WO2016161820A1 - Method, apparatus and system for producing tritium - Google Patents

Method, apparatus and system for producing tritium Download PDF

Info

Publication number
WO2016161820A1
WO2016161820A1 PCT/CN2015/098994 CN2015098994W WO2016161820A1 WO 2016161820 A1 WO2016161820 A1 WO 2016161820A1 CN 2015098994 W CN2015098994 W CN 2015098994W WO 2016161820 A1 WO2016161820 A1 WO 2016161820A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavitation bubble
metal workpiece
mass transfer
fluid medium
tritium
Prior art date
Application number
PCT/CN2015/098994
Other languages
French (fr)
Inventor
Darong CHEN
Liang Jiang
Haosheng Chen
Jiadao WANG
Dangguo LI
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Publication of WO2016161820A1 publication Critical patent/WO2016161820A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/006Fusion by impact, e.g. cluster/beam interaction, ion beam collisions, impact on a target
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present disclosure relates to the field of tribology and nuclear physics, more particularly, to a method, apparatus and system for producing a tritium.
  • Tritium is of a half-life period of 12.3 years. There is only approximately 2 kilograms of natural tritium on the earth, in which 10 g exists in atmosphere, 13 g exists in underground water, and the rest part exists in sea water. The tritium is not only used for military purposes, but also used for civil fields widely.
  • the tritium is produced mainly depending on nuclear reaction of nuclear fission reactor, i.e. the tritium is produced by irradiating Li with neutrons generated in the reactor, or by bombarding Be target in cyclotron.
  • these methods have disadvantages as follows. (1) Expensive cost for construction. For example, it may require approximately 5.5 billion US dollars for building new deuteroxide tritium-producing reactor or high temperature gas cooled reactor. (2) Environmental safety issues. Producing tritium by reactor involves safety issues not only with the reactor but also with the tritium. (3) Nuclear non-proliferation issues.
  • an object of the present disclosure is to provide a method for producing tritium with high safety and low cost.
  • the method is to produce tritium by the deuterium-deuterium thermonuclear fusion on a basis of achieving the deuterium-deuterium thermonuclear fusion by collapsing a cavitation bubble in deuteroxide based on a theory of obtaining tritium with interface constraint; and to breed the tritium by bombarding 6 Li with a thermal neutron, so as to obtain a large amount of the tritium.
  • the tritium is produced by the deuterium-deuterium thermonuclear fusion on the basis of achieving the deuterium-deuterium thermonuclear fusion by collapsing a cavitation bubble in deuteroxide based on a method for obtaining tritium with interface constraint; and the tritium is bred by bombarding 6 Li with the thermal neutron, so as to obtain a large amount of the tritium.
  • the method for producing the tritium constructs an environment with an increasing pressure in deuteroxide, so as to ensure the cavitation bubble to become in a collapsing state in this environment, i.e., an ultra-high temperature and an ultra-high pressure are formed in the center of the cavitation bubble. Under such a condition, the tritium is produced at the same time a neutron is ejected. Meanwhile, the tritium is bred by adding 6 LiD in deuteroxide.
  • thermonuclear fusion the key to achieve the thermonuclear fusion is that the movement of high-temperature plasmas inside the cavitation bubble is constrained by its interface, so as to make the high-temperature plasmas in a relatively stationary state, such that it is possible to ensure a plasma sheath a stable presence, laying a basis for continuous nuclear fusion and tritium production.
  • the high-temperature plasma in the cavitation bubble is obtained by two compression phases as below.
  • a first compression phase the cavitation bubble approaches to a surface of a metal workpiece at a high speed after sufficient mass transfer at a liquid-vapor interface, accordingly an increasing pressure field is formed as a distance between the cavitation bubble and the metal workpiece is being shorten, thus forming a first compression procedure.
  • a vapour is compressed to a deuterium fuel.
  • an inclusion inside the cavitation bubble is turned into a low-temperature plasma state gradually.
  • a second compression phase an electrostatic force of an electric double layer is mainly relied on during this phase, so as to provide the cavitation bubble a speed and an accelerated speed the cavitation bubble for approaching to the surface of the metal workpiece.
  • the electric double layer provides increasing ultra-high electric field intensity (greater than 10 7 V/m) with the shortened distance between the cavitation bubble and the metal workpiece; the speed and the accelerated speed for approaching to the surface of the metal workpiece are generated when the cavitation bubble enters a range controlled by the electric double layer.
  • both of the speed of the cavitation bubble approaching the surface of the metal workpiece and the pressure formed by the cavitation bubble and the surface of the metal workpiece increase in an exponential manner.
  • the cavitation bubble is compressed drastically under the environment with increasing pressure, thus forming a second compression procedure.
  • the cavitation bubble is of a drastically-reduced volume during this procedure, and the inclusion inside the cavitation bubble is turned into a high-temperature plasma state.
  • the deuterium-deuterium thermonuclear fusion is achieved by gravitationally collapsing the inclusion inside the cavitation bubble which is in the high-temperature plasma state.
  • the inclusion inside the cavitation bubble is turned into the high-temperature plasma state, electrons are no longer rotating around nucleus; gas atoms are all dissociated; the inclusion inside the cavitation bubble occupies a smaller space; the surface of the cavitation bubble is further shrunk under an environment not relying on an external pressure; an ultra-high temperature is achieved inside the cavitation bubble; the electrons are turned into a degeneracy state; and the high pressure inside the cavitation bubble is mainly undertaken by an electronic degeneracy pressure and a gravity.
  • the inclusion inside the cavitation bubble is of a concentration being capable of ensuring the gravity higher than the electronic degeneracy pressure, the cavitation bubble continues to be collapsed, and the temperature increases sharply, thus meeting requirements to the deuterium-deuterium fusion quantum tunneling. If the inclusion inside the cavitation bubble is of a concentration being capable of maintaining imbalances between the electronic degeneracy pressure and the gravity, the cavitation bubble is collapsed to minimum and continues to produce a large amount of neutrons, such a procedure is an irreversible gravitational collapse procedure.
  • reaction medium is added with 6 Li (an isotope of Li element)
  • n (neutron) generated in the above formula continues to react with 6 Li to generate 4 He and T (tritium) , so as to breed the tritium.
  • the formula is shown as below:
  • the tritium is produced by the above nuclear fusion reaction with a low-cost of raw material and a simple device, instead of a reactor, thereby providing a high safety and greatly reducing a risk of nuclear proliferation.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials. The reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing a nuclear fusion apparatus a safe operation.
  • the method includes:
  • the first fluid medium including at least 2 mmol/L of 6 LiD;
  • the second flow medium contains deuterium
  • the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6 LiD.
  • the inventors surprisingly find that, with the method according to embodiments of the present disclosure, the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
  • the system includes:
  • a ram pump configured to compress a first fluid medium, so as to form a jet, the first fluid medium including at least 2 mmol/L of 6 LiD;
  • vacuolization unit connected to the ram pump, and configured to subject the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles;
  • a mass transfer unit connected to the vacuolization unit, configured to enable the cavitation bubble flow to pass labyrinth channels under an ultrasonic filed, so that a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions is;
  • a reacting unit connected to the mass transfer unit and the ram pump, and configured to enable the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle,
  • the second flow medium includes deuterium
  • the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6 LiD.
  • the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
  • an apparatus for producing tritium includes: a mass transfer assembly and a reacting assembly,
  • mass transfer assembly includes:
  • a first shell defining a mass transfer space
  • an inlet arranged at a side wall of the first shell, and configured to allow a first fluid medium to enter the mass transfer assembly
  • vacuolization plate arranged at the side wall of the first shell, connected to the inlet, and configured to subject the first fluid medium to vacuolization treatment, so as to obtain cavitation bubble flow containing cavitation bubbles;
  • an ultrasonic unit arranged in the mass transfer space, and configured to form an ultrasonic field, under which a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions;
  • a first outlet arranged at the side wall of the first shell, and configured to allow the cavitation bubble flow containing high inclusions to be discharged from the mass transfer space
  • reacting assembly includes:
  • a nozzle arranged above the metal workpiece, connected to the first outlet, and configured to spray the cavitation bubble flow containing high inclusions onto an upper surface of the metal workpiece, so as to form cavitation bubble flow containing a part of the cavitation bubbles whose inclusions are a high-temperature plasma state within a range of an electric double layer effect, such that deuterium-deuterium thermonuclear fusion is realized when cavitation bubble flow containing the part of the cavitation bubbles whose inclusions are the high-temperature plasma state approaches to the surface of the metal workpiece, thereby obtaining a tritium-containing fluid medium.
  • the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
  • the method for producing tritium based on the interface constraint is a complex procedure related to multiple parameters, such as an electrode potential of a material, formations of the topic negative pressure and the cavitation bubble jet, the distance between the nozzle and the metal workpiece, the speed and the pressure at the outlet of the cavitation bubble flow, the surface roughness of the metal workpiece, the concentration of surfactant in the fluid medium, the interfacial mass transfer, the moderated procedure of the neutron and so on.
  • the method and apparatus of the present disclosure are used as a whole technical solution by combining corresponded apparatus with technological parameters, thus producing tritium in a safe, controllable and low-cost manner.
  • Fig. 1 is a flow chart showing a method for producing tritium according to an embodiment of the present disclosure
  • Fig. 2 is a schematic view showing a system for producing tritium according to an embodiment of the present disclosure, in which a direction of an arrow indicates a flowing dirciton of liquid in the system;
  • Fig. 3 is a schematic view showing an apparatus for producing tritium according to an embodiment of the present disclosure, in which a direction of an arrow indicates a flowing dirciton of liquid in the system;
  • Fig. 4 is a schematic view showing an apparatus for producing tritium according to an embodiment of the present disclosure
  • Fig. 5 is a front view of a vacuolization plate according to an embodiment of the present disclosure.
  • Fig. 6 is a three-dimensional schematic view of labyrinth channels according to an embodiment of the present disclosure.
  • the method includes:
  • a first fluid medium is compressed by a ram pump, so as to form a jet, in which the first fluid medium includes at least 2 mmol/L of 6 LiD, such that a speed of a cavitation bubble flow containing high inclusions ejected from a nozzle is controlled by a speed and a pressure of a high-pressure and high-speed deuteroxide jet provided by the ram pump.
  • the pressure of the high-pressure and high-speed deuteroxide jet is 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure within a range of 5 Bar to 10 Bar and a speed of at least 60 m/s at an outlet of the nozzle.
  • type of the first fluid medium is not particularly limited, as long as the first fluid medium contains deuterium to realize a deuterium-deuterium thermonuclear fusion.
