WO2016162900A1 - Storage battery management device - Google Patents

Storage battery management device Download PDF

Info

Publication number
WO2016162900A1
WO2016162900A1 PCT/JP2015/001955 JP2015001955W WO2016162900A1 WO 2016162900 A1 WO2016162900 A1 WO 2016162900A1 JP 2015001955 W JP2015001955 W JP 2015001955W WO 2016162900 A1 WO2016162900 A1 WO 2016162900A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
unit
degree
state
deterioration
Prior art date
Application number
PCT/JP2015/001955
Other languages
French (fr)
Japanese (ja)
Inventor
小林 美佐世
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017510795A priority Critical patent/JPWO2016162900A1/en
Priority to PCT/JP2015/001955 priority patent/WO2016162900A1/en
Publication of WO2016162900A1 publication Critical patent/WO2016162900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to a storage battery management device, and more particularly to a storage battery management device that manages deterioration of a storage battery.
  • Document 1 proposes a technique that does not change the depth of discharge when the overcharge arrival frequency is within a predetermined range, shallows the depth of discharge when it is less than the predetermined range, and increases the depth of discharge when it exceeds the predetermined range.
  • an independent power supply system including a power generation device and a storage battery is known (Reference 2 [Japanese Patent Application Publication No. 2005-143217]).
  • the independent power supply system described in Document 2 includes a solar panel (solar cell module) and a storage battery that stores a DC voltage output from the solar cell module. This independent power supply system mainly charges the storage battery from the solar cell module during the daytime, and mainly discharges the storage battery at nighttime.
  • Document 1 describes a technique for ensuring the life of a storage battery, but the technique described in Document 1 cannot estimate the life of a storage battery. Moreover, although the independent power supply system is described in the literature 2, the technique described in the literature 2 cannot estimate the degree of deterioration of the storage battery.
  • An object of the present invention is to provide a storage battery management device that makes it possible to evaluate the degree of deterioration of a storage battery.
  • the storage battery management device extracts an information acquisition unit that acquires information on a charge state of a storage battery, and a state in which the storage battery is charged and has reached full charge from information on the charge state of the storage battery, A counting unit that counts the number of occurrences of a state that has reached full charge, an evaluation unit that evaluates the degree of deterioration of the storage battery using the number of occurrences counted by the counting unit, and outputs an evaluation result of the evaluation unit And an output unit, wherein the storage battery is a lead storage battery that is charged using the power generated by the solar battery.
  • Another storage battery management apparatus selects an on state that is provided in an electrical path between an electrical load to which electric power is supplied from the storage battery and that is in an off state that blocks the electrical circuit.
  • a power supply facility comprising a switch configured to switch between the switch and an on state and an off state of the switch, and the storage battery is charged using the generated power of the solar cell.
  • the information storage unit for acquiring information related to the state of charge of the storage battery, and the change in the battery voltage of the storage battery before and after switching from off to on of the switch was recorded and recorded.
  • An evaluation unit that obtains a regression equation representing a relationship between an elapsed period from the start of use of the storage battery and the change using the change, and predicts a period until the storage battery reaches the battery life using the regression When And an outputting unit for outputting the evaluation result of the evaluation unit.
  • the storage battery management apparatus has an effect that the degree of deterioration of the storage battery can be accurately evaluated.
  • FIG. 1 is a block diagram illustrating a first embodiment. It is a figure which shows the example of a characteristic of the storage battery in Embodiment 1.
  • 6 is a diagram illustrating a display example in Embodiment 1.
  • FIG. 6 is a block diagram illustrating a second embodiment.
  • FIG. 6 is a block diagram illustrating a third embodiment.
  • 10 is a diagram illustrating an operation example of Embodiment 3.
  • FIG. 10 is a diagram illustrating an operation applied to the first, second, and third embodiments.
  • FIG. 10 is a diagram illustrating an operation applied to the first, second, and third embodiments.
  • the storage battery management device described below has a function of determining the degree of deterioration of a storage battery.
  • the storage battery management device is used in conjunction with power supply equipment.
  • the power supply facility includes a power supply device, a switch, and a control unit.
  • the power supply device includes a solar battery and a storage battery.
  • the switch is configured to select one of an ON state that is provided in an electric circuit between the electric load supplied with electric power from the power supply device and that is in an on state that interrupts the electric circuit.
  • the control unit has a function of switching between an on state and an off state of the switch.
  • the power supply unit assumes an independent power supply.
  • the stand-alone power source means a power source that is electrically separated from an electric power system installed to supply power by an electric power company. This type of power supply device is sometimes called off-grid because it is independent of the grid that is the power system. This type of stand-alone power supply can be used even in remote areas or islands where electrification is not progressing. In addition, it can be used for the purpose of supplying power before the power system is restored in the disaster area. Note that the technology described below can be used even with a distributed power source linked to a system power source.
  • the power supply device uses a solar panel (that is, a solar cell) as a power generation device.
  • the solar panel generates power mainly during the daytime and generates little power at night, so the output fluctuates in units of one day. In other words, it can be said that the generated power of the solar panel has a periodicity in units of one day.
  • the solar panel's daily power generation varies due to weather even during the daytime, and varies due to differences in sunshine hours due to the season and topography.
  • the power supply device further includes a charging device and a power converter.
  • the charging device outputs a direct current whose voltage is adjusted using the power generated by the solar panel.
  • the output power of the charging device is supplied to the storage battery and the power converter.
  • the power converter is a DC / AC converter (that is, an inverter), and converts DC power into AC power, and this AC power becomes an output of the power supply device.
  • the storage battery is always connected on the electric circuit connecting the charging device and the power converter.
  • the charging device having this configuration, fluctuations in the output voltage of the solar panel are suppressed by the charging device, and fluctuations in power required by the electric load are suppressed by the storage battery.
  • the charging device not only supplies the generated power of the solar panel to the storage battery, but also has a function of monitoring information for grasping the state of charge of the storage battery, such as the battery voltage of the storage battery.
  • the power supply device described above if the generated power of the solar panel is not used for charging the storage battery and exceeds the power used by the electric load, a surplus is generated in the generated power. Since the power supply device is an independent power supply, such surplus power is discarded without being used.
  • the power supply unit has a capacity of about several kWh to several hundred kWh and an output of several kVA to several tens of kVA.
  • the power supply device desirably includes a housing having a size that can be moved using an automobile or the like.
  • the housing is box-shaped, and the size of the housing is about the same as, for example, a transport container, and the width and height are about 2 to 3 m and the length is about 3 to 15 m. Is done. If the power supply device has such a housing, simply transport the power supply device to the installation site using the same means of transportation as the container, assemble the wiring on the installation site, and then lay the wiring with the electrical load. This makes it possible to use the power supply device.
  • the power supply device described above includes a storage battery, and the maximum amount of power that can be stored decreases as the storage battery repeatedly charges and discharges. That is, it is known that the storage battery deteriorates while it is repeatedly charged and discharged. The storage battery needs to be replaced if it deteriorates, and it is important for the user to know the replacement time. For the replacement of the storage battery, one of the following times is generally selected. That is, the timing for replacing the storage battery is often based on one of the time points determined regularly, the time point determined to be the replacement time in the periodic inspection, and the time point when the user feels inconvenience in actual use.
  • the replacement time is often determined to have a margin, so the possibility of replacing the storage battery even though the degree of deterioration of the storage battery is low at the time of replacement. Becomes higher. That is, there is a problem that the replacement frequency of the storage battery is increased and the cost is increased.
  • a periodic inspection is performed to determine the replacement time, work by a person is required, and as a result, labor costs are incurred, resulting in high costs.
  • the replacement time is too late because the degree of deterioration of the storage battery has progressed to some extent, which is inconvenient for the user. In particular, when it takes a long time to obtain a storage battery, there is a possibility that the storage battery will deteriorate further and become unusable after the user feels inconvenience until the storage battery is actually replaced.
  • the storage battery management device is configured to give a guide for the user to determine the replacement time of the storage battery by evaluating the degree of deterioration of the storage battery and outputting the evaluation result while using the storage battery.
  • the storage battery management device 10 ⁇ / b> A is used in combination with the power supply facility 20.
  • the power supply facility 20 includes a power supply device 21, a switch 22, and a control unit 23.
  • the switch 22 and the control unit 23 constitute a power control device 24.
  • the switch 22 is provided in an electric circuit between the power supply device 21 and the electric load 30 and selects one of an on state in which the electric circuit is conducted and an off state in which the electric circuit is interrupted.
  • the power control device 24 includes the storage battery management device 10 ⁇ / b> A, but the storage battery management device 10 ⁇ / b> A can be provided separately from the power control device 24.
  • the power control device 24 includes a plurality of switches 22 corresponding to the plurality of electrical loads 30 on a one-to-one basis.
  • one switch 22 may be electrically connected to a plurality of electric loads 30. Even if there is one switch 22 and one electrical load 30, the storage battery management device 10A can be used.
  • the power supply device 21 includes a solar panel 211, a charging device 212, a storage battery 213, and a power converter 214, and is mounted on a box-shaped housing 2 such as a container.
  • the power supply device 21 is configured by the power supply device 21 and the power control device 24, and the housing 2 is also used for transportation and installation of the power supply facility 20.
  • the solar panel 211 is installed using the housing 2 or is configured to be independent.
  • the solar panel 211 can be mounted on a mount attached to the roof of the housing 2. It is also possible to support a part of the solar panel 211 with the roof of the housing 2 and support the remaining part with a column built on the ground. Alternatively, the solar panel can be placed on a stand that stands on the ground.
  • the installation work of the solar panel 211 may be performed either before or after the power supply device 21 is transported, but is usually performed at the installation site after transport.
  • the storage battery 213 is assumed to be a lead storage battery.
  • the lead-acid battery has the advantage that the relationship between the discharge amount (or remaining battery level) and the battery voltage is almost linear, the discharge amount is easy to manage, and it is relatively inexpensive and easy to obtain. have.
  • it is necessary to manage charging and discharging so as to prevent overdischarge and charge immediately after discharging.
  • the battery life of the storage battery 213 is the maximum value of the depth of discharge in the period of one cycle (hereinafter, maximum discharge). It is known to change with depth).
  • the discharge depth is a value representing the ratio of the discharge amount to the rated capacity as a percentage, and when the electric energy of 80% is discharged with respect to the rated capacity of the storage battery 213, the discharge depth is 80%.
  • the number of cycles from the time when the use of the new storage battery 213 is started to the time when the storage battery 213 needs to be replaced has a relationship shown in FIG. 2 according to the maximum depth of discharge in one cycle period.
  • characteristic a shows a case where the maximum discharge depth is 20%
  • characteristic b shows a case where the maximum discharge depth is 40%
  • characteristic c shows a case where the maximum discharge depth is 80%.
  • the time when the storage battery 213 needs to be replaced is determined as the time when the maximum amount of power that can be discharged from the storage battery 213 is reduced to 80% of the rated capacity of the storage battery 213. That is, the time when the amount of power that can be discharged by the storage battery 213 decreases to 80% of the rated capacity is regarded as the battery life.
  • the number of cycles until the battery life is reached is 4000 cycles when the maximum discharge depth is 20%, 2000 cycles when the maximum discharge depth is 40%, and 1000 cycles when the maximum discharge depth is 80%.
  • FIG. 2 schematically shows the relationship between the capacity of the storage battery 213 (that is, the maximum amount of electric power that can be discharged) and the number of cycles, and although there are differences depending on the specifications of the storage battery 213, the storage battery 213 is a lead storage battery. If so, the maximum amount of electric power that can be discharged and the number of cycles have the same relationship. And the influence which the maximum discharge depth in the period of 1 cycle has on a battery life also becomes the same relationship as the example shown in FIG. 2 irrespective of the specification of lead acid battery.
  • the storage battery 213 is not limited to a lead storage battery, correction of the control content is needed according to the kind of the storage battery 213.
  • the charging device 212 is configured to stabilize the output of the solar panel 211 and output a substantially constant DC voltage.
  • the output voltage of the charging device 212 is determined by the recommended voltage that is the specification of the storage battery 213 and the connection mode of the storage battery 213, and is selected from, for example, 12V, 24V, 48V, and the like.
  • the charging device 212 has a function of controlling the value of the output voltage and the value of the output current by monitoring the battery voltage and the charging current of the storage battery 213.
  • the charging device 212 prevents overcharging of the storage battery 213 by switching between three types of charging states: a first charging state, a second charging state, and a third charging state.
  • the charging device 212 In the first charging state, it is adopted in a period when the remaining battery level is low, and the charging device 212 performs charging with a relatively large charging current. When the charging proceeds in the first charging state and the battery voltage of the storage battery 213 reaches the set voltage value, the charging device 212 shifts to the second charging state.
  • the voltage value to be shifted to the second charging state is set so as to determine that the storage battery 213 has almost reached full charge.
  • the charging device 212 continues charging while maintaining the battery voltage at the set voltage value by intermittently flowing a charging current, and charges the storage battery 213 so as to approach full charging. continue.
  • the battery voltage of the storage battery 213 is maintained at the set voltage value, so that overcharging of the storage battery 213 can be avoided.
  • the battery voltage is maintained at the set voltage value, and therefore the period for maintaining the second charging state is determined using time.
  • the second state of charge is maintained for about 2 to 3 hours.
  • the charging device 212 shifts to the third state of charge.
  • the charging device 212 sets the output voltage to a voltage value lower than the voltage maintained in the second charging state.
  • the third charging state is a state in which float charging is performed, and the output voltage is lowered to a voltage value set for performing floating charging. This is because the storage battery 213 is overcharged if charging is further continued in a state where the storage battery 213 is fully charged. Therefore, the voltage value set in the third charging state is set to such an extent that the overcharge of the storage battery 213 is prevented.
  • the maximum power generated by the solar panel 211 is used for charging the storage battery 213 in the first charging state.
  • the state shifts to the third state of charge.
  • the third charging state if the generated power of the solar panel 211 is greater than the power required by the electric load 30, at least a part of the power generated by the solar panel 211 is discarded as surplus power.
  • the third charging state when the electric power generated by the solar panel 211 does not satisfy the electric power required by the electric load 30, the shortage electric power is supplemented from the storage battery 213.
  • the charging device 212 When the storage battery 213 is discharged, the battery voltage of the storage battery 213 is lower than the set voltage in the third charging state, and when this state continues for a predetermined time, the charging device 212 performs the first charging from the third charging state. Transition to the state. Note that the charging device 212 can use not only the battery voltage of the storage battery 213 but also the charge current and discharge current value of the storage battery 213 in order to determine the timing for switching the charging state.
  • the charging device 212 determines that there is a surplus when the discarded power is generated among the power generated by the solar panel 211.
  • the determination result of the charging device 212 can be taken out of the power supply device 21 as power supply information.
  • the power supply information includes information on whether or not the solar panel 211 is generating power and the value of the battery voltage of the storage battery 213. Therefore, the charging device 212 has a function of monitoring the output of the current sensor 215 and the like appropriately arranged in the power supply device 21, and generating and outputting power supply information.
  • the current sensor 215 is provided so as to measure the charging current and the discharging current, but the current sensor 215 is also appropriately arranged.
  • the power converter 214 receives DC power from the charging device 212 or the storage battery 213 and outputs AC power.
  • the effective value of the AC voltage output from the power converter 214 is set to 100 V or 220 V, for example.
  • the charging device 212 and the power converter 214 are basically switching power supplies.
  • an electric circuit that supplies electric power for each electric load 30 is referred to as a load electric circuit 31.
  • the main electric circuit 32 electrically connected to the power supply device 21 branches into a plurality of load electric circuits 31.
  • a plurality of switches 22 correspond one-to-one to each of the load electric circuits 31 of a plurality of systems, and the switches 22 are inserted for each load electric circuit 31. ON / OFF of the switch 22 is individually controlled for each switch 22. Therefore, only the electric load 30 connected to the load electric circuit 31 in which the switch 22 is on receives power from the power supply device 21.
  • the switch 22 is selected from, for example, an electromagnetic relay, an electromagnetic contactor, a remote control breaker, or the like.
  • the electromagnetic relay means a switch that drives a contact using an electromagnet device including an amateur
  • the electromagnetic contactor means a switch that drives a contact using an electromagnet device including an actuator that moves straight.
  • the remote control breaker means a breaker that can be remotely operated to turn on and off the contacts.
  • the switch 22 may be configured to be able to conduct or cut off the secondary-side electric circuit according to an instruction to the primary side, and is not limited to a configuration including a mechanical contact, but a switch using a semiconductor switch It may be.
  • the on / off state of the switch 22 is used to mean that the secondary side electric circuit is conducted or cut off in response to an on / off instruction to the primary side of the switch 22.
  • a solid line represents a power path
  • a broken line represents an information path.
  • the processing unit 230 determines on / off of each switch 22 using the current flowing from the power supply device 21 to the electric load 30 and the power supply information output from the power supply device 21.
  • the current flowing from the power supply device 21 to the electric load 30 is monitored by a current sensor 34 disposed in the main electric circuit 32.
  • the control unit 23 includes a measurement unit 231 that obtains a current value from the output of the current sensor 34. It is desirable that the measurement unit 231 also monitors the output voltage of the power supply device 21.
  • the power supply information is acquired by the communication unit 232 that communicates with the charging device 212.
  • the current sensor 34 has a configuration in which a winding is wound around an annular core such as a toroidal core, a Rogowski coil that is a planar air-core coil, and a magnetically responsive element such as a Hall element or a magnetoresistive element attached to the magnetic core. It is selected from the configuration.
  • the control unit 23 acquires power supply information from the power supply device 21 through the communication unit 232.
  • the power supply device 21 shifts from the first charging state to the second charging state, in principle, all the switches 22 are turned on. To do.
  • the relationship between the capacity of the power supply device 21 and the power consumption of the electric load 30 is determined so that all the switches 22 can be turned on.
  • the processing unit 230 receives the current value flowing through the electrical load 30 from the measurement unit 231 after turning on the switch 22. And the process part 230 restrict
  • the processing unit 230 receives power supply information from the charging device 212 through the communication unit 232, and the power supply device 21 operates in the second charging state and surplus occurs in the third charging state to generate power. Recognize the discard period.
  • the processing unit 230 recognizes from the power supply information that the storage battery 213 is almost fully charged, the current value notified from the measurement unit 231 is the capacity of the power supply device 21 after all the switches 22 are turned on. It is turned off in order from the switch 22 with the lowest priority so that it becomes the following.
  • the priority order of the switch 22 is artificially determined by the location and type of the electrical load 30 and is stored in the storage unit 233 provided in the control unit 23.
  • the processing unit 230 can turn on all the switches 22 only during a period in which the storage battery 213 is nearly fully charged, and in a period in which the storage battery 213 is not fully charged, the switching corresponding to the specific electrical load 30 is performed. It is determined that only the device 22 is turned on. Note that the state in which the storage battery 213 is close to full charge is, as described above, the second charge state and a state in which surplus power is generated in the third charge state.
  • the control unit 23 includes, as main hardware elements, a device including a processor that operates according to a program and a device that constitutes an interface for exchanging information with other apparatuses.
  • the device including the processor is selected from a microcomputer in which the processor is integrated with the memory, or an MPU (Micro Processing Unit) that requires the processor separately from the memory.
  • MPU Micro Processing Unit
  • the program is written in ROM (Read Only Memory), but when updating the program is considered, the program is written in the EEPROM and the update program is provided through an electric communication line such as the Internet. May be.
  • the program may be provided on a recording medium such as an optical disk that can be read by a computer.
  • the program may be provided using a storage medium such as a semiconductor memory that is detachable from the computer.
  • the storage battery management device 10 ⁇ / b> A determines the timing for replacing the storage battery 213 used in the power supply facility 20 described above.
  • the power supply facility 20 includes a storage battery management device 10 ⁇ / b> A.
  • the storage battery management apparatus 10 ⁇ / b> A can share the control unit 23 of the power supply facility 20 and hardware elements. That is, the control unit 23 and the storage battery management apparatus 10A can share devices such as the processor and the interface described above.
  • the storage battery management device 10 ⁇ / b> A may be provided separately from the power supply facility 20.
  • the storage battery management device 10A extracts a state in which the storage battery 213 has reached full charge by communicating with the charging device 212. That is, the storage battery management device 10 ⁇ / b> A includes the information acquisition unit 11 that acquires information related to the state of charge of the storage battery 213 from the charging device 212. Further, the storage battery management device 10A includes a counting unit 12 that extracts the state where the storage battery 213 has reached full charge from the information acquired by the information acquisition unit 11 and counts the number of occurrences of the state that has reached full charge. In the counting unit 12, the storage battery 213 has reached full charge when the charging device 212 has shifted from the second charging state to the third charging state, that is, when the surplus of the generated power of the solar panel 211 has been discarded. It is configured to determine the state. The counting unit 12 includes a storage unit 121 for storing the number of times that the storage battery 213 has reached full charge after the use of the storage battery 213 is started.
  • the number of times counted by the counting unit 12 is the number of times that the storage battery 213 has reached full charge, and thus corresponds to the number of cycles described above. Since the cycle number is an element that determines the battery life, the number of times counted by the counting unit 12 can be used as a guideline for replacing the storage battery 213.
  • the state where the storage battery 213 reaches full charge is approximately once a day.
  • the state where the storage battery 213 reaches full charge may occur several times a day. It is considered that the number of days in which the event that the storage battery 213 reaches full charge in a single day occurs is relatively small, and the amount of discharge of the storage battery 213 is small when such an event occurs. Is considered small. Therefore, the counting unit 12 may limit the upper limit of the number of times counted per day to one.
  • the maximum discharge depth in one cycle period is also an element that determines the battery life. Therefore, it is desirable that the power supply facility 20 has a configuration that limits the maximum depth of discharge. Since the current supplied to the electric load 30 is monitored by the current sensor 215, the discharge amount of the storage battery 213 is obtained based on the current value obtained from the output of the current sensor 215. The control unit 23 of the power supply facility 20 monitors the discharge amount of the storage battery 213 after the storage battery 213 reaches full charge. When the discharge amount reaches a predetermined value, the control unit 23 controls all of the plurality of switches 22. If cut off, it is possible to limit the maximum discharge depth in one cycle period.
  • the power supply facility 20 restricts the maximum depth of discharge in one cycle period as described above, the relationship between the number of cycles counted by the counting unit 12 and the maximum amount of power that can be discharged by the storage battery 213 is determined. Therefore, it becomes possible to know the battery life accurately by the number of cycles. That is, by limiting the maximum discharge depth in one cycle period, it is possible to estimate the replacement time of the storage battery 213 more accurately than in the case where the maximum discharge depth is not limited.
  • the storage battery management device 10 ⁇ / b> A includes an evaluation unit 13 and an output unit 14.
  • the evaluation unit 13 evaluates the degree of deterioration of the storage battery 213 using the number of cycles counted by the counting unit 12.
  • the evaluation unit 13 converts the number of cycles counted by the counting unit 12 into an evaluation value representing the degree of deterioration regardless of whether or not the maximum depth of discharge in one cycle period is limited.
  • the output unit 14 outputs the evaluation result of the evaluation unit 13.
  • the output unit 14 is configured to convert the evaluation result of the evaluation unit 13 into data that can be displayed on a display 40 such as a liquid crystal display. Therefore, the user can obtain an indication regarding the life of the storage battery 213 based on the display content of the display 40.
  • the evaluation unit 13 can obtain the ratio of the maximum amount of power that can be discharged by the storage battery 213 with respect to the rated capacity as an evaluation value representing the degree of deterioration. For the storage battery 213, if the evaluation unit 13 stores the relationship between the number of cycles as shown in FIG. 2 and the maximum amount of power that can be discharged in the storage unit 131, this ratio is the number of cycles counted by the counting unit 12. It can be easily obtained from
  • the storage battery management device 10A shown in FIG. 1 includes a clock unit 15 that measures the elapsed time from the start of use of the storage battery 213, and the evaluation unit 13 evaluates the replacement time of the storage battery 213 by converting the degree of deterioration into time. It can be obtained as a value.
  • the evaluation unit 13 stores the standard value for the number of cycles from the start of use of the new storage battery 213 to the replacement time, and the elapsed time from the start of use of the storage battery 213 measured by the clock unit 15 in the storage unit 131. .
  • the ratio of the number of cycles counted by the counting unit 12 to the standard value of the number of cycles stored in the storage unit 131 is obtained and the reciprocal of this ratio is multiplied by the elapsed time stored in the storage unit 131, the use of the storage battery 213
  • the time from the start to the battery life can be predicted.
