WO2016159608A1 - Light-emitting film - Google Patents

Light-emitting film Download PDF

Info

Publication number
WO2016159608A1
WO2016159608A1 PCT/KR2016/003123 KR2016003123W WO2016159608A1 WO 2016159608 A1 WO2016159608 A1 WO 2016159608A1 KR 2016003123 W KR2016003123 W KR 2016003123W WO 2016159608 A1 WO2016159608 A1 WO 2016159608A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
film
light
nanoparticles
layer
Prior art date
Application number
PCT/KR2016/003123
Other languages
French (fr)
Korean (ko)
Inventor
이성민
유수영
김선국
박문수
윤혁
권태균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/561,874 priority Critical patent/US10386674B2/en
Priority to CN201680025037.7A priority patent/CN107637174B/en
Publication of WO2016159608A1 publication Critical patent/WO2016159608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to a light emitting film, a lighting device and a display device.
  • Lighting devices are used for a variety of applications.
  • the lighting device is, for example, a BLU of a display such as a liquid crystal display (LCD), a TV, a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device or a digital camera.
  • LCD liquid crystal display
  • PDA personal digital assistant
  • the lighting device may be used for indoor or outdoor lighting, stage lighting, decorative lighting, accent lighting or museum lighting, and the like, and may also be used for special wavelength lighting required in horticulture or biology.
  • a typical lighting device for example, a device that emits white light by combining a blue LED (Light Emitting Diode) and a phosphor such as YAG (Yttrium aluminum garnet), which is used as a BLU of an LCD.
  • a blue LED Light Emitting Diode
  • a phosphor such as YAG (Yttrium aluminum garnet)
  • Patent Document 1 Korean Patent Publication No. 2011-0048397
  • Patent Document 2 Korean Patent Publication No. 2011-0038191
  • the present application provides a light emitting film, a lighting device and a display device.
  • the present application can provide a light emitting film and its use, which can effectively produce a desired light, for example, white light, and whose performance can be stably maintained for a long time.
  • the present application relates to a light emitting film.
  • the term light emitting film may refer to a film formed to emit light.
  • the light emitting film may be a film formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light.
  • the light emitting film may include a light emitting layer.
  • the light emitting layer may include, for example, light emitting nanoparticles and a binder holding the light emitting nanoparticles.
  • the term light emitting nanoparticles may refer to nanoparticles capable of emitting light.
  • the light emitting nanoparticles may refer to nanoparticles formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light.
  • the term nanoparticle is a particle having a dimension of a nano scale, for example, an average particle diameter of about 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less , 40 nm or less, 30 nm or less, 20 nm or less, or about 15 nm or less.
  • the shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, polygonal or amorphous.
  • the nanostructures may be in the form of particles, for example, nanowires, nanorods, nanotubes, branched nanostructures, nanonotetrapods, tripods. Or bipods, and the like, and these forms may also be included in the nanoparticles defined in the present application.
  • the term nanostructures includes similar structures having at least one area or characteristic dimension having dimensions of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm or less than about 10 nm. It may include structures. In general, area or characteristic dimensions may exist along the smallest axis of the structure, but are not limited thereto.
  • the light emitting nanoparticles may be referred to as nanoparticles (hereinafter, referred to as green particles) capable of absorbing light of any wavelength within a range of 420 to 490 nm to emit light of any wavelength within a range of 490 to 580 nm. .) And / or nanoparticles (hereinafter referred to as red particles) capable of absorbing light of any wavelength within the range of 450-490 nm to emit light of any wavelength within the range of 580-780 nm.
  • red particles capable of absorbing light of any wavelength within the range of 450-490 nm to emit light of any wavelength within the range of 580-780 nm.
  • the red particles and the green particles may be included in the light emitting layer together at an appropriate ratio.
  • the light emitting layer of the light emitting film capable of emitting white light may include 300 to 1500 parts by weight of green particles relative to 100 parts by weight of the red particles.
  • the light emitting nanoparticles can be used without any particular limitation as long as they exhibit such a function.
  • a nanostructure called a quantum dot may be exemplified.
  • the nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline or amorphous, or combinations of the above.
  • Quantum dots that can be used as luminescent nanoparticles can be prepared in any known manner.
  • suitable methods for forming quantum dots are described in US Pat. No. 6,225,198, US Patent Publication 2002-0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, US Pat. No. 6,949,206, US Pat. No. 7,572,393.
  • US Pat. No. 7,267,865, US Pat. No. 7,374,807 or US Pat. No. 6,861,155, and the like, and various other known methods may be applied to the present application.
  • Quantum dots or other nanoparticles of the present application can be formed using any suitable material, for example, an inorganic conductive or semiconducting material, as an inorganic material.
  • suitable semiconductor materials can be exemplified by Group II-VI, III-V, IV-VI and Group IV semiconductors.
  • Si, Ge, Sn, Se, Te, B, C including diamond
  • the semiconductor nanocrystal or other nanostructure may include a dopant, such as a p-type dopant or an n-type dopant.
  • Nanoparticles that may be used in the present application may also include II-VI or III-V semiconductors.
  • II-VI or III-V semiconductor nanocrystals and nanostructures include any combination of periodic table group elements, such as Zn, Cd, and Hg, with periodic table group VI elements, such as S, Se, Te, Po, and the like; And any combination of group III elements, such as B, Al, Ga, In, and Tl, and group V elements, such as N, P, As, Sb, Bi, and the like, but is not limited thereto.
  • suitable inorganic nanostructures include metal nanostructures, and suitable metals include Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti , Sn, Zn, Fe or FePt and the like can be exemplified, but is not limited thereto.
  • the light emitting nanoparticles may have a core-shell structure.
  • Exemplary materials capable of forming core-cell structured luminescent nanoparticles include Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP , AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn , CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, Pb
  • Exemplary core-cell luminescent nanoparticles (core / cell) applicable in this application include, but are not limited to, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS or CdTe / ZnS, etc. It is not.
  • the specific kind of light emitting nanoparticles is not particularly limited and may be appropriately selected in consideration of desired light emission characteristics.
  • luminescent nanoparticles such as quantum dots
  • the ligand or barrier may be advantageous for improving the stability of the light emitting nanoparticles such as quantum dots and protecting the light emitting nanoparticles from harmful external conditions including high temperature, high intensity, external gas or moisture, and the like.
  • the light emitting nanoparticles may exist only in any one of the matrix and emulsion regions, and in order to obtain such a light emitting layer, the characteristics of the ligand or barrier are compatible only with any one of the matrix and emulsion regions. It may be selected to have.
  • luminescent nanoparticles such as quantum dots
  • Ligands and methods for forming the same are known in the art that can exhibit suitable properties on the surface of light emitting nanoparticles, such as quantum dots, and such methods can be applied without limitation in the present application.
  • Such materials or methods are described, for example, in US Patent Publication No. 2008-0281010, US Publication No. 2008-0237540, US Publication No. 2010-0110728, US Publication No. 2008-0118755, US Patent No. 7,645,397 US Pat. No. 7,374,807, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No.
  • the ligand may be a molecule having an amine group (oleylamine, triethylamine, hexylamine, naphtylamine, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc.) or a polymer, a molecule having a thiol group (butanethiol, hexanethiol, dodecanethiol, etc.) or Polymer, molecule having pyridine group (pyridine etc.) or polymer, molecule having phosphine group (triphenylphosphine etc.), molecule having phosphine group (trioctylphosphine oxide etc.), molecule having carbonyl group (alkyl ketone etc.), benzene ring It may be formed by a molecule (benzene, styrene, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc
  • the ratio of the light emitting nanoparticles in the light emitting layer is not particularly limited.
  • the light emitting nanoparticles may be selected in an appropriate range in consideration of desired optical properties.
  • the light emitting nanoparticles in the light emitting layer may be present in a concentration of about 0.05 to 20% by weight, 0.05 to 15% by weight, 0.1 to 15% by weight or 0.5 to 15% by weight, but is not limited thereto.
  • the binder holding the light emitting nanoparticles may include two regions separated from each other.
  • phase-separated regions are regions formed by two regions that do not mix with each other, such as, for example, relatively hydrophobic regions and relatively hydrophilic regions, and are separated from each other. It may mean areas formed.
  • any one of two regions separated from the phase of the binder may be referred to as a first region, and another region may be referred to as a second region.
  • one of the first and second regions may be a continuous phase, and the other region may be a dispersed phase.
  • the first region may be a hydrophilic region and the second region may be a hydrophobic region among the first region and the second region.
  • the hydrophilicity and hydrophobicity that distinguish the first and second regions are relative concepts, and the absolute criteria of hydrophilicity and hydrophobicity are particularly limited as long as it can be confirmed that the two regions are separated from each other in the light emitting layer. It doesn't happen.
  • the ratio of the hydrophilic first region to the hydrophobic second region may include, for example, the ratio of luminescent nanoparticles, adhesion with other layers such as a barrier film, formation efficiency of a phase separation structure, or physical properties required for film formation. You can choose by considering.
  • the light emitting layer may include 10 parts by weight to 100 parts by weight of the second area relative to 100 parts by weight of the first area.
  • the emission layer may include 50 to 95 parts by weight of the first region and 5 to 50 parts by weight of the second region.
  • the light emitting layer may include 50 to 95 parts by weight of the second region and 5 to 50 parts by weight of the first region.
  • the term weight part in the present application means a weight ratio between components, unless otherwise specified.
  • the ratio of the weight of the first and second regions is the ratio of the weight of each region itself;
  • the light emitting layer may be formed by mixing and polymerizing a hydrophilic polymerizable composition and a relatively hydrophobic polymerizable composition as described below.
  • the ratio of the weight of each of the regions is determined by It may mean the ratio of the weight of the composition or the ratio of the weight between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound which is the main component included in each composition.
  • the hydrophilic polymerizable composition may mean a composition including a hydrophilic polymerizable compound as a main component
  • the hydrophobic polymerizable composition may mean a composition including a hydrophobic polymerizable compound as a main component.
  • the kind of the polymerizable compound in the above is not particularly limited, and may be, for example, a radical polymerizable compound.
  • the ratio of the weight of the component included as the main component based on the total weight is at least 55% by weight, at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight, 80 It may mean when the weight percent or more, 85 weight% or more, or 95 weight% or more.
  • the criteria for distinguishing hydrophilicity and hydrophobicity between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound form, for example, the aforementioned phase-separated regions when the two compounds are relatively hydrophilic or hydrophobic and mixed with each other. It is not particularly limited as long as it can be done.
  • the separation of hydrophilicity and hydrophobicity may be performed by so-called solubility parameters.
  • the solubility parameter in the present application means a solubility parameter of a homopolymer formed by polymerization of the polymerizable compound, and through this, the degree of hydrophilicity and hydrophobicity of the compound can be determined.
  • the manner of obtaining the solubility parameter is not particularly limited and may be in accordance with methods known in the art.
  • the parameter may be calculated or obtained according to a method known as a Hansen solubility parameter (HSP).
  • HSP Hansen solubility parameter
  • the hydrophobic polymerizable compound may mean a polymerizable compound capable of forming a polymer having a solubility parameter of less than about 10 (cal / cm 3 ) 1/2 by polymerization, and may be hydrophilic.
  • the polymerizable compound may mean a polymerizable compound capable of forming a polymer having the above parameter by about 10 (cal / cm 3 ) 1/2 or more by polymerization.
  • the solubility parameter of the polymer formed by the hydrophobic polymerizable compound is, in another example, 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more or about 5 (cal / cm 3 ) 1 / It may be two or more.
  • the solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1 / 2 or more, 14 (cal / cm 3 ) 1/2 or more, or 15 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less or about 30 (cal / cm 3 ). It may be 1/2 or less. Differences in the solubility parameters of the hydrophobic and hydrophilic compounds can be controlled to achieve proper phase separation or emulsion structures.
  • the difference in solubility parameters of the hydrophilic and hydrophobic polymerizable compounds or the polymer formed by each of them may be 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more, or about 8 (cal / cm 3 ) 1/2 or more.
  • the difference is the value of the solubility parameter minus the small value.
  • the upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed.
  • the upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less.
  • the physical property may mean physical properties at room temperature.
  • room temperature is a natural temperature that is not heated or reduced, and may mean, for example, any temperature in the range of about 10 ° C to 30 ° C, about 23 ° C, or about 25 ° C.
  • the light emitting layer or the binder may be an emulsion type layer.
  • a layer in the form of an emulsion is any one of two or more phases (for example, the first and second regions) which are not mixed with each other, and a continuous phase in the layer. )
  • the other region may refer to a layer having a form dispersed in the continuous phase to form a dispersed phase.
  • the continuous phase and the dispersed phase may be solid, semi-solid or liquid phase, respectively, and may be the same phase or different phases.
  • emulsion is a term mainly used for two or more liquid phases which are not mixed with each other, but the term emulsion in the present application does not necessarily mean an emulsion formed by two or more liquid phases.
  • the light emitting layer may include a matrix forming the continuous phase, and may include an emulsion region that is a dispersed phase dispersed in the matrix.
  • the matrix is any one of the above-described first and second regions (eg, the first region), and the emulsion region, which is a dispersed phase, is the other of the first and second regions (eg, the second region). Area).
  • the emulsion region may be in the form of particles. That is, the emulsion region may be dispersed in the matrix in the form of particles.
  • the particle shape of the emulsion region is not particularly limited and may be approximately spherical, ellipsoidal, polygonal or amorphous.
  • the average diameter of the particle form may be in the range of about 1 ⁇ m to 200 ⁇ m, in the range of about 1 ⁇ m to 50 ⁇ m or in the range of about 50 ⁇ m to 200 ⁇ m.
  • the size of the particle form can be controlled by adjusting the proportion of materials forming the matrix and emulsion regions, or by using a surfactant or the like.
  • the ratio of matrix and emulsion regions in the emissive layer is
  • the composition may be selected in consideration of the ratio of light-emitting nanoparticles to be included in the light emitting layer, adhesion to other layers such as a barrier film and a barrier film, generation efficiency of an emulsion structure that is a phase-separated structure, or physical properties required for film formation.
  • the light emitting layer may include 5 to 40 parts by weight of the emulsion region relative to 100 parts by weight of the matrix.
  • the proportion of the emulsion region may be at least 10 parts by weight or at least 15 parts by weight with respect to 100 parts by weight of the matrix.
  • the ratio of the emulsion region may be 35 parts by weight or less with respect to 100 parts by weight of the matrix.
  • the ratio of the weight of the matrix and the emulsion region is the ratio of the weight of each region itself, or the sum of the weights of all the components included in the region or the ratio of the main components or the weight of the material used to form the respective regions. It can mean a ratio.
  • the matrix and the emulsion region may each include polymerized units of hydrophilic and hydrophobic polymerizable compounds, and the weight ratio may be a ratio between the polymerized units.
  • the light emitting nanoparticles included in the light emitting layer may be included in the matrix or emulsion region.
  • the light emitting nanoparticles may be included in only one of the matrix and emulsion regions, and may not be substantially included in the other regions.
  • the fact that the light emitting nanoparticles are not substantially included in any region is, for example, based on the total weight of the light emitting nanoparticles included in the light emitting layer, the weight ratio of the light emitting nanoparticles included in the region is 10.
  • the light emitting nanoparticles may be included in the emulsion region substantially among the matrix and emulsion regions.
  • the matrix may be substantially free of light emitting nanoparticles. Therefore, in the above case, the ratio of the light emitting nanoparticles included in the emulsion region is 90% by weight, 91% by weight, 92% by weight, 93% by weight based on the total weight of the light emitting nanoparticles included in the light emitting layer. Or at least 94% by weight, at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight or at least 99.9% by weight.
  • Forming two phase-separated regions in the light emitting layer and substantially positioning the light emitting nanoparticles in only one of the two regions ensures physical properties suitable for filming, and the other layers such as a blocking film described later and the It is advantageous to secure adhesion between the light emitting layers, and more effectively controls other factors that may adversely affect the physical properties of the nanoparticles, such as an initiator or a crosslinking agent, in the region where the light emitting nanoparticles exist when the light emitting film is formed. Can be formed.
  • any one of the matrix and emulsion regions may comprise a hydrophilic polymer and the other region may comprise a hydrophobic polymer.
  • the hydrophilic polymer refers to a polymer having a HSP (Hansen solubility parameter) of 10 (cal / cm 3 ) 1/2 or more
  • the hydrophobic polymer refers to a polymer having an HSP of less than 10 (cal / cm 3 ) 1/2 .
  • the solubility parameter of the hydrophobic polymer may be 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more, or about 5 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the hydrophilic polymer is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1/2 or more, 14 (cal / cm 3 ) 1/2 or more or 15 (cal / cm 3 ) 1/2 or more.
  • the solubility parameter of the hydrophilic polymer may be about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less, or about 30 (cal / cm 3 ) 1/2 or less. . Differences in the solubility parameters of the hydrophobic and hydrophilic polymers can be controlled to implement an appropriate phase separation structure or emulsion structure.
  • the difference between the solubility parameters of the hydrophilic and hydrophobic polymer is 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more Or about 8 (cal / cm 3 ) 1/2 or more.
  • the difference is the value of the solubility parameter minus the small value.
  • the upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed. The upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less.
  • the matrix may comprise a hydrophilic polymer
  • the emulsion region may comprise a hydrophobic polymer.
  • the matrix can be formed by polymerizing the hydrophilic polymerizable compound, for example, a hydrophilic radical polymerizable compound.
  • the matrix comprises a compound of formula 1, a compound of formula 2, a compound of formula 3, a compound of formula 4, a nitrogen containing radically polymerizable compound, an acrylic acid, methacrylic acid or a salt site
  • the polymerization unit of the radically polymerizable compound may be included.
  • the term polymerized unit of a predetermined compound may mean a unit formed by polymerization of the predetermined compound.
  • Q is hydrogen or an alkyl group
  • U is an alkylene group
  • Z is a hydrogen, alkoxy group, an epoxy group or a monovalent hydrocarbon group
  • m is any number.
  • Q is hydrogen or an alkyl group
  • U is an alkylene group
  • m is any number.
  • Q is hydrogen or an alkyl group
  • A is an alkylene group which may be substituted with a hydroxy group
  • U is an alkylene group.
  • Q is hydrogen or an alkyl group
  • a and U are each independently an alkylene group
  • X is a hydroxy group or cyano group.
  • alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkylene group may be linear, branched or cyclic.
  • the alkylene group may be optionally substituted with one or more substituents.
  • epoxy group may mean a cyclic ether having three ring constituent atoms or a compound containing the cyclic ether or a monovalent moiety derived therefrom.
  • examples of the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
  • an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic.
  • the alkoxy group may be optionally substituted with one or more substituents.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group may be optionally substituted with one or more substituents.
  • the term "monovalent hydrocarbon group” may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound, unless otherwise specified.
  • the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
  • alkenyl group in the present application may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group in the present application may refer to a monovalent moiety derived from a compound or a derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded, unless otherwise specified.
  • the range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, phenoxy group, phenoxyphenyl group, phenoxybenzyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group. Can be.
  • substituent which may be optionally substituted in the alkoxy group, alkylene group, epoxy group or monovalent hydrocarbon group in the present application, halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, etc.
  • Epoxy group, acryloyl group, methacryloyl group, isocyanate group, thiol group or monovalent hydrocarbon group and the like can be exemplified, but is not limited thereto.
  • M and n in the formulas (1), (2) and (4) are any numbers, for example, each independently may be a number in the range of 1 to 20, 1 to 16, or 1 to 12.
  • an amide group containing radically polymerizable compound for example, an amide group containing radically polymerizable compound, an amino group containing radically polymerizable compound, an imide group containing radically polymerizable compound, a cyano group containing radically polymerizable compound, etc.
  • said amide group-containing radically polymerizable compound it is (meth) acrylamide or N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth), for example.
  • Acrylamide, N, N-dimethylaminopropylmethacrylamide, N-vinylpyrrolidone, N-vinylcaprolactam or (meth) acryloyl morpholine and the like can be exemplified, and examples of the amino group-containing radically polymerizable compound include , Aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like can be exemplified, and examples of the imide group-containing radically polymerizable compound , N-isopropylmaleimide
  • a salt of acrylic acid or methacrylic acid for example, a salt of the above-described alkali metals including lithium, sodium, and potassium, or Salts with alkaline earth metals, including magnesium, calcium, strontium and barium, and the like can be exemplified, but are not limited thereto.
  • the matrix containing the above-mentioned polymer unit can be formed by polymerizing a hydrophilic polymerizable composition containing a hydrophilic polymerizable compound, for example, a radical polymerizable compound and a radical initiator, for example.
  • a hydrophilic polymerizable composition containing a hydrophilic polymerizable compound, for example, a radical polymerizable compound and a radical initiator, for example.
  • the matrix may be a polymer of the hydrophilic polymerizable composition.
  • hydrophilic radically polymerizable compound is not particularly limited, and for example, the compounds described above can be used.
  • the kind of radical initiator contained in a hydrophilic polymerizable composition is not specifically limited.
  • the initiator a radical thermal initiator or a photoinitiator capable of generating a radical capable of initiating a polymerization reaction by application of heat or irradiation of light can be used.
  • thermal initiator for example, 2,2-azobis-2,4-dimethylvaleronitrile (V-65, Wako), 2,2-azobisisobutyronitrile (V-60, Azo initiators such as Wako (manufactured) or 2,2-azobis-2-methylbutyronitrile (V-59, made by Wako); Dipropyl peroxydicarbonate (Peroyl NPP, NOF (manufactured)), Diisopropyl peroxy dicarbonate (Peroyl IPP, NOF (manufactured)), Bis-4-butylcyclohexyl peroxy dicarbonate (Peroyl TCP, NOF (manufactured) )), Diethoxyethyl peroxy dicarbonate (Peroyl EEP, NOF (product)), diethoxyhexyl peroxy dicarbonate (Peroyl OPP, NOF agent), hexyl peroxy dicarbonate (Perhexyl ND, NOF agent
  • a benzoin-based, hydroxy-ketone-based, amino-ketone-based or phosphine oxide-based photoinitiator may be used.
  • the initiator may be selected to use a high solubility in the hydrophilic component, for example, a hydroxy ketone compound, a water dispersion hydroxy ketone compound or an amino ketone compound or a water dispersion amino ketone compound may be used, but is limited thereto. It doesn't happen.
  • the hydrophilic polymerizable composition may include, for example, a radical initiator at a concentration of about 0.1 wt% to about 10 wt%. Such a ratio can be changed in consideration of, for example, physical properties of the film, polymerization efficiency and the like.
  • the hydrophilic polymerizable composition may further include a crosslinking agent.
  • a crosslinking agent the compound which has two or more radically polymerizable groups can be used, for example.
  • polyfunctional acrylate As a compound which can be used as a crosslinking agent, polyfunctional acrylate can be illustrated.
  • the multifunctional acrylate may mean a compound including two or more acryloyl groups or methacryloyl groups.
  • polyfunctional acrylate examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol di ( Meta) acrylate, neopentylglycol adipate di (meth) acrylate, hydroxyl promisvalic acid neopentylglycol di (meth) acrylate, dicyclopentanyl di (meth) Acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, ethylene oxide modified di (meth) acrylate, di (meth) acryloxy ethyl isocyanurate, allylated cyclohexyl di (meth) ) Acrylate, tricyclodecane dimethanol (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, ethylene oxide
  • a polyfunctional acrylate it is a compound called what is called photocurable oligomer in the industry, urethane acrylate, epoxy acrylate, polyester acrylate, or polyether. Acrylate etc. can also be used An appropriate kind can be selected from the above-mentioned compounds, and can be used, selecting one or more types.
  • crosslinking agent a component capable of implementing a crosslinking structure by a radical reaction such as the polyfunctional acrylate, as well as, if necessary, crosslinking by a thermosetting reaction such as a known isocyanate crosslinking agent, epoxy crosslinking agent, aziridine crosslinking agent or metal chelate crosslinking agent Components that can implement the structure can also be used.
  • the crosslinking agent may be included, for example, in a hydrophilic polymerizable composition at a concentration of up to 50 wt% or from 10 wt% to 50 wt%.
  • the ratio of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film.
  • the hydrophilic polymerizable composition may further include other necessary components in addition to the components described above.
  • region using a hydrophilic polymeric composition is mentioned later.
  • the emulsion region can also be formed by polymerizing a polymerizable compound, for example, a radical polymerizable compound.
  • a polymerizable compound for example, a radical polymerizable compound.
  • an emulsion region can be formed by superposing
  • the emulsion region may include a polymer unit of a compound represented by one of Chemical Formulas 5 to 7 below.
  • Q is hydrogen or an alkyl group
  • B is a straight or branched chain alkyl group having 5 or more carbon atoms or an alicyclic hydrocarbon group.
  • Q is hydrogen or an alkyl group
  • U is an alkylene, alkenylene or alkynylene or arylene group.
  • Q is hydrogen or alkyl group
  • U is alkylene group
  • Y is carbon atom
  • X is oxygen atom, sulfur atom or alkylene group
  • Ar is aryl group
  • n is any It is a number.
  • alkenylene group or alkynylene group is an alkenylene group or alkynylene having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. Can mean a group.
  • the alkenylene group or alkynylene group may be linear, branched or cyclic.
  • the alkenylene group or alkynylene group may be optionally substituted with one or more substituents.
  • arylene group in the present application may refer to a divalent moiety derived from a compound or a derivative thereof including a structure in which benzene or two or more benzenes are condensed or bonded, unless otherwise specified.
  • the arylene group may have a structure containing, for example, benzene, naphthalene or fluorene.
  • B may be a straight or branched chain alkyl group having 5 or more carbon atoms, 7 or more carbon atoms, or 9 or more carbon atoms.
  • a compound containing a relatively long chain alkyl group is known as a relatively nonpolar compound.
  • the upper limit of the carbon number of the linear or branched alkyl group is not particularly limited.
  • the alkyl group may be an alkyl group having 20 or less carbon atoms.
  • B may be, in another example, an alicyclic hydrocarbon group, for example, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, 3 to 16 carbon atoms, or 6 to 12 carbon atoms, and examples of such hydrocarbon group include cyclohexyl group or iso Bornyl group and the like can be exemplified.
  • the compound which has alicyclic hydrocarbon group is known as a relatively nonpolar compound.
  • N in the formula (7) is any number, for example, each independently may be a number in the range of 1 to 20, 1 to 16 or 1 to 12.
  • the second region may be formed by polymerizing a hydrophobic polymerizable composition containing a hydrophobic radical polymerizable compound and a radical initiator.
  • the second region may be a polymer of the hydrophobic polymerizable composition.
  • the kind of hydrophobic radically polymerizable compound contained in the hydrophobic polymerizable composition is not particularly limited, and a compound known in the art as a so-called nonpolar monomer can be used.
  • a compound known in the art as a so-called nonpolar monomer can be used.
  • the compound described above may be used as the compound.
  • the kind of radical initiator contained in a hydrophobic polymerizable composition is not specifically limited.
  • an appropriate kind can be selected and used from the initiator described in the item of the hydrophilic polymeric compound mentioned above.
  • the hydrophobic polymerizable composition may include, for example, a radical initiator at a concentration of 5% by weight or less. Such concentration can be changed in consideration of, for example, physical properties of the film, polymerization efficiency, and the like.
  • the hydrophobic polymerizable composition may further include a crosslinking agent.
  • a crosslinking agent without particular limitation, for example, an appropriate component may be selected and used from the components described in the hydrophilic polymerizable composition section.
  • the crosslinking agent may be included, for example, in a hydrophobic polymerizable composition at a concentration of up to 50 wt%, or from 10 to 50 wt%.
  • concentration of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film, the influence on other components included in the polymerizable compound, and the like.
  • the hydrophobic polymerizable composition may further include other components if necessary.
  • the method of forming an emulsion region using the said hydrophobic polymerizable composition is mentioned later.
  • the light emitting layer may include other components in addition to the above components.
  • the other components include, but are not limited to, known surfactants, amphiphilic nanoparticles, antioxidants, or scattering particles described below.
  • the emissive layer may comprise amphipathic nanoparticles, which may be present, for example, in one or more of the matrix or emulsion regions, and may suitably be at the boundaries of the matrix and emulsion regions.
  • Amphiphilic nanoparticles can enhance the stability of the matrix and emulsion regions that are phase separated in the light emitting layer.
  • the amphipathic nanoparticles may include a core part including the nanoparticles and a cell part including an amphiphilic compound surrounding the nanoparticles.
  • Amphiphilic compounds are compounds containing both hydrophilic and hydrophobic moieties at the same time, and some compounds are known in the art as so-called surfactants.
  • the hydrophilic portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophobic portion may be disposed to the outside to form amphipathic nanoparticles as a whole.
  • the nanoparticles are hydrophilic
  • a minority portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophilic portion may be disposed outside to form amphipathic nanoparticles as a whole.
  • the nanoparticles of the core portion may have, for example, an average particle diameter in the range of about 10 nm to 1000 nm, but this is not particularly limited as may be changed according to the purpose.
  • nanoparticles of the core portion for example, metal particles such as gold, silver, copper, platinum, palladium, nickel, manganese or zinc, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 Oxide particles such as MgO, SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) may be used.
  • metal particles such as gold, silver, copper, platinum, palladium, nickel, manganese or zinc, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 Oxide particles such as MgO, SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) may be used.
  • PMMA polymethacrylate
  • PS polystyrene
  • Triton X-114 (CAS No .: 9036-19-5), Triton X-100 (CAS No.:92046-34-9), Brij-58 (CAS No. : 9004-95-9), octyl glucoside (CAS No .: 29836-26-8), octylthio glucoside (CAS No .: 85618-21-9), decaethylene glycol monodecyl ether ( decaethylene glycol monododecyl ether, CAS No .: 9002-92-0), N-decanoyl-N-methylglucamine, CAS No .: 85261-20-7, decyl maltopyrano Decyl maltopyranoside (CAS No .: 82494-09-5), N-dodecyl maltoside (CAS No .: 69227-93-6), nonnaethylene glycol monododecyl ether , CAS No .: 3055
  • Amphiphilic nanoparticles may include the amphiphilic compound in a range capable of securing the stability of the matrix and the emulsion region.
  • the ratio of the amphiphilic compound in the amphipathic nanoparticles may be about 5% to 30% by weight, but the range may be changed as long as the stability between the matrix and the emulsion region can be properly secured.
  • the method of including the amphiphilic nanoparticles in the light emitting layer for example, the method of placing the amphiphilic nanoparticles at the boundary between the matrix and the emulsion region is not particularly limited.
  • the method of compounding the particles can be used.
  • the amphiphilic nanoparticles may have a refractive index different from that of the matrix and emulsion regions.
  • white light may be more efficiently generated by scattering or diffusing light by the nanoparticles.
  • the degree of difference in the refractive index of the nanoparticles and the matrix and the emulsion region in the above may be set in an appropriate range in consideration of the scattering or diffusing effect of the desired light, the specific range is not particularly limited.
  • the absolute value of the difference in refractive index between the nanoparticles and the matrix and the absolute value of the difference in refractive index between the nanoparticles and the emulsion region may be in the range of 0.05 to 0.5, respectively.
  • the refractive index of the nanoparticles is not particularly limited as long as it satisfies the above range, and may be, for example, in the range of 1.0 to 2.0.
  • the term refractive index is a value measured for light having a wavelength of about 550 nm, unless otherwise specified.
  • the proportion of the amphiphilic nanoparticles in the light emitting layer can be selected in consideration of the stability of the matrix and the emulsion region, for example.
  • the amphiphilic nanoparticles may be present in a concentration of 1% by weight to 10% by weight based on the total weight of the matrix and the emulsion region or the light emitting layer.
  • Amphiphilic nanoparticles are those sold under the product name MX 80H by Soken, XX-43BQ, XX-128BQ, XX-130 BQ, XX-50 BQ, XX-131 BQ, MBX-2H, and MBX from Sekisui.
  • MIBK-SD-L, MIBK-SD, MIBK sold by Nissan under the product names such as -30, SSX-104, XXS-105, SSX-108, SSX-110, XX-129BQ or XX-99BQ.
  • What is marketed under product names, such as -ST-L, MIBK-ST, or TOL-ST, can also be applied.
  • the luminescent layer may also comprise an antioxidant, which component may be particularly useful when applying quantum dots as the luminescent nanoparticles.
  • the quantum dot is deteriorated when exposed to oxygen, and has a property of lowering luminescence ability.
  • the above-described antioxidant is included in the light emitting layer, the light emitting nanoparticles may be protected.
  • the antioxidant for example, oxidizing metals, phenolic antioxidants, thioether antioxidants, phosphate antioxidants or amine antioxidants such as hindered amines may be used.
  • the antioxidant may be contained in any of the aforementioned matrix or emulsion regions.
  • the light emitting layer may include an oxidative metal particle or an oxide of the metal particle.
  • An oxidizing metal particle means a metal capable of reacting with oxygen to form an oxide, and an alkali metal, an alkaline earth metal, a transition metal, or the like may also be applied when oxidative.
  • the metal may protect the light emitting nanoparticles by reacting with oxygen in the light emitting layer to form an oxide.
  • the oxidizing metal which can be used is not particularly limited as long as it can react with oxygen to form an oxide. Examples of the oxidizing metal include, but are not limited to, Pt, Au, Ag, or Ce.
  • the size of the metal particles can be adjusted in consideration of the reactivity with oxygen, and can generally have an average particle diameter in the range of about 10 nm to 10,000 nm.
  • the ratio of the oxidizing metal particles or oxides thereof in the light emitting layer may be selected in consideration of, for example, reactivity with oxygen, curability of the light emitting layer material, or light emission characteristics of the light emitting layer.
  • the oxidizing metal particles may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer. If necessary, known dispersants for the dispersion of the oxidizing metal particles can be used together.
  • the light emitting layer may also include, as antioxidants, amine antioxidants such as phenolic antioxidants, thioether antioxidants, phosphate antioxidants or hindered amines.
  • amine antioxidants such as phenolic antioxidants, thioether antioxidants, phosphate antioxidants or hindered amines.
  • the specific kind of each antioxidant is not particularly limited, and known materials may be applied.
  • the ratio of the antioxidant in the light emitting layer may also be selected in consideration of the reactivity with oxygen, the curability of the light emitting layer material, or the light emitting properties of the light emitting layer.
  • the antioxidant may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer.
  • the light emitting layer may also contain scattering particles.
  • the scattering particles included in the light emitting layer may further improve the optical characteristics of the light emitting layer by controlling the probability that light incident on the light emitting layer is introduced into the light emitting nanoparticles.
  • the term scattering particle means any kind of particle that has a different refractive index than the surrounding medium, for example the matrix or emulsion region, and also has a suitable size to scatter, refract or diffuse incident light. can do.
  • the scattering particles may have a low or high refractive index compared to the surrounding medium, for example the matrix and / or emulsion region, and the absolute value of the difference in the refractive index with the matrix and / or emulsion region is 0.2 or more.
  • the upper limit of the absolute value of the difference in refractive index is not particularly limited and may be, for example, about 0.8 or less or about 0.7 or less.
  • the scattering particles have, for example, an average particle diameter of 10 nm or more, 100 nm or more, more than 100 nm, 100 nm to 20000 nm, 100 nm to 15000 nm, 100 nm to 10000 nm, 100 nm to 5000 nm, 100 nm to 1000 nm or 100 nm to 500 nm.
  • the scattering particles may have a shape such as spherical, elliptical, polyhedron or amorphous, but the shape is not particularly limited.
  • the scattering particles for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles comprising an inorganic material can be exemplified.
  • the scattering particles may be formed of only one of the above materials or two or more of the above materials.
  • hollow particles such as hollow silica or core / cell structure particles may be used as scattering particles.
  • the ratio of the scattering particles in the light emitting layer is not particularly limited and, for example, may be selected at an appropriate ratio in consideration of the path of light incident on the light emitting layer.
  • Scattering particles can be included, for example, in the matrix or emulsion region.
  • the scattering particles may be included in only one of the matrix and emulsion regions and may not be present in the other regions.
  • the region in which the scattering particles do not exist is a region substantially free of the particles as described above, and based on the total weight of the region, the weight ratio of the scattering particles in the region is 10% or less, 8 It may mean a case of% or less, 6% or less, 4% or less, 2% or less, 1% or less, or 0.5% or less.
  • the scattering particles may be present only in the region where the light emitting nanoparticles are not included.
  • Scattering particles may be included in the light emitting layer in a ratio of 10 to 100 parts by weight relative to 100 parts by weight of the total weight of the matrix or emulsion region, it is possible to ensure appropriate scattering properties within this ratio.
  • the light emitting layer may further include additives such as oxygen scavenger or radical scavenger in the required amount.
  • the thickness of the light emitting layer is not particularly limited and may be selected in an appropriate range in consideration of the intended use and optical characteristics.
  • the light emitting layer may have a thickness in the range of 10 to 500 ⁇ m, 10 to 400 ⁇ m, 10 to 300 ⁇ m, or 10 to 200 ⁇ m, but is not limited thereto.
  • Such a light emitting layer can be produced by polymerizing a layer containing a mixture of a hydrophilic polymerizable composition and a hydrophobic polymerizable composition, for example.
  • a hydrophilic and hydrophobic polymerizable composition for example, the above-described composition, that is, a composition containing a hydrophilic or hydrophobic radically polymerizable compound, an initiator and the like can be used.
  • the mixture may be prepared by separately preparing each of the hydrophilic and hydrophobic polymerizable compositions, or may be prepared by mixing the components of the hydrophilic and hydrophobic polymerizable composition at once.
  • phase separation may occur during the polymerization process, and a light emitting layer having the above-described type may be formed.
  • the manner of forming the layer comprising the mixture is not particularly limited.
  • the obtained mixture can be formed by coating onto a suitable substrate by a known coating method.
  • the method of curing the layer formed in the above manner is not particularly limited, for example, applying an appropriate range of heat such that the initiator included in each composition can be activated, or applying electromagnetic waves such as ultraviolet rays. It can be done in a way that is applied.
  • the light emitting layer for example, a light emitting layer including quantum dots as light emitting nanoparticles
  • the light emitting layer is vulnerable to external factors such as moisture, moisture or oxygen. Therefore, when the light emitting layer is exposed to the external factor, the performance of the light emitting nanoparticles is reduced.
  • the side surface of the light emitting layer serves as a penetration path of external factors such as oxygen.
  • the light emitting film of the present application has a structure including a blocking film present on the side of the light emitting layer.
  • the barrier layer may be present on all sides of the light emitting layer.
  • the blocking layer may be present on the top and / or bottom of the light emitting layer as well as the side of the light emitting layer.
  • the light emitting layer may be sealed on the entire surface by the blocking film.
  • barrier film may refer to any kind of layer that exhibits a water vapor transmission rate (WVTR) and / or an oxygen transmission rate (OTR) in an intended range.
  • WVTR water vapor transmission rate
  • OTR oxygen transmission rate
  • the barrier membrane has a water vapor transmission rate of 10 g / m 2 / day or less, g / m 2 / day or less, 8 g / m 2 / day or less, 6 g / m at a temperature of 40 ° C. and a relative humidity of 90%.
  • 2 / day or less 4 g / m 2 / day or less, 2 g / m 2 / day or less, 1 g / m 2 / day or less, 0.5 g / m 2 / day or less, 0.3 g / m 2 / day or less
  • the minimum of the said water vapor transmission rate is not specifically limited.
  • the lower limit of the water vapor transmission rate is 0.001 g / m 2 / day or more, 0.005 g / m 2 / day or more, 0.01 g / m 2 / day or more, 0.02 g / m 2 / day or more, 0.03 g / m At least 2 / day, at least 0.04 g / m 2 / day, at least 0.05 g / m 2 / day or at least 0.06 g / m 2 / day.
  • the moisture permeability can be measured by, for example, ISO 15106-3 or ASTM F-1249 standard.
  • the barrier membrane has an oxygen transmission rate (OTR) of 1 cc / m 2 / day or less at any temperature within a range of 25 ° C. to 30 ° C. and any relative humidity within 70% to 80%. 2 / day or less, 0.8 cc / m 2 / day or less, 0.6 cc / m 2 / day or less, 0.4 cc / m 2 / day or less, 0.2 cc / m 2 / day or less, 0.1 cc / m 2 / day or less, 0.05 cc / m 2 / day or less, 0.03 cc / m 2 / day or less, or 0.01 cc / m 2 / day or less.
  • OTR oxygen transmission rate
  • the blocking film can be formed using a known material known to block external factors, in particular moisture or oxygen.
  • the barrier layer may include a metal, an oxide, a nitride, an oxynitride, a fluoride, a polysilazane or an oxygen absorbent.
  • metal aluminum (Al) may be exemplified, and as the oxide, TiO 2 , Ti 3 O 3 , Al 2 O 3 , MgO, SiO, SiO 2 , GeO, NiO, CaO, BaO, Fe 2 O 3, such as Y 2 O 3, ZrO 2, Nb 2 O 3 and CeO there may be mentioned a metal oxide 2, and so on, nitrides include, may be made of a metal nitride such as SiN, oxynitride include, SiON of Examples of the metal oxynitride include metal fluorides such as MgF 2 , LiF, AlF 3, and CaF 2 , but are not limited thereto.
  • the barrier film may be formed by applying the above material to an appropriate method, for example, a deposition method or a coating method.
  • the kind of oxygen absorbent is not particularly limited in the above, and compounds known to have an oxygen absorbing function may be used without limitation.
  • the oxygen absorbent a type that exhibits an oxygen absorption function through oxidation of unsaturated carbon or a type that exhibits an oxygen absorption function by photosensitive dye oxidation can be used.
  • oxygen absorbents include sulfite compounds, vitamin E, vitamin C, tocopherol, compounds including unsaturated double bonds, and the like.
  • the barrier layer including the oxygen absorbent may further include the transition metal catalyst and / or an ultraviolet sensitizer.
  • the barrier layer may include a barrier layer and an oxygen absorbent.
  • the oxygen absorbent may be included in the barrier film or in an oxygen absorber film laminated with the barrier film.
  • the arrangement order in the light emitting film is not particularly limited.
  • the oxygen absorbing film may be formed adjacent to the light emitting layer as compared with the barrier film.
  • the blocking film may include at least one oxygen blocking film and at least one barrier film.
  • the blocking film may have a structure in which one oxygen absorbing film is present between two barrier films.
  • barrier film may mean, for example, all kinds of layers exhibiting a water vapor transmission rate (WVTR) in the aforementioned range.
  • WVTR water vapor transmission rate
  • barrier film of this application will not be restrict
  • barrier films formed using materials known to block external factors such as moisture are known in the art, and all of these known barrier films may be applied in the present application.
  • the barrier film may include a material (hereinafter, a barrier material) capable of exhibiting barrier properties, such as a metal, an oxide, a nitride, an oxynitride, or a fluoride. Specific types of the metal, oxide, nitride, oxynitride or fluoride are as described above.
  • the barrier layer may include only the barrier material alone or may include other materials with the barrier material.
  • a matrix resin capable of holding the barrier material may be mentioned.
  • the barrier film can be prepared by forming a film of the barrier material on a suitable base film.
  • the barrier material film is generally formed by, for example, a deposition method. However, the barrier film may be formed by coating a coating liquid containing the barrier material and the matrix resin in addition to the deposition method.
  • Examples of the base film applied to the barrier film having the above structure include a polyolefin film such as a polyethylene film or a polypropylene film, a cycloolefin polymer (COP) film such as a polynorbornene film, and a polycarbonate (PC) film.
  • cellulose such as polyester film such as PET (poly (ethylene terephthalate)) film, polyvinyl chloride film, polyacrylonitrile film, polysulfone film, polyacrylate film, polyvinyl alcohol film or TAC (Triacetyl cellulose) film
  • PET poly (ethylene terephthalate)
  • polyvinyl chloride film polyacrylonitrile film
  • polysulfone film polyacrylate film
  • TAC Triacetyl cellulose
  • the barrier film has a structure including the base film and the layer of the barrier material present on the surface as described above, when the barrier film is formed on the side, top and / or bottom of the light emitting layer, the layer of the barrier material is compared with the base film. It may be disposed close to the light emitting layer.
  • the shape of the barrier material is not particularly limited and may be adjusted to exhibit appropriate barrier properties.
  • the barrier material may be plate-like, such as nanoclay, but is not limited thereto.
  • the barrier film may also be formed using a material that can be converted into an oxide through a suitable treatment, such as polysilazane, or a plate material such as nanoclay, in which case the material may be formed in addition to the deposition method. It can also be formed by coating the coating liquid dispersed in the matrix resin.
  • the thickness of the barrier film as described above is not particularly limited and may be adjusted in consideration of desired barrier performance.
  • the thickness of the barrier film may be about 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the lower limit of the thickness of the barrier film is not particularly limited, and for example, the thickness may be about 5 ⁇ m or more.
  • the thickness of the barrier film is, for example, when the barrier film is formed into a multi-layer structure including other layers such as a protective coating layer or a base film, for example, a layer exhibiting barrier property (ex. Metal, oxide, nitride, oxynitride or Thickness of the other element, for example, a protective coating layer, a base film, or the like, means a thickness which is not included.
  • a protective coating layer or a base film for example, a layer exhibiting barrier property (ex. Metal, oxide, nitride, oxynitride or Thickness of the other element, for example, a protective coating layer, a base film, or the like, means a thickness which is not included.
  • the barrier layer may include the barrier layer alone, or may include an oxygen absorbent together with the barrier layer.
  • the oxygen absorber may be included in the barrier film or may be laminated on one surface of the barrier film in the form of a separate layer.
  • the layer including the oxygen absorbent may be referred to as an oxygen absorber. Specific types of oxygen absorbers that can be used in the present application are as described above.
  • the oxygen absorbent may be deposited together in the above-described deposition process of the barrier material, the barrier material may be deposited on the surface where the oxygen absorber is present, or the barrier material may be included.
  • a method of forming a barrier film by dispersing the oxygen absorbent together in the coated liquid can be used.
  • the oxygen absorbing film is formed by a coating method using a coating liquid prepared by dispersing the oxygen absorbent in an appropriate resin matrix, or the raw material containing the resin matrix and the oxygen absorbing agent is extruded.
  • the oxygen absorbing film may be laminated with the barrier film, or the oxygen absorbing film may be directly coated or extruded on the barrier film. It can be applied in a manner to form.
  • the oxygen absorbing film formed in this manner may further include a resin component derived from the resin matrix.
  • the resin component that can be included in the oxygen absorbing film is not particularly limited, and for example, a component capable of effectively holding an oxygen absorbent and maintaining optical transparency can be used.
  • a resin component polyester, polyacrylate, polyolefin, polycarbonate, polyimide, or the like can be used.
  • the refractive index of each component may be adjusted to allow the oxygen absorbing film to exhibit a scattering function.
  • the absolute value of the difference between the refractive index of the oxygen absorber included in the oxygen absorbing film and the refractive index of the resin component may be about 0.01 or more. Due to the difference in refractive index within this range, the oxygen absorbing film exhibits an appropriate haze, thereby ensuring a scattering function.
  • the refractive index may refer to a refractive index measured for light having a wavelength of about 550 nm, unless specifically stated otherwise.
  • the ratio of the oxygen absorbent in the oxygen absorbing film or the barrier film is not particularly limited.
  • the ratio of the oxygen absorbent in the oxygen absorber may be adjusted in consideration of the kind of oxygen absorber used, the thickness of the oxygen absorber, the kind of other components included with the oxygen absorbent, such as a resin component, and the like.
  • the ratio of the oxygen absorbent in the oxygen absorbing film or the barrier film may be adjusted so that the absorbing film or the barrier film can exhibit the oxygen transmission rate (OTR) in the above-described range.
  • OTR oxygen transmission rate
  • the oxygen absorbent in the oxygen absorbing film may generally include 2 to 400 parts by weight of the oxygen absorbent relative to 100 parts by weight of the resin component.
  • the ratio is exemplary, and the ratio may be changed in consideration of the type of the oxygen absorbent or the desired performance.
  • the thickness of the oxygen absorbing film is not particularly limited, and may be adjusted to exhibit the oxygen permeability in the above range depending on the material of the oxygen absorbing film.
  • the barrier layer may have a reflectance of at least one wavelength within the range of 400 nm to 760 nm or the entire wavelength of at least 80%, at least 85%, at least 90%, or at least 95%.
  • the reflectance is appropriate as the numerical value is higher, and the upper limit is not particularly limited.
  • the reflectance may be 100% or less.
  • FIG. 1 is a cross-sectional view of an exemplary light emitting film, and shows a structure in which a blocking film 102 exists on a side surface of the light emitting layer 101, and a blocking film exists on upper and lower portions of the light emitting layer 101.
  • the blocking film present on the upper and lower portions of the light emitting layer 101 is a structure including a layer 1031 of a barrier material and a base film 1032.
  • the refractive index of each element included in the above structure can be adjusted.
  • the light incident to the inside of the light emitting film can be properly reflected in the inside of the film, thereby improving the light emission efficiency by the light emitting film.
  • the light emitting film may include, as an additional layer, a reflective layer on top of the light emitting layer, for example.
  • the reflective layer may be included, for example, in the case where the light emitting film includes the blocking film or between the light emitting layer and the blocking film.
  • a reflective layer for example, a reflective layer in which the wavelength of the reflected light is within the range of 420 nm to 490 nm can be used.
  • the wavelength of the reflected light in the above means the wavelength of the light that the reflective layer can reflect.
  • the light emitting layer when the light emitting layer contains an appropriate amount of the green particles and the red particles described above, the light emitting layer converts at least some of the incident blue light, that is, light within the wavelength range of 420 nm to 490 nm, into green light and red light, and finally white light is emitted. It can be configured to be released. In this case, by introducing a reflective layer capable of reflecting blue light, it is possible to adjust the probability that the incident blue light meets the green particles or the red particles, thereby enabling the generation of the white light more efficiently.
  • a reflection layer a well-known layer can be used as long as it has the wavelength of the reflected light mentioned above.
  • the reflective layer include, but are not limited to, a cholesteric liquid crystal layer or a lyotropic liquid crystal layer.
  • the light emitting film may also comprise, as an additional layer, for example an optically anisotropic layer on top of the reflective layer.
  • the optically anisotropic layer may serve to adjust color characteristics of light generated from the light emitting film, for example, color coordinates.
  • the optically anisotropic layer may have a plane retardation for light of 550 nm wavelength in a range of 100 nm to 350 nm.
  • the plane phase difference is a numerical value calculated by the following Equation 1.
  • Rin is the retardation of plane
  • d is the thickness of the optically anisotropic layer
  • Nx is the refractive index for the light of 550 nm wavelength in the slow axis direction of the optically anisotropic layer
  • Ny is 550 nm in the fast axis direction of the optically anisotropic layer Refractive index for light of wavelength.
  • the optically anisotropic layer may have a half wavelength or a quarter wavelength phase retardation characteristic.
  • n-wavelength phase retardation characteristic may mean a characteristic capable of retarding incident light by n times the wavelength of the incident light within at least a portion of the wavelength range.
  • the planar phase difference for light having a wavelength of 550 nm may be in a range of 200 nm to 290 nm or 220 nm to 270 nm, and the anisotropic layer
  • the plane retardation with respect to the light of the 550 nm wavelength may be in the range of 110 nm to 220 nm or 140 nm to 170 nm.
  • the optically anisotropic layer may be a polymer film, for example, a stretched polymer film or a liquid crystal film.
  • a polymer film for example, a stretched polymer film or a liquid crystal film.
  • stretching by an appropriate method can be used, for example.
  • an unstretched polymer film can also be used.
  • polymer film examples include polyolefin films such as polyethylene films or polypropylene films, cycloolefin polymer (COP) films such as polynorbornene films, polyvinyl chloride films, polyacrylonitrile films, polysulfone films, Cellulose ester-based polymer film, such as polyacrylate film, polyvinyl alcohol film or Triacetyl cellulose (TAC) film, or a copolymer film of two or more monomers among the monomers forming the polymer may be exemplified, but the present invention is not limited thereto. no.
  • a liquid crystal film a film formed by orientating a reactive liquid crystal compound called RM (Reactive Mesogen) in an appropriate manner can be used.
  • RM Reactive Mesogen
  • the light emitting film may further include a polarizing layer.
  • the polarizing layer may be present on the optically anisotropic layer.
  • an angle formed between the light absorption axis of the polarizing layer and the optical axis (eg, the slow axis) of the optically anisotropic layer may be in a range of about 0 degrees to 90 degrees.
  • the polarizing layer may be a functional element capable of extracting light vibrating in one direction from incident light vibrating in various directions.
  • a polarizing layer for example, a conventional polarizing layer such as a PVA (poly (vinyl alcohol)) polarizing layer is used, or a host containing a lyotropic liquid crystal layer (LLC layer) or a reactive liquid crystal compound and a dichroic dye.
  • a polarizing coating layer, such as a guest liquid crystal layer, may be used, but is not limited thereto.
  • the light emitting film may further include other components in addition to the aforementioned components.
  • various optical films including a brightness enhancement film, a prism sheet, or the like, which may be present on the optically anisotropic layer, or one or both surfaces of the light emitting layer, or a side surface thereof.
  • Barrier films and the like that may be present in the back and the like can be exemplified, but is not limited thereto.
  • An exemplary lighting device may include a light source and the light emitting film.
  • the light source and the light emitting film in the lighting device may be arranged to allow light emitted from the light source to enter the light emitting film.
  • the light emitting layer included in the light emitting film may be disposed in the lighting device closer to the CLC layer.
  • the wavelength of the light emitted from the light source and the wavelength of the light emitted by the light emitting nanoparticles it is possible to adjust the color purity or color of the light emitted from the light emitting film.
  • the blue light is reflected by the CLC layer on the upper part of the light emitting layer to be incident on the light emitting layer again, so that the light emitting efficiency of the light emitting layer can be further improved.
  • the kind of the light source included in the lighting device of the present application is not particularly limited, and an appropriate kind may be selected in consideration of the kind of the desired light.
  • the light source may be a blue light source, for example, a light source capable of emitting light having a wavelength within a range of 420 to 490 nm.
  • FIGS. 2 and 3 are views showing an exemplary lighting device including a light source and a light emitting film as described above.
  • the light source and the light emitting film in the lighting apparatus may be arranged to allow light emitted from the light source to be incident on the light emitting film.
  • the light source 401 is disposed under the light emitting film 402, so that light irradiated from the light source 401 in the upper direction may be incident to the light emitting film 402.
  • the light source 401 is disposed on the side surface of the light emitting film 402.
  • the light from the light source 401 such as the light guiding plate 501 or the reflecting plate 502 is more likely to be used.
  • Other means may be included to efficiently enter the luminescent film 402.
  • 2 and 3 is an example of the lighting device of the present application, in addition to the lighting device may have a variety of known forms, for this purpose may further include a variety of known configurations.
  • the lighting device of the present application can be used for various purposes.
  • a representative use of the lighting device of the present application is a display device.
  • the lighting device may be used as a backlight unit (BLU) of a display device such as a liquid crystal display (LCD).
  • BLU backlight unit
  • LCD liquid crystal display
  • the lighting device may be a backlight unit (BLU) of a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture, special wavelength lighting required in biology, and the like, but the use of the lighting apparatus is not limited thereto.
  • BLU backlight unit
  • a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture, special wavelength lighting required in biology, and the like, but the use of the lighting apparatus is not limited thereto.
  • the present application can provide a light emitting film and its use, which can effectively produce a desired light, for example, white light, and whose performance can be stably maintained for a long time.
  • FIG. 1 is a cross-sectional view of an exemplary light emitting film.
  • FIGS. 2 and 3 are schematic diagrams of exemplary lighting devices.
  • the reflectance of the barrier film was evaluated as follows. That is, after depositing the same material as the blocking film formed on the substrate (PET, poly (ethyleneterephtahlate)) in the same thickness and the same method, using the measurement equipment (F10-RT of Filmetrics) according to the manufacturer's manual Evaluated.
  • PET poly (ethyleneterephtahlate)
  • WVTR water vapor transmission rate
  • OTR oxygen transmission rate
  • the durability of the light emitting film prepared in Example or Comparative Example is that after leaving the film in a dark state at a temperature of 80 ° C. for a predetermined time, the light is irradiated from one surface of the light emitting film, and the rate of change of the luminance of light emitted from the other surface is measured. Measured and evaluated. In the above, the luminance was evaluated using a measuring instrument (spectrometer, SR-UL2, Topcon).
  • PEG poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green quantum dots (Quantum Dot, luminescent nanoparticles), surfactant (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles were prepared as 9: 1: 1: 0.2: 0.05: It was mixed at a weight ratio of 0.05 (PEGDA: LA: BD: green particles: surfactant: SiO 2 nanoparticles).
  • Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare Mixture B.
  • Mixture B Mixing A and B in the same weight ratio to prepare a coating solution, and the coating solution is placed in a thickness of about 100 ⁇ m between two barrier films (i-component) spaced at regular intervals, and irradiated with ultraviolet rays Radical polymerization was induced to cure to form a light emitting layer.
  • 4 and 5 are micrographs confirmed for the above examples. It can be seen from the figure that the emulsion region in which the light emitting nanoparticles are present is dispersed in the matrix to form a light emitting layer that is present by phase separation.
  • PEG poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green particles (Quantum Dot particles), surfactants (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles as 9: 1: 1: 0.1: 0.05: 0.05 (PEGDA) : LA: BD: green particles: surfactant: SiO 2 nanoparticles).
  • Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare a mixture.
  • the mixture was placed at a thickness of about 100 ⁇ m between two barrier films (i-component) spaced at regular intervals, and irradiated with ultraviolet rays to induce radical polymerization to form a light emitting layer.
  • 6 is a photograph of a light emitting layer formed in the above manner. It can be seen from the figure that the emulsion region in which the light emitting nanoparticles are present is dispersed in the matrix to form a light emitting layer that is present by phase separation.
  • Aluminum was deposited on the side of the light emitting film (the light emitting film including the light emitting layer present between two barrier films (i-component)) prepared in Preparation Example 2 to form a blocking film.
  • the deposition was performed at a temperature of about 110 ° C. and deposited to a thickness of about 200 nm.
  • the reflectance was about 90% to 92% in the entire range of 400 to 780 nm.
  • 7 to 9 are photographs of the prepared light emitting film, and in particular, FIGS. 8 and 9 are enlarged photographs of the sidewalls.
  • a light emitting film was manufactured in the same manner as in Example 1, except that no barrier film was formed on the side surfaces. 10 and 11 are photographs of the prepared light emitting film.
  • blended the appropriate amount of cobalt catalyst with the resin composition in which polybutadiene and polyethylene are mixed by the weight ratio (polybutadiene: polyethylene) of about 4: 1 was used.
  • the composition was applied to an extrusion method to form a layer having a thickness of about 30 ⁇ m to prepare an oxygen absorbing film.
  • the oxygen absorbing film was laminated with a known barrier film to prepare a blocking film.
  • a barrier film a barrier film having an Al 2 O 3 deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 ⁇ m is formed on one surface of a poly (ethylene terephthalate) film (thickness: about 12 ⁇ m).
  • the barrier film was manufactured by stacking the prepared oxygen absorbing film on one surface of the barrier film A.
  • a barrier film formed of a SiOx deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 ⁇ m on one surface of a poly (ethylene terephthalate) (PET) film (thickness: about 12 ⁇ m)
  • PET poly (ethylene terephthalate)
  • Water Vapor Transmission Rate about 0.08 g / m2 / day (40 ° C. temperature and 90% relative humidity)
  • Oxygen Transmission Rate OTR
  • a light emitting film was manufactured in the same manner as in Example 2, except that the barrier film was prepared by laminating the oxygen absorbing film prepared in Example 2 on the barrier film B using a relative humidity of 80%)) (barrier film B).
  • a light emitting film was manufactured in the same manner as in Example 2, except that only the barrier film A of Example 2 was laminated on the upper and lower portions of the light emitting layer without the blocking film formed on the side surfaces thereof.
  • a light emitting film was manufactured in the same manner as in Example 2, except that only the barrier film B of Example 3 was laminated on the upper and lower portions of the light emitting layer without the blocking film formed on the side surfaces thereof.
  • a barrier film formed with a SiOx deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 ⁇ m on one surface of a poly (ethylene terephthalate) (PET) film (thickness: about 125 ⁇ m)
  • PET poly (ethylene terephthalate)
  • Water Vapor Transmission Rate about 0.021 g / m2 / day (38 ° C temperature and 90% relative humidity)
  • Oxygen Transmission Rate OTR
  • a light emitting film was manufactured in the same manner as in Comparative Example 2 except that only 0% relative humidity)) (barrier film C) was used.
  • PET poly
  • WVTR Water Vapor Transmission Rate
  • OTR Oxygen Transmission Rate
  • a light emitting film was manufactured in the same manner as in Comparative Example 2 except that only (Barrier film D) (temperature of 23 ° C. and relative humidity of 0%) was used.
  • a light emitting film was manufactured in the same manner as in Comparative Example 2, except that a barrier film prepared by stacking the oxygen absorbing layer prepared in Example 2 on one surface of a PET (poly (ethylene terephthalate)) film having no barrier property was used.

