WO2016162930A1 - Nondestructive inspection system and singularity detection system - Google Patents

Nondestructive inspection system and singularity detection system Download PDF

Info

Publication number
WO2016162930A1
WO2016162930A1 PCT/JP2015/060775 JP2015060775W WO2016162930A1 WO 2016162930 A1 WO2016162930 A1 WO 2016162930A1 JP 2015060775 W JP2015060775 W JP 2015060775W WO 2016162930 A1 WO2016162930 A1 WO 2016162930A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
inspection
images
imaging
processing unit
Prior art date
Application number
PCT/JP2015/060775
Other languages
French (fr)
Japanese (ja)
Inventor
孝一 折戸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580078510.3A priority Critical patent/CN107533024B/en
Priority to JP2017506934A priority patent/JP6161852B2/en
Priority to PCT/JP2015/060775 priority patent/WO2016162930A1/en
Publication of WO2016162930A1 publication Critical patent/WO2016162930A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics

Definitions

  • the present invention relates to a nondestructive inspection system and a singularity detection system that inspect whether or not a defect exists in an inspection object without destroying the inspection object.
  • active thermography is mainly used for non-destructive inspection of joints of different materials typified by composite materials.
  • the surface of an inspection object is heated with an excitation source such as a flash lamp, and a state in which the heat applied to the inspection object propagates is acquired as a moving image, so that the defect shape, depth, area and Get volume information.
  • Active thermography is operated in a state where the inspection object is stationary, so that it is difficult to apply it to a manufacturing method in which a product is continuously moved in order to achieve a high tact time.
  • Patent Document 1 discloses a test apparatus that acquires line information indicating a temperature distribution in one direction using thermography, manages the line information in time series according to the moving speed of a measurement target, and observes the transition of the temperature distribution at a specific point. Is disclosed.
  • test apparatus disclosed in Patent Document 1 detects a defect based on two-dimensional line information, it can detect a defect inside a homogeneous object of the same material.
  • 3D information is indispensable to determine defects in composite materials that are bonded materials of different materials and contain bubbles in the bonded part, and that may be intentionally provided with voids. Was difficult.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a nondestructive inspection system capable of detecting internal defects while conveying an inspection object which is a composite material.
  • the present invention includes a drive device that drives a transport device that transports an inspection target, an excitation device that applies heat to the surface of the test target transported by the transport device, A control device that controls the driving device and the excitation device, an imaging device that captures a surface image of an inspection target whose surface is heated by the excitation device, and each of a plurality of surface images captured at different timings by the imaging device, A video data processing unit that divides the image into a plurality of partial images and corrects the position of each inspection target of the plurality of surface images divided into the plurality of partial images, and the plurality of surface images corrected by the video data processing unit are sometimes And a programmable display having a display generation unit for generating a moving image to be switched along a series or a three-dimensional image superimposed along a time series.
  • the nondestructive inspection system according to the present invention has an effect that an internal defect can be detected while conveying an inspection object that is a composite material.
  • FIG. 1 The figure which shows the structure of the nondestructive inspection system concerning Embodiment 1 of this invention.
  • FIG. The flowchart which shows the flow of operation
  • FIG. The perspective view which shows an example of the test object of the nondestructive inspection system concerning Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of a nondestructive inspection system according to Embodiment 1 of the present invention.
  • the nondestructive inspection system according to the first embodiment is an aspect of a singular point detection system that detects a singular point in a measurement object.
  • the nondestructive inspection system according to the first embodiment includes a transport device 106 that transports an inspection target 107 that is a measurement target, a drive device 105 that drives the transport device 106, and an inspection target 107 transported by the transport device 106.
  • An excitation device 104 that applies heat to the surface; a control device 102 that controls the excitation device 104 and the driving device 105; an imaging device 103 that captures a surface image of the inspection object 107 whose surface is heated by the excitation device 104; It has a programmable display 100 that captures an image captured by the imaging device 103 to generate an analysis image and displays the generated analysis image.
  • the transport device 106 is a moving unit that moves the inspection object 107 that is a measurement object in the singularity detection system.
  • the excitation device 104 is an external factor imparting unit that imparts an external factor to the moving inspection object 107.
  • the imaging device 103 is an imaging unit that images the inspection object 107.
  • the programmable display 100 is a detection means that receives a captured image of the inspection target 107 of the imaging device 103 and detects a singular point where an external factor varies in the inspection target 107 according to the amount of movement by the transport device 106, and It is also a display means for displaying a detection result by the detection means.
  • the driving device 105 drives the transport device 106 to transport the inspection object 107 at the transport speed M [mm / s].
  • the imaging device 103 is installed so that the range of H [mm] is in the transport direction of the transport device 106 and V [mm] is in the direction perpendicular to the transport direction.
  • the frame rate of the imaging device 103 is A [sheets / s], and the resolution of the imaging device 103 is C ⁇ R [dot].
  • the imaging device 103 captures A sheets in a range of H ⁇ V [mm ⁇ mm] at a resolution of C ⁇ R [dot] per second.
  • FIG. 2 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the first embodiment.
  • the programmable display device 100 includes a control device connection interface 13 that is an interface for connecting the control device 102, an image pickup device connection interface 14 that is an interface for connecting the image pickup device 103, and inspection objects 107 for the number of sheets necessary for analysis.
  • the determination unit 15 that determines whether the image is captured and compares the inspection result with the design information.
  • Each of the plurality of surface images captured by the image capturing apparatus 103 at different timings is divided into a plurality of partial images, and the plurality of partial images are divided.
  • the video data processing unit 16 that performs correction to align the positions of the inspection targets 107 of the plurality of divided plane images, and the plane image data and the video data processing unit 16 that are acquired by the video data processing unit 16 from the imaging device 103 are processed.
  • Display generation unit 20 that generates a moving image that switches in time series or a three-dimensional image that is overlapped in time series, an input reception unit 21 that receives user input operations, and a display in which data is generated by display generation unit 20
  • the display control part 22 which performs the process which displays a screen is provided.
  • FIG. 3 is a diagram illustrating a hardware configuration of a programmable display applied to the nondestructive inspection system according to the first embodiment.
  • the programmable display 100 includes an arithmetic device 31 that executes a nondestructive inspection program, a memory 32 that the arithmetic device 31 uses as a work area, a storage device 33 that stores a nondestructive inspection program, an input device 34 that is a user interface for input, A display device 35 for displaying information and a communication device 36 for communication with the control device 102 are provided.
  • the determination unit 15 shown in FIG. 2 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work area and reading / writing information from / to the storage device 33.
  • the video data processing unit 16 and the display generation unit 20 are realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work area.
  • the video data storage unit 19 is realized by the storage device 33.
  • the input receiving unit 21 is realized by the input device 34.
  • the display control unit 22 is realized by the display device 35.
  • the singularity of the measurement object is the point where external factors applied to the measurement object fluctuate. Specifically, the measurement is such that the heat propagation state, which is an external factor, changes. A void inside the object can be mentioned. Another specific example is a boundary between different materials in the composite material. An example of the boundary between different materials in the composite material is an interface between a resin and a metal in an insert molded product.
  • the nondestructive inspection system according to the first embodiment which is an aspect of the singularity detection system, applies heat, which is an external factor, to the inspection object 107, which is a measurement object, by the excitation device 104, which is an external factor applying unit. Detect defects with varying external factors.
  • FIG. 4 is a flowchart of an operation flow of the nondestructive inspection system according to the first embodiment.
  • the input receiving unit 21 receives an operation for setting the number of surface images necessary for determination, which is performed on the input device 34. Since the number of surface images necessary for the determination varies depending on the thickness dimension and the thermal conductivity of the inspection object 107, the user sets an appropriate number. Note that the range of the set number is two or more, and at least two plane images are taken. The set number is held by the determination unit 15.
  • the determination unit 15 holds design information to be compared with the inspection result.
  • the design information is CAD (Computer Aided Design) data of the inspection object 107.
  • the method for holding the design information in the determination unit 15 is not limited to a specific method.
  • the design information can be held in the determination unit 15 by connecting the programmable display 100 to a CAD device and importing data.
  • step S 101 the excitation device 104 and the driving device 105 are driven by the control device 102, and the inspection target 107 is excited by the excitation device 104 while the inspection target 107 is conveyed by the transport device 106.
  • step S102 the imaging device 103 images the inspection object 107.
  • step S ⁇ b> 103 the video data processing unit 16 acquires the surface image data captured by the imaging device 103 via the imaging device connection interface 14 and stores it in the video data storage unit 19.
  • step S104 the determination unit 15 determines whether information necessary for determination has been acquired. Whether or not the information necessary for the determination has been acquired is determined by the input receiving unit 21 in accordance with the number of surface images acquired by the video data processing unit 16 from the imaging device 103 before starting the processing of the flowchart. This is based on whether or not the number set by the setting operation has been reached. If the information necessary for the determination has not been acquired, the result in Step S104 is No.
  • Step S105 the determination unit 15 captures the surface image in Step S102 and then the processing time from Step 105 to Step 105, the conveyance speed, and the frame rate. The process proceeds to step S102 after waiting for a delay time including the above.
  • step S104 If the information necessary for the determination has been acquired, Yes in step S104, and the video data processing unit 16 divides each of the plurality of surface images in the transport direction in a direction orthogonal to the transport direction in step S106. A process of generating an extended line image to form a partial image is performed.
  • FIG. 5 is a perspective view illustrating an example of an inspection target of the nondestructive inspection system according to the first embodiment.
  • the inspection object 107 has a spherical defect 51 inside.
  • the processing of the video data processing unit 16 with the inspection object 107 shown in FIG. 5 as the inspection object will be described.
  • FIG. 6 is a diagram schematically illustrating processing of the video data processing unit of the nondestructive inspection system according to the first embodiment.
  • the conveyance speed M 1000 [mm / s].
  • the frame rate A 100 [sheets / s]
  • the resolution C ⁇ R 400 ⁇ 300 [dot]
  • the field of view H ⁇ V 800 ⁇ 600 [mm ⁇ mm].
  • FIG. 6 illustrates processing of the video data processing unit 16 for four plane images captured from time t to 3 / A seconds later.
