WO2016161781A1 - 一种获取多段伪线路径信息的方法、装置、spe及tpe - Google Patents

一种获取多段伪线路径信息的方法、装置、spe及tpe Download PDF

Info

Publication number
WO2016161781A1
WO2016161781A1 PCT/CN2015/090732 CN2015090732W WO2016161781A1 WO 2016161781 A1 WO2016161781 A1 WO 2016161781A1 CN 2015090732 W CN2015090732 W CN 2015090732W WO 2016161781 A1 WO2016161781 A1 WO 2016161781A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
spe
tpe
segment
message
Prior art date
Application number
PCT/CN2015/090732
Other languages
English (en)
French (fr)
Inventor
朱春
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016161781A1 publication Critical patent/WO2016161781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3

Definitions

  • This document relates to but not limited to end-to-end pseudowire simulation technology, especially a method, device, exchange pseudowire device SPE and boundary pseudowire device TPE for obtaining pseudowire path information.
  • the PWE3 Pseudo-Wire Emulation Edge-to-Edge protocol provides tunneling over packet switched networks (IP/MPLS) to emulate some services such as Frame Relay (FR), asynchronous.
  • Layer 2 virtual private network (VPN) protocol such as ATM (Asynchronous Transfer Mode), Ethernet (Ethernet) service, Time Division Multiplexing (TDM), Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH).
  • IP/MPLS packet switched networks
  • FR Frame Relay
  • VPN virtual private network
  • ATM Asynchronous Transfer Mode
  • Ethernet Ethernet
  • TDM Time Division Multiplexing
  • SONET/SDH Synchronous Optical Network/Synchronous Digital Hierarchy
  • the PWE3 protocol is an extension of the Martini protocol (see RFC4447), including optimization of signaling overhead, specifying single-segment pseudowires (SS-PW, Single-Segment Pseudo-Wire) and multi-segment pseudowires (MS-PW, Multi).
  • SS-PW single-segment pseudowires
  • MS-PW multi-segment pseudowires
  • Multi multi-segment pseudowires
  • a single-segment pseudo-wire is a point-to-point virtual private line technology that provides transparent transmission services of Layer 2 data through pseudowires, such as Ethernet services, FR services, and ATMs, by specifically encapsulating the corresponding Layer 2 packet format. It is transparently transmitted on the pseudowire established between the operator's edge devices. By deploying this service, the operator guarantees the connectivity of the same customers separated in different geographical areas and the isolation between different users.
  • a typical single-segment pseudowire network reference model is shown in Figure 1.
  • User edge device 1 (CE1) of a user's local area network 1 accesses the carrier's multi-protocol label through access link 1 (AC1).
  • the CE2 of the user's local area network 2 is connected to the PE2 of the MPLS backbone network of the operator through the AC2;
  • the carrier deploys a pseudo for the service between the PE1 and the PE2.
  • the line as shown by the thick dotted line in Figure 1, is a set of unidirectional label switch paths (LSPs) that are opposite in direction.
  • LSPs unidirectional label switch paths
  • PE1 to PE2 report The forwarding of the packet includes: at PE1, the packet in the local area network 1 of the user that is sent from the AC1 is encapsulated into a protocol data unit (PDU) of the pseudowire, and is transparently transmitted to the peer PE2 through the pseudowire; Upon reaching the PE2 device, PE2 is restored to the local form after being processed locally, and forwarded to the network of the user's local area network 2 through AC2.
  • PDU protocol data unit
  • a multi-segment pseudo-line is an extension of a single-segment pseudo-line.
  • the multi-segment pseudo-line allows multiple pieces of segmented pseudo-line between the two PEs.
  • the PW segment on both sides is exchanged by the operator's switched pseudo-wire device (SPE, Switch-PE).
  • SPE switched pseudo-wire device
  • Switch-PE Switch-PE
  • PW Segment is connected and performs label switching operations at the pseudowire level on the SPE.
  • the multi-segment pseudo-wire technology is applicable to the scenario where the pseudo-wire cannot be directly established between the source PE and the destination PE, which satisfies the application requirements of network layering, cross-local network, cross-operator, and cross-control plane, and improves network scalability.
  • a typical multi-segment pseudowire network reference model is shown in Figure 2.
  • a single-segment pseudowire of AS1 and AS2 in different autonomous domains (ASs) is spliced by the SPE node to establish an end-to-end pseudowire service between CE1 and CE2.
  • ASs autonomous domains
  • the inner-layer pseudo-line label is exchanged on the label message received on the PW, and then forwarded to the PW on the other side to complete the end-to-end forwarding of user data across domains.
  • Multi-segment pseudowires can be stitched together by one or more SPEs.
  • the RFC6073 defines the SPE node information that the MS-PW passes by adding the Switching Point PE (SP-PE) TLV information in the label mapping message. .
  • SP-PE Switching Point PE
  • this method may carry the correct SPE node information, or may be the wrong SPE node information. For example, if there is no redundancy deployed in the SPE at the beginning, then the current method is used to obtain the correct SPE node information.
  • the TPE cannot be reacquired, that is, It is said that, in the scenario where the SPE node is redundant, the solution cannot correctly carry the actual valid SPE node information. Moreover, since the path is acquired only when the path is first created, when the path status changes (such as FRR switching or failback), dynamic adjustment cannot be performed in real time. Specifically:
  • the MS-PW path obtained by TPE1 is TPE1 - SPE1 - SPE2 - TPE2 even if the signaling process is established in the MS-PW as defined in RFC6073.
  • SPE2 fails, SPE1 performs local switching, so that the effective path of MS-PW has actually become TPE1—SPE1—SPE3—TPE2.
  • TPE1 is not aware of it. At present, there is no technical solution to update it. Therefore, the MS-PW path information saved by TPE1 is wrong at this time.
  • the path information of the MS-PW may not be obtained on the one hand in the scenario where the MS-PW has the SPE redundancy.
  • the MS-PW path information obtained is wrong. This will undoubtedly lead to subsequent MS-PW loop detection and operation, management and maintenance (OAM) detection errors, which will not guarantee the correct deployment of the MS-PW OAM mechanism.
  • OFAM management and maintenance
  • the embodiments of the present invention provide a method and an apparatus for acquiring pseudowire path information, and an SPE and a TPE, to solve the technical problem of how to obtain an effective working path of the current MS-PW in time, thereby ensuring the correct deployment of the MS-PW OAM mechanism.
  • An embodiment of the present invention provides a method for obtaining pseudowire path information, including:
  • the source boundary pseudowire device TPE sends a multi-segment pseudowire MS-PW path request message to its working downstream switching pseudowire device SPE;
  • the working downstream SPE of the source TPE forwards the received MS-PW path request message to the destination TPE through its working downstream SPE;
  • the destination TPE adds its own node information to the MS-PW path response message, and sends the MS-PW path response message to its working upstream SPE.
  • the working upstream SPE of the destination TPE adds its own node information to the received MS-PW path response message, and forwards it through its working upstream SPE until the source TPE;
  • the source TPE parses the received MS-PW path response message to obtain MS-PW path information.
  • the working downstream SPE or the working upstream SPE includes:
  • the PW Segment currently in the active active state is selected according to the state of the pseudo line segment PW Segment.
  • the sending, by the source TPE, the MS-PW path request message to the working downstream SPE includes: timing triggering, or receiving a notification event trigger, or manually triggering.
  • the MS-PW path request message includes: an extension to the PW Notification message of the pseudowire notification in RFC4447:
  • a status code Status Code indicating that the message is an MS-PW Path Request message is added in the PW Notification.
  • the MS-PW path request message carries forwarding equivalence class FEC type length value TLV information for identifying pseudowire information.
  • the MS-PW path response message includes: an extension to the PW Notification message of the pseudowire notification in RFC4447:
  • a status code Status Code indicating that the message is an MS-PW path response message is added in the PW Notification.
  • the MS-PW path response message carries the node information by using a switching node pseudowire device SP-PE type length value TLV defined in RFC6073, or carries the node information by extending a new TLV. .
  • the node information includes information for identifying the node.
  • the node information includes a route identifier Router ID information.
  • An embodiment of the present invention provides a method for obtaining pseudowire path information, including:
  • the source boundary pseudowire device TPE sends a multi-segment pseudowire MS-PW path request message to its working downstream switching pseudowire device SPE;
  • the source TPE receives the node letter carrying the destination TPE itself forwarded through its working downstream SPE MS-PW path response message of the node information of the SPE;
  • the source TPE parses the received MS-PW path response message to obtain MS-PW path information.
  • An embodiment of the present invention provides a method for obtaining pseudowire path information, including:
  • the destination boundary pseudowire device TPE receives a multi-segment pseudowire MS-PW path request message from the source TPE to be forwarded via its working downstream switching pseudowire device SPE;
  • the destination TPE adds its own node information to the MS-PW path response message and sends the MS-PW path response message to its working upstream SPE.
  • An embodiment of the present invention provides a method for obtaining pseudowire path information, including:
  • the switched pseudowire device SPE forwards the multi-segment pseudowire MS-PW path request message from the source border pseudowire device TPE to the destination TPE;
  • the SPE receives the MS-PW path response message from the destination TPE and carries the node information of the destination TPE itself;
  • the SPE adds its own node information to the received MS-PW Path Reply message and forwards it up to the source TPE.
  • the SPE includes a PW Segment that is currently in an active Active state selected according to a state of the pseudo line segment PW Segment.
  • An embodiment of the present invention provides an exchange pseudowire device SPE, including a first receiving module and a first processing module;
  • the first receiving module is configured to receive the multi-segment pseudowire MS-PW path request message, and output the message to the first processing module; receive the MS-PW path response message, and output the message to the first processing module;
  • the first processing module is configured to: after the first receiving module receives the multi-segment pseudo-line MS-PW path request message, determine the next hop working device, and forward the MS-PW path request message to the determined next hop working device; After receiving the MS-PW path response message, the first receiving module determines the next hop working device, adds the node information of the SPE where it is located to the MS-PW path response message, and forwards the MS-PW path response message to the determined Next hop work device.
  • the first processing module is configured to select according to a state of the redundant pseudo segment PW Segment The PW segment currently in the active Active state is selected as the next hop working device.
  • An embodiment of the present invention provides a boundary pseudowire device TPE, including a second receiving module and a second processing module.
  • the second receiving module is configured to receive the multi-segment pseudowire MS-PW path request message, and output the signal to the second processing module, and receive the MS-PW path response message, and output the message to the second processing module;
  • the second processing module is configured to: after receiving the MS-PW path request message, determine the next hop working device, forward the MS-PW path request message to the determined next hop working device; and receive the MS-PW path response After the message, the next hop working device is determined, and the node information of the TPE of the destination is added to the MS-PW path response message, and the MS-PW path response message is forwarded to the determined next hop working device.
  • the second receiving module is configured to receive the MS-PW path request message triggered by a timing trigger, or received by a notification event, or manually triggered.
  • the second processing module is configured to select a PW segment that is currently in an active Active state as the next hop working device according to a state of the redundant pseudo segment PW Segment.
