WO2016161859A1 - 一种光网络系统、冷接光纤衰减连接头装置及方法 - Google Patents

一种光网络系统、冷接光纤衰减连接头装置及方法 Download PDF

Info

Publication number
WO2016161859A1
WO2016161859A1 PCT/CN2016/075357 CN2016075357W WO2016161859A1 WO 2016161859 A1 WO2016161859 A1 WO 2016161859A1 CN 2016075357 W CN2016075357 W CN 2016075357W WO 2016161859 A1 WO2016161859 A1 WO 2016161859A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical network
attenuation
connector
optical
Prior art date
Application number
PCT/CN2016/075357
Other languages
English (en)
French (fr)
Inventor
黄新刚
操日祥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016161859A1 publication Critical patent/WO2016161859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation

Definitions

  • This application relates to, but is not limited to, the field of communication technology.
  • a PON system usually consists of an Optical Line Terminal (OLT), an Optical Network Unit (ONU), and an Optical Distribution Network (ODN) on the user side, usually using point-to-multipoint Network structure.
  • ODN consists of single-mode fiber and passive optical components such as optical splitters and optical connectors, providing optical transmission media for the physical connection between the OLT and the ONU.
  • TWDM Time Wave Division Multiplexing
  • the topology of the TWDM PON system is shown in Figure 1.
  • Each TWDM CT processes a pair of uplink and downlink wavelength channels associated with each other and works in This pair of ONUs provides access and maintenance services for all ONUs in the wavelength channel.
  • the ONU transmits data in this pair of wavelength channels by means of time division multiplexing.
  • the uplink and downlink wavelength channels processed by different TWDM CTs are different.
  • Each ONU transmits uplink data in a specific uplink time slot according to an instruction of the OLT CT.
  • the ITU-T G.989.2 standard specifies the TWDM PON ODN differential loss and ONU transmit power as shown in Table 1. It can be seen that the transmit power of different ONUs differs by 5dB, and the maximum ODN line differential loss, which causes different ONU optical signals to reach the OLT.
  • the power of the receiver can be as much as 20dB, which causes the following three problems: (1) TWDM PON is a multi-wavelength wavelength division multiplexing system, and the laser used works in one channel, although the side mode suppression ratio is very high. High, but still have a certain optical power output in the adjacent channel. If the channel that is just disturbed is 20 dB lower than the channel power, this will seriously deteriorate the quality of the interfered channel signal.
  • TWDM PON This is the TWDM PON.
  • OOB/OOC OUT OF BAND/OUT OF CHANNEL
  • the side mode suppression ratio of the laser is very high, which poses a serious challenge to the current laser technology;
  • the current transmitter The sensitivity is still less than -36.5dBm as defined by the TWDM PON standard.
  • the amplifier needs to be added to the TWDM PON network, and the stability of the amplifier gain control is also about 1dB. Therefore, the maximum difference in power to the OLT receiver can be reached in a single channel. 21dB.
  • the requirements of the receiver are very high, and the dynamic range of the TIA in the receiver is 21 dB, which is very difficult to implement and costly; (3) the gain flatness of the optical amplifier is about 1 dB, therefore,
  • WDM wavelength division multiplexer
  • the optical signal power difference can reach as much as 21dB.
  • the crosstalk between channels will not interfere with the signal, and wavelength division multiplexing
  • the isolation requirements of the device are also high, and the cost is greatly increased.
  • the root of these problems lies in the serious imbalance of power in the TWDM PON system.
  • the traditional method of solving power balance is not applicable to TWDM PON systems.
  • the method of adjusting the gain of different burst packets by using fast optical amplifiers at the transmission node solves the power balance problem of passive optical networks. This idea is due to TWDM. PON's multi-wavelength multiplexing and bursty network architecture has become completely inapplicable or costly.
  • Another method for realizing power balance is the dynamic adjustment mode, which requires the ONU to have an adjustable output power, so that the output power of each ONU can be measured and adjusted at the central office through management designation, and the related technology can only allow the transmitter to output.
  • the power is adjusted in a small range (for example, +/-3dB).
  • a small range for example, +/-3dB.
  • the ONU optical module needs to add a dimmable attenuator or optical amplifier, which increases the complexity of the optical module and brings a large cost. The increase is so the defects are very obvious.
  • Embodiments of the present invention provide an optical network system, a cold-connected fiber attenuating connector device and a method, which can achieve power balancing of an optical network system without adding additional equipment costs.
  • Embodiments of the present invention provide an optical network system including a plurality of optical network units and an optical splitter, the optical network system further comprising: a plurality of optical fiber attenuation connector devices; wherein one optical network unit is connected to one a fiber attenuating connector device, and each fiber attenuating connector device is connected to the optical splitter;
  • the fiber attenuation connector device is configured to attenuate the power of the incoming optical signal transmitted by the optical network unit to which it is connected.
  • the fiber attenuation connector device is configured to: attenuate the power of the optical signal transmitted by the optical network unit connected thereto to generate a power attenuation amount, and the power attenuation amount is used to compensate the access node of the optical network unit connected thereto The difference between the power at the location and the power at the ingress node of other optical network units in the optical network system.
  • the fiber attenuating connector device is a cold junction fiber attenuating connector device.
  • the cold junction fiber attenuation connector device comprises a cold junction fiber attenuation connector and a section of curved fiber disposed in the cold junction fiber attenuation connector, and the bending radius of the curved fiber is adjustable, and the bending fiber of different bending radius is The loss is different.
  • the device for cooling the fiber attenuating connector comprises: a cold fiber attenuating connector and a fiber guide plate disposed on the cold fiber attenuating connector; and the plurality of attenuating fiber slots are disposed on the fiber guide plate; the plurality of attenuating fibers
  • the curvature radius of the groove is different, and the loss of the attenuation fiber groove of different curvature radius is different;
  • Each optical network unit is connected to the optical splitter through one of the plurality of attenuating fiber slots.
  • the fiber attenuating connector device is a doped fiber attenuating connector.
  • the doped fiber attenuation connector comprises: a first fiber connector and a first fiber disposed A first fixed attenuator in the connector that incorporates an absorbing fiber.
  • the fiber attenuating connector device is a hot melt fiber attenuating connector.
  • the hot-melt fiber attenuation connector comprises: a second fiber connector and a second fixed attenuator disposed in the second fiber connector and generated by fiber misalignment.