  • the video data processing unit 16 generates a plurality of line images by dividing the surface image captured by the imaging device 103 into a width of 5 pixels.
  • the defect 51 inside the inspection object 107 hinders heat conduction when heat applied to the surface of the inspection object 107 propagates to the inside of the inspection object 107. Therefore, as time passes after heat is applied to the surface of the inspection object 107, a difference occurs in the surface temperature of the inspection object 107 between the portion where the defect 51 exists and the portion where the defect 51 does not exist. Is higher in the portion where the defect 51 exists than in the portion where the defect 51 does not exist. In the inspection object 107 shown in FIG. 5, since the defect 51 is spherical, the defect 51 becomes a circular region having a higher temperature than the part where the defect 51 does not exist as shown in FIG. To emerge. That is, the outline shape of the defect 51 becomes a high-temperature region and emerges on the surface of the inspection object 107.
  • step S107 the video data processing unit 16 rearranges the line images that are partial images for each of the plurality of surface images, and the position of the inspection object 107 in the surface image is constant regardless of the imaging time. Make corrections as follows. That is, as shown in FIG. 6, the video data processing unit 16 performs correction by rearranging the line image at each imaging time by shifting the line image corresponding to the elapsed time from the reference time. A corrected image in which the position of the inspection object 107 is aligned with respect to the imaging time is generated.
  • step S108 the display generation unit 20 generates a moving image or a three-dimensional image based on the corrected image at each imaging time.
  • the display generation unit 20 creates a moving image of the inspection result by switching the corrected image at each imaging time in time series.
  • the moving image or three-dimensional image generated by the display generation unit 20 is an analysis image displayed on the display device 35 by the programmable display device 100.
  • FIG. 7 is a diagram illustrating an example of a moving image of the inspection result generated by the display generation unit of the nondestructive inspection system according to the first embodiment.
  • the correction image from the time t to 3 / A seconds later is continuously displayed, whereby the inspection object 107 is displayed. It can be recognized that there is a circular cross-section defect 51 whose diameter increases with distance from the surface.
  • the programmable display device 100 corrects the captured image received from the imaging device 103 in accordance with the amount of movement of the inspection object 107, and displays an event in which an external factor varies with time.
  • the display generation unit 20 creates a three-dimensional image of the inspection object 107 by superimposing the corrected images at the respective imaging times in time series.
  • FIG. 8 is a diagram illustrating an example of a three-dimensional image of the inspection result generated by the display generation unit of the nondestructive inspection system according to the first embodiment.
  • the programmable display device 100 divides each captured image received from the imaging device 103 into captured images in a specific area according to the movement amount of the inspection target 107, and includes a plurality of captured images in the captured images.
  • the captured image of the specific area to be displayed is superimposed on the display device 35.
  • the specific area here is a line image extending in a direction orthogonal to the transport direction, but the specific area is not limited to a line image, as will be described later.
  • step S109 the determination unit 15 compares the moving image or the three-dimensional image generated by the display generation unit 20 with design information held in the determination unit 15.
  • the design information is CAD data of the inspection object 107, that is, a theoretical value in design.
  • the programmable display 100 compares the design theoretical value with the shape data based on the shape data in which the shape of the inspection object 107 is specified, and detects a singular point.
  • the inspection target 107 out of the design specification is regarded as a defective product. In view of this, it is possible to perform processing such as transporting to a place different from the normal product.
  • step S110 the display control unit 22 displays the moving image or the three-dimensional image generated by the display generation unit 20 on the display device 35, thereby displaying the singular point where the external factor varies.
  • the distance M / A that the inspection object 107 moves from the time when the imaging device 103 takes an image until the next imaging is smaller than the width H / C of one dot of the surface image taken by the imaging device 103 Therefore, an overlapping portion is generated in the line image.
  • a line image may be generated from surface images at all imaging timings.
  • line image generation and correction of the position of the inspection target 107 are performed by performing surface image thinning processing. The amount of computation can be reduced.
  • FIG. 9 is a diagram illustrating an example of thinning processing by the video data processing unit of the nondestructive inspection system according to the first embodiment.
  • FIG. 9 shows the thinning-out process from seven surface images captured from time t to 6 / A seconds later.
  • the conveyance speed M 100 [mm / s].
  • the frame rate A 100 [sheets / s]
  • the resolution C ⁇ R 400 ⁇ 300 [dot]
  • the field of view H ⁇ V 800 ⁇ 600 [mm ⁇ mm].
  • the inspection object 107 moves by 0.5 dots while the imaging device 103 captures a surface image and then captures the next surface image.
  • the surface image of the inspection object 107 is divided in the conveyance direction, and the line image extending in the direction orthogonal to the conveyance direction is a partial image.
  • the block image obtained by dividing the surface image of the inspection object 107 into a matrix shape. Can also be made into partial images.
  • the nondestructive inspection system can analyze the size and shape of internal defects using the surface image of the inspection object 107, it can detect defects even in a composite material in which different materials are combined.
  • FIG. FIG. 10 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the second embodiment of the present invention.
  • the programmable display 110 of the nondestructive inspection system according to the second embodiment is implemented in that it includes a feedback processing unit 23 that calculates the amount of movement of the inspection object 107 from the feature points of the acquired surface image and feeds back to the drive device 105. This is different from the programmable display device 100 of the first embodiment.
  • the feedback processing unit 23 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work space.
  • the feature point can be used by detecting the edge or corner of the inspection object 107 by image processing. Also, the transfer device 106 may be marked and used as a feature point.
  • FIG. 11 is a diagram illustrating feedback processing of the programmable display applied to the nondestructive inspection system according to the second embodiment.
  • the feedback processing unit 23 stores the plane image acquired from the imaging device 103 by the video data processing unit 16 at the time t and the video data storage unit 19 acquired from the previous imaging device 103 at a time 1 / A before the time t.
  • the amount of movement of the feature point 61 is calculated by comparing the obtained surface image.
  • the nondestructive inspection system can calculate the amount of movement of the inspection object 107 from the feature points 61 of the acquired surface image and feed back to the drive device 105. For this reason, the fluctuation
  • the process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the third embodiment of the present invention.
  • the programmable display device 120 has a defect between two surface images having consecutive imaging times from a moving image regenerated by the display generation unit 20 based on the surface image in which the position of the inspection object 107 is corrected by the video data processing unit 16.
  • the displacement amount comparison unit 24 calculates the displacement amount of the defect and compares it with the set threshold value and the displacement amount comparison unit 24 detects that the displacement amount of the defect exceeds the threshold value, the information identifying the inspection object 107 and the defect And a history information holding unit 25 in which information indicating that the threshold value has been exceeded is stored.
  • the displacement comparison unit 24 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work space.
  • the history information holding unit 25 is realized by the storage device 33.
  • the displacement amount comparison unit 24 notifies the control device 102 through the control device connection interface 13 when detecting that the displacement amount of the defect exceeds the threshold value. Therefore, if the alarm device 108 is connected to the control device 102, the user can be notified that the displacement amount of the defect has exceeded the threshold value. An alarm lamp or an alarm speaker can be applied to the alarm device 108.
  • the displacement amount of the defect exceeds the threshold value
  • information for specifying the inspection object 107 and information indicating that the defect exceeds the threshold value are stored in the history information holding unit 25. Even if the notification by 108 is overlooked or missed, it can be confirmed later on which inspection object 107 the displacement amount of the defect has exceeded the threshold value.
  • the process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
  • the inspection object 107 When the inspection object 107 is artificially provided with a defect, if an allowable tolerance is provided at the position of the defect in the design information, it is not determined as abnormal unless the position of the defect exceeds the allowable tolerance range.
  • the tolerance of ⁇ A is allowed at the position of the defect according to the design information
  • the position of the defect is the reference position + A at a certain imaging timing
  • the position of the defect is changed to the reference position ⁇ A at the next imaging timing. Even if it changes, it conforms to the design information and is not determined to be abnormal.
  • a step is formed in the defect, and the defect has a discontinuous shape in the thickness direction of the inspection object 107.
  • FIG. FIG. 13 is a figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 4 of this invention.
  • the programmable display 130 of the non-destructive inspection system according to the fourth embodiment synchronizes the frame rate of the imaging device 103 with the amount of movement of the inspection object 107, and eliminates partial overlap of line images. This is different from the programmable display device 100 according to the first embodiment.
  • the frame rate synchronization processing unit 26 is realized by the computing device 31 executing a nondestructive inspection program using the memory 32 as a work space.
  • the frame rate synchronization processing unit 26 acquires the speed command output from the control device 102 to the drive device 105 through the control device connection interface 13 and changes the frame rate A to 50 [sheets / s].
  • the process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • control device connection interface 14 imaging device connection interface, 15 determination unit, 16 video data processing unit, 19 video data storage unit, 20 display generation unit, 21 input reception unit, 22 display control unit, 23 feedback processing unit, 24 displacement Quantity comparison unit, 25 history information holding unit, 26 frame rate synchronization processing unit, 31 arithmetic device, 32 memory, 33 storage device, 34 input device, 35 display device, 36 communication device, 51 defect, 61 feature point, 100, 110 , 120, 130 Programmable display, 102 control device, 103 imaging device, 104 excitation device, 105 drive device, 106 transport device, 107 inspection object, 108 alarm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A nondestructive inspection system is provided with a drive device (105) for driving a conveyance device (106) for conveying an inspection subject (107), an excitation device (104) for applying heat to the surface of the inspection subject (107) conveyed by the conveyance device (106), a control device (102) for controlling the drive device (105) and excitation device (104), a photography device (103) for photographing a surface image of the inspection subject (107) that has had heat applied to the surface thereof by the excitation device (104), and a programmable display (100) having an image data processing unit (16) for dividing each of a plurality of surface images photographed at different times by the photography device (103) into a plurality of partial images and carrying out correction for aligning the positions of the inspection subject (107) in each of the plurality of surface images divided into a plurality of partial images and a display generation unit (20) for generating a moving image in which the plurality of surface images corrected by the image data processing unit (16) are switched chronologically or a three-dimensional image in which the images are layered chronologically.