  • An embodiment of the present invention provides a method for obtaining pseudowire path information, including:
  • the SPE uses the pseudo line segment currently used for forwarding as a relay to forward the MS-PW path information request until the destination TPE;
  • the destination TPE returns its own node information to the source TPE via the SPE, and the source TPE obtains the MS-PW path information.
  • the requesting the MS-PW path information includes: the source TPE sending a request to its working downstream device by using an MS-PW path request message for acquiring MS-PW path information.
  • the MS-PW path request message includes a PW notification cancellation for the pseudo line notification. Expansion of interest;
  • the forwarding equivalence class FEC type length value TLV information for identifying the pseudowire information is carried in the MS-PW path request message.
  • the working downstream device includes a next hop device of an actual forwarding path of the current MS-PW.
  • the source TPE sends an MS-PW path request message to the working downstream thereof: the source TPE triggers through a timing, or receives a notification event trigger, or manually triggers sending an MS-PW path request message to its working downstream.
  • the method further includes:
  • the SPE redundancy exists downstream of the source TPE; the working downstream device of the source TPE is determined before the requesting the MS-PW path information by the switching device SPE, including:
  • the source TPE selects a PW segment that is currently in an active active state to perform the sending of the MS-PW path request message according to the state of the redundant pseudo-line segment PW Segment.
  • the method further includes:
  • the pseudo-line segment currently used for forwarding is a pseudo-line segment between the downstream SPE or the destination TPE directly connected to the SPE.
  • the request to continue forwarding the MS-PW path information by using the pseudo line segment currently used for forwarding as the relay includes:
  • the SPE that receives the MS-PW path information request from the source TPE selects a PW Segment that is currently in an active Active state to perform the MS- according to the state of the redundant PW Segment. Relay of the PW path request message.
  • the destination TPE returns its own node information to the source TPE via the SPE, and the source TPE obtains the MS-PW path information, including:
  • the destination TPE After receiving the MS-PW path request message, the destination TPE returns its own node information to the upstream through the MS-PW path response message;
  • the SPE After receiving the MS-PW path response message returned by the downstream, the SPE adds its own node information to the MS-PW path response message and continues to send the MS-PW path response message to its working upstream device until the source TPE receives the message. After the MS-PW path response message, the information of the entire MS-PW path is parsed and obtained.
  • the MS-PW path response message is an extension of the PW Notification message; and a Status Code indicating that the message is an MS-PW path response message is added in the PWNotification.
  • the node information is a route identifier Router ID information.
  • the node information is carried by the SP-PE TLV defined in RFC6073; or, by extending a new TLV.
  • the destination TPE returns its own node information to the upstream by using the MS-PW path response message, including:
  • the destination TPE adds its own node information to the MS-PW path response message and forwards it directly to its unique upstream device.
  • the destination TPE returns its own node information to the upstream by using the MS-PW path response message, including:
  • the destination TPE adds its own node information to the MS-PW path response message according to the state of the redundant PW Segment, and selects the current active active state.
  • the PW Segment returns.
  • the SPE continues to send the MS-PW path response message to the working upstream device, including:
  • the SPE that receives the MS-PW path response message adds its own node information to the MS-PW path response message and directly forwards it to its unique upstream device;
  • the SPE that receives the MS-PW path response message adds its own node information to the MS-PW path response message, and selects a valid upstream device according to the upstream device. Continue to return the MS-PW path reply message.
  • the selecting the valid upstream device includes:
  • the upstream SPE when the SPE itself receives the MS-PW path request message is used as the valid upstream device that returns the MS-PW path response message;
  • the PW Segment in which the valid PW Segment is selected is used as the upstream device of the current MS-PW Path Reply message.
  • An embodiment of the present invention provides an apparatus for acquiring pseudowire path information, including a receiving module and a processing module, where
  • the receiving module is configured to receive the multi-segment pseudowire MS-PW path request message, and output the message to the processing module; receive the MS-PW path response message, and output the message to the processing module;
  • the processing module is configured to determine the next hop working device, and forward the MS-PW path request message or the MS-PW path response message to the determined next hop working device.
  • the processing module is configured to: forward the MS-PW path request message or the MS-PW path response message to its unique next hop working device;
  • the PW segment currently in the active active state is selected to perform forwarding of the MS-PW path request message or the MS-PW path response message.
  • processing module is configured to:
  • the device is disposed in the SPE, and the receiving module receives the MS-PW path response message, and when there is no SPE redundancy upstream of the SPE, adds the node information of the node to the MS-PW path response message and directly forwards it to the SPE.
  • the node information of the SPE is added to the MS-PW path response message, and the valid upstream device is selected, and then the MS-PW path response message is returned to the upstream device.
  • the selecting the valid upstream device includes:
  • the upstream SPE when the SPE itself receives the MS-PW path request message is used as the valid upstream device that returns the MS-PW path response message;
  • the upstream device that is the current MS-PW path response message is selected by the valid PW Segment.
  • processing module is configured to:
  • the device is set in the TPE, and the device is the destination TPE that receives the MS-PW path request message, and when there is no SPE redundancy upstream of the destination TPE, the node information is added to the MS-PW path response message and directly Forward to its only upstream device:
  • the destination TPE selects the PW segment currently in the active active state to perform the return of the MS-PW path response message according to the state of the redundant PW segment.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the technical solution of the present application includes requesting MS-PW path information via the SPE when the source TPE needs to know the path information of the entire MS-PW; the SPE continues to forward the MS by using the pseudo line segment currently used for forwarding as a relay.
  • the PW path information request is up to the destination TPE; the destination TPE returns its own node information to the source TPE via the SPE, and the source TPE obtains the MS-PW path information.
  • the technical solution provided by the embodiment of the present invention the current effective working path of the MS-PW is obtained in time, thereby ensuring the correct deployment of the MS-PW OAM mechanism.
  • FIG. 1 is a schematic diagram of a network reference model of a related single-segment pseudowire
  • FIG. 2 is a schematic diagram of a network reference model of a related multi-segment pseudowire
  • FIG. 3 is a schematic diagram of a network reference model in which SPE redundancy is deployed on a related SPE;
  • FIG. 4 is a schematic diagram of a network reference model in which SPE redundancy is deployed on a related SPE and locally switched;
  • FIG. 5 is a flowchart of a method for obtaining pseudowire path information according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a device for acquiring pseudowire path information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a first embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a fourth embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for obtaining pseudo-line path information according to an embodiment of the present invention. As shown in FIG. 5, the method of the embodiment of the present invention includes:
  • Step 500 When the source TPE needs to know the path information of the entire MS-PW, request the MS-PW path information via the SPE.
  • the method further comprises: establishing, by the TPE and the SPE, the establishment of the MS-PW path by using PWE3 (Pseudo-Wire Emulation Edge-to-Edge) signaling interaction.
  • the PWE3 signaling for establishing the MS-PW path is the PW signaling for the LDP extension defined in RFC4447.
  • the information of the MS-PW path that needs to be established may be manually configured or dynamically discovered through the Border Gateway Protocol (BGP).
  • Border Gateway Protocol BGP
  • the source TPE may send a request to its working downstream device through the MS-PW path request message used to obtain the MS-PW path information.
  • the MS-PW Path Request message may be an extension to the PW Notification message in RFC 4447, ie defining a new Status Code. To indicate that the message is an MS-PW path request message.
  • each pseudowire is uniquely identified by a forwarding equivalence class. Different pseudowires carry traffic of different forwarding equivalence classes. Therefore, the MS-PW path request message must also carry a corresponding Forwarding Equivalence Class (FEC) type length value (TYPE LEN VALUE, TLV) information for identifying the pseudowire information.
  • FEC Forwarding Equivalence Class
  • the working downstream device refers to the next hop device that is the current forwarding path of the current MS-PW, that is, the SPE.
  • the selection of the working downstream device is based on the state information of each path saved by the SPE node, and can truly reflect the current working path, and can be updated in real time according to the change of the state of each path. It should be noted that, after the MSPW path is established, the SPE saves and knows the currently valid working path information. When there is SPE redundancy, only the current active working path needs to be queried and learned. For the current SPE, the next hop information of the effective working path (information of the downstream device) is obtained. When there is no SPE redundancy, the working downstream The device is the only next hop device.
  • the real-time update according to the change of the status of each path means that when the MS-PW path changes, for example, when the SPE FRR is switched, the SPE performs an update operation on the working downstream device saved by itself. In order to ensure that the work downstream information saved by itself is valid in real time.
  • the sending, by the source TPE, the MS-PW path request message to the working downstream may be triggered by a timing, or triggered by a certain notification event, or may be manually triggered.
  • the notification event is used to indicate that it is possible that the current MS-PW forwarding path is no longer valid, or that the SPE may have a path switch.
  • the sensing of the event may be that the device itself directly perceives the current MS-PW effective path state change. It may also be status change information of the downstream device notified by the downstream device to the device. At this point, a path request operation can be initiated to update the previously recorded path information, thereby ensuring the validity of the current working path information.
  • the working downstream device of the original TPE is further determined:
  • the source TPE selects the PW segment that is currently in the active state according to the state of the redundant PW segment, that is, the PW segment that is currently used for forwarding, and sends the path request signaling.
  • the state of the redundant PW segment that is, the PW segment that is currently used for forwarding
  • sends the path request signaling For example, how to obtain the state of the PW segment is well-known in the art, and can be obtained by using a related method.
  • the specific implementation is not limited to the scope of protection of the present invention, and details are not described herein again.
  • Step 501 The SPE uses the pseudo line segment currently used for forwarding as a relay to forward the MS-PW path information request to the destination TPE.