  • An embodiment of the present invention further provides a cold junction fiber attenuation connector device, comprising: a cold junction fiber attenuation connector and a fiber guide plate disposed on the cold junction fiber attenuation connector, and the fiber guide
  • the board is provided with a plurality of attenuating fiber slots; the radius of curvature of the plurality of attenuating fiber slots is different, and the losses of the attenuating fiber slots of different curvature radii are different.
  • An embodiment of the present invention further provides a method for implementing power balancing, which is applied to an optical network system, and the method includes:
  • the actual uplink power at the network node of the optical network unit is attenuated by the attenuation of the optical fiber attenuation connector device.
  • determining, according to the downlink actual power, the preset minimum value of the downlink power of the optical network unit, and the preset warning attenuation value of the optical network system determining the optical fiber attenuation connector device required by the optical network unit.
  • the steps of the attenuation amount include:
  • the optical network unit determines the amount of attenuation of the fiber attenuation connector device required by the optical network unit based on the second difference between the first difference and the alert attenuation value.
  • each optical network unit in the optical network system is connected to the optical splitter through a fiber attenuating connector device, and the optical fiber attenuation connector device can be transmitted to the optical network unit connected thereto.
  • the power of the optical signal is attenuated, thereby reducing the light of each optical network unit
  • the power difference when the signal reaches the OLT receiver realizes the power balance of the optical network system.
  • FIG. 1 is a network topology diagram of a TWDM PON system in the related art
  • FIG. 2 is a network topology diagram of a TWDM PON system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a TWDM PON system with a cold junction fiber attenuating connector device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for cooling a fiber-optic attenuating connector according to an embodiment of the present invention
  • FIG. 5 is a second schematic structural diagram of a device for cooling a fiber-optic attenuating connector according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a TWDM PON system with a doped fiber attenuation connector in accordance with an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a TWDM PON system with a hot melt fiber attenuation connector according to an embodiment of the present invention
  • FIG. 8 is a flowchart of steps of a method for implementing power balancing according to an embodiment of the present invention.
  • the embodiments of the present invention provide an optical network system, a cold-connected fiber attenuating connector device, and a method for realizing an optical network system with high power balancing cost in the related art, and can implement an optical network without adding additional equipment costs.
  • the power balance of the system is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to an optical network system.
  • an embodiment of the present invention provides an optical network system including a plurality of optical network units 21 and an optical splitter 22.
  • the optical network system further includes: a plurality of optical fiber attenuation connector devices 23 Wherein, one optical network unit 21 is connected to a fiber attenuation connector device 23, and each fiber attenuation connector device 23 is connected to the optical splitter 22; the fiber attenuation connector device 23 is arranged to: an optical network connected thereto The power of the incoming optical signal transmitted by unit 21 is attenuated.
  • the optical network system is a TWDM PON system.
  • the optical fiber attenuation connector device 23 can attenuate not only the power of the optical signal transmitted from the optical network unit 21 connected thereto but also the power of the optical signal transmitted from the optical splitter 22.
  • the optical fiber attenuation connector device 23 is configured to attenuate the power of the optical signal transmitted from the optical network unit 21 connected thereto to generate a power attenuation amount, and the power attenuation amount is used for compensation. The difference between the power at the ingress node of the optical network unit 21 to which it is connected and the power at the ingress node of other optical network units in the optical network system.
  • any node of the optical splitter in the TWDM PON system architecture is connected to the optical module of the optical network unit 21 through the optical fiber attenuation connector device 23.
  • the ODN loss at the network node can be measured in real time, and the parameters of the network (including the minimum allowable downlink power of the optical network unit theory, etc.) can be selected to select an appropriate fiber attenuation connector device 23 to compensate for the inconsistency of the ODN loss between the network node and other optical network unit nodes in the optical network system, and reduce the power difference between each optical network unit 21 optical signal reaching the OLT receiver, and achieve power balancing of the TWDM PON system.
  • the fiber attenuating connector device is a cold fiber attenuating connector device 31.
  • the cold junction fiber attenuating connector device 31 includes a cold fiber attenuating connector 311 and a length of curved fiber 312 disposed in the cold fiber attenuating connector, and the bending fiber of the bending fiber 312 is adjustable, and the bending fiber has different bending radii. The loss of 312 is different.
  • the cold fiber attenuating connector 311 may be a cold junction fiber attenuating connector of the LC, SC, ST or FC type.
  • the chilled fiber attenuating connector assembly 31 achieves power loss primarily by splicing a length of curved fiber 312 within the connector 311. Since the bending radius of the curved fiber 312 is adjustable, the loss of the cold-bonded fiber attenuating connector device 31 is variable by adjusting the bending radius of the bending fiber 312, and the loss of the cold-bonding fiber attenuating connector device 31 is variable.
  • a section of the optical fiber in the cold-bonded fiber attenuation connector is bent (ie, bent fiber).
  • the bending radius is R1
  • the loss is A1
  • the bending radius of the fiber is changed, for example, when the fiber is changed to the fiber position 2, the bending radius is R2 and the loss is a2.
  • R1>R2, a1 ⁇ a2 it can be seen that the loss of the cold junction fiber attenuation connector device can be realized by adjusting the bending radius of the curved fiber.
  • the cold junction fiber attenuation connector device includes: a cold junction fiber attenuation connector and a fiber guide disposed on the cold junction fiber attenuation connector.
  • the board 501 has a plurality of attenuating fiber slots on the fiber guide plate 501; the radius of curvature of the plurality of attenuating fiber slots is different, and the loss of the attenuating fiber slots of different curvature radii is different; wherein each optical network unit passes multiple attenuations An attenuating fiber slot in the fiber slot is connected to the optical splitter.