  • the remaining time until the storage battery 213 reaches the battery life can be estimated.
  • the control unit 23 of the power supply facility 20 limits the maximum depth of discharge to 40% during one cycle. That is, in this example, the lower limit value of the discharge depth in one cycle period is set to 40%. Since this condition corresponds to the characteristic b in FIG. 2, the maximum number of electric power that can be discharged by the storage battery 213 is reduced to 80% of the rated capacity, and the number of cycles is 2000. That is, the number of cycles until the replacement of the storage battery 213 is recommended is 2000 cycles, and 2000 cycles is set as the standard value in the storage unit 131.
  • the elapsed time of 4 years is subtracted from the calculated time of 5 years, the remaining time until the battery life can be estimated as 1 year. In this example, in order to facilitate calculation, year is used as the unit of time, but it is desirable to use day as the unit of time.
  • FIG. 3 shows an example in which the value obtained by the evaluation unit 13 as described above is displayed on the display 40.
  • the period from the start of use of the storage battery 213 (that is, the operation period) is indicated as 4 years, and the period until the replacement time of the storage battery 213 is indicated as 1 year.
  • the user can prepare the replacement storage battery 213 in consideration of the period from when the replacement storage battery 213 is ordered until it is obtained. become.
  • the storage battery management device 10 ⁇ / b> A of the present embodiment includes the information acquisition unit 11, the counting unit 12, the evaluation unit 13, and the output unit 14.
  • the information acquisition unit 11 acquires information regarding the state of charge of the storage battery 213.
  • the counting unit 12 extracts the state in which the storage battery 213 is charged and has reached full charge from the information regarding the charge state of the storage battery 213, and counts the number of occurrences of the state in which full storage has been reached.
  • the evaluation unit 13 evaluates the degree of deterioration of the storage battery 213 using the number of occurrences counted by the counting unit 12.
  • the output unit 14 outputs the evaluation result of the evaluation unit 13.
  • the user can estimate the replacement time of the storage battery 213 based on the number of occurrences of the state in which the storage battery 213 has reached full charge.
  • the storage battery 213 is a lead storage battery that is charged using the generated power of the solar battery (solar panel 211), the battery life becomes longer when the state close to full charge is maintained. It is effective to use the number of occurrences as a measure of the degree of deterioration.
  • the generated power of the solar cell (solar panel 211) is charged to the storage battery 213 through the charging device 212.
  • the information acquisition unit 11 is configured to acquire information related to the state of charge of the storage battery 213 from the charging device 212.
  • the counting unit 12 may be configured to determine that a state in which surplus power not used for charging the storage battery 213 is generated in the generated power of the solar battery (solar panel 211) has reached full charge. desirable.
  • the counting unit 12 determines whether or not the storage battery 213 has reached full charge. It becomes possible to judge.
  • the storage battery management device 10 ⁇ / b> A preferably includes a clock unit 15 that measures the elapsed time from the start of use of the storage battery 213.
  • the evaluation unit 13 estimates the remaining time until the replacement time using the evaluated degree of deterioration of the storage battery 213 and the elapsed time measured by the clock unit 15.
  • the output unit 14 preferably outputs the remaining time until the replacement time as the evaluation result of the evaluation unit 13.
  • the storage battery management device 10 ⁇ / b> B of this embodiment adds a monitoring unit 16 to the storage battery management device 10 ⁇ / b> A of Embodiment 1 in order to extract the maximum depth of discharge in one cycle period.
  • the monitoring unit 16 is configured to extract the maximum discharge depth in one cycle period using the information acquired by the information acquisition unit 11.
  • the maximum depth of discharge in one cycle period is obtained by using the generated power of the solar panel 211 obtained from the charging device 212 and the power consumption of the electric load 30 measured by the measuring unit 231.
  • the generated power amount is 1000 Wh
  • the consumed power amount is 2000 Wh
  • the conversion efficiency of the charging device 212 and the power converter 214 is 95%
  • the rated capacity of the storage battery 213 is 10 kWh.
  • the depth of discharge is obtained by the calculation of (2000 / 0.95-1000) /10000 ⁇ 0.11. That is, the discharge depth is 11%.
  • the evaluation unit 13 associates the degree of deterioration according to the maximum discharge depth in one cycle period as shown in Table 1, for example.
  • the degree of deterioration is called a standard deterioration degree
  • the maximum discharge depth in one cycle period is divided into 10% sections, and the standard deterioration degree is set for each section.
  • Data as shown in Table 1 is stored in the storage unit 131 provided in the evaluation unit 13.
  • the standard deterioration degree is -0.01%. That is, the degree of deterioration is set so as to correspond to the above-described configuration example in which the maximum discharge depth in one cycle period is uniformly assumed to be 40%. If the maximum depth of discharge in one cycle period is 30% or less, the degree of deterioration becomes smaller. Therefore, in Table 1, the standard deterioration degree is smaller than ⁇ 0.01% in the section where the maximum depth of discharge is 30% or less. Set to value.
  • the standard deterioration degree corresponding to the maximum discharge depth is obtained, and the degree of deterioration from the start of use of the storage battery 213 is evaluated by accumulating the standard deterioration degree obtained for each cycle. It becomes possible to do.
  • the evaluation unit 13 receives the maximum discharge depth for one cycle period from the monitoring unit 16 every time the counting unit 12 counts one cycle.
  • the evaluation unit 13 extracts the standard deterioration degree by comparing the maximum discharge depth with the data stored in the storage unit 131.
  • the evaluation unit 13 obtains the degree of deterioration from the start of use of the storage battery 213 by adding the extracted standard deterioration degree to the cumulative value of the past standard deterioration degree stored in the storage unit 131. That is, the evaluation unit 13 obtains a value for evaluating the degree of deterioration by accumulating the standard deterioration degree from the start of use of the storage battery 213.
  • the degree of deterioration obtained by the evaluation unit 13 is output through the output unit 14 and displayed on the display 40, for example.
  • the standard deterioration degree with respect to the maximum discharge depth in one cycle period is set for addition.
  • the standard deterioration degree with respect to the maximum discharge depth in one cycle period can be set for multiplication.
  • the storage battery management device 10B of the present embodiment described above uses the information related to the state of charge of the storage battery 213, and the maximum discharge depth of the storage battery 213 in the period from when the storage battery 213 reaches full charge until it reaches full charge next time.
  • the evaluation unit 13 is configured to associate a standard deterioration degree indicating a degree of deterioration of the storage battery 213 in a period from when the storage battery 213 reaches full charge until it reaches full charge next to the maximum discharge depth. .
  • the evaluation unit 13 evaluates the degree of deterioration from the start of use of the storage battery 213 by accumulating the standard deterioration degree corresponding to the maximum discharge depth every time the counting unit 12 counts the number of occurrences.
  • the standard deterioration degree is set on the assumption that the period of one cycle corresponds to almost one day.
  • the amount of solar radiation per day varies depending on the weather or season, there is a possibility that the period of one cycle does not correspond to one day, and the state where the storage battery 213 does not reach full charge continues for a long period of time. Since the lead storage battery deteriorates when it is continuously used in a state where it is not fully charged, it is necessary to correct the degree of deterioration of the storage battery 213 when the period of one cycle is long.
  • the clock unit 15 is configured to count the duration of the state in which the storage battery 213 is not fully charged, and the evaluation unit 13 determines the degree of deterioration of the storage battery 213 according to the duration of time counted by the clock unit 15. Is configured to correct.
  • the evaluation unit 13 stores, in the storage unit 131, data as shown in Table 2 in which the duration of the state where the storage battery 213 is not fully charged and the degree of correction deterioration according to the duration are associated with each other.
  • the corrected deterioration degree is determined so as to correct the degree of deterioration of the storage battery 213 when the duration of the state in which the storage battery 213 does not reach full charge is 7 days or more. That is, when an event occurs in which the storage battery 213 does not reach a full charge for seven consecutive days or more, the deterioration of the storage battery 213 proceeds. Therefore, a correction deterioration degree for correcting the degree of deterioration due to this event is determined.
  • the clock unit 15 uses the information acquired by the information acquisition unit 11 to measure the duration of the state where the storage battery 213 is not fully charged. That is, when the storage battery 213 shifts to a state where the storage battery 213 is not fully charged after the storage battery 213 reaches full charge, the clock unit 15 measures the duration of the state where the storage battery 213 is not fully charged. On the other hand, when the duration time counted by the clock unit 15 reaches 7 days, the evaluation unit 13 extracts the correction deterioration degree from the storage unit 131 and corrects the degree of deterioration stored in the storage unit 131.
  • the storage battery 213 is composed of a plurality of cells. Therefore, while the storage battery 213 is used, the amount of charge of the cell (that is, the amount of power that can be charged), etc. Variation occurs. Therefore, the equalization charge which charges the storage battery 213 with a voltage higher than usual may be implemented. When equalization charging is performed, the amount of charge of the storage battery 213 is restored, so it is desirable to correct the degree of deterioration of the storage battery 213.
  • the storage battery management device 10B includes a determination unit 17 that determines whether the storage battery 213 is charged with a predetermined voltage that is higher than usual.
  • the predetermined voltage is a voltage when performing equalization charging, and the determination unit 17 determines whether equalization charging has been performed based on information acquired from the charging device 212.
  • the evaluation unit 13 corrects the degree of deterioration of the storage battery 213 held in the storage unit 131 by the charge recovery degree.
  • the charge recovery degree is set so as to correct the degree of deterioration so as to extend the life of the storage battery 213 when the charge amount of the storage battery 213 is recovered by equalization charging, and is stored in the storage unit 131.
  • the value of the charge recovery degree is fixedly determined for one execution of equalization charging.
  • the degree of deterioration of the storage battery 213 stored in the storage unit 131 is 99.985% and the charge recovery degree is set to 0.01%.
  • the charge amount of the storage battery 213 is recovered by equalization charging, correction is performed so as to raise the degree of deterioration of the storage battery 213.
  • the environmental temperature of the storage battery 213 affects the degree of deterioration of the storage battery 213.
  • the environmental temperature of the storage battery 213 increases, the storage battery 213 deteriorates.
  • the temperature is set to 20 ° C. or higher and the reference temperature is set to 25 ° C.
  • the degree of deterioration of the lead storage battery is not affected by the environmental temperature. Therefore, the degree of deterioration may be corrected when the environmental temperature is 25 ° C. or higher.
  • the information acquired by the information acquisition unit 11 includes the storage battery 213 in order to evaluate the degree of deterioration in consideration of the environmental temperature of the storage battery 213.
  • the charging device 212 monitors the environmental temperature of the storage battery 213 in order to monitor the charging state of the storage battery 213, and acquires the environmental temperature of the storage battery 213 from the charging device 212.
  • a temperature sensor that monitors the environmental temperature of the storage battery 213 can be provided separately.
  • the evaluation unit 13 corrects the degree of deterioration of the storage battery 213 according to the environmental temperature. That is, the evaluation unit 13 stores data as shown in Table 3 in which the environmental temperature and the temperature deterioration degree are associated with each other in the storage unit 131.
  • the environmental temperature in Table 3 is an average value of the environmental temperature in a predetermined period, and the predetermined period is set to one week (7 days), for example.
  • the evaluation unit 13 obtains an average value for one week for the environmental temperature of the storage battery 213 acquired by the information acquisition unit 11, and extracts the temperature deterioration degree by comparing the obtained average value with the storage unit 131.
  • the timing for correcting the degree of degradation by applying the temperature degradation degree is the timing for obtaining the average value of the environmental temperature. For example, the evaluation unit 13 obtains the average value of the environmental temperature every midnight on Sunday, extracts the temperature deterioration degree, and corrects the degree of deterioration of the storage battery 213 stored in the storage unit 131.
  • the technology for correcting the degree of deterioration of the storage battery 213 can be used in appropriate combination, except for the configuration in which the degree of deterioration is calculated in consideration of the maximum discharge depth. That is, the correction for the number of days in which the state that does not reach the full charge continues, the correction for the equalization charge, and the correction for the environmental temperature can be appropriately combined as necessary. It is also possible to evaluate the degree of deterioration of the storage battery 213 without making these corrections.
  • the clock unit 15 is configured to measure the duration of the state where the storage battery 213 is not fully charged using the information acquired by the information acquisition unit 11.
  • the evaluation unit 13 is configured to associate the corrected deterioration level indicating the degree of deterioration of the storage battery 213 during the continuous period in which the storage battery 213 is not fully charged with the continuous period. Further, it is desirable that the evaluation unit 13 corrects the degree of deterioration from the start of use of the storage battery 213 with the correction deterioration degree according to the duration of the state where the storage battery 213 is not fully charged.
  • the storage battery management device 10B may further include a determination unit 17 that determines the state in which the storage battery 213 is charged with a predetermined voltage that is higher than usual using the information acquired by the information acquisition unit 11.
  • the evaluation unit 13 determines a degree of charge recovery that represents the degree of deterioration when the storage battery 213 is charged with a predetermined voltage in preparation for the storage battery 213 being charged with a predetermined voltage that is higher than usual.
  • determines that the storage battery 213 was charged with the predetermined voltage it is desirable for the evaluation part 13 to correct
  • the information acquisition unit 11 may be configured to acquire information related to the environmental temperature of the storage battery 213.
  • the evaluation unit 13 is configured to associate a temperature deterioration degree indicating the degree of deterioration of the storage battery 213 according to the environmental temperature with a representative value of the environmental temperature of the storage battery in a predetermined unit period.
  • the evaluation unit 13 can evaluate the degree of deterioration from the start of use of the storage battery 213 by accumulating the temperature deterioration degree according to the representative value of the environmental temperature for each unit period.
  • This embodiment employs a configuration in which the degree of deterioration of the storage battery 213 is evaluated based on the battery voltage of the storage battery 213.
  • the power supply facility 20 includes a switch 22 inserted in a load electric circuit 31 that supplies electric power to the electric load 30.
  • the configuration of the storage battery management device 10C illustrated in FIG. 5 is a configuration obtained by removing the counting unit 12 from the configuration of the storage battery management device 10A illustrated in FIG.
  • the operation of the evaluation unit 13 is different from that of the first embodiment.
  • the control unit 23 turns off the switch 22 when the discharge depth of the storage battery 213 reaches the lower limit value.
  • the power supply to 30 is stopped. After that, when the storage battery 213 is charged and the amount of power charged in the storage battery 213 is restored, the control unit 23 turns on the switch 22 and resumes power supply to the electric load 30.
  • the magnitude of the fluctuation of the battery voltage of the storage battery 213 at the time when the switch 22 is switched from OFF to ON is shown in FIG. 6 with respect to the number of days (or the number of cycles) from the start of use of the storage battery 213 under a predetermined condition. Changes linearly. That is, when the switch 22 is turned off and the storage battery 213 is not loaded, the battery voltage of the storage battery 213 drops when the switch 22 is turned on and the load is connected to the storage battery 213. The magnitude of this voltage represents the degree of deterioration of the storage battery 213. Such an event is considered to be caused by an increase in internal resistance of the storage battery 213 as the deterioration of the storage battery 213 progresses.
  • the switch 22 is switched from OFF to ON on the condition that the storage battery 213 is not charged or the storage battery 213 reaches full charge and surplus power is discarded. Record changes in battery voltage when In addition, if the size of the electrical load 30 changes every time the switch 22 is switched from OFF to ON, the battery voltage is affected by the size of the electrical load 30, so the change in the battery voltage changes in the storage unit 131.
  • Is also determined by the power consumption of the electrical load 30. For example, when the power consumption of the electric load 30 satisfies a condition such as 1000 W ⁇ 10%, the variation of the battery voltage is recorded in the storage unit 131.
  • the timing of measuring the power consumption and the battery voltage of the electrical load 30 after the switch 22 is switched from OFF to ON is a predetermined time from ON in consideration of the voltage and current drift immediately after the switch 22 is turned on. It is set to the time when it has passed. The predetermined time is selected in the range of 30 seconds to 1 minute.
  • the switch 22 when the storage battery 213 is not charged, the switch 22 is turned on from off, and the power consumption of the electric load 30 is 990 W one minute after the switch 22 is turned on.
  • This state satisfies the condition for recording the variation of the battery voltage in the storage unit 131.
  • the switch 22 when the switch 22 is off, the battery voltage is 50.00V, and if the battery voltage 1 minute after the switch 22 is turned on is 49.00V, the storage unit 131 stores 1.00V is recorded as the variation.
  • the evaluation unit 13 of the present embodiment records the change in the battery voltage of the storage battery 213 before and after switching between off and on when the control unit 23 switches the switch 22 from off to on. .
  • the evaluation unit 13 can estimate a point in time when the battery life is reached based on the accumulated data.
  • the accumulated data is as shown in Table 4.
  • the change of the battery voltage fluctuation shows linearity with respect to the number of days (or the number of cycles). Accordingly, if there is data for a predetermined number of days of about several hundred days, it is possible to obtain a regression equation representing the relationship between the change in battery voltage and the number of days.
  • FIG. 6 shows a regression line L1 corresponding to the regression equation.
  • the evaluation unit 13 obtains a regression equation from data relating to changes in the accumulated battery voltage fluctuation.
  • the battery life of the storage battery 213 can be determined by the value of the change in battery voltage. In FIG. 6, the determination value for the change in battery voltage when the storage battery 213 has a battery life is set to 1.50V.
  • the evaluation unit 13 obtains the scheduled replacement date P1 at which the battery voltage change amount reaches the determination value based on the regression line L1 obtained from the accumulated data.
  • the scheduled replacement date P1 is the number of days from the start of use of the storage battery 213 to the end of the battery life. By obtaining such a scheduled replacement date P1, the user can obtain an indication of the date on which the storage battery 213 needs to be replaced.
  • the switch 22 when the switch 22 is controlled as a normal operation in the power supply facility 20, when the state of charge of the storage battery 213 and the power consumption of the electric load 30 satisfy predetermined conditions, the storage battery 213 Changes in battery voltage fluctuations are recorded. Therefore, a dedicated work for predicting the battery life is unnecessary, and data for predicting the battery life can be collected while the power supply facility 20 performs the normal operation.
  • the regression line L1 is calculated
  • the regression line L1 can be corrected during the operation of the storage battery 213, and the prediction accuracy of the battery life can be increased as the usage time of the storage battery 213 becomes longer.
  • the storage battery management device 10C of this embodiment is used in combination with the power supply facility 20.
  • the power supply facility 20 includes a switch 22 and a control unit 23.
  • the switch 22 is provided in an electric circuit (load electric circuit 31, main electric circuit 32) between the electric load 30 to which electric power is supplied from the storage battery 213, and has an on state and an off state that interrupts the electric circuit. It is configured to select one.
  • the controller 23 switches the switch 22 between an on state and an off state.
  • the storage battery 213 is a lead storage battery that is charged using the power generated by the solar battery (solar panel 211).
  • the storage battery management device 10 ⁇ / b> C includes an information acquisition unit 11, an evaluation unit 13, and an output unit 14.
  • the information acquisition unit 11 acquires information regarding the state of charge of the storage battery 213.
  • the evaluation unit 13 records the change in the battery voltage of the storage battery 213 before and after the switch 22 is switched from off to on. Moreover, the evaluation part 13 calculates
  • the output unit 14 outputs the evaluation result of the evaluation unit 13.
  • the elapsed period from the start of use of the storage battery 213 is expressed using the number of days or the number of cycles, but may be time as long as the elapsed period can be expressed instead of the number of days or the number of cycles.
  • data for evaluating the degree of deterioration of the storage battery 213 is stored in the storage unit 121 and the storage unit 131.
  • the data stored in the storage unit 121 and the storage unit 131 includes data accumulated from the start of use of the storage battery 213, and such data is obtained from the storage unit 121 and the storage unit 131 when the storage battery 213 is replaced. It needs to be erased. Therefore, it is desirable that the storage battery management device 10 ⁇ / b> A is configured to detect the replacement of the storage battery 213 and delete the data in the storage unit 121 and the storage unit 131 when the replacement of the storage battery 213 is detected.
  • the change in the battery voltage of the storage battery 213 before and after the switch 22 is switched from OFF to ON is recorded in the storage unit 131, and the data recorded in the storage unit 131 is used.
  • the replacement of the storage battery 213 is detected.
  • the battery voltage fluctuation increases as the storage battery 213 deteriorates.
  • the battery voltage fluctuation is reduced. That is, as shown in FIG. 7, when the storage battery 213 is replaced on the replacement date P2 that is close to the scheduled replacement date P1, the battery voltage fluctuation is greatly reduced immediately after that. Therefore, it is possible to estimate that the storage battery 213 has been replaced when the decrease in battery voltage fluctuation exceeds a predetermined threshold.
  • the evaluation unit 13 determines that the storage battery 213 has been replaced when an event that the battery voltage variation has decreased beyond a predetermined threshold is detected, and the storage unit 121 and the storage unit 131 have deteriorated the storage battery 213. Erase the data stored for That is, since the user only needs to replace the storage battery 213 and does not need to delete the data in the storage unit 121 and the storage unit 131, the user can be prevented from forgetting to delete the data.
  • the battery voltage of the storage battery 213 during a period when the power consumption of the electric load 30 is a predetermined value may be used.
  • the battery voltage fluctuation when the switch 22 is switched from OFF to ON is used, but the storage battery 213 is replaced using only the battery voltage during the period when the switch 22 is ON. You may estimate that.
  • the timing for recording the battery voltage of the storage battery 213 is a condition that the storage battery 213 is discharged from the state where the storage battery 213 has reached full charge, and the power consumption amount at the electric load 30 reaches a predetermined amount.
  • the storage battery 213 starts discharging after the storage battery 213 reaches full charge, and the battery voltage at the time when the power consumption of the electric load 30 reaches 1000 Wh is recorded in the storage unit 131.
  • the solar panel 211 is generating power, it is desirable to record the battery voltage at the time when the amount of power obtained by subtracting the amount of generated power from the amount of power consumed by the electrical load 30 reaches 1000 Wh in the storage unit 131.
  • the capacity of the storage battery 213 decreases. Therefore, even if the power consumption is the same, the reduction rate of the remaining battery capacity increases. Since the relationship between the battery remaining amount of the storage battery 213 and the battery voltage has linearity, the battery voltage at the time when the power consumption reaches a predetermined amount as described above, the deterioration of the storage battery 213 proceeds. And drop. That is, the battery voltage at the time when the amount of power consumed by the electrical load 30 reaches a predetermined amount after the storage battery 213 reaches full charge is the elapsed time from the start of use of the storage battery 213 as indicated by a straight line L2 in FIG. Decreases with the number of days.
  • the battery voltage of the storage battery 213 measured under the same conditions becomes higher than before the replacement. From this, as shown in FIG. 8, it is possible to estimate that the storage battery 213 has been replaced when the battery voltage has risen beyond a predetermined threshold after the replacement date P3 of the storage battery 213.
  • the evaluation unit 13 determines that the storage battery 213 has been replaced when an event that the battery voltage recorded in the storage unit 131 has increased beyond a predetermined threshold is detected, and in the storage unit 121 and the storage unit 131, Data accumulated due to deterioration of the storage battery 213 is deleted. This process also prevents the user from forgetting to delete the data because the user only needs to replace the storage battery 213 and does not need to delete the data in the storage unit 121 and the storage unit 131.
  • the evaluation unit 13 includes a storage unit 131 that stores data related to the degree of deterioration evaluated for the storage battery 213.
  • the evaluation unit 13 indicates that the storage battery 213 has been replaced when the amount of change between the battery voltage in the state in which the storage battery 213 is not discharged and the battery voltage in the state in which the storage battery 213 is discharged falls below a predetermined threshold.
  • the evaluation unit 13 indicates that the storage battery 213 has been replaced when the battery voltage at the time when the amount of discharged electric power reaches a predetermined amount in a state where the storage battery 213 is discharged rises above a predetermined threshold. It may be estimated.
  • the evaluation unit 13 When it is estimated that the storage battery 213 has been replaced, the evaluation unit 13 deletes the data regarding the degree of deterioration of the storage battery 213 stored in the storage unit 131. According to this configuration, the evaluation unit 13 replaces the storage battery 213. Since it is estimated based on the battery voltage of the storage battery 213, it is not necessary to provide another device in order to detect replacement of the storage battery 213. In addition, when the storage battery 213 is replaced, data relating to the degree of deterioration of the storage battery 213 is deleted from the storage unit 131. Therefore, the user can simply replace the storage battery 213, and the evaluation unit 13 can detect the deterioration of the new storage battery 213. It becomes possible to evaluate the degree.
  • the processing for erasing data stored in the storage unit 121 and the storage unit 131 described above can be applied to any of the first embodiment, the second embodiment, and the third embodiment. That is, the process at the time of replacement of the storage battery described above is a process of deleting the above-described data not only in the storage battery management apparatus 10A of the first embodiment but also in the storage battery management apparatus 10B of the second embodiment or the storage battery management apparatus 10C of the third embodiment. Is applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a storage battery management device with which the degree of degradation of a storage battery can be accurately evaluated. The storage battery management device (10A) is provided with: an information acquisition unit (11); a counter unit (12); an evaluation unit (13); and an output unit (14). The information acquisition unit (11) acquires information about the state of charge of a storage battery (213). The counter unit (12) extracts a state in which the storage battery (213) has been charged and has reached a fully charged state, from the information about the state of charge of the storage battery (213), and counts the number of times that the state of being fully charged occurs. The evaluation unit (13) evaluates the degree of degradation of the storage battery (213) using the number of times that said state occurs, as counted by the counter unit (12). The output unit (14) outputs an evaluation result from the evaluation unit (13). The storage battery (213) is a lead storage battery to be charged with electric power generated by means of a solar panel (211).