Description

非破壊検査システム及び特異点検出システムNondestructive inspection system and singularity detection system
 本発明は、検査対象物の内部に欠陥が存在するか否かを、検査対象物を破壊せずに検査する非破壊検査システム及び特異点検出システムに関する。 The present invention relates to a nondestructive inspection system and a singularity detection system that inspect whether or not a defect exists in an inspection object without destroying the inspection object.
 従来、複合材に代表される異種材料の接合物の非破壊検査には、アクティブサーモグラフィが主に用いられている。アクティブサーモグラフィは、フラッシュランプのような励起源で検査対象物の表面を加熱し、検査対象物に与えた熱が伝播する様子を動画像で取得することにより、欠陥の形状、深さ、面積及び体積の情報を取得する。 Conventionally, active thermography is mainly used for non-destructive inspection of joints of different materials typified by composite materials. In active thermography, the surface of an inspection object is heated with an excitation source such as a flash lamp, and a state in which the heat applied to the inspection object propagates is acquired as a moving image, so that the defect shape, depth, area and Get volume information.
 アクティブサーモグラフィは、検査対象物が静止した状態で運用されるため、高タクトタイムを実現するために生産品を動かし続ける製造方式への適用は困難である。 Active thermography is operated in a state where the inspection object is stationary, so that it is difficult to apply it to a manufacturing method in which a product is continuously moved in order to achieve a high tact time.
 特許文献1には、サーモグラフィを用いて一方向における温度分布を示すライン情報を取得し、測定対象の移動速度によりライン情報を時系列管理して、特定点における温度分布の変遷を観察する試験装置が開示されている。 Patent Document 1 discloses a test apparatus that acquires line information indicating a temperature distribution in one direction using thermography, manages the line information in time series according to the moving speed of a measurement target, and observes the transition of the temperature distribution at a specific point. Is disclosed.
特表2013-524229号公報Special table 2013-524229 gazette
 特許文献1に開示される試験装置は、二次元のライン情報に基づいて欠陥を検出しているため、同一素材の均質な物体の内部の欠陥を検出することはできる。しかし、異種材料同士の接合物であって接着部に気泡が含まれており、意図的に空隙が設けられることもある複合材の欠陥を判定するには三次元の情報が必須であり、実施は困難であった。 Since the test apparatus disclosed in Patent Document 1 detects a defect based on two-dimensional line information, it can detect a defect inside a homogeneous object of the same material. However, 3D information is indispensable to determine defects in composite materials that are bonded materials of different materials and contain bubbles in the bonded part, and that may be intentionally provided with voids. Was difficult.
 本発明は、上記に鑑みてなされたものであって、複合材である検査対象を搬送しながら内部の欠陥を検出できる非破壊検査システムを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a nondestructive inspection system capable of detecting internal defects while conveying an inspection object which is a composite material.
 上述した課題を解決し、目的を達成するために、本発明は、検査対象を搬送する搬送装置を駆動する駆動装置と、搬送装置によって搬送される検査対象の表面に熱を与える励起装置と、駆動装置及び励起装置を制御する制御装置と、励起装置によって表面に熱が与えられた検査対象の面画像を撮像する撮像装置と、撮像装置が異なるタイミングで撮像した複数の面画像の各々を、複数の部分画像に分割し、複数の部分画像に分割した複数の面画像の各々の検査対象の位置を揃える補正を行う映像データ処理部と、映像データ処理部が補正した複数の面画像を時系列に沿って切り替える動画像又は時系列に沿って重ねた三次元画像を生成する表示生成部とを有するプログラマブル表示器とを備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes a drive device that drives a transport device that transports an inspection target, an excitation device that applies heat to the surface of the test target transported by the transport device, A control device that controls the driving device and the excitation device, an imaging device that captures a surface image of an inspection target whose surface is heated by the excitation device, and each of a plurality of surface images captured at different timings by the imaging device, A video data processing unit that divides the image into a plurality of partial images and corrects the position of each inspection target of the plurality of surface images divided into the plurality of partial images, and the plurality of surface images corrected by the video data processing unit are sometimes And a programmable display having a display generation unit for generating a moving image to be switched along a series or a three-dimensional image superimposed along a time series.
 本発明にかかる非破壊検査システムは、複合材である検査対象を搬送しながら内部の欠陥を検出できるという効果を奏する。 The nondestructive inspection system according to the present invention has an effect that an internal defect can be detected while conveying an inspection object that is a composite material.
本発明の実施の形態1にかかる非破壊検査システムの構成を示す図The figure which shows the structure of the nondestructive inspection system concerning Embodiment 1 of this invention. 実施の形態1にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図The figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 1. FIG. 実施の形態1にかかる非破壊検査システムに適用されるプログラマブル表示器のハードウェア構成を示す図The figure which shows the hardware constitutions of the programmable display applied to the nondestructive inspection system concerning Embodiment 1. FIG. 実施の形態1にかかる非破壊検査システムの動作の流れを示すフローチャートThe flowchart which shows the flow of operation | movement of the nondestructive inspection system concerning Embodiment 1. FIG. 実施の形態1にかかる非破壊検査システムの検査対象の一例を示す斜視図The perspective view which shows an example of the test object of the nondestructive inspection system concerning Embodiment 1. 実施の形態1にかかる非破壊検査システムの映像データ処理部の処理を模式的に示す図The figure which shows typically the process of the video data process part of the nondestructive inspection system concerning Embodiment 1. FIG. 実施の形態1にかかる非破壊検査システムの表示生成部が生成する検査結果の動画像の一例を示す図The figure which shows an example of the moving image of the test result which the display production | generation part of the nondestructive inspection system concerning Embodiment 1 produces | generates. 実施の形態1にかかる非破壊検査システムの表示生成部が生成する検査結果の三次元画像の一例を示す図The figure which shows an example of the three-dimensional image of the test result which the display production | generation part of the nondestructive test system concerning Embodiment 1 produces | generates. 実施の形態1にかかる非破壊検査システムの映像データ処理部による間引き処理の一例を示す図The figure which shows an example of the thinning-out process by the video data processing part of the nondestructive inspection system concerning Embodiment 1. 本発明の実施の形態2にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図The figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 2 of this invention. 実施の形態2にかかる非破壊検査システムに適用されるプログラマブル表示器のフィードバック処理を示す図The figure which shows the feedback process of the programmable display applied to the nondestructive inspection system concerning Embodiment 2. 本発明の実施の形態3にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図The figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 3 of this invention. 本発明の実施の形態4かかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図The figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 4 of this invention.
 以下に、本発明の実施の形態にかかる非破壊検査システム及び特異点検出システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a nondestructive inspection system and a singularity detection system according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる非破壊検査システムの構成を示す図である。実施の形態1にかかる非破壊検査システムは、測定対象物における特異点を検出する特異点検出システムの一態様である。実施の形態1にかかる非破壊検査システムは、測定対象物である検査対象107を搬送する搬送装置106と、搬送装置106を駆動する駆動装置105と、搬送装置106によって搬送される検査対象107の表面に熱を与える励起装置104と、励起装置104及び駆動装置105を制御する制御装置102と、励起装置104によって表面に熱が与えられた検査対象107の面画像を撮像する撮像装置103と、撮像装置103が撮影した画像を取り込んで解析画像を生成し、生成した解析画像を表示するプログラマブル表示器100とを有する。搬送装置106は、特異点検出システムでの測定対象物である検査対象107を移動させる移動手段である。励起装置104は、移動する検査対象107に対し、外的要因を付与する外的要因付与手段である。撮像装置103は、検査対象107を撮像する撮像手段である。プログラマブル表示器100は、撮像装置103の検査対象107の撮像画像を受信し、搬送装置106による移動量に応じた検査対象107における外的要因の変動する特異点を検出する検出手段であり、かつ、検出手段による検出結果を表示する表示手段でもある。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a nondestructive inspection system according to Embodiment 1 of the present invention. The nondestructive inspection system according to the first embodiment is an aspect of a singular point detection system that detects a singular point in a measurement object. The nondestructive inspection system according to the first embodiment includes a transport device 106 that transports an inspection target 107 that is a measurement target, a drive device 105 that drives the transport device 106, and an inspection target 107 transported by the transport device 106. An excitation device 104 that applies heat to the surface; a control device 102 that controls the excitation device 104 and the driving device 105; an imaging device 103 that captures a surface image of the inspection object 107 whose surface is heated by the excitation device 104; It has a programmable display 100 that captures an image captured by the imaging device 103 to generate an analysis image and displays the generated analysis image. The transport device 106 is a moving unit that moves the inspection object 107 that is a measurement object in the singularity detection system. The excitation device 104 is an external factor imparting unit that imparts an external factor to the moving inspection object 107. The imaging device 103 is an imaging unit that images the inspection object 107. The programmable display 100 is a detection means that receives a captured image of the inspection target 107 of the imaging device 103 and detects a singular point where an external factor varies in the inspection target 107 according to the amount of movement by the transport device 106, and It is also a display means for displaying a detection result by the detection means.
 駆動装置105は、搬送装置106を駆動して検査対象107を搬送速度M[mm/s]で搬送させる。 The driving device 105 drives the transport device 106 to transport the inspection object 107 at the transport speed M [mm / s].
 撮像装置103は、搬送装置106の搬送方向にH[mm]、搬送方向と垂直な方向にV[mm]の範囲が視野となるように設置されている。撮像装置103のフレームレートはA[枚/s]であり、撮像装置103の解像度はC×R[dot]である。すなわち、撮像装置103は、H×V[mm×mm]の範囲をC×R[dot]の解像度で毎秒A枚撮像する。 The imaging device 103 is installed so that the range of H [mm] is in the transport direction of the transport device 106 and V [mm] is in the direction perpendicular to the transport direction. The frame rate of the imaging device 103 is A [sheets / s], and the resolution of the imaging device 103 is C × R [dot]. In other words, the imaging device 103 captures A sheets in a range of H × V [mm × mm] at a resolution of C × R [dot] per second.