  • the SPE receives the MS-PW path information request message from the upstream source TPE and sends it to the downstream. If there is no SPE redundancy in the downstream of the SPE, the actual line segment actually used for forwarding in this step is the SPE. A pseudo line segment between the directly connected downstream SPE or the destination TPE. Among them, according to the standard defined in the RFC, only the FEC information is replaced in the MS-PW path information request message, and other information can be directly inherited and forwarded.
  • the request to continue forwarding the MS-PW path information by using the pseudo-line segment currently used for forwarding as the relay in this step includes:
  • the SPE that receives the MS-PW path information request from the source TPE selects a PW Segment that is currently in an active state (that is, a PW Segment that is currently actually used for forwarding) to perform path request signaling according to the state of the redundant PW Segment.
  • Relay For example, how to obtain the state of the PW segment is well-known in the art, and can be obtained by using a related method. The specific implementation is not limited to the scope of protection of the present invention, and details are not described herein again.
  • Step 502 The destination TPE returns its own node information to the source TPE via the SPE, and the source TPE obtains the MS-PW path information.
  • the destination TPE after receiving the MS-PW path request message, the destination TPE returns its own node information to the upstream through the MS-PW path response message; after receiving the MS-PW path response message returned by the downstream, the SPE sets its own The node information is added to the MS-PW path response message and continues to send the MS-PW path response message to the working upstream device until the source TPE receives the MS-PW path response message, and then parses and obtains the information of the entire MS-PW path. .
  • the MS-PW path response message may be an extension of the PW Notification message, that is, a new Status Code is defined to indicate that the message is an MS-PW path response message.
  • the node information is information used to identify the node, and may be, for example, a router ID (Router ID) information of the device.
  • the node information of the TPE/SPE may be carried by the SP-PE TLV defined in RFC6073, or may be carried by extending a new TLV.
  • the destination TPE adds its own node information to the MS-PW path response message and forwards it directly to its unique upstream device: If there is SPE redundancy in the upstream of the destination TPE, the destination TPE can select the PW segment that is currently in the active state (that is, the PW segment currently used for forwarding) to perform the return of the MS-PW path response message according to the state of the redundant PW segment. .
  • the SPE continues to send the MS-PW path response message to the working upstream device, including:
  • the SPE that receives the MS-PW path response message adds its own node information to the MS-PW path response message and forwards it directly to its unique upstream device.
  • the SPE that receives the MS-PW path response message adds its own node information to the MS-PW path response message, and then selects a valid upstream device and continues to return to the upstream device. MS-PW path response message.
  • selecting valid upstream devices includes:
  • the upstream device corresponding to the PW segment in the active state is selected as a valid upstream device according to the Active/Standby state of the PW Segment;
  • the upstream SPE when the SPE itself receives the MS-PW path request message is used as a valid upstream device that returns an MS-PW path response message;
  • the PW Segment in which the valid PW Segment is used as the upstream device of the current MS-PW Path Reply message is selected.
  • the network is oscillating, the above two options may be inconsistent. If only one type is used, the selection may fail. Therefore, the combined processing can always select the upstream device and avoid the network oscillation. And the problem caused by the selection failure.
  • the current effective working path of the MS-PW is obtained in time, thereby ensuring the correct deployment of the MS-PW OAM mechanism.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • FIG. 6 is a schematic structural diagram of a device for acquiring pseudowire path information according to an embodiment of the present invention, as shown in FIG. 6 includes at least a receiving module and a processing module; wherein
  • a receiving module configured to receive an MS-PW path request message or an MS-PW path response message, and output the signal to the processing module;
  • the processing module is configured to determine the next hop working device, and forward the MS-PW path request message or the MS-PW path response message to the determined next hop working device.
  • the processing module is configured to: directly forward the MS-PW path request message or the MS-PW path response message to its unique next hop working device; or, according to the state of the redundant PW segment, select the current active state.
  • the PW Segment (that is, the PW Segment currently used for forwarding) performs forwarding of the MS-PW Path Request message or the MS-PW Path Response message.
  • the device for obtaining the pseudowire path information in the embodiment of the present invention may be set in the TPE or may be set in the SPE.
  • the processing module is configured to:
  • the node information of the SPE is added to the MS-PW path response message and directly forwarded to its unique upstream device.
  • selecting valid upstream devices includes:
  • the upstream device corresponding to the PW segment in the active state is selected as a valid upstream device according to the Active/Standby state of the PW segment;
  • the upstream SPE when the SPE itself receives the MS-PW path request message is used as a valid upstream device that returns an MS-PW path response message;
  • the PW Segment in which the valid PW Segment is used as the upstream device of the current MS-PW Path Reply message is selected.
  • the network is oscillating, the above two options may be inconsistent. If only one type is used, the selection may fail. Therefore, the combined processing can always select the upstream device and avoid the network oscillation. And the problem caused by the selection failure.
  • the device for obtaining the pseudowire path information in the embodiment of the present invention is set in the TPE, and is received When the destination TPE of the MS-PW Path Request message is set, the processing module is set to:
  • the destination TPE selects the PW segment that is currently in the active state (that is, the PW segment currently used for forwarding) to perform the return of the MS-PW path response message according to the state of the redundant PW segment. .
  • FIG. 7 is a schematic diagram of a network reference model for obtaining pseudowire path information according to the first embodiment of the present invention. As shown in FIG. 7, the first embodiment is an MS-PW deployment scenario in which no SPE redundancy is generally performed.
  • TPE1 needs to know the path information of the entire MSPW, and then TPE1 sends an MS-PW path request message to its downstream (SPE1).
  • SPE1 After receiving the MS-PW path request message, SPE1 is unique to the SPE1 because it is not redundant. Downstream, that is, SPE2 relays the MS-PW path request message, so that the relay until the MS-PW path request message reaches the destination TPE.
  • TPE2 if TPE2 is the destination TPE, then TPE2 receives the MS-PW path.
  • the device After the request message is judged to be the tail node of the entire MS-PW path, the device obtains its own identification information (such as the router ID information of the local node), and then advertises it to the upstream SPE2 through the MS-PW path response message. After receiving the MS-PW path response message from the downstream device, the SPE2 obtains the identifier information of the local node and adds it to the MS-PW path response message, and continues to send it to the upstream device until the MS-PW path response message reaches the source TPE.
  • the SPE2 After receiving the MS-PW path response message from the downstream device, the SPE2 obtains the identifier information of the local node and adds it to the MS-PW path response message, and continues to send it to the upstream device until the MS-PW path response message reaches the source TPE.
  • the initiator TPE1 of the MS-PW path request message is received, and after receiving the MS-PW path response message advertised by the downstream, the TPE1 parses all the node information in the MS-PW path response message in reverse, and then obtains Current MS-PW passing by With the node information of the SPE and the TPE, the path information of the entire MS-PW is obtained.
  • the general MSPW deployment scenario is that the SPE does not have a redundant deployment, and the processing information of the technical solution provided by the embodiment of the present invention is consistent with the effect achieved by the SP-PE TLV processing in the RFC6073, that is, the embodiment of the present invention provides The technical solution is completely capable of solving the requirement of obtaining an MS-PW path in a non-MS-PW redundant scenario.
  • FIG. 8 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a second embodiment of the present invention.
  • the second embodiment is a single-side SPE redundant MS-PW deployment scenario, that is, SPE redundancy exists on one side (upstream side or downstream side) of the SPE, and in the second embodiment, there is redundancy on the downstream side. The rest of the scene.
  • TPE1 needs to know the path information of the entire MS-PW, and then TPE1 sends an MS-PW path request message to its downstream (SPE1).
  • SPE1 deploys SPE redundancy on the downstream side of SPE1.
  • the PW Segment between the SPE1 and the SPE2 and the PW Segment state between the SPE1 and the SPE3 are selected according to the state of the PW Segment between the SPE1 and the SPE3, and the PW Segment currently in the active state is selected, that is, the selection is performed.
  • the PW Segment currently used for forwarding performs relaying of the MS-PW Path Request message.
  • the PW Segment between SPE1 and SPE2 is in an Active state
  • SPE1 selects a PW Segment to SPE2
  • SPE1 sends an MS-PW Path Request message to SPE2.
  • the MS-PW Path Request message continues to relay to the destination TPE2.
  • the process of the TPE2 sending the MS-PW path response message to the TPE1 is basically the same as that of the first embodiment. The difference is that when the MS-PW path response message is returned to the SPE2, the SPE2 can also select the PW segment that is currently in the active state. The relay of the MS-PW path response message is performed.
  • FIG. 9 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a third embodiment of the present invention.
  • the third embodiment is a dual-side SPE redundant MS-PW deployment scenario.
  • the processing manner of the MS-PW path request and the MS-PW path response message is basically the same as that of the second embodiment, and the difference is that the SPE3 receives the downstream response MS due to the existence of the double-side SPE redundancy.
  • the SPE3 After the PW path response message, there are still two PW segments in the upstream.
  • the SPE3 needs to select a valid PW Segment to continue sending a path response message to it according to the local policy.
  • the local policy here may be: selecting a PW Segment in an Active state according to an Active/Standby state of the PW Segment;
  • the decision is made to select a valid PW Segment as the upstream device of the current MS-PW path response message.
  • the above two options may be inconsistent. If only one type is used, the selection may fail. Therefore, the combined processing can always select the upstream device and avoid the network oscillation. And the problem caused by the selection failure.
  • FIG. 10 is a schematic diagram of a network reference model for acquiring pseudowire path information according to a fourth embodiment of the present invention.
  • the fourth embodiment shows an MS-PW deployment of SPE fast reroute (FRR) switching.
  • FRR fast reroute
  • Scenario where FRR is designed to provide backup protection for these important nodes or links after the link or node in the network fails, and implement fast re-routing to reduce the impact on traffic when the link or node fails.
  • FRR fast reroute
  • the TPE1 can trigger the MS-PW path request message through the preset policy to re-acquire the currently valid MS-PW path.
  • this strategy can be triggered by timing, or triggered by some kind of notification event, or can be manually triggered.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution timely obtains the current effective working path of the MS-PW, thereby ensuring the correct deployment of the MS-PW OAM mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种获取伪线路径信息的方法及装置、SPE及TPE,包括在源TPE需要获知整个MS-PW的路径信息时,经由SPE请求MS-PW路径信息;SPE利用当前实际用于转发的伪线段作为中继继续转发MS-PW路径信息请求,直至目的TPE;目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息。上述技术方案及时获得了当前MS-PW有效工作路径,从而保证了MS-PW OAM机制的正确部署。

