WO2016158779A1 - Shovel - Google Patents

Shovel Download PDF

Info

Publication number
WO2016158779A1
WO2016158779A1 PCT/JP2016/059684 JP2016059684W WO2016158779A1 WO 2016158779 A1 WO2016158779 A1 WO 2016158779A1 JP 2016059684 W JP2016059684 W JP 2016059684W WO 2016158779 A1 WO2016158779 A1 WO 2016158779A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
shovel
tilt angle
tilt
line
Prior art date
Application number
PCT/JP2016/059684
Other languages
French (fr)
Japanese (ja)
Inventor
泉川 岳哉
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to CN201680019035.7A priority Critical patent/CN107407065A/en
Priority to JP2017509920A priority patent/JP6591531B2/en
Priority to EP16772660.3A priority patent/EP3276088B1/en
Priority to EP22162150.1A priority patent/EP4043643A1/en
Priority to KR1020177028096A priority patent/KR102488448B1/en
Publication of WO2016158779A1 publication Critical patent/WO2016158779A1/en
Priority to US15/715,609 priority patent/US11015319B2/en
Priority to US17/328,149 priority patent/US20210277624A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/436Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like for keeping the dipper in the horizontal position, e.g. self-levelling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3677Devices to connect tools to arms, booms or the like allowing movement, e.g. rotation or translation, of the tool around or along another axis as the movement implied by the boom or arms, e.g. for tilting buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to a shovel having a bucket tilt mechanism.
  • An excavation control system which performs excavation restriction control in which the blade edge position of a bucket of a shovel is automatically adjusted to move the blade edge of the bucket along a design surface (see, for example, Patent Document 1).
  • the bucket rotation axis is a single rotation axis parallel to the road surface or the like on which the shovel is installed. Therefore, the blade edge of the bucket is always parallel to the road surface.
  • the longitudinal direction of the boom and the arm is inclined with respect to the vertical direction of the slope, and accordingly, the bucket A bucket line (for example, a toe line connecting both ends of a cutting edge (an example of a work area), a back line along an edge of a bucket back surface (an example of a work area, etc.) formed by the work area It is inclined.
  • the surface excavated by the bucket is inclined with respect to the slope, and the excavated surface can not be accurately aligned with the target surface.
  • an object of this invention is to provide the shovel which can control a bucket automatically so that a bucket line may always become parallel with respect to a target excavation surface irrespective of operation of the operator of a shovel.
  • an arm pivotably attached to a boom pivotably attached to a pivoting body, and pivotably attached to the arm
  • a bucket a tilt mechanism for supporting the bucket so as to be able to tilt with respect to the arm
  • a bucket tilt angle sensor for detecting a tilt angle of the bucket
  • a tilt angle control unit for controlling the adjustment of the tilt angle.
  • a shovel is provided, wherein the tilt angle control unit automatically adjusts the tilt angle so that a bucket line of the bucket is parallel to a digging target surface.
  • the tilt angle of the bucket is automatically corrected during operation of the shovel such that the bucket line is always parallel to the inclined target surface.
  • the bucket line is always automatically parallel to the slope, so that the accuracy of the digging surface can be improved.
  • FIG. 1 is a side view of a shovel according to an embodiment of the present invention. It is a block diagram which shows the structure of the drive system of the shovel shown in FIG. It is a block diagram showing functional composition of a controller and a machine guidance device. It is a figure for demonstrating bucket tilt automatic control. It is a figure explaining the example of the excavation operation by a bucket. It is a figure explaining another example of excavation work by a bucket.
  • FIG. 1 is a side view of a shovel according to one embodiment.
  • the upper swing body 3 is mounted on the lower traveling body 1 of the shovel via the turning mechanism 2.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • a slope bucket, a weir bucket or the like may be used as the end attachment.
  • the boom 4, the arm 5 and the bucket 6 constitute a digging attachment as an example of the attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively.
  • a boom angle sensor S1 is attached to the boom 4
  • an arm angle sensor S2 is attached to the arm 5
  • a bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 may be referred to as "posture sensor".
  • the bucket 6 is a so-called tilt bucket, and the bucket 6 can be rotated relative to the arm 5 in the direction perpendicular to the paper surface.
  • a tilt mechanism 60 is provided at a portion where the bucket 6 is attached to the arm 5.
  • the tilt mechanism 60 has a pin 62 (tilt axis) rotatably supporting the bucket 6 and a tilt bucket cylinder 64 for rotating the bucket 6.
  • the tilt bucket cylinder 64 By driving the tilt bucket cylinder 64, the bucket 6 can be pivoted around the pin 62.
  • a bucket tilt angle sensor S5 is attached to the bucket 6.
  • the bucket tilt angle sensor S5 is a sensor that detects the rotation angle of the bucket 6 around the tilt axis and outputs a detected value.
  • the boom angle sensor S1 detects a pivot angle of the boom 4.
  • the boom angle sensor S ⁇ b> 1 is an acceleration sensor that detects an inclination with respect to a horizontal surface to detect a pivot angle of the boom 4 with respect to the upper swing body 3.
  • the arm angle sensor S2 detects the rotation angle of the arm 5.
  • the arm angle sensor S ⁇ b> 2 is an acceleration sensor that detects an inclination with respect to a horizontal surface and detects a rotation angle of the arm 5 with respect to the boom 4.
  • the bucket angle sensor S3 detects the rotation angle of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor that detects the inclination with respect to the horizontal plane and detects the rotation angle of the bucket 6 with respect to the arm 5.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer using a variable resistor, a stroke sensor for detecting a stroke amount of a corresponding hydraulic cylinder, and a rotary encoder for detecting a rotation angle around a connecting pin Or the like.
  • a cabin 10 is provided on the upper revolving superstructure 3 and a power source such as an engine 11 is mounted. Further, a body inclination sensor S4 is attached to the upper swing body 3.
  • the body inclination sensor S4 is a sensor that detects the inclination of the upper swing body 3 with respect to the horizontal plane.
  • the vehicle body inclination sensor S4 is a two-axis acceleration sensor that detects the inclination angle of the upper swing body 3 in the front-rear direction and the left-right direction.
  • the vehicle body inclination sensor S4 may be referred to as a "posture sensor".
  • an input device D1 In the cabin 10, an input device D1, an audio output device D2, a display device D3, a storage device D4, a gate lock lever D5, a controller 30, and a machine guidance device 50 are installed.
  • the controller 30 functions as a main control unit that performs drive control of the shovel.
  • the controller 30 is configured by an arithmetic processing unit including a CPU and an internal memory.
  • the various functions of the controller 30 are realized by the CPU executing a program stored in the internal memory.
  • the machine guidance device 50 guides the operation of the shovel.
  • the machine guidance device 50 visually and aurally informs the operator of, for example, the distance in the vertical direction between the surface of the target topography set by the operator and the tip (tip) position of the bucket 6. .
  • the machine guidance device 50 guides the operation of the shovel by the operator.
  • the machine guidance device 50 may only visually notify the operator of the distance, or may only audibly alert the operator.
  • the machine guidance device 50 is configured by an arithmetic processing unit including a CPU and an internal memory, as with the controller 30.
  • the various functions of the machine guidance device 50 are realized by the CPU executing a program stored in the internal memory.
  • the machine guidance device 50 may be provided separately from the controller 30, or may be incorporated in the controller 30.
  • the input device D1 is a device for the operator of the shovel to input various information to the machine guidance device 50.
  • the input device D1 is a membrane switch attached to the surface of the display device D3.
  • a touch panel or the like may be used as the input device D1.
  • the operator can input the excavation target surface using the input device D1.
  • the operator can set a tilt control start surface which is a reference for starting automatic bucket tilt control described later by inputting the height from the digging target surface.
  • the excavation target surface and the tilt control start surface are stored in the storage device D4 of the machine guidance device 50.
  • at least one of the drilling target surface and the tilt control starting surface may be stored in the storage device D4 via communication.
  • the voice output device D2 outputs various voice information in response to a voice output command from the machine guidance device 50.
  • an on-vehicle speaker directly connected to the machine guidance device 50 is used as the audio output device D2.
  • An alarm device such as a buzzer may be used as the voice output device D2.
  • the display device D3 displays various types of image information in response to an instruction from the machine guidance device 50.
  • an on-vehicle liquid crystal display directly connected to the machine guidance device 50 is used as the display device D3.
  • the storage device D4 is a device for storing various types of information.
  • a non-volatile storage medium such as a semiconductor memory is used as the storage device D4.
  • the storage device D4 stores various information output by the machine guidance device 50 and the like.
  • the gate lock lever D5 is a mechanism for preventing the shovel from being operated erroneously.
  • the gate lock lever D5 is disposed between the door of the cabin 10 and the driver's seat. When the gate lock lever D5 is pulled up so that the operator can not leave the cabin 10, the various operating devices can be operated. On the other hand, when the gate lock lever D5 is pushed down so that the operator can leave the cabin 10, the various operating devices can not be operated.
  • FIG. 2 is a block diagram showing a configuration of a drive system of the shovel of FIG.
  • the mechanical power system is indicated by a double wire, the high pressure hydraulic line by a thick solid line, the pilot line by a broken line, and the electric drive and control system by a thin solid line.
  • the engine 11 is a power source of a shovel.
  • the engine 11 is a diesel engine that adopts isochronous control that maintains the engine rotation speed constant regardless of the increase or decrease in the engine load.
  • the fuel injection amount, the fuel injection timing, the boost pressure and the like in the engine 11 are controlled by the engine controller D7.
  • the engine controller D7 is a device that controls the engine 11.
  • the engine controller D7 executes various functions such as an auto idle function and an auto idle stop function.
  • the auto idle function is a function to reduce the engine speed from a normal speed (for example, 2000 rpm) to an idle speed (for example, 800 rpm) when a predetermined condition is satisfied.
  • the engine controller D7 operates the auto idle function in response to the auto idle command from the controller 30 to reduce the engine speed to the idle speed.
  • the auto idle stop function is a function to stop the engine 11 when a predetermined condition is satisfied.
  • the engine controller D7 operates the automatic idle stop function in response to the automatic idle stop command from the controller 30 to stop the engine 11.
  • a main pump 14 as a hydraulic pump and a pilot pump 15 are connected to the engine 11.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system of the shovel.
  • the hydraulic actuators such as the right side traveling hydraulic motor 1A, the left side traveling hydraulic motor 1B, the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the turning hydraulic motor 21 and the tilt bucket cylinder 64 are control valves via high pressure hydraulic lines Connected to 17
  • An operating device 26 is connected to the pilot pump 15 via a pilot line 25 and a gate lock valve D6. Further, a control valve 17 is connected to the pilot pump 15 via a pilot line 25A and a switching valve D8.
  • the operating device 26 includes a lever 26A, a lever 26B, a pedal 26C, and an automatic tilt switch 26D.
  • the operating device 26 is connected to the control valve 17 via the hydraulic line 27.
  • the hydraulic pressure line 27 is provided with a pressure reducing valve V1 controlled by the controller 30. Also, the operating device 26 is connected to the pressure sensor 29 via the hydraulic line 28.
  • the gate lock valve D6 switches communication / blocking of the pilot line 25 connecting the pilot pump 15 and the controller 26.
  • the gate lock valve D6 is an electromagnetic valve that switches communication / disconnection of the pilot line 25 according to a command from the controller 30.
  • the controller 30 determines the state of the gate lock lever D5 based on the state signal output from the gate lock lever D5. Then, when it is determined that the gate lock lever D5 is in the state of being pulled up, the controller 30 outputs a communication command to the gate lock valve D6.