 図2は、実施の形態1にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図である。プログラマブル表示器100は、制御装置102を接続するためのインタフェースである制御装置接続インタフェース13、撮像装置103を接続するためのインタフェースである撮像装置接続インタフェース14、解析に必要な枚数分検査対象107を撮像したかの判定及び検査結果と設計情報との比較を行う判定部15、撮像装置103が異なるタイミングで撮像した複数の面画像の各々を、複数の部分画像に分割し、複数の部分画像に分割した複数の面画像の各々の検査対象107の位置を揃える補正を行う映像データ処理部16、撮像装置103から映像データ処理部16が取得した面画像のデータ及び映像データ処理部16が処理した面画像のデータを記憶する映像データ記憶部19、映像データ処理部16が補正した複数の面画像を時系列に沿って切り替える動画像又は時系列に沿って重ねた三次元画像を生成する表示生成部20、ユーザの入力操作を受け付ける入力受付部21及び表示生成部20によってデータを生成された表示画面を表示する処理を行う表示制御部22を備える。 FIG. 2 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the first embodiment. The programmable display device 100 includes a control device connection interface 13 that is an interface for connecting the control device 102, an image pickup device connection interface 14 that is an interface for connecting the image pickup device 103, and inspection objects 107 for the number of sheets necessary for analysis. The determination unit 15 that determines whether the image is captured and compares the inspection result with the design information. Each of the plurality of surface images captured by the image capturing apparatus 103 at different timings is divided into a plurality of partial images, and the plurality of partial images are divided. The video data processing unit 16 that performs correction to align the positions of the inspection targets 107 of the plurality of divided plane images, and the plane image data and the video data processing unit 16 that are acquired by the video data processing unit 16 from the imaging device 103 are processed. A plurality of plane images corrected by the video data storage unit 19 storing the plane image data and the video data processing unit 16 Display generation unit 20 that generates a moving image that switches in time series or a three-dimensional image that is overlapped in time series, an input reception unit 21 that receives user input operations, and a display in which data is generated by display generation unit 20 The display control part 22 which performs the process which displays a screen is provided.
 図3は、実施の形態1にかかる非破壊検査システムに適用されるプログラマブル表示器のハードウェア構成を示す図である。プログラマブル表示器100は、非破壊検査プログラムを実行する演算装置31、演算装置31がワークエリアに用いるメモリ32、非破壊検査プログラムを記憶する記憶装置33、入力用のユーザインタフェースである入力装置34、情報を表示する表示装置35及び制御装置102との通信用の通信装置36を備える。 FIG. 3 is a diagram illustrating a hardware configuration of a programmable display applied to the nondestructive inspection system according to the first embodiment. The programmable display 100 includes an arithmetic device 31 that executes a nondestructive inspection program, a memory 32 that the arithmetic device 31 uses as a work area, a storage device 33 that stores a nondestructive inspection program, an input device 34 that is a user interface for input, A display device 35 for displaying information and a communication device 36 for communication with the control device 102 are provided.
 図2に示した判定部15は、演算装置31がメモリ32をワークエリアにして非破壊検査プログラムを実行し、記憶装置33に情報を読み書きすることによって実現される。映像データ処理部16、表示生成部20は、演算装置31がメモリ32をワークエリアにして非破壊検査プログラムを実行することによって実現される。映像データ記憶部19は、記憶装置33によって実現される。入力受付部21は、入力装置34により実現される。表示制御部22は、表示装置35により実現される。 The determination unit 15 shown in FIG. 2 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work area and reading / writing information from / to the storage device 33. The video data processing unit 16 and the display generation unit 20 are realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work area. The video data storage unit 19 is realized by the storage device 33. The input receiving unit 21 is realized by the input device 34. The display control unit 22 is realized by the display device 35.
 特異点検出システムにおける測定対象物の特異点とは、測定対象物に外部から与えた外的要因が変動する点であり、具体的には、外的要因である熱の伝播状態が変化する測定対象物の内部のボイドを挙げることができる。また、別の具体例には、複合材料における異種材料の境界を挙げることができる。複合材料における異種材料の境界の例には、インサート成形品における樹脂と金属との界面を挙げることができる。特異点検出システムの一態様である実施の形態1にかかる非破壊検査システムは、測定対象物である検査対象107に、外的要因付与手段である励起装置104で外的要因である熱を与え、外的要因が変動する欠陥を検出する。 In the singularity detection system, the singularity of the measurement object is the point where external factors applied to the measurement object fluctuate. Specifically, the measurement is such that the heat propagation state, which is an external factor, changes. A void inside the object can be mentioned. Another specific example is a boundary between different materials in the composite material. An example of the boundary between different materials in the composite material is an interface between a resin and a metal in an insert molded product. The nondestructive inspection system according to the first embodiment, which is an aspect of the singularity detection system, applies heat, which is an external factor, to the inspection object 107, which is a measurement object, by the excitation device 104, which is an external factor applying unit. Detect defects with varying external factors.
 実施の形態1にかかる非破壊検査システムの動作について説明する。図4は、実施の形態1にかかる非破壊検査システムの動作の流れを示すフローチャートである。図4に示すフローチャートの処理を開始するのに先立って、入力受付部21は、入力装置34に対して行われる、判定に必要な面画像の枚数の設定操作を受け付ける。判定に必要な面画像の枚数は、検査対象107の厚さ寸法及び熱伝導率によって変化するため、ユーザが適切な枚数を設定する。なお、設定する枚数の範囲は2枚以上であり、面画像は少なくとも2枚撮影される。設定された枚数は、判定部15によって保持される。 The operation of the nondestructive inspection system according to the first embodiment will be described. FIG. 4 is a flowchart of an operation flow of the nondestructive inspection system according to the first embodiment. Prior to starting the processing of the flowchart shown in FIG. 4, the input receiving unit 21 receives an operation for setting the number of surface images necessary for determination, which is performed on the input device 34. Since the number of surface images necessary for the determination varies depending on the thickness dimension and the thermal conductivity of the inspection object 107, the user sets an appropriate number. Note that the range of the set number is two or more, and at least two plane images are taken. The set number is held by the determination unit 15.
 また、図4に示すフローチャートの処理を開始するのに先立って、検査結果と比較する設計情報を判定部15に保持させる。設計情報とは、検査対象107のCAD(Computer Aided Design)データである。設計情報を判定部15に保持させる方法は、特定の方法に限定されない。一例を挙げると、プログラマブル表示器100をCAD装置に接続してデータをインポートすることで、設計情報を判定部15に保持させることができる。 Also, prior to starting the processing of the flowchart shown in FIG. 4, the determination unit 15 holds design information to be compared with the inspection result. The design information is CAD (Computer Aided Design) data of the inspection object 107. The method for holding the design information in the determination unit 15 is not limited to a specific method. For example, the design information can be held in the determination unit 15 by connecting the programmable display 100 to a CAD device and importing data.
 ステップS101で、制御装置102によって励起装置104及び駆動装置105を駆動し、搬送装置106で検査対象107を搬送しつつ、励起装置104で検査対象107を励起する。 In step S 101, the excitation device 104 and the driving device 105 are driven by the control device 102, and the inspection target 107 is excited by the excitation device 104 while the inspection target 107 is conveyed by the transport device 106.
 ステップS102で、撮像装置103が、検査対象107を撮像する。 In step S102, the imaging device 103 images the inspection object 107.
 ステップS103で、映像データ処理部16は、撮像装置103が撮像した面画像のデータを、撮像装置接続インタフェース14経由で取得し、映像データ記憶部19に記憶させる。 In step S <b> 103, the video data processing unit 16 acquires the surface image data captured by the imaging device 103 via the imaging device connection interface 14 and stores it in the video data storage unit 19.
 ステップS104で、判定部15は、判定に必要な情報を取得したか否かを判断する。判定に必要な情報を取得したか否かの判断は、映像データ処理部16が撮像装置103から取得した面画像の数が、フローチャートの処理を開始するのに先立って入力受付部21が受け付けた設定操作によって設定された枚数に達したか否かに基づいて行う。判定に必要な情報を取得していなければ、ステップS104でNoとなり、ステップS105で判定部15は、ステップS102で面画像を撮像してからステップ105までの処理時間と、搬送速度と、フレームレートとを加味した遅延時間待機してからステップS102に進む。 In step S104, the determination unit 15 determines whether information necessary for determination has been acquired. Whether or not the information necessary for the determination has been acquired is determined by the input receiving unit 21 in accordance with the number of surface images acquired by the video data processing unit 16 from the imaging device 103 before starting the processing of the flowchart. This is based on whether or not the number set by the setting operation has been reached. If the information necessary for the determination has not been acquired, the result in Step S104 is No. In Step S105, the determination unit 15 captures the surface image in Step S102 and then the processing time from Step 105 to Step 105, the conveyance speed, and the frame rate. The process proceeds to step S102 after waiting for a delay time including the above.
 判定に必要な情報を取得していれば、ステップS104でYesとなり、映像データ処理部16は、ステップS106で、複数の面画像の各々を搬送方向に分割して、搬送方向と直交する方向に延びるライン画像を生成して部分画像にする処理を行う。 If the information necessary for the determination has been acquired, Yes in step S104, and the video data processing unit 16 divides each of the plurality of surface images in the transport direction in a direction orthogonal to the transport direction in step S106. A process of generating an extended line image to form a partial image is performed.
 図5は、実施の形態1にかかる非破壊検査システムの検査対象の一例を示す斜視図である。検査対象107は、内部に球状の欠陥51が存在している。図5に示す検査対象107を検査の対象とした映像データ処理部16の処理を説明する。図6は、実施の形態1にかかる非破壊検査システムの映像データ処理部の処理を模式的に示す図である。ここでは、搬送速度M=1000[mm/s]であるとする。また、フレームレートA=100[枚/s]、解像度C×R=400×300[dot]、視野H×V=800×600[mm×mm]であるとする。 FIG. 5 is a perspective view illustrating an example of an inspection target of the nondestructive inspection system according to the first embodiment. The inspection object 107 has a spherical defect 51 inside. The processing of the video data processing unit 16 with the inspection object 107 shown in FIG. 5 as the inspection object will be described. FIG. 6 is a diagram schematically illustrating processing of the video data processing unit of the nondestructive inspection system according to the first embodiment. Here, it is assumed that the conveyance speed M = 1000 [mm / s]. Further, it is assumed that the frame rate A = 100 [sheets / s], the resolution C × R = 400 × 300 [dot], and the field of view H × V = 800 × 600 [mm × mm].
 撮像装置103が撮像してから次の撮像を行うまでの時間は1/A[s]である。図6には、時刻tから3/A秒後までに撮像される四つの面画像に対する映像データ処理部16の処理を示している。 The time from when the imaging device 103 takes an image to when the next imaging is performed is 1 / A [s]. FIG. 6 illustrates processing of the video data processing unit 16 for four plane images captured from time t to 3 / A seconds later.
 撮像装置103が撮像してから次の撮像を行うまでに検査対象107が移動する距離は、M/A=1000/100[mm]である。また、撮像装置103の解像度と視野角とは縦横比が等しいため、撮像装置103が撮像した面画像の1ドット分の幅は、H/C=800/400=2[mm]である。なお、面画像の幅とは、搬送装置106の搬送方向の長さである。したがって、撮像装置103が面画像を撮像してから次の面画像を撮像する間に、検査対象107は、5ドット分移動する。 The distance that the inspection object 107 moves from the time when the imaging device 103 takes an image until the next imaging is performed is M / A = 1000/100 [mm]. Further, since the resolution and the viewing angle of the imaging device 103 have the same aspect ratio, the width of one dot of the surface image captured by the imaging device 103 is H / C = 800/400 = 2 [mm]. Note that the width of the surface image is the length of the transport device 106 in the transport direction. Therefore, the inspection object 107 moves by 5 dots while the imaging device 103 captures the surface image and then captures the next surface image.
 したがって、映像データ処理部16は、ステップS106の処理では、撮像装置103が撮像した面画像を5画素幅に分割して複数のライン画像を生成する。 Therefore, in the process of step S106, the video data processing unit 16 generates a plurality of line images by dividing the surface image captured by the imaging device 103 into a width of 5 pixels.
