2 in the second liquefied CO 2 cylinder measured by the second pressure gauge becomes the second pressure, the third switching mechanism is configured to perform the sixth switching from the fifth path. The cleaning apparatus with CO 2 recycling is controlled so as to supply the CO 2 into the chamber from the third liquefied CO 2 cylinder by switching to the path.
  18.  請求項1乃至17のいずれか一項において、
     前記排出機構によって排出された前記COを含む排出物中のパーティクルを除去するパーティクルフィルター及び前記排出物中の有機物を除去する有機物フィルターを有することを特徴とするCOリサイクル付洗浄装置。
    In any one of Claims 1 thru | or 17,
    A cleaning apparatus with CO 2 recycling, comprising: a particle filter that removes particles in the discharge containing CO 2 discharged by the discharge mechanism; and an organic filter that removes organic matter in the discharge.
  19.  請求項1、2、7、8及び11乃至15のいずれか一項に記載のCOリサイクル付洗浄装置の稼動方法において、
     前記第1の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出し、前記排出機構によって排出された前記COを前記液化機構によって液化し、前記液化機構によって液化されたCOを前記第2の液化COボンベに収容し、
     前記第1の液化COボンベから前記チャンバー内にCOを供給するのを停止し、前記第2の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出することを特徴とするCOリサイクル付洗浄装置の稼動方法。
    In the operation method of the cleaning apparatus with CO 2 recycling according to any one of claims 1, 2, 7, 8, and 11 to 15,
    Supplying CO 2 into the chamber from said first liquefied CO 2 cylinder, the said CO 2 in the chamber is discharged by the discharge mechanism, liquefying the CO 2 discharged by the discharge mechanism by the liquefaction mechanism And storing the CO 2 liquefied by the liquefaction mechanism in the second liquefied CO 2 cylinder,
    Stop from the first liquefied CO 2 cylinder for supplying CO 2 into the chamber, by supplying CO 2 from the second liquefied CO 2 cylinder into the chamber, the CO 2 in the chamber The operation method of the cleaning apparatus with CO 2 recycling, wherein the discharging mechanism discharges the CO 2 recycling mechanism.
  20.  請求項12に記載のCOリサイクル付洗浄装置の稼動方法において、
     前記COリサイクル付洗浄装置は、
     前記排気機構に第1弁が接続され、排気口に第2弁が接続され、前記第2の液化COボンベに第3弁が接続された第2の3方弁と、
     前記第2の3方弁を制御する第2の制御部と、をさらに具備し、
     前記第1の制御部によって前記第1の3方弁の前記第1弁及び前記第2弁を開き、かつ前記第3弁を閉じるとともに、前記第2の制御部によって前記第2の3方弁の前記第1弁及び前記第3弁を開き、かつ前記第2弁を閉じることで、前記第1の液化COボンベから前記チャンバー内にCOを供給し、前記チャンバー内の前記COを前記排出機構によって排出し、前記排出機構によって排出された前記COを前記液化機構によって液化し、前記液化機構によって液化されたCOを前記第2の液化COボンベに収容し、
     前記第1の制御部によって前記第1の3方弁の前記第2弁及び前記第3弁を開き、かつ前記第1弁を閉じることで、前記第2の液化COボンベから前記チャンバー内に前記COを供給することを特徴とするCOリサイクル付洗浄装置の稼動方法。
    In the operation method of the cleaning apparatus with CO 2 recycling according to claim 12,
    The cleaning device with CO 2 recycling is:
    A second three-way valve having a first valve connected to the exhaust mechanism, a second valve connected to the exhaust port, and a third valve connected to the second liquefied CO 2 cylinder;
    A second control unit for controlling the second three-way valve,
    The first control unit opens the first valve and the second valve of the first three-way valve and closes the third valve, and the second control unit performs the second three-way valve. open the first valve and the third valve, and the by closing the second valve to supply the CO 2 from the first liquefied CO 2 cylinder into the chamber, the CO 2 in the chamber Discharging by the discharge mechanism, liquefying the CO 2 discharged by the discharge mechanism by the liquefaction mechanism, storing the CO 2 liquefied by the liquefaction mechanism in the second liquefied CO 2 cylinder,
    The first control unit opens the second valve and the third valve of the first three-way valve, and closes the first valve, so that the second liquefied CO 2 cylinder enters the chamber. A method of operating a cleaning apparatus with CO 2 recycling, wherein the CO 2 is supplied.
PCT/JP2015/061121 2015-04-09 2015-04-09 Cleaning apparatus with co2 recycling and operation method therefor WO2016163004A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/061121 WO2016163004A1 (en) 2015-04-09 2015-04-09 Cleaning apparatus with co2 recycling and operation method therefor
JP2017511419A JPWO2016163004A1 (en) 2015-04-09 2015-04-09 Cleaning device with CO2 recycling and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061121 WO2016163004A1 (en) 2015-04-09 2015-04-09 Cleaning apparatus with co2 recycling and operation method therefor