Description

一种获取多段伪线路径信息的方法、装置、SPE及TPE 技术领域
本文涉及但不限于端到端伪线仿真技术,尤指一种获取伪线路径信息的方法、装置、交换伪线设备SPE及边界伪线设备TPE。
背景技术
端到端伪线仿真(PWE3,Pseudo-Wire Emulation Edge-to-Edge)协议是在分组交换网(IP/MPLS)上提供隧道,以便仿真一些业务如帧中继(FR,Frame Relay)、异步传输模式(ATM,Asynchronous Transfer Mode)、以太(Ethernet)服务、时分复用模式(TDM)、同步光纤网络/同步数字体系(SONET/SDH)等的二层虚拟专用网络(VPN)协议。通过PWE3协议,可以将传统的网络与分组交换网络互连起来,从而实现资源的共用和网络的拓展。PWE3协议是对Martini协议的扩展(可参见RFC4447),包括优化了信令的开销,规定了单段伪线(SS-PW,Single-Segment Pseudo-Wire)和多段伪线(MS-PW,Multi-Segment Pseudo-Wire)的协商方式,使得协议本身的网络组网方式更加灵活。
单段伪线是一种点到点的虚拟专线技术,通过伪线提供二层数据的透传服务如Ethernet服务、FR服务和ATM等,即通过将相应的二层报文格式进行特定封装,并在运营商边缘设备之间建立的伪线上进行透明传输。运营商通过部署该服务保证了分隔在不同地域的相同客户的连通性以及不同用户之间的隔离性。
一个典型的单段伪线的网络参考模型如图1所示,某个用户的局域网络1的用户边缘设备1(CE1)通过接入链路1(AC1)接入到运营商的多协议标签交换(MPLS)骨干网络的边缘设备1(PE1);该用户的局域网络2的CE2通过AC2接入到运营商的MPLS骨干网络的PE2;运营商在PE1和PE2之间为该业务部署一条伪线,如图1中的粗虚线所示,伪线是一对方向相反的单向的标签转发路径(LSP,Label Switch Path)的集合。PE1到PE2的报 文转发大致包括:在PE1,从AC1上发送的该用户的局域网络1内的报文被封装成伪线的协议数据单元(PDU),通过该伪线透传给对端的PE2;当报文到达PE2设备时,PE2经过本地处理后重新恢复为本地形式,并通过AC2转发到该用户的局域网络2的网络中去。CE1到CE2的报文转发与上述过程类似。
多段伪线是对单段伪线的扩展,多段伪线允许两个PE之间存在多条分段伪线,通过运营商交换伪线设备(SPE,Switch-PE)将两侧的PW段(PW Segment)连接起来,并在SPE完成伪线层面的标签交换操作。多段伪线技术适用于不能在源PE和目的PE之间直接建立伪线的场景,满足了网络分层、跨本地网、跨运营商、跨控制平面的应用需求,提升了网络可扩展性。一个典型的多段伪线的网络参考模型如图2所示。通过SPE节点将不同自治域(AS)内如AS1和AS2的单段伪线给拼接起来,从而建立起CE1和CE2之间的端到端伪线业务。在SPE上,会对一侧PW上收到的标签报文进行内层伪线标签的交换操作,然后再转发到另一侧的PW上,从而完成用户数据跨域的端到端的转发。多段伪线可以由一个或者多个SPE拼接起来。
在运营商边界伪线设备(TPE,Terminating-PE)上,通常需要知道整个转发路径(即两端的TPE和所有经过的SPE节点信息),以用于MS-PW路径的环路检测以及OAM诊断功能。RFC6073中定义了在MS-PW创建信令过程中,通过在标签映射(Mapping)消息中增加交换节点伪线设备(Switching Point PE,SP-PE)TLV信息来携带MS-PW经过的SPE节点信息。但是,这种方式携带的有可能是正确的SPE节点信息,也有可能是错误的SPE节点信息。比如,一开始在SPE没有部署冗余,那么通过目前的方法,获取的是正确的SPE节点信息,如果之后又在SPE上追加部署了冗余,这时,TPE是无法重新获取的,也就是说,对于SPE节点存在冗余的场景,该方案不能正确携带实际有效的SPE节点信息。并且,由于该路径只在路径初次创建时进行获取,当路径状态发生变化时(如发生FRR切换或者回切),也是无法实时进行动态调整的。具体来说:
一方面,如图3所示,假设在SPE1上部署了SPE冗余,SPE1和TPE2之间存在互为冗余的两条转发路径,即TPE1—SPE1—SPE2—TPE2和TPE1 —SPE1—SPE3—TPE2。在图3所示的组网中,由于转发路径的确定受本地策略或者网络状态变化等因素影响,因此,MS-PW在建立信令过程中,SPE1无法决策将哪条路径的信息传递给TPE1,从而导致了TPE1无法获知当前有效的MS-PW路径信息。
另一方面,如图4所示,假设即使采用RFC6073中定义的在MS-PW创建信令过程,TPE1获得的MS-PW路径为TPE1—SPE1—SPE2—TPE2。当SPE2失效时,SPE1会进行本地切换,使得MS-PW有效路径实际已变成了TPE1—SPE1—SPE3—TPE2。但是,TPE1并不能感知,目前也还没有技术方案使其得到更新,所以,此时TPE1所保存的MS-PW路径信息是错误的。
综上所述,相关RFC6073中,虽然定义了通过Mapping消息来携带MS-PW路径信息的方法,但是对于MS-PW存在SPE冗余的场景,一方面有可能获取不到MS-PW的路径信息,另一方面获取的MS-PW路径信息是错误的。这无疑会导致后续MS-PW环路检测以及操作、管理和维护(OAM)检测出错,从而不能保证MS-PW OAM机制的正确部署。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种获取伪线路径信息的方法及装置和SPE及TPE,以解决如何能够及时获得当前MS-PW有效工作路径,从而保证MS-PW OAM机制的正确部署的技术问题。
本发明实施例提供了一种获取伪线路径信息的方法,包括:
源边界伪线设备TPE向其工作下游交换伪线设备SPE发送多段伪线MS-PW路径请求消息;
源TPE的工作下游SPE将接收到的MS-PW路径请求消息经由其工作下游SPE转发,直至目的TPE;
目的TPE将自身的节点信息添加到MS-PW路径应答消息中,并向其工作上游SPE发送该MS-PW路径应答消息;
目的TPE的工作上游SPE将自身的节点信息添加到接收到的MS-PW路径应答消息中,并经由其工作上游SPE进行转发,直至源TPE;
源TPE解析接收到的MS-PW路径应答消息以获得MS-PW路径信息。
可选的,所述工作下游SPE或工作上游SPE包括:
根据伪线段PW Segment的状态选择出的当前处于活跃Active状态的PW Segment。
可选的,所述源TPE向其工作下游SPE发送MS-PW路径请求消息包括:定时触发,或者收到通知事件触发,或者手动触发。
可选的,所述MS-PW路径请求消息包括:对RFC4447中伪线通知PW Notification消息的扩展:
在PW Notification中新增用于表示该消息为MS-PW路径请求消息的状态码Status Code。
可选的,所述MS-PW路径请求消息中携带有用于标识伪线信息的转发等价类FEC类型长度值TLV信息。
可选的,所述MS-PW路径应答消息包括:对RFC4447中伪线通知PW Notification消息的扩展:
在PW Notification中新增用于表示该消息为MS-PW路径应答消息的状态码Status Code。
可选的,所述MS-PW路径应答消息中通过RFC6073中定义的交换节点伪线设备SP-PE类型长度值TLV来携带所述节点信息,或通过扩展一个新的TLV来携带所述节点信息。
可选的,所述节点信息包括用于标识该节点的信息。
可选的,所述节点信息包括路由标识Router ID信息。
本发明实施例提供了一种获取伪线路径信息的方法,包括:
源边界伪线设备TPE向其工作下游交换伪线设备SPE发送多段伪线MS-PW路径请求消息;
源TPE接收经由其工作下游SPE转发来的携带有目的TPE自身的节点信 息和所经SPE的节点信息的MS-PW路径应答消息;
源TPE解析接收到的MS-PW路径应答消息以获得MS-PW路径信息。
本发明实施例提供了一种获取伪线路径信息的方法,包括:
目的边界伪线设备TPE接收来自源TPE向经由其工作下游交换伪线设备SPE转发的多段伪线MS-PW路径请求消息;
目的TPE将自身的节点信息添加到MS-PW路径应答消息中,并向其工作上游SPE发送该MS-PW路径应答消息。
本发明实施例提供了一种获取伪线路径信息的方法,包括:
交换伪线设备SPE将来自源边界伪线设备TPE的多段伪线MS-PW路径请求消息转发至目的TPE;
SPE接收来自目的TPE返回的携带有目的TPE自身的节点信息的MS-PW路径应答消息;
SPE将自身的节点信息添加到接收到的MS-PW路径应答消息中,并转发直至源TPE。
可选的,所述SPE包括根据伪线段PW Segment的状态选择出的当前处于活跃Active状态的PW Segment。
本发明实施例提供了一种交换伪线设备SPE,包括第一接收模块、第一处理模块;其中,
第一接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给第一处理模块;接收MS-PW路径应答消息,并输出给第一处理模块;
第一处理模块,设置为当第一接收模块接收多段伪线MS-PW路径请求消息后,确定下一跳工作设备,并将MS-PW路径请求消息转发给确定出的下一跳工作设备;当第一接收模块接收MS-PW路径应答消息后,确定下一跳工作设备,将自身所在SPE的节点信息添加到MS-PW路径应答消息中,并将MS-PW路径应答消息转发给确定出的下一跳工作设备。
可选的,
所述第一处理模块是设置为,根据冗余伪线段PW Segment的状态,选 择出当前处于活跃Active状态的PW Segment作为所述下一跳工作设备。
本发明实施例提供了一种边界伪线设备TPE,包括第二接收模块、第二处理模块;其中,
第二接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给第二处理模块,以及接收MS-PW路径应答消息,并输出给第二处理模块;
第二处理模块,设置为当接收到MS-PW路径请求消息后,确定下一跳工作设备,将MS-PW路径请求消息转发给确定出的下一跳工作设备;当接收MS-PW路径应答消息后,确定下一跳工作设备,将自身所在目的TPE的节点信息添加到MS-PW路径应答消息中,并将MS-PW路径应答消息转发给确定出的下一跳工作设备。
可选的,
所述第二接收模块是设置为接收通过定时触发,或者收到通知事件触发,或者手动触发的所述MS-PW路径请求消息。
可选的,
所述第二处理模块是设置为:根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment作为所述下一跳工作设备。
本发明实施例提供了一种获取伪线路径信息的方法,包括:
在源边界伪线设备TPE需要获知整个多段伪线MS-PW的路径信息时,经由交换伪线设备SPE请求MS-PW路径信息;
SPE利用当前实际用于转发的伪线段作为中继转发MS-PW路径信息请求,直至目的TPE;
目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息。
可选的,
所述请求MS-PW路径信息包括:所述源TPE通过用于获取MS-PW路径信息的MS-PW路径请求消息向其工作下游设备发送请求。