 検査対象107の内部の欠陥51は、検査対象107の表面に与えられた熱が検査対象107の内部へ伝播する際に、熱伝導の妨げとなる。したがって、検査対象107の表面に熱が加えられてから時間がたつにつれ、欠陥51が存在する部分と存在しない部分とで、検査対象107の表面の温度に差が生じ、検査対象107の表面温度は、欠陥51が存在する部分では欠陥51が存在しない部分よりも高くなる。図5に示した検査対象107は、欠陥51が球状であるため、欠陥51は、図6に示すように欠陥51が存在しない部分よりも温度が高い円形の領域となって検査対象107の表面に浮かび上がる。すなわち、欠陥51の外形の概略形状が高温の領域となって検査対象107の表面に浮かび上がる。 The defect 51 inside the inspection object 107 hinders heat conduction when heat applied to the surface of the inspection object 107 propagates to the inside of the inspection object 107. Therefore, as time passes after heat is applied to the surface of the inspection object 107, a difference occurs in the surface temperature of the inspection object 107 between the portion where the defect 51 exists and the portion where the defect 51 does not exist. Is higher in the portion where the defect 51 exists than in the portion where the defect 51 does not exist. In the inspection object 107 shown in FIG. 5, since the defect 51 is spherical, the defect 51 becomes a circular region having a higher temperature than the part where the defect 51 does not exist as shown in FIG. To emerge. That is, the outline shape of the defect 51 becomes a high-temperature region and emerges on the surface of the inspection object 107.
 ステップS107で、映像データ処理部16は、複数の面画像の各々について、部分画像であるライン画像を再配置して、検査対象107の面画像内での位置が撮像時刻に関わらず一定となるように補正を加える。すなわち、図6に示したように、映像データ処理部16は、各撮像時刻におけるライン画像を、基準とする時刻からの経過時間に対応するライン分ずらして再配置する補正を行うことにより、各撮像時刻について検査対象107の位置を揃えた補正画像を生成する。 In step S107, the video data processing unit 16 rearranges the line images that are partial images for each of the plurality of surface images, and the position of the inspection object 107 in the surface image is constant regardless of the imaging time. Make corrections as follows. That is, as shown in FIG. 6, the video data processing unit 16 performs correction by rearranging the line image at each imaging time by shifting the line image corresponding to the elapsed time from the reference time. A corrected image in which the position of the inspection object 107 is aligned with respect to the imaging time is generated.
 ステップS108で、表示生成部20は、各撮像時刻の補正画像を基に動画像又は三次元画像を生成する。すなわち、表示生成部20は、各撮像時刻の補正画像を時系列に沿って切り替えることにより、検査結果の動画像を作成する。表示生成部20が生成した動画像又は三次元画像は、プログラマブル表示器100が表示装置35に表示する解析画像である。図7は、実施の形態1にかかる非破壊検査システムの表示生成部が生成する検査結果の動画像の一例を示す図である。時系列の後側の補正画像ほど、検査対象107の表面から離れた断面の検査結果を示すため、時刻tから3/A秒後までの補正画像を連続して表示することで、検査対象107には、表面から離れるに従って直径が大きくなる断面円形の欠陥51が存在することを認識できる。このようにして、プログラマブル表示器100は、撮像装置103から受信した撮影画像を検査対象107の移動量に応じて補正を行い、時間経過に伴う外的要因の変動する事象を表示する。 In step S108, the display generation unit 20 generates a moving image or a three-dimensional image based on the corrected image at each imaging time. In other words, the display generation unit 20 creates a moving image of the inspection result by switching the corrected image at each imaging time in time series. The moving image or three-dimensional image generated by the display generation unit 20 is an analysis image displayed on the display device 35 by the programmable display device 100. FIG. 7 is a diagram illustrating an example of a moving image of the inspection result generated by the display generation unit of the nondestructive inspection system according to the first embodiment. In order to show the inspection result of the cross section farther from the surface of the inspection object 107 as the corrected image on the rear side of the time series, the correction image from the time t to 3 / A seconds later is continuously displayed, whereby the inspection object 107 is displayed. It can be recognized that there is a circular cross-section defect 51 whose diameter increases with distance from the surface. In this way, the programmable display device 100 corrects the captured image received from the imaging device 103 in accordance with the amount of movement of the inspection object 107, and displays an event in which an external factor varies with time.
 または、表示生成部20は、各撮像時刻の補正画像を時系列に沿って重ねることで、検査対象107の三次元画像を作成する。図8は、実施の形態1にかかる非破壊検査システムの表示生成部が生成する検査結果の三次元画像の一例を示す図である。時刻tから3/A秒後までの補正画像を重ねることで、検査対象107の内部の欠陥51を立体的に可視化できる。このようにして、プログラマブル表示器100は、撮像装置103から受信した撮影画像ごとに検査対象107の移動量に応じて、特定領域の撮影画像に分割し、複数の撮影画像に関し、撮影画像に含まれる特定領域の撮影画像を表示装置35に重ねて表示させる。ここでの特定領域とは、搬送方向と直交する方向に延びるライン画像であるが、後述するように、特定領域はライン画像に限定されることはない。 Alternatively, the display generation unit 20 creates a three-dimensional image of the inspection object 107 by superimposing the corrected images at the respective imaging times in time series. FIG. 8 is a diagram illustrating an example of a three-dimensional image of the inspection result generated by the display generation unit of the nondestructive inspection system according to the first embodiment. By superimposing the corrected images from time t to 3 / A seconds later, the defect 51 inside the inspection object 107 can be visualized stereoscopically. In this manner, the programmable display device 100 divides each captured image received from the imaging device 103 into captured images in a specific area according to the movement amount of the inspection target 107, and includes a plurality of captured images in the captured images. The captured image of the specific area to be displayed is superimposed on the display device 35. The specific area here is a line image extending in a direction orthogonal to the transport direction, but the specific area is not limited to a line image, as will be described later.
 ステップS109で、判定部15は、表示生成部20が生成した動画像又は三次元画像を、判定部15に保持されている設計情報と比較する。上述したように、設計情報とは、検査対象107のCADデータ、すなわち設計上の理論値である。表示生成部20が生成した動画像又は三次元画像を設計情報と比較することで、検査対象107が設計上の仕様から外れているか否かを判断することが可能となる。このように、プログラマブル表示器100は、検査対象107の形状が特定された形状データを基に、設計上の理論値と形状データとを比較し、特異点を検出する。なお、ここでは検査対象107が設計上の仕様から外れている場合にどのような処理を行うかについては特定しないが、一例を挙げると、設計上の仕様から外れた検査対象107を不良品と見なして、正常品とは異なる場所に搬送するような処理を行える。 In step S109, the determination unit 15 compares the moving image or the three-dimensional image generated by the display generation unit 20 with design information held in the determination unit 15. As described above, the design information is CAD data of the inspection object 107, that is, a theoretical value in design. By comparing the moving image or three-dimensional image generated by the display generation unit 20 with the design information, it is possible to determine whether or not the inspection target 107 is out of design specifications. In this way, the programmable display 100 compares the design theoretical value with the shape data based on the shape data in which the shape of the inspection object 107 is specified, and detects a singular point. Here, it is not specified what kind of processing is performed when the inspection target 107 is out of the design specification, but as an example, the inspection target 107 out of the design specification is regarded as a defective product. In view of this, it is possible to perform processing such as transporting to a place different from the normal product.
 ステップS110で、表示制御部22は、表示生成部20が生成した動画像又は三次元画像を表示装置35に表示させることにより、外的要因の変動する特異点を表示する。 In step S110, the display control unit 22 displays the moving image or the three-dimensional image generated by the display generation unit 20 on the display device 35, thereby displaying the singular point where the external factor varies.
 なお、撮像装置103が撮像してから次の撮像を行うまでに検査対象107が移動する距離M/Aが、撮像装置103が撮像した面画像の1ドット分の幅H/Cよりも小さい場合、ライン画像に重複部分が生じることになる。このような場合には、全ての撮像タイミングでの面画像からライン画像を生成しても良いが、面画像の間引き処理を行うことでライン画像の生成及び検査対象107の位置を補正する処理での演算量を減らすことができる。 Note that the distance M / A that the inspection object 107 moves from the time when the imaging device 103 takes an image until the next imaging is smaller than the width H / C of one dot of the surface image taken by the imaging device 103 Therefore, an overlapping portion is generated in the line image. In such a case, a line image may be generated from surface images at all imaging timings. However, line image generation and correction of the position of the inspection target 107 are performed by performing surface image thinning processing. The amount of computation can be reduced.
 図9は、実施の形態1にかかる非破壊検査システムの映像データ処理部による間引き処理の一例を示す図である。図9には、時刻tから6/A秒後までに撮像される七つの面画像からの間引き処理を示している。ここでは、搬送速度M=100[mm/s]であるとする。また、フレームレートA=100[枚/s]、解像度C×R=400×300[dot]、視野H×V=800×600[mm×mm]であるとする。上記条件では、撮像装置103が面画像を撮像してから次の面画像を撮像する間に、検査対象107は、0.5ドット分移動する。したがって、撮像装置103が撮像する面画像を時系列に沿って一つおきに用いること、換言すると時刻t、時刻t+2/A、時刻t+4/A、時刻T+6/Aの面画像を用いることで、演算装置31の負荷を低減することができる。 FIG. 9 is a diagram illustrating an example of thinning processing by the video data processing unit of the nondestructive inspection system according to the first embodiment. FIG. 9 shows the thinning-out process from seven surface images captured from time t to 6 / A seconds later. Here, it is assumed that the conveyance speed M = 100 [mm / s]. Further, it is assumed that the frame rate A = 100 [sheets / s], the resolution C × R = 400 × 300 [dot], and the field of view H × V = 800 × 600 [mm × mm]. Under the above conditions, the inspection object 107 moves by 0.5 dots while the imaging device 103 captures a surface image and then captures the next surface image. Therefore, by using every other plane image picked up by the imaging device 103 in time series, in other words, by using the plane images at time t, time t + 2 / A, time t + 4 / A, and time T + 6 / A, The load on the arithmetic device 31 can be reduced.
 上記の説明では、検査対象107の面画像を搬送方向に分割し、搬送方向と直交する方向に延びるライン画像を部分画像にしているが、検査対象107の面画像をマトリクス状に分割したブロック画像を部分画像にすることも可能である。 In the above description, the surface image of the inspection object 107 is divided in the conveyance direction, and the line image extending in the direction orthogonal to the conveyance direction is a partial image. However, the block image obtained by dividing the surface image of the inspection object 107 into a matrix shape. Can also be made into partial images.
 実施の形態1にかかる非破壊検査システムは、検査対象107の面画像を用いて内部の欠陥の大きさ及び形状を解析できるため、異種材料を組み合わせた複合材であっても欠陥を検出できる。 Since the nondestructive inspection system according to the first embodiment can analyze the size and shape of internal defects using the surface image of the inspection object 107, it can detect defects even in a composite material in which different materials are combined.
実施の形態2.
 図10は、本発明の実施の形態2にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図である。実施の形態2にかかる非破壊検査システムのプログラマブル表示器110は、取得した面画像の特徴点から検査対象107の移動量を算出し、駆動装置105にフィードバックするフィードバック処理部23を有する点で実施の形態1のプログラマブル表示器100と相違している。フィードバック処理部23は、演算装置31がメモリ32をワークスペースに用いて非破壊検査プログラムを実行することによって実現される。
Embodiment 2. FIG.
FIG. 10 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the second embodiment of the present invention. The programmable display 110 of the nondestructive inspection system according to the second embodiment is implemented in that it includes a feedback processing unit 23 that calculates the amount of movement of the inspection object 107 from the feature points of the acquired surface image and feeds back to the drive device 105. This is different from the programmable display device 100 of the first embodiment. The feedback processing unit 23 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work space.