  • a section of a plurality of attenuating fiber slots (e.g., first attenuating fiber slot 502, second attenuating fiber slot 503, and third attenuating fiber slot 504) is incorporated into the chilled fiber attenuating connector.
  • MDF 501 a section of a plurality of attenuating fiber slots
  • the first attenuating fiber slot 502 has a large radius of curvature such that the fiber passing therethrough has a first attenuation value (for example, 3 dB), and the second attenuating fiber slot 503 has a small radius of curvature, so that the fiber passing therethrough has the first Two attenuation values (eg, 6 dB), the third attenuation fiber slot 504 has a smaller radius of curvature such that the fiber passing therethrough has a third attenuation value (eg, 9 dB), and the first attenuation value is less than the second attenuation value, the second attenuation The value is less than the third attenuation value.
  • the optical network unit can be connected to the optical splitter through a suitable attenuating optical fiber slot, so that the ingress nodes of each optical network unit have proper ODN loss, thereby achieving optical power equalization of the TWDM PON system.
  • the optical fiber attenuation connector device is a doped fiber attenuation connector 61
  • the doped fiber attenuation connector 61 includes: a first fiber connector 611 and a setting A section of the first fiber optic connector 611 is doped with a first fixed attenuator 612 that absorbs the impurity fibers.
  • the fiber attenuating connector device may also be based on a first fixed attenuator 612 incorporating an absorbing impurity fiber plus a standard LC, SC, ST or FC type first fiber connector 611.
  • the doped fiber attenuates the connector 612.
  • the optical splitter 22 is first coupled to a doped fiber attenuating connector 61, which is coupled to the optical network unit 21 at the node.
  • the attenuation of the doped fiber attenuating connector 61 creates an inconsistency in compensating for the ODN loss at the incoming node of the optical network unit 21 and the other optical network unit in the optical network system.
  • the optical fiber attenuation connector device is a hot-melt fiber attenuation connector 71
  • the fusion fiber attenuation connector 71 includes: a second fiber connector 711 and is disposed at a second solid in the second fiber connector 711 by thermal misalignment of the fiber
  • the attenuator 712 is fixed.
  • the fiber attenuating connector device may further be a second fixed attenuator 712 generated by fiber misalignment and a second LC connector 711 of a standard LC, SC, ST or FC type.
  • the hot melt fiber attenuates the connector 71.
  • the optical splitter 22 is first coupled to a hot melt fiber attenuating connector 71, which in turn is coupled 21 to the optical network unit at the node.
  • the attenuation of the hot melt fiber attenuating connector 71 creates an inconsistency in compensating for the ODN loss at the incoming node of the optical network unit 21 and the other optical network unit in the optical network system.
  • the embodiment of the present invention further provides a cold junction fiber attenuation connector device, comprising: a cold junction fiber attenuation connector and a fiber guide plate 501 disposed on the cold junction fiber attenuation connector, and
  • the fiberboard 501 is provided with a plurality of attenuating fiber slots; the radius of curvature of the plurality of attenuating fiber slots is different, and the losses of the attenuating fiber slots of different curvature radii are different.
  • the cold junction fiber attenuation connector device provided by the embodiment of the present invention is a cold junction fiber attenuation connector device in the optical network system, that is, all implementations of the cold junction fiber attenuation connector device in the optical network system.
  • the examples are applicable to the cold junction fiber attenuating connector device and both achieve the same or similar benefits.
  • an embodiment of the present invention further provides a method for implementing power balancing, which is applied to an optical network system, and the method includes:
  • Step 81 Acquire the downlink actual power at the network access node of the optical network unit in the optical network system.
  • Step 82 Determine, according to the downlink actual power, the preset minimum value of the downlink power of the optical network unit, and the preset warning attenuation value of the optical network system, determine the attenuation of the optical fiber attenuation connector device required by the optical network unit. the amount.
  • the warning attenuation value determines the maximum differential loss of the optical network system, and the smaller the differential loss, the better the network performance.
  • Step 83 Attenuating the uplink actual power at the network node of the optical network unit by attenuating the attenuation of the connector device by the optical fiber.
  • the step of step 82 may include: calculating a first difference between the downlink actual power and the minimum value of the downlink power; comparing the first difference with the warning attenuation value If the first difference is greater than the warning attenuation value, determining the attenuation amount of the fiber attenuation connector device required by the optical network unit according to the second difference between the first difference and the warning attenuation value.
  • the downlink actual power of the optical network unit may be measured in real time, and a first difference between the downlink actual power and a minimum value of the downlink power of the preset optical network unit may be calculated, if the first difference is If the value is less than or equal to 0, it is determined that the network access node of the optical network unit does not meet the network access condition and cannot enter the network; if the first difference is greater than 0, the first difference and the alert attenuation value of the optical network system are further calculated.
  • the second difference between the two if the second difference is less than or equal to 0, it is determined that the optical network unit access node does not need the fiber attenuation connector device, and is directly connected to the optical splitter; if the second difference If it is greater than 0, the attenuation amount of the fiber attenuation connector device required by the optical network unit is determined according to the second difference.
  • the attenuation amount is greater than the second difference and less than the first difference. For example, if the first difference is 10 dB and the second difference is 5 dB, the attenuation of the fiber attenuation connector device ranges from 5 to 10 dB.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • each optical network unit in the optical network system is connected to the optical splitter through a fiber attenuating connector device, and the optical fiber attenuation connector device can be transmitted to the optical network unit connected thereto.
  • the power of the optical signal is attenuated, thereby reducing the power difference when the optical signal of each optical network unit reaches the OLT receiver, and realizing the power balance of the optical network system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本文公布一种光网络系统、冷接光纤衰减连接头装置及方法,该光网络系统包括多个光网络单元和光分路器,光网络系统还包括:多个光纤衰减连接头装置;其中,一个光网络单元连接一个光纤衰减连接头装置,且每一光纤衰减连接头装置均与光分路器连接;光纤衰减连接头装置设置为:对与其连接的光网络单元传输进来的光信号的功率进行衰减。