可选的,所述MS-PW路径请求消息包括对伪线通知PW Notification消 息的扩展;
在PW Notification消息中新增用于表示该消息为MS-PW路径请求消息的状态码Status Code;
在所述MS-PW路径请求消息中携带用于标识伪线信息的转发等价类FEC类型长度值TLV信息。
可选的,所述工作下游设备包括当前MS-PW实际转发路径的下一跳设备。
可选的,所述源TPE向其工作下游发送MS-PW路径请求消息为:源TPE通过定时触发,或者收到通知事件触发,或者手动触发向其工作下游发送MS-PW路径请求消息。
可选的,所述方法还包括:
所述源TPE的下游存在SPE冗余;所述经由交换设备SPE请求MS-PW路径信息之前,确定所述源TPE的工作下游设备,包括:
所述源TPE根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息的下发。
可选的,所述方法还包括:
所述SPE的下游不存在SPE冗余;所述当前实际用于转发的伪线段为与所述SPE直接连接的下游SPE或目的TPE之间的伪线段。
可选的,所述利用当前实际用于转发的伪线段作为中继继续转发MS-PW路径信息请求包括:
如果所述SPE的下游存在SPE冗余,接收到来自所述源TPE的MS-PW路径信息请求的SPE根据冗余PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息的中继。
可选的,所述目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息包括:
所述目的TPE收到MS-PW路径请求消息后,通过MS-PW路径应答消息向其上游返回自身的节点信息;
SPE收到下游返回的MS-PW路径应答消息后,将自身的节点信息添加到MS-PW路径应答消息中并继续向其工作上游设备发送该MS-PW路径应答消息,直至所述源TPE收到MS-PW路径应答消息后,解析并获得整个MS-PW路径的信息。
可选的,所述MS-PW路径应答消息为PW Notification消息的扩展;在PWNotification中新增用于表示该消息为MS-PW路径应答消息的Status Code。
可选的,所述节点信息为路由标识Router ID信息;
所述节点信息通过RFC6073中定义的SP-PE TLV携带;或者,通过扩展一个新的TLV携带。
可选的,所述目的TPE通过MS-PW路径应答消息向其上游返回自身的节点信息包括:
如果所述目的TPE的上游不存在SPE冗余,所述目的TPE将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备。
可选的,所述目的TPE通过MS-PW路径应答消息向其上游返回自身的节点信息包括:
如果所述目的TPE的上游存在SPE冗余,所述目的TPE根据冗余PW Segment的状态,将自身的节点信息添加到MS-PW路径应答消息中,并通过选择出的当前处于活跃Active状态的PW Segment进行返回。
可选的,所述SPE收到下游返回的MS-PW路径应答消息后,继续向其工作上游设备发送该MS-PW路径应答消息包括:
如果所述SPE的上游不存在SPE冗余,收到所述MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备;
如果所述SPE的上游存在SPE冗余,收到MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。
可选的,所述选择出有效的上游设备包括:
根据PW Segment的状态选择出处于活跃Active状态的PW Segment对应的上游设备作为所述有效的上游设备;
或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为所述返回MS-PW路径应答消息的有效的上游设备;
或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment作为所述当前MS-PW路径应答消息的上游设备。
本发明实施例提供了一种获取伪线路径信息的装置,包括接收模块、处理模块;其中,
接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给处理模块;接收MS-PW路径响应消息,并输出给处理模块;
处理模块,设置为确定下一跳工作设备,并将MS-PW路径请求消息或MS-PW路径响应消息转发给确定出的下一跳工作设备。
可选的,所述处理模块是设置为:将MS-PW路径请求消息或MS-PW路径响应消息转发给其唯一的下一跳工作设备;
或者,根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息或MS-PW路径响应消息的转发。
可选的,所述处理模块是设置为:
该装置设置在SPE中,所述接收模块接收到MS-PW路径响应消息,且SPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备;
当SPE的上游存在SPE冗余,将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。
可选的,所述选择出有效的上游设备包括:
根据PW Segment的状态选择出处于活跃Active状态的PW Segment对应的上游设备作为所述有效的上游设备;
或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为所述返回MS-PW路径应答消息的有效的上游设备;
或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment所述作为当前MS-PW路径应答消息的上游设备。
可选的,所述处理模块是设置为:
该装置设置在TPE中,该装置为接收到MS-PW路径请求消息的目的TPE,且目的TPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备:
当目的TPE的上游存在SPE冗余时,目的TPE根据冗余PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径响应消息的返回。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
与相关技术相比,本申请技术方案包括在源TPE需要获知整个MS-PW的路径信息时,经由SPE请求MS-PW路径信息;SPE利用当前实际用于转发的伪线段作为中继继续转发MS-PW路径信息请求,直至目的TPE;目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息。通过本发明实施例提供的技术方案,及时获得了当前MS-PW有效工作路径,从而保证了MS-PW OAM机制的正确部署。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关单段伪线的网络参考模型的示意图;
图2为相关多段伪线的网络参考模型的示意图;
图3为相关SPE上部署了SPE冗余的网络参考模型的示意图;
图4为相关SPE上部署了SPE冗余且进行本地切换的网络参考模型的示意图;
图5为本发明实施例获取伪线路径信息的方法的流程图;
图6为本发明实施例获取伪线路径信息的装置的组成结构示意图;
图7为本发明第一实施例的获取伪线路径信息的网络参考模型示意图;
图8为本发明第二实施例的获取伪线路径信息的网络参考模型示意图;
图9为本发明第三实施例的获取伪线路径信息的网络参考模型示意图;
图10为本发明第四实施例的获取伪线路径信息的网络参考模型示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图5为本发明实施例获取伪线路径信息的方法的流程图,如图5所示,本发明实施例方法包括:
步骤500:在源TPE需要获知整个MS-PW的路径信息时,经由SPE请求MS-PW路径信息。
可选的,本步骤之前还包括:TPE和SPE之间通过端到端伪线仿真(PWE3,Pseudo-Wire Emulation Edge-to-Edge)信令交互完成MS-PW路径的建立。其中,建立MS-PW路径的PWE3信令是RFC4447中定义的对LDP扩展的PW信令。其所需建立的MS-PW路径的信息可以是手动配置,或者是通过边界网关协议(BGP,Border Gateway Protocol)动态发现。具体实现属于本领域技术人员的公知技术,并不用于限定本发明的保护范围,这里不再赘述。
本步骤中,源TPE可以通过用于获取MS-PW路径信息的MS-PW路径请求消息向其工作下游设备发送请求。MS-PW路径请求消息可以是对RFC4447中PW通知(Notification)消息的扩展,即定义一种新的状态码(Status Code) 来表示该消息为MS-PW路径请求消息。需要说明的是,在已有标准中记载有:每个伪线都是由转发等价类来唯一标识的。不同的伪线,承载不同转发等价类的流量。因此,在MS-PW路径请求消息中还必须携带对应的用于标识伪线信息的转发等价类(Forwarding Equivalence Class,FEC)类型长度值(TYPE LEN VALUE,TLV)信息。
其中,工作下游设备是指当前MS-PW实际转发路径的下一跳设备即SPE。工作下游设备的选择是基于SPE节点保存的每条路径的状态信息共同决策产生的、能真实反映当前的工作路径,并能根据每条路径状态的变化实时更新。需要说明的是,当MSPW路径建立好之后,SPE是会保存并获知当前有效的工作路径信息的。当存在SPE冗余时,只需要查询和获知当前有效的工作路径,对于当前SPE,即获取有效的工作路径的下一跳信息(下游设备的信息);当不存在SPE冗余时,工作下游设备就是唯一的下一跳设备。另外,根据每条路径状态的变化实时更新,是指当MS-PW路径变化时,比如SPE FRR发生切换时,SPE会对自己保存的工作下游设备进行更新操作。以保证自身保存的工作下游信息是实时有效的。
其中,源TPE向其工作下游发送MS-PW路径请求消息可以是通过定时触发,或者收到某种通知事件触发,或者是可以直接进行手动触发。这里,通知事件用于表明有可能当前MS-PW转发路径不再有效,或者SPE有可能发生了路径切换,对该事件的感知可以是本设备自身直接感知到当前MS-PW有效路径的状态变化,也可以是下游设备通知给本设备的下游设备的状态变化信息。此时可以发起一次路径请求操作,以更新之前记录的路径信息,从而保证了当前工作路径信息的有效性。
可选地,如果源TPE的下游存在SPE冗余,本步骤中的经由交换设备SPE请求MS-PW路径信息之前,还包括确定原TPE的工作下游设备:
源TPE根据冗余PW Segment的状态,选择出当前处于活跃(Active)状态的PW Segment(即当前实际用于转发的PW Segment)进行路径请求信令的下发。其中,如何获取PW Segment的状态属于本领域技术人员的公知技术,可以采用相关方法获得,具体实现并不用于限定本发明的保护范围,这里不再赘述。
步骤501:SPE利用当前实际用于转发的伪线段作为中继转发MS-PW路径信息请求,直至目的TPE。