  • the first fluid medium is deuteroxide, thus providing sufficient deuterium for the deuterium-deuterium thermonuclear fusion.
  • the jet is subjected to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles, thus providing a large amount of cavitation bubbles for mass transfer treatment at a liquid-vapor interface.
  • the cavitation bubble flow is enabled to pass labyrinth channels, so that mass transfer is achieved at the liquid-vapor interface under an ultrasonic filed, thereby obtaining cavitation bubble flow containing high inclusions.
  • mass transfer at the liquid-vapor interface refers to that surface tension is related to temperature and concentration of the inclusion inside the cavitation bubble flow during the mass transfer at the liquid-vapor interface.
  • a micro cavitation bubble is of different temperatures and of different concentrations of inclusions inside the cavitation bubble flow at different regions on its surface under an ultrasonic stationary waves field, resulting in a gradient of the surface tension, and thereby causing the Marangoni effect enabling liquids in the surface and under the interface to move, so that a surface turbulence is generated.
  • the mass transfer at the liquid-vapor interface is achieved through a microchannel transfer manner developed from an intermolecular transfer manner, so as to greatly accelerate the mass transfer, which enables a part of the first fluid medium to enter the cavitation bubbles mainly composed of vapour and thereby enabling the inclusions inside the cavitation bubble to be of a quickly-increased concentration, such that the cavitation bubble containing high inclusions is obtained.
  • the higher concentration of the inclusions inside the cavitation bubble is, the higher temperature of the cavitation bubble is after the inclusions inside the cavitation bubble is turned into a high-temperature plasma state, so as to reach an ultra-high temperature above 50 million Celsius degree needed by the deuterium-deuterium thermonuclear fusion.
  • the labyrinth channels are used to extend a trip route of the cavitation bubble flow, so as to extend a time period for the mass transfer, which ensures the cavitation bubble flow completely mass transfer treatment, and thereby enabling the high-temperature plasma to reach the ultra-high temperature needed by the deuterium-deuterium thermonuclear fusion.
  • the cavitation bubble flow containing high inclusions is enabled to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle.
  • the deuterium-deuterium thermonuclear fusion is achieved when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to obtain the tritium and a fast neutron.
  • the second flow medium contains deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is obtained by a reaction between the thermal neutron and 6 LiD, so that the tritium may be produced with the low cost of the raw material and the simple apparatus, instead of the reactor, and thereby providing high safety and greatly reducing the risk of nuclear proliferation.
  • nuclear fusion reaction may be divided into the following phases:
  • the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece at a high speed in a short distance, and is compressed in the pressure field formed by the cavitation bubble flow and the upper surface of the metal work piece, so that the inclusions inside the cavitation bubble are turned into a low-temperature plasma state.
  • the cavitation bubble obtains the accelerated speed approaching to the upper surface of the metal workpiece under the double electric layer force formed between the metal workpiece and the second fluid medium, so that the cavitation bubble is compressed again, and the inclusions inside the cavitation bubble are turned into a high-temperature plasma state.
  • the cavitation bubble containing high-temperature plasma ejects particles, which breaks the relationship between electronic degeneracy pressure and gravity, so that the cavitation bubble is turned into a collapsing state until the center temperature meets a condition of the deuterium-deuterium fusion quantum tunneling, such that the cavitation bubble is turned into a thermonuclear fusion state to produce tritium;
  • the nuclear fusion reaction is performed in the second fluid medium, the produced neutron may be moderated into a thermal neutron, and the tritium may be bred by a reaction between the thermal neutron and 6 Li.
  • the nuclear fusion reaction is performed based on the interface constraint of the cavitation bubble.
  • the interface constraint refers to a constraint method enabling a micro cavitation bubble to be of a symmetric special structure all the time under variable pressures by controlling a change at a liquid-vapor interface based on its particular structure and property.
  • the method for producing tritium based on the interface constraint is characterised in constructing an environment with an increasing external pressure by mean of an interface characteristic and a flow field characteristic of the cavitation bubble, so as to facilitate the inclusions inside the cavitation bubble to become the high-temperature plasma from the low-temperature plasma, and in the end, cause the cavitation bubble to be of a sustained ultra-high temperature and sustained ultra-high temperature pressure at its centre via gravitational collapse, thereby meeting the quantum tunneling condition of the deuterium-deuterium thermonuclear fusion.
  • the quantum tunnelling effect is a basis quantum phenomenon where a particle tunnels through a barrier that it classically could not surmount.
  • a microscopic particle may be still able to tunnel through a barrier, even though with a total energy lower than the barrier.
  • time and energy are a pair of conjugate variables, resulting in uncertainty of the quantum.
  • a tunnelling effect theory is provided for describing.
  • a barrier between two deuterium atoms is about 200 keV, which is equivalent to an ambient temperature of 2 billion Celsius degree.
  • the present disclosure provides in embodiments a system for producing tritium.
  • the system includes: a ram pump 100, a vacuolization unit 200, a mass transfer unit 300 and a reacting unit 400.
  • the ram pump 100 is configured to compress a first fluid medium, so as to form a jet, in which the first fluid medium includes at least 2 mmol/L of 6 LiD, such that a speed of a cavitation bubble flow containing high inclusions ejected from a nozzle is controlled by a speed and a pressure of a high-pressure and high-speed deuteroxide jet provided by the ram pump.
  • the jet is of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure within a range of 5 Bar to 10 Bar and a speed of at least 60 m/s at an outlet of the nozzle.
  • the vacuolization unit 200 is connected to the ram pump 100, and configured to subject the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles, thus providing a large amount of cavitation bubbles for interfacial mass transfer treatment.
  • the mass transfer unit 300 is connected to the vacuolization unit 200, configured to enable the cavitation bubble flow to pass labyrinth channels under an ultrasonic filed, so as to perform mass transfer at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions.
  • the higher inclusions inside the cavitation bubble are, the higher temperature inside the cavitation bubble is after the inclusions inside the cavitation bubble are turned into a high-temperature plasma state, so as to reach an ultra-high temperature above 50 million Celsius degree needed by deuterium-deuterium thermonuclear fusion.
  • the labyrinth channels are used to extend a trip route of the cavitation bubble flow, so as to extend a time period for the mass transfer, which ensures the cavitation bubble flow sufficient mass transfer treatment, and thereby enabling the high-temperature plasma to reach the ultra-high temperature needed by the deuterium-deuterium thermonuclear fusion.
  • the reacting unit 400 is connected to the mass transfer unit 300 and the ram pump 100, and configured to enable the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle, in which the deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, thereby obtaining the tritium and a fast neutron.
  • the second flow medium includes deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6 LiD, so that the tritium may be produced with the low cost of raw material and the simple apparatus, instead of a reactor, and thereby providing high safety and greatly reducing the risk of nuclear proliferation.
  • the tritium is produced merely with the low cost of raw material and the simple structure, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials. The reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing a nuclear fusion apparatus a safe operation.
  • the present disclosure further provides in embodiments an apparatus for producing tritium.
  • the apparatus 1100 is described in detail with reference to Figs. 3 and 4.
  • the apparatus 1100 includes: a mass transfer assembly 500 and a reacting assembly 600.
  • the mass transfer assembly 500 includes: a first shell 570, an inlet 510, a vacuolization plate 580, an ultrasonic unit 530, and a first outlet 560.
  • the first shell 570 defines a mass transfer space.
  • the inlet 510 is arranged at a side wall of the first shell 570, and configured to allow a first fluid medium to enter the mass transfer assembly 500;
  • the vacuolization plate 580 is arranged at the side wall of the first shell 570, connected to the inlet 510, and configured to subject the first fluid medium to vacuolization treatment, so as to obtain cavitation bubble flow containing cavitation bubbles, thereby proving a large amount of cavitation bubbles for interfacial mass transfer treatment.
  • the vacuolization plate is an apparatus including a bottom plate 582, and a plurality of via holes 581, distributed on the bottom plate 582 averagely.
  • the bottom plate 582 is a circular plate with a 20 mm diameter and a 3 mm thickness, and 97 via holes 581 are distributed on the circular plate averagely, in which the via hole 581 is of a cross-section in a circular shape with a diameter D1 of 1 mm.
  • a distance A between centers of adjacent two via holes is 1.6 mm.
  • an initial vacuolization number of the vacuolization plate is 1.0. Thus, the vacuolization effect is good.
  • the vacuolization plate is made of the 304 stainless steel.
  • the first fluid is subjected to the vacuolization treatment by the vacuolization plate described above, so as to obtain the cavitation bubble flow containing a large amount of cavitation bubbles.
  • the first fluid is preferably deuteroxide, providing sufficient deuterium for the deuterium-deuterium thermonuclear fusion.
  • the ultrasonic unit 530 is arranged in the mass transfer space, and configured to form an ultrasonic field, under which a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions.
  • the mass transfer space may further include: a partition, configured to divide the mass transfer space into an upper fluid medium area and a lower ultrasonic-generating area; and labyrinth channels 520, arranged at the upper fluid medium area.
  • the labyrinth channels as shown in Fig. 6 are formed by a plurality of metal partitions 521 arranged in parallel and not connected to the side wall of the first shell.
  • a stiffener 522 may be further arranged to the top of the metal partitions 521 to fix the metal partitions firmly.
  • the metal partitions 521 are not connected to the side wall of the first shell, so as to prevent the first shell from vibrating caused by the ultrasonic generator, and further ensure the nozzle and the metal workpiece the constant distance.
  • the plurality of the metal partitions is arranged in a crisscross manner, thus extending the trip route of the first fluid in the labyrinth channels.
  • the first fluid medium may be of the trip route of at least 400 mm in the labyrinth channels, which facilitates sufficient mass transfer treatment. Such a trip route is the longest trip route of the first fluid medium in the labyrinth channels.
  • the ultrasonic generator is arranged at the lower ultrasonic-generating area.
  • the ultrasonic generator includes a plurality of ultrasonic vibrators distributed in the ultrasonic-generating area averagely, providing the ultrasonic field for the upper fluid medium area.
  • Vibration frequency of the ultrasonic vibrator is not particularity limited.
  • the ultrasonic vibrator is of the vibration frequency within a range of 15 kHz to 32 kHz, and a power within a range of 50 w to 100 w.
  • the cavitation bubble may be expanded and the surface turbulence is generated, resulting in a gradient in the surface tension at the surface of the cavitation bubble, and thereby causing the Marangoni effect, so that the mass transfer at the interface is of improved efficiency and the cavitation bubble is of increased inclusions.
  • the first outlet 560 is arranged at the side wall of the first shell 570, and configured to allow the cavitation bubble flow containing high inclusions to be discharged from the mass transfer space.