Description

一种光网络系统、冷接光纤衰减连接头装置及方法 技术领域
本申请涉及但不限于通信技术领域。
背景技术
随着网络技术的发展,可以利用网络传输大量的语音、数据、视频等业务,因此对带宽的要求不断提高,无源光网络(PON,Passive Optical Network)就是在这种需求下产生的。PON系统通常由局侧的光线路终端(OLT,Optical Line Terminal)、用户侧的光网络单元(ONU,Optical Network Unit)和光分配网络(ODN,Optical Distribution Network)组成,通常采用点到多点的网络结构。ODN由单模光纤和分光器、光连接器等无源光器件组成,为OLT和ONU之间的物理连接提供光传输媒质。而为了进一步提升网络的带宽,在主干光纤中传输多路波长,并在每路波长上再利用时分技术提供接入的PON系统,被称为时分波分复用(TWDM,Time wavelength Division Multiplexing)PON系统。
TWDM PON系统的拓扑结构如附图1所示,TWDM PON OLT中有多个TWDM通道终端(CT,Channel Termination),每个TWDM CT处理一对关联在一起的上下行波长通道,并为工作在这一对波长通道中的所有ONU提供接入和维护服务。ONU通过时分复用的方式在这一对波长通道中传输数据。不同TWDM CT处理的上下行波长通道均不相同。每个ONU按照OLT CT的指令在特定的上行时隙内发送上行数据。
在ITU-T G.989.2标准中关于TWDM PON ODN差分损耗以及ONU发射功率的规定如表1所示,可见不同ONU的发射功率相差5dB,最大ODN线路差分损耗,这导致不同ONU光信号到达OLT接收机时功率最大可相差20dB之多,这会造成如下三个问题:(1)TWDM PON是一个多波长的波分复用系统,所使用的激光器工作在一个信道,虽然边模抑制比很高,但仍然会在相邻信道内有一定的光功率输出,如果恰好被干扰的信道比该信道功率低20dB,这会使得被干扰信道信号质量严重恶化,这即是TWDM PON中特 有的OOB/OOC(OUT OF BAND/OUT OF CHANNEL)问题,为了使得系统正常工作,对激光器的边模抑制比要求很高,这对当前激光器技术提出了严重挑战;(2)当前的发射机灵敏度还达不到TWDM PON标准所定义的-36.5dBm,一般TWDM PON网络中需要加入放大器,放大器增益控制的稳定度也在1dB左右,因此,单信道内,到达OLT接收机功率最大差别可达21dB。这对接收机的要求是很高的,接收机里的TIA动态范围要达到21dB,实现上具有很大难度,成本也很高;(3)光放大器的增益平坦度约在1dB左右,因此,不同波长的光信号到达波分复用器(WDM)时,光信号功率相差也可达21dB之多,在最坏情况下,要使得信道间的串扰不会对信号造成干扰,波分复用器的隔离度要求也很高,成本大幅提升。
项目 单位 指标
最大ODN线路差分损耗 dB 15
ONU平均信道发射功率最小值    
-Type A link dBm +4
-Type B link dBm 0
ONU平均信道发射功率最大值    
-Type A link dBm +9
-Type B link dBm +5
表1
可以看出,以上这些问题的根源都在于TWDM PON系统中功率严重的不均衡。但是传统的解决功率均衡的方法并不适用于TWDM PON系统,比如在传输节点处利用快速光放大器调节不同突发包的增益的方式来解决无源光网络的功率均衡问题,这种思路由于TWDM PON的多波长复用且突发的网络架构而变得完全不适用或者成本高昂。另一种实现功率均衡的方法是动态调节方式,需要ONU具有输出功率可调的功能,从而可以在局端通过管理指定来测量并调节每个ONU的输出功率,相关技术仅能允许发射机输出功率在小范围调节(例如+/-3dB),要支持更大范围的调节,ONU光模块需要增加可调光衰减器或光放大器,这增加了光模块的复杂性并带来成本的大 幅增加,因此缺陷十分明显。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种光网络系统、冷接光纤衰减连接头装置及方法,能在不增加额外设备成本的同时实现光网络系统的功率均衡。
本发明的实施例提供了一种光网络系统,该光网络系统包括多个光网络单元和光分路器,光网络系统还包括:多个光纤衰减连接头装置;其中,一个光网络单元连接一个光纤衰减连接头装置,且每一光纤衰减连接头装置均与光分路器连接;
光纤衰减连接头装置设置为:对与其连接的光网络单元传输进来的光信号的功率进行衰减。
可选地,光纤衰减连接头装置是设置为:对与其连接的光网络单元传输进来的光信号的功率进行衰减,产生功率衰减量,功率衰减量用于补偿与其连接的光网络单元的入网节点处的功率与光网络系统中其它光网络单元的入网节点处的功率的差异。
可选地,光纤衰减连接头装置为冷接光纤衰减连接头装置。
可选地,冷接光纤衰减连接头装置包括冷接光纤衰减连接头和设置在冷接光纤衰减连接头内的一段弯曲光纤,且该弯曲光纤的弯曲半径可调,不同弯曲半径的弯曲光纤的损耗不同。
可选地,冷接光纤衰减连接头装置包括:冷接光纤衰减连接头以及设置在冷接光纤衰减连接头的导纤板,且导纤板上设有多个衰减光纤槽;多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同;