  • the gate lock valve D6 opens to bring the pilot line 25 into communication. As a result, the operation of the operator on the operation device 26 is effective.
  • the controller 30 determines that the gate lock lever D5 is in the state of being pulled down, it outputs a shutoff command to the gate lock valve D6.
  • the gate lock valve D6 is closed to shut off the pilot line 25. As a result, the operation of the operator on the operation device 26 is invalidated.
  • the switching valve D8 switches communication / blocking of the pilot line 25A connecting the pilot pump 15 and the control valve 17.
  • the switching valve D8 is an electromagnetic proportional valve that switches communication / disconnection of the pilot line 25A according to a command from the controller 30.
  • the controller 30 outputs a communication command to the switching valve D8 when starting the bucket tilt automatic control described later.
  • the switching valve D8 is opened to connect the pilot line 25A, and automatic bucket tilt control is performed.
  • the pressure sensor 29 detects a pressure corresponding to the operation of the operating device 26.
  • the pressure sensor 29 outputs a detected value to the controller 30.
  • FIG. 3 is a functional block diagram showing the configuration of the controller 30 and the machine guidance device 50. As shown in FIG. 3
  • the controller 30 controls whether or not to perform guidance by the machine guidance device 50 in addition to control of the operation of the entire shovel. Specifically, the controller 30 determines whether the shovel is at rest based on the state of the gate lock lever D5, the detection signal from the pressure sensor 29, and the like. Then, when it is determined that the shovel is at rest, the controller 30 sends a guidance cancellation instruction to the machine guidance device 50 so as to cancel the guidance by the machine guidance device 50.
  • controller 30 may output a guidance stop command to the machine guidance device 50 when outputting an auto idle stop command to the engine controller D7.
  • controller 30 may output a guidance stop instruction to the machine guidance device 50 when it is determined that the gate lock lever D5 is in the depressed state.
  • the machine guidance device 50 outputs various signals output from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, the bucket tilt angle sensor S5, the input device D1, and the controller 30. And or receive data.
  • the machine guidance device 50 calculates the actual operating position of the attachment (for example, the bucket 6) based on the received signals and data. Then, when the actual operating position of the attachment is different from the target operating position, the machine guidance device 50 transmits an alarm command to the voice output device D2 and the display device D3 to issue an alarm.
  • the machine guidance device 50 and the controller 30 are communicably connected to each other through a CAN (Controller Area Network).
  • the machine guidance device 50 includes functional units that perform various functions.
  • the machine guidance device 50 functions as a functional unit for controlling the operation of the attachment, including a height calculation unit 510, a comparison unit 512, a tilt angle control unit 514, a guidance data output unit 516, and a tilt control start line.
  • a setting unit 518 is included.
  • the height calculator 510 calculates the angles of the boom 4, the arm 5 and the bucket 6 calculated from the detection signals of the sensors S 1 to S 3 and the inclination angle of the upper swing body 3 calculated from the detection signals of the sensor S 4. Calculate the height of the tip (toe).
  • the guidance data output unit 516 reads the guidance data including the data on the drilling target surface stored in advance in the storage device of the machine guidance device 50, and outputs the guidance data to the tilt control start line setting unit 518.
  • the operator can set an excavation target surface in advance using the input device D1.
  • the tilt control start line setting unit 518 sets a tilt control start line at a position at a predetermined distance from the excavation target line in the guidance data, and outputs the guidance data to the comparison unit 512.
  • the comparison unit 512 compares the height of the tip (tip) of the bucket 6 calculated by the height calculation unit 510 with the tilt control start line indicated by the guidance data output from the tilt control start line setting unit 518.
  • the tilt angle control unit 514 determines whether the work site (for example, the toe) of the bucket 6 is closer to the digging target line than the tilt control start line based on the comparison result of the comparing unit 512 (tilt control start line and digging target It is determined whether or not it is located between the lines. If it is determined that the work site of the bucket 6 is closer to the digging target line than the tilt control start line, the tilt angle control unit 514 controls the tilt angle of the bucket 6 to ) To be parallel to the drilling target surface.
  • a bucket line is a line which a work site of bucket 6 forms, for example, a toe line connecting both ends of a blade edge (an example of a work site), a back line along an edge of a bucket back (an example of a work site) Etc. That is, the bucket line is a line connecting at least two points in the work area in contact with the excavation target surface.
  • the tilt angle control unit 514 calculates the angle deviation of the tilt angle of the current bucket 6 with respect to the excavation target surface using the detection signals of the sensors S1 to S4, and performs control so as to reduce the calculated angle deviation.
  • a signal is sent to the controller 30. Thereby, the controller 30 performs automatic control so that the toe line of the bucket 6 becomes parallel to the digging target surface.
  • the sensors S1 to S4 but also a GNSS device or the like may be used to calculate the angle of the toe line of the bucket 6.
  • the back surface of the bucket 6 may be used as a work site.
  • FIG. 4 is a view for explaining an example of the bucket tilt automatic control according to the present embodiment.
  • FIG. 4 shows control for making the toe line of the bucket 6 parallel to the slope (inclined surface).
  • FIG. 4 shows a tilt control start line CL indicating a tilt control start surface serving as a reference for starting the bucket tilt automatic control at a position separated by a predetermined distance from the target line TL indicating the excavation target surface.
  • the target line TL is a line on the excavation target surface corresponding to the toe line of the bucket 6.
  • the tilt control start line CL is set in the guidance data by the tilt control start line setting unit 518 shown in FIG. 3 described above.
  • the tilt angle of the bucket 6 is not automatically controlled and is shown by a dotted line in FIG.
  • the toe line 6a of the bucket 6 is maintained horizontal.
  • the tilt control start surface tilt control start line CL in FIG. 4
  • automatic control of the tilt angle of the bucket 6 is started.
  • the tilt angle is adjusted so that the toe line 6a of the bucket 6 becomes parallel to the target line TL. Whether or not the toe of the bucket 6 is in contact with the tilt control start surface (the tilt control start line CL in FIG. 4) is determined by the comparison unit 512 described above.
  • the bucket 6 While the bucket 6 is positioned between the tilt control start surface (the tilt control start line CL in FIG. 4) and the excavation target surface (the target line TL in FIG. 4), the bucket 6 is received by a signal from the controller 30.
  • Automatic bucket tilt control is continuously performed to make the toe line 6a parallel to the digging target surface.
  • the bucket tilt automatic control is a control automatically performed by the machine guidance device 50, and the operator of the shovel does not manually adjust the tilt angle of the bucket 6. Therefore, the operator of the shovel can accurately align the toe line 6a of the bucket 6 with the digging target surface without adjusting the angle of the toe line 6a of the bucket 6 relative to the target surface at the time of the digging operation.
  • the toe line 6a of the bucket 6 will not be parallel to the digging target surface.
  • the boom or the like is operated when the shovel is directed in a direction obliquely intersecting the slope. Therefore, when the position of the bucket 6 is lower than the tilt control start line CL, the operation of the hydraulic actuator to be operated is restricted even if the operator operates the swing operation or the boom, arm, bucket, etc.
  • the angle between the toe line 6a and the drilling target surface is maintained at a predetermined angle or less. Specifically, when the angle between the toe line 6a of the bucket 6 and the digging target surface exceeds a predetermined angle, the pilot pressure is reduced by the pressure reducing valve V1. Thereby, it is possible to limit the speed of the turning operation or the operation of the boom, the arm, the bucket and the like.
  • the bucket tilt automatic control is released (disabled),
  • the toe line 6a of the bucket 6 is horizontal as indicated by the dotted line in FIG.
  • the tilt angle of the bucket 6 after cancellation is determined in advance by the work content and the like. Also, in order to achieve this control, for example, the load applied to the bucket 6, the arm 5, or the boom 4 when the bucket 6 is inserted into the ground surface or when the soil is scooped by the bucket 6 is monitored.
  • the toe line 6a of the bucket 6 may be leveled.
  • the bucket tilt automatic control may be canceled (disabled), and the toe line 6a of the bucket 6 may be made horizontal as shown by the dotted line in FIG. .
  • the acceleration sensor is used as the bucket tilt angle sensor S5
  • another angle sensor such as a rotary encoder
  • the angle of the toe line 6a of the bucket 6 is obtained based on the output signals from the above-described sensors S1 to S4. It can be determined whether toe line 6a is horizontal or not.
  • the bucket tilt automatic control may be performed when the operator of the shovel wants to automatically adjust the bucket tilt angle. Therefore, as shown in FIG. 2, an automatic tilt switch 26D for inputting ON / OFF of the bucket tilt automatic control is attached to the tip of the lever 26A, 26B etc., and only while executing the bucket tilt automatic control The tilt switch 26D may be turned on. That is, only when there is a command from the operator, the communication command may be output to the switching valve D8 to enable automatic bucket tilt control.
  • the automatic tilt switch 26D may be attached to the pedal 26C.
  • the tilt control start line CL is used as the start reference of the bucket tilt automatic control in which the toe line 6a of the bucket 6 is parallel to the target line TL
  • the present invention is not limited thereto.
  • the toe line 6a of the bucket 6 may be parallel to the target line TL.
  • the machine guidance device 50 does not necessarily have to perform it.
  • the controller 30 or another control device may perform it.
  • FIG. 5A and 5B are diagrams for explaining an example of the digging operation by the bucket.
  • FIG. 5A shows an example of a digging operation which is preferable to enable the bucket tilt automatic control according to the above-described embodiment.
  • FIG. 5B shows an example of the digging operation performed when the bucket tilt automatic control according to the present embodiment is invalidated.
  • the surface to be excavated by the bucket 6 is a slope
  • the bucket is turned while the upper swing body 3 is pivoted so as to move the bucket 6 not only linearly along the slope but also in the lateral direction of the slope. Move 6 to dig the slope.
  • the toe line 6a of the bucket 6 is parallel to the slope, but when the shovel is turned, the toe line 6a of the bucket 6 Inclination to the slope (this inclination is not shown in FIG. 5A because it is the inclination in the direction perpendicular to the paper surface). Therefore, the angular deviation of the tilt angle of the bucket 6 with respect to the target surface becomes large.
  • the operator simply moves the bucket 6 by operating the boom 4 and the arm 5, and the toe line 6a of the bucket 6 is automatically set on the slope. Adjusted to be parallel. Therefore, excavation is performed while the toe line 6a of the bucket 6 is always parallel to the slope, and the entire excavated surface becomes a plane parallel to the slope.
  • the operator in order to invalidate the bucket tilt automatic control according to the present embodiment and perform the same digging operation, the operator must operate the boom 4 and the arm 5 to move the bucket 6 while adjusting the tilt angle of the bucket 6. You must. However, it is difficult to determine and adjust the tilt of the bucket 6 with respect to the slope. Therefore, for example, as shown in FIG. 5B, the operator performs the digging operation only by operating the arm 5 and the boom 4, and then slightly moves the shovel itself sideways without turning the upper swing body 3. After that, perform the next digging operation again. In this way, the operator can go digging without adjusting the tilt angle, but it is troublesome to carry out the digging operation while moving the shovel itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A shovel has: an arm that is pivotably fitted to a boom that is pivotably fitted to a revolving body; a bucket that is pivotably fitted to the arm; a tilt mechanism that supports the bucket so as to be tiltable relative to the arm; a bucket tilt angle sensor that detects the tilt angle of the bucket; and a tilt angle control unit that controls the adjustment of the tilt angle. The tilt angle control unit adjusts the tilt angle via automatic control such that the bucket line of the bucket becomes parallel to the digging target surface.