  • the cross-section of the first outlet is of a gradually-reduced area in direction along which the fluid medium moves.
  • the reacting assembly 600 includes: a second shell 610, a metal workpiece 630, and nozzle 620.
  • the second shell 610 defines a reacting space.
  • the metal workpiece 630 is arranged in the reacting space, and placed in a second flow medium so as to generate an electric double layer in the second flow medium.
  • the type of the second fluid medium is not particularly limited, as long as the second fluid medium contains deuterium.
  • the second flow medium is preferably deuteroxide, more preferably may include an anionic surfactant, so as to decrease interferences between the cavitation bubbles and between the cavitation bubble and the wall surface, thereby maintaining geometrical symmetry of the cavitation bubble and preventing the cavitation bubble from failing before collapsing.
  • the type of the anionic surfactant is not particularly limited, the anionic surfactant is preferably at least one selected from sodium lauryl sulfate and sodium dodecyl sulfate.
  • the anionic surfactant has a nonpolar terminal in a gas phase and a polar terminal in a liquid phase.
  • the anionic surfactant is of a concentration within a range of 1.5 mmol/L to 2.0 mmol/L. An insufficient amount of the surfactant may reduce interference resistance of the cavitation bubble; while an excessive amount of the surfactant may cause the surfactant to aggregate into micelles, which also reduce the interference resistance of the cavitation bubble.
  • the nozzle 620 is arranged above the metal workpiece 630, connected to the first outlet 560, and configured to spray the cavitation bubble flow containing high inclusions onto an upper surface of the metal workpiece 630, so as to form cavitation bubble flow containing a part of the cavitation bubble whose inclusions are in a high-temperature plasma state within the range of an electric double layer effect, such that deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing the part of the cavitation bubbles whose inclusions are in the high-temperature plasma state approaches to the surface of the metal workpiece 630, thereby obtaining a tritium-containing fluid medium.
  • the cavitation bubble is compressed under an increasing micro pressure generated due to squeezing effect as the decreased distance between the cavitation bubble flow containing high inclusions ejected from the nozzle and the upper surface of the metal workpiece 630. Since the injection pressure of the cavitation bubble flow decreases with time (distance) , the speed of the cavitation bubble flow approaching to the upper surface of the workpiece decreases accordingly, such that a gradient of increasing temperature is lower than heat dissipation capability of the cavitation bubble wall. Under a nonadiabatic condition, the cavitation bubble experiences a stasis state temporarily when compressed to be of a certain diameter.
  • the cavitation bubble flow is of a speed at the outlet equal to or greater than 60 m/s and of a pressure at the outlet of 5 Bar to 20 Bar
  • a distance between the nozzle 620 and the metal workpiece 630 should be 10 mm to 20 mm, so as to ensure that the cavitation bubble flow is of a speed not less than 50 m/s when reaching the upper surface of the metal workpiece 630.
  • the cavitation bubble cannot enter the range controlled by the electric double layer if this distance is too long; while a part of the cavitation bubbles accumulate on the surface of the metal workpiece if this distance is too short, resulting in that this part of the cavitation bubbles cannot enter the range controlled by the electric double layer similarly.
  • the distance between the nozzle 620 and the metal workpiece 630 may be adjusted by an adjusting apparatus 540, which is arranged at the bottom of the first shell 570, thus controlling the distance between the nozzle 620 and the metal workpiece 630 simply and accurately.
  • the cavitation bubble generated from the vacuolization treatment is of a Zeta potential in deuteroxide within a range of about -30 mV to about -50 mV, preferably is-40 mV, such that it requires that the metal workpiece is of a negative electrode potential in deuteroxide; the electric double layer formed in the fluid medium has a cationic property; and the electric field intensity within the range controlled by the electric double layer is higher than 10 7 v/m.
  • the metal workpiece 630 is made of a magnesium-manganese alloy, so that the metal workpiece 630 may be of an electric potential being a very low value in the second fluid medium.
  • the metal workpiece is of an electric potential lower than -1200 mV when a saturated calomel is taken as a reference electrode.
  • the permanent resident air-core determined by a surface microstructure may expand to be a bubble under the environment with the negative pressure, becoming an obstacle preventing the cavitation bubble from approaching to the upper surface of the metal workpiece 630.
  • it is required that the metal workpiece 630 is of a surface roughness Ra of at most 0.1 ⁇ m.
  • the inclusions inside the cavitation bubble are turned into the high-temperature plasma state.
  • the cavitation bubble is of a temperature meeting quantum tunneling conditions in its center, a small amount of particles are ejected along which part energy is taken away from the center, such that the center of the cavitation bubble is cooled down quickly, breaking a balance between electronic degeneracy pressure and gravity, resulting in an insufficient radiation pressure against a pressure of the cavitation bubble wall.
  • the cavitation bubble continues to collapse, along with a sharply-increased temperature. If the inclusions inside the cavitation bubble are sufficient to maintain the imbalance between the electronic degeneracy pressure and the gravity, the cavitation bubble collapses to minimum and continues to produce a neutron and the tritium, the chemical reaction is shown as follow:
  • the first fluid medium is deuteroxide, so as to provide sufficient a reactant containing deuterium for the deuterium-deuterium thermonuclear fusion.
  • the first fluid medium further includes 6 LiD, such that 6 Li ion and deuterium (D) ion are produced after 6 LiD is dissociated in the deuteroxide, and enter the cavitation bubble for the nuclear fusion reaction.
  • Neutron (n ) and 6 Li continue to react, and thereby producing tritium (T) and 4 He, its chemical formula is shown as follow:
  • the concentration of 6 LiD in the first fluid medium is not particularly limited, as long as the nuclear fusion is realized.
  • the concentration of 6 LiD is at least 2 mmol/L.
  • the tritium is bred only by reacting the thermal neutron with 6 Li, it is required to moderate a fast neutron produced from the deuterium-deuterium thermonuclear fusion to a thermal neutron through an effective manner, such as moderate the fast neutron in deuteroxide.
  • the second fluid medium is of a liquid surface at least higher than the nozzle, such that the transformation is achieved by moderating the second fluid medium.
  • the second flow medium is of a thickness along each direction sprayed from the nozzle of at least 100 mm, so as to further improve moderation effect and enhance tritium output.
  • the apparatus may further include a second outlet 640 and a pump 550.
  • the second outlet 640 is arranged at the side wall of the second shell 610 and configured to allow the tritium-containing fluid medium to be discharged.
  • the pump 550 is connected to the second outlet and the inlet 510, respectively, and configured to enable the first fluid medium to form the jet, and control the speed of the cavitation bubble containing high inclusions ejected from the nozzle by the speed and the pressure of the jet.
  • the jet is of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure at the outlet of the nozzle within a range of 5 Bar to 10 Bar and a speed at the outlet of the nozzle at least 60 m/s.
  • the pump may also enable the fluid medium containing tritium discharged to form the jet and enter the apparatus again, so as to perform the nuclear fusion circularly. Therefore, a large amount of tritium may be produced with a small amount of raw materials, thus improving availability of raw material and reducing cost.
  • the method of achieving the deuterium-deuterium thermonuclear fusion based on the interface constraint constructs the environment with increasing external pressure utilizing the interface characteristic and the flow field characteristic of the cavitation bubble, such that the inclusions inside the cavitation bubble are turned into the high-temperature plasma state from the low-temperature plasma state; the ultra-high temperature and the ultra-high pressure are generated and maintained in the center of the cavitation bubble through gravitation collapse, meeting the quantum tunneling condition for the deuterium-deuterium thermonuclear fusion, thereby producing tritium and the neutron finally.
  • the high-temperature plasmas is constrained by the interface to move inside the cavitation bubble, so as to be in a relative stationary state, thus ensuring a plasma sheath a stable presence, and providing a basis for continuous fusion.
  • reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials.
  • the reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
  • Tritium was produced with the first fluid medium, which was deuteroxide containing 3 mmol/l 6 LiD, and the second fluid medium, which was deuteroxide containing 1.8 mmol/l sodium dodecyl sulphate.
  • the second fluid medium was of a water height in the reacting assembly 600, as shown in Fig. 3.
  • Tritium was produced specifically by the following steps.
  • a high pressure and a high speed deuteroxide jet was provided by the ram pump 550 with the deuteroxide containing 3 mmol/l 6 LiD.
  • the jet was of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure.
  • the deuteroxide jet was enabled to enter the apparatus via the inlet 510 and generate the micro cavitation bubbles after vacuolization treatment with the vacuolization plate 580, thus forming the cavitation bubble flow entering mass transfer space with a large volume.
  • the partition was configured to divide the mass transfer space into an upper fluid medium area and a lower ultrasonic-generating area.
  • the cavitation bubble flow flowed within the upper fluid medium area where was provided with labyrinth channels.
  • An ultrasonic field was formed with a plurality of ultrasonic vibrators in the lower ultrasonic-generating area, such that the cavitation bubble was subjected to the mass transfer treatment at the liquid-vapour interface, thus enhancing concentration of the inclusions inside the cavitation bubble.
  • the workpiece 630 was of a surface roughness Ra of 0.05 ⁇ m; the distance between the nozzle and the upper surface of the workpiece 630 was 15 mm; the cavitation bubble flow was of a pressure at the outlet of the nozzle within a range of 6 Bar to 8 Bar and of a speed at the outlet of the nozzle about 80 m/s.
  • the cavitation bubble containing the low-temperature plasma generated the accelerated speed approaching to the surface of the workpiece 630 under the double electric layer force formed between the metal workpiece 630 and the second fluid medium, such that the cavitation bubble was compressed again; the inclusions inside the cavitation bubble were turned into a high-temperature plasma state; the ultra-high temperature was generated at the center of the cavitation bubble, thereby ejecting a particle, breaking the balance between the electronic degeneracy pressure and the gravity.
  • the cavitation bubble became in a collapsing state until the cavitation bubble was of a temperature meeting the quantum tunneling condition for the deuterium-deuterium thermonuclear fusion, at which the cavitation bubble became in a thermonuclear fusion state, producing the tritium and the fast neutron, which was moderated into a thermal neutron in the second flow medium.
  • the tritium was bred by reacting the thermal neutron and 6 Li, thereby producing a large amount of tritium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A method, system and apparatus for producing tritium are provided. The method includes: compressing a first fluid medium by a ram pump (550), so as to form a jet, the first fluid medium including at least 2 mmol/L of 6LiD; subjecting the jet to vacuolization treatment by a vacuolization plate (580), so as to form cavitation bubble flow containing cavitation bubbles; enabling the cavitation bubble flow to pass labyrinth channels (520), so that a mass transfer is achieved at a liquid-vapor interface under an ultrasonic filed, thereby obtaining cavitation bubble flow containing high inclusions; and enabling the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece (630) located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle (620).