其中,每一光网络单元通过多个衰减光纤槽中的一个衰减光纤槽与光分路器连接。
可选地,光纤衰减连接头装置为掺杂光纤衰减连接头。
可选地,掺杂光纤衰减连接头包括:第一光纤连接头和设置在第一光纤 连接头内的一段掺有吸收杂质光纤的第一固定衰减器。
可选地,光纤衰减连接头装置为热熔光纤衰减连接头。
可选地,热熔光纤衰减连接头包括:第二光纤连接头和设置在第二光纤连接头内的一段通过光纤错位热熔产生的第二固定衰减器。
本发明的实施例还提供了一种冷接光纤衰减连接头装置,该冷接光纤衰减连接头装置包括冷接光纤衰减连接头以及设置在冷接光纤衰减连接头的导纤板,且导纤板上设有多个衰减光纤槽;多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同。
本发明的实施例还提供了一种实现功率均衡的方法,应用于光网络系统,该方法包括:
获取光网络系统中的光网络单元入网节点处的下行实际功率;
根据下行实际功率、预先设定的光网络单元的下行功率的最小值以及预先设定的该光网络系统的警戒衰减值,确定该光网络单元所需的光纤衰减连接头装置的衰减量;
通过光纤衰减连接头装置的衰减量,对光网络单元入网节点处的上行实际功率进行衰减。
可选地,根据下行实际功率、预先设定的光网络单元的下行功率的最小值以及预先设定的该光网络系统的警戒衰减值,确定该光网络单元所需的光纤衰减连接头装置的衰减量的步骤包括:
计算下行实际功率与下行功率的最小值之间的第一差值;
比较该第一差值与警戒衰减值的大小;
若第一差值大于警戒衰减值,则根据第一差值与警戒衰减值之间的第二差值,确定该光网络单元所需的光纤衰减连接头装置的衰减量。
在本发明的实施例中,光网络系统中的每一光网络单元都通过一光纤衰减连接头装置与光分路器连接,而光纤衰减连接头装置可以对与其连接的光网络单元传输进来的光信号的功率进行衰减,从而减小每个光网络单元的光 信号到达OLT接收机时的功率差异,实现光网络系统的功率均衡。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中TWDM PON系统的网络拓扑图;
图2为本发明实施例中TWDM PON系统的网络拓扑图;
图3为本发明实施例中具有冷接光纤衰减连接头装置的TWDM PON系统的示意图;
图4为本发明实施例中冷接光纤衰减连接头装置的结构示意图之一;
图5为本发明实施例中冷接光纤衰减连接头装置的结构示意图之二;
图6为本发明实施例中具有掺杂光纤衰减连接头的TWDM PON系统的示意图;
图7为本发明实施例中具有热熔光纤衰减连接头的TWDM PON系统的示意图;
图8为本发明实施例中实现功率均衡的方法的步骤流程图。
本发明的实施方式
下面将结合附图及实施方式进行详细描述。
本发明实施例针对相关技术中实现光网络系功率均衡成本较高的问题,提供了一种光网络系统、冷接光纤衰减连接头装置及方法,能在不增加额外设备成本的同时实现光网络系统的功率均衡。
如图2所示,本发明的实施例提供了一种光网络系统,该光网络系统包括多个光网络单元21和光分路器22,光网络系统还包括:多个光纤衰减连接头装置23;其中,一个光网络单元21连接一个光纤衰减连接头装置23,且每一光纤衰减连接头装置23均与光分路器22连接;光纤衰减连接头装置23设置为:对与其连接的光网络单元21传输进来的光信号的功率进行衰减。
在本发明的实施例中,光网络系统为TWDM PON系统。光纤衰减连接头装置23不仅可以对与其连接的光网络单元21传输进来的光信号的功率进行衰减,还可以对由光分路器22传输进来的光信号的功率进行衰减。
其中,在本发明的上述实施例中,光纤衰减连接头装置23是设置为:对与其连接的光网络单元21传输进来的光信号的功率进行衰减,产生功率衰减量,功率衰减量用于补偿与其连接的光网络单元21的入网节点处的功率与光网络系统中其它光网络单元的入网节点处的功率的差异。
在本发明的实施例中,TWDM PON系统架构中光分路器的任一个节点,通过光纤衰减连接头装置23与光网络单元21光模块相连。当光网络单元21入网时,可通过实时测量该入网节点处的ODN损耗,并结合该网络的参数(包括光网络单元理论允许下行功率的最小值等),选择合适的光纤衰减连接头装置23来补偿该入网节点与光网络系统中其他光网络单元节点处ODN损耗的不一致性,减小每个光网络单元21光信号到达OLT接收机时功率的差异,实现TWDM PON系统的功率均衡。
其中,如图3所示,在本发明的上述实施例中,光纤衰减连接头装置为冷接光纤衰减连接头装置31。该冷接光纤衰减连接头装置31包括冷接光纤衰减连接头311和设置在冷接光纤衰减连接头内的一段弯曲光纤312,且该弯曲光纤312的弯曲半径可调,不同弯曲半径的弯曲光纤312的损耗不同。
在本发明的实施例中,冷接光纤衰减连接头311可以是LC、SC、ST或FC型的冷接光纤衰减连接头。
在本发明的实施例中,冷接光纤衰减连接头装置31主要通过冷接光纤衰减连接头311内的一段弯曲光纤312实现功率损耗。由于弯曲光纤312的弯曲半径可调,从而通过调节弯曲光纤312的弯曲半径使得冷接光纤衰减连接头装置31的损耗不同,实现冷接光纤衰减连接头装置31的损耗可变。