Abstract

The present application relates to a light-emitting film, an illumination device, and a display device. The present application may provide a light-emitting film and the use thereof, the light-emitting film being capable of effectively generating a desired light, such as white light, and stably maintaining the performance thereof for a long period of time.

Description

발광 필름Light emitting film
본 출원은 2015년 3월 27일자 제출된 대한민국 특허출원 제10-2015-0043449호 및 2015년 3월 31일자로 제출된 대한민국 특허출원 제10-2015-0045633호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0043449 filed March 27, 2015 and Korean Patent Application No. 10-2015-0045633 filed March 31, 2015, All contents disclosed in the documents of the corresponding Korean patent application are included as part of this specification.
본 출원은 발광 필름, 조명 장치 및 디스플레이 장치에 대한 것이다.The present application relates to a light emitting film, a lighting device and a display device.
조명 장치는 다양한 용도에 사용되고 있다. 조명 장치는, 예를 들면, LCD(Liquid Crystal Display), TV, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이의 BLU(Backlight Unit)로 사용될 수 있다. 조명 장치는 그 외에도, 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용될 수 있다.Lighting devices are used for a variety of applications. The lighting device is, for example, a BLU of a display such as a liquid crystal display (LCD), a TV, a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device or a digital camera. Can be used as (Backlight Unit). In addition, the lighting device may be used for indoor or outdoor lighting, stage lighting, decorative lighting, accent lighting or museum lighting, and the like, and may also be used for special wavelength lighting required in horticulture or biology.
대표적인 조명 장치로는, 예를 들면, LCD의 BLU 등으로 사용되는 것으로서 청색 LED(Light Emitting Diode)와 YAG(Yttrium aluminium garnet)와 같은 형광체를 조합시켜 백색광을 내는 장치가 있다.As a typical lighting device, for example, a device that emits white light by combining a blue LED (Light Emitting Diode) and a phosphor such as YAG (Yttrium aluminum garnet), which is used as a BLU of an LCD.
<선행기술문헌><Preceding technical literature>
<특허문헌><Patent Documents>
(특허문헌 1) 한국공개특허공보 제2011-0048397호(Patent Document 1) Korean Patent Publication No. 2011-0048397
(특허문헌 2) 한국공개특허공보 제2011-0038191호(Patent Document 2) Korean Patent Publication No. 2011-0038191
본 출원은 발광 필름, 조명 장치 및 디스플레이 장치를 제공한다. 본 출원에서는 목적하는 광, 예를 들면, 백색광을 효과적으로 생성할 수 있으며, 그 성능이 장기간 동안 안정적으로 유지될 수 있는 발광 필름 및 그 용도를 제공할 수 있다.The present application provides a light emitting film, a lighting device and a display device. The present application can provide a light emitting film and its use, which can effectively produce a desired light, for example, white light, and whose performance can be stably maintained for a long time.
본 출원은 발광 필름에 대한 것이다. 본 출원에서 용어 발광 필름은 광을 낼 수 있도록 형성된 필름을 의미할 수 있다. 예를 들면, 상기 발광 필름은, 소정 파장의 광을 흡수하여 상기 흡수한 광과 동일하거나 다른 파장의 광을 방출할 수 있도록 형성된 필름일 수 있다. The present application relates to a light emitting film. In the present application, the term light emitting film may refer to a film formed to emit light. For example, the light emitting film may be a film formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light.
발광 필름은 발광층을 포함할 수 있다. 발광층은, 예를 들면, 발광 나노입자 및 상기 발광 나노입자를 유지하는 바인더를 포함할 수 있다.The light emitting film may include a light emitting layer. The light emitting layer may include, for example, light emitting nanoparticles and a binder holding the light emitting nanoparticles.
본 출원에서 용어 발광 나노입자는, 발광할 수 있는 나노입자를 의미할 수 있다. 예를 들면, 상기 발광 나노입자는, 소정 파장의 광을 흡수하여 상기 흡수한 광과 동일하거나 다른 파장의 광을 방출할 수 있도록 형성된 나노입자를 의미할 수 있다. 본 출원에서 용어 나노입자는 나노 스케일의 디멘젼(dimension)을 가지는 입자로서, 예를 들면, 평균 입경이 약 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하 또는 약 15 nm 이하인 입자를 의미할 수 있다. 나노입자의 형태는 특별히 제한되지 않으며, 구상이거나, 타원체, 다각형 또는 무정형 등을 포함할 수 있다.In the present application, the term light emitting nanoparticles may refer to nanoparticles capable of emitting light. For example, the light emitting nanoparticles may refer to nanoparticles formed to absorb light having a predetermined wavelength and emit light having the same or different wavelength as the absorbed light. In the present application, the term nanoparticle is a particle having a dimension of a nano scale, for example, an average particle diameter of about 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less, 50 nm or less , 40 nm or less, 30 nm or less, 20 nm or less, or about 15 nm or less. The shape of the nanoparticles is not particularly limited, and may be spherical, ellipsoidal, polygonal or amorphous.
본 명세서에서는 편의상 나노입자로 호칭하나, 상기 나노 구조물은, 입자 형태일 수도 있고, 예를 들면, 나노와이어, 나노로드, 나노튜브, 분기된 나노구조, 나노테트라포드(nanotetrapods), 트라이포드(tripods) 또는 바이포드(bipods) 등의 형태일 수 있으며, 이러한 형태도 본 출원에서 규정하는 나노입자에 포함될 수 있다. 본 출원에서 용어 나노 구조물에는 약 500 nm 미만, 약 200 nm 미만, 약 100 nm 미만, 약 50 nm 미만, 약 20 nm 미만 또는 약 10 nm 미만의 치수를 가지는 적어도 하나의 영역 또는 특성 치수를 가지는 유사한 구조들을 포함할 수 있다. 일반적으로, 영역 또는 특성 치수들은 그 구조의 가장 작은 축을 따라서 존재할 수 있으나, 이에 제한되는 것은 아니다.Although referred to herein as nanoparticles for convenience, the nanostructures may be in the form of particles, for example, nanowires, nanorods, nanotubes, branched nanostructures, nanonotetrapods, tripods. Or bipods, and the like, and these forms may also be included in the nanoparticles defined in the present application. In the present application, the term nanostructures includes similar structures having at least one area or characteristic dimension having dimensions of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm or less than about 10 nm. It may include structures. In general, area or characteristic dimensions may exist along the smallest axis of the structure, but are not limited thereto.
예를 들면, 발광 나노입자는 420 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 490 내지 580 nm 범위 내의 어느 한 파장의 광을 방출할 수 있는 나노입자(이하, 녹색 입자라 칭할 수 있다.) 및/또는 450 내지 490 nm의 범위 내의 어느 한 파장의 광을 흡수하여 580 내지 780 nm 범위 내의 어느 한 파장의 광을 방출할 수 있는 나노입자(이하, 적색 입자라 칭할 수 있다.)일 수 있다. 예를 들어, 백색광을 방출할 수 있는 발광 필름을 얻기 위하여 상기 적색 입자와 녹색 입자가 적정 비율로 함께 발광층에 포함되어 있을 수 있다. 일 예시에서 백색광을 방출할 수 있는 발광 필름의 발광층은, 상기 적색 입자 100 중량부 대비 300 내지 1500 중량부의 녹색 입자를 포함할 수 있다. 발광 나노입자로는 이러한 작용을 나타내는 것이라면 특별한 제한 없이 사용할 수 있다. 이러한 나노입자의 대표적인 예로는, 소위 양자점(Quantum Dot)으로 호칭되는 나노 구조물이 예시될 수 있다.For example, the light emitting nanoparticles may be referred to as nanoparticles (hereinafter, referred to as green particles) capable of absorbing light of any wavelength within a range of 420 to 490 nm to emit light of any wavelength within a range of 490 to 580 nm. .) And / or nanoparticles (hereinafter referred to as red particles) capable of absorbing light of any wavelength within the range of 450-490 nm to emit light of any wavelength within the range of 580-780 nm. Can be. For example, in order to obtain a light emitting film capable of emitting white light, the red particles and the green particles may be included in the light emitting layer together at an appropriate ratio. In one example, the light emitting layer of the light emitting film capable of emitting white light may include 300 to 1500 parts by weight of green particles relative to 100 parts by weight of the red particles. The light emitting nanoparticles can be used without any particular limitation as long as they exhibit such a function. As a representative example of such nanoparticles, a nanostructure called a quantum dot may be exemplified.
상기 나노 구조물은, 예를 들면, 실질적으로 결정질이거나, 실질적으로 단결정질, 다결정질 또는 비정질이거나, 상기의 조합일 수 있다.The nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline or amorphous, or combinations of the above.
발광 나노입자로 사용될 수 있는 양자점은 공지된 임의의 방식으로 제조할 수 있다. 예를 들어, 양자점을 형성하는 적합한 방법들은, 미국특허 제6,225,198호, 미국공개특허 제2002-0066401호, 미국 특허 제6,207,229호, 미국특허 제6,322,901호, 미국특허 제6,949,206호, 미국특허 제7,572,393호, 미국특허 제7,267,865호, 미국특허 제7,374,807호 또는 미국특허 제6,861,155호 등에 공지되어 있으며, 상기 외에도 다양한 공지의 방식들이 본 출원에 적용될 수 있다.Quantum dots that can be used as luminescent nanoparticles can be prepared in any known manner. For example, suitable methods for forming quantum dots are described in US Pat. No. 6,225,198, US Patent Publication 2002-0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, US Pat. No. 6,949,206, US Pat. No. 7,572,393. , US Pat. No. 7,267,865, US Pat. No. 7,374,807 or US Pat. No. 6,861,155, and the like, and various other known methods may be applied to the present application.
본 출원의 양자점 또는 다른 나노입자들은 임의의 적합한 재료, 예를 들면, 무기 재료로서, 무기 전도 또는 반전도 재료를 사용하여 형성될 수 있다. 적합한 반도체 재료로는 II-VI족, III-V족, IV-VI족 및 IV족 반도체들이 예시될 수 있다. 구체적으로는, Si, Ge, Sn, Se, Te, B, C(다이아몬드 포함), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO 및 2개 이상의 상기 반도체들의 적합한 조합들이 예시될 수 있지만, 이에 한정되지 않는다.Quantum dots or other nanoparticles of the present application can be formed using any suitable material, for example, an inorganic conductive or semiconducting material, as an inorganic material. Suitable semiconductor materials can be exemplified by Group II-VI, III-V, IV-VI and Group IV semiconductors. Specifically, Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, Mg MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In) 2 (S, Se, Te ), Al 2 CO and suitable combinations of two or more of the above semiconductors may be exemplified, but are not limited thereto.
하나의 예시에서 반도체 나노결정 또는 다른 나노구조는 p-형 도펀트 또는 n-형 도펀트 등과 같은 도펀트를 포함할 수도 있다. 본 출원에서 사용될 수 있는 나노입자는 또한 II-VI 또는 III-V 반도체들을 포함할 수 있다. II-VI 또는 III-V 반도체 나노결정들 및 나노구조들의 예로는, Zn, Cd 및 Hg 등과 같은 주기율표 II족 원소와 S, Se, Te, Po 등과 같은 주기표 VI족 원소와의 임의의 조합; 및 B, Al, Ga, In, 및 Tl 등과 같은 III족 원소와 N, P, As, Sb 및 Bi 등과 같은 V족 원소와의 임의의 조합이 있지만, 이에 제한되는 것은 아니다. 다른 예시에서 적합한 무기 나노구조들은 금속 나노구조들을 포함하고, 적합한 금속으로는 Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti, Sn, Zn, Fe 또는 FePt 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. In one example, the semiconductor nanocrystal or other nanostructure may include a dopant, such as a p-type dopant or an n-type dopant. Nanoparticles that may be used in the present application may also include II-VI or III-V semiconductors. Examples of II-VI or III-V semiconductor nanocrystals and nanostructures include any combination of periodic table group elements, such as Zn, Cd, and Hg, with periodic table group VI elements, such as S, Se, Te, Po, and the like; And any combination of group III elements, such as B, Al, Ga, In, and Tl, and group V elements, such as N, P, As, Sb, Bi, and the like, but is not limited thereto. In other examples suitable inorganic nanostructures include metal nanostructures, and suitable metals include Ru, Pd, Pt, Ni, W, Ta, Co, Mo, Ir, Re, Rh, Hf, Nb, Au, Ag, Ti , Sn, Zn, Fe or FePt and the like can be exemplified, but is not limited thereto.
발광 나노입자, 예를 들면, 양자점은 코어-셀 구조(core-shell structure)를 가질 수 있다. 코어-셀 구조의 발광 나노입자를 형성할 수 있는 예시적인 재료에는 Si, Ge, Sn, Se, Te, B, C (다이아몬드 포함), P, Co, Au, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO 및 2개 이상의 이런 재료들의 임의의 조합들이 포함되지만, 이에 제한되는 것은 아니다. 본 출원에서 적용 가능한 예시적인 코어-셀 발광 나노입자(코어/셀)에는 CdSe/ZnS, InP/ZnS, PbSe/PbS, CdSe/CdS, CdTe/CdS 또는 CdTe/ZnS 등이 포함되지만, 이에 제한되는 것은 아니다.The light emitting nanoparticles, for example quantum dots, may have a core-shell structure. Exemplary materials capable of forming core-cell structured luminescent nanoparticles include Si, Ge, Sn, Se, Te, B, C (including diamond), P, Co, Au, BN, BP, BAs, AlN, AlP , AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn , CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4, Ge3N4 , Al 2 O 3, (Al, Ga, In) 2 (S, Se, Te) 3, Al 2 CO and any combination of two or more such materials are included, but are not limited to these. Exemplary core-cell luminescent nanoparticles (core / cell) applicable in this application include, but are not limited to, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS or CdTe / ZnS, etc. It is not.
발광 나노입자의 구체적인 종류는 특별히 제한되지 않고, 목적하는 광 방출 특성을 고려하여 적절하게 선택될 수 있다.The specific kind of light emitting nanoparticles is not particularly limited and may be appropriately selected in consideration of desired light emission characteristics.
하나의 예시에서 양자점과 같은 발광 나노입자는, 하나 이상의 리간드 또는 배리어에 의해 둘러싸여 있을 수 있다. 상기 리간드 또는 배리어는, 양자점과 같은 발광 나노입자의 안정성을 향상시키고, 고온, 고강도, 외부 가스 또는 수분 등을 포함하는 유해한 외부 조건들로부터 발광 나노입자를 보호하는 것에 유리할 수 있다. 또한, 후술하는 바와 같이 발광 나노입자는 상기 매트릭스 또는 에멀젼 영역 중 어느 하나의 영역에만 존재할 수 있는데, 이와 같은 발광층을 얻기 위하여 상기 리간드 또는 배리어의 특성이 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 상용성을 가지도록 선택될 수도 있다.In one example, luminescent nanoparticles, such as quantum dots, may be surrounded by one or more ligands or barriers. The ligand or barrier may be advantageous for improving the stability of the light emitting nanoparticles such as quantum dots and protecting the light emitting nanoparticles from harmful external conditions including high temperature, high intensity, external gas or moisture, and the like. In addition, as will be described later, the light emitting nanoparticles may exist only in any one of the matrix and emulsion regions, and in order to obtain such a light emitting layer, the characteristics of the ligand or barrier are compatible only with any one of the matrix and emulsion regions. It may be selected to have.
하나의 예시에서 양자점과 같은 발광 나노입자는, 그 표면과 공액, 협동, 연관 또는 부착된 리간드를 포함할 수 있다. 양자점과 같은 발광 나노입자의 표면에 적합한 특성을 나타낼 수 있게 하는 리간드와 그 형성 방법은 공지이며, 이와 같은 방식은 본 출원에서 제한 없이 적용될 수 있다. 이러한 재료 내지는 방법들은, 예를 들면, 미국공개특허 제2008-0281010호, 미국공개특허 제2008-0237540호, 미국공개특허 제2010-0110728호, 미국공개특허 제2008-0118755호, 미국특허 제7,645,397호, 미국특허 제7,374,807호, 미국특허 제6,949,206호, 미국특허 제7,572,393호 또는 미국특허 제7,267,875호 등에 개시되어 있으나, 이에 제한되는 것은 아니다. 하나의 예시에서 상기 리간드는, 아민기를 갖는 분자(oleylamine, triethylamine, hexylamine, naphtylamine 등) 혹은 고분자, 카복실기를 갖는 분자(oleic acid 등) 혹은 고분자, 티올기를 갖는 분자(butanethiol, hexanethiol, dodecanethiol 등) 혹은 고분자, 피리딘기를 갖는 분자(pyridine 등) 혹은 고분자, 포스핀기를 갖는 분자(triphenylphosphine 등), 산화포스핀기를 갖는 분자(trioctylphosphine oxide 등), 카보닐기를 갖는 분자(alkyl ketone 등), 벤젠고리를 갖는 분자(benzene, styrene 등) 혹은 고분자, 히드록시기를 갖는 분자(butanol, hexanol 등) 혹은 고분자 등에 의해 형성될 수 있다.In one example, luminescent nanoparticles, such as quantum dots, can include ligands conjugated, cooperative, associated, or attached to their surface. Ligands and methods for forming the same are known in the art that can exhibit suitable properties on the surface of light emitting nanoparticles, such as quantum dots, and such methods can be applied without limitation in the present application. Such materials or methods are described, for example, in US Patent Publication No. 2008-0281010, US Publication No. 2008-0237540, US Publication No. 2010-0110728, US Publication No. 2008-0118755, US Patent No. 7,645,397 US Pat. No. 7,374,807, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,875, and the like, but are not limited thereto. In one example, the ligand may be a molecule having an amine group (oleylamine, triethylamine, hexylamine, naphtylamine, etc.) or a polymer, a molecule having a carboxyl group (oleic acid, etc.) or a polymer, a molecule having a thiol group (butanethiol, hexanethiol, dodecanethiol, etc.) or Polymer, molecule having pyridine group (pyridine etc.) or polymer, molecule having phosphine group (triphenylphosphine etc.), molecule having phosphine group (trioctylphosphine oxide etc.), molecule having carbonyl group (alkyl ketone etc.), benzene ring It may be formed by a molecule (benzene, styrene, etc.) or a polymer, a molecule having a hydroxyl group (butanol, hexanol, etc.) or a polymer.
발광 나노입자의 발광층 내에서의 비율은 특별히 제한되지 않으며, 예를 들면, 목적하는 광 특성 등을 고려하여 적정 범위로 선택될 수 있다. 하나의 예시에서 발광층 내에서 상기 발광 나노입자는 0.05 내지 20 중량%, 0.05 내지 15 중량%, 0.1 내지 15 중량% 또는 0.5 내지 15 중량% 정도의 농도로 존재할 수 있으나, 이에 제한되는 것은 아니다.The ratio of the light emitting nanoparticles in the light emitting layer is not particularly limited. For example, the light emitting nanoparticles may be selected in an appropriate range in consideration of desired optical properties. In one example, the light emitting nanoparticles in the light emitting layer may be present in a concentration of about 0.05 to 20% by weight, 0.05 to 15% by weight, 0.1 to 15% by weight or 0.5 to 15% by weight, but is not limited thereto.
하나의 예시에서 상기 발광 나노입자를 유지하는 바인더는 서로 상분리된 2개의 영역을 포함할 수 있다. 본 출원에서 용어 상분리된 영역들은, 예를 들면, 상대적으로 소수성인 영역 및 상대적으로 친수성인 영역과 같이 서로 섞이지 않는 2개의 영역들에 의해 형성된 영역으로서, 서로 분리되어 있다는 점을 확인할 수 있는 상태로 형성되어 있는 영역들을 의미할 수 있다. 이하, 설명의 편의를 위하여 바인더의 상분리되어 있는 2개의 영역 중에서 어느 한 영역을 제 1 영역으로 호칭하고, 다른 영역을 제 2 영역으로 호칭할 수 있다. 바인더가 후술하는 에멀젼 형태인 경우에 상기 제 1 및 제 2 영역 중 어느 하나의 영역은 연속상(continuous phase)이고, 다른 하나의 영역은 분산상(dispersed phase)일 수 있다.In one example, the binder holding the light emitting nanoparticles may include two regions separated from each other. In the present application, the term phase-separated regions are regions formed by two regions that do not mix with each other, such as, for example, relatively hydrophobic regions and relatively hydrophilic regions, and are separated from each other. It may mean areas formed. Hereinafter, for convenience of description, any one of two regions separated from the phase of the binder may be referred to as a first region, and another region may be referred to as a second region. When the binder is in the form of an emulsion described below, one of the first and second regions may be a continuous phase, and the other region may be a dispersed phase.
상기 제 1 영역과 제 2 영역 중에서 제 1 영역은 친수성 영역이고, 제 2 영역은 소수성 영역일 수 있다. 본 출원에서 제 1 및 제 2 영역을 구분하는 친수성과 소수성은 서로 상대적인 개념이고, 친수성과 소수성의 절대적인 기준은 상기 발광층 내에서 상기 두 개의 영역이 서로 구분되어 있는 것이 확인될 수 있을 정도이면 특별히 제한되는 것은 아니다. The first region may be a hydrophilic region and the second region may be a hydrophobic region among the first region and the second region. In the present application, the hydrophilicity and hydrophobicity that distinguish the first and second regions are relative concepts, and the absolute criteria of hydrophilicity and hydrophobicity are particularly limited as long as it can be confirmed that the two regions are separated from each other in the light emitting layer. It doesn't happen.
친수성인 제 1 영역과 소수성인 제 2 영역의 비율은, 예를 들면, 발광 나노입자의 비율, 차단막 등의 다른 층과의 부착성, 상분리 구조의 생성 효율 또는 필름화를 위해 요구되는 물성 등을 고려하여 선택할 수 있다. 예를 들면, 발광층은, 상기 제 1 영역 100 중량부 대비 10 중량부 내지 100 중량부의 제 2 영역을 포함할 수 있다. 다른 예시에서 발광층은, 제 1 영역 50 내지 95 중량부 및 제 2 영역 5 내지 50 중량부를 포함할 수 있다. 또는 반대로 발광층은, 제 2 영역 50 내지 95 중량부 및 제 1 영역 5 내지 50 중량부를 포함할 수 있다. 본 출원에서 용어 중량부는, 특별히 달리 규정하지 않는 한, 성분간의 중량 비율을 의미한다. 또한, 상기에서 제 1 및 제 2 영역의 중량의 비율은, 각 영역 자체의 중량의 비율; 각 영역에 포함되는 모든 성분의 중량의 합계의 비율; 각 영역의 주성분으로 포함되는 성분간의 중량의 비율 또는 상기 각 영역을 형성하기 위하여 사용하는 재료의 중량의 비율을 의미할 수 있다. 예를 들면, 상기 발광층은, 후술하는 바와 같이 친수성 중합성 조성물과 상대적으로 소수성인 중합성 조성물을 혼합하고, 중합시켜서 형성할 수 있는데, 이러한 경우에 상기 각 영역의 중량의 비율은 상기 각 중합성 조성물의 중량의 비율을 의미하거나, 혹은 상기 각 조성물에 포함되는 주성분인 친수성 중합성 화합물과 소수성 중합성 화합물간의 중량의 비율을 의미할 수 있다. 상기에서 친수성 중합성 조성물은 친수성 중합성 화합물을 주성분으로 포함하는 조성물을 의미하고, 소수성 중합성 조성물은 소수성 중합성 화합물을 주성분으로 포함하는 조성물을 의미할 수 있다. 상기에서 중합성 화합물의 종류는 특별히 제한되지 않으며, 예를 들면, 라디칼 중합성 화합물일 수 있다. 본 출원에서 주성분으로 포함된다는 것은, 전체 중량을 기준으로 주성분으로 포함되는 성분의 중량의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 95 중량% 이상인 경우를 의미할 수 있다. 본 출원에서 상기 친수성 중합성 화합물과 소수성 중합성 화합물의 친수성 및 소수성의 구분의 기준은, 예를 들면, 상기 양 화합물이 서로 상대적으로 친수성 또는 소수성이면서 서로 혼합되었을 때에 전술한 상분리되어 있는 영역을 형성할 수 있을 정도라면 특별히 제한되지 않는다. 하나의 예시에서 상기 친수성과 소수성의 구분은 소위 용해도 파라미터(solubility parameter)에 의해 수행될 수 있다. 본 출원에서 용해도 파라미터는 해당 중합성 화합물의 중합에 의해 형성되는 단독 폴리머(homopolymer)의 용해도 파라미터를 의미하고, 이를 통해 해당 화합물의 친수성 및 소수성의 정도를 파악할 수 있다. 용해도 파라미터를 구하는 방식은 특별히 제한되지 않고, 이 분야에서 공지된 방식에 따를 수 있다. 예를 들면, 상기 파라미터는 소위 HSP(Hansen solubility parameter)로 공지된 방식에 따라서 계산하거나 구해질 수 있다. 특별히 제한되는 것은 아니지만, 본 출원에서 소수성 중합성 화합물은, 중합에 의해서 상기 용해도 파라미터가 약 10 (cal/cm3)1/2 미만인 고분자를 형성할 수 있는 중합성의 화합물을 의미할 수 있고, 친수성 중합성 화합물은 중합에 의해서 상기 파라미터가 약 10 (cal/cm3)1/2 이상인 고분자를 형성할 수 있는 중합성의 화합물을 의미할 수 있다. 상기 소수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 약 11 (cal/cm3)1/2 이상, 12 (cal/cm3)1/2 이상, 13 (cal/cm3)1/2 이상, 14 (cal/cm3)1/2 이상 또는 15 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 중합성 화합물이 형성하는 고분자의 용해도 파라미터는 다른 예시에서 약 40 (cal/cm3)1/2 이하, 약 35 (cal/cm3)1/2 이하 또는 약 30 (cal/cm3)1/2 이하일 수 있다. 적절한 상분리 구조 혹은 에멀젼 구조의 구현을 위해서 상기 소수성 및 친수성 화합물의 용해도 파라미터의 차이가 제어될 수 있다. 하나의 예시에서 상기 친수성 및 소수성 중합성 화합물 또는 그 각각에 의해 형성되는 고분자의 용해도 파라미터의 차이는 5 (cal/cm3)1/2 이상, 6 (cal/cm3)1/2 이상, 7 (cal/cm3)1/2 이상 또는 약 8 (cal/cm3)1/2 이상일 수 있다. 상기 차이는 용해도 파라미터 중 큰 값에서 작은 값을 뺀 수치이다. 상기 차이의 상한은 특별히 제한되지 않는다. 용해도 파라미터의 차이가 클수록 보다 적절한 상분리 구조 내지는 에멀젼 구조가 형성될 수 있다. 상기 차이의 상한은, 예를 들면, 30 (cal/cm3)1/2 이하, 25 (cal/cm3)1/2 이하 또는 약 20 (cal/cm3)1/2 이하일 수 있다. 본 명세서에서 기재하는 어떤 물성이 온도에 따라서 변화하는 물성인 경우에, 상기 물성은 상온에서의 물성을 의미할 수 있다. 본 명세서에서 용어 상온은, 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 예를 들면, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 약 23℃ 또는 약 25℃ 정도를 의미할 수 있다. The ratio of the hydrophilic first region to the hydrophobic second region may include, for example, the ratio of luminescent nanoparticles, adhesion with other layers such as a barrier film, formation efficiency of a phase separation structure, or physical properties required for film formation. You can choose by considering. For example, the light emitting layer may include 10 parts by weight to 100 parts by weight of the second area relative to 100 parts by weight of the first area. In another example, the emission layer may include 50 to 95 parts by weight of the first region and 5 to 50 parts by weight of the second region. Alternatively, the light emitting layer may include 50 to 95 parts by weight of the second region and 5 to 50 parts by weight of the first region. The term weight part in the present application means a weight ratio between components, unless otherwise specified. In addition, in the above, the ratio of the weight of the first and second regions is the ratio of the weight of each region itself; The ratio of the sum of the weights of all components included in each region; It may mean the ratio of the weight of the components included as the main component of each region or the ratio of the weight of the material used to form the respective regions. For example, the light emitting layer may be formed by mixing and polymerizing a hydrophilic polymerizable composition and a relatively hydrophobic polymerizable composition as described below. In this case, the ratio of the weight of each of the regions is determined by It may mean the ratio of the weight of the composition or the ratio of the weight between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound which is the main component included in each composition. The hydrophilic polymerizable composition may mean a composition including a hydrophilic polymerizable compound as a main component, and the hydrophobic polymerizable composition may mean a composition including a hydrophobic polymerizable compound as a main component. The kind of the polymerizable compound in the above is not particularly limited, and may be, for example, a radical polymerizable compound. Included as the main component in the present application, the ratio of the weight of the component included as the main component based on the total weight is at least 55% by weight, at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight, 80 It may mean when the weight percent or more, 85 weight% or more, or 95 weight% or more. In the present application, the criteria for distinguishing hydrophilicity and hydrophobicity between the hydrophilic polymerizable compound and the hydrophobic polymerizable compound form, for example, the aforementioned phase-separated regions when the two compounds are relatively hydrophilic or hydrophobic and mixed with each other. It is not particularly limited as long as it can be done. In one example, the separation of hydrophilicity and hydrophobicity may be performed by so-called solubility parameters. The solubility parameter in the present application means a solubility parameter of a homopolymer formed by polymerization of the polymerizable compound, and through this, the degree of hydrophilicity and hydrophobicity of the compound can be determined. The manner of obtaining the solubility parameter is not particularly limited and may be in accordance with methods known in the art. For example, the parameter may be calculated or obtained according to a method known as a Hansen solubility parameter (HSP). Although not particularly limited, in the present application, the hydrophobic polymerizable compound may mean a polymerizable compound capable of forming a polymer having a solubility parameter of less than about 10 (cal / cm 3 ) 1/2 by polymerization, and may be hydrophilic. The polymerizable compound may mean a polymerizable compound capable of forming a polymer having the above parameter by about 10 (cal / cm 3 ) 1/2 or more by polymerization. The solubility parameter of the polymer formed by the hydrophobic polymerizable compound is, in another example, 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more or about 5 (cal / cm 3 ) 1 / It may be two or more. The solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1 / 2 or more, 14 (cal / cm 3 ) 1/2 or more, or 15 (cal / cm 3 ) 1/2 or more. The solubility parameter of the polymer formed by the hydrophilic polymerizable compound is, in another example, about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less or about 30 (cal / cm 3 ). It may be 1/2 or less. Differences in the solubility parameters of the hydrophobic and hydrophilic compounds can be controlled to achieve proper phase separation or emulsion structures. In one example, the difference in solubility parameters of the hydrophilic and hydrophobic polymerizable compounds or the polymer formed by each of them may be 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more, or about 8 (cal / cm 3 ) 1/2 or more. The difference is the value of the solubility parameter minus the small value. The upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed. The upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less. In the case where any of the physical properties described herein is a physical property that changes with temperature, the physical property may mean physical properties at room temperature. As used herein, the term room temperature is a natural temperature that is not heated or reduced, and may mean, for example, any temperature in the range of about 10 ° C to 30 ° C, about 23 ° C, or about 25 ° C.
하나의 예시에서 상기 발광층 또는 바인더는, 에멀젼 형태의 층일 수 있다. 한편, 본 출원에서 용어 에멀젼 형태의 층은, 서로 섞이지 않는 2개 이상의 상(phase)(예를 들면, 상기 제 1 및 제 2 영역) 중 어느 한 영역은, 층 내에서 연속적인 상(continuous phase)을 형성하고 있고, 다른 하나의 영역은 상기 연속적인 상 내에 분산되어 분산상(dispersed phase)을 이루고 있는 형태의 층을 의미할 수 있다. 상기에서 연속상(continuous phase) 및 분산상(dispersed phase)은, 각각 고상, 반고상 또는 액상일 수 있고, 서로 동일한 상이거나, 다른 상일 수 있다. 통상적으로 에멀젼은 서로 섞이지 않는 2개 이상의 액상에 대하여 주로 사용되는 용어이지만, 본 출원에서의 용어 에멀젼은 반드시 2개 이상의 액상에 의해서 형성된 에멀젼만 의미하는 것은 아니다.In one example, the light emitting layer or the binder may be an emulsion type layer. Meanwhile, in the present application, a layer in the form of an emulsion is any one of two or more phases (for example, the first and second regions) which are not mixed with each other, and a continuous phase in the layer. ) And the other region may refer to a layer having a form dispersed in the continuous phase to form a dispersed phase. In the above, the continuous phase and the dispersed phase may be solid, semi-solid or liquid phase, respectively, and may be the same phase or different phases. Generally, emulsion is a term mainly used for two or more liquid phases which are not mixed with each other, but the term emulsion in the present application does not necessarily mean an emulsion formed by two or more liquid phases.