SPE收到上游即源TPE的MS-PW路径信息请求消息,会继续发送给其下游,如果SPE的下游不存在SPE冗余,本步骤中的当前实际用于转发的伪线段即为与该SPE直接连接的下游SPE或目的TPE之间的伪线段。其中,按照RFC中定义的标准,在MS-PW路径信息请求消息中只做FEC信息的替换,其他信息直接继承和转发即可。
可选地,如果SPE的下游存在SPE冗余,本步骤中的利用当前实际用于转发的伪线段作为中继继续转发MS-PW路径信息请求包括:
接收到来自源TPE的MS-PW路径信息请求的SPE根据冗余PW Segment的状态,选择出当前处于活跃(Active)状态的PW Segment(即当前实际用于转发的PW Segment)进行路径请求信令的中继。其中,如何获取PW Segment的状态属于本领域技术人员的公知技术,可以采用相关方法获得,具体实现并不用于限定本发明的保护范围,这里不再赘述。
步骤502:目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息。
可选地,当目的TPE收到MS-PW路径请求消息后,通过MS-PW路径应答消息向其上游返回自身的节点信息;SPE收到下游返回的MS-PW路径应答消息后,将自身的节点信息添加到MS-PW路径应答消息中并继续向其工作上游设备发送该MS-PW路径应答消息,直至源TPE收到MS-PW路径应答消息后,解析并获得整个MS-PW路径的信息。
其中,MS-PW路径应答消息可以对PW Notification消息的扩展,即定义一种新的Status Code来表示该消息为MS-PW路径应答消息。其中,节点信息是用于标识该节点的信息,可以是如本设备的路由标识(Router ID)信息等。本发明实施例方法中,可以通过RFC6073中定义的SP-PE TLV来携带TPE/SPE的节点信息,也可以通过扩展一个新的TLV来携带。
同样的,如果目的TPE的上游不存在SPE冗余,目的TPE将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备即可: 如果目的TPE的上游存在SPE冗余,目的TPE可以根据冗余PW Segment的状态,选择出当前处于Active状态的PW Segment(即当前实际用于转发的PW Segment)进行MS-PW路径应答消息的返回。
可选地,SPE收到下游返回的MS-PW路径应答消息后,继续向其工作上游设备发送该MS-PW路径应答消息包括:
如果SPE的上游不存在SPE冗余,收到MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备即可;
如果SPE的上游存在SPE冗余,收到MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。
其中,选择出有效的上游设备包括:
可以是根据PW Segment的Active/Standby状态选择出处于Active状态的PW Segment对应的上游设备作为有效的上游设备;
或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为返回MS-PW路径应答消息的有效的上游设备;
或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment作为当前MS-PW路径应答消息的上游设备。当网络震荡时,上述两种选择方式可能出现不一致的情况,如果仅采用单独一种的话,可能会出现选择失败的情况,因此,这样结合的处理总能选择出上游设备,避免了由于网络震荡而引起的选择失败的问题。
通过本发明实施例提供的技术方案,及时获得了当前MS-PW有效工作路径,从而保证了MS-PW OAM机制的正确部署。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
图6为本发明实施例获取伪线路径信息的装置的组成结构示意图,如图 6所示,至少包括接收模块、处理模块;其中,
接收模块,设置为接收MS-PW路径请求消息或MS-PW路径响应消息,并输出给处理模块;
处理模块,设置为确定下一跳工作设备,并将MS-PW路径请求消息或MS-PW路径响应消息转发给确定出的下一跳工作设备。
其中,处理模块是设置为:直接将MS-PW路径请求消息或MS-PW路径响应消息转发给其唯一的下一跳工作设备;或者,根据冗余PW Segment的状态,选择出当前处于Active状态的PW Segment(即当前实际用于转发的PW Segment)进行MS-PW路径请求消息或MS-PW路径响应消息的转发。
本发明实施例获取伪线路径信息的装置可以设置在TPE中,也可以设置在SPE中。
当本发明实施例获取伪线路径信息的装置设置在SPE中,且接收模块接收到MS-PW路径响应消息时,处理模块是设置为:
当SPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备即可;
当SPE的上游存在SPE冗余,将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。其中,选择出有效的上游设备包括:
根据PW Segment的Active/Standby状态选择出处于Active状态的PW Segment对应的上游设备作为有效的上游设备;
或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为返回MS-PW路径应答消息的有效的上游设备;
或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment作为当前MS-PW路径应答消息的上游设备。当网络震荡时,上述两种选择方式可能出现不一致的情况,如果仅采用单独一种的话,可能会出现选择失败的情况,因此,这样结合的处理总能选择出上游设备,避免了由于网络震荡而引起的选择失败的问题。
当本发明实施例获取伪线路径信息的装置设置在TPE中,且为接收到 MS-PW路径请求消息的目的TPE时,处理模块是设置为:
当目的TPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备即可:
当目的TPE的上游存在SPE冗余时,目的TPE根据冗余PW Segment的状态,选择出当前处于Active状态的PW Segment(即当前实际用于转发的PW Segment)进行MS-PW路径响应消息的返回。
下面结合具体实施例对本申请具体实现进行详细描述。
图7为本发明第一实施例的获取伪线路径信息的网络参考模型示意图,如图7所示,第一实施例为一般即无SPE冗余的MS-PW部署场景。
假设TPE1需要知道整个MSPW的路径信息,则TPE1向其下游(SPE1)发送MS-PW路径请求消息;SPE1收到该MS-PW路径请求消息后,由于SPE1没有部署冗余,则默认向其唯一的下游即SPE2中继该MS-PW路径请求消息,这样中继直至MS-PW路径请求消息到达目的TPE,在第一实施例中,假设TPE2为目的TPE,那么,TPE2收到MS-PW路径请求消息后,判断其为整条MS-PW路径的尾节点,则获取本几点自身的标识信息(如本节点的Router ID信息)后,通过MS-PW路径应答消息通告给其上游SPE2;SPE2收到其下游的MS-PW路径应答消息后,获取本节点的标识信息后,追加到该MS-PW路径应答消息中,继续向其上游发送,直至MS-PW路径应答消息到达源TPE,本实施例中即为MS-PW路径请求消息的发起者TPE1,TPE1收到下游通告的MS-PW路径应答消息后,逆序解析出MS-PW路径应答消息中的所有节点信息后,便得出当前MS-PW经过的所有SPE和TPE的节点信息,即获得了整条MS-PW的路径信息。
一般MSPW部署场景,由于SPE不存在冗余部署,本发明实施例提供的技术方案的处理消息和RFC6073中通过SP-PE TLV处理达到的效果是一致的,也就是说,本发明实施例提供的技术方案是完全可以解决非MS-PW冗余场景中获取MS-PW路径的需求的。
图8为本发明第二实施例的获取伪线路径信息的网络参考模型示意图, 如图8所示,第二实施例为单侧SPE冗余的MS-PW部署场景,即SPE的一侧(上游侧或者下游侧)存在SPE冗余,第二实施例中是下游侧存在冗余的场景。
假设TPE1需要知道整个MS-PW的路径信息,则TPE1向其下游(SPE1)发送MS-PW路径请求消息;SPE1收到该MS-PW路径请求消息后,由于SPE1的下游侧部署了SPE冗余,此时,在SPE1上需要根据冗余PW Segment,即SPE1和SPE2之间的PW Segment,以及SPE1和SPE3之间的PW Segment的状态,选择出当前处于Active状态的PW Segment,也就是说选择出当前实际用于转发的PW Segment进行MS-PW路径请求消息的中继。第二实施例中,假设SPE1和SPE2之间的PW Segment处于Active状态,SPE1选择的是到SPE2的PW Segment,则SPE1会向SPE2发送MS-PW路径请求消息。该MS-PW路径请求消息继续经过中继到达目的TPE2。TPE2向TPE1发送MS-PW路径应答报文的处理流程和第一实施实例基本一致,不同的是,在MS-PW路径应答消息返回到SPE2时,SPE2同样可以选择出当前处于Active状态的PW Segment进行MS-PW路径应答消息的中继。
图9为本发明第三实施例的获取伪线路径信息的网络参考模型示意图,如图9所示,第三实施例为双侧SPE冗余的MS-PW部署场景。在第三实施例中,MS-PW路径请求和MS-PW路径应答消息的处理方式与第二实施例基本一致,其区别在于,由于存在双侧SPE冗余,SPE3在收到下游应答的MS-PW路径应答消息后,由于其上游仍然有两个PW Segment,此时SPE3上需要根据本地策略来选择其中有效的PW Segment继续向其发送路径应答消息。这里的本地策略可以是:根据PW Segment的Active/Standby状态选择出处于Active状态的PW Segment;
或者,选择之前收到MS-PW路径请求消息的上一跳;
或者,结合上述两种策略综合考虑决策,选择其中有效的PW Segment作为当前MS-PW路径应答消息的上游设备。当网络震荡时,上述两种选择方式可能出现不一致的情况,如果仅采用单独一种的话,可能会出现选择失败的情况,因此,这样结合的处理总能选择出上游设备,避免了由于网络震荡而引起的选择失败的问题。
图10为本发明第四实施例的获取伪线路径信息的网络参考模型示意图,如图10所示,第四实施例所示为SPE快速重路由(FRR,Fast Reroute)切换的MS-PW部署场景,其中,FRR旨在当网络中链路或者节点失效后,为这些重要的节点或链路提供备份保护,实现快速重路由,以减少链路或节点失效时对流量的影响。假设TPE1通过本发明实施例提供的获取伪线路径信息的技术方案获取的有效工作路径为TPE1—SPE1—SPE2—TPE2。
本实施例中,假设当SPE2失效时,SPE1进行本地切换,MS-PW有效路径实际变成了TPE1—SPE1—SPE3—TPE2。此时,TPE1可以通过预先设置的策略触发MS-PW路径请求消息,重新获取到当前有效的MS-PW路径。其中,这种策略可以是通过定时触发,或者收到某种通知事件触发,或者是可以直接进行手动触发。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案及时获得了当前MS-PW有效工作路径,从而保证了MS-PW OAM机制的正确部署。