在本发明的实施例中,作为一个应用示例,如图4所示,冷接光纤衰减连接头内的一段光纤被弯曲(即弯曲光纤)在光纤位置1时,该弯曲半径为R1,损耗为a1;若改变该光纤的弯曲半径,例如将光纤变更到光纤位置2时,弯曲半径为R2,损耗为a2。其中,R1>R2,a1<a2,由此可见,可以通过调节弯曲光纤的弯曲半径,实现冷接光纤衰减连接头装置的损耗可变。
其中,如图5所示,在本发明的上述实施例中,作为另一个应用示例,冷接光纤衰减连接头装置包括:冷接光纤衰减连接头以及设置在冷接光纤衰减连接头的导纤板501,且导纤板501上设有多个衰减光纤槽;多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同;其中,每一光网络单元通过多个衰减光纤槽中的一个衰减光纤槽与光分路器连接。
在本发明的实施例中,在冷接光纤衰减连接头内加入一段刻有多个衰减光纤槽(例如第一衰减光纤槽502、第二衰减光纤槽503、第三衰减光纤槽504)的导纤板501。其中,第一衰减光纤槽502具有较大曲率半径,使得穿过其的光纤具有第一衰减值(例如3dB),第二衰减光纤槽503具有较小曲率半径,使得穿过其的光纤具有第二衰减值(例如6dB),第三衰减光纤槽504具有更小曲率半径,使得穿过其的光纤具有第三衰减值(例如9dB),且第一衰减值小于第二衰减值,第二衰减值小于第三衰减值。进一步地,光网络单元可以通过合适的衰减光纤槽与光分路器连接,使得每个光网络单元的入网节点都具有恰当的ODN损耗,从而实现TWDM PON系统的光功率均衡。
其中,如图6所示,在本发明的上述实施例中,光纤衰减连接头装置为掺杂光纤衰减连接头61,且该掺杂光纤衰减连接头61包括:第一光纤连接头611和设置在第一光纤连接头611内的一段掺有吸收杂质光纤的第一固定衰减器612。
在本发明的实施例中,光纤衰减连接头装置也可以是基于一段掺有吸收杂质光纤的第一固定衰减器612加一个标准的LC、SC、ST或FC型的第一光纤连接头611组成的掺杂光纤衰减连接头612。在TWDM PON系统中,光分路器22先与一个掺杂光纤衰减连接头61连接,掺杂光纤衰减连接头61再与该节点处的光网络单元21连接。该掺杂光纤衰减连接头61的衰减产生了补偿该光网络单元21入网节点与光网络系统中其他光网络单元入网节点处ODN损耗的不一致性。
其中,如图7所示,在本发明的上述实施例中,光纤衰减连接头装置为热熔光纤衰减连接头71,且该熔光纤衰减连接头71包括:第二光纤连接头711和设置在第二光纤连接头711内的一段通过光纤错位热熔产生的第二固 定衰减器712。
在本发明的实施例中,光纤衰减连接头装置还可以是一段通过光纤错位热熔后产生的第二固定衰减器712加一个标准LC、SC、ST或FC型的第二光纤连接头711组成的热熔光纤衰减连接头71。在TWDM PON系统中,光分路器22先与一个热熔光纤衰减连接头71连接,热熔光纤衰减连接头71再与该节点处的光网络单元连接21。该热熔光纤衰减连接头71的衰减产生了补偿该光网络单元21入网节点与光网络系统中其他光网络单元入网节点处ODN损耗的不一致性。
本发明的实施例还提供了一种冷接光纤衰减连接头装置,该冷接光纤衰减连接头装置包括冷接光纤衰减连接头以及设置在冷接光纤衰减连接头的导纤板501,且导纤板501上设有多个衰减光纤槽;多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同。
需要说明的是,本发明实施例提供的冷接光纤衰减连接头装置是上述光网络系统中的冷接光纤衰减连接头装置,即上述光网络系统中的冷接光纤衰减连接头装置的所有实施例均适用于该冷接光纤衰减连接头装置,且均能达到相同或相似的有益效果。
如图8所示,本发明的实施例还提供了一种实现功率均衡的方法,应用于光网络系统,该方法包括:
步骤81,获取光网络系统中的光网络单元入网节点处的下行实际功率。
步骤82,根据下行实际功率、预先设定的光网络单元的下行功率的最小值以及预先设定的该光网络系统的警戒衰减值,确定该光网络单元所需的光纤衰减连接头装置的衰减量。
在本发明的实施例中,警戒衰减值决定了光网络系统的最大差分损耗,差分损耗越小,网络性能越好,
步骤83,通过光纤衰减连接头装置的衰减量,对光网络单元入网节点处的上行实际功率进行衰减。
其中,在本发明的上述实施例中,步骤82的步骤可包括:计算下行实际功率与下行功率的最小值之间的第一差值;比较该第一差值与警戒衰减值 的大小;若第一差值大于警戒衰减值,则根据第一差值与警戒衰减值之间的第二差值,确定该光网络单元所需的光纤衰减连接头装置的衰减量。
在本发明的实施例中,可以实时测量光网络单元的下行实际功率,并计算该下行实际功率与预先设定的光网络单元的下行功率的最小值的第一差值,若该第一差值小于或等于0,则确定该光网络单元的入网节点不符合入网条件,不能入网;若该第一差值大于0,则进一步计算该第一差值与该光网络系统的警戒衰减值之间的第二差值,若该第二差值小于或等于0,则确定该光网络单元入网节点不需要光纤衰减连接头装置,直接与光分路器连接即可;若该第二差值大于0,则根据第二差值确定出该光网络单元所需的光纤衰减连接头装置的衰减量,作为一个应用示例,衰减量大于第二差值,同时小于第一差值。例如第一差值为10dB,第二差值为5dB,则光纤衰减连接头装置的衰减量的范围为5~10dB。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
 