Description

ショベルShovel
 本発明は、バケットチルト機構を有するショベルに関する。 The present invention relates to a shovel having a bucket tilt mechanism.
 ショベルのバケットの刃先位置を自動調整して、バケットの刃先を設計面に沿って移動させる掘削制限制御を行なう掘削制御システムが提案されている(例えば、特許文献1参照)。上述の特許文献に開示されたショベルでは、バケット回転軸はショベルが設置される路面などに対して平行な単一の回転軸である。したがって、バケットの刃先も常に路面に対して平行となる。 An excavation control system has been proposed which performs excavation restriction control in which the blade edge position of a bucket of a shovel is automatically adjusted to move the blade edge of the bucket along a design surface (see, for example, Patent Document 1). In the shovel disclosed in the above-mentioned patent documents, the bucket rotation axis is a single rotation axis parallel to the road surface or the like on which the shovel is installed. Therefore, the blade edge of the bucket is always parallel to the road surface.
特開2013-217137号公報JP, 2013-217137, A
 バケットにより法面(傾斜面)を掘削する場合、バケットの爪先を常に法面に対して平行にしながらバケットを法面に沿って斜め上又は斜め下に移動させることが好ましい。上述の掘削制御システムでは、ブーム及びアームの長手方向が法面の上下方向に一致しているときは、バケットの爪先は法面に対して平行となる。ところが、ブームが取り付けられている旋回体を旋回させながらバケットを法面に沿って移動させると、ブーム及びアームの長手方向が法面の上下方向に対して傾斜し、これに伴って、バケットの作業部位が形成するバケット線(例えば、刃先(作業部位の一例)の両端を結んだ爪先線、バケット背面(作業部位の一例)の縁に沿った背面線等を含む。)が法面に対して傾斜してしまう。この場合、バケットにより掘削した面は、法面に対して傾斜してしまい、掘削した面を正確に目標面に沿わせることができない。 When excavating a slope (inclined surface) with a bucket, it is preferable to move the bucket obliquely upward or downward along the slope while always keeping the tip of the bucket parallel to the slope. In the above-mentioned excavation control system, when the longitudinal direction of the boom and the arm coincides with the vertical direction of the slope, the toe of the bucket is parallel to the slope. However, when the bucket is moved along the slope while turning the swing body on which the boom is attached, the longitudinal direction of the boom and the arm is inclined with respect to the vertical direction of the slope, and accordingly, the bucket A bucket line (for example, a toe line connecting both ends of a cutting edge (an example of a work area), a back line along an edge of a bucket back surface (an example of a work area, etc.) formed by the work area It is inclined. In this case, the surface excavated by the bucket is inclined with respect to the slope, and the excavated surface can not be accurately aligned with the target surface.
 そこで、本発明は、ショベルの操作者の操作に係らずバケット線が目標掘削面に対して常に平行となるようにバケットを自動的に制御することができるショベルを提供することを目的とする。 Then, an object of this invention is to provide the shovel which can control a bucket automatically so that a bucket line may always become parallel with respect to a target excavation surface irrespective of operation of the operator of a shovel.
 上述の目的を達成するために、本発明の一実施形態によれば、旋回体に回動可能に取り付けられたブームに回動可能に取り付けられたアームと、該アームに回動可能に取り付けられたバケットと、該バケットを前記アームに対してチルト可能に支持するチルト機構と、前記バケットのチルト角度を検出するバケットチルト角度センサと、前記チルト角度の調整を制御するチルト角度制御部と、を有し、前記チルト角度制御部は、前記バケットのバケット線が掘削目標面に対して平行になるように、前記チルト角度を自動制御で調整する、ショベルが提供される。 In order to achieve the above object, according to one embodiment of the present invention, an arm pivotably attached to a boom pivotably attached to a pivoting body, and pivotably attached to the arm A bucket, a tilt mechanism for supporting the bucket so as to be able to tilt with respect to the arm, a bucket tilt angle sensor for detecting a tilt angle of the bucket, and a tilt angle control unit for controlling the adjustment of the tilt angle. A shovel is provided, wherein the tilt angle control unit automatically adjusts the tilt angle so that a bucket line of the bucket is parallel to a digging target surface.
 開示した実施形態によれば、バケット線が傾斜した目標面に対して常に平行になるように、ショベルの操作中にバケットのチルト角度が自動的に修正される。これにより、例えば、旋回体を旋回させながら法面掘削作業を行なった場合には、バケット線が常に法面に自動的に平行になるので、掘削面の精度を向上させることができる。 According to the disclosed embodiment, the tilt angle of the bucket is automatically corrected during operation of the shovel such that the bucket line is always parallel to the inclined target surface. Thereby, for example, when the slope drilling operation is performed while turning the swing body, the bucket line is always automatically parallel to the slope, so that the accuracy of the digging surface can be improved.
本発明の一実施形態によるショベルの側面図である。1 is a side view of a shovel according to an embodiment of the present invention. 図1に示すショベルの駆動系の構成を示すブロック図である。It is a block diagram which shows the structure of the drive system of the shovel shown in FIG. コントローラ及びマシンガイダンス装置の機能構成を示すブロック図である。It is a block diagram showing functional composition of a controller and a machine guidance device. バケットチルト自動制御を説明するための図である。It is a figure for demonstrating bucket tilt automatic control. バケットによる掘削作業の例を説明する図である。It is a figure explaining the example of the excavation operation by a bucket. バケットによる掘削作業の別の例を説明する図である。It is a figure explaining another example of excavation work by a bucket.
 図面を参照しながら本発明の実施形態について説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1は一実施形態によるショベルの側面図である。ショベルの下部走行体1には旋回機構2を介して上部旋回体3が搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられる。エンドアタッチメントとして、法面用バケット、浚渫用バケット等が用いられてもよい。 FIG. 1 is a side view of a shovel according to one embodiment. The upper swing body 3 is mounted on the lower traveling body 1 of the shovel via the turning mechanism 2. A boom 4 is attached to the upper swing body 3. An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5. As the end attachment, a slope bucket, a weir bucket or the like may be used.
 ブーム4、アーム5、及びバケット6は、アタッチメントの一例として掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられる。ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3を「姿勢センサ」と称することもある。 The boom 4, the arm 5 and the bucket 6 constitute a digging attachment as an example of the attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively. A boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6. The boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 may be referred to as "posture sensor".
 バケット6はいわゆるチルトバケットであり、バケット6はアーム5に対して紙面に垂直な方向にも回動可能である。具体的には、バケット6がアーム5に取り付けられる部分にチルト機構60が設けられる。チルト機構60は、バケット6を回動可能に支持するピン62(チルト軸)と、バケット6を回動させるためのチルトバケットシリンダ64とを有する。チルトバケットシリンダ64を駆動することで、バケット6をピン62の周りに回動させることができる。なお、バケット6にはバケットチルト角度センサS5が取り付けられる。バケットチルト角度センサS5はチルト軸周りのバケット6の回転角度を検出し、検出値を出力するセンサである。 The bucket 6 is a so-called tilt bucket, and the bucket 6 can be rotated relative to the arm 5 in the direction perpendicular to the paper surface. Specifically, a tilt mechanism 60 is provided at a portion where the bucket 6 is attached to the arm 5. The tilt mechanism 60 has a pin 62 (tilt axis) rotatably supporting the bucket 6 and a tilt bucket cylinder 64 for rotating the bucket 6. By driving the tilt bucket cylinder 64, the bucket 6 can be pivoted around the pin 62. A bucket tilt angle sensor S5 is attached to the bucket 6. The bucket tilt angle sensor S5 is a sensor that detects the rotation angle of the bucket 6 around the tilt axis and outputs a detected value.
 ブーム角度センサS1は、ブーム4の回動角度を検出する。本実施形態では、ブーム角度センサS1は、水平面に対する傾斜を検出して、上部旋回体3に対するブーム4の回動角度を検出する加速度センサである。アーム角度センサS2は、アーム5の回動角度を検出する。本実施形態では、アーム角度センサS2は、水平面に対する傾斜を検出して、ブーム4に対するアーム5の回動角度を検出する加速度センサである。バケット角度センサS3は、バケット6の回動角度を検出する。本実施形態では、バケット角度センサS3は、水平面に対する傾斜を検出して、アーム5に対するバケット6の回動角度を検出する加速度センサである。ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。 The boom angle sensor S1 detects a pivot angle of the boom 4. In the present embodiment, the boom angle sensor S <b> 1 is an acceleration sensor that detects an inclination with respect to a horizontal surface to detect a pivot angle of the boom 4 with respect to the upper swing body 3. The arm angle sensor S2 detects the rotation angle of the arm 5. In the present embodiment, the arm angle sensor S <b> 2 is an acceleration sensor that detects an inclination with respect to a horizontal surface and detects a rotation angle of the arm 5 with respect to the boom 4. The bucket angle sensor S3 detects the rotation angle of the bucket 6. In the present embodiment, the bucket angle sensor S3 is an acceleration sensor that detects the inclination with respect to the horizontal plane and detects the rotation angle of the bucket 6 with respect to the arm 5. The boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer using a variable resistor, a stroke sensor for detecting a stroke amount of a corresponding hydraulic cylinder, and a rotary encoder for detecting a rotation angle around a connecting pin Or the like.
 上部旋回体3にはキャビン10が設けられ、且つエンジン11等の動力源が搭載される。また、上部旋回体3には機体傾斜センサS4が取り付けられる。機体傾斜センサS4は、水平面に対する上部旋回体3の傾斜を検出するセンサである。本実施形態では、機体傾斜センサS4は、上部旋回体3の前後方向及び左右方向の傾斜角度を検出する2軸加速度センサである。機体傾斜センサS4を「姿勢センサ」と称することもある。 A cabin 10 is provided on the upper revolving superstructure 3 and a power source such as an engine 11 is mounted. Further, a body inclination sensor S4 is attached to the upper swing body 3. The body inclination sensor S4 is a sensor that detects the inclination of the upper swing body 3 with respect to the horizontal plane. In the present embodiment, the vehicle body inclination sensor S4 is a two-axis acceleration sensor that detects the inclination angle of the upper swing body 3 in the front-rear direction and the left-right direction. The vehicle body inclination sensor S4 may be referred to as a "posture sensor".
 キャビン10内には、入力装置D1、音声出力装置D2、表示装置D3、記憶装置D4、ゲートロックレバーD5、コントローラ30、及びマシンガイダンス装置50が設置される。 In the cabin 10, an input device D1, an audio output device D2, a display device D3, a storage device D4, a gate lock lever D5, a controller 30, and a machine guidance device 50 are installed.
 コントローラ30は、ショベルの駆動制御を行う主制御部として機能する。本実施形態では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成される。コントローラ30の各種機能は、CPUが内部メモリに格納されたプログラムを実行することで実現される。 The controller 30 functions as a main control unit that performs drive control of the shovel. In the present embodiment, the controller 30 is configured by an arithmetic processing unit including a CPU and an internal memory. The various functions of the controller 30 are realized by the CPU executing a program stored in the internal memory.
 マシンガイダンス装置50は、ショベルの操作をガイドする。本実施形態では、マシンガイダンス装置50は、例えば、操作者が設定した目標地形の表面とバケット6の先端(爪先)位置との鉛直方向における距離を視覚的に且つ聴覚的に操作者に報知する。これにより、マシンガイダンス装置50は操作者によるショベルの操作をガイドする。なお、マシンガイダンス装置50は、その距離を視覚的に操作者に知らせるのみであってもよく、聴覚的に操作者に知らせるのみであってもよい。具体的には、マシンガイダンス装置50は、コントローラ30と同様、CPU及び内部メモリを含む演算処理装置で構成される。マシンガイダンス装置50の各種機能はCPUが内部メモリに格納されたプログラムを実行することで実現される。マシンガイダンス装置50は、コントローラ30とは別個に設けられてもよく、あるいは、コントローラ30に組み込まれていてもよい。 The machine guidance device 50 guides the operation of the shovel. In the present embodiment, the machine guidance device 50 visually and aurally informs the operator of, for example, the distance in the vertical direction between the surface of the target topography set by the operator and the tip (tip) position of the bucket 6. . Thus, the machine guidance device 50 guides the operation of the shovel by the operator. The machine guidance device 50 may only visually notify the operator of the distance, or may only audibly alert the operator. Specifically, the machine guidance device 50 is configured by an arithmetic processing unit including a CPU and an internal memory, as with the controller 30. The various functions of the machine guidance device 50 are realized by the CPU executing a program stored in the internal memory. The machine guidance device 50 may be provided separately from the controller 30, or may be incorporated in the controller 30.