Claims (43)

  1. 一种获取伪线路径信息的方法,包括:
    源边界伪线设备TPE向其工作下游交换伪线设备SPE发送多段伪线MS-PW路径请求消息;
    源TPE的工作下游SPE将接收到的MS-PW路径请求消息经由其工作下游SPE转发,直至目的TPE;
    目的TPE将自身的节点信息添加到MS-PW路径应答消息中,并向其工作上游SPE发送该MS-PW路径应答消息;
    目的TPE的工作上游SPE将自身的节点信息添加到接收到的MS-PW路径应答消息中,并经由其工作上游SPE进行转发,直至源TPE;
    源TPE解析接收到的MS-PW路径应答消息以获得MS-PW路径信息。
  2. 根据权利要求1所述的方法,其中,所述工作下游SPE或工作上游SPE包括:
    根据伪线段PW Segment的状态选择出的当前处于活跃Active状态的PW Segment。
  3. 根据权利要求1所述的方法,其中,
    所述源TPE向其工作下游SPE发送MS-PW路径请求消息包括:定时触发,或者收到通知事件触发,或者手动触发。
  4. 根据权利要求1所述的方法,其中,所述MS-PW路径请求消息包括:
    对RFC4447中伪线通知PW Notification消息的扩展:
    在PW Notification中新增用于表示该消息为MS-PW路径请求消息的状态码Status Code。
  5. 根据权利要求4所述的方法,其中,所述MS-PW路径请求消息中携带有用于标识伪线信息的转发等价类FEC类型长度值TLV信息。
  6. 根据权利要求1所述的方法,其中,所述MS-PW路径应答消息包 括:
    对RFC4447中伪线通知PW Notification消息的扩展:
    在PW Notification中新增用于表示该消息为MS-PW路径应答消息的状态码Status Code。
  7. 根据权利要求6所述的方法,其中,所述MS-PW路径应答消息通过RFC6073中定义的交换节点伪线设备SP-PE类型长度值TLV来携带所述节点信息,或通过扩展一个新的TLV来携带所述节点信息。
  8. 根据权利要求1或7所述的方法,其中,所述节点信息包括用于标识该节点的信息。
  9. 根据权利要求8所述的方法,其中,所述节点信息包括路由标识Router ID信息。
  10. 一种获取伪线路径信息的方法,包括:
    源边界伪线设备TPE向其工作下游交换伪线设备SPE发送多段伪线MS-PW路径请求消息;
    源TPE接收经由其工作下游SPE转发来的携带有目的TPE自身的节点信息和所经SPE的节点信息的MS-PW路径应答消息;
    源TPE解析接收到的MS-PW路径应答消息以获得MS-PW路径信息。
  11. 一种获取伪线路径信息的方法,包括:
    目的边界伪线设备TPE接收来自源TPE向经由其工作下游交换伪线设备SPE转发的多段伪线MS-PW路径请求消息;
    目的TPE将自身的节点信息添加到MS-PW路径应答消息中,并向其工作上游SPE发送该MS-PW路径应答消息。
  12. 一种获取伪线路径信息的方法,包括:
    交换伪线设备SPE将来自源边界伪线设备TPE的多段伪线MS-PW路径请求消息转发至目的TPE;
    SPE接收来自目的TPE返回的携带有目的TPE自身的节点信息的MS-PW路径应答消息;
    SPE将自身的节点信息添加到接收到的MS-PW路径应答消息中,并转发直至源TPE。
  13. 根据权利要求12所述的方法,其中,所述SPE包括根据伪线段PW Segment的状态选择出的当前处于活跃Active状态的PW Segment。
  14. 一种交换伪线设备SPE,包括第一接收模块、第一处理模块;其中,
    第一接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给第一处理模块;接收MS-PW路径应答消息,并输出给第一处理模块;
    第一处理模块,设置为当第一接收模块接收多段伪线MS-PW路径请求消息后,确定下一跳工作设备,并将MS-PW路径请求消息转发给确定出的下一跳工作设备;当第一接收模块接收MS-PW路径应答消息后,确定下一跳工作设备,将自身所在SPE的节点信息添加到MS-PW路径应答消息中,并将MS-PW路径应答消息转发给确定出的下一跳工作设备。
  15. 根据权利要求14所述的SPE,其中,
    所述第一处理模块是设置为,根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment作为所述下一跳工作设备。
  16. 一种边界伪线设备TPE,包括第二接收模块、第二处理模块;其中,
    第二接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给第二处理模块,以及接收MS-PW路径应答消息,并输出给第二处理模块;
    第二处理模块,设置为当接收到MS-PW路径请求消息后,确定下一跳工作设备,将MS-PW路径请求消息转发给确定出的下一跳工作设备;当接收MS-PW路径应答消息后,确定下一跳工作设备,将自身所在目的TPE的节点信息添加到MS-PW路径应答消息中,并将MS-PW路径应答消息转发给确定出的下一跳工作设备。
  17. 根据权利要求16所述的TPE,其中,
    所述第二接收模块是设置为接收通过定时触发,或者收到通知事件触发,或者手动触发的所述MS-PW路径请求消息。
  18. 根据权利要求16或17所述的TPE,其中,
    所述第二处理模块是设置为:根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment作为所述下一跳工作设备。
  19. 一种获取伪线路径信息的方法,包括:
    在源边界伪线设备TPE需要获知整个多段伪线MS-PW的路径信息时,经由交换伪线设备SPE请求MS-PW路径信息;
    SPE利用当前实际用于转发的伪线段作为中继转发MS-PW路径信息请求,直至目的TPE;
    目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息。
  20. 根据权利要求19所述的方法,其中,
    所述请求MS-PW路径信息包括:所述源TPE通过用于获取MS-PW路径信息的MS-PW路径请求消息向其工作下游设备发送请求。
  21. 根据权利要求20所述的方法,其中,所述MS-PW路径请求消息包括对伪线通知PW Notification消息的扩展;
    在PW Notification消息中新增用于表示该消息为MS-PW路径请求消息的状态码Status Code;
    在所述MS-PW路径请求消息中携带用于标识伪线信息的转发等价类FEC类型长度值TLV信息。
  22. 根据权利要求20所述的方法,其中,所述工作下游设备包括当前MS-PW实际转发路径的下一跳设备。
  23. 根据权利要求20所述的方法,其中,所述源TPE向其工作下游发送MS-PW路径请求消息包括:源TPE通过定时触发,或者收到通知事件触发,或者手动触发向其工作下游发送MS-PW路径请求消息。
  24. 根据权利要求20所述的方法,所述方法还包括:
    所述源TPE的下游存在SPE冗余;所述经由交换设备SPE请求MS-PW路径信息之前,确定所述源TPE的工作下游设备,包括:
    所述源TPE根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息的下发。
  25. 根据权利要求20所述的方法,所述方法还包括:
    所述SPE的下游不存在SPE冗余;所述当前实际用于转发的伪线段为与所述SPE直接连接的下游SPE或目的TPE之间的伪线段。
  26. 根据权利要求20所述的方法,其中,所述利用当前实际用于转发的伪线段作为中继继续转发MS-PW路径信息请求包括:
    如果所述SPE的下游存在SPE冗余,接收到来自所述源TPE的MS-PW路径信息请求的SPE根据冗余PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息的中继。
  27. 根据权利要求20所述的方法,其中,所述目的TPE将自身节点信息经由SPE返回给源TPE,源TPE获得MS-PW路径信息包括:
    所述目的TPE收到MS-PW路径请求消息后,通过MS-PW路径应答消息向其上游返回自身的节点信息;
    SPE收到下游返回的MS-PW路径应答消息后,将自身的节点信息添加到MS-PW路径应答消息中并继续向其工作上游设备发送该MS-PW路径应答消息,直至所述源TPE收到MS-PW路径应答消息后,解析并获得整个MS-PW路径的信息。
  28. 根据权利要求27所述的方法,其中,所述MS-PW路径应答消息包括PW Notification消息的扩展;在PWNotification中新增用于表示该消息为MS-PW路径应答消息的Status Code。
  29. 根据权利要求27所述的方法,其中,所述节点信息包括路由标识Router ID信息;
    所述节点信息通过RFC6073中定义的交换节点伪线设备SP-PE类型长度值TLV携带;或者,通过扩展一个新的TLV携带。
  30. 根据权利要求27所述的方法,其中,所述目的TPE通过MS-PW路径应答消息向其上游返回自身的节点信息包括:
    如果所述目的TPE的上游不存在SPE冗余,所述目的TPE将自身的节点 信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备。
  31. 根据权利要求27所述的方法,其中,所述目的TPE通过MS-PW路径应答消息向其上游返回自身的节点信息包括:
    如果所述目的TPE的上游存在SPE冗余,所述目的TPE根据冗余PW Segment的状态,将自身的节点信息添加到MS-PW路径应答消息中,并通过选择出的当前处于活跃Active状态的PW Segment进行返回。
  32. 根据权利要求27所述的方法,其中,所述SPE收到下游返回的MS-PW路径应答消息后,继续向其工作上游设备发送该MS-PW路径应答消息包括:
    如果所述SPE的上游不存在SPE冗余,收到所述MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备;
    如果所述SPE的上游存在SPE冗余,收到MS-PW路径应答消息的SPE将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。
  33. 根据权利要求32所述的方法,其中,所述选择出有效的上游设备包括:
    根据PW Segment的状态选择出处于活跃Active状态的PW Segment对应的上游设备作为所述有效的上游设备;
    或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为所述返回MS-PW路径应答消息的有效的上游设备;
    或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment作为所述当前MS-PW路径应答消息的上游设备。
  34. 一种获取伪线路径信息的装置,包括接收模块、处理模块;其中,
    接收模块,设置为接收多段伪线MS-PW路径请求消息,并输出给处理模块;接收MS-PW路径响应消息,并输出给处理模块;
    处理模块,设置为确定下一跳工作设备,并将MS-PW路径请求消息或 MS-PW路径响应消息转发给确定出的下一跳工作设备。
  35. 根据权利要求34所述的装置,其中,所述处理模块是设置为:将MS-PW路径请求消息或MS-PW路径响应消息转发给其唯一的下一跳工作设备;
    或者,根据冗余伪线段PW Segment的状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径请求消息或MS-PW路径响应消息的转发。
  36. 根据权利要求34所述的装置,其中,所述处理模块是设置为:
    该装置设置在SPE中,所述接收模块接收到MS-PW路径响应消息,且SPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备;
    当SPE的上游存在SPE冗余,将自身的节点信息添加到MS-PW路径应答消息中,并根据选择出有效的上游设备,再向该上游设备继续返回MS-PW路径应答消息。
  37. 根据权利要求36所述的装置,其中,所述选择出有效的上游设备包括:
    根据PW Segment的状态选择出处于活跃Active状态的PW Segment对应的上游设备作为所述有效的上游设备;
    或者,选择SPE自身收到MS-PW路径请求消息时的上游SPE作为所述返回MS-PW路径应答消息的有效的上游设备;
    或者,结合PW Segment的状态和收到MS-PW路径请求消息时的上游SPE,选择其中有效的PW Segment所述作为当前MS-PW路径应答消息的上游设备。
  38. 根据权利要求34所述的装置,其中,所述处理模块是设置为:
    该装置设置在TPE中,该装置为接收到MS-PW路径请求消息的目的TPE,且目的TPE的上游不存在SPE冗余时,将自身的节点信息添加到MS-PW路径应答消息中并直接转发给其唯一的上游设备:
    当目的TPE的上游存在SPE冗余时,目的TPE根据冗余PW Segment的 状态,选择出当前处于活跃Active状态的PW Segment进行所述MS-PW路径响应消息的返回。
  39. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~9中任一项所述的方法。
  40. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求10所述的方法。
  41. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求11所述的方法。
  42. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求12~13中任一项所述的方法。
  43. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求19~33中任一项所述的方法。
PCT/CN2015/090732 2015-04-10 2015-09-25 一种获取多段伪线路径信息的方法、装置、spe及tpe WO2016161781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510170242.XA CN106161235A (zh) 2015-04-10 2015-04-10 一种获取多段伪线路径信息的方法及装置
CN201510170242.X 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161781A1 true WO2016161781A1 (zh) 2016-10-13