Description

蓄電池管理装置Battery management device
 本発明は、一般に蓄電池管理装置、とくに蓄電池の劣化を管理する蓄電池管理装置に関する。 The present invention generally relates to a storage battery management device, and more particularly to a storage battery management device that manages deterioration of a storage battery.
 従来、太陽電池を用いて蓄電池を充電する構成で、充電時の過充電到達回数を検出する技術が知られている(文献1[日本特許出願公開2005-192282])。文献1には、過充電到達回数が所定範囲内のときには放電深度を変えず、所定範囲未満のときに放電深度を浅くし、所定範囲を超えるときに放電深度を深くする技術が提案されている。 Conventionally, a technique for detecting the number of overcharge arrivals at the time of charging in a configuration in which a storage battery is charged using a solar cell is known (Reference 1 [Japanese Patent Application Publication No. 2005-192282]). Document 1 proposes a technique that does not change the depth of discharge when the overcharge arrival frequency is within a predetermined range, shallows the depth of discharge when it is less than the predetermined range, and increases the depth of discharge when it exceeds the predetermined range. .
 また、発電装置と蓄電池とを備える独立電源システムが知られている(文献2[日本特許出願公開2005-143217])。文献2に記載された独立電源システムは、ソーラパネル(太陽電池モジュール)と、太陽電池モジュールから出力される直流電圧を蓄積する蓄電池とを備える。この独立電源システムは、昼間には主として太陽電池モジュールから蓄電池への充電を行い、夜間には主として蓄電池の放電を行っている。 Also, an independent power supply system including a power generation device and a storage battery is known (Reference 2 [Japanese Patent Application Publication No. 2005-143217]). The independent power supply system described in Document 2 includes a solar panel (solar cell module) and a storage battery that stores a DC voltage output from the solar cell module. This independent power supply system mainly charges the storage battery from the solar cell module during the daytime, and mainly discharges the storage battery at nighttime.
 文献1には、蓄電池の寿命を確保する技術が記載されているが、文献1に記載された技術では、蓄電池の寿命を推定することはできない。また、文献2には、独立電源システムが記載されているが、文献2に記載された技術では、蓄電池の劣化の程度を推定することはできない。 Document 1 describes a technique for ensuring the life of a storage battery, but the technique described in Document 1 cannot estimate the life of a storage battery. Moreover, although the independent power supply system is described in the literature 2, the technique described in the literature 2 cannot estimate the degree of deterioration of the storage battery.
 本発明の目的は、蓄電池の劣化の程度を評価することを可能にした蓄電池管理装置を提供することを目的とする。 An object of the present invention is to provide a storage battery management device that makes it possible to evaluate the degree of deterioration of a storage battery.
 本発明に係る形態の蓄電池管理装置は、蓄電池の充電状態に関する情報を取得する情報取得部と、前記蓄電池が充電されて満充電に到達した状態を前記蓄電池の充電状態に関する情報から抽出し、前記満充電に到達した状態の発生回数を計数する計数部と、前記計数部が計数した前記発生回数を用いて前記蓄電池の劣化の程度を評価する評価部と、前記評価部の評価結果を出力する出力部とを備え、前記蓄電池は太陽電池の発電電力を用いて充電される鉛蓄電池であることを特徴とする。 The storage battery management device according to the embodiment of the present invention extracts an information acquisition unit that acquires information on a charge state of a storage battery, and a state in which the storage battery is charged and has reached full charge from information on the charge state of the storage battery, A counting unit that counts the number of occurrences of a state that has reached full charge, an evaluation unit that evaluates the degree of deterioration of the storage battery using the number of occurrences counted by the counting unit, and outputs an evaluation result of the evaluation unit And an output unit, wherein the storage battery is a lead storage battery that is charged using the power generated by the solar battery.
 本発明に係る形態の別の蓄電池管理装置は、蓄電池から電力が供給される電気負荷との間の電路に設けられ前記電路を導通させるオンの状態と前記電路を遮断するオフの状態とを選択するように構成された開閉器と、前記開閉器のオンの状態とオフの状態とを切り替える制御部とを備えた給電設備と併せて用いられ、前記蓄電池は太陽電池の発電電力を用いて充電される鉛蓄電池であって、蓄電池の充電状態に関する情報を取得する情報取得部と、前記開閉器のオフからオンへの切替前後における前記蓄電池の電池電圧の変化分の推移を記録し、記録した前記変化分を用いて前記蓄電池の使用開始からの経過期間と前記変化分との関係を表す回帰式を求め、前記回帰式を用いて前記蓄電池が電池寿命に達するまでの期間を予測する評価部と、前記評価部の評価結果を出力する出力部とを備えることを特徴とする。 Another storage battery management apparatus according to an embodiment of the present invention selects an on state that is provided in an electrical path between an electrical load to which electric power is supplied from the storage battery and that is in an off state that blocks the electrical circuit. And a power supply facility comprising a switch configured to switch between the switch and an on state and an off state of the switch, and the storage battery is charged using the generated power of the solar cell. The information storage unit for acquiring information related to the state of charge of the storage battery, and the change in the battery voltage of the storage battery before and after switching from off to on of the switch was recorded and recorded. An evaluation unit that obtains a regression equation representing a relationship between an elapsed period from the start of use of the storage battery and the change using the change, and predicts a period until the storage battery reaches the battery life using the regression When And an outputting unit for outputting the evaluation result of the evaluation unit.
 本発明に係る形態の蓄電池管理装置では、蓄電池の劣化の程度を精度よく評価することが可能になるという効果がある。 The storage battery management apparatus according to the embodiment of the present invention has an effect that the degree of deterioration of the storage battery can be accurately evaluated.
実施形態1を示すブロック図である。1 is a block diagram illustrating a first embodiment. 実施形態1における蓄電池の特性例を示す図である。It is a figure which shows the example of a characteristic of the storage battery in Embodiment 1. 実施形態1における表示例を示す図である。6 is a diagram illustrating a display example in Embodiment 1. FIG. 実施形態2を示すブロック図である。FIG. 6 is a block diagram illustrating a second embodiment. 実施形態3を示すブロック図である。FIG. 6 is a block diagram illustrating a third embodiment. 実施形態3の動作例を示す図である。10 is a diagram illustrating an operation example of Embodiment 3. FIG. 実施形態1、2、3に適用する一動作を説明する図である。FIG. 10 is a diagram illustrating an operation applied to the first, second, and third embodiments. 実施形態1、2、3に適用する一動作を説明する図である。FIG. 10 is a diagram illustrating an operation applied to the first, second, and third embodiments.
 (概要)
 以下に説明する蓄電池管理装置は、蓄電池の劣化の程度を判断する機能を有する。蓄電池管理装置は、給電設備と併せて用いられる。給電設備は、電源装置と開閉器と制御部とを備える。電源装置は、太陽電池と蓄電池とを備える。開閉器は、電源装置から電力が供給される電気負荷との間の電路に設けられ電路を導通させるオンの状態と電路を遮断するオフの状態との一方を選択するように構成される。制御部は、開閉器のオンの状態とオフの状態とを切り替える機能を有する。
(Overview)
The storage battery management device described below has a function of determining the degree of deterioration of a storage battery. The storage battery management device is used in conjunction with power supply equipment. The power supply facility includes a power supply device, a switch, and a control unit. The power supply device includes a solar battery and a storage battery. The switch is configured to select one of an ON state that is provided in an electric circuit between the electric load supplied with electric power from the power supply device and that is in an on state that interrupts the electric circuit. The control unit has a function of switching between an on state and an off state of the switch.
 電源装置は、独立型電源を想定している。独立型電源は、電気事業者が電力を供給するために敷設した電力系統に対して電気的に分離された電源を意味する。この種の電源装置は、電力系統であるグリッドから独立しているからオフグリッドと呼ばれることがある。この種の独立型電源は、電化が進んでいない辺境地あるいは島嶼のような地域であっても使用可能である。また、災害の被災地において電力系統が復旧するまでの間に、電力を供給する目的で使用することが可能である。なお、以下に説明する技術は、系統電源に連系する分散型電源であっても用いることが可能である。 The power supply unit assumes an independent power supply. The stand-alone power source means a power source that is electrically separated from an electric power system installed to supply power by an electric power company. This type of power supply device is sometimes called off-grid because it is independent of the grid that is the power system. This type of stand-alone power supply can be used even in remote areas or islands where electrification is not progressing. In addition, it can be used for the purpose of supplying power before the power system is restored in the disaster area. Note that the technology described below can be used even with a distributed power source linked to a system power source.
 電源装置は、発電装置としてソーラパネル(つまり、太陽電池)を用いている。ソーラパネルは、主として昼間に発電し、夜間はほとんど発電を行わないから、1日を単位として出力が変動する。言い換えると、ソーラパネルの発電電力は、1日を単位とする周期性を有していると言える。ただし、ソーラパネルの1日の発電量は、昼間でも、天候による変動があり、季節および地形に起因した日照時間の相違による変動がある。 The power supply device uses a solar panel (that is, a solar cell) as a power generation device. The solar panel generates power mainly during the daytime and generates little power at night, so the output fluctuates in units of one day. In other words, it can be said that the generated power of the solar panel has a periodicity in units of one day. However, the solar panel's daily power generation varies due to weather even during the daytime, and varies due to differences in sunshine hours due to the season and topography.
 電源装置は、さらに充電装置と電力変換器とを備える。充電装置は、ソーラパネルが発電した電力を用いて電圧を調節した直流を出力する。充電装置の出力電力は、蓄電池と電力変換器とに供給される。電力変換器は、DC/ACコンバータ(すなわち、インバータ)であって、直流電力を交流電力に変換し、この交流電力が電源装置の出力になる。 The power supply device further includes a charging device and a power converter. The charging device outputs a direct current whose voltage is adjusted using the power generated by the solar panel. The output power of the charging device is supplied to the storage battery and the power converter. The power converter is a DC / AC converter (that is, an inverter), and converts DC power into AC power, and this AC power becomes an output of the power supply device.
 蓄電池は、充電装置と電力変換器とを接続する電路上に常時接続されている。この構成の電源装置において、ソーラパネルの出力電圧の変動は充電装置により抑制され、電気負荷が要求する電力の変動は蓄電池により抑制される。充電装置は、ソーラパネルの発電電力を蓄電池に供給するだけでなく、蓄電池の電池電圧など蓄電池の充電の状態を把握するための情報を監視する機能を有する。 The storage battery is always connected on the electric circuit connecting the charging device and the power converter. In the power supply device having this configuration, fluctuations in the output voltage of the solar panel are suppressed by the charging device, and fluctuations in power required by the electric load are suppressed by the storage battery. The charging device not only supplies the generated power of the solar panel to the storage battery, but also has a function of monitoring information for grasping the state of charge of the storage battery, such as the battery voltage of the storage battery.
 上述した電源装置では、ソーラパネルの発電電力が、蓄電池の充電に利用されず、かつ電気負荷で利用される電力を超えていると、発電された電力に余剰が生じる。電源装置は独立型電源であるから、このような余剰の電力は、利用されずに破棄される。 In the power supply device described above, if the generated power of the solar panel is not used for charging the storage battery and exceeds the power used by the electric load, a surplus is generated in the generated power. Since the power supply device is an independent power supply, such surplus power is discarded without being used.
 電源装置としては、数kWh~数百kWh程度の容量、かつ数kVA~数十kVA程度の出力を想定している。また、電源装置は、自動車などを用いて移動可能な程度のサイズのハウジングを備えることが望ましい。ハウジングは箱状であって、ハウジングのサイズは、たとえば、輸送用のコンテナと同程度であって、幅および高さが2~3m程度、長さが3~15m程度の範囲に収まるように構成される。電源装置が、このようなハウジングを備えていれば、コンテナと同様の輸送手段を用いて設置現場まで電源装置を輸送し、設置現場で組み立てを行った後に、電気負荷との配線を敷設するだけで電源装置を利用することが可能になる。 Suppose that the power supply unit has a capacity of about several kWh to several hundred kWh and an output of several kVA to several tens of kVA. In addition, the power supply device desirably includes a housing having a size that can be moved using an automobile or the like. The housing is box-shaped, and the size of the housing is about the same as, for example, a transport container, and the width and height are about 2 to 3 m and the length is about 3 to 15 m. Is done. If the power supply device has such a housing, simply transport the power supply device to the installation site using the same means of transportation as the container, assemble the wiring on the installation site, and then lay the wiring with the electrical load. This makes it possible to use the power supply device.
 なお、上述した数値は、説明のための例としての数値であって、限定する趣旨ではない。また、以下では、電源装置のハウジングが、ソーラパネルを搭載可能である構成を例示するが、ハウジングがソーラパネルを搭載可能であることは必須ではない。 Note that the numerical values described above are numerical values as examples for explanation, and are not intended to be limiting. In the following, a configuration in which the housing of the power supply apparatus can mount the solar panel is exemplified, but it is not essential that the housing can mount the solar panel.
 ところで、上述した電源装置は、蓄電池を備えており、蓄電池は充電および放電を繰り返すうちに、蓄電可能な最大電力量が低下する。つまり、蓄電池は、充電および放電を繰り返す間に劣化することが知られている。蓄電池は、劣化すれば交換することが必要であり、ユーザにとって交換時期を知ることは重要である。蓄電池の交換は、一般的には以下のいずれかの時期が選択される。すなわち、蓄電池を交換するタイミングは、定期的に定められている時点、定期点検で交換時期と判断された時点、実使用でユーザが不便を感じた時点のいずれかに基づいていることが多い。 By the way, the power supply device described above includes a storage battery, and the maximum amount of power that can be stored decreases as the storage battery repeatedly charges and discharges. That is, it is known that the storage battery deteriorates while it is repeatedly charged and discharged. The storage battery needs to be replaced if it deteriorates, and it is important for the user to know the replacement time. For the replacement of the storage battery, one of the following times is generally selected. That is, the timing for replacing the storage battery is often based on one of the time points determined regularly, the time point determined to be the replacement time in the periodic inspection, and the time point when the user feels inconvenience in actual use.
 しかしながら、蓄電池を定期的に交換する場合、交換時期が余裕を持つように定められていることが多いから、交換の時点では蓄電池の劣化の程度が低いにもかかわらず、蓄電池を交換する可能性が高くなる。つまり、蓄電池の交換頻度が高くなり、コスト高になるという問題が生じる。また、定期点検を行って交換時期を判断する場合には、人による作業が必要になり、結果的には人件費が発生してコスト高になる。さらに、ユーザが不便を感じた時点で交換する場合は、ユーザにとって不便である程度に蓄電池の劣化の程度が進んでいるから、交換時期としては遅すぎることになる。とくに、蓄電池の入手に長期間を要する場合には、ユーザが不便を感じてから蓄電池が実際に交換されるまでに、蓄電池がさらに劣化して使用不能になる可能性もある。 However, if the storage battery is regularly replaced, the replacement time is often determined to have a margin, so the possibility of replacing the storage battery even though the degree of deterioration of the storage battery is low at the time of replacement. Becomes higher. That is, there is a problem that the replacement frequency of the storage battery is increased and the cost is increased. In addition, when a periodic inspection is performed to determine the replacement time, work by a person is required, and as a result, labor costs are incurred, resulting in high costs. Furthermore, when the user feels inconvenience, the replacement time is too late because the degree of deterioration of the storage battery has progressed to some extent, which is inconvenient for the user. In particular, when it takes a long time to obtain a storage battery, there is a possibility that the storage battery will deteriorate further and become unusable after the user feels inconvenience until the storage battery is actually replaced.
 蓄電池管理装置は、蓄電池を使用する間に、蓄電池の劣化の程度を評価し、評価結果を出力することによって、ユーザが蓄電池の交換時期を判断する目安を与えるように構成されている。 The storage battery management device is configured to give a guide for the user to determine the replacement time of the storage battery by evaluating the degree of deterioration of the storage battery and outputting the evaluation result while using the storage battery.
 (全体構成)
 以下、図面を用いて説明する。図1に示すように、蓄電池管理装置10Aは、給電設備20と併せて用いられる。給電設備20は、電源装置21と開閉器22と制御部23とを備える。開閉器22と制御部23とは、電力制御装置24を構成する。開閉器22は、電源装置21と電気負荷30との間の電路に設けられ、この電路を導通させるオンの状態と、この電路を遮断するオフの状態との一方を選択する。図1に示す構成例では、電力制御装置24が蓄電池管理装置10Aを備えているが、蓄電池管理装置10Aを電力制御装置24とは別に設けることが可能である。
(overall structure)
Hereinafter, it demonstrates using drawing. As shown in FIG. 1, the storage battery management device 10 </ b> A is used in combination with the power supply facility 20. The power supply facility 20 includes a power supply device 21, a switch 22, and a control unit 23. The switch 22 and the control unit 23 constitute a power control device 24. The switch 22 is provided in an electric circuit between the power supply device 21 and the electric load 30 and selects one of an on state in which the electric circuit is conducted and an off state in which the electric circuit is interrupted. In the configuration example shown in FIG. 1, the power control device 24 includes the storage battery management device 10 </ b> A, but the storage battery management device 10 </ b> A can be provided separately from the power control device 24.
 図1に示す構成例では、電気負荷30が複数設けられ、かつ電力制御装置24が複数の電気負荷30に一対一に対応した複数の開閉器22を備えている。ただし、一つの開閉器22が複数の電気負荷30に電気的に接続されていてもよい。また、開閉器22と電気負荷30とが一つずつあっても、蓄電池管理装置10Aを利用することは可能である。 In the configuration example shown in FIG. 1, a plurality of electrical loads 30 are provided, and the power control device 24 includes a plurality of switches 22 corresponding to the plurality of electrical loads 30 on a one-to-one basis. However, one switch 22 may be electrically connected to a plurality of electric loads 30. Even if there is one switch 22 and one electrical load 30, the storage battery management device 10A can be used.
 電源装置21は、ソーラパネル211と充電装置212と蓄電池213と電力変換器214とにより構成され、コンテナのような箱状のハウジング2に搭載される。電源装置21と電力制御装置24とにより給電設備20が構成され、ハウジング2は給電設備20の運搬および設置にも利用される。 The power supply device 21 includes a solar panel 211, a charging device 212, a storage battery 213, and a power converter 214, and is mounted on a box-shaped housing 2 such as a container. The power supply device 21 is configured by the power supply device 21 and the power control device 24, and the housing 2 is also used for transportation and installation of the power supply facility 20.
 ソーラパネル211は、ハウジング2を利用して設置されるか、あるいは自立するように構成される。たとえば、ソーラパネル211は、ハウジング2の屋根に取り付けた架台に載せることが可能である。また、ソーラパネル211の一部をハウジング2の屋根で支持し、残りの部分を地面に建てた支柱で支持することも可能である。あるいはまた、ソーラパネルを地面に自立する架台に載せることも可能である。ソーラパネル211の設置作業は、電源装置21の輸送前と輸送後とのどちらで行ってもよいが、通常は、輸送後に設置現場で行われる。 The solar panel 211 is installed using the housing 2 or is configured to be independent. For example, the solar panel 211 can be mounted on a mount attached to the roof of the housing 2. It is also possible to support a part of the solar panel 211 with the roof of the housing 2 and support the remaining part with a column built on the ground. Alternatively, the solar panel can be placed on a stand that stands on the ground. The installation work of the solar panel 211 may be performed either before or after the power supply device 21 is transported, but is usually performed at the installation site after transport.
 蓄電池213は、鉛蓄電池を想定している。鉛蓄電池は、放電量(または電池残量)と電池電圧との関係がほぼ線形であって、放電量の管理が容易であり、また比較的安価であって入手も比較的容易であるという長所を有している。ただし、鉛蓄電池は、長期にわたって使用するために、過放電を防止し、放電後はただちに充電するように、充電および放電の管理を行う必要がある。 The storage battery 213 is assumed to be a lead storage battery. The lead-acid battery has the advantage that the relationship between the discharge amount (or remaining battery level) and the battery voltage is almost linear, the discharge amount is easy to manage, and it is relatively inexpensive and easy to obtain. have. However, in order to use a lead storage battery for a long period of time, it is necessary to manage charging and discharging so as to prevent overdischarge and charge immediately after discharging.
 また、満充電まで充電した蓄電池213を放電し、次に満充電まで充電するまでの期間を1サイクルとすると、蓄電池213の電池寿命は1サイクルの期間における放電深度の最大値(以下、最大放電深度という)によって変化することが知られている。放電深度は、定格容量に対する放電量の比を百分率で表した値であって、蓄電池213の定格容量に対して80%の電力量を放電した場合には、放電深度は80%になる。 Further, assuming that the storage battery 213 charged to full charge is discharged and then charged to full charge is one cycle, the battery life of the storage battery 213 is the maximum value of the depth of discharge in the period of one cycle (hereinafter, maximum discharge). It is known to change with depth). The discharge depth is a value representing the ratio of the discharge amount to the rated capacity as a percentage, and when the electric energy of 80% is discharged with respect to the rated capacity of the storage battery 213, the discharge depth is 80%.
 ところで、新品の蓄電池213の使用を開始した時点から蓄電池213の交換が必要になる時点までのサイクル数は、1サイクルの期間における最大放電深度に応じて、たとえば図2に示す関係になる。図2において、特性aは最大放電深度が20%の場合、特性bは最大放電深度が40%の場合、特性cは最大放電深度が80%の場合を示している。 Incidentally, the number of cycles from the time when the use of the new storage battery 213 is started to the time when the storage battery 213 needs to be replaced has a relationship shown in FIG. 2 according to the maximum depth of discharge in one cycle period. In FIG. 2, characteristic a shows a case where the maximum discharge depth is 20%, characteristic b shows a case where the maximum discharge depth is 40%, and characteristic c shows a case where the maximum discharge depth is 80%.
 図2では、蓄電池213の交換が必要になる時点を、蓄電池213から放電可能な最大の電力量が、蓄電池213の定格容量の80%まで低下した時点に定めている。つまり、蓄電池213が放電可能な電力量が、定格容量の80%まで低下した時点を電池寿命とみなしている。図2によれば、電池寿命に達するまでのサイクル数は、最大放電深度が20%では4000サイクル、最大放電深度が40%では2000サイクル、最大放電深度が80%では1000サイクルである。 In FIG. 2, the time when the storage battery 213 needs to be replaced is determined as the time when the maximum amount of power that can be discharged from the storage battery 213 is reduced to 80% of the rated capacity of the storage battery 213. That is, the time when the amount of power that can be discharged by the storage battery 213 decreases to 80% of the rated capacity is regarded as the battery life. According to FIG. 2, the number of cycles until the battery life is reached is 4000 cycles when the maximum discharge depth is 20%, 2000 cycles when the maximum discharge depth is 40%, and 1000 cycles when the maximum discharge depth is 80%.
 図2は蓄電池213の容量(つまり、放電可能な最大の電力量)とサイクル数との関係を模式的に表しており、蓄電池213の仕様に応じた相違は生じるが、蓄電池213が鉛蓄電池であれば、放電可能な最大の電力量とサイクル数とは同様の関係になる。そして、1サイクルの期間における最大放電深度が電池寿命に与える影響も、鉛蓄電池の仕様によらず、図2に示した例と同様の関係になる。なお、蓄電池213は鉛蓄電池に限定されないが、蓄電池213の種類に応じて制御内容の修正が必要になる。 FIG. 2 schematically shows the relationship between the capacity of the storage battery 213 (that is, the maximum amount of electric power that can be discharged) and the number of cycles, and although there are differences depending on the specifications of the storage battery 213, the storage battery 213 is a lead storage battery. If so, the maximum amount of electric power that can be discharged and the number of cycles have the same relationship. And the influence which the maximum discharge depth in the period of 1 cycle has on a battery life also becomes the same relationship as the example shown in FIG. 2 irrespective of the specification of lead acid battery. In addition, although the storage battery 213 is not limited to a lead storage battery, correction of the control content is needed according to the kind of the storage battery 213.
 充電装置212は、ソーラパネル211の出力を安定化し、ほぼ一定の直流電圧を出力するように構成されている。充電装置212の出力電圧は、蓄電池213の仕様である推奨電圧と蓄電池213の接続の態様とにより定められ、たとえば、12V、24V、48Vなどから選択される。また、充電装置212は、蓄電池213の電池電圧および充電電流を監視することによって、出力電圧の値および出力電流の値を制御する機能を有している。 The charging device 212 is configured to stabilize the output of the solar panel 211 and output a substantially constant DC voltage. The output voltage of the charging device 212 is determined by the recommended voltage that is the specification of the storage battery 213 and the connection mode of the storage battery 213, and is selected from, for example, 12V, 24V, 48V, and the like. The charging device 212 has a function of controlling the value of the output voltage and the value of the output current by monitoring the battery voltage and the charging current of the storage battery 213.
 鉛蓄電池は、電池電圧が上昇しすぎると過充電になる。そのため、充電装置212は、第1の充電状態と第2の充電状態と第3の充電状態との3種類の充電状態を切り替えて、蓄電池213の過充電を防止している。 Lead batteries are overcharged when the battery voltage rises too much. Therefore, the charging device 212 prevents overcharging of the storage battery 213 by switching between three types of charging states: a first charging state, a second charging state, and a third charging state.
 第1の充電状態では、電池残量が少ない期間において採用され、充電装置212は、比較的大きい充電電流で充電を行う。第1の充電状態で充電が進み、蓄電池213の電池電圧が設定された電圧値に達すると、充電装置212は、第2の充電状態に移行する。 In the first charging state, it is adopted in a period when the remaining battery level is low, and the charging device 212 performs charging with a relatively large charging current. When the charging proceeds in the first charging state and the battery voltage of the storage battery 213 reaches the set voltage value, the charging device 212 shifts to the second charging state.
 第2の充電状態に移行させる電圧値は、蓄電池213がほぼ満充電に達したことを判定するように設定されている。第2の充電状態では、充電装置212は、充電電流を断続的に流すことによって、電池電圧を設定された電圧値に維持しながら充電を継続し、満充電に近づくように蓄電池213の充電を継続する。第2の充電状態では、蓄電池213の電池電圧が設定された電圧値に維持されているから、蓄電池213の過充電が避けられる。 The voltage value to be shifted to the second charging state is set so as to determine that the storage battery 213 has almost reached full charge. In the second charging state, the charging device 212 continues charging while maintaining the battery voltage at the set voltage value by intermittently flowing a charging current, and charges the storage battery 213 so as to approach full charging. continue. In the second charging state, the battery voltage of the storage battery 213 is maintained at the set voltage value, so that overcharging of the storage battery 213 can be avoided.
 第2の充電状態では、電池電圧は設定された電圧値に維持されるから、第2の充電状態を維持する期間は、時間を用いて定められる。たとえば、第2の充電状態は2~3時間程度維持される。第2の充電状態を維持する期間が終了すると、充電装置212は、第3の充電状態に移行する。 In the second charging state, the battery voltage is maintained at the set voltage value, and therefore the period for maintaining the second charging state is determined using time. For example, the second state of charge is maintained for about 2 to 3 hours. When the period for maintaining the second state of charge ends, the charging device 212 shifts to the third state of charge.
 第3の充電状態では、充電装置212は、出力電圧を、第2の充電状態において維持されている電圧よりも低い電圧値に設定する。第3の充電状態は、フロート充電を行う状態であり、フロート充電を行うために設定された電圧値まで出力電圧を引き下げる。これは、蓄電池213が満充電になった状態でさらに充電を継続すると、蓄電池213が過充電になるからである。したがって、第3の充電状態において設定される電圧値は、蓄電池213の過充電を防止する程度に設定される。 In the third charging state, the charging device 212 sets the output voltage to a voltage value lower than the voltage maintained in the second charging state. The third charging state is a state in which float charging is performed, and the output voltage is lowered to a voltage value set for performing floating charging. This is because the storage battery 213 is overcharged if charging is further continued in a state where the storage battery 213 is fully charged. Therefore, the voltage value set in the third charging state is set to such an extent that the overcharge of the storage battery 213 is prevented.