 入力装置D1は、ショベルの操作者がマシンガイダンス装置50に各種情報を入力するための装置である。本実施形態では、入力装置D1は、表示装置D3の表面に取り付けられるメンブレンスイッチである。入力装置D1としてタッチパネル等を用いてもよい。操作者は入力装置D1を用いて掘削目標面を入力できる。また、操作者はその掘削目標面からの高さを入力することで、後述のバケットチルト自動制御を開始する基準となるチルト制御開始面を設定することができる。これにより、掘削目標面及びチルト制御開始面はマシンガイダンス装置50の記憶装置D4に記憶される。また、掘削目標面及びチルト制御開始面の少なくとも一方は通信を介して記憶装置D4に記憶されてもよい。 The input device D1 is a device for the operator of the shovel to input various information to the machine guidance device 50. In the present embodiment, the input device D1 is a membrane switch attached to the surface of the display device D3. A touch panel or the like may be used as the input device D1. The operator can input the excavation target surface using the input device D1. In addition, the operator can set a tilt control start surface which is a reference for starting automatic bucket tilt control described later by inputting the height from the digging target surface. As a result, the excavation target surface and the tilt control start surface are stored in the storage device D4 of the machine guidance device 50. In addition, at least one of the drilling target surface and the tilt control starting surface may be stored in the storage device D4 via communication.
 音声出力装置D2は、マシンガイダンス装置50からの音声出力指令に応じて各種音声情報を出力する。本実施形態では、音声出力装置D2として、マシンガイダンス装置50に直接接続される車載スピーカが利用される。なお、音声出力装置D2として、ブザー等の警報器が利用されてもよい。 The voice output device D2 outputs various voice information in response to a voice output command from the machine guidance device 50. In the present embodiment, an on-vehicle speaker directly connected to the machine guidance device 50 is used as the audio output device D2. An alarm device such as a buzzer may be used as the voice output device D2.
 表示装置D3は、マシンガイダンス装置50からの指令に応じて各種画像情報を表示する。本実施形態では、表示装置D3として、マシンガイダンス装置50に直接接続される車載液晶ディスプレイが利用される。 The display device D3 displays various types of image information in response to an instruction from the machine guidance device 50. In the present embodiment, an on-vehicle liquid crystal display directly connected to the machine guidance device 50 is used as the display device D3.
 記憶装置D4は、各種情報を記憶するための装置である。本実施形態では、記憶装置D4として、半導体メモリ等の不揮発性記憶媒体が用いられる。記憶装置D4は、マシンガイダンス装置50等が出力する各種情報を記憶する。 The storage device D4 is a device for storing various types of information. In the present embodiment, a non-volatile storage medium such as a semiconductor memory is used as the storage device D4. The storage device D4 stores various information output by the machine guidance device 50 and the like.
 ゲートロックレバーD5は、ショベルが誤って操作されるのを防止する機構である。本実施形態では、ゲートロックレバーD5は、キャビン10のドアと運転席との間に配置される。キャビン10から操作者が退出できないようにゲートロックレバーD5が引き上げられた場合に、各種操作装置は操作可能となる。一方、キャビン10から操作者が退出できるようにゲートロックレバーD5が押し下げられた場合には、各種操作装置は操作不能となる。 The gate lock lever D5 is a mechanism for preventing the shovel from being operated erroneously. In the present embodiment, the gate lock lever D5 is disposed between the door of the cabin 10 and the driver's seat. When the gate lock lever D5 is pulled up so that the operator can not leave the cabin 10, the various operating devices can be operated. On the other hand, when the gate lock lever D5 is pushed down so that the operator can leave the cabin 10, the various operating devices can not be operated.
 図2は、図1のショベルの駆動系の構成を示すブロック図である。図2において、機械的動力系は二重線、高圧油圧ラインは太実線、パイロットラインは破線、電気駆動・制御系は細実線でそれぞれ示される。 FIG. 2 is a block diagram showing a configuration of a drive system of the shovel of FIG. In FIG. 2, the mechanical power system is indicated by a double wire, the high pressure hydraulic line by a thick solid line, the pilot line by a broken line, and the electric drive and control system by a thin solid line.
 エンジン11はショベルの動力源である。本実施形態では、エンジン11は、エンジン負荷の増減にかかわらずエンジン回転数を一定に維持するアイソクロナス制御を採用したディーゼルエンジンである。エンジン11における燃料噴射量、燃料噴射タイミング、ブースト圧等は、エンジンコントローラD7により制御される。 The engine 11 is a power source of a shovel. In the present embodiment, the engine 11 is a diesel engine that adopts isochronous control that maintains the engine rotation speed constant regardless of the increase or decrease in the engine load. The fuel injection amount, the fuel injection timing, the boost pressure and the like in the engine 11 are controlled by the engine controller D7.
 エンジンコントローラD7はエンジン11を制御する装置である。本実施形態では、エンジンコントローラD7は、オートアイドル機能、オートアイドルストップ機能等の各種機能を実行する。 The engine controller D7 is a device that controls the engine 11. In the present embodiment, the engine controller D7 executes various functions such as an auto idle function and an auto idle stop function.
 オートアイドル機能は、所定の条件が満たされた場合にエンジン回転数を通常回転数(例えば2000rpm)からアイドル回転数(例えば800rpm)に低減させる機能である。本実施形態では、エンジンコントローラD7は、コントローラ30からのオートアイドル指令に応じてオートアイドル機能を作動させてエンジン回転数をアイドル回転数まで低減させる。 The auto idle function is a function to reduce the engine speed from a normal speed (for example, 2000 rpm) to an idle speed (for example, 800 rpm) when a predetermined condition is satisfied. In the present embodiment, the engine controller D7 operates the auto idle function in response to the auto idle command from the controller 30 to reduce the engine speed to the idle speed.
 オートアイドルストップ機能は、所定の条件が満たされた場合にエンジン11を停止させる機能である。本実施形態では、エンジンコントローラD7は、コントローラ30からのオートアイドルストップ指令に応じてオートアイドルストップ機能を作動させてエンジン11を停止させる。 The auto idle stop function is a function to stop the engine 11 when a predetermined condition is satisfied. In the present embodiment, the engine controller D7 operates the automatic idle stop function in response to the automatic idle stop command from the controller 30 to stop the engine 11.
 エンジン11には油圧ポンプとしてのメインポンプ14及びパイロットポンプ15が接続される。メインポンプ14には高圧油圧ライン16を介してコントロールバルブ17が接続される。 A main pump 14 as a hydraulic pump and a pilot pump 15 are connected to the engine 11. A control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
 コントロールバルブ17は、ショベルの油圧系の制御を行う油圧制御装置である。右側走行用油圧モータ1A、左側走行用油圧モータ1B、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、旋回用油圧モータ21、チルトバケットシリンダ64等の油圧アクチュエータは、高圧油圧ラインを介してコントロールバルブ17に接続される。 The control valve 17 is a hydraulic control device that controls the hydraulic system of the shovel. The hydraulic actuators such as the right side traveling hydraulic motor 1A, the left side traveling hydraulic motor 1B, the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the turning hydraulic motor 21 and the tilt bucket cylinder 64 are control valves via high pressure hydraulic lines Connected to 17
 パイロットポンプ15にはパイロットライン25及びゲートロック弁D6を介して操作装置26が接続される。また、パイロットポンプ15にはパイロットライン25A及び切換弁D8を介してコントロールバルブ17が接続される。操作装置26は、レバー26A、レバー26B、ペダル26C、自動チルトスイッチ26Dを含む。本実施形態では、操作装置26は、油圧ライン27を介してコントロールバルブ17に接続される。油圧ライン27には、コントローラ30により制御される減圧弁V1が設けられている。また、操作装置26は、油圧ライン28を介して圧力センサ29に接続される。 An operating device 26 is connected to the pilot pump 15 via a pilot line 25 and a gate lock valve D6. Further, a control valve 17 is connected to the pilot pump 15 via a pilot line 25A and a switching valve D8. The operating device 26 includes a lever 26A, a lever 26B, a pedal 26C, and an automatic tilt switch 26D. In the present embodiment, the operating device 26 is connected to the control valve 17 via the hydraulic line 27. The hydraulic pressure line 27 is provided with a pressure reducing valve V1 controlled by the controller 30. Also, the operating device 26 is connected to the pressure sensor 29 via the hydraulic line 28.
 ゲートロック弁D6は、パイロットポンプ15と操作装置26とを接続するパイロットライン25の連通・遮断を切り換える。本実施形態では、ゲートロック弁D6は、コントローラ30からの指令に応じてパイロットライン25の連通・遮断を切り換える電磁弁である。コントローラ30は、ゲートロックレバーD5が出力する状態信号に基づいてゲートロックレバーD5の状態を判定する。そして、コントローラ30は、ゲートロックレバーD5が引き上げられた状態にあると判定した場合に、ゲートロック弁D6に対して連通指令を出力する。連通指令を受けると、ゲートロック弁D6は開いてパイロットライン25を連通させる。その結果、操作装置26に対する操作者の操作が有効となる。一方、コントローラ30は、ゲートロックレバーD5が引き下げられた状態にあると判定した場合に、ゲートロック弁D6に対して遮断指令を出力する。遮断指令を受けると、ゲートロック弁D6は閉じてパイロットライン25を遮断する。その結果、操作装置26に対する操作者の操作が無効となる。 The gate lock valve D6 switches communication / blocking of the pilot line 25 connecting the pilot pump 15 and the controller 26. In the present embodiment, the gate lock valve D6 is an electromagnetic valve that switches communication / disconnection of the pilot line 25 according to a command from the controller 30. The controller 30 determines the state of the gate lock lever D5 based on the state signal output from the gate lock lever D5. Then, when it is determined that the gate lock lever D5 is in the state of being pulled up, the controller 30 outputs a communication command to the gate lock valve D6. When the communication command is received, the gate lock valve D6 opens to bring the pilot line 25 into communication. As a result, the operation of the operator on the operation device 26 is effective. On the other hand, when the controller 30 determines that the gate lock lever D5 is in the state of being pulled down, it outputs a shutoff command to the gate lock valve D6. When receiving the shutoff command, the gate lock valve D6 is closed to shut off the pilot line 25. As a result, the operation of the operator on the operation device 26 is invalidated.
 切換弁D8は、パイロットポンプ15とコントロールバルブ17とを接続するパイロットライン25Aの連通・遮断を切り換える。本実施形態では、切換弁D8は、コントローラ30からの指令に応じてパイロットライン25Aの連通・遮断を切り換える電磁比例弁である。コントローラ30は、後述のバケットチルト自動制御を開始する場合に切換弁D8に対して連通指令を出力する。連通指令を受けると、切換弁D8は開いてパイロットライン25Aを連通させてバケットチルト自動制御が行われるようにする。 The switching valve D8 switches communication / blocking of the pilot line 25A connecting the pilot pump 15 and the control valve 17. In the present embodiment, the switching valve D8 is an electromagnetic proportional valve that switches communication / disconnection of the pilot line 25A according to a command from the controller 30. The controller 30 outputs a communication command to the switching valve D8 when starting the bucket tilt automatic control described later. When the communication command is received, the switching valve D8 is opened to connect the pilot line 25A, and automatic bucket tilt control is performed.
 圧力センサ29は、操作装置26の操作に対応する圧力を検出する。圧力センサ29は、検出値をコントローラ30に対して出力する。 The pressure sensor 29 detects a pressure corresponding to the operation of the operating device 26. The pressure sensor 29 outputs a detected value to the controller 30.
 次に、図3を参照しながら、コントローラ30及びマシンガイダンス装置50に設けられた各種機能要素について説明する。図3は、コントローラ30及びマシンガイダンス装置50の構成を示す機能ブロック図である。 Next, various functional elements provided in the controller 30 and the machine guidance device 50 will be described with reference to FIG. FIG. 3 is a functional block diagram showing the configuration of the controller 30 and the machine guidance device 50. As shown in FIG.
 本実施形態では、コントローラ30は、ショベル全体の動作の制御に加えて、マシンガイダンス装置50によるガイダンスを行なうか否かを制御する。具体的には、コントローラ30は、ゲートロックレバーD5の状態と圧力センサ29からの検出信号等に基づいて、ショベルが休止中か否かを判定する。そして、コントローラ30は、ショベルが休止中であると判定したときは、マシンガイダンス装置50によるガイダンスを中止するように、マシンガイダンス装置50にガイダンス中止指令を送る。 In the present embodiment, the controller 30 controls whether or not to perform guidance by the machine guidance device 50 in addition to control of the operation of the entire shovel. Specifically, the controller 30 determines whether the shovel is at rest based on the state of the gate lock lever D5, the detection signal from the pressure sensor 29, and the like. Then, when it is determined that the shovel is at rest, the controller 30 sends a guidance cancellation instruction to the machine guidance device 50 so as to cancel the guidance by the machine guidance device 50.