Description

METHOD, APPARATUS AND SYSTEM FOR PRODUCING TRITIUM
CROSS-REFERENCE TO RELATED APPLICATION
This application claims a priority to and benefits of Chinese Patent Application Serial No. 201510161091.1, filed with the State Intellectual Property Office of P.R. China on April 7, 2015, the entire content of which is incorporated herein by reference.
FIELD
The present disclosure relates to the field of tribology and nuclear physics, more particularly, to a method, apparatus and system for producing a tritium.
BACKGROUND
Tritium is of a half-life period of 12.3 years. There is only approximately 2 kilograms of natural tritium on the earth, in which 10 g exists in atmosphere, 13 g exists in underground water, and the rest part exists in sea water. The tritium is not only used for military purposes, but also used for civil fields widely.
At present, the tritium is produced mainly depending on nuclear reaction of nuclear fission reactor, i.e. the tritium is produced by irradiating Li with neutrons generated in the reactor, or by bombarding Be target in cyclotron. These methods have disadvantages as follows. (1) Expensive cost for construction. For example, it may require approximately 5.5 billion US dollars for building new deuteroxide tritium-producing reactor or high temperature gas cooled reactor. (2) Environmental safety issues. Producing tritium by reactor involves safety issues not only with the reactor but also with the tritium. (3) Nuclear non-proliferation issues. Because most tritium-producing reactors utilizes weapons-grade of high enriched uranium as a fuel, in order to reduce the nuclear proliferation risk, some countries use deuteroxide reactor with low enriched uranium as the fuel for producing tritium, resulting in expensive cost and decreased productivity. At present, a large-scale corporation generally has an annual tritium output at approximately 1 kg, with a price at approximately 300 million US dollars.
Therefore, a method for producing tritium in a safety manner with low cost is still desired.
SUMMARY
Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent. Accordingly, an object of the present disclosure is to provide a method for producing tritium with high safety and low cost. The method is to produce tritium by the deuterium-deuterium thermonuclear fusion on a basis of achieving the deuterium-deuterium thermonuclear fusion by collapsing a cavitation bubble in deuteroxide based on a theory of obtaining tritium with interface constraint; and to breed the tritium by bombarding 6Li with a thermal neutron, so as to obtain a large amount of the tritium.
It should note that the present disclosure is accomplished with the following work by the inventors.
For the first time, the tritium is produced by the deuterium-deuterium thermonuclear fusion on the basis of achieving the deuterium-deuterium thermonuclear fusion by collapsing a cavitation bubble in deuteroxide based on a method for obtaining tritium with interface constraint; and the tritium is bred by bombarding 6Li with the thermal neutron, so as to obtain a large amount of the tritium. The method for producing the tritium constructs an environment with an increasing pressure in deuteroxide, so as to ensure the cavitation bubble to become in a collapsing state in this environment, i.e., an ultra-high temperature and an ultra-high pressure are formed in the center of the cavitation bubble. Under such a condition, the tritium is produced at the same time a neutron is ejected. Meanwhile, the tritium is bred by adding 6LiD in deuteroxide.
Specifically, the key to achieve the thermonuclear fusion is that the movement of high-temperature plasmas inside the cavitation bubble is constrained by its interface, so as to make the high-temperature plasmas in a relatively stationary state, such that it is possible to ensure a plasma sheath a stable presence, laying a basis for continuous nuclear fusion and tritium production. The high-temperature plasma in the cavitation bubble is obtained by two compression phases as below.
A first compression phase: the cavitation bubble approaches to a surface of a metal workpiece at a high speed after sufficient mass transfer at a liquid-vapor interface, accordingly an increasing pressure field is formed as a distance between the cavitation bubble and the metal workpiece is being shorten, thus forming a first compression procedure. During this procedure, a vapour is compressed to a deuterium fuel. With a gradient of the increasing high pressure, an inclusion inside the cavitation bubble is turned into a low-temperature plasma state gradually.
A second compression phase: an electrostatic force of an electric double layer is mainly relied  on during this phase, so as to provide the cavitation bubble a speed and an accelerated speed the cavitation bubble for approaching to the surface of the metal workpiece. In specific, the electric double layer provides increasing ultra-high electric field intensity (greater than 107 V/m) with the shortened distance between the cavitation bubble and the metal workpiece; the speed and the accelerated speed for approaching to the surface of the metal workpiece are generated when the cavitation bubble enters a range controlled by the electric double layer. As the distance between the cavitation bubble and the surface of the metal workpiece is gradually shortened, both of the speed of the cavitation bubble approaching the surface of the metal workpiece and the pressure formed by the cavitation bubble and the surface of the metal workpiece increase in an exponential manner. The cavitation bubble is compressed drastically under the environment with increasing pressure, thus forming a second compression procedure. The cavitation bubble is of a drastically-reduced volume during this procedure, and the inclusion inside the cavitation bubble is turned into a high-temperature plasma state.
The deuterium-deuterium thermonuclear fusion is achieved by gravitationally collapsing the inclusion inside the cavitation bubble which is in the high-temperature plasma state. In specific, after the inclusion inside the cavitation bubble is turned into the high-temperature plasma state, electrons are no longer rotating around nucleus; gas atoms are all dissociated; the inclusion inside the cavitation bubble occupies a smaller space; the surface of the cavitation bubble is further shrunk under an environment not relying on an external pressure; an ultra-high temperature is achieved inside the cavitation bubble; the electrons are turned into a degeneracy state; and the high pressure inside the cavitation bubble is mainly undertaken by an electronic degeneracy pressure and a gravity. If the inclusion inside the cavitation bubble is of a concentration being capable of ensuring the gravity higher than the electronic degeneracy pressure, the cavitation bubble continues to be collapsed, and the temperature increases sharply, thus meeting requirements to the deuterium-deuterium fusion quantum tunneling. If the inclusion inside the cavitation bubble is of a concentration being capable of maintaining imbalances between the electronic degeneracy pressure and the gravity, the cavitation bubble is collapsed to minimum and continues to produce a large amount of neutrons, such a procedure is an irreversible gravitational collapse procedure.
During the gravitational collapse procedure, a formula indicating the deuterium-deuterium fusion nuclear reaction is shown as below:
D + D →3He (0.82 MeV) + n (2.45 MeV)
D + D →T (1.01MeV) + p (3.03 Mev)
Based on the formula above, 3He and T (tritium) are produced by the deuterium-deuterium fusion with an equal probability.
If the reaction medium is added with 6Li (an isotope of Li element) , n (neutron) generated in the above formula continues to react with 6Li to generate 4He and T (tritium) , so as to breed the tritium. The formula is shown as below:
6Li + n→ 4He + T + 4.8 MeV
According to embodiments of the present disclosure, the tritium is produced by the above nuclear fusion reaction with a low-cost of raw material and a simple device, instead of a reactor, thereby providing a high safety and greatly reducing a risk of nuclear proliferation. In addition, whether the method the nuclear fusion is achieved safely depends on whether the nuclear fusion is completely controllable. According to embodiments of the present disclosure, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials. The reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing a nuclear fusion apparatus a safe operation.
Accordingly, according to an aspect of the present disclosure, there is provided a method for producing tritium. According to an embidiment of the present disclosure, the method includes:
compressing a first fluid medium by a ram pump, so as to form a jet, the first fluid medium including at least 2 mmol/L of 6LiD;
subjecting the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles;
enabling the cavitation bubble flow to pass labyrinth channels, so that a mass transfer is achieved at a liquid-vapor interface under an ultrasonic filed, thereby obtaining cavitation bubble flow containing high inclusions; and
enabling the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle,
wherein deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to  obtain the tritium and a fast neutron,
wherein the second flow medium contains deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6LiD.
The inventors surprisingly find that, with the method according to embodiments of the present disclosure, the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation. In addition, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
According to another aspect of the present disclosure, there is provided a system for producing tritium. According to an embodiment of the present disclosure, the system includes:
a ram pump, configured to compress a first fluid medium, so as to form a jet, the first fluid medium including at least 2 mmol/L of 6LiD;
a vacuolization unit, connected to the ram pump, and configured to subject the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles;
a mass transfer unit, connected to the vacuolization unit, configured to enable the cavitation bubble flow to pass labyrinth channels under an ultrasonic filed, so that a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions is; and
a reacting unit, connected to the mass transfer unit and the ram pump, and configured to enable the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle,
wherein deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to obtain the tritium and a fast neutron,
wherein the second flow medium includes deuterium, the fast neutron is moderated into a  thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6LiD.
With the system according to embodiments of the present disclosure, the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation. In addition, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
According to yet another aspect of the present disclosure, there is provided an apparatus for producing tritium. According to an embodiment of the present disclosure, the system includes: a mass transfer assembly and a reacting assembly,
wherein the mass transfer assembly includes:
a first shell, defining a mass transfer space;
an inlet, arranged at a side wall of the first shell, and configured to allow a first fluid medium to enter the mass transfer assembly;
a vacuolization plate, arranged at the side wall of the first shell, connected to the inlet, and configured to subject the first fluid medium to vacuolization treatment, so as to obtain cavitation bubble flow containing cavitation bubbles;
an ultrasonic unit, arranged in the mass transfer space, and configured to form an ultrasonic field, under which a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions;
a first outlet, arranged at the side wall of the first shell, and configured to allow the cavitation bubble flow containing high inclusions to be discharged from the mass transfer space,
wherein the reacting assembly includes:
a second shell, defining a reacting space;
a metal workpiece, arranged in the reacting space, and placed in a second flow medium so as to generate an electric double layer in the second flow medium; and
a nozzle, arranged above the metal workpiece, connected to the first outlet, and configured to spray the cavitation bubble flow containing high inclusions onto an upper surface of the metal  workpiece, so as to form cavitation bubble flow containing a part of the cavitation bubbles whose inclusions are a high-temperature plasma state within a range of an electric double layer effect, such that deuterium-deuterium thermonuclear fusion is realized when cavitation bubble flow containing the part of the cavitation bubbles whose inclusions are the high-temperature plasma state approaches to the surface of the metal workpiece, thereby obtaining a tritium-containing fluid medium.
With the apparatus according to embodiments of the present disclosure, the tritium is produced with the low-cost of raw material and the simple device, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation. In addition, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and the workpiece with variable electrode potentials. The reaction is performed under the control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
It should be note that, according to embodiments of the present disclosure, the method for producing tritium based on the interface constraint is a complex procedure related to multiple parameters, such as an electrode potential of a material, formations of the topic negative pressure and the cavitation bubble jet, the distance between the nozzle and the metal workpiece, the speed and the pressure at the outlet of the cavitation bubble flow, the surface roughness of the metal workpiece, the concentration of surfactant in the fluid medium, the interfacial mass transfer, the moderated procedure of the neutron and so on. There is an interdependent and interinhibitive relationship existing between these parameters. The method and apparatus of the present disclosure are used as a whole technical solution by combining corresponded apparatus with technological parameters, thus producing tritium in a safe, controllable and low-cost manner.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with  reference to the drawings, in which:
Fig. 1 is a flow chart showing a method for producing tritium according to an embodiment of the present disclosure;
Fig. 2 is a schematic view showing a system for producing tritium according to an embodiment of the present disclosure, in which a direction of an arrow indicates a flowing dirciton of liquid in the system;
Fig. 3 is a schematic view showing an apparatus for producing tritium according to an embodiment of the present disclosure, in which a direction of an arrow indicates a flowing dirciton of liquid in the system;
Fig. 4 is a schematic view showing an apparatus for producing tritium according to an embodiment of the present disclosure;
Fig. 5 is a front view of a vacuolization plate according to an embodiment of the present disclosure; and
Fig. 6 is a three-dimensional schematic view of labyrinth channels according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions.
In the specification, unless specified or limited otherwise, relative terms such as “longitudinal” , “lateral” , “upper” , “lower” , “front” , “rear” , “right” , “left” , “horizontal” , “vertical” , “top” and “bottom” should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present invention be constructed or operated in a particular orientation. It should be understood that the embodiment of the present disclosure is not limited thereby.
According to a first aspect of the present disclosure, there is provided a method for producing tritium. With reference to Fig. 1, according to an embodiment of the present disclosure, the method includes:
S100: forming a jet
A first fluid medium is compressed by a ram pump, so as to form a jet, in which the first fluid medium includes at least 2 mmol/L of 6LiD, such that a speed of a cavitation bubble flow containing high inclusions ejected from a nozzle is controlled by a speed and a pressure of a high-pressure and high-speed deuteroxide jet provided by the ram pump. Preferably, the pressure of the high-pressure and high-speed deuteroxide jet is 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure within a range of 5 Bar to 10 Bar and a speed of at least 60 m/s at an outlet of the nozzle.