 第1の充電状態では、ソーラパネル211が発電した電力はほぼすべて蓄電池213の充電に用いられる。つまり、第1の充電状態ではソーラパネル211が発電した最大限の電力が蓄電池213の充電に利用される。ただし、第1の充電状態の期間であっても、電池残量が所定の下限値以上であれば、電気負荷30に対する電力の供給は可能である。 In the first charging state, almost all the electric power generated by the solar panel 211 is used for charging the storage battery 213. That is, the maximum power generated by the solar panel 211 is used for charging the storage battery 213 in the first charging state. However, even during the period of the first charging state, it is possible to supply power to the electric load 30 as long as the remaining battery level is equal to or greater than a predetermined lower limit value.
 第2の充電状態で蓄電池213が満充電になると、第3の充電状態に移行する。第3の充電状態では、ソーラパネル211の発電電力が電気負荷30の要求する電力よりも多ければ、ソーラパネル211が発電した電力の少なくとも一部は、余剰の電力として破棄される。第3の充電状態において、ソーラパネル211が発電する電力では電気負荷30が必要とする電力が充足されない場合は、蓄電池213から不足分の電力が補われる。 When the storage battery 213 is fully charged in the second state of charge, the state shifts to the third state of charge. In the third charging state, if the generated power of the solar panel 211 is greater than the power required by the electric load 30, at least a part of the power generated by the solar panel 211 is discarded as surplus power. In the third charging state, when the electric power generated by the solar panel 211 does not satisfy the electric power required by the electric load 30, the shortage electric power is supplemented from the storage battery 213.
 蓄電池213が放電することにより、蓄電池213の電池電圧が第3の充電状態における設定電圧よりも低下し、この状態が所定時間継続すると、充電装置212では、第3の充電状態から第1の充電状態に移行する。なお、充電装置212は、充電状態を切り替えるタイミングを定めるために、蓄電池213の電池電圧だけではなく、蓄電池213の充電電流および放電電流の値を併用することも可能である。 When the storage battery 213 is discharged, the battery voltage of the storage battery 213 is lower than the set voltage in the third charging state, and when this state continues for a predetermined time, the charging device 212 performs the first charging from the third charging state. Transition to the state. Note that the charging device 212 can use not only the battery voltage of the storage battery 213 but also the charge current and discharge current value of the storage battery 213 in order to determine the timing for switching the charging state.
 充電装置212は、ソーラパネル211が発電した電力のうち破棄されている電力が生じていると、余剰があると判断する。充電装置212の判断結果は、電源情報として電源装置21の外部に取り出すことが可能になっている。電源情報は、ソーラパネル211が発電しているか否かの情報、および蓄電池213の電池電圧の値も含む。そのため、充電装置212は、電源装置21において適宜に配置された電流センサ215などの出力を監視し、電源情報を生成して出力する機能を有している。図1に示す構成例では、電流センサ215が充電電流および放電電流を計測するように設けられているが、電流センサ215は他にも適宜に配置される。 The charging device 212 determines that there is a surplus when the discarded power is generated among the power generated by the solar panel 211. The determination result of the charging device 212 can be taken out of the power supply device 21 as power supply information. The power supply information includes information on whether or not the solar panel 211 is generating power and the value of the battery voltage of the storage battery 213. Therefore, the charging device 212 has a function of monitoring the output of the current sensor 215 and the like appropriately arranged in the power supply device 21, and generating and outputting power supply information. In the configuration example shown in FIG. 1, the current sensor 215 is provided so as to measure the charging current and the discharging current, but the current sensor 215 is also appropriately arranged.
 電力変換器214は、充電装置212または蓄電池213から直流電力を受けて交流電力を出力する。電力変換器214から出力される交流電圧の実効値は、たとえば、100Vあるいは220Vなどに設定される。充電装置212および電力変換器214は、基本的にはスイッチング電源である。 The power converter 214 receives DC power from the charging device 212 or the storage battery 213 and outputs AC power. The effective value of the AC voltage output from the power converter 214 is set to 100 V or 220 V, for example. The charging device 212 and the power converter 214 are basically switching power supplies.
 図1に示す構成例は、複数の電気負荷30を備える。電源装置21からそれぞれの電気負荷30に給電する電路は複数系統に分岐している。以下、電気負荷30ごとに電力を供給する電路を負荷電路31と呼ぶ。電源装置21に電気的に接続された主電路32は、複数系統の負荷電路31に分岐する。複数系統の負荷電路31それぞれには複数個の開閉器22が一対一に対応し、開閉器22は負荷電路31ごとに挿入される。開閉器22のオンとオフとは、開閉器22ごとに個別に制御される。したがって、開閉器22がオンである負荷電路31に接続された電気負荷30のみが電源装置21から受電する。 1 includes a plurality of electrical loads 30. The configuration example shown in FIG. Electric paths for supplying power from the power supply device 21 to the respective electric loads 30 are branched into a plurality of systems. Hereinafter, an electric circuit that supplies electric power for each electric load 30 is referred to as a load electric circuit 31. The main electric circuit 32 electrically connected to the power supply device 21 branches into a plurality of load electric circuits 31. A plurality of switches 22 correspond one-to-one to each of the load electric circuits 31 of a plurality of systems, and the switches 22 are inserted for each load electric circuit 31. ON / OFF of the switch 22 is individually controlled for each switch 22. Therefore, only the electric load 30 connected to the load electric circuit 31 in which the switch 22 is on receives power from the power supply device 21.
 開閉器22は、たとえば、電磁継電器、電磁接触器、リモコンブレーカなどから選択される。電磁継電器は、アマチュアを備える電磁石装置を用いて接点を駆動する開閉器を意味し、電磁接触器は、直進移動するアクチュエータを備えた電磁石装置を用いて接点を駆動する開閉器を意味する。また、リモコンブレーカは、接点のオンとオフとを遠隔で操作できるブレーカを意味する。なお、開閉器22は、1次側への指示に応じて2次側の電路を導通または遮断できる構成であればよく、機械式の接点を備える構成に限らず、半導体スイッチを用いた開閉器であってもよい。なお、開閉器22のオンとオフは、開閉器22の1次側へのオンまたはオフの指示に応じて、2次側の電路を導通または遮断するという意味で用いている。 The switch 22 is selected from, for example, an electromagnetic relay, an electromagnetic contactor, a remote control breaker, or the like. The electromagnetic relay means a switch that drives a contact using an electromagnet device including an amateur, and the electromagnetic contactor means a switch that drives a contact using an electromagnet device including an actuator that moves straight. Further, the remote control breaker means a breaker that can be remotely operated to turn on and off the contacts. The switch 22 may be configured to be able to conduct or cut off the secondary-side electric circuit according to an instruction to the primary side, and is not limited to a configuration including a mechanical contact, but a switch using a semiconductor switch It may be. The on / off state of the switch 22 is used to mean that the secondary side electric circuit is conducted or cut off in response to an on / off instruction to the primary side of the switch 22.
 開閉器22のオンとオフとは、制御部23を構成する処理部230から指示される。なお、図1において、実線は電力の経路を表し、破線は情報の経路を表す。処理部230は、電源装置21から電気負荷30に流れる電流と、電源装置21から出力される電源情報とを用いて、個々の開閉器22のオンとオフとを決定する。 ON / OFF of the switch 22 is instructed from the processing unit 230 constituting the control unit 23. In FIG. 1, a solid line represents a power path, and a broken line represents an information path. The processing unit 230 determines on / off of each switch 22 using the current flowing from the power supply device 21 to the electric load 30 and the power supply information output from the power supply device 21.
 電源装置21から電気負荷30に流れる電流は、主電路32に配置された電流センサ34が監視する。制御部23は、電流センサ34の出力から電流値を求める計測部231を備える。計測部231は、電源装置21の出力電圧も監視することが望ましい。電源情報は、充電装置212と通信する通信部232が取得する。電流センサ34は、トロイダルコアのような環状コアに巻線を巻き付けた構成、平面状の空芯コイルであるロゴスキーコイル、ホール素子あるいは磁気抵抗素子のような磁気応動素子を磁気コアに取り付けた構成などから選択される。 The current flowing from the power supply device 21 to the electric load 30 is monitored by a current sensor 34 disposed in the main electric circuit 32. The control unit 23 includes a measurement unit 231 that obtains a current value from the output of the current sensor 34. It is desirable that the measurement unit 231 also monitors the output voltage of the power supply device 21. The power supply information is acquired by the communication unit 232 that communicates with the charging device 212. The current sensor 34 has a configuration in which a winding is wound around an annular core such as a toroidal core, a Rogowski coil that is a planar air-core coil, and a magnetically responsive element such as a Hall element or a magnetoresistive element attached to the magnetic core. It is selected from the configuration.
 制御部23は、通信部232を通して電源装置21から電源情報を取得しており、電源装置21が第1の充電状態から第2の充電状態に移行すると、原則としてすべての開閉器22をオンにする。電源装置21の容量と電気負荷30の消費電力との関係は、すべての開閉器22をオンにすることができるように定められている。 The control unit 23 acquires power supply information from the power supply device 21 through the communication unit 232. When the power supply device 21 shifts from the first charging state to the second charging state, in principle, all the switches 22 are turned on. To do. The relationship between the capacity of the power supply device 21 and the power consumption of the electric load 30 is determined so that all the switches 22 can be turned on.
 ところで、電源装置21が給電する電力は変動する。そのため、処理部230は、開閉器22をオンにした後に、電気負荷30に流れる電流値を計測部231から受け取る。そして、処理部230は、この電流値が電源装置21の容量を超えないように、オンにする開閉器22を優先順位に従って制限する。 Incidentally, the power supplied by the power supply device 21 varies. Therefore, the processing unit 230 receives the current value flowing through the electrical load 30 from the measurement unit 231 after turning on the switch 22. And the process part 230 restrict | limits the switch 22 to turn on according to a priority so that this electric current value may not exceed the capacity | capacitance of the power supply device 21. FIG.
 処理部230は、通信部232を通して充電装置212から電源情報を受け取っており、電源装置21において、第2の充電状態で動作している期間、および第3の充電状態で余剰が生じて電力を破棄している期間を認識する。処理部230は、蓄電池213が満充電に近い状態であることを電源情報によって認識すると、すべての開閉器22をオンにした後に、計測部231から通知される電流値が、電源装置21の容量以下になるように、優先順位の低い開閉器22から順にオフにする。開閉器22の優先順位は、電気負荷30の場所および種類によって人為的に定められ、制御部23に設けた記憶部233が記憶する。要するに、処理部230がすべての開閉器22をオンにできるのは、蓄電池213が満充電に近い期間のみであり、蓄電池213が満充電ではない期間には、特定の電気負荷30に対応する開閉器22のみをオンにするように定められている。なお、蓄電池213が満充電に近い状態は、上述したように、第2の充電状態と、第3の充電状態のうち電力に余剰が生じている状態とである。 The processing unit 230 receives power supply information from the charging device 212 through the communication unit 232, and the power supply device 21 operates in the second charging state and surplus occurs in the third charging state to generate power. Recognize the discard period. When the processing unit 230 recognizes from the power supply information that the storage battery 213 is almost fully charged, the current value notified from the measurement unit 231 is the capacity of the power supply device 21 after all the switches 22 are turned on. It is turned off in order from the switch 22 with the lowest priority so that it becomes the following. The priority order of the switch 22 is artificially determined by the location and type of the electrical load 30 and is stored in the storage unit 233 provided in the control unit 23. In short, the processing unit 230 can turn on all the switches 22 only during a period in which the storage battery 213 is nearly fully charged, and in a period in which the storage battery 213 is not fully charged, the switching corresponding to the specific electrical load 30 is performed. It is determined that only the device 22 is turned on. Note that the state in which the storage battery 213 is close to full charge is, as described above, the second charge state and a state in which surplus power is generated in the third charge state.
 制御部23は、プログラムに従って動作するプロセッサを備えたデバイスと、他装置との間で情報を授受するためのインターフェイスを構成するデバイスとを主なハードウェア要素にしている。プロセッサを備えるデバイスは、プロセッサがメモリと一体であるマイコン(Microcontroller)、あるいはプロセッサをメモリとは別に必要とするMPU(Micro Processing Unit)などから選択される。 The control unit 23 includes, as main hardware elements, a device including a processor that operates according to a program and a device that constitutes an interface for exchanging information with other apparatuses. The device including the processor is selected from a microcomputer in which the processor is integrated with the memory, or an MPU (Micro Processing Unit) that requires the processor separately from the memory.
 また、プログラムは、ROM(Read Only Memory)に書き込まれているが、プログラムを更新することを考慮する場合は、EEPROMにプログラムを書き込み、インターネットのような電気通信回線を通して更新用のプログラムを提供してもよい。また、プログラムは、コンピュータで読取可能な光ディスクのような記録媒体で提供してもよい。あるいは、プログラムは、コンピュータに対して着脱可能な半導体メモリのような記憶媒体を用いて提供してもよい。 The program is written in ROM (Read Only Memory), but when updating the program is considered, the program is written in the EEPROM and the update program is provided through an electric communication line such as the Internet. May be. The program may be provided on a recording medium such as an optical disk that can be read by a computer. Alternatively, the program may be provided using a storage medium such as a semiconductor memory that is detachable from the computer.
 (実施形態1)
 上述した給電設備20に用いている蓄電池213を交換するタイミングは、蓄電池管理装置10Aが判断する。図1に示す構成例では、給電設備20が蓄電池管理装置10Aを備えている。蓄電池管理装置10Aは、給電設備20の制御部23とハードウェア要素を兼用することが可能である。つまり、上述したプロセッサ、インターフェイスなどのデバイスを制御部23と蓄電池管理装置10Aとが共用することが可能である。ただし、蓄電池管理装置10Aは給電設備20とは別に設けてもよい。
(Embodiment 1)
The storage battery management device 10 </ b> A determines the timing for replacing the storage battery 213 used in the power supply facility 20 described above. In the configuration example illustrated in FIG. 1, the power supply facility 20 includes a storage battery management device 10 </ b> A. The storage battery management apparatus 10 </ b> A can share the control unit 23 of the power supply facility 20 and hardware elements. That is, the control unit 23 and the storage battery management apparatus 10A can share devices such as the processor and the interface described above. However, the storage battery management device 10 </ b> A may be provided separately from the power supply facility 20.
 蓄電池管理装置10Aは、充電装置212と通信することにより、蓄電池213が満充電に到達した状態を抽出する。すなわち、蓄電池管理装置10Aは、充電装置212から蓄電池213の充電状態に関する情報を取得する情報取得部11を備える。また、蓄電池管理装置10Aは、情報取得部11が取得した情報から、蓄電池213が満充電に到達した状態を抽出し、満充電に到達した状態の発生回数を計数する計数部12を備える。計数部12は、充電装置212が第2の充電状態から第3の充電状態に移行した状態、すなわちソーラパネル211の発電電力の余剰を破棄している状態を、蓄電池213が満充電に到達した状態と判断するように構成されている。計数部12は、蓄電池213の使用を開始した後に蓄電池213が満充電に到達した回数を記憶するために記憶部121を備える。 The storage battery management device 10A extracts a state in which the storage battery 213 has reached full charge by communicating with the charging device 212. That is, the storage battery management device 10 </ b> A includes the information acquisition unit 11 that acquires information related to the state of charge of the storage battery 213 from the charging device 212. Further, the storage battery management device 10A includes a counting unit 12 that extracts the state where the storage battery 213 has reached full charge from the information acquired by the information acquisition unit 11 and counts the number of occurrences of the state that has reached full charge. In the counting unit 12, the storage battery 213 has reached full charge when the charging device 212 has shifted from the second charging state to the third charging state, that is, when the surplus of the generated power of the solar panel 211 has been discarded. It is configured to determine the state. The counting unit 12 includes a storage unit 121 for storing the number of times that the storage battery 213 has reached full charge after the use of the storage battery 213 is started.
 上述した構成において、計数部12が計数した回数は、蓄電池213が満充電に到達した状態の回数であるから、上述したサイクル数に相当する。サイクル数は電池寿命を決める要素であるから、計数部12が計数した回数は蓄電池213を交換するタイミングの目安として用いることが可能である。 In the configuration described above, the number of times counted by the counting unit 12 is the number of times that the storage battery 213 has reached full charge, and thus corresponds to the number of cycles described above. Since the cycle number is an element that determines the battery life, the number of times counted by the counting unit 12 can be used as a guideline for replacing the storage battery 213.
 蓄電池213は、ソーラパネル211の発電電力を用いて充電されるから、蓄電池213が満充電に到達する状態は、おおむね1日に1回である。ただし、ソーラパネル211の発電能力、蓄電池213の容量、電気負荷30の大きさ、日射量などの諸条件により、蓄電池213が満充電に到達する状態が1日に複数回生じる場合もある。蓄電池213が1日に満充電に到達する回数が複数回になるという事象が生じる日数は比較的少ないと考えられ、また、このような事象が生じる場合の蓄電池213の放電量は少なく劣化の程度は小さいと考えられる。そのため、計数部12は、1日に計数する回数の上限を1回に制限してもよい。 Since the storage battery 213 is charged using the generated power of the solar panel 211, the state where the storage battery 213 reaches full charge is approximately once a day. However, depending on various conditions such as the power generation capacity of the solar panel 211, the capacity of the storage battery 213, the size of the electric load 30, and the amount of solar radiation, the state where the storage battery 213 reaches full charge may occur several times a day. It is considered that the number of days in which the event that the storage battery 213 reaches full charge in a single day occurs is relatively small, and the amount of discharge of the storage battery 213 is small when such an event occurs. Is considered small. Therefore, the counting unit 12 may limit the upper limit of the number of times counted per day to one.
 ところで、上述したように、1サイクルの期間における最大放電深度も電池寿命を決める要素である。したがって、給電設備20は、最大放電深度を制限する構成を備えていることが望ましい。電気負荷30に供給される電流は、電流センサ215が監視しているから、電流センサ215の出力から求めた電流値に基づいて蓄電池213の放電量が求められる。蓄電池213が満充電に到達した後における蓄電池213の放電量を給電設備20の制御部23が監視し、放電量が所定値に達した時点で、制御部23が複数の開閉器22のすべてを遮断すれば、1サイクルの期間における最大放電深度の制限が可能になる。 By the way, as described above, the maximum discharge depth in one cycle period is also an element that determines the battery life. Therefore, it is desirable that the power supply facility 20 has a configuration that limits the maximum depth of discharge. Since the current supplied to the electric load 30 is monitored by the current sensor 215, the discharge amount of the storage battery 213 is obtained based on the current value obtained from the output of the current sensor 215. The control unit 23 of the power supply facility 20 monitors the discharge amount of the storage battery 213 after the storage battery 213 reaches full charge. When the discharge amount reaches a predetermined value, the control unit 23 controls all of the plurality of switches 22. If cut off, it is possible to limit the maximum discharge depth in one cycle period.
 給電設備20が上述のように1サイクルの期間における最大放電深度を制限している場合には、計数部12が計数したサイクル数と、蓄電池213が放電可能な最大の電力量との関係が決まるから、サイクル数によって電池寿命を精度よく知ることが可能になる。すなわち、1サイクルの期間における最大放電深度を制限することにより、最大放電深度を制限しない場合に比べて、蓄電池213の交換時期をより正確に見積もることが可能になる。 When the power supply facility 20 restricts the maximum depth of discharge in one cycle period as described above, the relationship between the number of cycles counted by the counting unit 12 and the maximum amount of power that can be discharged by the storage battery 213 is determined. Therefore, it becomes possible to know the battery life accurately by the number of cycles. That is, by limiting the maximum discharge depth in one cycle period, it is possible to estimate the replacement time of the storage battery 213 more accurately than in the case where the maximum discharge depth is not limited.
 蓄電池管理装置10Aは、評価部13と出力部14とを備える。評価部13は、計数部12が計数したサイクル数を用いて蓄電池213の劣化の程度を評価する。評価部13は、1サイクルの期間における最大放電深度が制限されているか否かにかかわらず、計数部12が計数したサイクル数を、劣化の程度を表す評価値に換算する。出力部14は、評価部13の評価結果を出力する。図1に示す構成例において、出力部14は、評価部13の評価結果を液晶表示器のような表示器40に表示可能なデータに変換するように構成されている。したがって、ユーザは表示器40の表示内容によって蓄電池213の寿命に関する目安が得られる。 The storage battery management device 10 </ b> A includes an evaluation unit 13 and an output unit 14. The evaluation unit 13 evaluates the degree of deterioration of the storage battery 213 using the number of cycles counted by the counting unit 12. The evaluation unit 13 converts the number of cycles counted by the counting unit 12 into an evaluation value representing the degree of deterioration regardless of whether or not the maximum depth of discharge in one cycle period is limited. The output unit 14 outputs the evaluation result of the evaluation unit 13. In the configuration example shown in FIG. 1, the output unit 14 is configured to convert the evaluation result of the evaluation unit 13 into data that can be displayed on a display 40 such as a liquid crystal display. Therefore, the user can obtain an indication regarding the life of the storage battery 213 based on the display content of the display 40.
 評価部13は、劣化の程度を表す評価値として、定格容量に対して蓄電池213が放電可能な最大の電力量の割合を求めることが可能である。蓄電池213に関して、図2のようなサイクル数と放電可能な最大の電力量との関係を、評価部13が記憶部131に記憶していれば、この割合は、計数部12が計数したサイクル数から簡単に求めることが可能である。 The evaluation unit 13 can obtain the ratio of the maximum amount of power that can be discharged by the storage battery 213 with respect to the rated capacity as an evaluation value representing the degree of deterioration. For the storage battery 213, if the evaluation unit 13 stores the relationship between the number of cycles as shown in FIG. 2 and the maximum amount of power that can be discharged in the storage unit 131, this ratio is the number of cycles counted by the counting unit 12. It can be easily obtained from
 ところで、上述した構成では、ユーザは蓄電池213の劣化の程度を知ることが可能であるから、蓄電池213の交換時期を予測することが可能である。ただし、蓄電池213の劣化の程度から推定される蓄電池213の交換時期は、ユーザによってばらつきが生じる。図1に示す蓄電池管理装置10Aは、蓄電池213の使用開始からの経過時間を計時する時計部15を備え、評価部13が劣化の程度を時間に換算することによって、蓄電池213の交換時期を評価値として求めることを可能にしている。 By the way, in the configuration described above, since the user can know the degree of deterioration of the storage battery 213, the replacement time of the storage battery 213 can be predicted. However, the replacement time of the storage battery 213 estimated from the degree of deterioration of the storage battery 213 varies depending on the user. The storage battery management device 10A shown in FIG. 1 includes a clock unit 15 that measures the elapsed time from the start of use of the storage battery 213, and the evaluation unit 13 evaluates the replacement time of the storage battery 213 by converting the degree of deterioration into time. It can be obtained as a value.
 この場合、評価部13は、新品の蓄電池213の使用開始から交換時期までのサイクル数について標準値と、時計部15が計時した蓄電池213の使用開始からの経過時間とを記憶部131に格納する。記憶部131に格納しているサイクル数の標準値に対する計数部12が計数したサイクル数の比を求め、この比の逆数を記憶部131に格納している経過時間に乗じると、蓄電池213の使用開始から電池寿命までの時間が予測できる。そして、このようにして予測した時間から、記憶部131に格納している経過時間を減算すれば、蓄電池213が電池寿命に達するまでの残り時間を推定できる。 In this case, the evaluation unit 13 stores the standard value for the number of cycles from the start of use of the new storage battery 213 to the replacement time, and the elapsed time from the start of use of the storage battery 213 measured by the clock unit 15 in the storage unit 131. . When the ratio of the number of cycles counted by the counting unit 12 to the standard value of the number of cycles stored in the storage unit 131 is obtained and the reciprocal of this ratio is multiplied by the elapsed time stored in the storage unit 131, the use of the storage battery 213 The time from the start to the battery life can be predicted. Then, by subtracting the elapsed time stored in the storage unit 131 from the predicted time, the remaining time until the storage battery 213 reaches the battery life can be estimated.
 ここでは、給電設備20の制御部23が、1サイクルの期間における最大放電深度を40%に制限している場合を想定する。すなわち、この例では、1サイクルの期間における放電深度の下限値が40%に設定されている。この条件は、図2の特性bに対応するから、蓄電池213が放電可能な最大の電力量が、定格容量の80%まで低下するサイクル数は2000サイクルである。つまり、蓄電池213の交換が推奨されるまでのサイクル数は2000サイクルであり、記憶部131には標準値として2000サイクルが設定される。 Here, it is assumed that the control unit 23 of the power supply facility 20 limits the maximum depth of discharge to 40% during one cycle. That is, in this example, the lower limit value of the discharge depth in one cycle period is set to 40%. Since this condition corresponds to the characteristic b in FIG. 2, the maximum number of electric power that can be discharged by the storage battery 213 is reduced to 80% of the rated capacity, and the number of cycles is 2000. That is, the number of cycles until the replacement of the storage battery 213 is recommended is 2000 cycles, and 2000 cycles is set as the standard value in the storage unit 131.
 一方、計数部12が計数しているカウント数が1600サイクルであって、時計部15が計時した経過時間が4年間であるとすれば、2000サイクルに達するまでの年数は、4年×(2000/1600)=5年と予測できる。また、求めた時間である5年から、経過時間である4年を減算すれば、電池寿命までの残り時間を1年と推定できる。なお、この例では、計算を容易にするために、時間の単位として年を用いているが、時間の単位として日を用いることが望ましい。 On the other hand, if the count number counted by the counting unit 12 is 1600 cycles and the elapsed time counted by the clock unit 15 is 4 years, the number of years until reaching 2000 cycles is 4 years × (2000 / 1600) = 5 years. In addition, if the elapsed time of 4 years is subtracted from the calculated time of 5 years, the remaining time until the battery life can be estimated as 1 year. In this example, in order to facilitate calculation, year is used as the unit of time, but it is desirable to use day as the unit of time.
 上述のようにして評価部13が求めた値を表示器40に表示した例を図3に示す。図3の表示例では、蓄電池213の使用開始からの期間(すなわち、運用期間)が4年と示され、蓄電池213の交換時期までの期間が1年と示されている。このように蓄電池213の交換時期の目安が示されていると、ユーザは交換用の蓄電池213を注文してから入手するまでの期間を考慮して、交換用の蓄電池213を準備することが可能になる。 FIG. 3 shows an example in which the value obtained by the evaluation unit 13 as described above is displayed on the display 40. In the display example of FIG. 3, the period from the start of use of the storage battery 213 (that is, the operation period) is indicated as 4 years, and the period until the replacement time of the storage battery 213 is indicated as 1 year. Thus, when the standard of the replacement time of the storage battery 213 is shown, the user can prepare the replacement storage battery 213 in consideration of the period from when the replacement storage battery 213 is ordered until it is obtained. become.
 以上説明したように本実施形態の蓄電池管理装置10Aは、情報取得部11と計数部12と評価部13と出力部14とを備える。情報取得部11は、蓄電池213の充電状態に関する情報を取得する。計数部12は、蓄電池213が充電されて満充電に到達した状態を蓄電池213の充電状態に関する情報から抽出し、満充電に到達した状態の発生回数を計数する。評価部13は、計数部12が計数した発生回数を用いて蓄電池213の劣化の程度を評価する。出力部14は、評価部13の評価結果を出力する。 As described above, the storage battery management device 10 </ b> A of the present embodiment includes the information acquisition unit 11, the counting unit 12, the evaluation unit 13, and the output unit 14. The information acquisition unit 11 acquires information regarding the state of charge of the storage battery 213. The counting unit 12 extracts the state in which the storage battery 213 is charged and has reached full charge from the information regarding the charge state of the storage battery 213, and counts the number of occurrences of the state in which full storage has been reached. The evaluation unit 13 evaluates the degree of deterioration of the storage battery 213 using the number of occurrences counted by the counting unit 12. The output unit 14 outputs the evaluation result of the evaluation unit 13.
 この構成によれば、蓄電池213の充電状態に関する情報を取得することによって、蓄電池213の劣化の程度の目安を得ることが可能になる。すなわち、蓄電池213が満充電に到達した状態の発生回数によって、ユーザは蓄電池213の交換時期を推定することが可能になる。 According to this configuration, it is possible to obtain an indication of the degree of deterioration of the storage battery 213 by acquiring information related to the state of charge of the storage battery 213. That is, the user can estimate the replacement time of the storage battery 213 based on the number of occurrences of the state in which the storage battery 213 has reached full charge.