 また、コントローラ30は、オートアイドルストップ指令をエンジンコントローラD7に対して出力する際に、ガイダンス中止指令をマシンガイダンス装置50に対して出力してもよい。あるいは、コントローラ30は、ゲートロックレバーD5が押し下げられた状態にあると判定した場合に、ガイダンス中止指令をマシンガイダンス装置50に対して出力してもよい。 In addition, the controller 30 may output a guidance stop command to the machine guidance device 50 when outputting an auto idle stop command to the engine controller D7. Alternatively, the controller 30 may output a guidance stop instruction to the machine guidance device 50 when it is determined that the gate lock lever D5 is in the depressed state.
 次に、マシンガイダンス装置50について説明する。本実施形態では、マシンガイダンス装置50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、バケットチルト角度センサS5、入力装置D1、及びコントローラ30から出力される各種信号及びやデータを受信する。マシンガイダンス装置50は、受信した信号及びデータに基づいてアタッチメント(例えば、バケット6)の実際の動作位置を算出する。そして、マシンガイダンス装置50は、アタッチメントの実際の動作位置が目標動作位置とは異なる場合に、音声出力装置D2及び表示装置D3に警報指令を送信し、警報を発令させる。マシンガイダンス装置50とコントローラ30とは、CAN(Controller Area Network)を通じて互いに通信可能に接続される。 Next, the machine guidance device 50 will be described. In the present embodiment, the machine guidance device 50 outputs various signals output from the boom angle sensor S1, the arm angle sensor S2, the bucket angle sensor S3, the body tilt sensor S4, the bucket tilt angle sensor S5, the input device D1, and the controller 30. And or receive data. The machine guidance device 50 calculates the actual operating position of the attachment (for example, the bucket 6) based on the received signals and data. Then, when the actual operating position of the attachment is different from the target operating position, the machine guidance device 50 transmits an alarm command to the voice output device D2 and the display device D3 to issue an alarm. The machine guidance device 50 and the controller 30 are communicably connected to each other through a CAN (Controller Area Network).
 マシンガイダンス装置50は、様々な機能を行なう機能部を含む。本実施形態では、マシンガイダンス装置50は、アタッチメントの動作を制御するための機能部として、高さ算出部510、比較部512、チルト角度制御部514、ガイダンスデータ出力部516、及びチルト制御開始線設定部518を含む。 The machine guidance device 50 includes functional units that perform various functions. In the present embodiment, the machine guidance device 50 functions as a functional unit for controlling the operation of the attachment, including a height calculation unit 510, a comparison unit 512, a tilt angle control unit 514, a guidance data output unit 516, and a tilt control start line. A setting unit 518 is included.
 高さ算出部510は、センサS1~S3の検出信号から算出されたブーム4、アーム5、バケット6の角度及びセンサS4の検出信号から算出された上部旋回体3の傾斜角度から、バケット6の先端(爪先)の高さを算出する。 The height calculator 510 calculates the angles of the boom 4, the arm 5 and the bucket 6 calculated from the detection signals of the sensors S 1 to S 3 and the inclination angle of the upper swing body 3 calculated from the detection signals of the sensor S 4. Calculate the height of the tip (toe).
 ガイダンスデータ出力部516は、上述のように、マシンガイダンス装置50の記憶装置に予め格納されていた掘削目標面に関するデータを含むガイダンスデータを読み込んでチルト制御開始線設定部518に対して出力する。この構成により、操作者は、入力装置D1を用いて掘削目標面を予め設定できる。 As described above, the guidance data output unit 516 reads the guidance data including the data on the drilling target surface stored in advance in the storage device of the machine guidance device 50, and outputs the guidance data to the tilt control start line setting unit 518. With this configuration, the operator can set an excavation target surface in advance using the input device D1.
 チルト制御開始線設定部518は、ガイダンスデータ内に掘削目標線から所定の距離の位置にチルト制御開始線を設定し、ガイダンスデータを比較部512に対して出力する。 The tilt control start line setting unit 518 sets a tilt control start line at a position at a predetermined distance from the excavation target line in the guidance data, and outputs the guidance data to the comparison unit 512.
 比較部512は、高さ算出部510が算出したバケット6の先端(爪先)の高さと、チルト制御開始線設定部518から出力されるガイダンスデータで示されるチルト制御開始線とを比較する。 The comparison unit 512 compares the height of the tip (tip) of the bucket 6 calculated by the height calculation unit 510 with the tilt control start line indicated by the guidance data output from the tilt control start line setting unit 518.
 チルト角度制御部514は、比較部512での比較結果に基づいて、バケット6の作業部位(例えば爪先)がチルト制御開始線より掘削目標線に近い位置にあるか(チルト制御開始線と掘削目標線との間に位置するか)否かを判断する。バケット6の作業部位がチルト制御開始線より掘削目標線に近い位置にあると判断された場合、チルト角度制御部514は、バケット6のチルト角度を制御してバケット6のバケット線(例えば爪先線)が掘削目標面に平行となるように調整する。なお、バケット線は、バケット6の作業部位が形成する線であり、例えば、刃先(作業部位の一例)の両端を結んだ爪先線、バケット背面(作業部位の一例)の縁に沿った背面線等を含む。すなわち、バケット線は、掘削目標面に接する作業部位の中の少なくとも2点を結んだ線分とされる。具体的には、チルト角度制御部514は、センサS1~S4の検出信号を用いて掘削目標面に対する現在のバケット6のチルト角度の角度偏差を算出し、算出した角度偏差を低減するように制御信号をコントローラ30へ送信する。これにより、コントローラ30はバケット6の爪先線が掘削目標面に平行になるように自動制御を行う。また、バケット6の爪先線の角度の算出には、センサS1~S4だけでなくGNSS装置等を用いてもよい。 The tilt angle control unit 514 determines whether the work site (for example, the toe) of the bucket 6 is closer to the digging target line than the tilt control start line based on the comparison result of the comparing unit 512 (tilt control start line and digging target It is determined whether or not it is located between the lines. If it is determined that the work site of the bucket 6 is closer to the digging target line than the tilt control start line, the tilt angle control unit 514 controls the tilt angle of the bucket 6 to ) To be parallel to the drilling target surface. In addition, a bucket line is a line which a work site of bucket 6 forms, for example, a toe line connecting both ends of a blade edge (an example of a work site), a back line along an edge of a bucket back (an example of a work site) Etc. That is, the bucket line is a line connecting at least two points in the work area in contact with the excavation target surface. Specifically, the tilt angle control unit 514 calculates the angle deviation of the tilt angle of the current bucket 6 with respect to the excavation target surface using the detection signals of the sensors S1 to S4, and performs control so as to reduce the calculated angle deviation. A signal is sent to the controller 30. Thereby, the controller 30 performs automatic control so that the toe line of the bucket 6 becomes parallel to the digging target surface. Further, not only the sensors S1 to S4, but also a GNSS device or the like may be used to calculate the angle of the toe line of the bucket 6.
 ここでは、アタッチメントの作業部位をバケット6の先端(爪先)とした例を説明したが、バケット6の任意の位置を作業部位としてもよい。例えば、バケット6の背面を用いて行われる作業の場合、バケット6の背面が作業部位とされてもよい。 Here, although the example which made the working site | part of an attachment the tip (toe) of the bucket 6 was demonstrated, it is good also considering the arbitrary positions of the bucket 6 as a working site | part. For example, in the case of work performed using the back surface of the bucket 6, the back surface of the bucket 6 may be used as a work site.
 次に、マシンガイダンス装置50によるバケットチルト自動制御について、図4を参照しながら説明する。図4は、本実施形態によるバケットチルト自動制御の一例を説明するための図である。 Next, bucket tilt automatic control by the machine guidance device 50 will be described with reference to FIG. FIG. 4 is a view for explaining an example of the bucket tilt automatic control according to the present embodiment.
 図4には、バケット6の爪先線を法面(傾斜面)に対して平行にする制御が示されている。図4において、掘削目標面を示す目標線TLから所定距離だけ離れた位置にバケットチルト自動制御を開始する基準となるチルト制御開始面を示すチルト制御開始線CLが示されている。なお、目標線TLは、バケット6の爪先線に対応する掘削目標面上の線である。チルト制御開始線CLは、上述の図3に示されたチルト制御開始線設定部518により、ガイダンスデータ中に設定される。 FIG. 4 shows control for making the toe line of the bucket 6 parallel to the slope (inclined surface). FIG. 4 shows a tilt control start line CL indicating a tilt control start surface serving as a reference for starting the bucket tilt automatic control at a position separated by a predetermined distance from the target line TL indicating the excavation target surface. The target line TL is a line on the excavation target surface corresponding to the toe line of the bucket 6. The tilt control start line CL is set in the guidance data by the tilt control start line setting unit 518 shown in FIG. 3 described above.
 本実施形態によるバケットチルト自動制御では、バケット6が掘削目標面(図4では目標線TLに相当)から遠い場合には、バケット6のチルト角度の自動制御は行なわれず、図4の点線で示すように、バケット6の爪先線6aは水平に維持される。バケット6が掘削目標面に近づいて、バケット6の爪先がチルト制御開始面(図4ではチルト制御開始線CL)に到達すると、バケット6のチルト角度の自動制御が開始される。チルト角度の自動制御が行なわれると、バケット6の爪先線6aが目標線TLに対して平行となるようにチルト角度が調整される。バケット6の爪先がチルト制御開始面(図4ではチルト制御開始線CL)に接したか否かの判定は、上述の比較部512で行なわれる。 In the bucket tilt automatic control according to the present embodiment, when the bucket 6 is far from the digging target surface (corresponding to the target line TL in FIG. 4), the tilt angle of the bucket 6 is not automatically controlled and is shown by a dotted line in FIG. Thus, the toe line 6a of the bucket 6 is maintained horizontal. When the bucket 6 approaches the digging target surface and the tip of the bucket 6 reaches the tilt control start surface (tilt control start line CL in FIG. 4), automatic control of the tilt angle of the bucket 6 is started. When automatic control of the tilt angle is performed, the tilt angle is adjusted so that the toe line 6a of the bucket 6 becomes parallel to the target line TL. Whether or not the toe of the bucket 6 is in contact with the tilt control start surface (the tilt control start line CL in FIG. 4) is determined by the comparison unit 512 described above.
 バケット6がチルト制御開始面(図4ではチルト制御開始線CL)から掘削目標面(図4では、目標線TL)までの間に位置している間は、コントローラ30からの信号により、バケット6の爪先線6aを掘削目標面に平行にするバケットチルト自動制御が継続して行なわれる。バケットチルト自動制御は、マシンガイダンス装置50が自動的に行なう制御であり、ショベルの操作者が手動でバケット6のチルト角度を調整するわけでは無い。したがって、ショベルの操作者は、掘削作業時にバケット6の爪先線6aの目標面に対する角度を自らが調整しなくても、バケット6の爪先線6aを正確に掘削目標面に合わせることができる。 While the bucket 6 is positioned between the tilt control start surface (the tilt control start line CL in FIG. 4) and the excavation target surface (the target line TL in FIG. 4), the bucket 6 is received by a signal from the controller 30. Automatic bucket tilt control is continuously performed to make the toe line 6a parallel to the digging target surface. The bucket tilt automatic control is a control automatically performed by the machine guidance device 50, and the operator of the shovel does not manually adjust the tilt angle of the bucket 6. Therefore, the operator of the shovel can accurately align the toe line 6a of the bucket 6 with the digging target surface without adjusting the angle of the toe line 6a of the bucket 6 relative to the target surface at the time of the digging operation.