Furthermore, according to embodiments of the present disclosure, type of the first fluid medium is not particularly limited, as long as the first fluid medium contains deuterium to realize a deuterium-deuterium thermonuclear fusion. Preferably, the first fluid medium is deuteroxide, thus providing sufficient deuterium for the deuterium-deuterium thermonuclear fusion.
S200: vacuolization treatment
The jet is subjected to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles, thus providing a large amount of cavitation bubbles for mass transfer treatment at a liquid-vapor interface.
S300: mass transfer treatment at a liquid-vapor interface
The cavitation bubble flow is enabled to pass labyrinth channels, so that mass transfer is achieved at the liquid-vapor interface under an ultrasonic filed, thereby obtaining cavitation bubble flow containing high inclusions.
As used herein, the term “mass transfer at the liquid-vapor interface” refers to that surface tension is related to temperature and concentration of the inclusion inside the cavitation bubble flow during the mass transfer at the liquid-vapor interface. In specific, a micro cavitation bubble is of different temperatures and of different concentrations of inclusions inside the cavitation bubble flow at different regions on its surface under an ultrasonic stationary waves field, resulting in a gradient of the surface tension, and thereby causing the Marangoni effect enabling liquids in the surface and under the interface to move, so that a surface turbulence is generated. As a result, the mass transfer at the liquid-vapor interface is achieved through a microchannel transfer manner developed from an intermolecular transfer manner, so as to greatly accelerate the mass transfer, which enables a part of the first fluid medium to enter the cavitation bubbles mainly composed of vapour and thereby enabling the inclusions inside the cavitation bubble to be of a  quickly-increased concentration, such that the cavitation bubble containing high inclusions is obtained. The higher concentration of the inclusions inside the cavitation bubble is, the higher temperature of the cavitation bubble is after the inclusions inside the cavitation bubble is turned into a high-temperature plasma state, so as to reach an ultra-high temperature above 50 million Celsius degree needed by the deuterium-deuterium thermonuclear fusion. Moreover, according to embodiments of the present disclosure, the labyrinth channels are used to extend a trip route of the cavitation bubble flow, so as to extend a time period for the mass transfer, which ensures the cavitation bubble flow completely mass transfer treatment, and thereby enabling the high-temperature plasma to reach the ultra-high temperature needed by the deuterium-deuterium thermonuclear fusion.
S400: nuclear fusion reaction
The cavitation bubble flow containing high inclusions is enabled to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle. The deuterium-deuterium thermonuclear fusion is achieved when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to obtain the tritium and a fast neutron. The second flow medium contains deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is obtained by a reaction between the thermal neutron and 6LiD, so that the tritium may be produced with the low cost of the raw material and the simple apparatus, instead of the reactor, and thereby providing high safety and greatly reducing the risk of nuclear proliferation.
Specifically, the nuclear fusion reaction may be divided into the following phases:
(1) the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece at a high speed in a short distance, and is compressed in the pressure field formed by the cavitation bubble flow and the upper surface of the metal work piece, so that the inclusions inside the cavitation bubble are turned into a low-temperature plasma state.
(2) the cavitation bubble obtains the accelerated speed approaching to the upper surface of the metal workpiece under the double electric layer force formed between the metal workpiece and the second fluid medium, so that the cavitation bubble is compressed again, and the inclusions inside the cavitation bubble are turned into a high-temperature plasma state.
(3) after generating an ultra-high temperature at the centre, the cavitation bubble containing high-temperature plasma ejects particles, which breaks the relationship between electronic  degeneracy pressure and gravity, so that the cavitation bubble is turned into a collapsing state until the center temperature meets a condition of the deuterium-deuterium fusion quantum tunneling, such that the cavitation bubble is turned into a thermonuclear fusion state to produce tritium;
(4) the nuclear fusion reaction is performed in the second fluid medium, the produced neutron may be moderated into a thermal neutron, and the tritium may be bred by a reaction between the thermal neutron and 6Li.
According to embodiments of the present disclosure, with the method for producing tritium, the nuclear fusion reaction is performed based on the interface constraint of the cavitation bubble. The interface constraint refers to a constraint method enabling a micro cavitation bubble to be of a symmetric special structure all the time under variable pressures by controlling a change at a liquid-vapor interface based on its particular structure and property. According to embodiments of the present disclosure, the method for producing tritium based on the interface constraint is characterised in constructing an environment with an increasing external pressure by mean of an interface characteristic and a flow field characteristic of the cavitation bubble, so as to facilitate the inclusions inside the cavitation bubble to become the high-temperature plasma from the low-temperature plasma, and in the end, cause the cavitation bubble to be of a sustained ultra-high temperature and sustained ultra-high temperature pressure at its centre via gravitational collapse, thereby meeting the quantum tunneling condition of the deuterium-deuterium thermonuclear fusion.
It should note that the quantum tunnelling effect is a basis quantum phenomenon where a particle tunnels through a barrier that it classically could not surmount. In specific, a microscopic particle may be still able to tunnel through a barrier, even though with a total energy lower than the barrier. According to the classical theory, it is necessary for a particle to be of energy higher than a barrier, so as to be out of the barrier. However, in quantum mechanics, time and energy are a pair of conjugate variables, resulting in uncertainty of the quantum. In a very short time period (i.e., time is determined) , energy may be undetermined, such that it seems like the particle is out of the barrier by passing through the barrier via the "tunnel" , which is referred to as "quantum tunnelling passing" in the physics, accordingly a tunnelling effect theory is provided for describing. For example, a barrier between two deuterium atoms is about 200 keV, which is equivalent to an ambient temperature of 2 billion Celsius degree. However, it is possible to emit a neutron when the energy is 5 keV in practice, indicating that the deuterium-deuterium fusion has taken place, but  with an occurrence probability (reaction section) much lower than that under 200 keV of the energy.
Based on the method for producing tritium as described above, the present disclosure provides in embodiments a system for producing tritium. With reference to Fig. 2, the system includes: a ram pump 100, a vacuolization unit 200, a mass transfer unit 300 and a reacting unit 400.
The ram pump 100 is configured to compress a first fluid medium, so as to form a jet, in which the first fluid medium includes at least 2 mmol/L of 6LiD, such that a speed of a cavitation bubble flow containing high inclusions ejected from a nozzle is controlled by a speed and a pressure of a high-pressure and high-speed deuteroxide jet provided by the ram pump. Preferably, the jet is of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure within a range of 5 Bar to 10 Bar and a speed of at least 60 m/s at an outlet of the nozzle.
The vacuolization unit 200 is connected to the ram pump 100, and configured to subject the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles, thus providing a large amount of cavitation bubbles for interfacial mass transfer treatment.
The mass transfer unit 300 is connected to the vacuolization unit 200, configured to enable the cavitation bubble flow to pass labyrinth channels under an ultrasonic filed, so as to perform mass transfer at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions. As the higher inclusions inside the cavitation bubble are, the higher temperature inside the cavitation bubble is after the inclusions inside the cavitation bubble are turned into a high-temperature plasma state, so as to reach an ultra-high temperature above 50 million Celsius degree needed by deuterium-deuterium thermonuclear fusion. According to embodiments of the present disclosure, the labyrinth channels are used to extend a trip route of the cavitation bubble flow, so as to extend a time period for the mass transfer, which ensures the cavitation bubble flow sufficient mass transfer treatment, and thereby enabling the high-temperature plasma to reach the ultra-high temperature needed by the deuterium-deuterium thermonuclear fusion.
The reacting unit 400 is connected to the mass transfer unit 300 and the ram pump 100, and configured to enable the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s  to 100 m/s by means of a nozzle, in which the deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, thereby obtaining the tritium and a fast neutron. The second flow medium includes deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6LiD, so that the tritium may be produced with the low cost of raw material and the simple apparatus, instead of a reactor, and thereby providing high safety and greatly reducing the risk of nuclear proliferation.
According to specific embodiments of the present disclosure, with the system of the present disclosure, the tritium is produced merely with the low cost of raw material and the simple structure, instead of a reactor, thereby providing the high safety and greatly reducing the risk of nuclear proliferation. In addition, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials. The reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing a nuclear fusion apparatus a safe operation.
According to the method and system described above, the present disclosure further provides in embodiments an apparatus for producing tritium. The apparatus 1100 is described in detail with reference to Figs. 3 and 4.
The apparatus 1100 includes: a mass transfer assembly 500 and a reacting assembly 600.
The mass transfer assembly 500 includes: a first shell 570, an inlet 510, a vacuolization plate 580, an ultrasonic unit 530, and a first outlet 560.
The first shell 570 defines a mass transfer space.
The inlet 510 is arranged at a side wall of the first shell 570, and configured to allow a first fluid medium to enter the mass transfer assembly 500;
The vacuolization plate 580 is arranged at the side wall of the first shell 570, connected to the inlet 510, and configured to subject the first fluid medium to vacuolization treatment, so as to obtain cavitation bubble flow containing cavitation bubbles, thereby proving a large amount of cavitation bubbles for interfacial mass transfer treatment.
According to specific embodiments of the present disclosure, with reference to Fig. 5, the vacuolization plate is an apparatus including a bottom plate 582, and a plurality of via holes 581,  distributed on the bottom plate 582 averagely. Specifically, the bottom plate 582 is a circular plate with a 20 mm diameter and a 3 mm thickness, and 97 via holes 581 are distributed on the circular plate averagely, in which the via hole 581 is of a cross-section in a circular shape with a diameter D1 of 1 mm. Furthermore, a distance A between centers of adjacent two via holes is 1.6 mm. According to some embodiments of the present disclosure, an initial vacuolization number of the vacuolization plate is 1.0. Thus, the vacuolization effect is good. According to some embodiments of the present disclosure, the vacuolization plate is made of the 304 stainless steel. The first fluid is subjected to the vacuolization treatment by the vacuolization plate described above, so as to obtain the cavitation bubble flow containing a large amount of cavitation bubbles. The first fluid is preferably deuteroxide, providing sufficient deuterium for the deuterium-deuterium thermonuclear fusion.
The ultrasonic unit 530 is arranged in the mass transfer space, and configured to form an ultrasonic field, under which a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions.
According to specific embodiments of the present disclosure, the mass transfer space may further include: a partition, configured to divide the mass transfer space into an upper fluid medium area and a lower ultrasonic-generating area; and labyrinth channels 520, arranged at the upper fluid medium area. According to some embodiments of the present disclosure, the labyrinth channels as shown in Fig. 6 are formed by a plurality of metal partitions 521 arranged in parallel and not connected to the side wall of the first shell. A stiffener 522 may be further arranged to the top of the metal partitions 521 to fix the metal partitions firmly. It should note that the metal partitions 521 are not connected to the side wall of the first shell, so as to prevent the first shell from vibrating caused by the ultrasonic generator, and further ensure the nozzle and the metal workpiece the constant distance. According to some embodiments of the present disclosure, the plurality of the metal partitions is arranged in a crisscross manner, thus extending the trip route of the first fluid in the labyrinth channels. The first fluid medium may be of the trip route of at least 400 mm in the labyrinth channels, which facilitates sufficient mass transfer treatment. Such a trip route is the longest trip route of the first fluid medium in the labyrinth channels. The ultrasonic generator is arranged at the lower ultrasonic-generating area. According to some embodiments of the present disclosure, the ultrasonic generator includes a plurality of ultrasonic vibrators distributed in the ultrasonic-generating area averagely, providing the ultrasonic field for the upper  fluid medium area. Vibration frequency of the ultrasonic vibrator is not particularity limited. Preferably, the ultrasonic vibrator is of the vibration frequency within a range of 15 kHz to 32 kHz, and a power within a range of 50 w to 100 w. With the ultrasonic generator, the cavitation bubble may be expanded and the surface turbulence is generated, resulting in a gradient in the surface tension at the surface of the cavitation bubble, and thereby causing the Marangoni effect, so that the mass transfer at the interface is of improved efficiency and the cavitation bubble is of increased inclusions.
The first outlet 560 is arranged at the side wall of the first shell 570, and configured to allow the cavitation bubble flow containing high inclusions to be discharged from the mass transfer space. According to specific embodiments of the present disclosure, the cross-section of the first outlet is of a gradually-reduced area in direction along which the fluid medium moves. As a result, the cavitation bubble flow containing high inclusions is compressed for the first time after entering channels of the first outlet 560; and approaches towards the upper surface of the metal workpiece driven by a pressure at the outlet.
The reacting assembly 600 includes: a second shell 610, a metal workpiece 630, and nozzle 620.
The second shell 610 defines a reacting space.
The metal workpiece 630 is arranged in the reacting space, and placed in a second flow medium so as to generate an electric double layer in the second flow medium.