 とくに、蓄電池213は太陽電池(ソーラパネル211)の発電電力を用いて充電される鉛蓄電池である場合、満充電に近い状態を維持するほうが電池寿命が長くなるから、満充電に到達した状態の発生回数を劣化の程度の目安に用いることが有効である。 In particular, when the storage battery 213 is a lead storage battery that is charged using the generated power of the solar battery (solar panel 211), the battery life becomes longer when the state close to full charge is maintained. It is effective to use the number of occurrences as a measure of the degree of deterioration.
 この構成において、太陽電池(ソーラパネル211)の発電電力は充電装置212を通して蓄電池213に充電されることが望ましい。この場合、情報取得部11は、充電装置212から蓄電池213の充電状態に関する情報を取得するように構成される。また、計数部12は、太陽電池(ソーラパネル211)の発電電力に蓄電池213の充電には用いない余剰電力が生じた状態を満充電に到達した状態と判断するように構成されていることが望ましい。 In this configuration, it is desirable that the generated power of the solar cell (solar panel 211) is charged to the storage battery 213 through the charging device 212. In this case, the information acquisition unit 11 is configured to acquire information related to the state of charge of the storage battery 213 from the charging device 212. In addition, the counting unit 12 may be configured to determine that a state in which surplus power not used for charging the storage battery 213 is generated in the generated power of the solar battery (solar panel 211) has reached full charge. desirable.
 この構成によれば、充電装置212が蓄電池213を充電する際の動作に関する情報を情報取得部11が充電装置212から受け取ることにより、計数部12は、蓄電池213が満充電に到達した状態か否かを判断することが可能になる。 According to this configuration, when the information acquisition unit 11 receives information about the operation when the charging device 212 charges the storage battery 213 from the charging device 212, the counting unit 12 determines whether or not the storage battery 213 has reached full charge. It becomes possible to judge.
 蓄電池管理装置10Aは、蓄電池213の使用開始からの経過時間を計時する時計部15を備えることが望ましい。この場合、評価部13は、評価した蓄電池213の劣化の程度と時計部15が計時した経過時間とを用いて交換時期までの残り時間を推定する。また、出力部14は、評価部13の評価結果として交換時期までの残り時間を出力することが望ましい。 The storage battery management device 10 </ b> A preferably includes a clock unit 15 that measures the elapsed time from the start of use of the storage battery 213. In this case, the evaluation unit 13 estimates the remaining time until the replacement time using the evaluated degree of deterioration of the storage battery 213 and the elapsed time measured by the clock unit 15. The output unit 14 preferably outputs the remaining time until the replacement time as the evaluation result of the evaluation unit 13.
 この構成によれば、蓄電池213の交換時期までの時間が推定されるから、交換用の蓄電池213を用意するタイミングを決めることが容易である。 According to this configuration, since the time until the replacement time of the storage battery 213 is estimated, it is easy to determine the timing for preparing the replacement storage battery 213.
 (実施形態2)
 実施形態1では、1サイクルの期間における放電深度の下限値を定め、評価部13は、1サイクルの期間において放電深度が下限値に達したと仮定して劣化の程度を評価している。つまり、放電深度の下限値が40%に設定されている場合に、評価部13は、最大放電深度が40%の場合の放電可能な電力量が低下する割合を一律に適用して劣化の程度を評価している。図2に示した例では、2000サイクルで放電可能な電力量が20%低下するから、劣化の程度は-20%/2000=-0.01%である。
(Embodiment 2)
In the first embodiment, the lower limit value of the discharge depth in one cycle period is determined, and the evaluation unit 13 evaluates the degree of deterioration assuming that the discharge depth has reached the lower limit value in one cycle period. That is, when the lower limit value of the depth of discharge is set to 40%, the evaluation unit 13 uniformly applies the rate at which the amount of power that can be discharged when the maximum depth of discharge is 40% is reduced to the extent of deterioration. Is evaluated. In the example shown in FIG. 2, the amount of power that can be discharged in 2000 cycles is reduced by 20%, so the degree of deterioration is −20% / 2000 = −0.01%.
 一方、実使用上では、1サイクルの期間における最大放電深度は日々変動する。以下では、1サイクルの期間における最大放電深度の変動に応じて劣化の程度を調節した構成例について説明する。図4のように、本実施形態の蓄電池管理装置10Bは、1サイクルの期間における最大放電深度を抽出するために、実施形態1の蓄電池管理装置10Aに対して監視部16を付加している。監視部16は、情報取得部11が取得した情報を用いて、1サイクルの期間における最大放電深度を抽出するように構成されている。1サイクルの期間における最大放電深度は、充電装置212から得られるソーラパネル211の発電電力と、計測部231が計測している電気負荷30の消費電力とを用いて求められる。 On the other hand, in actual use, the maximum discharge depth in one cycle period varies from day to day. Below, the structural example which adjusted the grade of deterioration according to the fluctuation | variation of the maximum discharge depth in the period of 1 cycle is demonstrated. As shown in FIG. 4, the storage battery management device 10 </ b> B of this embodiment adds a monitoring unit 16 to the storage battery management device 10 </ b> A of Embodiment 1 in order to extract the maximum depth of discharge in one cycle period. The monitoring unit 16 is configured to extract the maximum discharge depth in one cycle period using the information acquired by the information acquisition unit 11. The maximum depth of discharge in one cycle period is obtained by using the generated power of the solar panel 211 obtained from the charging device 212 and the power consumption of the electric load 30 measured by the measuring unit 231.
 たとえば、発電電力量が1000Wh、消費電力量が2000Whであって、充電装置212および電力変換器214の変換効率が95%、蓄電池213の定格容量が10kWhであるとする。この場合、放電深度は、(2000/0.95-1000)/10000≒0.11という計算で求められる。つまり、放電深度は11%になる。 For example, it is assumed that the generated power amount is 1000 Wh, the consumed power amount is 2000 Wh, the conversion efficiency of the charging device 212 and the power converter 214 is 95%, and the rated capacity of the storage battery 213 is 10 kWh. In this case, the depth of discharge is obtained by the calculation of (2000 / 0.95-1000) /10000≈0.11. That is, the discharge depth is 11%.
 この構成例において、評価部13は、1サイクルの期間における最大放電深度に応じた劣化の程度を、たとえば表1のように対応付けている。表1では劣化の程度を標準劣化度と呼び、1サイクルの期間における最大放電深度を10%ずつの区間に分け、区間ごとに標準劣化度を設定している。表1のようなデータは、評価部13に設けた記憶部131に格納される。 In this configuration example, the evaluation unit 13 associates the degree of deterioration according to the maximum discharge depth in one cycle period as shown in Table 1, for example. In Table 1, the degree of deterioration is called a standard deterioration degree, and the maximum discharge depth in one cycle period is divided into 10% sections, and the standard deterioration degree is set for each section. Data as shown in Table 1 is stored in the storage unit 131 provided in the evaluation unit 13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  表1では、最大放電深度が30%を超え40%以下の場合、標準劣化度が-0.01%である。つまり、1サイクルの期間における最大放電深度が一律に40%と仮定されている上述の構成例に対応するように劣化の程度が設定されている。1サイクルの期間における最大放電深度が30%以下であれば、劣化の程度はより少なくなるから、表1では最大放電深度が30%以下の区間では標準劣化度を-0.01%よりも小さい値に設定している。 表 In Table 1, when the maximum discharge depth is more than 30% and less than 40%, the standard deterioration degree is -0.01%. That is, the degree of deterioration is set so as to correspond to the above-described configuration example in which the maximum discharge depth in one cycle period is uniformly assumed to be 40%. If the maximum depth of discharge in one cycle period is 30% or less, the degree of deterioration becomes smaller. Therefore, in Table 1, the standard deterioration degree is smaller than −0.01% in the section where the maximum depth of discharge is 30% or less. Set to value.
 1サイクルの期間における最大放電深度がわかれば、最大放電深度に対応する標準劣化度を求め、サイクルごとに求めた標準劣化度を累積することによって、蓄電池213の使用開始からの劣化の程度を評価することが可能になる。 If the maximum discharge depth in one cycle period is known, the standard deterioration degree corresponding to the maximum discharge depth is obtained, and the degree of deterioration from the start of use of the storage battery 213 is evaluated by accumulating the standard deterioration degree obtained for each cycle. It becomes possible to do.
 たとえば、1サイクル前に満充電に到達した状態での劣化の程度が-1.00であり、今回のサイクルでの最大放電深度が11%であったとすれば、標準劣化度は-0.005%であるから、標準劣化度の累積値は、-1.005%になる。つまり、蓄電池213が放電可能な電力量は、定格容量に対して98.995%(=100%-1.005%)になる。 For example, if the degree of deterioration in a state where full charge is reached one cycle before is −1.00 and the maximum discharge depth in this cycle is 11%, the standard deterioration degree is −0.005. Therefore, the cumulative value of the standard deterioration degree is −1.005%. That is, the amount of power that can be discharged by the storage battery 213 is 98.995% (= 100% -1.005%) with respect to the rated capacity.
 本実施形態の蓄電池管理装置10Bでは、評価部13は、計数部12が1サイクルを計数するたびに、監視部16から1サイクルの期間の最大放電深度を受け取る。評価部13は、この最大放電深度を記憶部131に格納しているデータと照らし合わせることによって標準劣化度を抽出する。さらに、評価部13は、抽出した標準劣化度を、記憶部131に格納している過去の標準劣化度の累積値に加算することにより、蓄電池213の使用開始からの劣化の程度を求める。すなわち、評価部13は、蓄電池213の使用開始から標準劣化度を累積することによって、劣化の程度を評価する値を求める。評価部13が求めた劣化の程度は、出力部14を通して出力され、たとえば表示器40に表示される。 In the storage battery management device 10B of the present embodiment, the evaluation unit 13 receives the maximum discharge depth for one cycle period from the monitoring unit 16 every time the counting unit 12 counts one cycle. The evaluation unit 13 extracts the standard deterioration degree by comparing the maximum discharge depth with the data stored in the storage unit 131. Furthermore, the evaluation unit 13 obtains the degree of deterioration from the start of use of the storage battery 213 by adding the extracted standard deterioration degree to the cumulative value of the past standard deterioration degree stored in the storage unit 131. That is, the evaluation unit 13 obtains a value for evaluating the degree of deterioration by accumulating the standard deterioration degree from the start of use of the storage battery 213. The degree of deterioration obtained by the evaluation unit 13 is output through the output unit 14 and displayed on the display 40, for example.
 なお、上述した構成例では、蓄電池213の劣化の程度とサイクルとの関係が線形であると仮定して1サイクルの期間における最大放電深度に対する標準劣化度を、加算用に設定している。これに対して、蓄電池213の劣化の程度とサイクルとの関係を非線形と仮定して1サイクルの期間における最大放電深度に対する標準劣化度を、乗算用に設定することも可能である。 In the configuration example described above, assuming that the relationship between the degree of deterioration of the storage battery 213 and the cycle is linear, the standard deterioration degree with respect to the maximum discharge depth in one cycle period is set for addition. On the other hand, assuming that the relationship between the degree of deterioration of the storage battery 213 and the cycle is non-linear, the standard deterioration degree with respect to the maximum discharge depth in one cycle period can be set for multiplication.
 上述した本実施形態の蓄電池管理装置10Bは、蓄電池213の充電状態に関する情報を用いて、蓄電池213が満充電に到達してから次に満充電に到達するまでの期間における蓄電池213の最大放電深度を抽出する監視部16を備える。評価部13は、蓄電池213が満充電に到達してから次に満充電に到達するまでの期間における蓄電池213の劣化の程度を表す標準劣化度を、最大放電深度に対応付けるように構成されている。また、評価部13は、計数部12が発生回数を計数するたびに、最大放電深度に対応する標準劣化度を累積させることにより、蓄電池213の使用開始からの劣化の程度を評価する。 The storage battery management device 10B of the present embodiment described above uses the information related to the state of charge of the storage battery 213, and the maximum discharge depth of the storage battery 213 in the period from when the storage battery 213 reaches full charge until it reaches full charge next time. Is provided. The evaluation unit 13 is configured to associate a standard deterioration degree indicating a degree of deterioration of the storage battery 213 in a period from when the storage battery 213 reaches full charge until it reaches full charge next to the maximum discharge depth. . The evaluation unit 13 evaluates the degree of deterioration from the start of use of the storage battery 213 by accumulating the standard deterioration degree corresponding to the maximum discharge depth every time the counting unit 12 counts the number of occurrences.
 この構成によれば、1サイクル当たりの蓄電池213の劣化の程度を最大放電深度にかかわりなく一律に定めている場合に比較すると、蓄電池213の劣化の程度をきめ細かく評価することが可能になる。その結果、蓄電池213の交換時期の推定精度が高くなり、蓄電池213の交換頻度の低減につながる。 According to this configuration, it is possible to finely evaluate the degree of deterioration of the storage battery 213 as compared with the case where the degree of deterioration of the storage battery 213 per cycle is uniformly determined regardless of the maximum discharge depth. As a result, the estimation accuracy of the replacement time of the storage battery 213 is increased, and the replacement frequency of the storage battery 213 is reduced.
 ところで、標準劣化度は、1サイクルの期間がほぼ1日に対応している場合を想定して設定されている。しかしながら、天候あるいは季節によって1日の日射量が変動すると、1サイクルの期間が1日には対応せず、蓄電池213が満充電に到達しない状態が長期間にわたって継続する可能性がある。鉛蓄電池は、満充電ではない状態で使用を継続すると劣化が進むから、1サイクルの期間が長期にわたる場合には、蓄電池213の劣化の程度を補正する必要がある。 By the way, the standard deterioration degree is set on the assumption that the period of one cycle corresponds to almost one day. However, if the amount of solar radiation per day varies depending on the weather or season, there is a possibility that the period of one cycle does not correspond to one day, and the state where the storage battery 213 does not reach full charge continues for a long period of time. Since the lead storage battery deteriorates when it is continuously used in a state where it is not fully charged, it is necessary to correct the degree of deterioration of the storage battery 213 when the period of one cycle is long.
 そのため、時計部15は、蓄電池213が満充電ではない状態の継続期間を計時するように構成されており、評価部13は、時計部15が計時した継続期間に応じて蓄電池213の劣化の程度を補正するように構成されている。評価部13は、蓄電池213が満充電ではない状態の継続期間と、継続期間に応じた補正劣化度とを対応付けた表2のようなデータを記憶部131に格納している。 Therefore, the clock unit 15 is configured to count the duration of the state in which the storage battery 213 is not fully charged, and the evaluation unit 13 determines the degree of deterioration of the storage battery 213 according to the duration of time counted by the clock unit 15. Is configured to correct. The evaluation unit 13 stores, in the storage unit 131, data as shown in Table 2 in which the duration of the state where the storage battery 213 is not fully charged and the degree of correction deterioration according to the duration are associated with each other.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2では、蓄電池213が満充電に到達しない状態の継続期間が7日間以上である場合に蓄電池213の劣化の程度を補正するように補正劣化度を定めている。つまり、7日以上連続して蓄電池213が満充電に到達しないという事象が生じる場合は、蓄電池213の劣化が進むから、この事象による劣化の程度を補正する補正劣化度を定めている。 In Table 2, the corrected deterioration degree is determined so as to correct the degree of deterioration of the storage battery 213 when the duration of the state in which the storage battery 213 does not reach full charge is 7 days or more. That is, when an event occurs in which the storage battery 213 does not reach a full charge for seven consecutive days or more, the deterioration of the storage battery 213 proceeds. Therefore, a correction deterioration degree for correcting the degree of deterioration due to this event is determined.
 時計部15は、情報取得部11が取得した情報を用いて蓄電池213が満充電ではない状態の継続時間を計時する。つまり、蓄電池213が満充電に到達した後に、蓄電池213が満充電ではない状態に移行すると、時計部15は満充電ではない状態の継続期間を計時する。一方、評価部13は、時計部15が計時した継続時間が7日間になると、記憶部131から補正劣化度を抽出し、記憶部131に記憶している劣化の程度を補正する。 The clock unit 15 uses the information acquired by the information acquisition unit 11 to measure the duration of the state where the storage battery 213 is not fully charged. That is, when the storage battery 213 shifts to a state where the storage battery 213 is not fully charged after the storage battery 213 reaches full charge, the clock unit 15 measures the duration of the state where the storage battery 213 is not fully charged. On the other hand, when the duration time counted by the clock unit 15 reaches 7 days, the evaluation unit 13 extracts the correction deterioration degree from the storage unit 131 and corrects the degree of deterioration stored in the storage unit 131.
 たとえば、蓄電池213が満充電に到達した時点で、蓄電池213が放電可能な電力量が定格容量に対して98.995%であるとする。その後、蓄電池213が満充電ではない状態が7日連続すると、評価部13は、補正劣化度である-0.01%を記憶部131から抽出し、蓄電池213が放電可能な電力量の定格容量に対する割合を98.985%(=98.995%-0.01%)に補正する。さらに、蓄電池213が満充電ではない状態の継続期間が8日目になると、評価部13は、8日目の補正劣化度である-0.013%を記憶部131から抽出し、7日目の補正劣化度との差分である-0.003%の補正を行う。つまり、蓄電池213が放電可能な電力量の定格容量に対する割合を98.982%(=98.985%-0.003%)に補正する。 For example, when the storage battery 213 reaches full charge, the amount of power that can be discharged by the storage battery 213 is 99.995% of the rated capacity. Thereafter, when the state in which the storage battery 213 is not fully charged continues for 7 days, the evaluation unit 13 extracts −0.01%, which is the corrected deterioration degree, from the storage unit 131, and the rated capacity of the electric energy that can be discharged by the storage battery 213 Is corrected to 98.985% (= 98.995% -0.01%). Further, when the duration of the state in which the storage battery 213 is not fully charged is the eighth day, the evaluation unit 13 extracts −0.013%, which is the corrected deterioration degree on the eighth day, from the storage unit 131, and the seventh day A correction of -0.003%, which is the difference from the correction deterioration degree, is performed. That is, the ratio of the electric energy that can be discharged by the storage battery 213 to the rated capacity is corrected to 98.982% (= 98.985% −0.003%).
 蓄電池213の劣化の程度を補正する条件としては、蓄電池213が満充電ではない状態の継続期間のほかに、蓄電池213の充電条件、蓄電池213の環境温度などを考慮することが望ましい。 As conditions for correcting the degree of deterioration of the storage battery 213, it is desirable to consider the charging conditions of the storage battery 213, the environmental temperature of the storage battery 213, etc. in addition to the duration of the state in which the storage battery 213 is not fully charged.
 たとえば、大容量の蓄電池213が必要である場合には、複数のセルで蓄電池213が構成されるから、蓄電池213を使用する間に、セルの充電量(つまり、充電可能な電力量)などにばらつきが生じる。そのため、通常よりも高い電圧で蓄電池213を充電する均等化充電が実施されることがある。均等化充電が実施された場合は、蓄電池213の充電量が回復するから、蓄電池213の劣化の程度を補正することが望ましい。 For example, when a large-capacity storage battery 213 is required, the storage battery 213 is composed of a plurality of cells. Therefore, while the storage battery 213 is used, the amount of charge of the cell (that is, the amount of power that can be charged), etc. Variation occurs. Therefore, the equalization charge which charges the storage battery 213 with a voltage higher than usual may be implemented. When equalization charging is performed, the amount of charge of the storage battery 213 is restored, so it is desirable to correct the degree of deterioration of the storage battery 213.
 そのため、蓄電池管理装置10Bは、蓄電池213が常時よりも高電圧である所定電圧で充電された状態を判別する判別部17を備えている。この所定電圧は、均等化充電を行う際の電圧であり、判別部17は、充電装置212から取得した情報に基づいて、均等化充電が実施されたか否かを判別する。判別部17により均等化充電の実施が判別されたときには、評価部13は記憶部131に保持している蓄電池213の劣化の程度を、充電回復度で補正する。充電回復度は、均等化充電によって蓄電池213の充電量が回復したときに、蓄電池213の寿命を延長するように劣化の程度を補正するように設定され、記憶部131に格納されている。充電回復度の値は、均等化充電の1回の実施に対して固定的に定められる。 Therefore, the storage battery management device 10B includes a determination unit 17 that determines whether the storage battery 213 is charged with a predetermined voltage that is higher than usual. The predetermined voltage is a voltage when performing equalization charging, and the determination unit 17 determines whether equalization charging has been performed based on information acquired from the charging device 212. When the determination unit 17 determines that equalization charging is to be performed, the evaluation unit 13 corrects the degree of deterioration of the storage battery 213 held in the storage unit 131 by the charge recovery degree. The charge recovery degree is set so as to correct the degree of deterioration so as to extend the life of the storage battery 213 when the charge amount of the storage battery 213 is recovered by equalization charging, and is stored in the storage unit 131. The value of the charge recovery degree is fixedly determined for one execution of equalization charging.
 たとえば、記憶部131が記憶している蓄電池213の劣化の程度が99.985%であり、充電回復度が0.01%に定められている場合を想定する。判別部17が均等化充電の実施を判別すると、評価部13は、記憶部131から充電回復度である0.01%を読み出し、記憶部131に格納されている劣化の程度である99.985%を、99.995%(=99.985%+0.01%)に補正する。このように、均等化充電によって蓄電池213の充電量が回復した場合には、蓄電池213の劣化の程度を引き上げるように補正する。 For example, it is assumed that the degree of deterioration of the storage battery 213 stored in the storage unit 131 is 99.985% and the charge recovery degree is set to 0.01%. When the determination unit 17 determines that the equalization charging is performed, the evaluation unit 13 reads 0.01% that is the charge recovery degree from the storage unit 131, and is the degree of deterioration stored in the storage unit 131. % Is corrected to 99.995% (= 99.985% + 0.01%). Thus, when the charge amount of the storage battery 213 is recovered by equalization charging, correction is performed so as to raise the degree of deterioration of the storage battery 213.
 また、蓄電池213の環境温度は、蓄電池213の劣化の程度に影響することが知られている。一般的には蓄電池213の環境温度が高くなると、蓄電池213の劣化が進むことが知られている。たとえば、20℃以上の温度環境で使用し、基準温度を25℃に設定する場合を想定する。20℃から25℃では、鉛蓄電池の劣化の程度は環境温度の影響を受けないことが知られている。したがって、環境温度が25℃以上である場合に、劣化の程度を補正すればよい。 Also, it is known that the environmental temperature of the storage battery 213 affects the degree of deterioration of the storage battery 213. In general, it is known that when the environmental temperature of the storage battery 213 increases, the storage battery 213 deteriorates. For example, it is assumed that the temperature is set to 20 ° C. or higher and the reference temperature is set to 25 ° C. It is known that at 20 to 25 ° C., the degree of deterioration of the lead storage battery is not affected by the environmental temperature. Therefore, the degree of deterioration may be corrected when the environmental temperature is 25 ° C. or higher.
 蓄電池管理装置10Bは、蓄電池213の環境温度を考慮して劣化の程度を評価するために、情報取得部11が取得する情報には蓄電池213が含まれる。図4に示す構成例では、充電装置212が、蓄電池213の充電状態を監視するために蓄電池213の環境温度を監視しており、充電装置212から蓄電池213の環境温度を取得する。充電装置212が蓄電池213の環境温度を計測する機能を有していない場合には、蓄電池213の環境温度を監視する温度センサを別途に設けることも可能である。 In the storage battery management device 10B, the information acquired by the information acquisition unit 11 includes the storage battery 213 in order to evaluate the degree of deterioration in consideration of the environmental temperature of the storage battery 213. In the configuration example illustrated in FIG. 4, the charging device 212 monitors the environmental temperature of the storage battery 213 in order to monitor the charging state of the storage battery 213, and acquires the environmental temperature of the storage battery 213 from the charging device 212. When the charging device 212 does not have a function of measuring the environmental temperature of the storage battery 213, a temperature sensor that monitors the environmental temperature of the storage battery 213 can be provided separately.
 蓄電池213の環境温度を考慮する場合、評価部13は、環境温度に応じて蓄電池213の劣化の程度を補正する。すなわち、評価部13は、環境温度と温度劣化度とを対応付けた表3のようなデータを記憶部131に格納している。 When considering the environmental temperature of the storage battery 213, the evaluation unit 13 corrects the degree of deterioration of the storage battery 213 according to the environmental temperature. That is, the evaluation unit 13 stores data as shown in Table 3 in which the environmental temperature and the temperature deterioration degree are associated with each other in the storage unit 131.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の環境温度は、所定期間における環境温度の平均値であって、所定期間はたとえば1週間(7日間)に定められる。評価部13は、情報取得部11が取得した蓄電池213の環境温度について、1週間の平均値を求め、求めた平均値を記憶部131に照らし合わせることにより温度劣化度を抽出する。温度劣化度を適用して劣化の程度を補正するタイミングは、環境温度の平均値を求めるタイミングとする。たとえば、評価部13は、日曜日の午前零時ごとに環境温度の平均値を求め、温度劣化度を抽出し、記憶部131に格納されている蓄電池213の劣化の程度を補正する。 The environmental temperature in Table 3 is an average value of the environmental temperature in a predetermined period, and the predetermined period is set to one week (7 days), for example. The evaluation unit 13 obtains an average value for one week for the environmental temperature of the storage battery 213 acquired by the information acquisition unit 11, and extracts the temperature deterioration degree by comparing the obtained average value with the storage unit 131. The timing for correcting the degree of degradation by applying the temperature degradation degree is the timing for obtaining the average value of the environmental temperature. For example, the evaluation unit 13 obtains the average value of the environmental temperature every midnight on Sunday, extracts the temperature deterioration degree, and corrects the degree of deterioration of the storage battery 213 stored in the storage unit 131.
 具体例で示すと、1週間における環境温度の平均値が35℃であった場合、表3によれば温度劣化率は-0.004%である。環境温度の平均値を求めた時点で記憶部131に格納されている劣化の程度が99.985%であるとすれば、補正後の劣化の程度は、99.981%(=99.985%-0.004%)になる。 As a specific example, when the average value of the environmental temperature in one week is 35 ° C., the temperature deterioration rate is −0.004% according to Table 3. If the degree of deterioration stored in the storage unit 131 at the time of obtaining the average environmental temperature is 99.985%, the degree of deterioration after correction is 99.985% (= 99.985%). -0.004%).
 本実施形態では、最大放電深度を考慮して劣化の程度を求める構成を除いて、蓄電池213の劣化の程度を補正する技術は、適宜に組み合わせて用いることが可能である。すなわち、満充電に到達しない状態が連続する日数に対する補正、均等化充電に対する補正、環境温度に対する補正は、必要に応じて適宜に組み合わせることが可能である。また、これらの補正を行わずに、蓄電池213の劣化の程度を評価することも可能である。 In the present embodiment, the technology for correcting the degree of deterioration of the storage battery 213 can be used in appropriate combination, except for the configuration in which the degree of deterioration is calculated in consideration of the maximum discharge depth. That is, the correction for the number of days in which the state that does not reach the full charge continues, the correction for the equalization charge, and the correction for the environmental temperature can be appropriately combined as necessary. It is also possible to evaluate the degree of deterioration of the storage battery 213 without making these corrections.
 本実施形態の他の構成および動作は実施形態1と同様である。すなわち、実施形態1と同符号を付した構成は、実施形態1と同様に動作する。 Other configurations and operations of the present embodiment are the same as those of the first embodiment. That is, the configuration denoted by the same reference numerals as in the first embodiment operates in the same manner as in the first embodiment.
 上述した本実施形態の蓄電池管理装置10Bにおいて、時計部15は、情報取得部11が取得した情報を用いて蓄電池213が満充電ではない状態の継続期間を計時するように構成されている。評価部13は、蓄電池213が満充電ではない状態の継続期間における蓄電池213の劣化の程度を表す補正劣化度を、継続期間に対応付けるように構成されている。また、評価部13は、蓄電池213が満充電ではない状態の継続期間に応じて、蓄電池213の使用開始からの劣化の程度を補正劣化度で補正することが望ましい。 In the above-described storage battery management device 10B of the present embodiment, the clock unit 15 is configured to measure the duration of the state where the storage battery 213 is not fully charged using the information acquired by the information acquisition unit 11. The evaluation unit 13 is configured to associate the corrected deterioration level indicating the degree of deterioration of the storage battery 213 during the continuous period in which the storage battery 213 is not fully charged with the continuous period. Further, it is desirable that the evaluation unit 13 corrects the degree of deterioration from the start of use of the storage battery 213 with the correction deterioration degree according to the duration of the state where the storage battery 213 is not fully charged.