 しかし、法面に対して作業を行う場合、操作者が旋回用のレバーを操作してしまうと、バケット6の爪先線6aが掘削目標面と平行ではなくなってしまう。ショベルが法面と斜めに交差する方向に向いている場合に、ブーム等を操作したときも、同様である。このため、バケット6の位置がチルト制御開始線CLより低い場合、操作者が旋回操作、またはブーム、アーム、バケットなどを操作しても、操作対象となる油圧アクチュエータの動作が制限され、バケット6の爪先線6aが掘削目標面との間の角度が所定の角度以下に維持される。具体的には、バケット6の爪先線6aが掘削目標面との間の角度が所定の角度を超えた場合、減圧弁V1によりパイロット圧が減圧される。これにより、旋回操作、またはブーム、アーム、バケットなどの操作の速度を制限することができる。 However, when working on the slope, if the operator operates the lever for turning, the toe line 6a of the bucket 6 will not be parallel to the digging target surface. The same applies to the case where the boom or the like is operated when the shovel is directed in a direction obliquely intersecting the slope. Therefore, when the position of the bucket 6 is lower than the tilt control start line CL, the operation of the hydraulic actuator to be operated is restricted even if the operator operates the swing operation or the boom, arm, bucket, etc. The angle between the toe line 6a and the drilling target surface is maintained at a predetermined angle or less. Specifically, when the angle between the toe line 6a of the bucket 6 and the digging target surface exceeds a predetermined angle, the pilot pressure is reduced by the pressure reducing valve V1. Thereby, it is possible to limit the speed of the turning operation or the operation of the boom, the arm, the bucket and the like.
 掘削動作が終了して、バケット6の爪先がチルト制御開始面(チルト制御開始線CL)より外側(図4の上側)に移動すると、バケットチルト自動制御は解除され(無効とされ)、図4の点線で示すように、バケット6の爪先線6aが水平とされる。これにより、例えばバケット6で土砂をすくい上げたときには、バケット6から土砂がこぼれ落ちないようにしている。解除後のバケット6のチルト角度は、作業内容等により予め決められている。また、この制御を達成するには、例えば、バケット6が地表面に差し込まれたとき、或いは、バケット6で土砂をすくうときのバケット6,アーム5,又はブーム4に加わる負荷を監視し、この負荷が所定値より低くなった時点で、バケット6の爪先線6aを水平にしてもよい。このように、検出された負荷に応じて、バケットチルト自動制御が解除され(無効とされ)、図4の点線で示すように、バケット6の爪先線6aが水平とされるようにしてもよい。 When the digging operation is finished and the toe of the bucket 6 moves to the outside (upper side in FIG. 4) than the tilt control start surface (tilt control start line CL), the bucket tilt automatic control is released (disabled), The toe line 6a of the bucket 6 is horizontal as indicated by the dotted line in FIG. Thereby, when the soil is scooped up with the bucket 6, for example, the soil is prevented from spilling out of the bucket 6. The tilt angle of the bucket 6 after cancellation is determined in advance by the work content and the like. Also, in order to achieve this control, for example, the load applied to the bucket 6, the arm 5, or the boom 4 when the bucket 6 is inserted into the ground surface or when the soil is scooped by the bucket 6 is monitored. When the load is lower than a predetermined value, the toe line 6a of the bucket 6 may be leveled. Thus, according to the detected load, the bucket tilt automatic control may be canceled (disabled), and the toe line 6a of the bucket 6 may be made horizontal as shown by the dotted line in FIG. .
 加速度センサをバケットチルト角度センサS5として用いれば、バケットチルト角度センサS5の検出信号のみから、バケット6の爪先線6aが水平であるか否かを判定することができる。バケットチルト角度センサS5として、ロータリエンコーダ等の他の角度センサ等を用いた場合には、上述のセンサS1~S4からの出力信号に基づいて、バケット6の爪先線6aの角度を求めることで、爪先線6aが水平であるか否かを判定することができる。 If the acceleration sensor is used as the bucket tilt angle sensor S5, it can be determined whether the toe line 6a of the bucket 6 is horizontal only from the detection signal of the bucket tilt angle sensor S5. When another angle sensor such as a rotary encoder is used as the bucket tilt angle sensor S5, the angle of the toe line 6a of the bucket 6 is obtained based on the output signals from the above-described sensors S1 to S4. It can be determined whether toe line 6a is horizontal or not.
 なお、本実施形態によるバケットチルト自動制御は、ショベルの操作者がバケットチルト角度を自動的に調整して欲しいときに行なえばよい。そのため、図2に示すように、レバー26A、26B等の先端にバケットチルト自動制御のON、OFFを入力するための自動チルトスイッチ26Dを取り付けておき、バケットチルト自動制御を実行したい間だけ、自動チルトスイッチ26DをONにしておくこととしてもよい。すなわち、操作者からの指令があるときにのみ、切換弁D8に対して連通指令を出力させてバケットチルト自動制御を有効にしてもよい。なお、自動チルトスイッチ26Dは、ペダル26Cに取り付けられていてもよい。 The bucket tilt automatic control according to the present embodiment may be performed when the operator of the shovel wants to automatically adjust the bucket tilt angle. Therefore, as shown in FIG. 2, an automatic tilt switch 26D for inputting ON / OFF of the bucket tilt automatic control is attached to the tip of the lever 26A, 26B etc., and only while executing the bucket tilt automatic control The tilt switch 26D may be turned on. That is, only when there is a command from the operator, the communication command may be output to the switching valve D8 to enable automatic bucket tilt control. The automatic tilt switch 26D may be attached to the pedal 26C.
 また、チルト制御開始線CLを、バケット6の爪先線6aを目標線TLに平行にするバケットチルト自動制御の開始基準としたが、これに限定されるものではない。例えば、バケット6が地表面(図4では地表線GL)に接した時点で、バケット6の爪先線6aを目標線TLに平行にしてもよい。 In addition, although the tilt control start line CL is used as the start reference of the bucket tilt automatic control in which the toe line 6a of the bucket 6 is parallel to the target line TL, the present invention is not limited thereto. For example, when the bucket 6 comes in contact with the ground surface (ground line GL in FIG. 4), the toe line 6a of the bucket 6 may be parallel to the target line TL.
 本実施形態によるバケットチルト自動制御はマシンガイダンス装置50により実行されるものとして説明したが、必ずしもマシンガイダンス装置50が行なう必要は無い。例えば、目標線TLを含むガイダンスデータを用いることができるのであれば、コントローラ30や他の制御装置が行なうこととしてもよい。 Although the bucket tilt automatic control according to the present embodiment has been described as being executed by the machine guidance device 50, the machine guidance device 50 does not necessarily have to perform it. For example, if guidance data including the target line TL can be used, the controller 30 or another control device may perform it.
 図5Aおよび図5Bはバケットによる掘削作業例を説明する図である。図5Aは上述の本実施形態によるバケットチルト自動制御を有効とするのが好ましい掘削作業例を示す。図5Bは本実施形態によるバケットチルト自動制御を無効とした場合に行なわれる掘削作業例を示す。 5A and 5B are diagrams for explaining an example of the digging operation by the bucket. FIG. 5A shows an example of a digging operation which is preferable to enable the bucket tilt automatic control according to the above-described embodiment. FIG. 5B shows an example of the digging operation performed when the bucket tilt automatic control according to the present embodiment is invalidated.
 図5Aにおいて、バケット6で掘削する面は法面であり、バケット6を法面に沿って直線的にではなく、法面の横方向にも移動するように上部旋回体3を旋回させながらバケット6を移動して法面を掘削する。このような掘削作業では、バケット6が点線で示された位置にあるときは、バケット6の爪先線6aは法面に対して平行であるが、ショベルを旋回すると、バケット6の爪先線6aは法面に対して傾いてくる(この傾きは、紙面に垂直な方向の傾きなので、図5Aには示されない)。したがって、目標面に対するバケット6のチルト角度の角度偏差が大きくなってしまう。 In FIG. 5A, the surface to be excavated by the bucket 6 is a slope, and the bucket is turned while the upper swing body 3 is pivoted so as to move the bucket 6 not only linearly along the slope but also in the lateral direction of the slope. Move 6 to dig the slope. In such an excavation operation, when the bucket 6 is in the position shown by the dotted line, the toe line 6a of the bucket 6 is parallel to the slope, but when the shovel is turned, the toe line 6a of the bucket 6 Inclination to the slope (this inclination is not shown in FIG. 5A because it is the inclination in the direction perpendicular to the paper surface). Therefore, the angular deviation of the tilt angle of the bucket 6 with respect to the target surface becomes large.
 そこで、本実施形態によるバケットチルト自動制御を有効にしておけば、操作者はブーム4及びアーム5を操作してバケット6を移動させるだけで、バケット6の爪先線6aは自動的に法面に平行になるように調整される。したがって、バケット6の爪先線6aが常に法面に平行になりながら掘削が行なわれ、掘削面全体が法面に平行な面となる。 Therefore, if the bucket tilt automatic control according to the present embodiment is made effective, the operator simply moves the bucket 6 by operating the boom 4 and the arm 5, and the toe line 6a of the bucket 6 is automatically set on the slope. Adjusted to be parallel. Therefore, excavation is performed while the toe line 6a of the bucket 6 is always parallel to the slope, and the entire excavated surface becomes a plane parallel to the slope.
 一方、本実施形態によるバケットチルト自動制御を無効にして同様の掘削作業を行なうには、操作者はバケット6のチルト角度を調整しながらブーム4及びアーム5を操作してバケット6を移動させなければならない。しかし、法面に対するバケット6のチルト(傾斜)を判断して調整するのは難しい。そこで、例えば、図5Bに示すように、操作者は、アーム5とブーム4の操作だけで掘削動作を行い、その後、上部旋回体3を旋回させることなく、ショベル自体を僅かに横に移動してからまた次の掘削動作を行う。このようにすれば、操作者がチルト角度を調節しなくとも掘削を行くおことができるが、ショベル自体を移動しながら掘削作業を行うのは面倒である。これに対して、本実施形態によるバケットチルト自動制御を有効にしておけば、ショベルを移動せずに、法面の掘削作業を精度よく行うことができる。また、障害物OB1等によりショベル自体を適切な作業場所へ移動できない場合であっても(図5A参照。)、本実施形態によるバケットチルト自動制御を有効にしておけば、上部旋回体3を旋回させながらバケット6のチルト角度を自動的に調整し、バケット6の爪先線6aを目標線に平行にすることができる。 On the other hand, in order to invalidate the bucket tilt automatic control according to the present embodiment and perform the same digging operation, the operator must operate the boom 4 and the arm 5 to move the bucket 6 while adjusting the tilt angle of the bucket 6. You must. However, it is difficult to determine and adjust the tilt of the bucket 6 with respect to the slope. Therefore, for example, as shown in FIG. 5B, the operator performs the digging operation only by operating the arm 5 and the boom 4, and then slightly moves the shovel itself sideways without turning the upper swing body 3. After that, perform the next digging operation again. In this way, the operator can go digging without adjusting the tilt angle, but it is troublesome to carry out the digging operation while moving the shovel itself. On the other hand, if automatic bucket tilt control according to the present embodiment is made effective, excavation work on the slope can be performed accurately without moving the shovel. In addition, even when the shovel itself can not be moved to an appropriate work place due to the obstacle OB1 or the like (see FIG. 5A), if the bucket tilt automatic control according to the present embodiment is enabled, the upper swing body 3 is turned The tilt angle of the bucket 6 can be automatically adjusted while causing the toe line 6a of the bucket 6 to be parallel to the target line.
 以上のように、本実施形態によるバケットチルト自動制御を有効として、掘削作業を行なうことにより、バケット6の爪先線6aを常に掘削目標面に平行にしておくことができ、法面の掘削作業を容易に且つ正確に行なうことができる。 As described above, it is possible to always keep the toe line 6a of the bucket 6 parallel to the target surface for digging by performing the digging operation with the automatic bucket tilt control according to the present embodiment being effective. It can be done easily and accurately.
 本国際特許出願は2015年3月27日に出願した日本国特許出願第2015-067684号に基づきその優先権を主張するものであり、日本国特許出願第2015-067684号の全内容を本願に援用する。 This international patent application claims its priority based on Japanese Patent Application No. 2015-067684 filed on March 27, 2015, and the entire contents of Japanese Patent Application No. 2015-067684 are hereby incorporated by reference. I will use it.
 1  下部走行体
 2  旋回機構
 3  上部旋回体
 4  ブーム
 5  アーム
 6  バケット
 7  ブームシリンダ
 8  アームシリンダ
 9  バケットシリンダ
 10  キャビン
 11  エンジン
 14  メインポンプ
 15  パイロットポンプ
 16  高圧油圧ライン
 17  コントロールバルブ
 26  操作装置
 29  圧力センサ
 30  コントローラ
 50  マシンガイダンス装置
 510  高さ算出部
 512  比較部
 514  チルト角度制御部
 516  ガイダンスデータ出力部
 518  チルト制御開始線設定部
 S1  ブーム角度センサ
 S2  アーム角度センサ
 S3  バケット角度センサ
 S4  機体傾斜センサ
 S5  バケットチルト角度センサ
 D1  入力装置
 D2  音声出力装置
 D3  表示装置
 D4  記憶装置
 D5  ゲートロックレバー
 D6  ゲートロック弁
 D7  エンジンコントローラ
 D8  切換弁
DESCRIPTION OF SYMBOLS 1 lower traveling body 2 swing mechanism 3 upper revolving body 4 boom 5 arm 6 bucket 7 boom cylinder 8 arm cylinder 9 bucket cylinder 10 cabin 11 engine 14 main pump 15 pilot pump 16 high pressure hydraulic line 17 control valve 26 operation device 29 pressure sensor 30 Controller 50 Machine guidance device 510 Height calculation unit 512 Comparison unit 514 Tilt angle control unit 516 Guidance data output unit 518 Tilt control start line setting unit S1 Boom angle sensor S2 Arm angle sensor S3 Bucket angle sensor S4 Vehicle inclination sensor S5 Bucket tilt angle Sensor D1 Input device D2 Audio output device D3 Display device D4 Storage device D5 Gate lock lever D6 Gate lock valve D7 Engine Controller D8 switching valve