하나의 예시에서 상기 발광층은 상기 연속상(continuous phase)을 형성하고 있는 매트릭스를 포함하고, 상기 매트릭스 내에 분산되어 있는 분산상(dispersed phase)인 에멀젼 영역을 포함할 수 있다. 상기에서 매트릭스는 전술한 제 1 및 제 2 영역 중 어느 한 영역(예를 들면, 제 1 영역)이고, 분산상인 에멀젼 영역은 제 1 및 제 2 영역 중 다른 하나의 영역(예를 들면, 제 2 영역)일 수 있다.In one example, the light emitting layer may include a matrix forming the continuous phase, and may include an emulsion region that is a dispersed phase dispersed in the matrix. Wherein the matrix is any one of the above-described first and second regions (eg, the first region), and the emulsion region, which is a dispersed phase, is the other of the first and second regions (eg, the second region). Area).
에멀젼 영역은 입자 형태일 수 있다. 즉 에멀젼 영역은 입자 형태를 이루면서 매트릭스 내에 분산되어 있을 수 있다. 이러한 경우에 상기 에멀젼 영역의 입자 형태는, 특별히 제한되지 않으며, 대략적으로 구상이거나, 타원체형, 다각형 또는 무정형 등일 수 있다. 상기 입자 형태의 평균 직경은 약 1 μm 내지 200 μm의 범위 내, 약 1 μm 내지 50 μm의 범위 내 또는 약 50 μm 내지 200 μm의 범위 내일 수 있다. 입자 형태의 크기는, 상기 매트릭스 및 에멀젼 영역을 형성하는 재료의 비율을 조절하거나, 혹은 계면 활성제 등의 사용을 통해 제어할 수 있다.The emulsion region may be in the form of particles. That is, the emulsion region may be dispersed in the matrix in the form of particles. In this case, the particle shape of the emulsion region is not particularly limited and may be approximately spherical, ellipsoidal, polygonal or amorphous. The average diameter of the particle form may be in the range of about 1 μm to 200 μm, in the range of about 1 μm to 50 μm or in the range of about 50 μm to 200 μm. The size of the particle form can be controlled by adjusting the proportion of materials forming the matrix and emulsion regions, or by using a surfactant or the like.
발광층 내에서 매트릭스 및 에멀젼 영역의 비율은. 예를 들면, 발광층에 포함시키고자 하는 발광 나노입자의 비율, 차단막, 배리어막 등의 다른 층과의 부착성, 상분리 구조인 에멀젼 구조의 생성 효율 또는 필름화를 위해 요구되는 물성 등을 고려하여 선택할 수 있다. 예를 들면, 발광층은, 매트릭스 100 중량부 대비 5 내지 40 중량부의 에멀젼 영역을 포함할 수 있다. 상기 에멀젼 영역의 비율은 매트릭스 100 중량부 대비 10 중량부 이상 또는 15 중량부 이상일 수 있다. 상기 에멀젼 영역의 비율은 상기 매트릭스 100 중량부 대비 35 중량부 이하일 수 있다. 상기에서 매트릭스 및 에멀젼 영역의 중량의 비율은, 각 영역 자체의 중량의 비율이거나, 그 영역에 포함되는 모든 성분의 중량의 합계 또는 주성분의 비율 또는 상기 각 영역을 형성하기 위하여 사용하는 재료의 중량의 비율을 의미할 수 있다. 예를 들면, 상기 매트릭스 및 에멀젼 영역은, 각각 후술하는 친수성 및 소수성 중합성 화합물의 중합 단위를 포함할 수 있는데, 상기 중량의 비율은 상기 중합 단위간의 비율일 수 있다.The ratio of matrix and emulsion regions in the emissive layer is For example, the composition may be selected in consideration of the ratio of light-emitting nanoparticles to be included in the light emitting layer, adhesion to other layers such as a barrier film and a barrier film, generation efficiency of an emulsion structure that is a phase-separated structure, or physical properties required for film formation. Can be. For example, the light emitting layer may include 5 to 40 parts by weight of the emulsion region relative to 100 parts by weight of the matrix. The proportion of the emulsion region may be at least 10 parts by weight or at least 15 parts by weight with respect to 100 parts by weight of the matrix. The ratio of the emulsion region may be 35 parts by weight or less with respect to 100 parts by weight of the matrix. In the above, the ratio of the weight of the matrix and the emulsion region is the ratio of the weight of each region itself, or the sum of the weights of all the components included in the region or the ratio of the main components or the weight of the material used to form the respective regions. It can mean a ratio. For example, the matrix and the emulsion region may each include polymerized units of hydrophilic and hydrophobic polymerizable compounds, and the weight ratio may be a ratio between the polymerized units.
발광층에 포함되는 상기 발광 나노입자는 상기 매트릭스 또는 에멀젼 영역에 포함되어 있을 수 있다. 하나의 예시에서 상기 발광 나노입자는 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 포함되고, 다른 영역에는 실질적으로 포함되어 있지 않을 수 있다. 본 출원에서 발광 나노입자가 어느 영역에 실질적으로 포함되어 있지 않다는 것은, 예를 들면, 발광층에 포함되어 있는 발광 나노입자의 전체 중량을 기준으로 해당 영역에 포함되어 있는 발광 나노입자의 중량 비율이 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1% 이하, 0.5% 이하 또는 0.1% 이하인 경우를 의미할 수 있다. The light emitting nanoparticles included in the light emitting layer may be included in the matrix or emulsion region. In one example, the light emitting nanoparticles may be included in only one of the matrix and emulsion regions, and may not be substantially included in the other regions. In the present application, the fact that the light emitting nanoparticles are not substantially included in any region is, for example, based on the total weight of the light emitting nanoparticles included in the light emitting layer, the weight ratio of the light emitting nanoparticles included in the region is 10. It will mean the following:% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, 0.5% or less, or 0.1% or less. Can be.
발광 나노입자는, 상기 매트릭스 및 에멀젼 영역 중에서 실질적으로 에멀젼 영역에 포함되어 있을 수 있다. 이러한 경우에 매트릭스에는 발광 나노입자는 실질적으로 포함되어 있지 않을 수 있다. 따라서, 상기와 같은 경우 에멀젼 영역 내에 포함되어 있는 발광 나노입자의 비율은, 발광층에 포함되어 있는 전체 발광 나노입자의 중량을 기준으로 90 중량% 이상, 91 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상, 95 중량% 이상, 96 중량% 이상, 97 중량% 이상, 98 중량% 이상, 99 중량% 이상, 99.5 중량% 이상 또는 99.9 중량% 이상일 수 있다.The light emitting nanoparticles may be included in the emulsion region substantially among the matrix and emulsion regions. In this case, the matrix may be substantially free of light emitting nanoparticles. Therefore, in the above case, the ratio of the light emitting nanoparticles included in the emulsion region is 90% by weight, 91% by weight, 92% by weight, 93% by weight based on the total weight of the light emitting nanoparticles included in the light emitting layer. Or at least 94% by weight, at least 95% by weight, at least 96% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, at least 99.5% by weight or at least 99.9% by weight.
발광층 내에서 상분리된 2개의 영역을 형성하고, 발광 나노입자를 상기 2개의 영역 중에서 어느 한 영역에만 실질적으로 위치시키면, 필름화에 적합한 물성을 확보할 수 있고, 후술하는 차단막과 같은 다른 층과 상기 발광층간의 밀착성의 확보가 유리하며, 발광 필름의 형성 시에 발광 나노입자가 존재하는 영역에 개시제나 가교제 등과 같은 상기 나노입자의 물성에 악영향을 미칠 수 있는 다른 요인들을 보다 효과적으로 제어하여 내구성이 우수한 필름을 형성할 수 있다.Forming two phase-separated regions in the light emitting layer and substantially positioning the light emitting nanoparticles in only one of the two regions ensures physical properties suitable for filming, and the other layers such as a blocking film described later and the It is advantageous to secure adhesion between the light emitting layers, and more effectively controls other factors that may adversely affect the physical properties of the nanoparticles, such as an initiator or a crosslinking agent, in the region where the light emitting nanoparticles exist when the light emitting film is formed. Can be formed.
매트릭스 및 에멀젼 영역 중 어느 한 영역은 친수성 고분자를 포함할 수 있고, 다른 한 영역은 소수성 고분자를 포함할 수 있다. 상기에서 친수성 고분자는 전술한 바와 같이 HSP(Hansen solubility parameter)가 10 (cal/cm3)1/2 이상인 고분자를 의미하고, 소수성 고분자는 HSP가 10 (cal/cm3)1/2 미만인 고분자를 의미할 수 있다. 상기 소수성 고분자의 용해도 파라미터는 다른 예시에서 3 (cal/cm3)1/2 이상, 4 (cal/cm3)1/2 이상 또는 약 5 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 고분자의 용해도 파라미터는 다른 예시에서 약 11 (cal/cm3)1/2 이상, 12 (cal/cm3)1/2 이상, 13 (cal/cm3)1/2 이상, 14 (cal/cm3)1/2 이상 또는 15 (cal/cm3)1/2 이상일 수 있다. 상기 친수성 고분자의 용해도 파라미터는 다른 예시에서 약 40 (cal/cm3)1/2 이하, 약 35 (cal/cm3)1/2 이하 또는 약 30 (cal/cm3)1/2 이하일 수 있다. 적절한 상분리 구조 혹은 에멀젼 구조의 구현을 위해서 상기 소수성 및 친수성 고분자의 용해도 파라미터의 차이가 제어될 수 있다. 하나의 예시에서 상기 친수성 및 소수성 고분자의 용해도 파라미터의 차이는 5 (cal/cm3)1/2 이상, 6 (cal/cm3)1/2 이상, 7 (cal/cm3)1/2 이상 또는 약 8 (cal/cm3)1/2 이상일 수 있다. 상기 차이는 용해도 파라미터 중 큰 값에서 작은 값을 뺀 수치이다. 상기 차이의 상한은 특별히 제한되지 않는다. 용해도 파라미터의 차이가 클수록 보다 적절한 상분리 구조 내지는 에멀젼 구조가 형성될 수 있다. 상기 차이의 상한은, 예를 들면, 30 (cal/cm3)1/2 이하, 25 (cal/cm3)1/2 이하 또는 약 20 (cal/cm3)1/2 이하일 수 있다. 하나의 예시에서 상기 매트릭스가 친수성 고분자를 포함할 수 있고, 에멀젼 영역이 소수성 고분자를 포함할 수 있다.Any one of the matrix and emulsion regions may comprise a hydrophilic polymer and the other region may comprise a hydrophobic polymer. As described above, the hydrophilic polymer refers to a polymer having a HSP (Hansen solubility parameter) of 10 (cal / cm 3 ) 1/2 or more, and the hydrophobic polymer refers to a polymer having an HSP of less than 10 (cal / cm 3 ) 1/2 . Can mean. In another example, the solubility parameter of the hydrophobic polymer may be 3 (cal / cm 3 ) 1/2 or more, 4 (cal / cm 3 ) 1/2 or more, or about 5 (cal / cm 3 ) 1/2 or more. The solubility parameter of the hydrophilic polymer is, in another example, about 11 (cal / cm 3 ) 1/2 or more, 12 (cal / cm 3 ) 1/2 or more, 13 (cal / cm 3 ) 1/2 or more, 14 (cal / cm 3 ) 1/2 or more or 15 (cal / cm 3 ) 1/2 or more. In another example, the solubility parameter of the hydrophilic polymer may be about 40 (cal / cm 3 ) 1/2 or less, about 35 (cal / cm 3 ) 1/2 or less, or about 30 (cal / cm 3 ) 1/2 or less. . Differences in the solubility parameters of the hydrophobic and hydrophilic polymers can be controlled to implement an appropriate phase separation structure or emulsion structure. In one example, the difference between the solubility parameters of the hydrophilic and hydrophobic polymer is 5 (cal / cm 3 ) 1/2 or more, 6 (cal / cm 3 ) 1/2 or more, 7 (cal / cm 3 ) 1/2 or more Or about 8 (cal / cm 3 ) 1/2 or more. The difference is the value of the solubility parameter minus the small value. The upper limit of the difference is not particularly limited. The greater the difference in solubility parameters, the more suitable phase separation or emulsion structures can be formed. The upper limit of the difference may be, for example, 30 (cal / cm 3 ) 1/2 or less, 25 (cal / cm 3 ) 1/2 or less, or about 20 (cal / cm 3 ) 1/2 or less. In one example, the matrix may comprise a hydrophilic polymer, and the emulsion region may comprise a hydrophobic polymer.
매트릭스는, 상기 친수성 중합성 화합물, 예를 들면, 친수성 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다. 이러한 경우에 상기 매트릭스는 하기 화학식 1의 화합물, 하기 화학식 2의 화합물, 하기 화학식 3의 화합물, 하기 화학식 4의 화합물, 질소 함유 라디칼 중합성 화합물, 아크릴산, 메타크릴산 또는 염(salt) 부위를 포함하는 라디칼 중합성 화합물의 중합 단위를 포함할 수 있다. 본 출원에서 용어 소정 화합물의 중합 단위는, 상기 소정의 화합물이 중합되어 형성되는 단위를 의미할 수 있다. The matrix can be formed by polymerizing the hydrophilic polymerizable compound, for example, a hydrophilic radical polymerizable compound. In this case the matrix comprises a compound of formula 1, a compound of formula 2, a compound of formula 3, a compound of formula 4, a nitrogen containing radically polymerizable compound, an acrylic acid, methacrylic acid or a salt site The polymerization unit of the radically polymerizable compound may be included. In the present application, the term polymerized unit of a predetermined compound may mean a unit formed by polymerization of the predetermined compound.
[화학식 1][Formula 1]
Figure PCTKR2016003123-appb-I000001
Figure PCTKR2016003123-appb-I000001
화학식 1에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Z는 수소, 알콕시기, 에폭시기 또는 1가 탄화수소기이고, m은 임의의 수이다.In the formula (1), Q is hydrogen or an alkyl group, U is an alkylene group, Z is a hydrogen, alkoxy group, an epoxy group or a monovalent hydrocarbon group, and m is any number.
[화학식 2][Formula 2]
Figure PCTKR2016003123-appb-I000002
Figure PCTKR2016003123-appb-I000002
화학식 2에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, m은 임의의 수이다.In formula (2), Q is hydrogen or an alkyl group, U is an alkylene group, and m is any number.
[화학식 3][Formula 3]
Figure PCTKR2016003123-appb-I000003
Figure PCTKR2016003123-appb-I000003
화학식 3에서 Q는 수소 또는 알킬기이고, A는 히드록시기가 치환되어 있을 수 있는 알킬렌기이며, U는 알킬렌기이다.In Formula 3, Q is hydrogen or an alkyl group, A is an alkylene group which may be substituted with a hydroxy group, and U is an alkylene group.
[화학식 4][Formula 4]
Figure PCTKR2016003123-appb-I000004
Figure PCTKR2016003123-appb-I000004
화학식 4에서 Q는 수소 또는 알킬기이고, A 및 U는 각각 독립적으로 알킬렌기이며, X는 히드록시기 또는 시아노기이다.In Formula 4, Q is hydrogen or an alkyl group, A and U are each independently an alkylene group, and X is a hydroxy group or cyano group.
본 출원에서 용어 「알킬렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.In the present application, the term "alkylene group" may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified. The alkylene group may be linear, branched or cyclic. In addition, the alkylene group may be optionally substituted with one or more substituents.
본 출원에서 용어 「에폭시기」는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물 또는 그로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.In the present application, the term "epoxy group", unless otherwise specified, may mean a cyclic ether having three ring constituent atoms or a compound containing the cyclic ether or a monovalent moiety derived therefrom. have. Examples of the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group. In the above, the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group. As the alicyclic epoxy group, an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
본 출원에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알콕시기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.In the present application, the term "alkoxy group" may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified. The alkoxy group may be linear, branched or cyclic. In addition, the alkoxy group may be optionally substituted with one or more substituents.
본 출원에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.In the present application, the term "alkyl group" may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified. The alkyl group may be linear, branched or cyclic. In addition, the alkyl group may be optionally substituted with one or more substituents.
본 출원에서 용어 「1가 탄화수소기」는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.In the present application, the term "monovalent hydrocarbon group" may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound, unless otherwise specified. For example, the monovalent hydrocarbon group may contain 1 to 25 carbon atoms. As a monovalent hydrocarbon group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
본 출원에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.The term "alkenyl group" in the present application may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. The alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
본 출원에서 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.In the present application, the term "alkynyl group" may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. The alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
본 출원에서 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 페녹시기, 페녹시페닐기, 페녹시벤질기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.The term "aryl group" in the present application may refer to a monovalent moiety derived from a compound or a derivative thereof including a structure in which a benzene ring or a structure in which two or more benzene rings are condensed or bonded, unless otherwise specified. The range of the aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group. The aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms. Examples of the aryl group include phenyl group, phenoxy group, phenoxyphenyl group, phenoxybenzyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group. Can be.
본 출원에서 상기 알콕시기, 알킬렌기, 에폭시기 또는 1가 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.As the substituent which may be optionally substituted in the alkoxy group, alkylene group, epoxy group or monovalent hydrocarbon group in the present application, halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, etc. Epoxy group, acryloyl group, methacryloyl group, isocyanate group, thiol group or monovalent hydrocarbon group and the like can be exemplified, but is not limited thereto.
화학식 1, 2 및 4에서 m 및 n은 임의의 수이며, 예를 들면, 각각 독립적으로 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 수일 수 있다.M and n in the formulas (1), (2) and (4) are any numbers, for example, each independently may be a number in the range of 1 to 20, 1 to 16, or 1 to 12.
상기 질소 함유 라디칼 중합성 화합물로는, 예를 들면, 아미드기-함유 라디칼 중합성 화합물, 아미노기-함유 라디칼 중합성 화합물, 이미드기-함유 라디칼 중합성 화합물 또는 사이아노기-함유 라디칼 중합성 화합물 등을 사용할 수 있다. 상기에서 아미드기-함유 라디칼 중합성 화합물로서는, 예를 들면 (메타)아크릴아미드 또는 N,N-디메틸 (메타)아크릴아미드, N,N-디에틸 (메타)아크릴아미드, N-아이소프로필 (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, 다이아세톤 (메타)아크릴아미드, N-비닐아세토아미드, N,N’-메틸렌비스(메타)아크릴아미드, N,N-디메틸아미노프로필(메타)아크릴아미드, N,N-디메틸아미노프로필메타크릴아미드, N-비닐피롤리돈, N-비닐카프로락탐 또는 (메트)아크릴로일모폴린 등이 예시될 수 있고, 아미노기-함유 라디칼 중합성 화합물로서는, 아미노에틸(메트)아크릴레이트, N,N-디메틸아미노에틸(메트)아크릴레이트 또는 N,N-디메틸아미노프로필(메트)아크릴레이트 등이 예시될 수 있으며, 이미드기-함유 라디칼 중합성 화합물로서는, N-아이소프로필말레이미드, N-사이클로헥실말레이미드 또는 이타콘이미드 등이 예시될 수 있고, 사이아노기-함유 라디칼 중합성 화합물로서는, 아크릴로나이트릴 또는 메타크릴로나이트릴 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.As said nitrogen-containing radically polymerizable compound, For example, an amide group containing radically polymerizable compound, an amino group containing radically polymerizable compound, an imide group containing radically polymerizable compound, a cyano group containing radically polymerizable compound, etc. Can be used. As said amide group-containing radically polymerizable compound, it is (meth) acrylamide or N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth), for example. Acrylamide, N-methylol (meth) acrylamide, diacetone (meth) acrylamide, N-vinylacetoamide, N, N'-methylenebis (meth) acrylamide, N, N-dimethylaminopropyl (meth) ) Acrylamide, N, N-dimethylaminopropylmethacrylamide, N-vinylpyrrolidone, N-vinylcaprolactam or (meth) acryloyl morpholine and the like can be exemplified, and examples of the amino group-containing radically polymerizable compound include , Aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like can be exemplified, and examples of the imide group-containing radically polymerizable compound , N-isopropylmaleimide, N- Iclohexyl maleimide or itaciconimide etc. can be illustrated, As a cyano group containing radically polymerizable compound, Acrylonitrile or methacrylonitrile etc. can be illustrated, but it is not limited to this. .
또한, 상기에서 염(salt) 부위를 포함하는 라디칼 중합성 화합물로는, 아크릴산 또는 메타크릴산의 염(salt)으로서, 예를 들면 상기와 리튬, 나트륨, 및 칼륨을 비롯한 알칼리 금속과의 염 또는 마그네슘, 칼슘, 스트론튬 및 바륨을 비롯한 알칼리 토금속과의 염 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.In addition, as the radically polymerizable compound including a salt site, as a salt of acrylic acid or methacrylic acid, for example, a salt of the above-described alkali metals including lithium, sodium, and potassium, or Salts with alkaline earth metals, including magnesium, calcium, strontium and barium, and the like can be exemplified, but are not limited thereto.
상기와 같은 중합 단위를 포함하는 매트릭스는, 예를 들면, 친수성 중합성 화합물, 예를 들면, 라디칼 중합성 화합물 및 라디칼 개시제를 포함하는 친수성 중합성 조성물을 중합시켜 형성할 수 있다. 따라서, 상기 매트릭스는 상기 친수성 중합성 조성물의 중합물일 수 있다.The matrix containing the above-mentioned polymer unit can be formed by polymerizing a hydrophilic polymerizable composition containing a hydrophilic polymerizable compound, for example, a radical polymerizable compound and a radical initiator, for example. Thus, the matrix may be a polymer of the hydrophilic polymerizable composition.
친수성 라디칼 중합성 화합물의 종류는 특별히 제한되지 않고, 예를 들면, 상기 기술한 화합물을 사용할 수 있다. The kind of hydrophilic radically polymerizable compound is not particularly limited, and for example, the compounds described above can be used.
친수성 중합성 조성물에 포함되는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 개시제로는, 열의 인가 또는 광의 조사에 의해 중합 반응을 개시시킬 수 있는 라디칼을 생성할 수 있는 라디칼 열개시제 또는 광개시제를 사용할 수 있다.The kind of radical initiator contained in a hydrophilic polymerizable composition is not specifically limited. As the initiator, a radical thermal initiator or a photoinitiator capable of generating a radical capable of initiating a polymerization reaction by application of heat or irradiation of light can be used.
열개시제로는, 예를 들면, 2,2-아조비스-2,4-디메틸발레로니트릴(V-65, Wako(제)), 2,2-아조비스이소부티로니트릴(V-60, Wako(제)) 또는 2,2-아조비스-2-메틸부티로니트릴(V-59, Wako(제))와 같은 아조계 개시제; 디프로필 퍼옥시디카보네이트(Peroyl NPP, NOF(제)), 디이소프로필 퍼옥시 디카보네이트(Peroyl IPP, NOF(제)), 비스-4-부틸시클로헥실 퍼옥시 디카보네이트(Peroyl TCP, NOF(제)), 디에톡시에틸 퍼옥시 디카보네이트(Peroyl EEP, NOF(제)), 디에톡시헥실 퍼옥시 디카보네이트(Peroyl OPP, NOF(제)), 헥실 퍼옥시 디카보네이트(Perhexyl ND, NOF(제)), 디메톡시부틸 퍼옥시 디카보네이트(Peroyl MBP, NOF(제)), 비스(3-메톡시-3-메톡시부틸)퍼옥시 디카보네이트(Peroyl SOP, NOF(제)), 헥실 퍼옥시 피발레이트(Perhexyl PV, NOF(제)), 아밀 퍼옥시 피발레이트(Luperox 546M75, Atofina(제)), 부틸 퍼옥시 피발레이트(Perbutyl, NOF(제)) 또는 트리메틸헥사노일 퍼옥사이드(Peroyl 355, NOF(제))와 같은 퍼옥시에스테르 화합물; 디메틸 하이드록시부틸 퍼옥사네오데카노에이트(Luperox 610M75, Atofina(제)), 아밀 퍼옥시 네오데카노에이트(Luperox 546M75, Atofina(제)) 또는 부틸 퍼옥시 네오데카노에이트(Luperox 10M75, Atofina(제))와 같은 퍼옥시 디카보네이트 화합물; 3,5,5-트리메틸헥사노일 퍼옥사이드, 라우릴 퍼옥사이드 또는 디벤조일 퍼옥사이드와 같은 아실 퍼옥사이드; 케톤 퍼옥시드; 디알킬 퍼옥시드; 퍼옥시 케탈; 또는 히드로퍼옥시드 등과 같은 퍼옥시드 개시제 등의 일종 또는 이종 이상을 사용할 수 있고, 광개시제로는, 벤조인계, 히드록시 케톤계, 아미노케톤계 또는 포스핀 옥시드계 광개시제 등이 사용될 수 있고, 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아니노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4’-디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논] 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.As the thermal initiator, for example, 2,2-azobis-2,4-dimethylvaleronitrile (V-65, Wako), 2,2-azobisisobutyronitrile (V-60, Azo initiators such as Wako (manufactured) or 2,2-azobis-2-methylbutyronitrile (V-59, made by Wako); Dipropyl peroxydicarbonate (Peroyl NPP, NOF (manufactured)), Diisopropyl peroxy dicarbonate (Peroyl IPP, NOF (manufactured)), Bis-4-butylcyclohexyl peroxy dicarbonate (Peroyl TCP, NOF (manufactured) )), Diethoxyethyl peroxy dicarbonate (Peroyl EEP, NOF (product)), diethoxyhexyl peroxy dicarbonate (Peroyl OPP, NOF agent), hexyl peroxy dicarbonate (Perhexyl ND, NOF agent) ), Dimethoxybutyl peroxy dicarbonate (Peroyl MBP, NOF (product)), bis (3-methoxy-3-methoxybutyl) peroxy dicarbonate (Peroyl SOP, NOF agent), hexyl peroxy pival Rate (Perhexyl PV, NOF), amyl peroxy pivalate (Luperox 546M75, Atofina), butyl peroxy pivalate (Perbutyl, NOF) or trimethylhexanoyl peroxide (Peroyl 355, NOF) Peroxy ester compounds such as (agent); Dimethyl hydroxybutyl peroxane neodecanoate (Luperox 610M75, Atofina), amyl peroxy neodecanoate (Luperox 546M75, Atofina) or butyl peroxy neodecanoate (Luperox 10M75, Atofina) Peroxy dicarbonate compounds such as; Acyl peroxides such as 3,5,5-trimethylhexanoyl peroxide, lauryl peroxide or dibenzoyl peroxide; Ketone peroxide; Dialkyl peroxides; Peroxy ketal; Alternatively, one or more kinds of peroxide initiators such as hydroperoxide and the like may be used. As the photoinitiator, a benzoin-based, hydroxy-ketone-based, amino-ketone-based or phosphine oxide-based photoinitiator may be used. Benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylanino acetophenone, 2,2-dimethoxy- 2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1one, 1-hydroxycyclohexylphenylketone, 2-methyl-1 -[4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, benzophenone, p -Phenylbenzophenone, 4,4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone , 2-aminoanthraquinone, 2-methyl thioxanthone, 2-ethyl thioxanthone, 2-chloro thioxanthone, 2,4-dimethyl thioxanthone, 2,4-diethyl thioxanthone, benzyl dimethyl ketal, aceto Phenone dimethylketal, p-dimethylamino benzoic acid ester, oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone] and 2,4,6-trimethylbenzoyl-diphenyl Phosphine oxide or the like may be used, but is not limited thereto.
개시제로는 친수성 성분에 높은 용해도를 나타내는 것을 선택하여 사용할 수 있고, 예를 들면, 히드록시케톤 화합물, 수분산 히드록시케톤 화합물 또는 아미노케톤 화합물 또는 수분산 아미노케톤 화합물 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.The initiator may be selected to use a high solubility in the hydrophilic component, for example, a hydroxy ketone compound, a water dispersion hydroxy ketone compound or an amino ketone compound or a water dispersion amino ketone compound may be used, but is limited thereto. It doesn't happen.
친수성 중합성 조성물은, 예를 들면, 라디칼 개시제를, 0.1 중량% 내지 10 중량% 정도의 농도로 포함할 수 있다. 이러한 비율은, 예를 들면, 필름의 물성이나 중합 효율 등을 고려하여 변경할 수 있다. The hydrophilic polymerizable composition may include, for example, a radical initiator at a concentration of about 0.1 wt% to about 10 wt%. Such a ratio can be changed in consideration of, for example, physical properties of the film, polymerization efficiency and the like.
예를 들면, 필름화 물성 등을 고려하여, 필요하다면 친수성 중합성 조성물은, 가교제를 추가로 포함할 수 있다. 가교제로는, 예를 들면, 라디칼 중합성기를 2개 이상 가지는 화합물을 사용할 수 있다.For example, in consideration of filming properties, if necessary, the hydrophilic polymerizable composition may further include a crosslinking agent. As a crosslinking agent, the compound which has two or more radically polymerizable groups can be used, for example.
가교제로 사용될 수 있는 화합물로는, 다관능성 아크릴레이트가 예시될 수 있다. 상기 다관능성 아크릴레이트는, 아크릴로일기 또는 메타크릴로일기를 2개 이상 포함하는 화합물을 의미할 수 있다.As a compound which can be used as a crosslinking agent, polyfunctional acrylate can be illustrated. The multifunctional acrylate may mean a compound including two or more acryloyl groups or methacryloyl groups.
다관능성 아크릴레이트로는, 예를 들면, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 네오펜틸글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 네오펜틸글리콜아디페이트(neopentylglycol adipate) 디(메타)아크릴레이트, 히드록시피발산(hydroxyl puivalic acid) 네오펜틸글리콜 디(메타)아크릴레이트, 디시클로펜타닐(dicyclopentanyl) 디(메타)아크릴레이트, 카프로락톤 변성 디시클로펜테닐 디(메타)아크릴레이트, 에틸렌옥시드 변성 디(메타)아크릴레이트, 디(메타)아크릴록시 에틸 이소시아누레이트, 알릴(allyl)화 시클로헥실 디(메타)아크릴레이트, 트리시클로데칸디메탄올(메타)아크릴레이트, 디메틸롤 디시클로펜탄 디(메타)아크릴레이트, 에틸렌옥시드 변성 헥사히드로프탈산 디(메타)아크릴레이트, 트리시클로데칸 디메탄올(메타)아크릴레이트, 네오펜틸글리콜 변성 트리메틸프로판 디(메타)아크릴레이트, 아다만탄(adamantane) 디(메타)아크릴레이트 또는 9,9-비스[4-(2-아크릴로일옥시에톡시)페닐]플루오렌(fluorine) 등과 같은 2관능성 아크릴레이트; 트리메틸롤프로판 트리(메타)아크릴레이트, 디펜타에리쓰리톨 트리(메타)아크릴레이트, 프로피온산 변성 디펜타에리쓰리톨 트리(메타)아크릴레이트, 펜타에리쓰리톨 트리(메타)아크릴레이트, 프로필렌옥시드 변성 트리메틸롤프로판 트리(메타)아크릴레이트, 3 관능형 우레탄 (메타)아크릴레이트 또는 트리스(메타)아크릴록시에틸이소시아누레이트 등의 3관능형 아크릴레이트; 디글리세린 테트라(메타)아크릴레이트 또는 펜타에리쓰리톨 테트라(메타)아크릴레이트 등의 4관능형 아크릴레이트; 프로피온산 변성 디펜타에리쓰리톨 펜타(메타)아크릴레이트 등의 5관능형 아크릴레이트; 및 디펜타에리쓰리톨 헥사(메타)아크릴레이트, 카프로락톤 변성 디펜타에리쓰리톨 헥사(메타)아크릴레이트 또는 우레탄 (메타)아크릴레이트(ex. 이소시아네이트 단량체 및 트리메틸롤프로판 트리(메타)아크릴레이트의 반응물 등의 6관능형 아크릴레이트 등을 사용할 수 있다. 또한, 다관능성 아크릴레이트로는, 업계에서 소위 광경화성 올리고머로 호칭되는 화합물로서, 우레탄 아크릴레이트, 에폭시 아크릴레이트, 폴리에스테르 아크릴레이트 또는 폴리에테르 아크릴레이트 등도 사용할 수 있다. 상기와 같은 화합물 중에서 적절한 종류를 일종 또는 이종 이상 선택하여 사용할 수 있다.Examples of the polyfunctional acrylate include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol di ( Meta) acrylate, neopentylglycol adipate di (meth) acrylate, hydroxyl puivalic acid neopentylglycol di (meth) acrylate, dicyclopentanyl di (meth) Acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, ethylene oxide modified di (meth) acrylate, di (meth) acryloxy ethyl isocyanurate, allylated cyclohexyl di (meth) ) Acrylate, tricyclodecane dimethanol (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, ethylene oxide modified hexahydrophthalic acid di (meth) acrylate, tricyclo Candimethanol (meth) acrylate, neopentylglycol modified trimethylpropane di (meth) acrylate, adamantane di (meth) acrylate or 9,9-bis [4- (2-acryloyloxy Difunctional acrylates such as ethoxy) phenyl] fluorene and the like; Trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide Trifunctional acrylates such as modified trimethylolpropane tri (meth) acrylate, trifunctional urethane (meth) acrylate or tris (meth) acryloxyethyl isocyanurate; Tetrafunctional acrylates such as diglycerin tetra (meth) acrylate or pentaerythritol tetra (meth) acrylate; 5-functional acrylates, such as propionic acid modified dipentaerythritol penta (meth) acrylate; And dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) acrylate or urethane (meth) acrylate (ex. Isocyanate monomers and trimethylolpropane tri (meth) acrylate 6-functional acrylates, such as a reactant, etc. Moreover, as a polyfunctional acrylate, it is a compound called what is called photocurable oligomer in the industry, urethane acrylate, epoxy acrylate, polyester acrylate, or polyether. Acrylate etc. can also be used An appropriate kind can be selected from the above-mentioned compounds, and can be used, selecting one or more types.