 また、蓄電池管理装置10Bは、情報取得部11が取得した情報を用いて蓄電池213が常時よりも高電圧である所定電圧で充電された状態を判別する判別部17をさらに備えていてもよい。この場合、評価部13は、蓄電池213が常時よりも高電圧である所定電圧で充電される場合に備えて、蓄電池213を所定電圧で充電した場合の劣化の程度を表す充電回復度が定められる。そして、評価部13は、蓄電池213が所定電圧で充電されたことを判別部17が判別した場合に、蓄電池213の使用開始からの劣化の程度を充電回復度で補正することが望ましい。 Further, the storage battery management device 10B may further include a determination unit 17 that determines the state in which the storage battery 213 is charged with a predetermined voltage that is higher than usual using the information acquired by the information acquisition unit 11. In this case, the evaluation unit 13 determines a degree of charge recovery that represents the degree of deterioration when the storage battery 213 is charged with a predetermined voltage in preparation for the storage battery 213 being charged with a predetermined voltage that is higher than usual. . And when the determination part 17 discriminate | determines that the storage battery 213 was charged with the predetermined voltage, it is desirable for the evaluation part 13 to correct | amend the degree of deterioration from the use start of the storage battery 213 with a charge recovery degree.
 さらに、情報取得部11は、蓄電池213の環境温度に関する情報を取得するように構成されていてもよい。この場合、評価部13は、環境温度に応じた蓄電池213の劣化の程度を表す温度劣化度を、所定の単位期間における前記蓄電池の環境温度の代表値に対応付けるように構成される。評価部13は、単位期間ごとに環境温度の代表値に応じた温度劣化度を累積させることにより、蓄電池213の使用開始からの劣化の程度を評価することが可能になる。 Furthermore, the information acquisition unit 11 may be configured to acquire information related to the environmental temperature of the storage battery 213. In this case, the evaluation unit 13 is configured to associate a temperature deterioration degree indicating the degree of deterioration of the storage battery 213 according to the environmental temperature with a representative value of the environmental temperature of the storage battery in a predetermined unit period. The evaluation unit 13 can evaluate the degree of deterioration from the start of use of the storage battery 213 by accumulating the temperature deterioration degree according to the representative value of the environmental temperature for each unit period.
 これらの構成では、蓄電池213を使用する条件に応じて蓄電池213の劣化の程度の評価を調節することができるから、蓄電池213の劣化の程度を見積もる精度を高めることが可能になる。 In these configurations, since the evaluation of the degree of deterioration of the storage battery 213 can be adjusted according to the conditions for using the storage battery 213, it is possible to improve the accuracy of estimating the degree of deterioration of the storage battery 213.
 (実施形態3)
 本実施形態は、蓄電池213の劣化の程度を、蓄電池213の電池電圧に基づいて評価する構成を採用している。図5に示すように、給電設備20は、電気負荷30に電力を供給する負荷電路31に挿入した開閉器22を備える。図5に示す蓄電池管理装置10Cの構成は、図1に示した蓄電池管理装置10Aの構成から計数部12を除いた構成である。ただし、評価部13の動作は実施形態1とは異なる。
(Embodiment 3)
This embodiment employs a configuration in which the degree of deterioration of the storage battery 213 is evaluated based on the battery voltage of the storage battery 213. As shown in FIG. 5, the power supply facility 20 includes a switch 22 inserted in a load electric circuit 31 that supplies electric power to the electric load 30. The configuration of the storage battery management device 10C illustrated in FIG. 5 is a configuration obtained by removing the counting unit 12 from the configuration of the storage battery management device 10A illustrated in FIG. However, the operation of the evaluation unit 13 is different from that of the first embodiment.
 実施形態1で説明したように、蓄電池213の放電深度に下限値が定められていると、蓄電池213の放電深度が下限値に達した時点で制御部23は開閉器22をオフにし、電気負荷30への給電を停止させる。その後、蓄電池213の充電が進み、蓄電池213に充電された電力量が回復すると、制御部23は、開閉器22をオンにして電気負荷30への給電を再開する。 As described in the first embodiment, when the lower limit value is set for the discharge depth of the storage battery 213, the control unit 23 turns off the switch 22 when the discharge depth of the storage battery 213 reaches the lower limit value. The power supply to 30 is stopped. After that, when the storage battery 213 is charged and the amount of power charged in the storage battery 213 is restored, the control unit 23 turns on the switch 22 and resumes power supply to the electric load 30.
 開閉器22がオフからオンに移行した時点での蓄電池213の電池電圧の変動の大きさは、所定の条件下では、蓄電池213の使用開始からの日数(あるいはサイクル数)に対して、図6のように線形に変化する。すなわち、開閉器22がオフであって蓄電池213が無負荷である状態から、開閉器22がオンになって蓄電池213に負荷が接続された状態に移行すると、蓄電池213の電池電圧が降下する。そして、この電圧の大きさは蓄電池213の劣化の程度を表している。このような事象が生じるのは、蓄電池213の劣化が進むと、蓄電池213の内部抵抗が増加することに起因していると考えられる。 The magnitude of the fluctuation of the battery voltage of the storage battery 213 at the time when the switch 22 is switched from OFF to ON is shown in FIG. 6 with respect to the number of days (or the number of cycles) from the start of use of the storage battery 213 under a predetermined condition. Changes linearly. That is, when the switch 22 is turned off and the storage battery 213 is not loaded, the battery voltage of the storage battery 213 drops when the switch 22 is turned on and the load is connected to the storage battery 213. The magnitude of this voltage represents the degree of deterioration of the storage battery 213. Such an event is considered to be caused by an increase in internal resistance of the storage battery 213 as the deterioration of the storage battery 213 progresses.
 ただし、開閉器22がオフからオンに移行したときの電池電圧の変動の大きさは、条件によって変動するから、蓄電池213の劣化の程度を電池電圧の変動によって評価するには、一定条件の下で電池電圧の変動の大きさを計測する必要がある。そこで、本実施形態では、蓄電池213の充電が行われていない期間、または蓄電池213が満充電に到達して余剰電力が破棄されている期間などを条件として、開閉器22がオフからオンに移行したときの電池電圧の変動分の推移を記録する。また、開閉器22がオフからオンに移行するたびに電気負荷30の大きさが変動すると、電池電圧が電気負荷30の大きさの影響を受けるから、記憶部131に電池電圧の変動分の推移を記録する条件は、電気負荷30の消費電力でも定めている。たとえば、電気負荷30の消費電力が、1000W±10%などの条件を満足するときに、電池電圧の変動分を記憶部131に記録する。開閉器22をオフからオンに移行させてから、電気負荷30の消費電力および電池電圧を計測するタイミングは、開閉器22のオン直後の電圧および電流のドリフトを考慮して、オンから所定時間が経過した時点に設定されている。この所定時間は、30秒から1分などの範囲で選択される。 However, since the magnitude of the fluctuation of the battery voltage when the switch 22 is switched from OFF to ON varies depending on the conditions, in order to evaluate the degree of deterioration of the storage battery 213 based on the fluctuation of the battery voltage, it is necessary to Therefore, it is necessary to measure the magnitude of the battery voltage fluctuation. Therefore, in this embodiment, the switch 22 is switched from OFF to ON on the condition that the storage battery 213 is not charged or the storage battery 213 reaches full charge and surplus power is discarded. Record changes in battery voltage when In addition, if the size of the electrical load 30 changes every time the switch 22 is switched from OFF to ON, the battery voltage is affected by the size of the electrical load 30, so the change in the battery voltage changes in the storage unit 131. Is also determined by the power consumption of the electrical load 30. For example, when the power consumption of the electric load 30 satisfies a condition such as 1000 W ± 10%, the variation of the battery voltage is recorded in the storage unit 131. The timing of measuring the power consumption and the battery voltage of the electrical load 30 after the switch 22 is switched from OFF to ON is a predetermined time from ON in consideration of the voltage and current drift immediately after the switch 22 is turned on. It is set to the time when it has passed. The predetermined time is selected in the range of 30 seconds to 1 minute.
 たとえば、蓄電池213の充電が行われていないときに、開閉器22をオフからオンにし、開閉器22のオンから1分後における電気負荷30の消費電力が990Wであったとする。この状態は、電池電圧の変動分を記憶部131に記録する条件を満足している。ここで、開閉器22がオフである状態では電池電圧が50.00Vであり、開閉器22がオンになってから1分後の電池電圧が49.00Vであったとすると、記憶部131には変動分として1.00Vが記録される。 For example, when the storage battery 213 is not charged, the switch 22 is turned on from off, and the power consumption of the electric load 30 is 990 W one minute after the switch 22 is turned on. This state satisfies the condition for recording the variation of the battery voltage in the storage unit 131. Here, when the switch 22 is off, the battery voltage is 50.00V, and if the battery voltage 1 minute after the switch 22 is turned on is 49.00V, the storage unit 131 stores 1.00V is recorded as the variation.
 本実施形態の評価部13は、制御部23が開閉器22をオフからオンに移行させたときに、オフとオンとの切替前後における蓄電池213の電池電圧の変化分を記憶部131に記録する。記憶部131に、所定期間のデータが蓄積されると、評価部13は、蓄積されたデータに基づいて電池寿命に達する時点を推定することが可能になる。蓄積されるデータは、表4のようになる。 The evaluation unit 13 of the present embodiment records the change in the battery voltage of the storage battery 213 before and after switching between off and on when the control unit 23 switches the switch 22 from off to on. . When data for a predetermined period is accumulated in the storage unit 131, the evaluation unit 13 can estimate a point in time when the battery life is reached based on the accumulated data. The accumulated data is as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ここで、電池電圧の変動分の推移は、日数(あるいはサイクル数)に対して線形性を示すことが知られている。したがって、数百日程度の所定日数分のデータがあれば、電池電圧の変化分と日数との関係を表す回帰式を求めることが可能になる。図6には回帰式に対応した回帰直線L1を示している。本実施形態では、評価部13は、蓄積した電池電圧の変動分の推移に関するデータから回帰式を求める。一方、蓄電池213の電池寿命は、電池電圧の変化分の値によって定めることが可能である。図6では、蓄電池213が電池寿命であるときの電池電圧の変化分に対する判定値を1.50Vに定めている。 Here, it is known that the change of the battery voltage fluctuation shows linearity with respect to the number of days (or the number of cycles). Accordingly, if there is data for a predetermined number of days of about several hundred days, it is possible to obtain a regression equation representing the relationship between the change in battery voltage and the number of days. FIG. 6 shows a regression line L1 corresponding to the regression equation. In the present embodiment, the evaluation unit 13 obtains a regression equation from data relating to changes in the accumulated battery voltage fluctuation. On the other hand, the battery life of the storage battery 213 can be determined by the value of the change in battery voltage. In FIG. 6, the determination value for the change in battery voltage when the storage battery 213 has a battery life is set to 1.50V.
 評価部13は、蓄積したデータから求めた回帰直線L1に基づいて、電池寿命であるときの電池電圧の変化分が判定値に達する交換予定日P1を求める。交換予定日P1は、蓄電池213の使用開始から電池寿命に達するまでの日数であるが、使用開始日は既知であるから年月日に置き換えることが望ましい。このような交換予定日P1を求めることによって、ユーザは蓄電池213の交換が必要になる日の目安を得ることができる。 The evaluation unit 13 obtains the scheduled replacement date P1 at which the battery voltage change amount reaches the determination value based on the regression line L1 obtained from the accumulated data. The scheduled replacement date P1 is the number of days from the start of use of the storage battery 213 to the end of the battery life. By obtaining such a scheduled replacement date P1, the user can obtain an indication of the date on which the storage battery 213 needs to be replaced.
 本実施形態では、給電設備20において、通常の動作として行われる開閉器22の制御に際して、蓄電池213の充電状態および電気負荷30の消費電力が所定の条件を満足している場合に、蓄電池213の電池電圧の変動分の推移を記録している。したがって、電池寿命を予測するための専用作業が不要であり、給電設備20が通常動作を行う間に、電池寿命を予測するためのデータを収集することが可能になる。また、記憶部131に記録したデータを用いて回帰直線L1を求め、この回帰直線L1を用いて電池寿命に達する時期を予測するから、データの蓄積量が増加するほど予測精度が高くなる。また、蓄電池213の運用中に回帰直線L1を修正することが可能であり、蓄電池213の使用時間が長くなるほど電池寿命の予測精度を高めることが可能になる。 In the present embodiment, when the switch 22 is controlled as a normal operation in the power supply facility 20, when the state of charge of the storage battery 213 and the power consumption of the electric load 30 satisfy predetermined conditions, the storage battery 213 Changes in battery voltage fluctuations are recorded. Therefore, a dedicated work for predicting the battery life is unnecessary, and data for predicting the battery life can be collected while the power supply facility 20 performs the normal operation. Moreover, since the regression line L1 is calculated | required using the data recorded on the memory | storage part 131, and the time which reaches | attains a battery life is estimated using this regression line L1, prediction accuracy becomes high, so that the accumulation amount of data increases. In addition, the regression line L1 can be corrected during the operation of the storage battery 213, and the prediction accuracy of the battery life can be increased as the usage time of the storage battery 213 becomes longer.
 本実施形態の他の構成および動作は実施形態1と同様である。すなわち、実施形態1と同符号を付した構成は、評価部13を除いて実施形態1と同様に動作する。 Other configurations and operations of the present embodiment are the same as those of the first embodiment. That is, the configuration denoted by the same reference numerals as those in the first embodiment operates in the same manner as in the first embodiment except for the evaluation unit 13.
 本実施形態の蓄電池管理装置10Cは、給電設備20と併せて用いられる。給電設備20は、開閉器22と制御部23とを備える。開閉器22は、蓄電池213から電力が供給される電気負荷30との間の電路(負荷電路31、主電路32)に設けられ電路を導通させるオンの状態と電路を遮断するオフの状態との一方を選択するように構成される。制御部23は、開閉器22のオンの状態とオフの状態とを切り替える。蓄電池213は太陽電池(ソーラパネル211)の発電電力を用いて充電される鉛蓄電池である。蓄電池管理装置10Cは、情報取得部11と評価部13と出力部14とを備える。情報取得部11は、蓄電池213の充電状態に関する情報を取得する。評価部13は、開閉器22のオフからオンへの切替前後における蓄電池213の電池電圧の変化分の推移を記録する。また、評価部13は、記録した変化分を用いて蓄電池213の使用開始からの経過期間と変化分との関係を表す回帰式を求める。さらに、評価部13は、回帰式を用いて蓄電池213が電池寿命に達するまでの期間を予測する。出力部14は、評価部13の評価結果を出力する。 The storage battery management device 10C of this embodiment is used in combination with the power supply facility 20. The power supply facility 20 includes a switch 22 and a control unit 23. The switch 22 is provided in an electric circuit (load electric circuit 31, main electric circuit 32) between the electric load 30 to which electric power is supplied from the storage battery 213, and has an on state and an off state that interrupts the electric circuit. It is configured to select one. The controller 23 switches the switch 22 between an on state and an off state. The storage battery 213 is a lead storage battery that is charged using the power generated by the solar battery (solar panel 211). The storage battery management device 10 </ b> C includes an information acquisition unit 11, an evaluation unit 13, and an output unit 14. The information acquisition unit 11 acquires information regarding the state of charge of the storage battery 213. The evaluation unit 13 records the change in the battery voltage of the storage battery 213 before and after the switch 22 is switched from off to on. Moreover, the evaluation part 13 calculates | requires the regression equation showing the relationship between the elapsed period from the start of use of the storage battery 213, and a change part using the recorded change part. Furthermore, the evaluation unit 13 predicts a period until the storage battery 213 reaches the battery life using the regression equation. The output unit 14 outputs the evaluation result of the evaluation unit 13.
 この構成によれば、給電設備20から電気負荷30への電力の供給と遮断とを行うために開閉器22のオンとオフとを行う間に、蓄電池213の劣化の程度を評価するためのデータが蓄積される。したがって、特別な制御を行うことなく蓄電池213の劣化の程度を評価することが可能になる。 According to this configuration, data for evaluating the degree of deterioration of the storage battery 213 while the switch 22 is turned on and off in order to supply and cut off power from the power supply facility 20 to the electric load 30. Is accumulated. Therefore, it is possible to evaluate the degree of deterioration of the storage battery 213 without performing special control.
 なお、本実施形態において蓄電池213の使用開始からの経過期間を日数あるいはサイクル数を用いて表しているが、日数あるいはサイクル数ではなく、経過期間を表すことができれば、時間などでもよい。 In the present embodiment, the elapsed period from the start of use of the storage battery 213 is expressed using the number of days or the number of cycles, but may be time as long as the elapsed period can be expressed instead of the number of days or the number of cycles.
 (蓄電池の交換時の処理)
 実施形態1では、蓄電池213の劣化の程度を評価するためのデータを記憶部121および記憶部131に記憶している。記憶部121および記憶部131が記憶しているデータは、蓄電池213の使用開始から蓄積したデータを含んでおり、このようなデータは、蓄電池213が交換されると記憶部121および記憶部131から消去する必要がある。したがって、蓄電池管理装置10Aは、蓄電池213の交換を検出し、かつ蓄電池213の交換を検出すると記憶部121および記憶部131のデータを消去するように構成されていることが望ましい。
(Process when replacing storage battery)
In the first embodiment, data for evaluating the degree of deterioration of the storage battery 213 is stored in the storage unit 121 and the storage unit 131. The data stored in the storage unit 121 and the storage unit 131 includes data accumulated from the start of use of the storage battery 213, and such data is obtained from the storage unit 121 and the storage unit 131 when the storage battery 213 is replaced. It needs to be erased. Therefore, it is desirable that the storage battery management device 10 </ b> A is configured to detect the replacement of the storage battery 213 and delete the data in the storage unit 121 and the storage unit 131 when the replacement of the storage battery 213 is detected.
 ここでは、実施形態3のように開閉器22がオフからオンに移行する前後での蓄電池213の電池電圧の変動分の推移を記憶部131に記録し、記憶部131に記録したデータを用いて蓄電池213の交換を検出している。実施形態3において説明したように、電池電圧の変動分は、蓄電池213の劣化が進むと増加する。一方、蓄電池213が交換されると、電池電圧の変動分は低下する。すなわち、図7に示すように、蓄電池213が交換予定日P1に近い交換日P2に交換されると、その直後には、電池電圧の変動分が大幅に小さくなる。したがって、電池電圧の変動分の低下が所定の閾値を超える場合に、蓄電池213が交換されたと推定することが可能である。 Here, as in the third embodiment, the change in the battery voltage of the storage battery 213 before and after the switch 22 is switched from OFF to ON is recorded in the storage unit 131, and the data recorded in the storage unit 131 is used. The replacement of the storage battery 213 is detected. As described in the third embodiment, the battery voltage fluctuation increases as the storage battery 213 deteriorates. On the other hand, when the storage battery 213 is replaced, the battery voltage fluctuation is reduced. That is, as shown in FIG. 7, when the storage battery 213 is replaced on the replacement date P2 that is close to the scheduled replacement date P1, the battery voltage fluctuation is greatly reduced immediately after that. Therefore, it is possible to estimate that the storage battery 213 has been replaced when the decrease in battery voltage fluctuation exceeds a predetermined threshold.
 評価部13は、電池電圧の変動分が所定の閾値を超えて低下したという事象が検出された場合に、蓄電池213が交換されたと判断し、記憶部121および記憶部131において、蓄電池213の劣化のために蓄積したデータを消去する。すなわち、ユーザは蓄電池213の交換作業を行うだけで、記憶部121および記憶部131のデータを消去する作業を行う必要がないから、データの消去忘れを防止することができる。 The evaluation unit 13 determines that the storage battery 213 has been replaced when an event that the battery voltage variation has decreased beyond a predetermined threshold is detected, and the storage unit 121 and the storage unit 131 have deteriorated the storage battery 213. Erase the data stored for That is, since the user only needs to replace the storage battery 213 and does not need to delete the data in the storage unit 121 and the storage unit 131, the user can be prevented from forgetting to delete the data.
 蓄電池213が交換されたことを検出するには、電気負荷30の消費電力が所定値である期間の蓄電池213の電池電圧を用いてもよい。つまり、上述した動作では、開閉器22がオフからオンに移行したときの電池電圧の変動分を用いているが、開閉器22がオンである期間の電池電圧のみを用いて蓄電池213が交換されたことを推定してもよい。 In order to detect that the storage battery 213 has been replaced, the battery voltage of the storage battery 213 during a period when the power consumption of the electric load 30 is a predetermined value may be used. In other words, in the above-described operation, the battery voltage fluctuation when the switch 22 is switched from OFF to ON is used, but the storage battery 213 is replaced using only the battery voltage during the period when the switch 22 is ON. You may estimate that.
 この場合、蓄電池213の電池電圧を記録するタイミングは、蓄電池213が満充電に到達した状態から蓄電池213が放電され、電気負荷30での消費電力量が所定量に達した時点であることを条件にする。たとえば、蓄電池213が満充電に到達してから蓄電池213の放電が開始され、電気負荷30の消費電力量が1000Whに達した時点での電池電圧を記憶部131に記録する。また、ソーラパネル211が発電している場合は、電気負荷30での消費電力量から発電電力量を差し引いた電力量が1000Whに達した時点での電池電圧を記憶部131に記録することが望ましい。 In this case, the timing for recording the battery voltage of the storage battery 213 is a condition that the storage battery 213 is discharged from the state where the storage battery 213 has reached full charge, and the power consumption amount at the electric load 30 reaches a predetermined amount. To. For example, the storage battery 213 starts discharging after the storage battery 213 reaches full charge, and the battery voltage at the time when the power consumption of the electric load 30 reaches 1000 Wh is recorded in the storage unit 131. Further, when the solar panel 211 is generating power, it is desirable to record the battery voltage at the time when the amount of power obtained by subtracting the amount of generated power from the amount of power consumed by the electrical load 30 reaches 1000 Wh in the storage unit 131. .
 蓄電池213の劣化が進むと、蓄電池213の容量が減少するから、消費電力量が同じであっても電池残量の低下率が大きくなる。そして、蓄電池213の電池残量と電池電圧との関係は線形性を有しているから、上述のように消費電力量が所定量に達した時点での電池電圧は、蓄電池213の劣化が進むと低下する。すなわち、蓄電池213が満充電に到達してから電気負荷30での消費電力量が所定量に達した時点の電池電圧は、図8に直線L2で示すように、蓄電池213の使用開始からの経過日数に応じて低下する。 As the deterioration of the storage battery 213 progresses, the capacity of the storage battery 213 decreases. Therefore, even if the power consumption is the same, the reduction rate of the remaining battery capacity increases. Since the relationship between the battery remaining amount of the storage battery 213 and the battery voltage has linearity, the battery voltage at the time when the power consumption reaches a predetermined amount as described above, the deterioration of the storage battery 213 proceeds. And drop. That is, the battery voltage at the time when the amount of power consumed by the electrical load 30 reaches a predetermined amount after the storage battery 213 reaches full charge is the elapsed time from the start of use of the storage battery 213 as indicated by a straight line L2 in FIG. Decreases with the number of days.
 一方、蓄電池213が新品に交換された後には、同様の条件で計測した蓄電池213の電池電圧は、交換前よりも高くなる。このことから、図8のように、蓄電池213の交換日P3の後に、電池電圧が所定の閾値を超えて上昇した場合に、蓄電池213が交換されたと推定することが可能である。 On the other hand, after the storage battery 213 is replaced with a new one, the battery voltage of the storage battery 213 measured under the same conditions becomes higher than before the replacement. From this, as shown in FIG. 8, it is possible to estimate that the storage battery 213 has been replaced when the battery voltage has risen beyond a predetermined threshold after the replacement date P3 of the storage battery 213.
 評価部13は、記憶部131に記録された電池電圧が所定の閾値を超えて上昇したという事象が検出された場合に、蓄電池213が交換されたと判断し、記憶部121および記憶部131において、蓄電池213の劣化のために蓄積したデータを消去する。この処理によっても、ユーザは蓄電池213の交換作業を行うだけで、記憶部121および記憶部131のデータを消去する作業を行う必要がないから、データの消去忘れを防止することができる。 The evaluation unit 13 determines that the storage battery 213 has been replaced when an event that the battery voltage recorded in the storage unit 131 has increased beyond a predetermined threshold is detected, and in the storage unit 121 and the storage unit 131, Data accumulated due to deterioration of the storage battery 213 is deleted. This process also prevents the user from forgetting to delete the data because the user only needs to replace the storage battery 213 and does not need to delete the data in the storage unit 121 and the storage unit 131.
 以上説明した蓄電池管理装置10Aにおいて、評価部13は、蓄電池213について評価した劣化の程度に関するデータを記憶する記憶部131を備える。また、評価部13は、蓄電池213が放電していない状態の電池電圧と放電している状態の電池電圧との変動分が、所定の閾値を超えて低下した場合に、蓄電池213が交換されたと推定する。あるいは、評価部13は、蓄電池213が放電している状態において放電した電力量が所定量に達した時点での電池電圧が、所定の閾値を超えて上昇した場合に、蓄電池213が交換されたと推定してもよい。評価部13は、蓄電池213が交換されたと推定されると、記憶部131が記憶している蓄電池213の劣化の程度に関するデータを消去する
 この構成によれば、評価部13は、蓄電池213が交換されたことを、蓄電池213の電池電圧に基づいて推定するから、蓄電池213の交換を検出するために別の装置を設ける必要がない。しかも、蓄電池213が交換されると、蓄電池213の劣化の程度に関するデータを記憶部131から消去するから、ユーザが蓄電池213の交換作業を行うだけで、評価部13は新たな蓄電池213の劣化の程度を評価することが可能になる。
In the storage battery management device 10 </ b> A described above, the evaluation unit 13 includes a storage unit 131 that stores data related to the degree of deterioration evaluated for the storage battery 213. In addition, the evaluation unit 13 indicates that the storage battery 213 has been replaced when the amount of change between the battery voltage in the state in which the storage battery 213 is not discharged and the battery voltage in the state in which the storage battery 213 is discharged falls below a predetermined threshold. presume. Alternatively, the evaluation unit 13 indicates that the storage battery 213 has been replaced when the battery voltage at the time when the amount of discharged electric power reaches a predetermined amount in a state where the storage battery 213 is discharged rises above a predetermined threshold. It may be estimated. When it is estimated that the storage battery 213 has been replaced, the evaluation unit 13 deletes the data regarding the degree of deterioration of the storage battery 213 stored in the storage unit 131. According to this configuration, the evaluation unit 13 replaces the storage battery 213. Since it is estimated based on the battery voltage of the storage battery 213, it is not necessary to provide another device in order to detect replacement of the storage battery 213. In addition, when the storage battery 213 is replaced, data relating to the degree of deterioration of the storage battery 213 is deleted from the storage unit 131. Therefore, the user can simply replace the storage battery 213, and the evaluation unit 13 can detect the deterioration of the new storage battery 213. It becomes possible to evaluate the degree.
 以上説明した記憶部121および記憶部131に格納されたデータを消去する処理は、実施形態1、実施形態2、実施形態3のいずれにおいても適用することが可能である。すなわち、上述した蓄電池の交換時の処理は、実施形態1の蓄電池管理装置10Aだけではなく、実施形態2の蓄電池管理装置10Bあるいは実施形態3の蓄電池管理装置10Cにも上述したデータを消去する処理は適用可能である。 The processing for erasing data stored in the storage unit 121 and the storage unit 131 described above can be applied to any of the first embodiment, the second embodiment, and the third embodiment. That is, the process at the time of replacement of the storage battery described above is a process of deleting the above-described data not only in the storage battery management apparatus 10A of the first embodiment but also in the storage battery management apparatus 10B of the second embodiment or the storage battery management apparatus 10C of the third embodiment. Is applicable.
 なお、上述した実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることはもちろんのことである。 The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and various modifications can be made according to design and the like as long as the technical idea according to the present invention is not deviated from this embodiment. Of course, it can be changed.