Family

ID=57072968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090732 WO2016161781A1 (zh) 2015-04-10 2015-09-25 一种获取多段伪线路径信息的方法、装置、spe及tpe

Country Status (2)

Country Link
CN (2) CN106161235A (zh)
WO (1) WO2016161781A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011352A1 (en) * 2005-07-11 2007-01-11 Luca Martini Pseudowire (PW) switching type-length-value (TLV)
US20080240101A1 (en) * 2007-03-26 2008-10-02 Alcatel Lucent Management of redundant and multi-segment pseudo-wire
CN101552716A (zh) * 2008-04-03 2009-10-07 华为技术有限公司 一种业务路径计算的方法、设备和系统
CN102347873A (zh) * 2011-10-26 2012-02-08 中兴通讯股份有限公司 隧道与伪线的检测方法及装置
CN102820987A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 网络故障维护中业务路径的显示方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282811B (zh) * 2009-06-29 2014-05-21 华为技术有限公司 一种伪线的建立方法、装置和系统
CN102055619A (zh) * 2009-11-02 2011-05-11 中兴通讯股份有限公司 一种实现双向路径段故障检测的方法及系统
CN102957611A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 建立p2mp ms-pw的方法、设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070011352A1 (en) * 2005-07-11 2007-01-11 Luca Martini Pseudowire (PW) switching type-length-value (TLV)
US20080240101A1 (en) * 2007-03-26 2008-10-02 Alcatel Lucent Management of redundant and multi-segment pseudo-wire
CN101552716A (zh) * 2008-04-03 2009-10-07 华为技术有限公司 一种业务路径计算的方法、设备和系统
CN102347873A (zh) * 2011-10-26 2012-02-08 中兴通讯股份有限公司 隧道与伪线的检测方法及装置
CN102820987A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 网络故障维护中业务路径的显示方法及装置

Also Published As

Publication number Publication date
CN106161235A (zh) 2016-11-23
CN106161238A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
EP3468116B1 (en) Method for calculating forwarding path and network device
US9838246B1 (en) Micro-loop prevention using source packet routing
US8804496B2 (en) Protecting multi-segment pseudowires
EP1912381B1 (en) A fast convergence method of point to point services and the provider edge device thereof
US7586841B2 (en) System and method for protecting against failure of a TE-LSP tail-end node
EP2645640B1 (en) Oam label switched path for fast reroute of protected label switched paths
JP5209116B2 (ja) パケット交換網における擬似ワイヤの確立
WO2006081767A1 (fr) Méthode d’implémentation d’un chemin de transmission maître et de sauvegarde
EP2232789B1 (en) Enhancing routing optimality in ip networks requiring path establishment
CN109672619A (zh) 一种处理报文的方法、设备及系统
EP2961117B1 (en) Method, device and system for establishing label switched path
US20150186202A1 (en) Method and Device for Sending Inter-Domain Fault Information
US9049142B1 (en) Method and apparatus to enable protection for selective traffic in an MPLS network
EP3582454B1 (en) Graceful restart procedures for label switched paths with label stacks
WO2011120360A1 (zh) 集中式网络节点中实现热备份的方法及系统
US11979310B2 (en) Signal translation and protection in a hybrid network environment
WO2009106012A1 (zh) 一种通告相邻网络域ds-te信息的方法和系统及设备
JP6371399B2 (ja) インターフェースパラメーター同期方法及び装置
Andersson et al. MPLS Transport Profile (MPLS-TP) Control Plane Framework
RU2630375C2 (ru) Способ и устройство для обработки переадресации данных
WO2016161781A1 (zh) 一种获取多段伪线路径信息的方法、装置、spe及tpe
WO2016197613A1 (zh) 一种静态伪线状态检测方法及装置
CN115499369A (zh) 路径保护方法及装置
Gray Internet Draft Loa Andersson, Ed.(Ericsson) Category: Informational Lou Berger, Ed.(LabN) Expiration Date: April 15, 2011 Luyuan Fang, Ed.(Cisco) Nabil Bitar, Ed.(Verizon)
Andersson et al. RFC 6373: MPLS Transport Profile (MPLS-TP) Control Plane Framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888333

Country of ref document: EP

Kind code of ref document: A1