WO2016158635A1 - Laminated glass plate - Google Patents

Laminated glass plate Download PDF

Info

Publication number
WO2016158635A1
WO2016158635A1 PCT/JP2016/059301 JP2016059301W WO2016158635A1 WO 2016158635 A1 WO2016158635 A1 WO 2016158635A1 JP 2016059301 W JP2016059301 W JP 2016059301W WO 2016158635 A1 WO2016158635 A1 WO 2016158635A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
film
laminated
retardation
transparent resin
Prior art date
Application number
PCT/JP2016/059301
Other languages
French (fr)
Japanese (ja)
Inventor
勝貴 中瀬
村田 浩一
山田 浩二
晴信 黒岩
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017509853A priority Critical patent/JP6763370B2/en
Publication of WO2016158635A1 publication Critical patent/WO2016158635A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • a laminated glass plate in which an oriented film, a transparent resin molded body, and a glass plate are laminated is disclosed.
  • Transparent resin moldings are excellent in physical impact resistance and light transmission, so window materials used in general buildings and high-rise buildings, lighting from roofs, frames and display cases, automobiles and trains It is widely used for window materials used for vehicles such as.
  • the transparent resin molded body is comparable to glass, which is an inorganic material, in terms of transparency and excellent daylighting properties, but is inferior to glass in terms of chemical resistance, weather resistance, and scratch resistance. Also, the surface texture does not reach that of glass, and glass is more suitable for producing a high-class feeling.
  • Patent Document 1 proposes a laminated glass plate in which glass / polyvinyl butyral / polycarbonate / polyvinyl butyral / glass are sequentially laminated. Patent Document 1 proposes that each of the advantages of the glass plate and the transparent resin molded body is complemented by sandwiching the transparent resin molded body with a glass plate having excellent weather resistance and scratch resistance. .
  • a laminated glass plate combining a transparent resin molded body and a glass plate is used, for example, for a window glass of a building such as a high-rise building, when the window glass is irradiated with light such as sunlight and a fluorescent lamp, A problem was found in which colored spots (including rainbow spots) were observed.
  • resin materials are rich in color variations compared to glass, and are used in various products such as colorless and highly transparent products, transparent colored products, and opaque colored products.
  • a decorative article cover and case Also in these applications, for example, a problem has been found in which slightly colored spots appear when external light is reflected by a transparent resin molding.
  • Item 1 An oriented film having a retardation of 3000 to 150,000 nm, Transparent resin molded body and glass plate, A laminated glass plate laminated.
  • Item 2. The laminated glass sheet according to Item 1, wherein the transparent resin molded body is formed of at least one resin selected from the group consisting of an acrylic resin and a polycarbonate resin.
  • Item 3. Item 3.
  • Item 4. Item 4. The laminated glass sheet according to any one of Items 1 to 3, which is used for building materials.
  • Item 5 The laminated glass sheet according to any one of claims 1 to 3, which is used for vehicles.
  • Item 6. An oriented film having a retardation of 3000 to 150,000 nm, Transparent resin molded body and glass plate, Laminated window glass.
  • the color spots to be suppressed are color spots that are observed in a state in which a part of light irradiated to the laminated glass plate from an oblique direction is reflected.
  • the laminated glass plate is preferably laminated with an oriented film having a retardation of 3000 to 150,000 nm, a transparent resin molded product, and a glass plate.
  • the stacking order of the oriented film, the transparent resin molded body, and the glass plate is arbitrary. A specific stacking order will be described later.
  • the laminated glass plate preferably has an oriented film on at least one surface of the transparent resin molded body, and more preferably has an oriented film on both surfaces.
  • it is preferable that the laminated glass plate has the glass plate laminated
  • the retardation of the alignment film is preferably 3000 nm or more and 150,000 nm or less from the viewpoint of reducing color spots.
  • retardation means retardation at a measurement wavelength of 589 nm unless otherwise specified.
  • the lower limit value of the retardation of the oriented film is preferably 4500 nm or more, preferably 6000 nm or more, preferably 8000 nm or more, preferably 10,000 nm or more.
  • the upper limit of the retardation of the oriented film is that the effect of improving the visibility is not substantially obtained even if an oriented film having a retardation higher than that is used, and depending on the height of the retardation, Since the thickness also tends to increase, it is set to 150,000 nm from the viewpoint that it may be contrary to the demand for thinning the laminated glass plate, but it can also be set to a higher value.
  • the retardation of two oriented films may be the same or different.
  • the orientation film has a ratio (Re / Rth) of retardation (Re) to thickness direction retardation (Rth) of preferably 0.2 or more, preferably 0.5 or more, preferably 0.6 or more.