在本发明的实施例中,光网络系统中的每一光网络单元都通过一光纤衰减连接头装置与光分路器连接,而光纤衰减连接头装置可以对与其连接的光网络单元传输进来的光信号的功率进行衰减,从而减小每个光网络单元的光信号到达OLT接收机时的功率差异,实现光网络系统的功率均衡。

Claims (12)

  1. 一种光网络系统,包括多个光网络单元和光分路器,所述光网络系统还包括:多个光纤衰减连接头装置;其中,一个光网络单元连接一个光纤衰减连接头装置,且每一光纤衰减连接头装置均与所述光分路器连接;
    所述光纤衰减连接头装置设置为:对与其连接的光网络单元传输进来的光信号的功率进行衰减。
  2. 如权利要求1所述的光网络系统,其中,所述光纤衰减连接头装置是设置为:对与其连接的光网络单元传输进来的光信号的功率进行衰减,产生功率衰减量,所述功率衰减量用于补偿与其连接的光网络单元的入网节点处的功率与光网络系统中其它光网络单元的入网节点处的功率的差异。
  3. 如权利要求1或2所述的光网络系统,其中,所述光纤衰减连接头装置为冷接光纤衰减连接头装置。
  4. 如权利要求3所述的光网络系统,其中,所述冷接光纤衰减连接头装置包括冷接光纤衰减连接头和设置在所述冷接光纤衰减连接头内的一段弯曲光纤,且该弯曲光纤的弯曲半径可调,不同弯曲半径的弯曲光纤的损耗不同。
  5. 如权利要求3所述的光网络系统,其中,所述冷接光纤衰减连接头装置包括:冷接光纤衰减连接头以及设置在所述冷接光纤衰减连接头的导纤板,且所述导纤板上设有多个衰减光纤槽;所述多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同;
    其中,每一光网络单元通过所述多个衰减光纤槽中的一个衰减光纤槽与所述光分路器连接。
  6. 如权利要求1或2所述的光网络系统,其中,所述光纤衰减连接头装置为掺杂光纤衰减连接头。
  7. 如权利要求6所述的光网络系统,其中,所述掺杂光纤衰减连接头包括:第一光纤连接头和设置在所述第一光纤连接头内的一段掺有吸收杂质光纤的第一固定衰减器。
  8. 如权利要求1或2所述的光网络系统,其中,所述光纤衰减连接头装置为热熔光纤衰减连接头。
  9. 如权利要求8所述的光网络系统,其中,所述热熔光纤衰减连接头包括:第二光纤连接头和设置在所述第二光纤连接头内的一段通过光纤错位热熔产生的第二固定衰减器。
  10. 一种冷接光纤衰减连接头装置,包括冷接光纤衰减连接头以及设置在所述冷接光纤衰减连接头的导纤板,且所述导纤板上设有多个衰减光纤槽;所述多个衰减光纤槽的曲率半径均不同,不同曲率半径的衰减光纤槽的损耗不同。
  11. 一种实现功率均衡的方法,应用于光网络系统,所述方法包括:
    获取光网络系统中的光网络单元入网节点处的下行实际功率;
    根据所述下行实际功率、预先设定的光网络单元的下行功率的最小值以及预先设定的该光网络系统的警戒衰减值,确定该光网络单元所需的光纤衰减连接头装置的衰减量;
    通过所述光纤衰减连接头装置的衰减量,对光网络单元入网节点处的上行实际功率进行衰减。
  12. 如权利要求11所述的方法,其中,所述根据所述下行实际功率、预先设定的光网络单元的下行功率的最小值以及预先设定的该光网络系统的警戒衰减值,确定该光网络单元所需的光纤衰减连接头装置的衰减量的步骤包括:
    计算下行实际功率与下行功率的最小值之间的第一差值;
    比较该第一差值与警戒衰减值的大小;
    若第一差值大于所述警戒衰减值,则根据第一差值与警戒衰减值之间的第二差值,确定该光网络单元所需的光纤衰减连接头装置的衰减量。
PCT/CN2016/075357 2015-04-08 2016-03-02 一种光网络系统、冷接光纤衰减连接头装置及方法 WO2016161859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510161895.1A CN106160869A (zh) 2015-04-08 2015-04-08 一种光网络系统、冷接光纤衰减连接头装置及方法
CN201510161895.1 2015-04-08