가교제로는, 상기 다관능성 아크릴레이트와 같이 라디칼 반응에 의해 가교 구조를 구현할 수 있는 성분은 물론 필요하다면, 공지의 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 또는 금속 킬레이트 가교제 등과 같이 열경화 반응에 의해 가교 구조를 구현할 수 있는 성분도 사용할 수 있다.As the crosslinking agent, a component capable of implementing a crosslinking structure by a radical reaction such as the polyfunctional acrylate, as well as, if necessary, crosslinking by a thermosetting reaction such as a known isocyanate crosslinking agent, epoxy crosslinking agent, aziridine crosslinking agent or metal chelate crosslinking agent Components that can implement the structure can also be used.
가교제는, 예를 들면, 친수성 중합성 조성물에 50 중량% 이하 또는 10 중량% 내지 50 중량%의 농도로 포함될 수 있다. 가교제의 비율은, 예를 들면, 필름의 물성 등을 고려하여 변경될 수 있다.The crosslinking agent may be included, for example, in a hydrophilic polymerizable composition at a concentration of up to 50 wt% or from 10 wt% to 50 wt%. The ratio of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film.
친수성 중합성 조성물은, 상기 기술한 성분 외에도 필요한 다른 성분을 추가로 포함할 수 있다. 또한, 친수성 중합성 조성물을 사용하여 제 1 영역을 형성하는 방식은 후술한다.The hydrophilic polymerizable composition may further include other necessary components in addition to the components described above. In addition, the method of forming a 1st area | region using a hydrophilic polymeric composition is mentioned later.
에멀젼 영역은, 역시 중합성 화합물, 예를 들면, 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다. 예를 들면, 에멀젼 영역은, 상기 소수성 라디칼 중합성 화합물을 중합시켜서 형성할 수 있다. The emulsion region can also be formed by polymerizing a polymerizable compound, for example, a radical polymerizable compound. For example, an emulsion region can be formed by superposing | polymerizing the said hydrophobic radically polymerizable compound.
하나의 예시에서 에멀젼 영역은, 하기 화학식 5 내지 7 중 어느 하나의 화학식으로 표시되는 화합물의 중합 단위를 포함할 수 있다. In one example, the emulsion region may include a polymer unit of a compound represented by one of Chemical Formulas 5 to 7 below.
[화학식 5][Formula 5]
Figure PCTKR2016003123-appb-I000005
Figure PCTKR2016003123-appb-I000005
화학식 5에서 Q는 수소 또는 알킬기이고, B는 탄소수 5 이상의 직쇄 또는 분지쇄 알킬기 또는 지환식 탄화수소기이다.In Formula 5, Q is hydrogen or an alkyl group, and B is a straight or branched chain alkyl group having 5 or more carbon atoms or an alicyclic hydrocarbon group.
[화학식 6][Formula 6]
Figure PCTKR2016003123-appb-I000006
Figure PCTKR2016003123-appb-I000006
화학식 6에서 Q는 수소 또는 알킬기이고, U는 알킬렌, 알케닐렌 또는 알키닐렌 또는 아릴렌기이다.In Formula 6, Q is hydrogen or an alkyl group, and U is an alkylene, alkenylene or alkynylene or arylene group.
[화학식 7][Formula 7]
Figure PCTKR2016003123-appb-I000007
Figure PCTKR2016003123-appb-I000007
화학식 7에서 Q는 수소 또는 알킬기이고, U는 알킬렌기이며, Y는 탄소 원자, 산소 원자 또는 황 원자이며, X는 산소 원자, 황 원자 또는 알킬렌기이고, Ar은 아릴기이며, n은 임의의 수이다.In formula (7), Q is hydrogen or alkyl group, U is alkylene group, Y is carbon atom, oxygen atom or sulfur atom, X is oxygen atom, sulfur atom or alkylene group, Ar is aryl group, n is any It is a number.
본 출원에서 용어 알케렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케렌기 또는 알키닐렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알케렌기 또는 알키닐렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.In the present application, the term alkenylene group or alkynylene group is an alkenylene group or alkynylene having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. Can mean a group. The alkenylene group or alkynylene group may be linear, branched or cyclic. In addition, the alkenylene group or alkynylene group may be optionally substituted with one or more substituents.
본 출원에서 용어 「아릴렌기」는, 특별히 달리 규정하지 않는 한, 벤젠 또는 2개 이상의 벤젠이 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 2가 잔기를 의미할 수 있다. 아릴렌기는, 예를 들면, 벤젠, 나프탈렌 또는 플루오렌(fluorene) 등을 포함하는 구조를 가질 수 있다.The term "arylene group" in the present application may refer to a divalent moiety derived from a compound or a derivative thereof including a structure in which benzene or two or more benzenes are condensed or bonded, unless otherwise specified. The arylene group may have a structure containing, for example, benzene, naphthalene or fluorene.
화학식 5에서 B는 탄소수 5 이상, 탄소수 7 이상 또는 탄소수 9 이상의 직쇄 또는 분지쇄 알킬기일 수 있다. 이와 같이 상대적으로 장쇄의 알킬기를 포함하는 화합물은 상대적으로 비극성의 화합물로 알려져 있다. 상기 직쇄 또는 분지쇄 알킬기의 탄소수의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 알킬기는, 탄소수 20 이하의 알킬기일 수 있다.In Formula 5, B may be a straight or branched chain alkyl group having 5 or more carbon atoms, 7 or more carbon atoms, or 9 or more carbon atoms. As such, a compound containing a relatively long chain alkyl group is known as a relatively nonpolar compound. The upper limit of the carbon number of the linear or branched alkyl group is not particularly limited. For example, the alkyl group may be an alkyl group having 20 or less carbon atoms.
화학식 5에서 B는 다른 예시에서 지환식 탄화수소기, 예를 들면, 탄소수 3 내지 20, 탄소수 3 내지 16 또는 탄소수 6 내지 12의 지환식 탄화수소기일 수 있고, 그러한 탄화수소기의 예로는 사이클로헥실기 또는 이소보르닐기 등이 예시될 수 있다. 이와 같이 지환식 탄화수소기를 가지는 화합물은, 상대적으로 비극성의 화합물로 알려져 있다.In Formula 5, B may be, in another example, an alicyclic hydrocarbon group, for example, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, 3 to 16 carbon atoms, or 6 to 12 carbon atoms, and examples of such hydrocarbon group include cyclohexyl group or iso Bornyl group and the like can be exemplified. Thus, the compound which has alicyclic hydrocarbon group is known as a relatively nonpolar compound.
화학식 7에서 n은 임의의 수이며, 예를 들면, 각각 독립적으로 1 내지 20, 1 내지 16 또는 1 내지 12의 범위 내의 수일 수 있다.N in the formula (7) is any number, for example, each independently may be a number in the range of 1 to 20, 1 to 16 or 1 to 12.
제 2 영역은, 예를 들면, 소수성 라디칼 중합성 화합물 및 라디칼 개시제를 포함하는 소수성 중합성 조성물을 중합시켜 형성할 수 있다. 따라서, 상기 제 2 영역은 상기 소수성 중합성 조성물의 중합물일 수 있다.For example, the second region may be formed by polymerizing a hydrophobic polymerizable composition containing a hydrophobic radical polymerizable compound and a radical initiator. Thus, the second region may be a polymer of the hydrophobic polymerizable composition.
소수성 중합성 조성물에 포함되는 소수성 라디칼 중합성 화합물의 종류는 특별히 제한되지 않고, 업계에서 소위 비극성의 단량체로 알려져 있는 화합물을 사용할 수 있다. 예를 들면, 상기 화합물로는 전술한 화합물을 사용할 수 있다. The kind of hydrophobic radically polymerizable compound contained in the hydrophobic polymerizable composition is not particularly limited, and a compound known in the art as a so-called nonpolar monomer can be used. For example, the compound described above may be used as the compound.
소수성 중합성 조성물에 포함되는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 예를 들면, 전술한 친수성 중합성 화합물의 항목에서 기술한 개시제 중에서 적절한 종류를 선택하여 사용할 수 있다.The kind of radical initiator contained in a hydrophobic polymerizable composition is not specifically limited. For example, an appropriate kind can be selected and used from the initiator described in the item of the hydrophilic polymeric compound mentioned above.
소수성 중합성 조성물은, 예를 들면, 라디칼 개시제를, 5 중량% 이하의 농도로 포함할 수 있다. 이러한 농도는, 예를 들면, 필름의 물성이나 중합 효율 등을 고려하여 변경할 수 있다. The hydrophobic polymerizable composition may include, for example, a radical initiator at a concentration of 5% by weight or less. Such concentration can be changed in consideration of, for example, physical properties of the film, polymerization efficiency, and the like.
필름화 물성 등을 고려하여, 필요하다면 소수성 중합성 조성물도, 가교제를 추가로 포함할 수 있다. 가교제로는, 특별한 제한 없이, 예를 들면, 상기 친수성 중합성 조성물 항목에서 설명한 성분들 중에서 적절한 성분을 선택하여 사용할 수 있다.In consideration of filming properties, if necessary, the hydrophobic polymerizable composition may further include a crosslinking agent. As the crosslinking agent, without particular limitation, for example, an appropriate component may be selected and used from the components described in the hydrophilic polymerizable composition section.
가교제는, 예를 들면, 소수성 중합성 조성물에 50 중량% 이하, 또는 10 내지 50 중량%의 농도로 포함될 수 있다. 가교제의 농도는, 예를 들면, 필름의 물성 등이나 중합성 화합물에 포함되는 다른 성분으로의 영향 등을 고려하여 변경될 수 있다.The crosslinking agent may be included, for example, in a hydrophobic polymerizable composition at a concentration of up to 50 wt%, or from 10 to 50 wt%. The concentration of the crosslinking agent may be changed in consideration of, for example, the physical properties of the film, the influence on other components included in the polymerizable compound, and the like.
소수성 중합성 조성물도 필요하다면 다른 성분을 추가로 포함할 수 있다. 또한, 상기 소수성 중합성 조성물을 사용하여 에멀젼 영역을 형성하는 방식은 후술한다.The hydrophobic polymerizable composition may further include other components if necessary. In addition, the method of forming an emulsion region using the said hydrophobic polymerizable composition is mentioned later.
발광층은, 전술한 성분에 추가적으로 다른 성분을 포함할 수 있다. 상기 다른 성분의 예로는, 공지의 계면활성제나, 후술하는 양친매성 나노입자, 항산화제 또는 산란 입자 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.The light emitting layer may include other components in addition to the above components. Examples of the other components include, but are not limited to, known surfactants, amphiphilic nanoparticles, antioxidants, or scattering particles described below.
발광층은 양친매성 나노입자를 포함할 수 있고, 이러한 양친매성 나노입자는 예를 들면, 상기 매트릭스 또는 에멀젼 영역 중 하나 이상에 존재할 수 있으며, 적절하게는 상기 매트릭스 및 에멀젼 영역의 경계에 존재할 수 있다. 양친매성 나노입자는, 발광층에서 상분리되어 있는 매트릭스 및 에멀젼 영역의 안정성을 증대시킬 수 있다. The emissive layer may comprise amphipathic nanoparticles, which may be present, for example, in one or more of the matrix or emulsion regions, and may suitably be at the boundaries of the matrix and emulsion regions. Amphiphilic nanoparticles can enhance the stability of the matrix and emulsion regions that are phase separated in the light emitting layer.
하나의 예시에서 양친매성 나노입자는, 나노입자를 포함하는 코어부 및 상기 나노입자를 둘러싸고 있는 양친매성 화합물을 포함하는 셀부를 포함할 수 있다. 상기에서 양친매성 화합물이란, 친수성 부위와 소수성 부위를 동시에 포함하는 화합물이고, 일부 화합물은 업계에서 소위 계면활성제로서 알려져 있기도 하다. 예를 들어, 코어부의 나노입자가 소수성을 띄는 경우에 상기 셀부의 양친매성 나노입자의 친수 부위는 코어를 향하고, 소수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있으며, 반대로 코어부의 나노입자가 친수성인 경우에는 셀부의 양친매성 나노입자의 소수 부위는 코어를 향하고, 친수 부위는 외부로 배치되어 전체적으로 양친매성 나노입자가 형성될 수 있다. 상기에서 코어부의 나노입자는, 예를 들면, 약 10 nm 내지 1000 nm 범위 내의 평균 입경을 가질 수 있으나, 이는 목적에 따라서 변경될 수 있는 것으로 특별히 제한되지 않는다. 코어부의 나노입자로는, 예를 들면, 금, 은, 구리, 백금, 팔라듐, 니켈, 망간 또는 아연 등의 금속 입자, SiO2, Al2O3, TiO2, ZnO, NiO, CuO, MnO2 ,MgO, SrO 또는 CaO 등의 산화물 입자 또는 PMMA(polymethacrylate) 또는 PS(polystyrene) 등의 고분자로 되는 입자를 사용할 수 있다.In one example, the amphipathic nanoparticles may include a core part including the nanoparticles and a cell part including an amphiphilic compound surrounding the nanoparticles. Amphiphilic compounds are compounds containing both hydrophilic and hydrophobic moieties at the same time, and some compounds are known in the art as so-called surfactants. For example, when the nanoparticles of the core portion are hydrophobic, the hydrophilic portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophobic portion may be disposed to the outside to form amphipathic nanoparticles as a whole. When the nanoparticles are hydrophilic, a minority portion of the amphiphilic nanoparticles of the cell portion may face the core, and the hydrophilic portion may be disposed outside to form amphipathic nanoparticles as a whole. In the above, the nanoparticles of the core portion may have, for example, an average particle diameter in the range of about 10 nm to 1000 nm, but this is not particularly limited as may be changed according to the purpose. As nanoparticles of the core portion, for example, metal particles such as gold, silver, copper, platinum, palladium, nickel, manganese or zinc, SiO 2 , Al 2 O 3 , TiO 2 , ZnO, NiO, CuO, MnO 2 Oxide particles such as MgO, SrO or CaO or particles made of a polymer such as PMMA (polymethacrylate) or PS (polystyrene) may be used.
또한, 상기 셀부의 양친매성 화합물로는, Triton X-114(CAS No.: 9036-19-5), Triton X-100(CAS No.: 92046-34-9), Brij-58(CAS No.: 9004-95-9), 옥틸 글루코사이드(octyl glucoside, CAS No.: 29836-26-8), 옥틸티오글루코사이드(octylthio glucoside, CAS No.: 85618-21-9), 데카에틸렌글리콜 모노데실 에테르(decaethylene glycol monododecyl ether, CAS No.: 9002-92-0), N-데카노일-N-메틸글루카민(N-decanoyl-N-methylglucamine, CAS No.: 85261-20-7), 데실 말토피라노사이드(decyl maltopyranoside, CAS No.: 82494-09-5), N-도데실 말토사이드(N-dodecyl maltoside, CAS No.: 69227-93-6), 노나에틸렌글리콜 모노데실 에테르(nonaethylene glycol monododecyl ether, CAS No.: 3055-99-0), N-노나노일-N-메틸글루카민(N-nonanoyl-N-methylglucamine, CAS No.: 85261-19-4), 옥타에틸렌글리콜 모노도데실 에테르(octaethylene glycol monododecyl ether, CAS No.: 3055-98-9), 스판20(Span20, CAS No.: 1338-39-2), 폴리비닐피롤리돈(polyvinylpyrrolidone, CAS No.: 9003-39-8) 또는 Synperonic F108(PEO-b-PPO-b-PEO, CAS No.: 9003-11-06) 등을 사용할 수 있지만 이에 제한되는 것은 아니다.As the amphipathic compound of the cell portion, Triton X-114 (CAS No .: 9036-19-5), Triton X-100 (CAS No.:92046-34-9), Brij-58 (CAS No. : 9004-95-9), octyl glucoside (CAS No .: 29836-26-8), octylthio glucoside (CAS No .: 85618-21-9), decaethylene glycol monodecyl ether ( decaethylene glycol monododecyl ether, CAS No .: 9002-92-0), N-decanoyl-N-methylglucamine, CAS No .: 85261-20-7, decyl maltopyrano Decyl maltopyranoside (CAS No .: 82494-09-5), N-dodecyl maltoside (CAS No .: 69227-93-6), nonnaethylene glycol monododecyl ether , CAS No .: 3055-99-0), N-nonanoyl-N-methylglucamine, CAS No .: 85261-19-4), octaethylene glycol monododecyl ether (octaethylene glycol monododecyl ether, CAS No .: 3055-98-9), Span20, CAS No .: 1338-39-2, polyvinylpyrrole Money (polyvinylpyrrolidone, CAS No .: 9003-39-8) or Synperonic F108 (PEO-b-PPO-b-PEO, CAS No .: 9003-11-06), etc. can be used, but are not limited thereto.
양친매성 나노입자는, 매트릭스 및 에멀젼 영역의 안정성을 확보할 수 있는 범위로 상기 양친매성 화합물을 포함할 수 있다. 예를 들면, 양친매성 나노입자에서 양친매성 화합물의 비율은 5 중량% 내지 30 중량% 정도일 수 있으나, 매트릭스 및 에멀젼 영역간의 안정성이 적절하게 확보될 수 있는 한, 상기 범위는 변경될 수 있다.Amphiphilic nanoparticles may include the amphiphilic compound in a range capable of securing the stability of the matrix and the emulsion region. For example, the ratio of the amphiphilic compound in the amphipathic nanoparticles may be about 5% to 30% by weight, but the range may be changed as long as the stability between the matrix and the emulsion region can be properly secured.
양친매성 나노입자를 발광층에 포함시키는 방식, 예를 들면, 상기 매트릭스 및 에멀젼 영역의 경계에 위치시키는 방식은 특별히 제한되지 않으며, 예를 들면, 후술하는 발광층의 제조 과정에서의 혼합물에 상기 양친매성 나노입자를 배합하는 방식을 사용할 수 있다.The method of including the amphiphilic nanoparticles in the light emitting layer, for example, the method of placing the amphiphilic nanoparticles at the boundary between the matrix and the emulsion region is not particularly limited. The method of compounding the particles can be used.
하나의 예시에서 상기 양친매성 나노입자는, 상기 매트릭스 및 에멀젼 영역과는 상이한 굴절률을 가질 수 있다. 이와 같은 양친매성 나노입자가 매트릭스 및 에멀젼 영역의 경계에 위치하게 되면, 상기 나노입자에 의한 광의 산란 또는 확산에 의해, 예를 들면, 백색광의 생성 효율이 보다 증가할 수 있다.In one example, the amphiphilic nanoparticles may have a refractive index different from that of the matrix and emulsion regions. When such amphiphilic nanoparticles are located at the boundary between the matrix and the emulsion region, for example, white light may be more efficiently generated by scattering or diffusing light by the nanoparticles.
상기에서 나노입자와 매트릭스 및 에멀젼 영역의 굴절률의 차이의 정도는 목적하는 광의 산란 내지는 확산 효과를 고려하여 적정 범위로 설정될 수 있으며, 그 구체적인 범위는 특별히 제한되지 않는다. 예를 들면, 상기 나노입자와 상기 매트릭스간의 굴절률의 차이의 절대값 및 상기 나노입자와 상기 에멀젼 영역간의 굴절률의 차이의 절대값은 각각 0.05 내지 0.5의 범위 내에 있을 수 있다. 나노입자의 굴절률은 상기 범위를 만족한다면, 특별히 제한되지 않고, 예를 들면, 1.0 내지 2.0의 범위 내에 있을 수 있다. 본 명세서에서 용어 굴절률은 특별히 달리 규정하지 않는 한, 약 550 nm의 파장의 광에 대하여 측정한 값이다.The degree of difference in the refractive index of the nanoparticles and the matrix and the emulsion region in the above may be set in an appropriate range in consideration of the scattering or diffusing effect of the desired light, the specific range is not particularly limited. For example, the absolute value of the difference in refractive index between the nanoparticles and the matrix and the absolute value of the difference in refractive index between the nanoparticles and the emulsion region may be in the range of 0.05 to 0.5, respectively. The refractive index of the nanoparticles is not particularly limited as long as it satisfies the above range, and may be, for example, in the range of 1.0 to 2.0. As used herein, the term refractive index is a value measured for light having a wavelength of about 550 nm, unless otherwise specified.
발광층 내에서 양친매성 나노입자의 비율은, 예를 들면, 매트릭스 및 에멀젼 영역의 안정성을 고려하여 선택할 수 있다. 하나의 예시에서 상기 양친매성 나노입자는 매트릭스 및 에멀젼 영역 또는 발광층의 전체 중량을 기준으로 1 중량% 내지 10 중량%의 농도로 존재할 수 있다.The proportion of the amphiphilic nanoparticles in the light emitting layer can be selected in consideration of the stability of the matrix and the emulsion region, for example. In one example, the amphiphilic nanoparticles may be present in a concentration of 1% by weight to 10% by weight based on the total weight of the matrix and the emulsion region or the light emitting layer.
양친매성 나노입자로는, Soken사에서 MX 80H의 제품명으로 판매되는 것, Sekisui사에서 XX-43BQ, XX-128BQ, XX-130 BQ, XX-50 BQ, XX-131 BQ, MBX-2H, MBX-30, SSX-104, XXS-105, SSX-108, SSX-110, XX-129BQ 또는 XX-99BQ 등의 제품명으로 판매되고 있는 것인, Nissan사에서 MIBK-SD-L, MIBK-SD, MIBK-ST-L, MIBK-ST 또는 TOL-ST 등의 제품명으로 판매되고 있는 것을 적용할 수도 있다.Amphiphilic nanoparticles are those sold under the product name MX 80H by Soken, XX-43BQ, XX-128BQ, XX-130 BQ, XX-50 BQ, XX-131 BQ, MBX-2H, and MBX from Sekisui. MIBK-SD-L, MIBK-SD, MIBK sold by Nissan under the product names such as -30, SSX-104, XXS-105, SSX-108, SSX-110, XX-129BQ or XX-99BQ. What is marketed under product names, such as -ST-L, MIBK-ST, or TOL-ST, can also be applied.
발광층은 또한 항산화제를 포함할 수 있고, 이러한 성분은 특히 상기 발광 나노입자로서, 양자점을 적용하는 경우에 유용할 수 있다. 양자점은, 산소에 노출되면, 열화되어 발광능이 저하되는 특성을 가지는데, 이러한 경우에 전술한 항산화제가 발광층에 포함되어 있다면, 상기 발광 나노입자를 보호할 수 있다. 항산화제로는, 예를 들면, 산화성 금속, 페놀계 산화 방지제, 티오에테르계 산화 방지제, 포스파이트(phosphate)계 산화 방지제 또는 힌더드 아민계와 같은 아민계 산화 방지제가 사용될 수 있다. 항산화제는 전술한 매트릭스 또는 에멀젼 영역 중 어느 영역 내에 포함되어 있어도 무방하다.The luminescent layer may also comprise an antioxidant, which component may be particularly useful when applying quantum dots as the luminescent nanoparticles. The quantum dot is deteriorated when exposed to oxygen, and has a property of lowering luminescence ability. In this case, if the above-described antioxidant is included in the light emitting layer, the light emitting nanoparticles may be protected. As the antioxidant, for example, oxidizing metals, phenolic antioxidants, thioether antioxidants, phosphate antioxidants or amine antioxidants such as hindered amines may be used. The antioxidant may be contained in any of the aforementioned matrix or emulsion regions.
따라서, 발광층은 산화성 금속 입자 또는 그 금속 입자의 산화물을 포함할 수 있다. 산화성 금속 입자는, 산소와 반응하여 산화물을 형성할 수 있는 금속을 의미하고, 알칼리 금속, 알칼리 토금속 또는 전이 금속 등도 산화성인 경우에 적용될 수 있다. 상기 금속이 발광층 내의 산소와 반응하여 산화물을 형성함으로써 상기 발광 나노입자를 보호할 수 있다. 사용될 수 있는 산화성 금속은, 산소와 반응하여 산화물을 형성할 수 있는 것이라면, 특별히 제한되지 않는다. 산화성 금속으로는, 예를 들면, Pt, Au, Ag 또는 Ce 등을 들 수 있지만, 이에 제한되는 것은 아니다. 금속 입자의 크기는, 산소와의 반응성을 고려하여 조절될 수 있으며, 일반적으로 약 10 nm 내지 10,000 nm의 범위 내의 평균 입자 직경을 가질 수 있다. Accordingly, the light emitting layer may include an oxidative metal particle or an oxide of the metal particle. An oxidizing metal particle means a metal capable of reacting with oxygen to form an oxide, and an alkali metal, an alkaline earth metal, a transition metal, or the like may also be applied when oxidative. The metal may protect the light emitting nanoparticles by reacting with oxygen in the light emitting layer to form an oxide. The oxidizing metal which can be used is not particularly limited as long as it can react with oxygen to form an oxide. Examples of the oxidizing metal include, but are not limited to, Pt, Au, Ag, or Ce. The size of the metal particles can be adjusted in consideration of the reactivity with oxygen, and can generally have an average particle diameter in the range of about 10 nm to 10,000 nm.
발광층 내에서 상기 산화성 금속 입자 또는 그 산화물의 비율은, 예를 들면, 산소와의 반응성, 발광층 재료의 경화성이나, 발광층의 발광 특성을 고려하여 선택될 수 있다. 일 예시에서 상기 산화성 금속 입자는, 발광층 내에서 약 0.01 중량% 내지 1 중량%의 비율로 존재할 수 있다. 필요하다면, 상기 산화성 금속 입자의 분산을 위한 공지의 분산제가 함께 사용될 수 있다.The ratio of the oxidizing metal particles or oxides thereof in the light emitting layer may be selected in consideration of, for example, reactivity with oxygen, curability of the light emitting layer material, or light emission characteristics of the light emitting layer. In one example, the oxidizing metal particles may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer. If necessary, known dispersants for the dispersion of the oxidizing metal particles can be used together.
발광층은 또한 항산화제로는, 페놀계 산화 방지제, 티오에테르계 산화 방지제, 포스파이트(phosphate)계 산화 방지제 또는 힌더드 아민계와 같은 아민계 산화 방지제를 포함할 수 있다. 상기 각 산화 방지제의 구체적인 종류는 특별히 제한되지 않으며, 공지의 물질이 적용될 수 있다.The light emitting layer may also include, as antioxidants, amine antioxidants such as phenolic antioxidants, thioether antioxidants, phosphate antioxidants or hindered amines. The specific kind of each antioxidant is not particularly limited, and known materials may be applied.
발광층 내에서 상기 산화 방지제의 비율도, 예를 들면, 산소와의 반응성, 발광층 재료의 경화성이나, 발광층의 발광 특성을 고려하여 선택될 수 있다. 일 예시에서 상기 산화 방지제는, 발광층 내에서 약 0.01 중량% 내지 1 중량%의 비율로 존재할 수 있다.The ratio of the antioxidant in the light emitting layer may also be selected in consideration of the reactivity with oxygen, the curability of the light emitting layer material, or the light emitting properties of the light emitting layer. In one example, the antioxidant may be present in a ratio of about 0.01% to 1% by weight in the light emitting layer.
발광층은, 또한 산란 입자를 포함할 수 있다. 발광층에 포함되는 산란 입자는, 상기 발광층에 입사되는 광이 상기 발광 나노입자로 도입될 확률을 조절하여 발광층이 가지는 광 특성을 보다 개선할 수 있다. 본 명세서에서 용어 산란 입자는, 주변 매질, 예를 들면, 상기 매트릭스 또는 에멀젼 영역과는 상이한 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 확산시킬 수 있는 모든 종류의 입자를 의미할 수 있다. 예를 들면, 산란 입자는, 주변 매질, 예를 들면, 매트릭스 및/또는 에멀젼 영역에 비하여 낮거나 높은 굴절률을 가질 수 있고, 상기 매트릭스 및/또는 에멀젼 영역과의 굴절률의 차이의 절대값이 0.2 이상 또는 0.4 이상인 입자일 수 있다. 상기 굴절률의 차이의 절대값의 상한은 특별히 제한되지 않고, 예를 들면, 약 0.8 이하 또는 약 0.7 이하일 수 있다. 산란 입자는, 예를 들면, 평균 입경이 10nm 이상, 100 nm 이상, 100 nm 초과, 100 nm 내지 20000 nm, 100 nm 내지 15000 nm, 100 nm 내지 10000 nm, 100 nm 내지 5000 nm, 100 nm 내지 1000 nm 또는 100 nm 내지 500 nm 정도일 수 있다. 산란 입자는, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 형태는 특별히 제한되는 것은 아니다. 산란 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자가 예시될 수 있다. 산란 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어/셀 구조의 입자도 사용할 수 있다. 산란 입자의 발광층 내에서의 비율은 특별히 제한되지 않고, 예를 들면, 발광층으로 입사되는 광의 경로를 고려하여 적정 비율로 선택될 수 있다. The light emitting layer may also contain scattering particles. The scattering particles included in the light emitting layer may further improve the optical characteristics of the light emitting layer by controlling the probability that light incident on the light emitting layer is introduced into the light emitting nanoparticles. As used herein, the term scattering particle means any kind of particle that has a different refractive index than the surrounding medium, for example the matrix or emulsion region, and also has a suitable size to scatter, refract or diffuse incident light. can do. For example, the scattering particles may have a low or high refractive index compared to the surrounding medium, for example the matrix and / or emulsion region, and the absolute value of the difference in the refractive index with the matrix and / or emulsion region is 0.2 or more. Or 0.4 or more particles. The upper limit of the absolute value of the difference in refractive index is not particularly limited and may be, for example, about 0.8 or less or about 0.7 or less. The scattering particles have, for example, an average particle diameter of 10 nm or more, 100 nm or more, more than 100 nm, 100 nm to 20000 nm, 100 nm to 15000 nm, 100 nm to 10000 nm, 100 nm to 5000 nm, 100 nm to 1000 nm or 100 nm to 500 nm. The scattering particles may have a shape such as spherical, elliptical, polyhedron or amorphous, but the shape is not particularly limited. As the scattering particles, for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles comprising an inorganic material can be exemplified. The scattering particles may be formed of only one of the above materials or two or more of the above materials. For example, hollow particles such as hollow silica or core / cell structure particles may be used as scattering particles. The ratio of the scattering particles in the light emitting layer is not particularly limited and, for example, may be selected at an appropriate ratio in consideration of the path of light incident on the light emitting layer.
산란 입자는, 예를 들면 상기 매트릭스 또는 에멀젼 영역에 포함될 수 있다. 하나의 예시에서 산란 입자는, 상기 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 포함되고, 다른 영역에는 존재하지 않을 수 있다. 상기에서 산란 입자가 존재하지 않는 영역은, 전술한 바와 같이 해당 입자를 실질적으로 포함하지 않는 영역으로서, 그 영역의 전체 중량을 기준으로 산란 입자의 그 영역 내에서의 중량 비율이 10% 이하, 8% 이하, 6% 이하, 4% 이하, 2% 이하, 1% 이하 또는 0.5% 이하 인 경우를 의미할 수 있다. 하나의 예시에서 매트릭스 및 에멀젼 영역 중에서 어느 한 영역에만 상기 발광 나노입자가 포함되는 경우에 산란 입자는 상기 발광 나노입자가 포함되지 않는 영역에만 존재할 수 있다.Scattering particles can be included, for example, in the matrix or emulsion region. In one example, the scattering particles may be included in only one of the matrix and emulsion regions and may not be present in the other regions. In the above, the region in which the scattering particles do not exist is a region substantially free of the particles as described above, and based on the total weight of the region, the weight ratio of the scattering particles in the region is 10% or less, 8 It may mean a case of% or less, 6% or less, 4% or less, 2% or less, 1% or less, or 0.5% or less. In one example, when the light emitting nanoparticles are included in only one of the matrix and emulsion regions, the scattering particles may be present only in the region where the light emitting nanoparticles are not included.
산란 입자는, 예를 들면, 매트릭스 또는 에멀젼 영역의 전체 중량 100 중량부 대비 10 내지 100 중량부의 비율로 발광층에 포함될 수 있고, 이러한 비율 내에서 적절한 산란 특성을 확보할 수 있다. Scattering particles, for example, may be included in the light emitting layer in a ratio of 10 to 100 parts by weight relative to 100 parts by weight of the total weight of the matrix or emulsion region, it is possible to ensure appropriate scattering properties within this ratio.
발광층은, 산소 제거제(oxygen scavenger) 또는 라디칼 제거제 등과 같은 첨가제를 필요한 양으로 추가로 포함할 수도 있다.The light emitting layer may further include additives such as oxygen scavenger or radical scavenger in the required amount.
발광층의 두께는 특별히 제한되지 않고, 목적하는 용도 및 광특성을 고려하여 적정 범위로 선택될 수 있다. 하나의 예시에서 발광층은 10 내지 500 ㎛, 10 내지 400㎛, 10 내지 300㎛ 또는 10 내지 200㎛의 범위 내의 두께를 가질 수 있으나, 이에 제한되는 것은 아니다.The thickness of the light emitting layer is not particularly limited and may be selected in an appropriate range in consideration of the intended use and optical characteristics. In one example, the light emitting layer may have a thickness in the range of 10 to 500 μm, 10 to 400 μm, 10 to 300 μm, or 10 to 200 μm, but is not limited thereto.