  • Thickness direction retardation means an average value of retardation obtained by multiplying two birefringences ⁇ Nxz and ⁇ Nyz by film thickness d when viewed from a cross section in the film thickness direction. As Re / Rth is larger, the birefringence action is more isotropic, and the occurrence of color spots can be more effectively suppressed. Thickness direction retardation is also measured at a measurement wavelength of 589 nm.
  • the maximum value of Re / Rth is 2.0 (that is, a perfect uniaxial symmetry film), but the mechanical strength in the direction perpendicular to the orientation direction tends to decrease as the perfect uniaxial symmetry film is approached. is there. Therefore, the upper limit of Re / Rth of the polyester film is preferably 1.2 or less, and preferably 1.0 or less.
  • Retardation can be measured according to a known method. Specifically, it can be determined by measuring the refractive index and thickness in the biaxial direction. It can also be determined using a commercially available automatic birefringence measuring apparatus (for example, KOBRA-21ADH: manufactured by Oji Scientific Instruments).
  • the oriented film can be produced by appropriately selecting a known method.
  • the alignment film is a polyester resin, a polycarbonate resin, a polystyrene resin, a syndiotactic polystyrene resin, a polyether ether ketone resin, a polyphenylene sulfide resin, a cycloolefin resin, a liquid crystalline polymer resin, and a liquid crystal compound added to a cellulose resin. It can manufacture using 1 or more types selected from the group which consists of resin.
  • the orientation film is a polyester film, polycarbonate film, polystyrene film, syndiotactic polystyrene film, polyetheretherketone film, polyphenylene sulfide film, cycloolefin film, liquid crystalline film, film in which a liquid crystal compound is added to a cellulose resin. It can be.
  • the preferred raw material resin for the oriented film is one or more resins selected from the group consisting of polycarbonate, polyester, and syndiotactic polystyrene. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching. Polyesters typified by polyethylene terephthalate and polyethylene naphthalate have a large intrinsic birefringence, and can be obtained relatively easily even when the film is thin, so that they are preferable as raw materials for oriented films. In particular, polyethylene naphthalate has a large intrinsic birefringence among polyesters, and therefore is suitable for a case where it is desired to make the retardation particularly high or a case where it is desired to reduce the film thickness while keeping the retardation high.
  • the polyester film can be obtained by condensing an arbitrary dicarboxylic acid and a diol.
  • the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
  • Acid diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
  • diol examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
  • the dicarboxylic acid component and the diol component constituting the polyester film may be used alone or in combination of two or more.
  • Specific polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate and polyethylene naphthalate, preferably polyethylene terephthalate. .
  • the polyester resin may contain other copolymer components. From the viewpoint of mechanical strength, the proportion of the copolymer components is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol% or less. . These resins are excellent in transparency and excellent in thermal and mechanical properties. Moreover, retardation of these resins can be easily controlled by stretching.
  • the polyester film can be obtained according to a general production method. Specifically, the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then in the transverse direction by a tenter.
  • An oriented polyester film is mentioned by extending
  • the polyester film may be a uniaxially stretched film or a biaxially stretched film.
  • the oriented film may be stretched at an angle of 45 degrees.
  • the production conditions for obtaining the polyester film can be appropriately set according to a known method.
  • the longitudinal stretching temperature and the transverse stretching temperature are usually 80 to 130 ° C., preferably 90 to 120 ° C.
  • the longitudinal draw ratio is usually 1.0 to 3.5 times, preferably 1.0 to 3.0 times.
  • the transverse draw ratio is usually 2.5 to 6.0 times, preferably 3.0 to 5.5 times.
  • the retardation can be controlled within a specific range by appropriately setting the stretching ratio, stretching temperature, and film thickness. For example, it becomes easier to obtain a higher retardation as the stretching ratio between the longitudinal stretching and the lateral stretching is higher, the stretching temperature is lower, and the film is thicker. On the contrary, it becomes easier to obtain a lower retardation as the stretching ratio between the longitudinal stretching and the lateral stretching is lower, the stretching temperature is higher, and the film thickness is thinner. Moreover, the higher the stretching temperature and the lower the total stretching ratio, the easier it is to obtain a film having a lower ratio of retardation to thickness direction (Re / Rth).
  • the heat treatment temperature is usually preferably 140 to 240 ° C, and preferably 180 to 240 ° C.