Claims (10)

  1.  蓄電池の充電状態に関する情報を取得する情報取得部と、
     前記蓄電池が充電されて満充電に到達した状態を前記蓄電池の充電状態に関する情報から抽出し、前記満充電に到達した状態の発生回数を計数する計数部と、
     前記計数部が計数した前記発生回数を用いて前記蓄電池の劣化の程度を評価する評価部と、
     前記評価部の評価結果を出力する出力部とを備え、
     前記蓄電池は太陽電池の発電電力を用いて充電される鉛蓄電池である
     ことを特徴とする蓄電池管理装置。
    An information acquisition unit for acquiring information on the charge state of the storage battery;
    A state in which the state where the storage battery is charged and has reached full charge is extracted from information on the state of charge of the storage battery, and a counting unit that counts the number of occurrences of the state that has reached full charge,
    An evaluation unit that evaluates the degree of deterioration of the storage battery using the number of occurrences counted by the counting unit;
    An output unit for outputting the evaluation result of the evaluation unit,
    The said storage battery is a lead storage battery charged using the generated electric power of a solar cell. The storage battery management apparatus characterized by the above-mentioned.
  2.  前記太陽電池の発電電力は充電装置を通して前記蓄電池に充電され、
     前記情報取得部は、
      前記充電装置から前記蓄電池の充電状態に関する情報を取得するように構成され、
     前記計数部は、前記太陽電池の発電電力に前記蓄電池の充電には用いない余剰電力が生じた状態を前記満充電に到達した状態と判断するように構成されている
     ことを特徴とする請求項1記載の蓄電池管理装置。
    The generated power of the solar cell is charged to the storage battery through a charging device,
    The information acquisition unit
    Configured to obtain information on the state of charge of the storage battery from the charging device;
    The counting unit is configured to determine that a state in which surplus power not used for charging the storage battery is generated in the generated power of the solar battery is a state in which the full charge has been reached. The storage battery management apparatus according to 1.
  3.  前記蓄電池の使用開始からの経過時間を計時する時計部をさらに備え、
     前記評価部は、
      評価した前記蓄電池の劣化の程度と前記時計部が計時した前記経過時間とを用いて交換時期までの残り時間を推定し、
     前記出力部は、
      前記評価部の評価結果として前記交換時期までの残り時間を出力する
     ことを特徴とする請求項1又は2記載の蓄電池管理装置。
    A clock unit for measuring the elapsed time from the start of use of the storage battery,
    The evaluation unit is
    Estimating the remaining time until the replacement time using the evaluated degree of deterioration of the storage battery and the elapsed time measured by the clock unit,
    The output unit is
    The storage battery management device according to claim 1, wherein a remaining time until the replacement time is output as an evaluation result of the evaluation unit.
  4.  前記蓄電池の充電状態に関する情報を用いて、前記蓄電池が前記満充電に到達してから次に前記満充電に到達するまでの期間における前記蓄電池の最大放電深度を抽出する監視部をさらに備え、
     前記評価部は、
      前記蓄電池が前記満充電に到達してから次に前記満充電に到達するまでの期間における前記蓄電池の劣化の程度を表す標準劣化度を、前記最大放電深度に対応付けるように構成されており、
      前記計数部が前記発生回数を計数するたびに、前記最大放電深度に対応する前記標準劣化度を累積させることにより、前記蓄電池の使用開始からの劣化の程度を評価する
     ことを特徴とする請求項3記載の蓄電池管理装置。
    Using information on the state of charge of the storage battery, further comprising a monitoring unit for extracting the maximum discharge depth of the storage battery in a period from when the storage battery reaches the full charge to the next full charge;
    The evaluation unit is
    The standard deterioration degree indicating the degree of deterioration of the storage battery in a period from when the storage battery reaches the full charge to the next full charge is configured to be associated with the maximum discharge depth.
    The degree of deterioration from the start of use of the storage battery is evaluated by accumulating the standard deterioration degree corresponding to the maximum discharge depth each time the counting unit counts the number of occurrences. 3. The storage battery management device according to 3.
  5.  前記時計部は、
      前記情報取得部が取得した前記情報を用いて前記蓄電池が満充電ではない状態の継続期間を計時するように構成され、
     前記評価部は、
      前記蓄電池が前記満充電ではない状態の前記継続期間における前記蓄電池の劣化の程度を表す補正劣化度を、前記継続期間に対応付けるように構成されており、
      前記蓄電池が前記満充電ではない状態の前記継続期間に応じて、前記蓄電池の使用開始からの劣化の程度を前記補正劣化度で補正する
     ことを特徴とする請求項4記載の蓄電池管理装置。
    The clock unit is
    The information acquisition unit is configured to time the duration of the state where the storage battery is not fully charged using the information acquired,
    The evaluation unit is
    A correction deterioration level indicating the degree of deterioration of the storage battery in the duration of the state where the storage battery is not fully charged is configured to correspond to the duration.
    The storage battery management apparatus according to claim 4, wherein the degree of deterioration from the start of use of the storage battery is corrected by the correction deterioration degree according to the duration of the state where the storage battery is not fully charged.
  6.  前記情報取得部が取得した前記情報を用いて前記蓄電池が常時よりも高電圧である所定電圧で充電された状態を判別する判別部をさらに備え、
     前記評価部は、
      前記蓄電池が常時よりも高電圧である所定電圧で充電される場合に備えて、前記蓄電池を前記所定電圧で充電した場合の劣化の程度を表す充電回復度が定められており、
      前記蓄電池が前記所定電圧で充電されたことを前記判別部が判別した場合に、前記蓄電池の使用開始からの劣化の程度を前記充電回復度で補正する
     ことを特徴とする請求項4又は5記載の蓄電池管理装置。
    A discriminating unit that discriminates a state in which the storage battery is charged with a predetermined voltage that is higher than usual using the information acquired by the information acquiring unit;
    The evaluation unit is
    In preparation for the case where the storage battery is charged at a predetermined voltage which is higher than usual, a charge recovery degree representing the degree of deterioration when the storage battery is charged at the predetermined voltage is defined,
    The degree of deterioration from the start of use of the storage battery is corrected by the charge recovery degree when the determination unit determines that the storage battery is charged at the predetermined voltage. Storage battery management device.
  7.  前記情報取得部は、前記蓄電池の環境温度に関する情報を取得するように構成され、
     前記評価部は、
      前記環境温度に応じた前記蓄電池の劣化の程度を表す温度劣化度を、所定の単位期間における前記蓄電池の環境温度の代表値に対応付けるように構成されており、
      前記単位期間ごとに前記環境温度の代表値に応じた前記温度劣化度を累積させることにより、前記蓄電池の使用開始からの劣化の程度を評価する
     ことを特徴とする請求項4~6のいずれか1項に記載の蓄電池管理装置。
    The information acquisition unit is configured to acquire information related to an environmental temperature of the storage battery,
    The evaluation unit is
    The temperature degradation degree representing the degree of degradation of the storage battery according to the environmental temperature is configured to be associated with a representative value of the environmental temperature of the storage battery in a predetermined unit period,
    The degree of deterioration from the start of use of the storage battery is evaluated by accumulating the degree of temperature deterioration corresponding to the representative value of the environmental temperature for each unit period. The storage battery management device according to item 1.
  8.  蓄電池から電力が供給される電気負荷との間の電路に設けられ前記電路を導通させるオンの状態と前記電路を遮断するオフの状態との一方を選択するように構成された開閉器と、前記開閉器のオンの状態とオフの状態とを切り替える制御部とを備えた給電設備と併せて用いられ、
     前記蓄電池は太陽電池の発電電力を用いて充電される鉛蓄電池であって、
     蓄電池の充電状態に関する情報を取得する情報取得部と、
     前記開閉器のオフからオンへの切替前後における前記蓄電池の電池電圧の変化分の推移を記録し、記録した前記変化分を用いて前記蓄電池の使用開始からの経過期間と前記変化分との関係を表す回帰式を求め、前記回帰式を用いて前記蓄電池が電池寿命に達するまでの期間を予測する評価部と、
     前記評価部の評価結果を出力する出力部とを備える
     ことを特徴とする蓄電池管理装置。
    A switch that is provided in an electric circuit between an electric load to which electric power is supplied from a storage battery and configured to select one of an on state that conducts the electric circuit and an off state that interrupts the electric circuit; and It is used in conjunction with a power supply facility that includes a controller that switches between an on state and an off state of the switch,
    The storage battery is a lead storage battery that is charged using the power generated by a solar battery,
    An information acquisition unit for acquiring information on the charge state of the storage battery;
    The transition of the change in battery voltage of the storage battery before and after switching from off to on of the switch is recorded, and the relationship between the elapsed time from the start of use of the storage battery and the change using the recorded change An evaluation unit that calculates a regression equation that represents the period until the battery reaches the battery life using the regression equation;
    An output unit that outputs an evaluation result of the evaluation unit.
  9.  前記評価部は、
      前記蓄電池について評価した劣化の程度に関するデータを記憶する記憶部を備え、
      前記蓄電池が放電していない状態の電池電圧と放電している状態の電池電圧との変動分が、所定の閾値を超えて低下した場合に、前記蓄電池が交換されたと推定し、
      前記記憶部が記憶している前記蓄電池の劣化の程度に関するデータを消去する
     ことを特徴とする請求項1~8のいずれか1項に記載の蓄電池管理装置。
    The evaluation unit is
    A storage unit for storing data relating to the degree of deterioration evaluated for the storage battery;
    When the fluctuation of the battery voltage in the state where the storage battery is not discharged and the battery voltage in the state where the storage battery is discharged is reduced beyond a predetermined threshold, it is estimated that the storage battery has been replaced,
    The storage battery management device according to any one of claims 1 to 8, wherein data relating to a degree of deterioration of the storage battery stored in the storage unit is deleted.
  10.  前記評価部は、
      前記蓄電池について評価した劣化の程度に関するデータを記憶する記憶部を備え、
      前記蓄電池が放電している状態において放電した電力量が所定量に達した時点での電池電圧が、所定の閾値を超えて上昇した場合に、前記蓄電池が交換されたと推定し、
      前記記憶部が記憶している前記蓄電池の劣化の程度に関するデータを消去する
     ことを特徴とする請求項1~8のいずれか1項に記載の蓄電池管理装置。
    The evaluation unit is
    A storage unit for storing data relating to the degree of deterioration evaluated for the storage battery;
    When the battery voltage at the time when the amount of discharged electric power reaches a predetermined amount in a state where the storage battery is discharged is estimated to exceed the predetermined threshold, the storage battery is estimated to be replaced,
    The storage battery management device according to any one of claims 1 to 8, wherein data relating to a degree of deterioration of the storage battery stored in the storage unit is deleted.
PCT/JP2015/001955 2015-04-07 2015-04-07 Storage battery management device WO2016162900A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017510795A JPWO2016162900A1 (en) 2015-04-07 2015-04-07 Battery management device
PCT/JP2015/001955 WO2016162900A1 (en) 2015-04-07 2015-04-07 Storage battery management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001955 WO2016162900A1 (en) 2015-04-07 2015-04-07 Storage battery management device