Publications (1)

Publication Number Publication Date
WO2016163004A1 true WO2016163004A1 (en) 2016-10-13

Family

ID=57072222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061121 WO2016163004A1 (en) 2015-04-09 2015-04-09 Cleaning apparatus with co2 recycling and operation method therefor

Country Status (2)

Country Link
JP (1) JPWO2016163004A1 (en)
WO (1) WO2016163004A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092244A (en) * 2001-09-17 2003-03-28 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2003309099A (en) * 2002-04-17 2003-10-31 Yokogawa Electric Corp Gas supply system
JP2004115355A (en) * 2002-09-20 2004-04-15 Itec Co Ltd Method and apparatus for recovering and reusing carbon dioxide
JP2004165229A (en) * 2002-11-11 2004-06-10 Hitachi Industries Co Ltd Carbon dioxide gas blast cleaning device
JP2007125508A (en) * 2005-11-04 2007-05-24 Asahi Sunac Corp Dry ice cleaning apparatus
JP2010236849A (en) * 2009-03-12 2010-10-21 Air Water Inc Carbon dioxide cleaning device and carbon dioxide cleaning method
JP2011212590A (en) * 2010-03-31 2011-10-27 Central Japan Railway Co Dry ice blast-type cleaning device
JP2015054288A (en) * 2013-09-12 2015-03-23 三菱電機株式会社 Cleaning method, cleaning device and object to be cleaned to which the method is applied

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1526928B1 (en) * 2002-08-06 2019-03-06 Fedegari Autoclavi Spa Method and apparatus for removing substances from solid matrix with energy saving
JP2012049446A (en) * 2010-08-30 2012-03-08 Toshiba Corp Supercritical drying method and supercritical drying system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092244A (en) * 2001-09-17 2003-03-28 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2003309099A (en) * 2002-04-17 2003-10-31 Yokogawa Electric Corp Gas supply system
JP2004115355A (en) * 2002-09-20 2004-04-15 Itec Co Ltd Method and apparatus for recovering and reusing carbon dioxide
JP2004165229A (en) * 2002-11-11 2004-06-10 Hitachi Industries Co Ltd Carbon dioxide gas blast cleaning device
JP2007125508A (en) * 2005-11-04 2007-05-24 Asahi Sunac Corp Dry ice cleaning apparatus
JP2010236849A (en) * 2009-03-12 2010-10-21 Air Water Inc Carbon dioxide cleaning device and carbon dioxide cleaning method
JP2011212590A (en) * 2010-03-31 2011-10-27 Central Japan Railway Co Dry ice blast-type cleaning device
JP2015054288A (en) * 2013-09-12 2015-03-23 三菱電機株式会社 Cleaning method, cleaning device and object to be cleaned to which the method is applied

Also Published As

Publication number Publication date
JPWO2016163004A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
US10062596B2 (en) Systems and methods for treating substrates with cryogenic fluid mixtures
US5931721A (en) Aerosol surface processing
US8262801B2 (en) Vacuum processing method
US9221067B2 (en) CO2 composite spray method and apparatus
US20210050233A1 (en) Systems and methods for treating substrates with cryogenic fluid mixtures
US20160184967A1 (en) Nozzle, cleaning device, and cleaning method
US20080108225A1 (en) Low temperature aerosol deposition of a plasma resistive layer
US20060099444A1 (en) Ceramic sprayed member-cleaning method, program for implementing the method, storage medium storing the program, and ceramic sprayed member
JPH079898B2 (en) Method and apparatus for removing microparticles from a substrate
KR20100038382A (en) Device for charging dry air or nitrogen gas into semiconductor wafer storage container and wafer static charge removing apparatus utilizing the device
JP2003001208A (en) Cleaning method and cleaning apparatus
WO2016163004A1 (en) Cleaning apparatus with co2 recycling and operation method therefor
JP2017520112A (en) Particle removal device and method of operating a particle removal device
Yoshiki et al. Localized removal of a photoresist by atmospheric pressure micro-plasma jet using RF corona discharge
JP2009123723A (en) Vacuum treatment apparatus or method for vacuum treatment
JP2007125508A (en) Dry ice cleaning apparatus
JPH08131981A (en) Dry washing method and apparatus using active air
WO2016135989A1 (en) Vacuum cleaning device and vacuum cleaning method
JP2005319535A (en) Co2 blast nozzle, and machining apparatus using the same
JP2005334979A (en) Blasting device
US11815436B2 (en) Detection of surface particles on chamber components with carbon dioxide
JP7312066B2 (en) Vacuum processing equipment
WO2018004678A1 (en) Systems and methods for treating substrates with cryogenic fluid mixtures
JPH11244799A (en) Apparatus for generating artificial snow ice
JPH0945648A (en) Reduced pressure low temperature processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888496

Country of ref document: EP

Kind code of ref document: A1