 特徴点は、検査対象107のエッジ又はコーナを画像処理で検出して利用することができる。また、搬送装置106に印を付けておき、これを特徴点に用いても良い。 The feature point can be used by detecting the edge or corner of the inspection object 107 by image processing. Also, the transfer device 106 may be marked and used as a feature point.
 図11は、実施の形態2にかかる非破壊検査システムに適用されるプログラマブル表示器のフィードバック処理を示す図である。フィードバック処理部23は、時刻tにおいて映像データ処理部16が撮像装置103から取得した面画像と、時刻tよりも1/A前の時刻において前回撮像装置103から取得した映像データ記憶部19に記憶されている面画像とを比較し、特徴点61の移動量を算出する。搬送速度M=1000[mm/s]、フレームレートA=100[枚/s]、解像度C×R=400×300[dot]、視野H×V=800×600[mm×mm]の場合を例に挙げて説明すると、映像データ処理部16が撮像装置103から取得した面画像と、映像データ記憶部19に記憶されている前回撮像装置103から取得した面画像とで、特徴点61は5ドット分移動する。仮に、フィードバック処理部23が算出した特徴点61の移動量が4ドット分であったならば、検査対象107の実際の搬送速度は、1000×(4/5)=800[mm/s]である。このため、フィードバック処理部23は、実際の搬送速度が1000[mm/s]になるように、駆動装置105への速度指令値を(1000/800)=1.25倍にするように制御装置102へ指令を送る。 FIG. 11 is a diagram illustrating feedback processing of the programmable display applied to the nondestructive inspection system according to the second embodiment. The feedback processing unit 23 stores the plane image acquired from the imaging device 103 by the video data processing unit 16 at the time t and the video data storage unit 19 acquired from the previous imaging device 103 at a time 1 / A before the time t. The amount of movement of the feature point 61 is calculated by comparing the obtained surface image. The case where the conveyance speed M = 1000 [mm / s], the frame rate A = 100 [sheets / s], the resolution C × R = 400 × 300 [dot], and the field of view H × V = 800 × 600 [mm × mm]. For example, the feature point 61 is 5 in the surface image acquired from the imaging device 103 by the video data processing unit 16 and the surface image acquired from the previous imaging device 103 stored in the video data storage unit 19. Move dot. If the movement amount of the feature point 61 calculated by the feedback processing unit 23 is 4 dots, the actual conveyance speed of the inspection object 107 is 1000 × (4/5) = 800 [mm / s]. is there. Therefore, the feedback processing unit 23 controls the control device so that the speed command value to the driving device 105 is (1000/800) = 1.25 times so that the actual transport speed is 1000 [mm / s]. A command is sent to 102.
 このように、実施の形態2にかかる非破壊検査システムは、取得した面画像の特徴点61から検査対象107の移動量を算出し、駆動装置105にフィードバックできる。このため、検査対象107の搬送速度の変動を抑えることができる。 As described above, the nondestructive inspection system according to the second embodiment can calculate the amount of movement of the inspection object 107 from the feature points 61 of the acquired surface image and feed back to the drive device 105. For this reason, the fluctuation | variation of the conveyance speed of the test object 107 can be suppressed.
 ライン画像の作成及び検査対象107の位置を補正する処理と、検査結果を動画像又は三次元画像で表示する処理は実施の形態1と同様である。 The process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
実施の形態3.
 図12は、本発明の実施の形態3にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図である。プログラマブル表示器120は、映像データ処理部16が検査対象107の位置を補正した面画像を基に表示生成部20が再生成した動画像から、撮像時刻が連続する二つの面画像間での欠陥の変位量を算出し、設定された閾値と比較する変位量比較部24と、変位量比較部24が欠陥の変位量が閾値を超えることを検出したら、検査対象107を特定する情報と欠陥が閾値を超えたことを示す情報とが記憶される履歴情報保持部25とを有する。変位量比較部24は、演算装置31がメモリ32をワークスペースに用いて非破壊検査プログラムを実行することによって実現される。履歴情報保持部25は、記憶装置33によって実現される。
Embodiment 3 FIG.
FIG. 12 is a diagram illustrating a configuration of a programmable display applied to the nondestructive inspection system according to the third embodiment of the present invention. The programmable display device 120 has a defect between two surface images having consecutive imaging times from a moving image regenerated by the display generation unit 20 based on the surface image in which the position of the inspection object 107 is corrected by the video data processing unit 16. When the displacement amount comparison unit 24 calculates the displacement amount of the defect and compares it with the set threshold value and the displacement amount comparison unit 24 detects that the displacement amount of the defect exceeds the threshold value, the information identifying the inspection object 107 and the defect And a history information holding unit 25 in which information indicating that the threshold value has been exceeded is stored. The displacement comparison unit 24 is realized by the arithmetic device 31 executing a nondestructive inspection program using the memory 32 as a work space. The history information holding unit 25 is realized by the storage device 33.
 変位量比較部24は、欠陥の変位量が閾値を超えることを検出したら、制御装置接続インタフェース13を通じて制御装置102に通知する。したがって、制御装置102に報知器108を接続しておけば、欠陥の変位量が閾値を超えたことをユーザに通知できる。報知器108には、警報ランプ又は警報スピーカを適用できる。 The displacement amount comparison unit 24 notifies the control device 102 through the control device connection interface 13 when detecting that the displacement amount of the defect exceeds the threshold value. Therefore, if the alarm device 108 is connected to the control device 102, the user can be notified that the displacement amount of the defect has exceeded the threshold value. An alarm lamp or an alarm speaker can be applied to the alarm device 108.
 また、欠陥の変位量が閾値を超えた場合には、検査対象107を特定する情報と欠陥が閾値を超えたことを示す情報とが履歴情報保持部25に記憶されるため、ユーザが報知器108による通知を見過ごしたり聞き逃したりしても、どの検査対象107で欠陥の変位量が閾値を超えたのかを事後的に確認することができる。 In addition, when the displacement amount of the defect exceeds the threshold value, information for specifying the inspection object 107 and information indicating that the defect exceeds the threshold value are stored in the history information holding unit 25. Even if the notification by 108 is overlooked or missed, it can be confirmed later on which inspection object 107 the displacement amount of the defect has exceeded the threshold value.
 ライン画像の作成及び検査対象107の位置を補正する処理と、検査結果を動画像又は三次元画像で表示する処理は実施の形態1と同様である。 The process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
 検査対象107に人為的に欠陥を設ける場合、設計情報において欠陥の位置に許容公差が設けられているならば、欠陥の位置が許容公差の範囲を超えなければ異常と判定されない。具体例を挙げると、設計情報により欠陥の位置に±Aという公差が許容されるのであれば、ある撮像タイミングで基準位置+Aであって欠陥の位置が、次の撮像タイミングで基準位置-Aに変化しても設計情報には適合しており、異常と判定されない。しかし、この場合には、欠陥には段差が生じており、欠陥は検査対象107の厚さ方向に不連続な形状となっている。実施の形態3では、設計情報とは別に欠陥の変位量の閾値を設けることにより、欠陥が検査対象107の厚さ方向に不連続な形状となることを防止できる。 When the inspection object 107 is artificially provided with a defect, if an allowable tolerance is provided at the position of the defect in the design information, it is not determined as abnormal unless the position of the defect exceeds the allowable tolerance range. As a specific example, if the tolerance of ± A is allowed at the position of the defect according to the design information, the position of the defect is the reference position + A at a certain imaging timing, and the position of the defect is changed to the reference position −A at the next imaging timing. Even if it changes, it conforms to the design information and is not determined to be abnormal. However, in this case, a step is formed in the defect, and the defect has a discontinuous shape in the thickness direction of the inspection object 107. In the third embodiment, it is possible to prevent the defect from having a discontinuous shape in the thickness direction of the inspection object 107 by providing a threshold for the displacement amount of the defect separately from the design information.
実施の形態4.
 図13は、本発明の実施の形態4にかかる非破壊検査システムに適用されるプログラマブル表示器の構成を示す図である。実施の形態4にかかる非破壊検査システムのプログラマブル表示器130は、検査対象107の移動量に撮像装置103のフレームレートを同期させ、ライン画像の部分的な重複を解消するフレームレート同期処理部26を有する点で実施の形態1のプログラマブル表示器100と相違している。フレームレート同期処理部26は、演算装置31がメモリ32をワークスペースに用いて非破壊検査プログラムを実行することによって実現される。
Embodiment 4 FIG.
FIG. 13: is a figure which shows the structure of the programmable display applied to the nondestructive inspection system concerning Embodiment 4 of this invention. The programmable display 130 of the non-destructive inspection system according to the fourth embodiment synchronizes the frame rate of the imaging device 103 with the amount of movement of the inspection object 107, and eliminates partial overlap of line images. This is different from the programmable display device 100 according to the first embodiment. The frame rate synchronization processing unit 26 is realized by the computing device 31 executing a nondestructive inspection program using the memory 32 as a work space.
 図9に示したように、搬送速度M=100[mm/s]、フレームレートA=100[枚/s]、解像度C×R=400×300[dot]、視野H×V=800×600[mm×mm]という条件で駆動装置105及び撮像装置103を動作させると、ライン画像に0.5ドット分の重複が生じる。フレームレート同期処理部26は、制御装置102が駆動装置105へ出力する速度指令を、制御装置接続インタフェース13を通じて取得し、フレームレートA=50[枚/s]に変更する。これにより、間引き処理を行った場合と同様に、ライン画像の生成及び検査対象107の位置を補正する処理での演算量を減らし、演算装置31の負荷を低減できる。 As shown in FIG. 9, the conveyance speed M = 100 [mm / s], the frame rate A = 100 [sheets / s], the resolution C × R = 400 × 300 [dot], and the field of view H × V = 800 × 600. When the driving device 105 and the imaging device 103 are operated under the condition of [mm × mm], an overlap of 0.5 dots occurs in the line image. The frame rate synchronization processing unit 26 acquires the speed command output from the control device 102 to the drive device 105 through the control device connection interface 13 and changes the frame rate A to 50 [sheets / s]. Thereby, similarly to the case where the thinning process is performed, the amount of calculation in the process of generating the line image and correcting the position of the inspection object 107 can be reduced, and the load on the calculation device 31 can be reduced.
 ライン画像の作成及び検査対象107の位置を補正する処理と、検査結果を動画像又は三次元画像で表示する処理は実施の形態1と同様である。 The process of creating the line image and correcting the position of the inspection object 107 and the process of displaying the inspection result as a moving image or a three-dimensional image are the same as in the first embodiment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 13 制御装置接続インタフェース、14 撮像装置接続インタフェース、15 判定部、16 映像データ処理部、19 映像データ記憶部、20 表示生成部、21 入力受付部、22 表示制御部、23 フィードバック処理部、24 変位量比較部、25 履歴情報保持部、26 フレームレート同期処理部、31 演算装置、32 メモリ、33 記憶装置、34 入力装置、35 表示装置、36 通信装置、51 欠陥、61 特徴点、100,110,120,130 プログラマブル表示器、102 制御装置、103 撮像装置、104 励起装置、105 駆動装置、106 搬送装置、107 検査対象、108 報知器。 13 control device connection interface, 14 imaging device connection interface, 15 determination unit, 16 video data processing unit, 19 video data storage unit, 20 display generation unit, 21 input reception unit, 22 display control unit, 23 feedback processing unit, 24 displacement Quantity comparison unit, 25 history information holding unit, 26 frame rate synchronization processing unit, 31 arithmetic device, 32 memory, 33 storage device, 34 input device, 35 display device, 36 communication device, 51 defect, 61 feature point, 100, 110 , 120, 130 Programmable display, 102 control device, 103 imaging device, 104 excitation device, 105 drive device, 106 transport device, 107 inspection object, 108 alarm.