Publications (1)

Publication Number Publication Date
WO2016162900A1 true WO2016162900A1 (en) 2016-10-13

Family

ID=57072570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001955 WO2016162900A1 (en) 2015-04-07 2015-04-07 Storage battery management device

Country Status (2)

Country Link
JP (1) JPWO2016162900A1 (en)
WO (1) WO2016162900A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003402A1 (en) * 2018-06-27 2020-01-02 日本電気株式会社 Determination device, determination method, and program
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039526A (en) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk Battery degradation diagnosis method, battery degradation diagnosis device and computer program
JP2011056976A (en) * 2009-09-07 2011-03-24 Shin Kobe Electric Mach Co Ltd Battery condition determination device and automobile
JP2012186877A (en) * 2011-03-03 2012-09-27 Panasonic Corp Battery state detector for photovoltaic generation battery system
JP2013132147A (en) * 2011-12-22 2013-07-04 Sony Corp Electric storage device, electronic apparatus, power system and electric vehicle
JP2013181875A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Secondary battery deterioration rate calculation method, secondary battery life prediction method, secondary battery deterioration rate calculation system and secondary battery life prediction system
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2015027223A (en) * 2013-07-29 2015-02-05 株式会社豊田自動織機 Battery replacement management system and battery replacement management method
JP2015031591A (en) * 2013-08-02 2015-02-16 パナソニック株式会社 Device for determining state of lead-acid battery and method for determining state of vehicle and lead-acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152934B2 (en) * 2012-12-26 2017-06-28 パナソニックIpマネジメント株式会社 Power storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039526A (en) * 2006-08-03 2008-02-21 Auto Network Gijutsu Kenkyusho:Kk Battery degradation diagnosis method, battery degradation diagnosis device and computer program
JP2011056976A (en) * 2009-09-07 2011-03-24 Shin Kobe Electric Mach Co Ltd Battery condition determination device and automobile
JP2012186877A (en) * 2011-03-03 2012-09-27 Panasonic Corp Battery state detector for photovoltaic generation battery system
JP2013132147A (en) * 2011-12-22 2013-07-04 Sony Corp Electric storage device, electronic apparatus, power system and electric vehicle
JP2013181875A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Secondary battery deterioration rate calculation method, secondary battery life prediction method, secondary battery deterioration rate calculation system and secondary battery life prediction system
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2015027223A (en) * 2013-07-29 2015-02-05 株式会社豊田自動織機 Battery replacement management system and battery replacement management method
JP2015031591A (en) * 2013-08-02 2015-02-16 パナソニック株式会社 Device for determining state of lead-acid battery and method for determining state of vehicle and lead-acid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system
CN111919329B (en) * 2018-04-06 2024-04-02 株式会社日立制作所 Power storage system
WO2020003402A1 (en) * 2018-06-27 2020-01-02 日本電気株式会社 Determination device, determination method, and program
JPWO2020003402A1 (en) * 2018-06-27 2021-06-17 日本電気株式会社 Judgment device, judgment method and program
JP7024869B2 (en) 2018-06-27 2022-02-24 日本電気株式会社 Judgment device, judgment method and program
US11733304B2 (en) 2018-06-27 2023-08-22 Nec Corporation Determination apparatus

Also Published As

Publication number Publication date
JPWO2016162900A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
US9866020B2 (en) Electric power control method, electric power control device, and electric power control system
US9112371B2 (en) Refresh charging method for an assembled battery constituted from a plurality of lead-acid storage batteries and charging apparatus
EP2096734A1 (en) Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
JP6590762B2 (en) Power supply system
CN109477871B (en) Power storage device, power storage system, and power supply system
EP2887085B1 (en) Method and apparatus for indicating a low battery level
US11588343B2 (en) Power storage device, power storage system, power supply system, and control method for power storage device
WO2016162900A1 (en) Storage battery management device
JP5031231B2 (en) Discharge time calculation device and discharge time calculation method
JP7231346B2 (en) Method for determining lifetime of power storage system, and power storage system
JP5105759B2 (en) Battery management device
JP4754509B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
JP5186446B2 (en) Discharge control device, uninterruptible power supply, and load leveling system
JP6179755B2 (en) Power storage system using lead-acid battery
JP4987504B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
CN111919329B (en) Power storage system
JP2007101209A (en) Computing device of capacity of secondary battery, and secondary battery monitoring device and method
US11467215B1 (en) Battery storage charge and discharge monitor with improved battery capacity calculation, improved charge and discharge monitoring, discharge what if calculations, and multiple re-charge goals
JP2008131785A (en) Device for selecting power supply
US10770911B1 (en) Calibrating battery fuel gages
JP5318725B2 (en) Secondary battery monitoring device and secondary battery monitoring method
KR20210019845A (en) Power Consumption Management and Lifetime Management Device of Solar Power
KR20210059500A (en) Power Consumption Management and Lifetime Management Device of Solar Power
JPWO2015015527A1 (en) Power supply control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888396

Country of ref document: EP

Kind code of ref document: A1