상기와 같은 발광층은, 예를 들면, 친수성 중합성 조성물과 소수성 중합성 조성물의 혼합물을 포함하는 층을 중합시켜 제조할 수 있다. 상기에서 친수성 및 소수성 중합성 조성물로는, 예를 들면, 상기 기술한 조성물, 즉 친수성 또는 소수성의 라디칼 중합성 화합물과 개시제 등을 포함하는 조성물을 각각 사용할 수 있다. 또한, 상기 혼합물은 친수성 및 소수성 중합성 조성물을 각각 별도로 제조한 후에 이를 혼합하여 제조하거나, 혹은 친수성 및 소수성 중합성 조성물을 이루는 성분을 한번에 혼합하여 제조할 수도 있다. 이와 같은 혼합물을 중합시키면, 중합 과정에서 상분리가 일어나고, 전술한 형태의 발광층이 형성될 수 있다. 상기 혼합물을 포함하는 층을 형성하는 방식은 특별히 제한되지 않는다. 예를 들면, 얻어진 혼합물을 공지의 코팅 방식으로 적정한 기재상에 코팅하여 형성할 수 있다. 상기와 같은 방식으로 형성된 층을 경화시키는 방식도 특별히 제한되지 않으며, 예를 들면, 각 조성물에 포함되어 있는 개시제가 활성활될 수 있을 정도의 적정 범위의 열을 인가하거나, 혹은 자외선 등과 같은 전자기파를 인가하는 방식으로 수행할 수 있다.Such a light emitting layer can be produced by polymerizing a layer containing a mixture of a hydrophilic polymerizable composition and a hydrophobic polymerizable composition, for example. As the hydrophilic and hydrophobic polymerizable composition, for example, the above-described composition, that is, a composition containing a hydrophilic or hydrophobic radically polymerizable compound, an initiator and the like can be used. In addition, the mixture may be prepared by separately preparing each of the hydrophilic and hydrophobic polymerizable compositions, or may be prepared by mixing the components of the hydrophilic and hydrophobic polymerizable composition at once. When the mixture is polymerized, phase separation may occur during the polymerization process, and a light emitting layer having the above-described type may be formed. The manner of forming the layer comprising the mixture is not particularly limited. For example, the obtained mixture can be formed by coating onto a suitable substrate by a known coating method. The method of curing the layer formed in the above manner is not particularly limited, for example, applying an appropriate range of heat such that the initiator included in each composition can be activated, or applying electromagnetic waves such as ultraviolet rays. It can be done in a way that is applied.
상기 발광층, 예를 들면 발광 나노입자로서 양자점을 포함하는 발광층은, 수분, 습기 또는 산소 등과 같은 외부 요인에 취약하다. 따라서, 발광층이 상기 외부 요인에 노출되면, 발광 나노입자의 성능이 저하하게 된다. 발광층의 형성 과정에서 절단 내지는 재단 공정이 적용되는 경우에 발광층의 측면은 상기 산소와 같은 외부 요인의 침투 경로로 작용하게 된다.The light emitting layer, for example, a light emitting layer including quantum dots as light emitting nanoparticles, is vulnerable to external factors such as moisture, moisture or oxygen. Therefore, when the light emitting layer is exposed to the external factor, the performance of the light emitting nanoparticles is reduced. When the cutting or cutting process is applied in the formation of the light emitting layer, the side surface of the light emitting layer serves as a penetration path of external factors such as oxygen.
이에 따라 본 출원의 발광 필름은, 상기 발광층의 측면에 존재하는 차단막을 포함하는 구조를 가진다. 상기에서 차단막은 발광층의 모든 측면에 존재할 수 있다. 또한, 상기 차단막은 상기 발광층의 측면은 물론 상기 발광층의 상부 및/또는 하부상에도 존재할 수 있다. 일 예시에서 상기 발광층은 상기 차단막에 의해 전면에 밀봉되어 있을 수 있다.Accordingly, the light emitting film of the present application has a structure including a blocking film present on the side of the light emitting layer. The barrier layer may be present on all sides of the light emitting layer. In addition, the blocking layer may be present on the top and / or bottom of the light emitting layer as well as the side of the light emitting layer. In one example, the light emitting layer may be sealed on the entire surface by the blocking film.
본 출원에서 용어 차단막은, 의도된 범위의 투습도(WVTR, Water Vapor Transmission Rate) 및/또는 산소 투과도(OTR, Oxygen Transmission Rate)를 나타내는 모든 종류의 층을 의미할 수 있다.In the present application, the term barrier film may refer to any kind of layer that exhibits a water vapor transmission rate (WVTR) and / or an oxygen transmission rate (OTR) in an intended range.
예를 들면, 차단막은, 40℃의 온도 및 90%의 상대습도에서의 투습도가 10 g/m2/day 이하 g/m2/day 이하, 8 g/m2/day 이하, 6 g/m2/day 이하, 4 g/m2/day 이하, 2 g/m2/day 이하, 1 g/m2/day 이하, 0.5 g/m2/day 이하, 0.3 g/m2/day 이하 또는 0.1 g/m2/day 이하인 층을 의미할 수 있다. 투습도는 그 수치가 낮을수록 해당 층이 우수한 배리어성을 나타내는 것을 의미하므로, 상기 투습도의 하한은 특별히 제한되지 않는다. 하나의 예시에서 상기 투습도의 하한은, 0.001 g/m2/day 이상, 0.005 g/m2/day 이상, 0.01 g/m2/day 이상, 0.02 g/m2/day 이상, 0.03 g/m2/day 이상, 0.04 g/m2/day 이상, 0.05 g/m2/day 이상 또는 0.06 g/m2/day 이상일 수 있다. 상기 투습도는, 예를 들면, ISO 15106-3 또는 ASTM F-1249 규격에 의해 측정할 수 있다.For example, the barrier membrane has a water vapor transmission rate of 10 g / m 2 / day or less, g / m 2 / day or less, 8 g / m 2 / day or less, 6 g / m at a temperature of 40 ° C. and a relative humidity of 90%. 2 / day or less, 4 g / m 2 / day or less, 2 g / m 2 / day or less, 1 g / m 2 / day or less, 0.5 g / m 2 / day or less, 0.3 g / m 2 / day or less It may mean a layer that is 0.1 g / m 2 / day or less. Since the water vapor transmission rate means that the numerical value is low, the said layer shows the outstanding barrier property, the minimum of the said water vapor transmission rate is not specifically limited. In one example, the lower limit of the water vapor transmission rate is 0.001 g / m 2 / day or more, 0.005 g / m 2 / day or more, 0.01 g / m 2 / day or more, 0.02 g / m 2 / day or more, 0.03 g / m At least 2 / day, at least 0.04 g / m 2 / day, at least 0.05 g / m 2 / day or at least 0.06 g / m 2 / day. The moisture permeability can be measured by, for example, ISO 15106-3 or ASTM F-1249 standard.
한편, 상기 차단막은, 25℃ 내지 30℃의 범위 내의 어느 한 온도 및 70% 내지 80% 내의 어느 한 상대 습도에서 산소 투과도(OTR, Oxygen Transmission Rate)가 1 cc/m2/day 이하 cc/m2/day 이하, 0.8 cc/m2/day 이하, 0.6 cc/m2/day 이하, 0.4 cc/m2/day 이하, 0.2 cc/m2/day 이하, 0.1 cc/m2/day 이하, 0.05 cc/m2/day 이하, 0.03 cc/m2/day 이하 또는 0.01 cc/m2/day 이하일 수 있다. 상기 산소 투과도는 그 수치가 낮을수록 해당 층이 우수한 차단성을 나타내는 것을 의미하므로, 상기 산소 투과도의 하한은 특별히 제한되지 않는다. 상기 산소 투과도는, 예를 들면, ASTM D-3985 규격에 따라 측정하였다.On the other hand, the barrier membrane has an oxygen transmission rate (OTR) of 1 cc / m 2 / day or less at any temperature within a range of 25 ° C. to 30 ° C. and any relative humidity within 70% to 80%. 2 / day or less, 0.8 cc / m 2 / day or less, 0.6 cc / m 2 / day or less, 0.4 cc / m 2 / day or less, 0.2 cc / m 2 / day or less, 0.1 cc / m 2 / day or less, 0.05 cc / m 2 / day or less, 0.03 cc / m 2 / day or less, or 0.01 cc / m 2 / day or less. The lower the value of the oxygen permeability, the lower the value of the oxygen permeability is. The oxygen permeability was measured according to, for example, the ASTM D-3985 standard.
본 출원에서 차단막은, 외부 인자, 특히 수분이나 산소 등을 차단할 수 있는 것으로 알려져 있는 공지의 소재를 사용하여 형성할 수 있다. 예를 들면, 차단막은, 금속, 산화물, 질화물, 산질화물, 불화물, 폴리실라잔 또는 산소 흡수제 등을 포함할 수 있다. In the present application, the blocking film can be formed using a known material known to block external factors, in particular moisture or oxygen. For example, the barrier layer may include a metal, an oxide, a nitride, an oxynitride, a fluoride, a polysilazane or an oxygen absorbent.
상기에서 금속으로는, 알루미늄(Al) 등이 예시될 수 있고, 산화물로는, TiO2, Ti3O3, Al2O3, MgO, SiO, SiO2, GeO, NiO, CaO, BaO, Fe2O3, Y2O3, ZrO2, Nb2O3 및 CeO2 등의 금속 산화물을 들 수 있고, 질화물로는, SiN 등의 금속 질화물을 들 수 있으며, 산질화물로는, SiON 등의 금속 산질화물을 들 수 있고, 불화물로는, MgF2, LiF, AlF3 및 CaF2 등의 금속 불화물 등을 들 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 소재를 적절한 방식, 예를 들면 증착 방식이나 코팅 방식에 적용하여 상기 차단막을 형성할 수 있다.As the metal, aluminum (Al) may be exemplified, and as the oxide, TiO 2 , Ti 3 O 3 , Al 2 O 3 , MgO, SiO, SiO 2 , GeO, NiO, CaO, BaO, Fe 2 O 3, such as Y 2 O 3, ZrO 2, Nb 2 O 3 and CeO there may be mentioned a metal oxide 2, and so on, nitrides include, may be made of a metal nitride such as SiN, oxynitride include, SiON of Examples of the metal oxynitride include metal fluorides such as MgF 2 , LiF, AlF 3, and CaF 2 , but are not limited thereto. The barrier film may be formed by applying the above material to an appropriate method, for example, a deposition method or a coating method.
또한, 상기에서 산소 흡수제의 종류는 특별히 제한되지 않으며, 산소 흡수 기능을 가지는 것으로 공지된 화합물을 제한 없이 사용할 수 있다. 예를 들면, 산소 흡수제로는, 불포화 탄소의 산화 반응을 통해 산소 흡수 기능을 나타내는 유형 또는 감광성 염료 산화(photosensitive dye oxidation)에 의해 산소 흡수 기능을 나타내는 유형을 사용할 수 있다. 이러한 산소 흡수제로는 설파이트(sulfite) 화합물, 비타민(vitamin) E, 비타민(vitamin) C, 토코페롤(tocopherol) 또는 불포화 이중 결합 포함 화합물 등이 예시될 수 있다. 상기에서 불포화 이중 결합 포함 화합물로는, 예를 들면, 스쿠알렌(squalene), 지방산(fatty acid) 화합물 또는 폴리부타디엔 등이 예시될 수 있으며, 이러한 화합물은 필요한 경우에 적정량의 전이금속 촉매 또는 자외선 증감제(UV sensitizer) 등과 함께 사용될 수 있다. 따라서, 상기 산소 흡수제를 포함하는 차단막은 상기 전이금속 촉매 및/또는 자외선 증감제를 추가로 포함할 수 있다. In addition, the kind of oxygen absorbent is not particularly limited in the above, and compounds known to have an oxygen absorbing function may be used without limitation. For example, as the oxygen absorbent, a type that exhibits an oxygen absorption function through oxidation of unsaturated carbon or a type that exhibits an oxygen absorption function by photosensitive dye oxidation can be used. Examples of such oxygen absorbents include sulfite compounds, vitamin E, vitamin C, tocopherol, compounds including unsaturated double bonds, and the like. As the unsaturated double bond-containing compound in the above, for example, squalene (squalene), fatty acid (fatty acid) compound or polybutadiene and the like can be exemplified, such compounds, if necessary, an appropriate amount of transition metal catalyst or ultraviolet sensitizer (UV sensitizer) and the like. Therefore, the barrier layer including the oxygen absorbent may further include the transition metal catalyst and / or an ultraviolet sensitizer.
하나의 예시에서 상기 차단막은 배리어막과 산소 흡수제를 포함할 수 있다. 이러한 경우에 상기 산소 흡수제는, 상기 배리어막 내에 포함되어 있거나, 상기 배리어막과 적층되어 있는 산소 흡수막 내에 포함되어 있을 수 있다.In one example, the barrier layer may include a barrier layer and an oxygen absorbent. In this case, the oxygen absorbent may be included in the barrier film or in an oxygen absorber film laminated with the barrier film.
차단막이 배리어막과 산소 흡수막을 포함하는 경우에 발광 필름 내에서 그 배치 순서는 특별히 제한되지 않는다. 다만, 적절한 성능의 확보를 위해서 산소 흡수막이 배리어막에 비하여 발광층에 인접하도록 형성되어 있을 수 있다. 또한, 차단막은, 하나 이상의 산소 차단막과 하나 이상의 배리어막을 포함할 수 있고, 예를 들면, 상기 차단막은 하나의 산소 흡수막이 두 개의 배리어막의 사이에 존재하는 구조일 수도 있다. In the case where the barrier film includes a barrier film and an oxygen absorbing film, the arrangement order in the light emitting film is not particularly limited. However, in order to secure proper performance, the oxygen absorbing film may be formed adjacent to the light emitting layer as compared with the barrier film. In addition, the blocking film may include at least one oxygen blocking film and at least one barrier film. For example, the blocking film may have a structure in which one oxygen absorbing film is present between two barrier films.
본 출원에서 용어 배리어막은, 예를 들면, 전술한 범위의 투습도(WVTR, Water Vapor Transmission Rate)를 나타내는 모든 종류의 층을 의미할 수 있다. 또한, 상기 배리어막이 산소 흡수제와 조합되는 경우에는, 상기 배리어막 자체의 투습도가 어느 정도 높은 경우에도 우수한 차단 성능을 나타낼 수 있다. In the present application, the term barrier film may mean, for example, all kinds of layers exhibiting a water vapor transmission rate (WVTR) in the aforementioned range. In addition, when the barrier film is combined with an oxygen absorbent, even when the moisture permeability of the barrier film itself is high to some extent, excellent barrier performance can be exhibited.
본 출원의 배리어막의 종류는 전술한 범위의 투습도를 나타내는 것이라면 특별히 제한되지 않는다. 업계에서는 수분과 같은 외부 인자를 차단할 수 있는 것으로 알려져 있는 소재를 사용하여 형성한 배리어막이 다양하게 알려져 있으며, 이러한 공지의 배리어막은 모두 본 출원에서 적용될 수 있다.The kind of barrier film of this application will not be restrict | limited especially if it shows the water vapor transmission rate of the above-mentioned range. Various barrier films formed using materials known to block external factors such as moisture are known in the art, and all of these known barrier films may be applied in the present application.
예를 들면, 배리어막은, 금속, 산화물, 질화물, 산질화물 또는 불화물 등과 같이 배리어 특성을 나타낼 수 있는 물질(이하, 배리어 물질)을 포함할 수 있다. 상기 금속, 산화물, 질화물, 산질화물 또는 불화물의 구체적인 종류는 전술한 바와 같다. 배리어막은 상기 배리어 물질만을 단독으로 포함하거나, 상기 배리어 물질과 다른 물질을 함께 포함할 수 있다. 상기에서 배리어 물질과 함께 배리어막에 포함될 수 있는 물질로는, 상기 배리어 물질을 유지할 수 있는 매트릭스 수지를 들 수 있다. 일반적으로 배리어막은 적절한 기재 필름상에 상기 배리어 물질의 막을 형성하는 방식으로 제조될 수 있다. 상기에서 배리어 물질의 막은, 예를 들면, 증착 방식 등으로 형성되는 것이 일반적이지만, 이러한 증착 방식 외에 배리어 물질과 매트릭스 수지를 포함하는 코팅액을 코팅하는 방식으로 배리어막을 형성할 수도 있다. For example, the barrier film may include a material (hereinafter, a barrier material) capable of exhibiting barrier properties, such as a metal, an oxide, a nitride, an oxynitride, or a fluoride. Specific types of the metal, oxide, nitride, oxynitride or fluoride are as described above. The barrier layer may include only the barrier material alone or may include other materials with the barrier material. As the material that may be included in the barrier film together with the barrier material, a matrix resin capable of holding the barrier material may be mentioned. In general, the barrier film can be prepared by forming a film of the barrier material on a suitable base film. The barrier material film is generally formed by, for example, a deposition method. However, the barrier film may be formed by coating a coating liquid containing the barrier material and the matrix resin in addition to the deposition method.
상기와 같은 구조의 배리어막에 적용되는 기재 필름의 예로는, 폴리에틸렌 필름 또는 폴리프로필렌 필름 등의 폴리올레핀 필름, 폴리노르보넨 필름 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer) 필름, PC(polycarbonate) 필름 또는 PET(poly(ethylene terephthalate)) 필름 등의 폴리에스테르 필름, 폴리염화비닐 필름, 폴리아크릴로니트릴 필름, 폴리설폰 필름, 폴리아크릴레이트 필름, 폴리비닐알코올 필름 또는 TAC(Triacetyl cellulose) 필름 등의 셀룰로오스 에스테르계 폴리머 필름이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 필름 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.Examples of the base film applied to the barrier film having the above structure include a polyolefin film such as a polyethylene film or a polypropylene film, a cycloolefin polymer (COP) film such as a polynorbornene film, and a polycarbonate (PC) film. Or cellulose such as polyester film such as PET (poly (ethylene terephthalate)) film, polyvinyl chloride film, polyacrylonitrile film, polysulfone film, polyacrylate film, polyvinyl alcohol film or TAC (Triacetyl cellulose) film Although an ester polymer film or the copolymer film of 2 or more types of monomers among the monomer which forms the said polymer etc. can be illustrated, it is not limited to this.
배리어막이 상기와 같이 기재 필름과 그 표면에 존재하는 배리어 물질의 층을 포함하는 구조를 가지는 경우, 배리어막이 발광층의 측면, 상부 및/또는 하부에 형성될 때에는 배리어 물질의 층이 상기 기재 필름에 비하여 발광층에 가깝게 배치되어 있을 수 있다.When the barrier film has a structure including the base film and the layer of the barrier material present on the surface as described above, when the barrier film is formed on the side, top and / or bottom of the light emitting layer, the layer of the barrier material is compared with the base film. It may be disposed close to the light emitting layer.
상기 배리어 물질의 형태는 특별히 제한되지 않고, 적절한 배리어성을 나타낼 수 있도록 조절될 수 있다. 예를 들어, 배리어 물질은, 나노클레이(nanoclay) 등과 같은 판상일 수 있지만, 이에 제한되는 것은 아니다. 배리어막은, 또한 폴리실라잔(polysilazane)과 같이 적절한 처리를 통해 산화물로 전환될 수 있는 물질이나, 나노클레이 등의 판상 물질을 사용하여 형성할 수 있는데, 이러한 경우에 상기 증착 방식 외에도 상기 물질을 적절한 매트릭스 수지 내에 분산시킨 코팅액을 코팅하는 방식으로도 형성할 수 있다.The shape of the barrier material is not particularly limited and may be adjusted to exhibit appropriate barrier properties. For example, the barrier material may be plate-like, such as nanoclay, but is not limited thereto. The barrier film may also be formed using a material that can be converted into an oxide through a suitable treatment, such as polysilazane, or a plate material such as nanoclay, in which case the material may be formed in addition to the deposition method. It can also be formed by coating the coating liquid dispersed in the matrix resin.
상기와 같은 배리어막의 두께는 특별히 제한되지 않고, 목적하는 배리어 성능을 고려하여 조절될 수 있다. 예를 들면, 배리어막의 두께는, 약 100㎛ 이하, 90㎛ 이하, 80㎛ 이하, 70㎛ 이하, 60㎛ 이하, 50㎛ 이하, 40㎛ 이하, 30㎛ 이하, 20㎛ 이하 또는 15㎛ 이하일 수 있다. 배리어막의 두께의 하한은 특별히 제한되지 않고, 예를 들면, 상기 두께는 약 5㎛ 이상 정도일 수 있다. 상기에서 배리어막의 두께는, 예를 들어, 배리어막이 보호 코팅층이나, 기재 필름 등과 같이 다른 층을 포함하여 다층 구조로 형성되는 경우에는 배리어성을 나타내는 층(ex. 금속, 산화물, 질화물, 산질화물 또는 폴리실라잔의 층) 자체의 두께를 의미하고, 상기 다른 요소, 예를 들면, 보호 코팅층이나, 기재 필름 등과 같은 층의 두께는 포함되지 않는 두께를 의미한다.The thickness of the barrier film as described above is not particularly limited and may be adjusted in consideration of desired barrier performance. For example, the thickness of the barrier film may be about 100 μm or less, 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, 30 μm or less, 20 μm or less, or 15 μm or less. have. The lower limit of the thickness of the barrier film is not particularly limited, and for example, the thickness may be about 5 μm or more. In the above, the thickness of the barrier film is, for example, when the barrier film is formed into a multi-layer structure including other layers such as a protective coating layer or a base film, for example, a layer exhibiting barrier property (ex. Metal, oxide, nitride, oxynitride or Thickness of the other element, for example, a protective coating layer, a base film, or the like, means a thickness which is not included.
차단막은 상기 배리어막을 단독으로 포함하거나, 혹은 상기 배리어막과 함께 산소 흡수제를 포함할 수 있다. 산소 흡수제는, 배리어막 내에 포함되어 있거나, 별도의 층의 형태로 상기 배리어막의 일면에 적층되어 있을 수 있다. 본 출원에서 산소 흡수제를 포함하는 층은 산소 흡수막으로 호칭될 수 있다. 본 출원에서 사용할 수 있는 산소 흡수제의 구체적인 종류는 전술한 바와 같다.The barrier layer may include the barrier layer alone, or may include an oxygen absorbent together with the barrier layer. The oxygen absorber may be included in the barrier film or may be laminated on one surface of the barrier film in the form of a separate layer. In the present application, the layer including the oxygen absorbent may be referred to as an oxygen absorber. Specific types of oxygen absorbers that can be used in the present application are as described above.
배리어막의 내부에 산소 흡수제를 포함시키기 위해서는, 전술한 배리어 물질의 증착 과정에서 상기 산소 흡수제를 함께 증착시키거나, 산소 흡수제가 존재하는 표면상에 배리어 물질을 증착시키거나, 혹은 전술한 배리어 물질이 포함된 코팅액 내에 산소 흡수제를 함께 분산시켜서 배리어막을 형성하는 방식을 사용할 수 있다.In order to include the oxygen absorbent in the barrier film, the oxygen absorbent may be deposited together in the above-described deposition process of the barrier material, the barrier material may be deposited on the surface where the oxygen absorber is present, or the barrier material may be included. A method of forming a barrier film by dispersing the oxygen absorbent together in the coated liquid can be used.
산소 흡수제를 산소 흡수막에 포함시키는 경우에는, 적절한 수지 매트릭스 내에 상기 산소 흡수제를 분산시켜 제조한 코팅액을 사용한 코팅 방식으로 상기 산소 흡수막을 형성하거나, 혹은 상기 수지 매트릭스와 산소 흡수제를 포함하는 원료를 압출 등의 필름 형성 방식에 적용하여 필름화하는 방식 등으로 산소 흡수막을 형성한 후에 상기 산소 흡수막을 상기 배리어막과 적층하는 방식을 사용하거나, 배리어막상에 직접 상기 코팅 또는 압출 등의 방식으로 산소 흡수막을 형성하는 방식으로 적용할 수 있다. When the oxygen absorber is included in the oxygen absorbing film, the oxygen absorbing film is formed by a coating method using a coating liquid prepared by dispersing the oxygen absorbent in an appropriate resin matrix, or the raw material containing the resin matrix and the oxygen absorbing agent is extruded. After forming an oxygen absorbing film by applying a film forming method to the film forming method, the oxygen absorbing film may be laminated with the barrier film, or the oxygen absorbing film may be directly coated or extruded on the barrier film. It can be applied in a manner to form.
이와 같은 방식으로 형성되는 산소 흡수막은, 상기 수지 매트릭스에서 유래되는 수지 성분을 추가로 포함할 수 있다. 산소 흡수막에 포함될 수 있는 수지 성분은, 특별히 제한되지 않으며, 예를 들면, 산소 흡수제를 효과적으로 유지할 수 있으며, 광학적 투명성을 유지할 수 있는 성분을 사용할 수 있다. 이러한 수지 성분으로는, 폴리에스테르, 폴리아크릴레이트, 폴리올레핀, 폴리카보네이트 또는 폴리이미드 등이 사용될 수 있다.The oxygen absorbing film formed in this manner may further include a resin component derived from the resin matrix. The resin component that can be included in the oxygen absorbing film is not particularly limited, and for example, a component capable of effectively holding an oxygen absorbent and maintaining optical transparency can be used. As such a resin component, polyester, polyacrylate, polyolefin, polycarbonate, polyimide, or the like can be used.
필요한 경우에 상기 수지 성분과 산소 흡수제를 포함하는 산소 흡수막에서 각 성분의 굴절률의 조절하여 산소 흡수막이 산란 기능을 나타낼 수 있도록 할 수 있다. 예를 들면, 산소 흡수막에 포함되는 산소 흡수제의 굴절률과 상기 수지 성분의 굴절률의 차이의 절대값이 약 0.01 이상일 수 있다. 이러한 범위의 굴절률의 차이에 의해 산소 흡수막은 적절한 헤이즈를 보이고, 이에 따라 산란 기능이 확보될 수 있다. 본 출원에서 굴절률은, 특별히 달리 언급하지 않는 한, 약 550 nm 파장의 광에 대하여 측정한 굴절률을 의미할 수 있다.If necessary, in the oxygen absorbing film including the resin component and the oxygen absorbent, the refractive index of each component may be adjusted to allow the oxygen absorbing film to exhibit a scattering function. For example, the absolute value of the difference between the refractive index of the oxygen absorber included in the oxygen absorbing film and the refractive index of the resin component may be about 0.01 or more. Due to the difference in refractive index within this range, the oxygen absorbing film exhibits an appropriate haze, thereby ensuring a scattering function. In the present application, the refractive index may refer to a refractive index measured for light having a wavelength of about 550 nm, unless specifically stated otherwise.
산소 흡수막 또는 배리어막 내에서 상기 산소 흡수제의 비율은 특별히 제한되지 않는다. 산소 흡수막에서의 산소 흡수제의 비율은 사용되는 산소 흡수제의 종류, 산소 흡수막의 두께, 수지 성분 등과 같이 산소 흡수제와 함께 포함되는 다른 성분의 종류 등을 고려하여 조절될 수 있다. The ratio of the oxygen absorbent in the oxygen absorbing film or the barrier film is not particularly limited. The ratio of the oxygen absorbent in the oxygen absorber may be adjusted in consideration of the kind of oxygen absorber used, the thickness of the oxygen absorber, the kind of other components included with the oxygen absorbent, such as a resin component, and the like.
예를 들면, 산소 흡수막 또는 배리어막에서 산소 흡수제의 비율은, 상기 흡수막 또는 배리어막이 전술한 범위의 산소 투과도(OTR, Oxygen Transmission Rate)를 나타낼 수 있도록 조절될 수 있다.For example, the ratio of the oxygen absorbent in the oxygen absorbing film or the barrier film may be adjusted so that the absorbing film or the barrier film can exhibit the oxygen transmission rate (OTR) in the above-described range.
예를 들면, 산소 흡수막 내에서 산소 흡수제는 일반적으로 상기 수지 성분 100 중량부 대비 2 내지 400 중량부의 산소 흡수제를 포함할 수 있다. 상기 비율은 예시적인 것이며, 상기 비율은 산소 흡수제의 종류 내지는 목적하는 성능 등을 고려하여 변경될 수 있다.For example, the oxygen absorbent in the oxygen absorbing film may generally include 2 to 400 parts by weight of the oxygen absorbent relative to 100 parts by weight of the resin component. The ratio is exemplary, and the ratio may be changed in consideration of the type of the oxygen absorbent or the desired performance.
이러한 산소 흡수막의 두께도 특별히 제한되지 않으며, 산소 흡수막의 소재에 따라서 상기 범위의 산소 투과도를 나타낼 수 있도록 조절될 수 있다. The thickness of the oxygen absorbing film is not particularly limited, and may be adjusted to exhibit the oxygen permeability in the above range depending on the material of the oxygen absorbing film.
하나의 예시에서 상기 차단막은 400 nm 내지 760 nm 범위 내의 어느 하나의 파장 또는 상기 전 파장에 대한 반사율이 80% 이상, 85% 이상, 90% 이상 또는 95% 이상일 수 있다. 상기 반사율은 그 수치가 높을수록 적절하고, 그 상한은 특별히 제한되지 않는다. 예를 들면, 상기 반사율은 100% 이하일 수 있다. 차단막의 반사율의 조절을 통해 발광 필름의 내부로 입사되는 광을 필름 내부에서 적절하게 반사시킬 수 있고, 이에 의해 발광 필름에 의한 발광 효율을 향상시킬 수 있다.In one example, the barrier layer may have a reflectance of at least one wavelength within the range of 400 nm to 760 nm or the entire wavelength of at least 80%, at least 85%, at least 90%, or at least 95%. The reflectance is appropriate as the numerical value is higher, and the upper limit is not particularly limited. For example, the reflectance may be 100% or less. By adjusting the reflectance of the blocking film, the light incident to the inside of the light emitting film can be properly reflected in the inside of the film, thereby improving the luminous efficiency by the light emitting film.
도 1은 예시적인 발광 필름의 단면도이고, 발광층(101)의 측면에 차단막(102)가 존재하고, 상기 발광층(101)의 상부 및 하부상에도 차단막이 존재하는 구조를 나타낸다. 상기에서 발광층(101)의 상부 및 하부상에 존재하는 차단막은, 배리어 물질의 층(1031)과 기재 필름(1032)을 포함하는 구조이다.1 is a cross-sectional view of an exemplary light emitting film, and shows a structure in which a blocking film 102 exists on a side surface of the light emitting layer 101, and a blocking film exists on upper and lower portions of the light emitting layer 101. The blocking film present on the upper and lower portions of the light emitting layer 101 is a structure including a layer 1031 of a barrier material and a base film 1032.
필요한 경우에 상기와 같은 구조에 포함되는 각 요소의 굴절률이 조절될 수 있다. 상기와 같은 굴절률의 조절을 통해 발광 필름의 내부로 입사되는 광을 필름 내부에서 적절하게 반사시킬 수 있고, 이에 의해 발광 필름에 의한 발광 효율을 향상시킬 수 있다.If necessary, the refractive index of each element included in the above structure can be adjusted. By adjusting the refractive index as described above, the light incident to the inside of the light emitting film can be properly reflected in the inside of the film, thereby improving the light emission efficiency by the light emitting film.
발광 필름은, 추가적인 층으로서, 예를 들면, 발광층의 상부에 반사층을 포함할 수 있다. 반사층은, 예를 들면, 발광 필름이 상기 차단막을 포함하는 경우에 그 상부 또는 상기 발광층과 차단막의 사이 등에 포함될 수 있다. 반사층으로는, 예를 들면, 반사광의 파장이 420 nm 내지 490 nm의 범위 내에 있는 반사층을 사용할 수 있다. 상기에서 반사광의 파장은, 상기 반사층이 반사할 수 있는 광의 파장을 의미한다. 예를 들어, 발광층이 전술한 녹색 입자와 적색 입자를 적정량 포함하는 경우에 발광층은 입사되는 청색광, 즉 420 nm 내지 490 nm의 파장 범위 내의 광 중 적어도 일부를 녹색광 및 적색광으로 변환시켜 최종적으로 백색광이 방출되도록 구성될 수 있다. 이 때, 청색광을 반사할 수 있는 반사층을 도입하면, 상기 입사되는 청색광이 녹색 입자 또는 적색 입자를 만날 수 있는 확률을 조절하여, 보다 효율적으로 상기 백색광의 생성을 가능하게 할 수 있다. The light emitting film may include, as an additional layer, a reflective layer on top of the light emitting layer, for example. The reflective layer may be included, for example, in the case where the light emitting film includes the blocking film or between the light emitting layer and the blocking film. As the reflective layer, for example, a reflective layer in which the wavelength of the reflected light is within the range of 420 nm to 490 nm can be used. The wavelength of the reflected light in the above means the wavelength of the light that the reflective layer can reflect. For example, when the light emitting layer contains an appropriate amount of the green particles and the red particles described above, the light emitting layer converts at least some of the incident blue light, that is, light within the wavelength range of 420 nm to 490 nm, into green light and red light, and finally white light is emitted. It can be configured to be released. In this case, by introducing a reflective layer capable of reflecting blue light, it is possible to adjust the probability that the incident blue light meets the green particles or the red particles, thereby enabling the generation of the white light more efficiently.
반사층으로는, 전술한 반사광의 파장을 가지는 것이라면, 공지의 층을 사용할 수 있다. 이러한 반사층으로는, 예를 들면, 콜레스테릭 액정층(Cholesteric Liquid Crystal Layer) 또는 유방성 액정층(Lyotropic Liquid Crystal Layer) 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.As a reflection layer, a well-known layer can be used as long as it has the wavelength of the reflected light mentioned above. Examples of the reflective layer include, but are not limited to, a cholesteric liquid crystal layer or a lyotropic liquid crystal layer.
발광 필름은 추가적인 층으로서, 예를 들면, 상기 반사층의 상부에 존재하는 광학 이방성층을 또한 포함할 수 있다. 상기 광학 이방성층은, 발광 필름에서 발생하는 광의 색특성, 예를 들면, 색좌표 등을 조절하는 역할을 할 수 있다.The light emitting film may also comprise, as an additional layer, for example an optically anisotropic layer on top of the reflective layer. The optically anisotropic layer may serve to adjust color characteristics of light generated from the light emitting film, for example, color coordinates.
하나의 예시에서 광학 이방성층은, 550 nm 파장의 광에 대한 면상 위상차가 100 nm 내지 350 nm의 범위 내에 있을 수 있다. 상기에서 면상 위상차는 하기 수식 1에 의해 계산되는 수치이다.In one example, the optically anisotropic layer may have a plane retardation for light of 550 nm wavelength in a range of 100 nm to 350 nm. In the above, the plane phase difference is a numerical value calculated by the following Equation 1.
[수식 1][Equation 1]
Rin = d × (Nx - Ny)Rin = d × (Nx-Ny)
수식 1에서 Rin은 면상 위상차이고, d는 광학 이방성층의 두께이며, Nx는 광학 이방성층의 지상축 방향의 550 nm 파장의 광에 대한 굴절률이며, Ny는 광학 이방성층의 진상축 방향의 550 nm 파장의 광에 대한 굴절률이다.In Equation 1, Rin is the retardation of plane, d is the thickness of the optically anisotropic layer, Nx is the refractive index for the light of 550 nm wavelength in the slow axis direction of the optically anisotropic layer, Ny is 550 nm in the fast axis direction of the optically anisotropic layer Refractive index for light of wavelength.