The type of the second fluid medium is not particularly limited, as long as the second fluid medium contains deuterium. The second flow medium is preferably deuteroxide, more preferably may include an anionic surfactant, so as to decrease interferences between the cavitation bubbles and between the cavitation bubble and the wall surface, thereby maintaining geometrical symmetry of the cavitation bubble and preventing the cavitation bubble from failing before collapsing. The type of the anionic surfactant is not particularly limited, the anionic surfactant is preferably at least one selected from sodium lauryl sulfate and sodium dodecyl sulfate. The anionic surfactant has a nonpolar terminal in a gas phase and a polar terminal in a liquid phase. There are still a large amont of the cavitation bubbles failing because of insufficient surfactant; while excessive surfactant may reduce the Zeta potential of the cavitation bubble and the electrode potential of the workpiece, such that electrostatic force of the electric double layer cannot provide the cavitation bubble sufficient accelerated speed. According to a preferred embodiment of the present  disclosure, the anionic surfactant is of a concentration within a range of 1.5 mmol/L to 2.0 mmol/L. An insufficient amount of the surfactant may reduce interference resistance of the cavitation bubble; while an excessive amount of the surfactant may cause the surfactant to aggregate into micelles, which also reduce the interference resistance of the cavitation bubble.
The nozzle 620 is arranged above the metal workpiece 630, connected to the first outlet 560, and configured to spray the cavitation bubble flow containing high inclusions onto an upper surface of the metal workpiece 630, so as to form cavitation bubble flow containing a part of the cavitation bubble whose inclusions are in a high-temperature plasma state within the range of an electric double layer effect, such that deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing the part of the cavitation bubbles whose inclusions are in the high-temperature plasma state approaches to the surface of the metal workpiece 630, thereby obtaining a tritium-containing fluid medium.
It should note that the cavitation bubble is compressed under an increasing micro pressure generated due to squeezing effect as the decreased distance between the cavitation bubble flow containing high inclusions ejected from the nozzle and the upper surface of the metal workpiece 630. Since the injection pressure of the cavitation bubble flow decreases with time (distance) , the speed of the cavitation bubble flow approaching to the upper surface of the workpiece decreases accordingly, such that a gradient of increasing temperature is lower than heat dissipation capability of the cavitation bubble wall. Under a nonadiabatic condition, the cavitation bubble experiences a stasis state temporarily when compressed to be of a certain diameter. During this stasis state, heat inside the cavitation bubble diffuses towards the liquid medium via the cavitation bubble wall quickly, resulting in a rapidly-decreased temperature inside the cavitation bubble, such that the inclusions inside the cavitation bubble are incapable of becoming in the plasma state. In order to enable the cavitation bubble to be within the range controlled by the electric double layer which is formed with the metal workpiece, it is necessary to control the cavitation bubble flow to be of a speed when reaching the surface of the metal workpiece. For example, when the cavitation bubble flow is of a speed at the outlet equal to or greater than 60 m/s and of a pressure at the outlet of 5 Bar to 20 Bar, it is required that a distance between the nozzle 620 and the metal workpiece 630 should be 10 mm to 20 mm, so as to ensure that the cavitation bubble flow is of a speed not less than 50 m/s when reaching the upper surface of the metal workpiece 630. The cavitation bubble cannot enter the range controlled by the electric double layer if this distance is too long; while a  part of the cavitation bubbles accumulate on the surface of the metal workpiece if this distance is too short, resulting in that this part of the cavitation bubbles cannot enter the range controlled by the electric double layer similarly. According to a preferred embodiment of the present disclosure, the distance between the nozzle 620 and the metal workpiece 630 may be adjusted by an adjusting apparatus 540, which is arranged at the bottom of the first shell 570, thus controlling the distance between the nozzle 620 and the metal workpiece 630 simply and accurately.
In addition, because the cavitation bubble consists of dispersed medium, the cavitation bubble generated from the vacuolization treatment is of a Zeta potential in deuteroxide within a range of about -30 mV to about -50 mV, preferably is-40 mV, such that it requires that the metal workpiece is of a negative electrode potential in deuteroxide; the electric double layer formed in the fluid medium has a cationic property; and the electric field intensity within the range controlled by the electric double layer is higher than 107 v/m. When the cavitation bubble enters the range controlled by the electric double layer, powerful electrostatic force attracting the cavitation bubble and the metal workpiece mutually is generated under the electric field, thus generating the speed and the accelerated speed of the cavitation bubble moving towards the surface of the metal workpiece. As the distance between the cavitation bubble and the surface of the metal workpiece is gradually reduced, the electrostatic force, the speed of the cavitation bubble approaching to the upper surface of the metal workpiece and the pressure formed by the cavitation bubble and the upper surface of the metal workpiece are increased in an exponential manner. The cavitation bubble is drastically compressed along with a quickly-decreased volume under the environment with the increasing pressure, such that the inclusions inside the cavitation bubble are turned into the high-temperature plasma state.
According to a specific embodiment of the present disclosure, the metal workpiece 630 is made of a magnesium-manganese alloy, so that the metal workpiece 630 may be of an electric potential being a very low value in the second fluid medium. Preferably, the metal workpiece is of an electric potential lower than -1200 mV when a saturated calomel is taken as a reference electrode. Meanwhile, the permanent resident air-core determined by a surface microstructure may expand to be a bubble under the environment with the negative pressure, becoming an obstacle preventing the cavitation bubble from approaching to the upper surface of the metal workpiece 630. To minimize the adverse effect caused by a surface gas core as much as possible, according to some embodiments of the present disclosure, it is required that the metal workpiece 630 is of a  surface roughness Ra of at most 0.1 μm.
After the cavitation bubble flow containing high inclusions enters the range controlled by the electric double layer, the inclusions inside the cavitation bubble are turned into the high-temperature plasma state. When the cavitation bubble is of a temperature meeting quantum tunneling conditions in its center, a small amount of particles are ejected along which part energy is taken away from the center, such that the center of the cavitation bubble is cooled down quickly, breaking a balance between electronic degeneracy pressure and gravity, resulting in an insufficient radiation pressure against a pressure of the cavitation bubble wall. As a result, the cavitation bubble continues to collapse, along with a sharply-increased temperature. If the inclusions inside the cavitation bubble are sufficient to maintain the imbalance between the electronic degeneracy pressure and the gravity, the cavitation bubble collapses to minimum and continues to produce a neutron and the tritium, the chemical reaction is shown as follow:
D + D → 3He (0.82 MeV) + n (2.45 MeV)
D + D → T (1.01 MeV) + p (3.03 Mev)
According to a specific embodiment of the present disclosure, the first fluid medium is deuteroxide, so as to provide sufficient a reactant containing deuterium for the deuterium-deuterium thermonuclear fusion. Furthermore, in order to improve output, according to some embodiments of the present disclosure, the first fluid medium further includes 6LiD, such that 6Li ion and deuterium (D) ion are produced after 6LiD is dissociated in the deuteroxide, and enter the cavitation bubble for the nuclear fusion reaction. Neutron (n ) and 6Li continue to react, and thereby producing tritium (T) and 4He, its chemical formula is shown as follow:
6Li + n→ 4He + T + 4.8MeV
According to some embodiments of the present disclosure, the concentration of 6LiD in the first fluid medium is not particularly limited, as long as the nuclear fusion is realized. Preferably, the concentration of 6LiD is at least 2 mmol/L. As the tritium is bred only by reacting the thermal neutron with 6Li, it is required to moderate a fast neutron produced from the deuterium-deuterium thermonuclear fusion to a thermal neutron through an effective manner, such as moderate the fast neutron in deuteroxide. In order to transform the fast neutron into the thermal neutron, according to a specific embodiment of the present disclosure, the second fluid medium is of a liquid surface at least higher than the nozzle, such that the transformation is achieved by moderating the second fluid medium. According to some embodiments of the present disclosure, the second flow medium  is of a thickness along each direction sprayed from the nozzle of at least 100 mm, so as to further improve moderation effect and enhance tritium output.
According to some embodiments of the present disclosure, the apparatus may further include a second outlet 640 and a pump 550. The second outlet 640 is arranged at the side wall of the second shell 610 and configured to allow the tritium-containing fluid medium to be discharged. The pump 550 is connected to the second outlet and the inlet 510, respectively, and configured to enable the first fluid medium to form the jet, and control the speed of the cavitation bubble containing high inclusions ejected from the nozzle by the speed and the pressure of the jet. Preferably, the jet is of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure, so as to ensure the cavitation bubble flow containing high inclusions a pressure at the outlet of the nozzle within a range of 5 Bar to 10 Bar and a speed at the outlet of the nozzle at least 60 m/s. Meanwhile, the pump may also enable the fluid medium containing tritium discharged to form the jet and enter the apparatus again, so as to perform the nuclear fusion circularly. Therefore, a large amount of tritium may be produced with a small amount of raw materials, thus improving availability of raw material and reducing cost.
According to embodiments of the present disclosure, the method of achieving the deuterium-deuterium thermonuclear fusion based on the interface constraint constructs the environment with increasing external pressure utilizing the interface characteristic and the flow field characteristic of the cavitation bubble, such that the inclusions inside the cavitation bubble are turned into the high-temperature plasma state from the low-temperature plasma state; the ultra-high temperature and the ultra-high pressure are generated and maintained in the center of the cavitation bubble through gravitation collapse, meeting the quantum tunneling condition for the deuterium-deuterium thermonuclear fusion, thereby producing tritium and the neutron finally. Meanwhile, the high-temperature plasmas is constrained by the interface to move inside the cavitation bubble, so as to be in a relative stationary state, thus ensuring a plasma sheath a stable presence, and providing a basis for continuous fusion.
According to embodiments of the present disclosure, reaction intensity of the nuclear fusion is controlled by controlling medium flow speed, interfacial mass transfer efficiency and a workpiece with variable electrode potentials. The reaction is performed under a control of primary electrical power, such that all reactions are stopped immediately when the primary electrical power is cut off, thereby effectively guaranteeing the nuclear fusion apparatus the safe operation.
Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
Embodiment 1
With the apparatus described in Fig. 4, tritium was produced with the first fluid medium, which was deuteroxide containing 3 mmol/l 6LiD, and the second fluid medium, which was deuteroxide containing 1.8 mmol/l sodium dodecyl sulphate. The second fluid medium was of a water height in the reacting assembly 600, as shown in Fig. 3. Tritium was produced specifically by the following steps.
(1) a high pressure and a high speed deuteroxide jet was provided by the ram pump 550 with the deuteroxide containing 3 mmol/l 6LiD. The jet was of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure.
(2) the deuteroxide jet was enabled to enter the apparatus via the inlet 510 and generate the micro cavitation bubbles after vacuolization treatment with the vacuolization plate 580, thus forming the cavitation bubble flow entering mass transfer space with a large volume. The partition was configured to divide the mass transfer space into an upper fluid medium area and a lower ultrasonic-generating area. The cavitation bubble flow flowed within the upper fluid medium area where was provided with labyrinth channels. An ultrasonic field was formed with a plurality of ultrasonic vibrators in the lower ultrasonic-generating area, such that the cavitation bubble was subjected to the mass transfer treatment at the liquid-vapour interface, thus enhancing concentration of the inclusions inside the cavitation bubble.
(4) cavitation bubble flow after the mass transfer treatment was discharged from the outlet 560, and ejected onto the upper surface of the workpiece 630 by the nozzle 620. The workpiece 630 was of a surface roughness Ra of 0.05 μm; the distance between the nozzle and the upper surface of the workpiece 630 was 15 mm; the cavitation bubble flow was of a pressure at the outlet of the nozzle within a range of 6 Bar to 8 Bar and of a speed at the outlet of the nozzle about 80 m/s. The cavitation bubble flow after the mass transfer treatment approached to the upper surface of the metal workpiece 630 at a high speed, and was compressed in the pressure field form by cavitation bubble and the upper surface of the metal workpiece 630, such that the inclusions inside the cavitation bubble were turned into the low-temperature plasma state.
(5) the cavitation bubble containing the low-temperature plasma generated the accelerated speed approaching to the surface of the workpiece 630 under the double electric layer force formed between the metal workpiece 630 and the second fluid medium, such that the cavitation bubble was compressed again; the inclusions inside the cavitation bubble were turned into a high-temperature plasma state; the ultra-high temperature was generated at the center of the cavitation bubble, thereby ejecting a particle, breaking the balance between the electronic degeneracy pressure and the gravity. As a result, the cavitation bubble became in a collapsing state until the cavitation bubble was of a temperature meeting the quantum tunneling condition for the deuterium-deuterium thermonuclear fusion, at which the cavitation bubble became in a thermonuclear fusion state, producing the tritium and the fast neutron, which was moderated into a thermal neutron in the second flow medium. The tritium was bred by reacting the thermal neutron and 6Li, thereby producing a large amount of tritium.
(6) liquid after the above reaction was discharged via the outlet 640, transferred to the ram pump 550, and then input the apparatus again by the ram pump 550, for producing tritium in a recycle manner.
(7) after adequate tritium was produced, the ram pump 550 was cut off for stopping the reaction.
Reference throughout this specification to “an embodiment, ” “some embodiments, ” “one embodiment” , “another example, ” “an example, ” “a specific example, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, amendments, alternatives and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure. The scope of the present disclosure is defined by the claims and the like.