Claims (9)

  1.  旋回体に回動可能に取り付けられたブームに回動可能に取り付けられたアームと、
     該アームに回動可能に取り付けられたバケットと、
     該バケットを前記アームに対してチルト可能に支持するチルト機構と、
     前記バケットのチルト角度を検出するバケットチルト角度センサと、
     前記チルト角度の調整を制御するチルト角度制御部と、
     を有し、
     前記チルト角度制御部は、前記バケットのバケット線が掘削目標面に対して平行になるように、前記チルト角度を自動制御で調整する、ショベル。
    An arm pivotally attached to a boom pivotally attached to the pivoting body;
    A bucket rotatably mounted on the arm;
    A tilt mechanism for tiltably supporting the bucket with respect to the arm;
    A bucket tilt angle sensor that detects a tilt angle of the bucket;
    A tilt angle control unit that controls the adjustment of the tilt angle;
    Have
    The shovel, wherein the tilt angle control unit automatically adjusts the tilt angle so that a bucket line of the bucket is parallel to a digging target surface.
  2.  請求項1に記載のショベルであって、
     前記掘削目標面は作業者が予め設定可能である、ショベル。
    A shovel according to claim 1, wherein
    The shovel, wherein the digging target surface can be preset by an operator.
  3.  請求項1に記載のショベルであって、
     前記バケット線は、前記バケットの作業部位の少なくとも2点を結んだ線である、ショベル。
    A shovel according to claim 1, wherein
    The shovel is a line connecting at least two points of a working site of the bucket.
  4.  請求項1乃至3のいずれかに記載のショベルであって、
     前記チルト角度の自動制御は、操作者からの指令があるときにのみ有効とされる、ショベル。
    The shovel according to any one of claims 1 to 3, wherein
    Automatic control of the tilt angle is effective only when there is a command from the operator.
  5.  請求項4に記載のショベルであって、
     前記指令は、操作装置に取り付けたスイッチにより行われる、ショベル。
    It is a shovel of Claim 4, Comprising:
    The said instruction | command is performed by the switch attached to the operating device, The shovel.
  6.  請求項1乃至5の何れかに記載のショベルであって、
     前記バケットの作業部位の位置が前記掘削目標面から所定距離以上離れている場合、前記チルト角度の自動制御は無効とされる、ショベル。
    The shovel according to any one of claims 1 to 5, wherein
    The shovel, wherein the automatic control of the tilt angle is invalidated when the position of the work site of the bucket is separated from the excavation target surface by a predetermined distance or more.
  7.  請求項1乃至6のいずれかに記載のショベルであって、
     前記バケットの作業部位の位置が前記掘削目標面から所定距離以内の場合、前記旋回体、前記ブーム、前記アームおよび前記バケットのそれぞれに対応する油圧アクチュエータのいずれか操作されたとき、前記バケット線と、前記掘削目標面との角度が所定の角度以下となるように、前記操作された油圧アクチュエータの動作が制限される、ショベル。
    The shovel according to any one of claims 1 to 6, wherein
    When the position of the work site of the bucket is within a predetermined distance from the excavation target surface, the bucket line and the hydraulic actuator corresponding to each of the swing body, the boom, the arm, and the bucket are operated. The shovel, wherein the operation of the operated hydraulic actuator is restricted such that the angle with the excavation target surface is equal to or less than a predetermined angle.
  8.  請求項1乃至7の何れかに記載のショベルであって、
     前記バケットに加わる負荷を検出し、検出された負荷を表す値が所定値未満である場合、前記チルト角度の自動制御は無効とされる、ショベル。
    The shovel according to any one of claims 1 to 7, wherein
    The shovel, wherein the load applied to the bucket is detected, and the automatic control of the tilt angle is invalidated when the value representing the detected load is less than a predetermined value.
  9.  請求項6乃至8のいずれかに記載のショベルであって、
     前記チルト角度の自動制御が無効とされた際に前記バケット線を水平にする、ショベル。
    A shovel according to any one of claims 6 to 8, wherein
    A shovel which makes the bucket line horizontal when automatic control of the tilt angle is invalidated.
PCT/JP2016/059684 2015-03-27 2016-03-25 Shovel WO2016158779A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680019035.7A CN107407065A (en) 2015-03-27 2016-03-25 Excavator
JP2017509920A JP6591531B2 (en) 2015-03-27 2016-03-25 Excavator
EP16772660.3A EP3276088B1 (en) 2015-03-27 2016-03-25 Shovel
EP22162150.1A EP4043643A1 (en) 2015-03-27 2016-03-25 Shovel
KR1020177028096A KR102488448B1 (en) 2015-03-27 2016-03-25 shovel
US15/715,609 US11015319B2 (en) 2015-03-27 2017-09-26 Vehicle shovel
US17/328,149 US20210277624A1 (en) 2015-03-27 2021-05-24 Shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067684 2015-03-27
JP2015067684 2015-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/715,609 Continuation US11015319B2 (en) 2015-03-27 2017-09-26 Vehicle shovel

Publications (1)

Publication Number Publication Date
WO2016158779A1 true WO2016158779A1 (en) 2016-10-06

Family

ID=57004666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059684 WO2016158779A1 (en) 2015-03-27 2016-03-25 Shovel

Country Status (6)

Country Link
US (2) US11015319B2 (en)
EP (2) EP3276088B1 (en)
JP (2) JP6591531B2 (en)
KR (1) KR102488448B1 (en)
CN (1) CN107407065A (en)
WO (1) WO2016158779A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035644A (en) * 2016-09-02 2018-03-08 コベルコ建機株式会社 Work machine
CN108291383A (en) * 2016-11-09 2018-07-17 株式会社小松制作所 Working truck and control method
KR20190002592A (en) * 2016-11-30 2019-01-08 가부시키가이샤 고마쓰 세이사쿠쇼 Machine controls and working machines
JP2019173558A (en) * 2015-03-27 2019-10-10 住友建機株式会社 Shovel
KR20200051572A (en) * 2017-09-08 2020-05-13 스미도모쥬기가이고교 가부시키가이샤 Shovel
WO2020158235A1 (en) * 2019-02-01 2020-08-06 株式会社小松製作所 Construction equipment control system, construction equipment, and construction equipment control method
JP2020153200A (en) * 2019-03-22 2020-09-24 日立建機株式会社 Work machine
US10975545B2 (en) 2016-11-30 2021-04-13 Komatsu Ltd. Work equipment control device and work machine
WO2021106905A1 (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and method for controlling work machine
WO2021106938A1 (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Working machine control system, working machine, and working machine control method
WO2021171767A1 (en) * 2020-02-28 2021-09-02 日立建機株式会社 Work machine
EP3730699A4 (en) * 2017-12-22 2021-11-03 Hitachi Construction Machinery Co., Ltd. Work machine
WO2023038000A1 (en) * 2021-09-10 2023-03-16 株式会社小松製作所 Control device, work machine, control method, and control system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086488A1 (en) * 2016-11-29 2017-05-26 株式会社小松製作所 Control device for construction equipment and control method for construction equipment
CN110268119B (en) * 2017-02-22 2022-04-15 住友建机株式会社 Excavator
JP7315333B2 (en) * 2019-01-31 2023-07-26 株式会社小松製作所 CONSTRUCTION MACHINE CONTROL SYSTEM AND CONSTRUCTION MACHINE CONTROL METHOD
US11124942B2 (en) * 2019-05-03 2021-09-21 Caterpillar Inc. System for controlling the position of a work implement
CN110235543A (en) * 2019-06-05 2019-09-17 黑龙江八一农垦大学 A kind of leveling machine for farmland control system based on double antenna GNSS, level land unit and control method
JP7412918B2 (en) * 2019-08-01 2024-01-15 住友重機械工業株式会社 excavator
JP7263287B2 (en) * 2020-03-26 2023-04-24 日立建機株式会社 working machine
JP2021155980A (en) * 2020-03-26 2021-10-07 株式会社小松製作所 Work machine and control method of work machine
JP7455632B2 (en) 2020-03-30 2024-03-26 住友重機械工業株式会社 Excavators and shovel management devices
CN111501867A (en) * 2020-05-09 2020-08-07 三一重机有限公司 Excavator cutting angle optimization control system and method and excavator
CN111962586A (en) * 2020-09-18 2020-11-20 上海三一重机股份有限公司 One-key homing system and method for excavator
JP2023051204A (en) * 2021-09-30 2023-04-11 株式会社小松製作所 System for controlling working machine, a method, and a program
WO2024034660A1 (en) * 2022-08-11 2024-02-15 日本精機株式会社 Work assistance system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544402A (en) * 1977-06-10 1979-01-13 Komatsu Mfg Co Ltd Automatic excavation controller
JP2002030690A (en) * 2000-07-18 2002-01-31 Yanmar Diesel Engine Co Ltd Excavator with attachment horizontal mechanism
JP2014074319A (en) * 2012-10-05 2014-04-24 Komatsu Ltd Display system of excavator, excavator and computer program for display of excavator
WO2014192475A1 (en) * 2014-04-24 2014-12-04 株式会社小松製作所 Work vehicle