광학 이방성층은, 1/2 파장 또는 1/4 파장 위상 지연 특성을 가질 수 있다. 본 명세서에서 용어 「n 파장 위상 지연 특성」은, 적어도 일부의 파장 범위 내에서, 입사 광을 그 입사 광의 파장의 n배만큼 위상 지연시킬 수 있는 특성을 의미할 수 있다. 예를 들어, 광학 이방성층이 1/2 위상 지연 특성을 가지는 경우에 550 nm 파장의 광에 대한 상기 면상 위상차는 200 nm 내지 290 nm 또는 220 nm 내지 270 nm의 범위 내에 있을 수 있고, 상기 이방성층이 1/4 위상 지연 특성을 가지는 경우에 상기 550 nm 파장의 광에 대한 면상 위상차는 110 nm 내지 220 nm 또는 140 nm 내지 170 nm의 범위 내에 있을 수 있다.The optically anisotropic layer may have a half wavelength or a quarter wavelength phase retardation characteristic. As used herein, the term "n-wavelength phase retardation characteristic" may mean a characteristic capable of retarding incident light by n times the wavelength of the incident light within at least a portion of the wavelength range. For example, when the optically anisotropic layer has a 1/2 phase retardation property, the planar phase difference for light having a wavelength of 550 nm may be in a range of 200 nm to 290 nm or 220 nm to 270 nm, and the anisotropic layer In the case of having this quarter phase retardation property, the plane retardation with respect to the light of the 550 nm wavelength may be in the range of 110 nm to 220 nm or 140 nm to 170 nm.
광학 이방성층은, 고분자 필름, 예를 들면, 연신 고분자 필름이거나, 액정 필름일 수 있다. 상기 고분자 필름으로는, 예를 들어, 연신에 의해 광학 이방성을 부여할 수 있는 광투과성의 고분자 필름을 적절한 방식으로 연신한 필름을 사용할 수 있다. 광학 이방성을 가지는 한, 무연신의 고분자 필름도 사용할 수 있다. 고분자 필름의 예로는, 폴리에틸렌 필름 또는 폴리프로필렌 필름 등의 폴리올레핀 필름, 폴리노르보넨 필름 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer) 필름, 폴리염화비닐 필름, 폴리아크릴로니트릴 필름, 폴리설폰 필름, 폴리아크릴레이트 필름, 폴리비닐알코올 필름 또는 TAC(Triacetyl cellulose) 필름 등의 셀룰로오스 에스테르계 폴리머 필름이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 필름 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 액정 필름으로는, 소위 RM(Reactive Mesogen)으로 호칭되는 반응성의 액정 화합물을 적절한 방식으로 배향한 후에 중합시켜 형성되는 필름을 사용할 수 있다. 이 분야에서는 상기와 같은 면상 위상차를 발현하는 다양한 종류의 고분자 필름 또는 액정 필름이 알려져 있고, 이러한 필름들은 모두 본 출원에서 사용될 수 있다.The optically anisotropic layer may be a polymer film, for example, a stretched polymer film or a liquid crystal film. As said polymer film, the film which extended | stretched the light transmissive polymer film which can provide optical anisotropy by extending | stretching by an appropriate method can be used, for example. As long as it has optical anisotropy, an unstretched polymer film can also be used. Examples of the polymer film include polyolefin films such as polyethylene films or polypropylene films, cycloolefin polymer (COP) films such as polynorbornene films, polyvinyl chloride films, polyacrylonitrile films, polysulfone films, Cellulose ester-based polymer film, such as polyacrylate film, polyvinyl alcohol film or Triacetyl cellulose (TAC) film, or a copolymer film of two or more monomers among the monomers forming the polymer may be exemplified, but the present invention is not limited thereto. no. As the liquid crystal film, a film formed by orientating a reactive liquid crystal compound called RM (Reactive Mesogen) in an appropriate manner can be used. In this field, various kinds of polymer films or liquid crystal films expressing such a planar phase difference are known, and all of these films can be used in the present application.
발광 필름은, 또한, 편광층을 추가로 포함할 수 있다. 상기 편광층은, 상기 광학 이방성층의 상부에 존재할 수 있다. 이 경우, 상기 편광층의 광흡수축과 상기 광학 이방성층의 광축(예를 들면, 지상축)이 이루는 각도는, 약 0도 내지 90도의 범위 내에 있을 수 있다. 상기와 같은 범위에서 광학 이방성층과 편광층을 배치함으로써, 발광 필름에서 방출되는 광의 색특성을 조절할 수 있다.The light emitting film may further include a polarizing layer. The polarizing layer may be present on the optically anisotropic layer. In this case, an angle formed between the light absorption axis of the polarizing layer and the optical axis (eg, the slow axis) of the optically anisotropic layer may be in a range of about 0 degrees to 90 degrees. By disposing the optically anisotropic layer and the polarizing layer in the above range, it is possible to adjust the color characteristics of the light emitted from the light emitting film.
편광층으로는, 특별한 제한 없이 공지의 소재를 사용할 수 있다. 편광층은, 여러 방향으로 진동하는 입사광으로부터 한쪽 방향으로 진동하는 광을 추출할 수 있는 기능성 소자일 수 있다. 이러한 편광층으로는, 예를 들면, PVA(poly(vinyl alcohol)) 편광층과 같은 통상의 편광층을 사용하거나, 유방성 액정층(LLC층) 또는 반응성 액정 화합물과 이색성 염료를 포함하는 호스트 게스트 액정층과 같은 편광 코팅층 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.As the polarizing layer, a known material can be used without particular limitation. The polarizing layer may be a functional element capable of extracting light vibrating in one direction from incident light vibrating in various directions. As such a polarizing layer, for example, a conventional polarizing layer such as a PVA (poly (vinyl alcohol)) polarizing layer is used, or a host containing a lyotropic liquid crystal layer (LLC layer) or a reactive liquid crystal compound and a dichroic dye. A polarizing coating layer, such as a guest liquid crystal layer, may be used, but is not limited thereto.
발광 필름은, 전술한 각 구성 외에 다른 구성을 추가로 포함할 수 있다. 발광 필름에 추가로 포함될 수 있는 층으로는, 예를 들면, 상기 광학 이방성층의 상부에 존재할 수 있는 휘도향상필름이나, 프리즘 시트 등을 포함하는 각종 광학 필름 또는 상기 발광층의 일면 또는 양면이나, 측면 등에 존재할 수 있는 배리어막 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.The light emitting film may further include other components in addition to the aforementioned components. As a layer which may be further included in the light emitting film, for example, various optical films including a brightness enhancement film, a prism sheet, or the like, which may be present on the optically anisotropic layer, or one or both surfaces of the light emitting layer, or a side surface thereof. Barrier films and the like that may be present in the back and the like can be exemplified, but is not limited thereto.
본 출원은 또한 조명 장치에 대한 것이다. 예시적인 조명 장치는, 광원과 상기 발광 필름을 포함할 수 있다. 하나의 예시에서 상기 조명 장치에서의 광원과 발광 필름은, 상기 광원에서 조사된 광이 상기 발광 필름으로 입사할 수 있도록 배치될 수 있다. 상기에서 발광 필름에 포함되는 발광층이 상기 CLC층에 비하여 가깝게 상기 조명 장치 내에 배치될 수 있다. 광원으로부터 조사된 광이 상기 발광 필름으로 입사하면, 입사된 광 중에서 일부는 상기 발광 필름 내의 발광 나노입자에 흡수되지 않고 그대로 방출되고, 다른 일부는 상기 발광 나노입자에 흡수된 후에 다른 파장의 광으로 방출될 수 있다. 이에 따라 상기 광원에서 방출되는 광의 파장과 상기 발광 나노입자가 방출하는 광의 파장을 조절하여 발광 필름으로부터 방출되는 광의 색순도 또는 칼라 등을 조절할 수 있다. 또한, 본 출원에서는 발광층의 상부의 CLC층에 의해 청색광이 반사되어 다시 발광층에 입사할 수 있어서, 발광층의 발광 효율을 보다 개선할 수 있다.The present application also relates to a lighting device. An exemplary lighting device may include a light source and the light emitting film. In one example, the light source and the light emitting film in the lighting device may be arranged to allow light emitted from the light source to enter the light emitting film. The light emitting layer included in the light emitting film may be disposed in the lighting device closer to the CLC layer. When light irradiated from the light source is incident on the light emitting film, some of the incident light is emitted as it is not absorbed by the light emitting nanoparticles in the light emitting film, and the other part is absorbed by the light emitting nanoparticles, and then is converted into light having a different wavelength. Can be released. Accordingly, by adjusting the wavelength of the light emitted from the light source and the wavelength of the light emitted by the light emitting nanoparticles, it is possible to adjust the color purity or color of the light emitted from the light emitting film. In addition, in the present application, the blue light is reflected by the CLC layer on the upper part of the light emitting layer to be incident on the light emitting layer again, so that the light emitting efficiency of the light emitting layer can be further improved.
본 출원의 조명 장치에 포함되는 광원의 종류는 특별히 제한되지 않으며, 목적하는 광의 종류를 고려하여 적절한 종류가 선택될 수 있다. 하나의 예시에서 상기 광원은 청색 광원이고, 예를 들면, 420 내지 490 nm의 범위 내의 파장의 광을 방출할 수 있는 광원일 수 있다.The kind of the light source included in the lighting device of the present application is not particularly limited, and an appropriate kind may be selected in consideration of the kind of the desired light. In one example, the light source may be a blue light source, for example, a light source capable of emitting light having a wavelength within a range of 420 to 490 nm.
도 2 및 3은, 상기와 같이 광원과 발광 필름을 포함하는 조명 장치를 예시적으로 보여주는 도면이다.2 and 3 are views showing an exemplary lighting device including a light source and a light emitting film as described above.
도 2 및 3에 나타난 바와 같이 조명 장치에서 광원과 발광 필름은 상기 광원에서 조사된 광이 상기 발광 필름으로 입사될 수 있도록 배치될 수 있다. 도 2에서는 광원(401)이 발광 필름(402)의 하부에 배치되어 있고, 이에 따라 상부 방향으로 광원(401)으로부터 조사된 광은 상기 발광 필름(402)으로 입사될 수 있다.As shown in FIGS. 2 and 3, the light source and the light emitting film in the lighting apparatus may be arranged to allow light emitted from the light source to be incident on the light emitting film. In FIG. 2, the light source 401 is disposed under the light emitting film 402, so that light irradiated from the light source 401 in the upper direction may be incident to the light emitting film 402.
도 3은, 광원(401)이 발광 필름(402)의 측면에 배치된 경우이다. 필수적인 것은 아니지만, 상기와 같이 광원(401)이 발광 필름(402)의 측면에 배치되는 경우에는, 도광판(Light Guiding Plate)(501)이나 반사판(502)과 같이 광원(401)으로부터의 광이 보다 효율적으로 발광 필름(402)에 입사될 수 있도록 하는 다른 수단이 포함될 수도 있다.3 is a case where the light source 401 is disposed on the side surface of the light emitting film 402. Although not essential, when the light source 401 is disposed on the side surface of the light emitting film 402 as described above, the light from the light source 401, such as the light guiding plate 501 or the reflecting plate 502, is more likely to be used. Other means may be included to efficiently enter the luminescent film 402.
도 2 및 3에 나타난 예시는 본 출원의 조명 장치의 하나의 예시이며, 이 외에도 조명 장치는 공지된 다양한 형태를 가질 수 있고, 이를 위해 공지의 다양한 구성을 추가로 포함할 수 있다.2 and 3 is an example of the lighting device of the present application, in addition to the lighting device may have a variety of known forms, for this purpose may further include a variety of known configurations.
본 출원의 조명 장치는 다양한 용도에 사용될 수 있다. 본 출원의 조명 장치가 적용될 수 있는 대표적인 용도에는 디스플레이 장치가 있다. 예를 들면, 상기 조명 장치는 LCD(Liquid Crystal Display) 등과 같은 디스플레이 장치의 BLU(Backlight Unit)로서 사용될 수 있다.The lighting device of the present application can be used for various purposes. A representative use of the lighting device of the present application is a display device. For example, the lighting device may be used as a backlight unit (BLU) of a display device such as a liquid crystal display (LCD).
이 외에도 상기 조명 장치는, 컴퓨터, 모바일폰, 스마트폰, 개인 휴대정보 단말기(PDA), 게이밍 장치, 전자 리딩 (reading) 장치 또는 디지털 카메라 등과 같은 디스플레이 장치의 BLU(Backlight Unit), 실내 또는 실외 조명, 무대 조명, 장식 조명, 액센트 조명 또는 박물관 조명 등에 사용될 수 있고, 이 외에도 원예학이나, 생물학에서 필요한 특별한 파장 조명 등에 사용할 수 있으나, 상기 조명 장치가 적용될 수 있는 용도가 상기에 제한되는 것은 아니다.In addition, the lighting device may be a backlight unit (BLU) of a display device such as a computer, a mobile phone, a smartphone, a personal digital assistant (PDA), a gaming device, an electronic reading device, or a digital camera, indoor or outdoor lighting. It may be used for stage lighting, decorative lighting, accent lighting, or museum lighting, and the like, but may also be used for horticulture, special wavelength lighting required in biology, and the like, but the use of the lighting apparatus is not limited thereto.
본 출원에서는 목적하는 광, 예를 들면, 백색광을 효과적으로 생성할 수 있으며, 그 성능이 장기간 동안 안정적으로 유지될 수 있는 발광 필름 및 그 용도를 제공할 수 있다. The present application can provide a light emitting film and its use, which can effectively produce a desired light, for example, white light, and whose performance can be stably maintained for a long time.
도 1은 예시적인 발광 필름의 단면도이다.1 is a cross-sectional view of an exemplary light emitting film.
도 2 및 3은 예시적인 조명 장치의 모식도이다.2 and 3 are schematic diagrams of exemplary lighting devices.
도 4 내지 9는 실시예에서 제조된 발광 필름의 사진이다.4 to 9 is a photograph of the light emitting film produced in the embodiment.
도 10 및 11은 비교예 1에서 제조된 발광 필름의 사진이다.10 and 11 are photographs of the light emitting film prepared in Comparative Example 1.
도 12는, 실시예 및 비교예의 발광 필름의 내구성 평가 결과를 보여주는 도면이다.It is a figure which shows the durability evaluation result of the light emitting film of an Example and a comparative example.
<부호의 설명><Description of the code>
101: 발광층101: light emitting layer
102: 차단막102: blocking film
1031: 배리어 물질의 층1031: layer of barrier material
1032: 기재 필름1032: base film
401: 광원401: light source
402: 발광 필름402 light emitting film
501: 도광판501 light guide plate
502: 반사판502: reflector
이하 실시예 및 비교예를 통하여 본 출원의 발광 필름 등을 구체적으로 설명하지만, 상기 발광 필름 등의 범위가 하기 실시예에 제한되는 것은 아니다. Hereinafter, the light emitting film and the like of the present application will be described in detail with reference to Examples and Comparative Examples, but the scope of the light emitting film and the like is not limited to the following Examples.
1. 반사율의 측정1. Measurement of reflectance
차단막의 반사율은 다음과 같이 평가하였다. 즉, 차단막을 형성한 것과 동일한 재료를 기판(PET, poly(ethyleneterephtahlate))상에 적용된 차단막과 동일 두께로 동일한 방식으로 증착시킨 후에 측정 장비(filmetrics사의 F10-RT)를 사용하여 제조사의 매뉴얼에 따라 평가하였다.The reflectance of the barrier film was evaluated as follows. That is, after depositing the same material as the blocking film formed on the substrate (PET, poly (ethyleneterephtahlate)) in the same thickness and the same method, using the measurement equipment (F10-RT of Filmetrics) according to the manufacturer's manual Evaluated.
2. 투습도 및 산소 투과도의 평가2. Evaluation of moisture permeability and oxygen permeability
실시예에서 언급하는 투습도(WVTR, Water Vapor Transmission Rate)는, ISO 15106-3 또는 ASTM F-1249 규격에 의해 측정하였고, 산소 투과도(OTR, Oxygen Transmission Rate)는 ASTM D-3985 규격에 따라 측정하였다.The water vapor transmission rate (WVTR) mentioned in the Examples was measured according to ISO 15106-3 or ASTM F-1249 standard, and the oxygen transmission rate (OTR, Oxygen Transmission Rate) was measured according to ASTM D-3985 standard. .
3. 내구성의 평가3. Evaluation of durability
실시예 또는 비교예에서 제조된 발광 필름의 내구성은 상기 필름을 80℃의 온도의 암흑 상태에서 소정 시간 방치한 후에 상기 발광 필름의 일면에서 광을 조사하고, 다른 면에서 발광하는 광의 휘도의 변화율을 측정하여 평가하였다. 상기에서 휘도는 측정 기기(spectrometer, SR-UL2, Topcon)를 사용하여 평가하였다.The durability of the light emitting film prepared in Example or Comparative Example is that after leaving the film in a dark state at a temperature of 80 ° C. for a predetermined time, the light is irradiated from one surface of the light emitting film, and the rate of change of the luminance of light emitted from the other surface is measured. Measured and evaluated. In the above, the luminance was evaluated using a measuring instrument (spectrometer, SR-UL2, Topcon).
제조예 1. 발광층(A)의 제조Preparation Example 1 Preparation of Light-Emitting Layer (A)
PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 녹색 양자점(Quantum Dot, 발광 나노입자), 계면활성제(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.2:0.05:0.05(PEGDA:LA:BD:녹색입자:계면활성제:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물 A를 제조였다. 상기와 별도로 PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 적색 양자점(Quantum Dot, 발광 나노입자), 계면활성제(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.02:0.05:0.05(PEGDA:LA:BD:적색입자:계면활성제:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물 B를 제조였다. 혼합물 A와 B를 동일 중량 비율로 배합하여 코팅액을 제조하고, 일정 간격으로 이격 배치된 2장의 배리어막(i-component)의 사이에 상기 코팅액을 약 100 ㎛의 두께로 위치시키고, 자외선을 조사하여 라디칼 중합을 유도하여 경화시켜 발광층을 형성하였다. 도 4 및 5는 상기 실시예에 대하여 확인한 현미경 사진이다. 도면으로부터 상분리에 의해 발광 나노입자가 존재하는 에멀젼 영역이 매트릭스 내에 분산되어 존재하는 발광층이 형성된 것을 확인할 수 있다.PEG (poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green quantum dots (Quantum Dot, luminescent nanoparticles), surfactant (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles were prepared as 9: 1: 1: 0.2: 0.05: It was mixed at a weight ratio of 0.05 (PEGDA: LA: BD: green particles: surfactant: SiO 2 nanoparticles). Subsequently, Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare Mixture A. Apart from the above, PEGDA (poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156 -97-0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP) ): About 9 (cal / cm 3 ) 1/2 ), red quantum dots (Quantum Dot, light emitting nanoparticles), surfactant (MX 80-H, manufactured by Soken) and SiO 2 nanoparticles are 9: 1: 1: 0.02 It was mixed in a weight ratio of: 0.05: 0.05 (PEGDA: LA: BD: red particles: surfactant: SiO 2 nanoparticles). Subsequently, Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare Mixture B. Mixing A and B in the same weight ratio to prepare a coating solution, and the coating solution is placed in a thickness of about 100 ㎛ between two barrier films (i-component) spaced at regular intervals, and irradiated with ultraviolet rays Radical polymerization was induced to cure to form a light emitting layer. 4 and 5 are micrographs confirmed for the above examples. It can be seen from the figure that the emulsion region in which the light emitting nanoparticles are present is dispersed in the matrix to form a light emitting layer that is present by phase separation.
제조예 2. 발광층(B)의 제조Preparation Example 2 Preparation of Light-Emitting Layer (B)
PEGDA(poly(ethyleneglycol) diacrylate, CAS No.: 26570-48-9, 용해도 파라미터(HSP): 약 18 (cal/cm3)1/2), LA(lauryl acrylate, CAS No.: 2156-97-0, 용해도 파라미터(HSP): 약 8 (cal/cm3)1/2), 비스플루오렌 디아크릴레이트(BD, bisfluorene diacrylate, CAS No.: 161182-73-6, 용해도 파라미터(HSP): 약 9 (cal/cm3)1/2), 녹색 입자(Quantum Dot 입자), 계면활성제(MX 80-H, Soken사제) 및 SiO2 나노 입자를 9:1:1:0.1:0.05:0.05(PEGDA: LA:BD:녹색입자:계면활성제:SiO2 나노입자)의 중량 비율로 혼합하였다. 이어서 라디칼 개시제로서 Irgacure2959와 Irgacure907를 각각 농도가 약 1중량%가 되도록 혼합하고, 6시간 정도 교반하여 혼합물을 제조였다. 일정 간격으로 이격 배치된 2장의 배리어막(i-component)의 사이에 상기 혼합물을 약 100 ㎛의 두께로 위치시키고, 자외선을 조사하여 라디칼 중합을 유도하여 경화시켜 발광층을 형성하였다. 도 6은 상기와 같은 방식으로 형성된 발광층의 사진이다. 도면으로부터 상분리에 의해 발광 나노입자가 존재하는 에멀젼 영역이 매트릭스 내에 분산되어 존재하는 발광층이 형성된 것을 확인할 수 있다.PEG (poly (ethyleneglycol) diacrylate, CAS No .: 26570-48-9, solubility parameter (HSP): about 18 (cal / cm 3 ) 1/2 ), LA (lauryl acrylate, CAS No .: 2156-97- 0, solubility parameter (HSP): about 8 (cal / cm 3 ) 1/2 ), bisfluorene diacrylate (BD, bisfluorene diacrylate, CAS No .: 161182-73-6, solubility parameter (HSP): about 9 (cal / cm 3 ) 1/2 ), green particles (Quantum Dot particles), surfactants (MX 80-H, manufactured by Soken), and SiO 2 nanoparticles as 9: 1: 1: 0.1: 0.05: 0.05 (PEGDA) : LA: BD: green particles: surfactant: SiO 2 nanoparticles). Subsequently, Irgacure2959 and Irgacure907 were mixed to have a concentration of about 1% by weight as a radical initiator, and stirred for about 6 hours to prepare a mixture. The mixture was placed at a thickness of about 100 μm between two barrier films (i-component) spaced at regular intervals, and irradiated with ultraviolet rays to induce radical polymerization to form a light emitting layer. 6 is a photograph of a light emitting layer formed in the above manner. It can be seen from the figure that the emulsion region in which the light emitting nanoparticles are present is dispersed in the matrix to form a light emitting layer that is present by phase separation.
실시예 1.Example 1.
제조예 2에서 제조된 발광 필름(2장의 배리어막(i-component)의 사이에 존재하는 발광층을 포함하는 발광 필름)의 측면에 알루미늄을 증착시켜 차단막을 형성하였다. 상기 증착은 약 110℃의 온도에서 수행하였고, 약 200 nm의 두께로 증착하였다. 상기 알루미늄으로 형성된 차단막에 대하여 반사율을 측정한 결과 상기 반사율은 400 내지 780 nm의 전체 범위에서 약 90% 내지 92% 정도로 확인하였다. 도 7 내지 9는 상기 제조된 발광 필름의 사진이고, 특히 도 8 및 9는 측면의 차단막을 확대하여 표시한 사진이다.Aluminum was deposited on the side of the light emitting film (the light emitting film including the light emitting layer present between two barrier films (i-component)) prepared in Preparation Example 2 to form a blocking film. The deposition was performed at a temperature of about 110 ° C. and deposited to a thickness of about 200 nm. As a result of measuring the reflectance of the blocking film formed of aluminum, the reflectance was about 90% to 92% in the entire range of 400 to 780 nm. 7 to 9 are photographs of the prepared light emitting film, and in particular, FIGS. 8 and 9 are enlarged photographs of the sidewalls.
비교예 1.Comparative Example 1.
측면에 차단막을 형성하지 않을 것을 제외하고는 실시예 1과 동일하게 발광 필름을 제조하였다. 도 10 및 11은 상기 제조된 발광 필름의 사진이다.A light emitting film was manufactured in the same manner as in Example 1, except that no barrier film was formed on the side surfaces. 10 and 11 are photographs of the prepared light emitting film.
시험예 1.Test Example 1.
실시예 1과 비교예 1에서 제조된 발광 필름에 대하여 내구성을 평가한 결과, 비교예 1의 경우, 시간의 경과에 따라 휘도가 급격히 감소하여 내구성이 확보되지 않았으나, 실시예 1의 경우에는 장시간 동안 안정적으로 휘도가 확보되는 것을 확인하였다.As a result of evaluating the durability of the light emitting films prepared in Example 1 and Comparative Example 1, in the case of Comparative Example 1, the luminance was rapidly decreased over time, the durability was not secured, but in the case of Example 1 for a long time It was confirmed that the luminance was stably secured.
실시예 2.Example 2.
차단막의 제조Preparation of the barrier
산소 흡수제로서는, 폴리부타디엔과 폴리에틸렌이 약 4:1의 중량비율(폴리부타디엔:폴리에틸렌)로 혼합되어 있는 수지 조성물에 적정량의 코발트 촉매를 배합한 조성물을 사용하였다. 상기 조성물을 압출 방식에 적용하여 약 30 ㎛ 정도의 두께로 층을 형성하여 산소 흡수막을 제조하였다. 상기 산소 흡수막을 공지의 배리어막과 적층하여 차단막을 제조하였다. 배리어막으로는, PET(poly(ethylene terephthalate)) 필름(두께: 약 12 ㎛)의 일면에 두께가 약 100 nm 정도인 Al2O3 증착층과 두께가 약 1 ㎛ 정도인 보호코팅층이 형성된 형태의 배리어 필름(투습도(WVTR, Water Vapor Transmission Rate): 약 0.08 g/m2/day(40℃ 온도 및 90%의 상대 습도), 산소 투과도(OTR, Oxygen Transmission Rate): 약 0.3 cc/m2/day/atm(30℃의 온도 및 70%의 상대 습도))(배리어막A)을 사용하였다. 상기 배리어막A의 일면에 상기 제조된 산소 흡수막을 적층하여 차단막을 제조하였다.As an oxygen absorber, the composition which mix | blended the appropriate amount of cobalt catalyst with the resin composition in which polybutadiene and polyethylene are mixed by the weight ratio (polybutadiene: polyethylene) of about 4: 1 was used. The composition was applied to an extrusion method to form a layer having a thickness of about 30 μm to prepare an oxygen absorbing film. The oxygen absorbing film was laminated with a known barrier film to prepare a blocking film. As a barrier film, a barrier film having an Al 2 O 3 deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 μm is formed on one surface of a poly (ethylene terephthalate) film (thickness: about 12 μm). (WVTR, Water Vapor Transmission Rate): about 0.08 g / m2 / day (40 ° C temperature and 90% relative humidity), Oxygen Transmission Rate (OTR): about 0.3 cc / m2 / day / atm ( 30 ° C. and 70% relative humidity)) (barrier film A). The barrier film was manufactured by stacking the prepared oxygen absorbing film on one surface of the barrier film A.
발광 필름의 제조Preparation of Light Emitting Film
제조예 2에서 제조된 발광층의 측면에 실시예 1과 같은 방식으로 차단막을 형성하고, 다시 그 상부 및 하부상에 상기 제조된 차단막을 산소 흡수막이 배리어막에 비하여 발광층에 인접하도록 적층하여 발광 필름을 제조하였다.Forming a blocking film on the side of the light emitting layer prepared in Preparation Example 2 in the same manner as in Example 1, and again laminated on the upper and lower layers so that the oxygen absorbing film adjacent to the light emitting layer compared to the barrier film to the light emitting film Prepared.
실시예 3.Example 3.
PET(poly(ethylene terephthalate)) 필름(두께: 약 12 ㎛)의 일면에 두께가 약 100 nm 정도인 SiOx 증착층과 두께가 약 1 ㎛ 정도인 보호코팅층이 형성된 형태의 배리어막(투습도(WVTR, Water Vapor Transmission Rate): 약 0.08 g/m2/day(40℃ 온도 및 90%의 상대 습도), 산소 투과도(OTR, Oxygen Transmission Rate): 약 0.1 cc/m2/day/atm(25℃의 온도 및 80%의 상대 습도))(배리어막B)을 사용하여, 상기 배리어막B에 실시예 2에서 제조된 산소 흡수막을 적층하여 차단막을 제조한 것을 제외하고는, 실시예 2와 동일하게 발광 필름을 제조하였다.A barrier film (WVTR, formed of a SiOx deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 μm on one surface of a poly (ethylene terephthalate) (PET) film (thickness: about 12 μm) Water Vapor Transmission Rate): about 0.08 g / m2 / day (40 ° C. temperature and 90% relative humidity), Oxygen Transmission Rate (OTR): about 0.1 cc / m 2 / day / atm (25 ° C. and A light emitting film was manufactured in the same manner as in Example 2, except that the barrier film was prepared by laminating the oxygen absorbing film prepared in Example 2 on the barrier film B using a relative humidity of 80%)) (barrier film B). Prepared.
비교예 2.Comparative Example 2.
측면에 차단막을 형성하지 않고, 실시예 2의 배리어막A만을 차단막으로 발광층의 상부 및 하부에 적층한 것을 제외하고는 실시예 2와 동일하게 발광 필름을 제조하였다.A light emitting film was manufactured in the same manner as in Example 2, except that only the barrier film A of Example 2 was laminated on the upper and lower portions of the light emitting layer without the blocking film formed on the side surfaces thereof.
비교예 3.Comparative Example 3.
측면에 차단막을 형성하지 않고, 실시예 3의 배리어막B만을 차단막으로 발광층의 상부 및 하부에 적층한 것을 제외하고는 실시예 2와 동일하게 발광 필름을 제조하였다 .A light emitting film was manufactured in the same manner as in Example 2, except that only the barrier film B of Example 3 was laminated on the upper and lower portions of the light emitting layer without the blocking film formed on the side surfaces thereof.
비교예 4.Comparative Example 4.
PET(poly(ethylene terephthalate)) 필름(두께: 약 125 ㎛)의 일면에 두께가 약 100 nm 정도인 SiOx 증착층과 두께가 약 1 ㎛ 정도인 보호코팅층이 형성된 형태의 배리어막(투습도(WVTR, Water Vapor Transmission Rate): 약 0.021 g/m2/day(38℃ 온도 및 90%의 상대 습도), 산소 투과도(OTR, Oxygen Transmission Rate): 약 0.061 cc/m2/day/atm(23℃의 온도 및 0%의 상대 습도))(배리어막C)만을 사용한 것을 제외하고는, 비교예 2와 동일하게 발광 필름을 제조하였다.A barrier film (WVTR, formed with a SiOx deposition layer having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 μm on one surface of a poly (ethylene terephthalate) (PET) film (thickness: about 125 μm) Water Vapor Transmission Rate): about 0.021 g / m2 / day (38 ° C temperature and 90% relative humidity), Oxygen Transmission Rate (OTR): about 0.061 cc / m2 / day / atm (temperature 23 ° C) A light emitting film was manufactured in the same manner as in Comparative Example 2 except that only 0% relative humidity)) (barrier film C) was used.
비교예 5.Comparative Example 5.
PET(poly(ethylene terephthalate)) 필름(두께: 약 50 ㎛)의 일면에 두께가 약 100 nm 정도인 SiOx 및 ZnO의 혼합 증착층과 두께가 약 1 ㎛ 정도인 보호코팅층이 형성된 형태의 배리어 필름(투습도(WVTR, Water Vapor Transmission Rate): 약 0.019 내지 0.036 g/m2/day(38℃ 온도 및 90%의 상대 습도), 산소 투과도(OTR, Oxygen Transmission Rate): 약 0.042 cc/m2/day/atm(23℃의 온도 및 0%의 상대 습도))(배리어막D)만을 사용한 것을 제외하고는, 비교예 2와 동일하게 발광 필름을 제조하였다.A barrier film in which a mixed deposition layer of SiOx and ZnO having a thickness of about 100 nm and a protective coating layer having a thickness of about 1 μm are formed on one surface of a poly (ethylene terephthalate) (PET) film (thickness: about 50 μm) Water Vapor Transmission Rate (WVTR): about 0.019 to 0.036 g / m2 / day (38 ° C. temperature and 90% relative humidity), Oxygen Transmission Rate (OTR): about 0.042 cc / m2 / day / atm A light emitting film was manufactured in the same manner as in Comparative Example 2 except that only (Barrier film D) (temperature of 23 ° C. and relative humidity of 0%) was used.
비교예 6.Comparative Example 6.
실시예 2에서 제조된 산소 흡수층을 배리어 특성이 없는 PET(poly(ethylene terephthalate)) 필름의 일면에 적층하여 제조된 차단막을 사용한 것을 제외하고는 비교예 2와 동일하게 발광 필름을 제조하였다.A light emitting film was manufactured in the same manner as in Comparative Example 2, except that a barrier film prepared by stacking the oxygen absorbing layer prepared in Example 2 on one surface of a PET (poly (ethylene terephthalate)) film having no barrier property was used.
시험예 2.Test Example 2.
실시예 및 비교예에서 제조된 발광 필름에 대하여 상기 방식으로 측정한 내구성 평가 결과를 도 12에 기재하였다. 도면을 보면, 측면 차단막이 적용되지 않고, 배리어막만 적용된 비교예 2 내지 5의 경우, 배리어막의 투습도가 낮을수록 우수한 내구성을 보였으나, 어느 경우이든 만족할만한 내구성이 확보되지 않았고, 산소 흡수막만 적용된 비교예 6의 경우도 우수한 내구성을 보이지 않았다. 오히려, 비교예 4 및 5의 배리어막에 비하여 투습도가 높은 배리어막과 산소 흡수막을 조합시킨 차단막을 적용하고, 또한 측면에 차단막을 형성한 실시예 2 및 3의 경우, 장기간 동안 안정적인 내구성을 나타내었다.The durability evaluation results measured in the above manner for the light emitting films prepared in Examples and Comparative Examples are shown in FIG. 12. In the drawings, in the case of Comparative Examples 2 to 5 in which the side barrier film was not applied and only the barrier film was applied, the lower the moisture permeability of the barrier film was, the better the durability was, but in any case, satisfactory durability was not secured. The applied Comparative Example 6 also did not show excellent durability. On the contrary, in Examples 2 and 3 in which a barrier film having a high moisture permeability and a oxygen absorbing film were applied as compared with the barrier films of Comparative Examples 4 and 5, and the barrier films were formed on the side surfaces, the durability was stable for a long time. .