Claims (9)

  1.  検査対象を搬送する搬送装置を駆動する駆動装置と、
     前記搬送装置によって搬送される前記検査対象の表面に熱を与える励起装置と、
     前記駆動装置及び前記励起装置を制御する制御装置と、
     前記励起装置によって表面に熱が与えられた前記検査対象の面画像を撮像する撮像装置と、
     前記撮像装置が異なるタイミングで撮像した複数の前記面画像の各々を、複数の部分画像に分割し、該複数の部分画像に分割した前記複数の面画像の各々の前記検査対象の位置を揃える補正を行う映像データ処理部と、前記映像データ処理部が補正した複数の前記面画像を時系列に沿って切り替える動画像又は時系列に沿って重ねた三次元画像を生成する表示生成部とを有するプログラマブル表示器とを備えたことを特徴とする非破壊検査システム。
    A driving device for driving a conveying device for conveying an inspection object;
    An excitation device for applying heat to the surface of the inspection object conveyed by the conveyance device;
    A control device for controlling the drive device and the excitation device;
    An imaging device that captures a surface image of the inspection object whose surface is heated by the excitation device;
    Correction that divides each of the plurality of surface images captured at different timings by the imaging device into a plurality of partial images, and aligns the positions of the inspection targets of the plurality of surface images divided into the plurality of partial images. And a display generation unit that generates a moving image that switches the plurality of plane images corrected by the video data processing unit in time series or a three-dimensional image that is superimposed in time series. A nondestructive inspection system comprising a programmable display.
  2.  前記検査対象の面画像内の特徴点の位置に基づいて前記検査対象の移動量を算出し、前記駆動装置にフィードバック制御を行うフィードバック処理部を有することを特徴とする請求項1に記載の非破壊検査システム。 The non-processing device according to claim 1, further comprising: a feedback processing unit that calculates a movement amount of the inspection target based on a position of a feature point in the surface image of the inspection target and performs feedback control on the driving device. Destructive inspection system.
  3.  撮像時刻が連続する二つの面画像間での欠陥の変位量を算出し、設定された閾値と比較する変位量比較部と、
     前記検査対象を特定する情報と欠陥の変位量が閾値を超えたことを示す情報とが記憶される履歴情報保持部とを有することを特徴とする請求項1に記載の非破壊検査システム。
    A displacement amount comparison unit that calculates a displacement amount of a defect between two surface images having continuous imaging times and compares the displacement amount with a set threshold value;
    The nondestructive inspection system according to claim 1, further comprising: a history information holding unit that stores information for specifying the inspection target and information indicating that a displacement amount of a defect exceeds a threshold value.
  4.  前記検査対象の移動量に前記撮像装置のフレームレートを同期させ、前記部分画像の部分的な重複を解消するフレームレート同期処理部を有することを特徴とする請求項1から3のいずれか1項に記載の非破壊検査システム。 4. The apparatus according to claim 1, further comprising: a frame rate synchronization processing unit that synchronizes a frame rate of the imaging apparatus with a movement amount of the inspection target and eliminates partial overlap of the partial images. Non-destructive inspection system described in
  5.  前記映像データ処理部は、前記表示生成部の検査結果と設計情報とを比較し、外的要因の変動する特異点を抽出することを特徴とする請求項1に記載の非破壊検査システム。 The nondestructive inspection system according to claim 1, wherein the video data processing unit compares the inspection result of the display generation unit with design information and extracts a singular point where an external factor fluctuates.
  6.  測定対象物を移動させる移動手段と、
     移動する前記測定対象物に対し、外的要因を付与する外的要因付与手段と、
     前記測定対象物を撮像する撮像手段と、
     前記撮像手段の前記測定対象物の撮像画像を受信し、前記移動手段による移動量に応じた前記測定対象物における外的要因の変動する特異点を検出する検出手段と、
     前記検出手段による検出結果を表示する表示手段と、
     を備えた特異点検出システム。
    Moving means for moving the measurement object;
    An external factor imparting means for imparting an external factor to the moving measurement object;
    Imaging means for imaging the measurement object;
    Detecting means for receiving a captured image of the measurement object of the imaging means, and detecting a singular point where an external factor in the measurement object varies according to a movement amount by the moving means;
    Display means for displaying a detection result by the detection means;
    Singularity detection system with
  7.  前記検出手段は、受信した前記撮影画像を測定対象物の移動量に応じて補正を行い、
     前記表示手段にて、時間経過に伴う外的要因の変動する事象を表示することを特徴とする請求項6に記載の特異点検出システム。
    The detection means corrects the received captured image according to the amount of movement of the measurement object,
    The singularity detection system according to claim 6, wherein the display means displays an event in which an external factor varies with time.
  8.  前記検出手段は、受信した前記撮影画像ごとに前記測定対象物の移動量に応じて、特定領域の撮影画像に分割し、
     複数の前記撮影画像に関し、前記撮影画像に含まれる特定領域の撮影画像を前記表示手段に重ねて表示させることを特徴とする請求項6に記載の特異点検出システム。
    The detecting means divides the captured image into a captured image of a specific area according to the amount of movement of the measurement object for each received captured image,
    The singularity detection system according to claim 6, wherein a plurality of photographed images are displayed by superimposing a photographed image of a specific area included in the photographed image on the display unit.
  9.  前記検出手段は、測定対象物の形状が特定された形状データを基に、設計上の理論値と前記形状データとを比較し、特異点を検出することを特徴とする請求項6から8のいずれか1項に記載の特異点検出システム。 The detection means detects a singular point by comparing a theoretical value in design with the shape data based on shape data in which the shape of a measurement object is specified. The singular point detection system according to any one of the above.
PCT/JP2015/060775 2015-04-06 2015-04-06 Nondestructive inspection system and singularity detection system WO2016162930A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580078510.3A CN107533024B (en) 2015-04-06 2015-04-06 Nondestructive inspection system and critical point inspection system
JP2017506934A JP6161852B2 (en) 2015-04-06 2015-04-06 Nondestructive inspection system and singularity detection system
PCT/JP2015/060775 WO2016162930A1 (en) 2015-04-06 2015-04-06 Nondestructive inspection system and singularity detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060775 WO2016162930A1 (en) 2015-04-06 2015-04-06 Nondestructive inspection system and singularity detection system