Claims (42)

  1. A method for producing tritium, comprising steps of:
    compressing a first fluid medium by a ram pump, so as to form a jet, the first fluid medium including at least 2 mmol/L of 6LiD;
    subjecting the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles;
    enabling the cavitation bubble flow to pass labyrinth channels, so that a mass transfer is achieved at a liquid-vapor interface under an ultrasonic filed, thereby obtaining cavitation bubble flow containing high inclusions; and
    enabling the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle,
    wherein deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to obtain the tritium and a fast neutron,
    wherein the second flow medium contains deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6LiD.
  2. The method according to claims 1, wherein each of the first fluid medium and the second flow medium is deuteroxide.
  3. The method according to claim 1 or 2, wherein the cavitation bubble flow containing high inclusions has a pressure within a range of 5 Bar to 10 Bar and a speed of at least 60 m/s at an outlet of the nozzle.
  4. The method according to any one of claims 1 to 3, wherein a distance between the outlet of the nozzle and the upper surface of the metal workpiece is within a range of 10 mm to 20 mm.
  5. The method according to any one of claims 1 to 4, wherein the cavitation bubble flow containing high inclusions is of a speed approaching to the upper surface of the metal workpiece of at least 50 m/s.
  6. The method according to any one of claims 1 to 5, wherein the cavitation bubble is of a Zeta electric potential within a range of -30 mV to -50 mV.
  7. The method according to any one of claims 1 to 6, wherein the cavitation bubble is of a Zeta electric potential of -40 mV.
  8. The method according to any one of claims 1 to 7, wherein the metal workpiece is made of a magnesium-manganese alloy.
  9. The method according to any one of claims 1 to 8, wherein the metal workpiece is of an electric potential lower than -1200 mV when saturated calomel is taken as a reference electrode.
  10. The method according to any one of claims 1 to 9, wherein an electric double layer is of electric field intensity of at least 107 V/m.
  11. The method according to any one of claims 1 to 10, wherein the metal workpiece is of a surface roughness Ra of at most 0.1 μm.
  12. A system for producing tritium, comprising:
    a ram pump, configured to compress a first fluid medium, so as to form a jet, the first fluid medium including at least 2 mmol/L of 6LiD;
    a vacuolization unit, connected to the ram pump, and configured to subject the jet to vacuolization treatment by a vacuolization plate, so as to form cavitation bubble flow containing cavitation bubbles;
    a mass transfer unit, connected to the vacuolization unit, configured to enable the cavitation bubble flow to pass labyrinth channels under an ultrasonic filed, so that a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions; and
    a reacting unit, connected to the mass transfer unit and the ram pump, and configured to enable the cavitation bubble flow containing high inclusions to impact on an upper surface of a metal workpiece located in a second flow medium at a speed within a range of 60 m/s to 100 m/s by means of a nozzle,
    wherein deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing high inclusions approaches to the upper surface of the metal workpiece, so as to obtain the tritium and a fast neutron,
    wherein the second flow medium includes deuterium, the fast neutron is moderated into a thermal neutron in the second flow medium, and then additional tritium is produced by a reaction between the thermal neutron and 6LiD.
  13. An apparatus for producing tritium, comprising a mass transfer assembly and a reacting  assembly,
    wherein the mass transfer assembly includes:
    a first shell, defining a mass transfer space;
    an inlet, arranged at a side wall of the first shell, and configured to allow a first fluid medium to enter the mass transfer assembly;
    a vacuolization plate, arranged at the side wall of the first shell, connected to the inlet, and configured to subject the first fluid medium to vacuolization treatment, so as to obtain cavitation bubble flow containing cavitation bubbles;
    an ultrasonic unit, arranged in the mass transfer space, and configured to form an ultrasonic field, under which a mass transfer is achieved at a liquid-vapor interface, thereby obtaining cavitation bubble flow containing high inclusions; and
    a first outlet, arranged at the side wall of the first shell, and configured to allow the cavitation bubble flow containing high inclusions to be discharged from the mass transfer space,
    wherein the reacting assembly includes:
    a second shell, defining a reacting space;
    a metal workpiece, arranged in the reacting space, and placed in a second flow medium so as to generate an electric double layer in the second flow medium; and
    a nozzle, arranged above the metal workpiece, connected to the first outlet, and configured to spray the cavitation bubble flow containing high inclusions onto an upper surface of the metal workpiece, so as to form cavitation bubble flow containing a part of the cavitation bubbles whose inclusions are in a high-temperature plasma state within a range of an electric double layer effect, such that deuterium-deuterium thermonuclear fusion is realized when the cavitation bubble flow containing the part of the cavitation bubbles whose inclusions are in the high-temperature plasma state approaches to the surface of the metal workpiece, thereby obtaining a tritium-containing fluid medium.
  14. The apparatus according to claim 13, further comprising:
    a second outlet, arranged at the side wall of the second shell, and configured to allow the tritium-containing fluid medium to be discharged;
    a pump, connected to the second outlet and the inlet, respectively, and configured to enable the first fluid medium to form a jet; and
    an adjusting apparatus, arranged at the bottom of the first shell, and configured to adjust a  distance between the nozzle and the metal workpiece.
  15. The apparatus according to claim 13 or 14, wherein the jet is of a pressure within a range of 10 atmospheric pressure to 15 atmospheric pressure.
  16. The apparatus according to any one of claims 13 to 15, wherein the vacuolization plate includes:
    a bottom plate, and
    a plurality of via holes, distributed on the bottom plate averagely.
  17. The apparatus according to claim 16, wherein the bottom plate is a circular plate with a 20 mm diameter, averagely distributed with 97 via holes, wherein the via hole is of a cross-section in a circular shape with a diameter of 1 mm.
  18. The apparatus according to claim 17, wherein a distance between centers of adjacent two via holes is 1.6 mm.
  19. The apparatus according to any one of claims 13 to 18, wherein each of the first fluid medium and the second flow medium is deuteroxide.
  20. The apparatus according to any one of claims 13 to 19, wherein the first fluid medium further includes 6LiD.
  21. The apparatus according to claim 20, wherein 6LiD is of a concentration of at least 2 mmol/L.
  22. The apparatus according to any one of claims 13 to 21, wherein the second flow medium further includes an anionic surfactant.
  23. The apparatus according to claim 22, wherein the anionic surfactant is at least one selected from sodium lauryl sulfate and sodium dodecyl sulfate.
  24. The apparatus according to claim 22 or 23, wherein the anionic surfactant is of a concentration within a range of 1.5 mmol/L to 2.0 mmol/L.
  25. The apparatus according to any one of claims 13 to 24, wherein the initial vacuolization number of the vacuolization plate is 1.0.
  26. The apparatus according to any one of claims 13 to 25, wherein the cavitation bubble is of a Zeta electric potential within a range of -30 mV to -50 mV.
  27. The apparatus according to any one of claims 13 to 26, wherein the cavitation bubble is of a Zeta electric potential of -40 mV.
  28. The apparatus according to any one of claims 13 to 27, wherein the mass transfer space  further includes:
    a partition, configured to divide the mass transfer space into an upper fluid medium area and a lower ultrasonic-generating area;
    labyrinth channels, arranged at the upper fluid medium area; and
    an ultrasonic generator, arranged at the lower ultrasonic-generating area.
  29. The apparatus according to claim 28, wherein the ultrasonic generator includes a plurality of ultrasonic vibrators distributed in the ultrasonic-generating area averagely.
  30. The apparatus according to claim 28 or 29, wherein the ultrasonic vibrator has a vibration frequency within a range of 15 kHz to 32 kHz, and a power within a range of 50 w to 100 w.
  31. The apparatus according to any one of claims 28 to 30, wherein the labyrinth channels are formed by a plurality of metal partitions arranged in parallel and not connected to the side wall of the first shell.
  32. The apparatus according to claim 31, wherein the plurality of the metal partitions is arranged in a crisscross manner.
  33. The apparatus according to any one of claims 28 to 32, wherein the first fluid medium is of a trip route of at least 400 mm in the labyrinth channels.
  34. The apparatus according to any one of claims 13 to 33, wherein the first outlet is of a gradually-reduced cross-section area in a direction along which the fluid medium moves.
  35. The apparatus according to any one of claims 13 to 34, wherein the metal workpiece is made of a magnesium-manganese alloy.
  36. The apparatus according to any one of claims 13 to 35, wherein the metal workpiece is of a surface roughness Ra of at most 0.1 μm.
  37. The apparatus according to any one of claims 13 to 36, wherein the metal workpiece is of an electric potential lower than -1200 mV when saturated calomel is taken as a reference electrode.
  38. The apparatus according to any one of claims 13 to 37, wherein the cavitation bubble flow containing high inclusions has a pressure within a range of 5 Bar to 10 Bar, and a speed of at least 60 m/s at an outlet of the nozzle.
  39. The apparatus according to any one of claims 13 to 38, wherein a distance between the nozzle and the upper surface of the metal workpiece is within a range of 10 mm to 20 mm.
  40. The apparatus according to any one of claims 13 to 39, wherein the cavitation bubble flow containing high inclusions after subjected to the mass transfer is of a speed approaching to the  upper surface of the metal workpiece of at least 50 m/s.
  41. The apparatus according to any one of claims 13 to 40, wherein the second flow medium is of a thickness along each direction sprayed from the nozzle of at least 100 mm.
  42. The apparatus according to any one of claims 13 to 41, wherein electric field intensity within a range of an electric double layer effect is at least 107 V/m.
PCT/CN2015/098994 2015-04-07 2015-12-25 Method, apparatus and system for producing tritium WO2016161820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510161091.1A CN104900289A (en) 2015-04-07 2015-04-07 Method, device and system for preparing tritium
CN201510161091.1 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016161820A1 true WO2016161820A1 (en) 2016-10-13