Claims (16)

  1. 발광 나노입자를 포함하는 발광층; 및 상기 발광층의 측면에 존재하는 차단막을 포함하는 발광 필름.A light emitting layer comprising light emitting nanoparticles; And a blocking film on the side of the light emitting layer.
  2. 제 1 항에 있어서, 발광층의 상면 또는 하면상에 위치하는 차단막을 추가로 포함하는 발광 필름.The light emitting film of claim 1, further comprising a blocking film positioned on an upper surface or a lower surface of the light emitting layer.
  3. 제 1 항에 있어서, 차단막은, 금속, 산화물, 질화물, 산질화물, 불화물, 폴리실라잔 또는 산소 흡수제를 포함하는 발광 필름.The light emitting film of claim 1, wherein the blocking film comprises a metal, an oxide, a nitride, an oxynitride, a fluoride, a polysilazane, or an oxygen absorbent.
  4. 제 1 항에 있어서, 차단막은 Al, TiO2, Ti3O3, Al2O3, MgO, SiO, SiO2, GeO, NiO, CaO, BaO, Fe2O3, Y2O3, ZrO2, Nb2O3, CeO2, SiN, SiON, MgF2, LiF, AlF3 또는 CaF2를 포함하는 발광 필름.The method of claim 1, wherein the blocking film is Al, TiO 2 , Ti 3 O 3 , Al 2 O 3 , MgO, SiO, SiO 2 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3 , ZrO 2 , Nb 2 O 3 , CeO 2 , SiN, SiON, MgF 2 , LiF, AlF 3 or CaF 2 .
  5. 제 3 항에 있어서, 산소 흡수제는, 설파이트 화합물, 비타민 E, 비타민 C, 토코페롤 또는 불포화 이중 결합 포함 화합물인 발광 필름.The light emitting film of claim 3, wherein the oxygen absorbent is a sulfite compound, vitamin E, vitamin C, tocopherol, or a compound including an unsaturated double bond.
  6. 제 5 항에 있어서, 불포화 이중 결합 포함 화합물은, 스쿠알렌, 지방산 화합물 또는 폴리부타디엔인 발광 필름.The light emitting film of Claim 5 whose unsaturated double bond containing compound is a squalene, a fatty acid compound, or a polybutadiene.
  7. 제 3 항에 있어서, 산소 흡수제를 포함하는 차단막은 전이금속 촉매 또는 자외선 증감제를 추가로 포함하는 발광 필름.4. The light emitting film of claim 3, wherein the barrier film including the oxygen absorbent further comprises a transition metal catalyst or an ultraviolet sensitizer.
  8. 제 1 항에 있어서, 차단막은 배리어막 및 산소 흡수제를 포함하는 발광 필름.The light emitting film of claim 1, wherein the blocking film comprises a barrier film and an oxygen absorbent.
  9. 제 8 항에 있어서, 산소 흡수제는 배리어막 내부에 포함되어 있거나, 차단막에 배리어막과 함께 포함되는 산소 흡수막 내에 포함되어 있는 발광 필름.9. The light emitting film of claim 8, wherein the oxygen absorbent is contained in the barrier film or in the oxygen absorber film included in the barrier film together with the barrier film.
  10. 제 1 항에 있어서, 차단막은 400 nm 내지 760 nm 범위 내의 어느 하나의 파장에 대한 반사율이 80% 이상인 발광 필름.The light emitting film of claim 1, wherein the blocking film has a reflectance of 80% or more for any wavelength within a range of 400 nm to 760 nm.
  11. 제 1 항에 있어서, 발광층은, 연속상인 매트릭스 및 상기 매트릭스내에 분산되어 있는 에멀젼 영역을 포함하는 발광 필름.The light emitting film according to claim 1, wherein the light emitting layer comprises a matrix in a continuous phase and an emulsion region dispersed in the matrix.
  12. 제 11 항에 있어서, 발광 나노입자는 에멀젼 영역 내에 포함되어 있는 발광 필름.The light emitting film of claim 11, wherein the light emitting nanoparticles are included in an emulsion region.
  13. 제 12 항에 있어서, 에멀젼 영역 내에 포함되어 있는 발광 나노입자의 비율은, 발광층에 포함되어 있는 전체 발광 나노입자의 90 중량% 이상인 발광 필름.13. The light emitting film of claim 12, wherein the proportion of the light emitting nanoparticles contained in the emulsion region is 90% by weight or more of all the light emitting nanoparticles contained in the light emitting layer.
  14. 제 1 항에 있어서, 발광 나노입자는 양자점인 발광 필름.The light emitting film of claim 1, wherein the light emitting nanoparticles are quantum dots.
  15. 광원 및 제 1 항의 발광 필름을 포함하고, 상기 광원과 발광 필름은, 상기 광원으로부터의 광이 상기 발광 필름으로 입사될 수 있도록 배치되어 있는 조명 장치.An illuminating device comprising a light source and the light emitting film of claim 1, wherein the light source and the light emitting film are arranged to allow light from the light source to be incident on the light emitting film.
  16. 제 15 항의 조명 장치를 포함하는 디스플레이 장치.Display device comprising the lighting device of claim 15.
PCT/KR2016/003123 2015-03-27 2016-03-28 Light-emitting film WO2016159608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/561,874 US10386674B2 (en) 2015-03-27 2016-03-28 Light-emitting film
CN201680025037.7A CN107637174B (en) 2015-03-27 2016-03-28 Luminescent film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150043449 2015-03-27
KR10-2015-0043449 2015-03-27
KR20150045633 2015-03-31
KR10-2015-0045633 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159608A1 true WO2016159608A1 (en) 2016-10-06