Publications (1)

Publication Number Publication Date
WO2016162930A1 true WO2016162930A1 (en) 2016-10-13

Family

ID=57071883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060775 WO2016162930A1 (en) 2015-04-06 2015-04-06 Nondestructive inspection system and singularity detection system

Country Status (3)

Country Link
JP (1) JP6161852B2 (en)
CN (1) CN107533024B (en)
WO (1) WO2016162930A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191999A (en) * 2018-04-26 2019-10-31 東芝三菱電機産業システム株式会社 Plant monitoring and control system
CN114791067A (en) * 2021-01-25 2022-07-26 杭州申昊科技股份有限公司 Pipeline robot with heat detection function, control method and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077807B2 (en) * 2018-06-12 2022-05-31 オムロン株式会社 Image inspection system and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168752U (en) * 1984-10-12 1986-05-10
JPH10311811A (en) * 1997-04-15 1998-11-24 Eaton Corp Method and device for detecting defect of ceramic main body
JP2006337232A (en) * 2005-06-03 2006-12-14 Penta Ocean Constr Co Ltd Non-destructive inspection device of concrete structure, and non-destructive inspection method of concrete structure
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
JP2012103176A (en) * 2010-11-11 2012-05-31 Techno System Kk Inspection apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275489A (en) * 1992-10-19 1994-01-04 General Electric Company Apparatus and method for inspecting an open-face cell structure bonded to a substrate
US8870389B2 (en) * 2004-09-15 2014-10-28 Mitsubishi Electric Corporation Image Projection system and image geometric correction device
US8088684B2 (en) * 2007-02-05 2012-01-03 Suss Microtec Ag Apparatus and method for semiconductor wafer bumping via injection molded solder
KR20160142412A (en) * 2008-09-25 2016-12-12 포톤 다이나믹스, 인코포레이티드 Automatic dynamic pixel map correction and drive signal calibration
JP5296739B2 (en) * 2010-04-28 2013-09-25 浜松ホトニクス株式会社 Semiconductor failure analysis apparatus and failure analysis method
JP2013116313A (en) * 2011-11-01 2013-06-13 Fujifilm Corp Radiographic imaging method and device
JP2015156523A (en) * 2012-06-06 2015-08-27 ソニー株式会社 Image processing device, image processing method, and program
US9473688B2 (en) * 2012-12-20 2016-10-18 Canon Kabushiki Kaisha Image pickup apparatus comprising a plurality of imaging sensors and image processing units
CN103149240A (en) * 2013-03-19 2013-06-12 南京诺威尔光电系统有限公司 Nondestructive detecting system and method for automatic tracking thermal wave imaging
CN104217421A (en) * 2013-05-29 2014-12-17 杭州美盛红外光电技术有限公司 Device and method for thermal image analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168752U (en) * 1984-10-12 1986-05-10
JPH10311811A (en) * 1997-04-15 1998-11-24 Eaton Corp Method and device for detecting defect of ceramic main body
JP2006337232A (en) * 2005-06-03 2006-12-14 Penta Ocean Constr Co Ltd Non-destructive inspection device of concrete structure, and non-destructive inspection method of concrete structure
JP2008008705A (en) * 2006-06-28 2008-01-17 Jfe Steel Kk Flaw detection method of structure, flaw detector of structure and loading machine equipped with flaw detection function
JP2012103176A (en) * 2010-11-11 2012-05-31 Techno System Kk Inspection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191999A (en) * 2018-04-26 2019-10-31 東芝三菱電機産業システム株式会社 Plant monitoring and control system
JP7187813B2 (en) 2018-04-26 2022-12-13 東芝三菱電機産業システム株式会社 Plant monitoring control system
CN114791067A (en) * 2021-01-25 2022-07-26 杭州申昊科技股份有限公司 Pipeline robot with heat detection function, control method and control system
CN114791067B (en) * 2021-01-25 2024-02-06 杭州申昊科技股份有限公司 Pipeline robot with heat detection function, control method and control system

Also Published As

Publication number Publication date
JPWO2016162930A1 (en) 2017-05-25
JP6161852B2 (en) 2017-07-12
CN107533024B (en) 2020-01-03
CN107533024A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US20130119040A1 (en) System and method for adaptive fill welding using image capture
JP6161852B2 (en) Nondestructive inspection system and singularity detection system
JP2008296330A (en) Robot simulation device
KR102172725B1 (en) Parts feeder and speed detecting apparatus therefor
CN110081816B (en) Article carrying system
CN103523292B (en) Tobacco bale conveying stabilizing mechanism, tobacco bale imaging detection device and method
CN110228693B (en) Feeding device
JP7254327B2 (en) PRESS PARTS INSPECTION DEVICE AND PRESS PARTS INSPECTION METHOD
US20110316814A1 (en) Optical distance determination device, optical touch monitoring system and method for measuring distance of a touch point on an optical touch panel
TW201715203A (en) Image stitching method and image stitching device
JP2018167974A (en) Article counting device
JP2007010419A (en) Three-dimensional shape of object verifying system
JP2006337270A (en) Measuring method for cross-sectional shape and device therefor
JP6497049B2 (en) Image processing apparatus for parts feeder and parts feeder
JP6236819B2 (en) Inspection device, inspection method, and program for inspection device
JP2022105395A (en) Information processing device and program
JP2010237225A (en) Inspection device
CN108062431B (en) Work support system and work method
KR20150015377A (en) Parts feeder and image processing apparatus therefor
JP2020052060A (en) Camber amount measurement method of steel plate, camber amount measurement device of steel plate and calibration method of camber amount measurement device of steel plate
JP2007303848A (en) X-ray fluoroscopic apparatus
WO2023026452A1 (en) Three-dimensional data acquisition device
JP2019048718A (en) Image processing apparatus for part feeder and part feeder
JP6225719B2 (en) Straightness measuring device, straightness measuring method, and program
JP2017198479A (en) Image display device for inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888424

Country of ref document: EP

Kind code of ref document: A1