  • the thickness unevenness of the film is small. If the longitudinal stretching ratio is lowered to make a retardation difference, the value of the longitudinal thickness unevenness may be increased. Since there is a region where the value of the vertical thickness unevenness becomes very high in a specific range of the draw ratio, it is desirable to set the film forming conditions so as to exclude such a range.
  • the thickness unevenness of the oriented film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% or less. Is particularly preferred.
  • the thickness of the oriented film is not particularly limited.
  • the lower limit of the thickness of the oriented film is 20 ⁇ m or more, preferably 50 ⁇ m or more, and the upper limit of the thickness of the oriented film is 300 ⁇ m or less, preferably 250 ⁇ m or less.
  • the transparent resin molding can be produced by appropriately selecting a known technique from a thermoplastic resin having transparency.
  • the raw material resin for the transparent resin molding include polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polystyrene (PS), acrylic resin, vinyl chloride resin, and polymethylpentene (PMP). .
  • PET polyethylene terephthalate
  • PP polypropylene
  • PC polycarbonate
  • PS polystyrene
  • acrylic resin vinyl chloride resin
  • PMP polymethylpentene
  • at least one selected from the group consisting of polycarbonate (PC) and acrylic resin is preferable.
  • the transparent resin molded body may have an arbitrary shape, and may be, for example, a planar shape such as a film or a sheet, a curved surface shape, a casing, or a part of the casing.
  • a transparent resin molded body typically has a portion having a retardation of 150 nm or more.
  • the thickness of the transparent resin molded body is arbitrary, but is, for example, 0.1 mm or more or 0.2 mm or more.
  • the upper limit of the thickness of the transparent resin molded body is, for example, 5 mm or less or 4 mm or less.
  • the method for producing the transparent resin molded body is not particularly limited, and a molding method generally adopted for the thermoplastic resin composition can be arbitrarily adopted.
  • a molding method generally adopted for the thermoplastic resin composition can be arbitrarily adopted.
  • the transparent resin molding is an unstretched sheet, a melt extrusion method, a calender molding method, an injection molding method, a sheet press molding method, a vacuum molding method, a pressure molding method, and the like can be exemplified.
  • the transparent resin molded body may be a multilayer sheet, or a stretched or unstretched film obtained by in-mold molding, insert molding, or the like.
  • the molecules are oriented with the remnant of flow or distortion during molding.
  • the molecules have an irregular orientation. Because of this, it is assumed that color spots are observed when external light is applied to the transparent resin molded product, but it is easy to stack an alignment film on at least one surface of the transparent resin molded product. With the configuration, the occurrence of color spots can be suppressed.
  • the glass plate is a glass plate used for windows of buildings or vehicles, or display cases, the material, shape, size, and the like are arbitrary and are not particularly limited.
  • the glass plate may be flat or curved.
  • the glass constituting the glass plate is, for example, silicate glass, preferably one or more selected from the group consisting of silica glass, borosilicate glass, soda lime glass, and aluminosilicate glass, and more preferably. Is alkali-free glass.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component weight ratio of 1000 ppm or less.
  • the weight ratio of the alkali component contained in the glass is preferably 500 ppm or less, more preferably 300 ppm or less.
  • chemically tempered glass or physical tempered glass can also be used as glass.
  • the glass plate is preferably a glass plate formed of soda lime glass (soda glass).
  • the thickness of the glass plate is arbitrary.
  • the lower limit of the thickness of the glass plate is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, and still more preferably 100 ⁇ m or more.
  • the upper limit of the thickness of the glass plate is preferably 1.5 cm or less, preferably 1 cm or less, preferably 0.7 cm or less, preferably 0.5 cm or less, preferably 0.3 cm or less, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m. Hereinafter, it is more preferably 300 ⁇ m or less.
  • the greater the thickness of the glass plate the higher the strength of the laminated glass plate.
  • the thickness of the glass plate is thinner, the weight in the thickness of the laminated glass plate can be reduced.
  • the thickness of the glass plate is preferably smaller than the thickness of the transparent resin molded body.
  • the thickness is 300 micrometers or more and 1000 micrometers or less.
  • the density of the glass is preferably low. Thereby, the weight reduction of glass can be achieved and the weight reduction of a laminated glass board can be achieved by extension. Specifically, the density of the glass is preferably 2.6 g / cm 3 or less, and more preferably 2.5 g / cm 3 or less.
  • a glass plate satisfying such characteristics is known and can be obtained by any manufacturing method.
  • a known adhesive When laminating an oriented film, a transparent resin molded body, and a glass plate, a known adhesive can be used.
  • the kind of adhesive is arbitrary and is not particularly limited.