Publications (1)

Publication Number Publication Date
WO2016161859A1 true WO2016161859A1 (zh) 2016-10-13

Family

ID=57072358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075357 WO2016161859A1 (zh) 2015-04-08 2016-03-02 一种光网络系统、冷接光纤衰减连接头装置及方法

Country Status (2)

Country Link
CN (1) CN106160869A (zh)
WO (1) WO2016161859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057172A1 (zh) * 2017-09-21 2019-03-28 中兴通讯股份有限公司 控制下行光信号的方法、装置和计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357841B (zh) * 2018-10-19 2024-02-13 国网辽宁省电力有限公司电力科学研究院 就地化保护预制光缆校验装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159506A (zh) * 2007-10-26 2008-04-09 华为技术有限公司 一种pon通信信道均衡的方法、装置及系统
CN101247182A (zh) * 2008-03-07 2008-08-20 中兴通讯股份有限公司 一种无源光网络中的功率控制方法
CN101615956A (zh) * 2008-06-28 2009-12-30 华为技术有限公司 一种onu及光功率调整的方法和系统
CN101840027A (zh) * 2010-05-04 2010-09-22 西安金和光学科技有限公司 弹簧型全光纤精密可调光衰减器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807958B (zh) * 2010-03-18 2013-03-20 烽火通信科技股份有限公司 一种波分复用光传输系统在线升级扩容功率调整方法
CN202696605U (zh) * 2012-04-27 2013-01-23 中兴通讯股份有限公司 一种pon光模块检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159506A (zh) * 2007-10-26 2008-04-09 华为技术有限公司 一种pon通信信道均衡的方法、装置及系统
CN101247182A (zh) * 2008-03-07 2008-08-20 中兴通讯股份有限公司 一种无源光网络中的功率控制方法
CN101615956A (zh) * 2008-06-28 2009-12-30 华为技术有限公司 一种onu及光功率调整的方法和系统
CN101840027A (zh) * 2010-05-04 2010-09-22 西安金和光学科技有限公司 弹簧型全光纤精密可调光衰减器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057172A1 (zh) * 2017-09-21 2019-03-28 中兴通讯股份有限公司 控制下行光信号的方法、装置和计算机可读存储介质
US10958994B2 (en) 2017-09-21 2021-03-23 Zte Corporation Method and device for controlling downlink optical signal, and computer-readable storage medium

Also Published As

Publication number Publication date
CN106160869A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US8090261B2 (en) Network system, optical line terminating apparatus, and optical network apparatus
US20070036483A1 (en) Wavelength-division-multiplexed light source and wavelength-division-multiplexed passive optical network using the same
CN106550290B (zh) 无源光网络功率均衡的方法、装置、终端、单元及系统
US6760532B1 (en) Optical device having dynamic channel equalization
US8620156B2 (en) Method and apparatus for performing an automatic power adjustment for an optical signal
US8249454B2 (en) Optical communication system and optical line terminating apparatus
CN108574532B (zh) 光信号的功率控制方法、装置及光线路终端
Fujiwara et al. Field trial of 100-km reach symmetric-rate 10G-EPON system using automatic level controlled burst-mode SOAs
US20070065089A1 (en) Optical termination apparatus and optical transmission system
US6633430B1 (en) Booster amplifier with spectral control for optical communications systems
Jirachariyakool et al. Design and implement of GPON-FTTH network for residential condominium
WO2016161859A1 (zh) 一种光网络系统、冷接光纤衰减连接头装置及方法
US20070172239A1 (en) Optical transmission system
Suzuki et al. 128× 8 split and 60 km long-reach PON transmission using 27 dB-gain hybrid burst-mode optical fiber amplifier and commercial giga-bit PON system
CA2524832C (en) Method for pre-emphasizing an optical multiplex signal
CN103227681A (zh) 波分复用光传输系统通道动态光功率调整方法
Kawakita et al. Design for long-reach coexisting PON in consideration of area characteristics with wavelength selective asymmetrical splitters
US20040165857A1 (en) Compact hybrid integrated optical dynamic channel equalizer
Appathurai et al. Measurement of tolerance to non-uniform burst powers in SOA amplified GPON systems
US8102595B2 (en) Optical transmission system with optical amplifier gain setup based on difference between signal loss and noise light loss
Rhy et al. Inter-channel crosstalk impairment of time and wavelength division multiplexing passive optical network
Boriboon et al. Computation and experiments of 10 Gb/s optical access network with long reach and a large number of subscribers
US11689311B2 (en) Optical communications system, branching ratio determination method, and transmission distance determination method
KAWAZAWA et al. Novel Gain Tilt Monitoring Method for DWDM Submarine Cable Systems
KR100734855B1 (ko) 광 가입자 확장을 위한 수동형 광 네트워크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776034

Country of ref document: EP

Kind code of ref document: A1