Family

ID=54032904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098994 WO2016161820A1 (en) 2015-04-07 2015-12-25 Method, apparatus and system for producing tritium

Country Status (2)

Country Link
CN (1) CN104900289A (en)
WO (1) WO2016161820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190139652A1 (en) * 2016-05-03 2019-05-09 Roger Sherman Stringham Cavitation Heater

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900289A (en) * 2015-04-07 2015-09-09 清华大学 Method, device and system for preparing tritium
CN106158051B (en) * 2016-08-04 2018-08-28 清华大学 The device of vacuole gravitational collapse is realized using ultrasonic cavitation
CN114171233B (en) * 2021-12-03 2024-06-04 中国工程物理研究院核物理与化学研究所 Online tritium production and tritium recovery device for reactor
CN114769341A (en) * 2022-05-25 2022-07-22 成都市萨尼医疗器械有限公司 Ultrasonic wire drawing system and wire drawing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096934C1 (en) * 1995-11-29 1997-11-20 Милья Аркадьевич Маргулис Method for generation of high-temperature plasma and running thermonuclear reactions
WO2001039198A2 (en) * 1999-11-24 2001-05-31 Impulse Devices, Inc. Cavitation nuclear reactor system
CN101364450A (en) * 2008-07-01 2009-02-11 上海大学 Method implementing nuclear fusion reaction based on sound cavitation effect
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
CN104900289A (en) * 2015-04-07 2015-09-09 清华大学 Method, device and system for preparing tritium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445319B2 (en) * 2005-02-22 2008-11-04 Synergy Innovations, Inc. System and method for creating liquid droplet impact forced collapse of laser nanoparticle nucleated cavities for controlled nuclear reactions
JP2006338945A (en) * 2005-05-31 2006-12-14 Mitsubishi Heavy Ind Ltd Neutron generation tube
US8479562B2 (en) * 2011-02-14 2013-07-09 Yasser Ragab Shaban Method and apparatus of identifying explosives and chemical warfare on-field with capacitative neutrons generator
CN103219051B (en) * 2012-08-23 2018-01-09 孙福民 Controllable continuous deuteron fusion generating systems
CN103500588A (en) * 2013-09-29 2014-01-08 罗天勇 Tritium breeding blanket system based on lithium deuteroxide heavy water solution
CN104200849B (en) * 2014-08-22 2017-05-31 清华大学 The method that high-temperature plasma is constrained using vacuole collapse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096934C1 (en) * 1995-11-29 1997-11-20 Милья Аркадьевич Маргулис Method for generation of high-temperature plasma and running thermonuclear reactions
WO2001039198A2 (en) * 1999-11-24 2001-05-31 Impulse Devices, Inc. Cavitation nuclear reactor system
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
CN101364450A (en) * 2008-07-01 2009-02-11 上海大学 Method implementing nuclear fusion reaction based on sound cavitation effect
CN104900289A (en) * 2015-04-07 2015-09-09 清华大学 Method, device and system for preparing tritium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190139652A1 (en) * 2016-05-03 2019-05-09 Roger Sherman Stringham Cavitation Heater

Also Published As

Publication number Publication date
CN104900289A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2016161820A1 (en) Method, apparatus and system for producing tritium
US11495362B2 (en) Methods, devices and systems for fusion reactions
Haines et al. The past, present, and future of Z pinches
Gill Plasma physics and nuclear fusion research
US20100046688A1 (en) Magnetic confinement device
JP2018185321A (en) Method, device, and system for reducing neutron inside small scale non-contaminant emission nuclear reactor
Singh Current-free double layers: A review
Yan et al. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
US20170294238A1 (en) Neutron source based on a counter-balancing plasma beam configuration
KR102403479B1 (en) Methods, devices and systems for fusion reactions
WO2010074792A2 (en) Fusion neutron source for breeding applications
US20110170649A1 (en) Magnetic confinement device with aluminum or aluminum-alloy magnets
US20150294743A1 (en) Fusion power based on a symmetrical plasma beam configuration
Lu et al. Electron dynamics in collisionless magnetic reconnection
CN104200849B (en) The method that high-temperature plasma is constrained using vacuole collapse
Coppi et al. The Tokamak approach in fusion research
Papini et al. Fast magnetic reconnection: The ideal tearing instability in classic, Hall, and relativistic plasmas.
Peng et al. Study of the effect of magnetic field characteristics on Rayleigh-Taylor instability with density gradient layers
WO2001039197A2 (en) Cavitation nuclear reactor
Vallet Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion
Strumia Triggering Higgs vacuum decay
Harlow et al. Propagation of a liquid-liquid explosion
Post The kinetic stabilizer: further calculations and options
CN105591522A (en) Plasma ball vortex magnetic field power generation technology
Zheng Magnetically Confined Fusion Plasma Physics: Ideal MHD Theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888369

Country of ref document: EP

Kind code of ref document: A1