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552437A (en) * 1978-10-06 1980-04-16 Komatsu Ltd Working instrument controller
GB8330052D0 (en) * 1983-11-10 1983-12-14 Priestman Bros Ltd Excavator bucket and knuckle assembly
JPS63236827A (en) * 1987-03-23 1988-10-03 Kobe Steel Ltd Controller for excavator
US4888890A (en) * 1988-11-14 1989-12-26 Spectra-Physics, Inc. Laser control of excavating machine digging depth
WO1998036131A1 (en) * 1997-02-13 1998-08-20 Hitachi Construction Machinery Co., Ltd. Slope excavation controller of hydraulic shovel, target slope setting device and slope excavation forming method
JP4262328B2 (en) * 1998-07-27 2009-05-13 株式会社加藤製作所 How to automatically adjust the detector
CN1133782C (en) * 1999-10-01 2004-01-07 日立建机株式会社 Target excavation surface setting device for excavation machine, recording medium therefor and display unit
KR100498853B1 (en) * 2000-11-17 2005-07-04 히다치 겡키 가부시키 가이샤 Display device and display controller of construction machinery
US7532967B2 (en) * 2002-09-17 2009-05-12 Hitachi Construction Machinery Co., Ltd. Excavation teaching apparatus for construction machine
CN1748062A (en) * 2003-02-26 2006-03-15 新卡特彼勒三菱株式会社 Arm angle sensor device in construction machine
EP1650357B1 (en) * 2003-07-30 2016-11-16 Komatsu Ltd. Working machine
SE532563C2 (en) * 2005-01-31 2010-02-23 Komatsu Mfg Co Ltd Work machine where the work tool is interchangeable between a bucket and a fork
CA2503171A1 (en) * 2005-04-19 2006-10-19 Stephen T. Schmidt Sidewalk grader apparatus and method
US20100254793A1 (en) * 2007-06-15 2010-10-07 Boris Trifunovic Electronic Anti-Spill
KR100967214B1 (en) * 2007-12-12 2010-07-07 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Leveling control system and method for industrial equipment
US7949449B2 (en) * 2007-12-19 2011-05-24 Caterpillar Inc. Constant work tool angle control
US7810260B2 (en) * 2007-12-21 2010-10-12 Caterpillar Trimble Control Technologies Llc Control system for tool coupling
JP5548306B2 (en) * 2011-03-24 2014-07-16 株式会社小松製作所 Work machine control system, construction machine, and work machine control method
DE112012001013B4 (en) * 2011-03-24 2019-01-03 Komatsu Ltd. Excavation control system and construction machine
JP5328830B2 (en) * 2011-03-24 2013-10-30 株式会社小松製作所 Hydraulic excavator calibration apparatus and hydraulic excavator calibration method
US9020709B2 (en) * 2011-03-24 2015-04-28 Komatsu Ltd. Excavation control system
JP5707313B2 (en) * 2011-12-19 2015-04-30 日立建機株式会社 Work vehicle
CN102535556B (en) * 2012-01-09 2014-11-19 三一重工股份有限公司 Excavator, and system and method for improving dynamic response characteristics of excavator
JP6025372B2 (en) 2012-04-11 2016-11-16 株式会社小松製作所 Excavator excavation control system and excavation control method
EP2860315A4 (en) * 2012-06-08 2016-01-06 Sumitomo Heavy Industries Excavator control method and control device
JP5228132B1 (en) * 2012-09-12 2013-07-03 株式会社小松製作所 Wheel loader
DE112012006937T5 (en) * 2012-09-25 2015-06-11 Volvo Construction Equipment Ab Automatic grading system for construction machinery and method for controlling the same
US9097344B2 (en) * 2012-09-28 2015-08-04 Caterpillar Inc. Automatic shift control system for a powertrain and method
US8914199B2 (en) * 2012-10-05 2014-12-16 Komatsu Ltd. Excavating machine display system and excavating machine
US8965642B2 (en) * 2012-10-05 2015-02-24 Komatsu Ltd. Display system of excavating machine and excavating machine
CN104981570B (en) * 2012-12-12 2017-10-03 维米尔制造公司 System and method for the abrasion of the fragmentation element of sensing material fragmentation machinery
CN102995679B (en) * 2012-12-17 2015-10-07 潍柴动力股份有限公司 A kind of excavator method of controlling operation, Apparatus and system
EP2853641B1 (en) * 2013-07-12 2017-06-14 Komatsu Ltd. Work vehicle and method for controlling work vehicle
JP6193072B2 (en) 2013-09-27 2017-09-06 三洋化成工業株式会社 Method for producing rigid polyurethane foam
US9238899B2 (en) * 2014-03-27 2016-01-19 Kubota Corporation Front loader
US9458598B2 (en) * 2014-04-24 2016-10-04 Komatsu Ltd. Work vehicle
DE112014000077B4 (en) * 2014-06-02 2018-04-05 Komatsu Ltd. Control system for a construction machine, construction machine and method for controlling a construction machine
US20170121930A1 (en) * 2014-06-02 2017-05-04 Komatsu Ltd. Construction machine control system, construction machine, and method of controlling construction machine
DE112015000035B4 (en) * 2014-06-04 2019-01-10 Komatsu Ltd. Construction machine control system, construction machine and construction machine control method
WO2015129930A1 (en) * 2014-06-04 2015-09-03 株式会社小松製作所 Construction machine control system, construction machine, and construction machine control method
CN104619920B (en) * 2014-09-10 2016-09-28 株式会社小松制作所 Working truck
US9617709B2 (en) * 2015-02-02 2017-04-11 Komatsu Ltd. Work vehicle and method of controlling work vehicle
US20160273196A1 (en) * 2015-03-18 2016-09-22 Benjamin Jesse Funk Automatic leveling control system
EP3276088B1 (en) * 2015-03-27 2022-05-11 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
JP6480830B2 (en) * 2015-08-24 2019-03-13 株式会社小松製作所 Wheel loader control system, control method therefor, and wheel loader control method
JP6096988B2 (en) * 2016-03-29 2017-03-15 株式会社小松製作所 Work machine control device, work machine, and work machine control method
US10138618B2 (en) * 2016-09-30 2018-11-27 Caterpillar Trimble Control Technologies Llc Excavator boom and excavating implement automatic state logic
JP7402026B2 (en) * 2019-11-27 2023-12-20 株式会社小松製作所 Work machine control system, work machine, work machine control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544402A (en) * 1977-06-10 1979-01-13 Komatsu Mfg Co Ltd Automatic excavation controller
JP2002030690A (en) * 2000-07-18 2002-01-31 Yanmar Diesel Engine Co Ltd Excavator with attachment horizontal mechanism
JP2014074319A (en) * 2012-10-05 2014-04-24 Komatsu Ltd Display system of excavator, excavator and computer program for display of excavator
WO2014192475A1 (en) * 2014-04-24 2014-12-04 株式会社小松製作所 Work vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276088A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173558A (en) * 2015-03-27 2019-10-10 住友建機株式会社 Shovel
US11015319B2 (en) 2015-03-27 2021-05-25 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Vehicle shovel
US20210277624A1 (en) * 2015-03-27 2021-09-09 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Shovel
JP2018035644A (en) * 2016-09-02 2018-03-08 コベルコ建機株式会社 Work machine
CN108291383A (en) * 2016-11-09 2018-07-17 株式会社小松制作所 Working truck and control method
CN108291383B (en) * 2016-11-09 2020-11-27 株式会社小松制作所 Work vehicle and control method
KR102166900B1 (en) 2016-11-30 2020-10-16 가부시키가이샤 고마쓰 세이사쿠쇼 Work machine control device and working machine
US10975545B2 (en) 2016-11-30 2021-04-13 Komatsu Ltd. Work equipment control device and work machine
KR20190002592A (en) * 2016-11-30 2019-01-08 가부시키가이샤 고마쓰 세이사쿠쇼 Machine controls and working machines
KR102522711B1 (en) 2017-09-08 2023-04-14 스미도모쥬기가이고교 가부시키가이샤 shovel
KR20200051572A (en) * 2017-09-08 2020-05-13 스미도모쥬기가이고교 가부시키가이샤 Shovel
EP3730699A4 (en) * 2017-12-22 2021-11-03 Hitachi Construction Machinery Co., Ltd. Work machine
JP2020125599A (en) * 2019-02-01 2020-08-20 株式会社小松製作所 Control system of construction machine, construction machine, and control method of construction machine
WO2020158235A1 (en) * 2019-02-01 2020-08-06 株式会社小松製作所 Construction equipment control system, construction equipment, and construction equipment control method
JP7197392B2 (en) 2019-02-01 2022-12-27 株式会社小松製作所 CONSTRUCTION MACHINE CONTROL SYSTEM, CONSTRUCTION MACHINE, AND CONSTRUCTION MACHINE CONTROL METHOD
CN113383130B (en) * 2019-02-01 2022-07-01 株式会社小松制作所 Control system for construction machine, and control method for construction machine
CN113383130A (en) * 2019-02-01 2021-09-10 株式会社小松制作所 Control system for construction machine, and control method for construction machine
WO2020195262A1 (en) 2019-03-22 2020-10-01 日立建機株式会社 Work machine
JP2020153200A (en) * 2019-03-22 2020-09-24 日立建機株式会社 Work machine
KR20210099139A (en) 2019-03-22 2021-08-11 히다찌 겐끼 가부시키가이샤 working machine
JP7227046B2 (en) 2019-03-22 2023-02-21 日立建機株式会社 working machine
JP2021085216A (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and work machine control method
JP7402026B2 (en) 2019-11-27 2023-12-20 株式会社小松製作所 Work machine control system, work machine, work machine control method
JP2021085213A (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and work machine control method
KR20220086671A (en) 2019-11-27 2022-06-23 가부시키가이샤 고마쓰 세이사쿠쇼 Control system of working machine, working machine, control method of working machine
WO2021106938A1 (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Working machine control system, working machine, and working machine control method
WO2021106905A1 (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and method for controlling work machine
JP7396875B2 (en) 2019-11-27 2023-12-12 株式会社小松製作所 Work machine control system, work machine, and work machine control method
JP2021134631A (en) * 2020-02-28 2021-09-13 日立建機株式会社 Work machine
JP7328918B2 (en) 2020-02-28 2023-08-17 日立建機株式会社 working machine
WO2021171767A1 (en) * 2020-02-28 2021-09-02 日立建機株式会社 Work machine
WO2023038000A1 (en) * 2021-09-10 2023-03-16 株式会社小松製作所 Control device, work machine, control method, and control system

Also Published As

Publication number Publication date
CN107407065A (en) 2017-11-28
US11015319B2 (en) 2021-05-25
KR102488448B1 (en) 2023-01-12
KR20170131484A (en) 2017-11-29
EP3276088A4 (en) 2018-03-28
JPWO2016158779A1 (en) 2018-01-18
EP4043643A1 (en) 2022-08-17
US20210277624A1 (en) 2021-09-09
EP3276088A1 (en) 2018-01-31
JP6915000B2 (en) 2021-08-04
JP6591531B2 (en) 2019-10-16
EP3276088B1 (en) 2022-05-11
US20180016768A1 (en) 2018-01-18
JP2019173558A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6915000B2 (en) Excavator
JP7242462B2 (en) excavator and excavator display
EP2924176B1 (en) Front loader
WO2014184978A1 (en) Utility vehicle
CN106715803B (en) Excavator
JP6860329B2 (en) Work machine
JP3929039B2 (en) Swing control device for swing hydraulic excavator
JP6845614B2 (en) Control method and motor grader
JP6513787B2 (en) Shovel
JP6721291B2 (en) Excavator
JPWO2019155843A1 (en) Excavator
JP2021025258A (en) Shovel
KR102378264B1 (en) working machine
WO2022085556A1 (en) Work machine
US20240011253A1 (en) Shovel and shovel control device
JP6819225B2 (en) Construction machinery
JP2015190147A (en) front loader
JP3781920B2 (en) Area-limited excavation control device for construction machinery
JP6901606B2 (en) Control method and motor grader
KR20240027120A (en) Control devices, working machines, control methods and control systems
JP5073330B2 (en) Working machine
JPH0794733B2 (en) Excavation control device for excavating machine
JPH059953A (en) Excavating working vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177028096

Country of ref document: KR

Kind code of ref document: A