Family

ID=57007349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003123 WO2016159608A1 (en) 2015-03-27 2016-03-28 Light-emitting film

Country Status (4)

Country Link
US (1) US10386674B2 (en)
KR (1) KR101748991B1 (en)
CN (1) CN107637174B (en)
WO (1) WO2016159608A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180072857A1 (en) * 2016-09-12 2018-03-15 Nanoco Technologies Ltd. Gas Barrier Coating For Semiconductor Nanoparticles
JP6658808B2 (en) * 2017-12-25 2020-03-04 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
WO2019171503A1 (en) * 2018-03-07 2019-09-12 シャープ株式会社 Light emitting device, method for producing light emitting device, and apparatus for producing light emitting device
CN108865112B (en) * 2018-07-20 2021-07-20 纳晶科技股份有限公司 Quantum dot composite material, preparation method thereof and light-emitting device containing quantum dot composite material
JP2020087907A (en) * 2018-11-21 2020-06-04 信越化学工業株式会社 Method for manufacturing anisotropic film
US20220235266A1 (en) * 2019-05-23 2022-07-28 Sony Group Corporation Light emitting element with emissive semiconductor nanocrystal materials and projector light source based on these materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028524A (en) * 1996-03-07 2006-02-02 Cryovac Inc Functional barrier in oxygen scavenging film
KR20120074899A (en) * 2010-12-28 2012-07-06 엘지전자 주식회사 Optical device and light emitting diode package using the same, backlight apparatus
KR20130112990A (en) * 2012-04-04 2013-10-15 삼성전자주식회사 Film for backlight unit and backlight unit and liquid crystal display including same
KR20140088361A (en) * 2013-01-02 2014-07-10 엘지전자 주식회사 Phosphor film and method of manufacturing the same
KR20140114163A (en) * 2013-03-18 2014-09-26 고려대학교 산학협력단 Color change film containing inorganic coating layer and polymer coating layer, and method for manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270959A (en) * 2003-12-26 2005-10-06 Mitsubishi Gas Chem Co Inc Oxygen absorbent molding and organic el element
US8390008B2 (en) * 2008-05-29 2013-03-05 Global Oled Technology Llc LED device structure to improve light output
KR20110038191A (en) 2009-10-07 2011-04-14 엘지디스플레이 주식회사 Light emitting diode backlight unit and liquid crystal display device using the same
KR20110048397A (en) 2009-11-02 2011-05-11 엘지이노텍 주식회사 LED Package and Backlight Assembly using the same
KR101210163B1 (en) * 2011-04-05 2012-12-07 엘지이노텍 주식회사 Optical sheet and method of fabricating the same
US9804316B2 (en) * 2013-12-20 2017-10-31 Apple Inc. Display having backlight with narrowband collimated light sources
KR101470521B1 (en) * 2014-01-08 2014-12-08 성균관대학교산학협력단 Cyclotron apparatus
CN106536676B (en) * 2014-08-14 2019-08-16 株式会社Lg化学 Luminescent film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028524A (en) * 1996-03-07 2006-02-02 Cryovac Inc Functional barrier in oxygen scavenging film
KR20120074899A (en) * 2010-12-28 2012-07-06 엘지전자 주식회사 Optical device and light emitting diode package using the same, backlight apparatus
KR20130112990A (en) * 2012-04-04 2013-10-15 삼성전자주식회사 Film for backlight unit and backlight unit and liquid crystal display including same
KR20140088361A (en) * 2013-01-02 2014-07-10 엘지전자 주식회사 Phosphor film and method of manufacturing the same
KR20140114163A (en) * 2013-03-18 2014-09-26 고려대학교 산학협력단 Color change film containing inorganic coating layer and polymer coating layer, and method for manufacturing thereof

Also Published As

Publication number Publication date
CN107637174A (en) 2018-01-26
CN107637174B (en) 2019-07-26
US20180113361A1 (en) 2018-04-26
KR20160115851A (en) 2016-10-06
US10386674B2 (en) 2019-08-20
KR101748991B1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
WO2016159608A1 (en) Light-emitting film
JP5940079B2 (en) Display backlight unit and method for forming display backlight unit
WO2016167448A2 (en) Method for quantum dot-polymer composite, quantum dot-polymer composite, light conversion film comprising same, backlight unit, and display device
KR102034463B1 (en) A wavelength conversion particle complex and Optical film comprising it
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
US10359175B2 (en) Light-emitting film
KR101874292B1 (en) Barrier film
US9761771B2 (en) Light-emitting film
WO2016024827A1 (en) Light-emitting film
KR101815344B1 (en) Light-emitting film
KR102069489B1 (en) Light-emitting film
KR102010812B1 (en) Optical element and display device comprising thereof
WO2016144133A1 (en) Composition for optical film, and optical film comprising same
WO2016024828A1 (en) Light-emitting film
KR101719033B1 (en) Light-emitting film
KR102063058B1 (en) Light-emitting film
KR102024254B1 (en) Optical element and display device comprising thereof
KR101748911B1 (en) Light-emitting film
KR101880210B1 (en) Barrier film
KR101958655B1 (en) Composition using optical film and optical film thereof
KR20170075468A (en) Optical film
WO2023068664A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561874

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773389

Country of ref document: EP

Kind code of ref document: A1