  • the structure of the laminated glass is arbitrary as long as the above-described oriented film, transparent resin molded body, and glass plate are laminated. Examples of suitable stacking order (configuration) of the assumed laminated glass are given below.
  • A Glass plate / alignment film / transparent resin molded body / alignment film / glass plate
  • B glass plate / alignment film / transparent resin molding / glass plate
  • C glass plate / alignment film / transparent resin molding / glass Plate / alignment film
  • D glass plate / alignment film / transparent resin molding
  • E orientation film / glass plate / transparent resin molding
  • the oriented film, the transparent resin molded body, and the oriented film may be laminated via a functional layer (easy-adhesive layer) for promoting their adhesion in addition to the adhesive.
  • the laminated glass plate is used as a window glass of a building. In one embodiment, the laminated glass plate is used as a window glass (including a windshield) for vehicles such as automobiles, trains, ships, and airplanes. In one embodiment, the laminated glass plate is used as a glass plate for a display case or a picture frame.
  • the shape and size of the laminated glass plate are arbitrary and are not particularly limited, and may be flat or curved.
  • Oriented film 1 PET resin pellets having an intrinsic viscosity of 0.62 dl / g were dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, then supplied to an extruder and dissolved at 285 ° C.
  • This polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy 10 ⁇ m particle 95% cut), extruded into a sheet form from the die, and then applied to a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method It was wound and solidified by cooling to make an unstretched film.
  • the unstretched film was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at 225 ° C. for 30 seconds, and further subjected to a 3% relaxation treatment in the width direction to obtain a uniaxially oriented film 1 having a film thickness of about 100 ⁇ m. .
  • the retardation value was 10200 nm.
  • Rth was 13233 nm and Re / Rth ratio was 0.771.
  • Oriented film 2 By changing the thickness of the unstretched film, a uniaxially oriented oriented film 2 was obtained in the same manner as the oriented film 1 except that the thickness of the film was about 80 ⁇ m.
  • the retardation value was 8300 nm.
  • Rth was 10700 nm and the Re / Rth ratio was 0.776.
  • Oriented film 3 By changing the thickness of the unstretched film, a uniaxially oriented alignment film 3 was obtained in the same manner as the alignment film 1 except that the thickness of the film was about 50 ⁇ m.
  • the retardation value was 5200 nm.
  • Rth was 6600 nm and Re / Rth ratio was 0.788.
  • Oriented film 4 The unstretched film is heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched 2.0 times in the running direction by a roll group having a difference in peripheral speed, and then in the same manner as the oriented film 1.
  • a biaxially oriented oriented film 4 having a film thickness of about 50 ⁇ m was obtained in the same manner as the oriented film 1 except that the film was stretched 4.0 times in the width direction.
  • the retardation value was 3200 nm.
  • Rth was 7340 nm and Re / Rth ratio was 0.436.
  • the retardation (Re) of the oriented film was measured as follows. That is, using two polarizing plates, the orientation principal axis direction of the film was obtained, and a 4 cm ⁇ 2 cm rectangle was cut out so that the orientation principal axis directions were orthogonal to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined with an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) at a wavelength of 589 nm.
  • NAR-4T Abbe refractometer
  • ) of the refractive index difference of the shaft was determined as the anisotropy ( ⁇ Nxy) of the refractive index.
  • the thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm.
  • Retardation (Re) was determined from the product ( ⁇ Nxy ⁇ d) of refractive index anisotropy ( ⁇ Nxy) and film thickness d (nm).
  • Nx, Ny, Nz and film thickness d (nm) are obtained by the same method as the measurement of retardation, and the average value of ( ⁇ Nxz ⁇ d) and ( ⁇ Nyz ⁇ d) is calculated to obtain a thickness direction retardation ( Rth) was determined.
  • the retardation (Re) of the transparent resin molded body was measured for the retardation value at a wavelength of 589 nm using KOBRA (21ADH, manufactured by Oji Scientific Instruments).
  • the oriented film 1, 2, 3 or 4 was bonded to one surface of the transparent resin molded body via an adhesive to prepare a resin laminate.
  • the glass plate (thickness 5 mm) was laminated
  • a laminated glass in which a glass plate was directly laminated on a transparent resin molded body without using an oriented film was produced.
  • a natural light LED (CCS, natural light LED EXLN-NW022050E11JW) is placed on one side of the plane of the laminated glass plate as an alternative to sunlight, and the surface of the laminated glass plate is It observed from the diagonal direction and evaluated according to the following evaluation criteria.
  • the laminated glass plate was disposed so that the glass plate was closer to the viewing side than the transparent resin molded body.
  • the glass surface of the laminated glass plate is irradiated with natural light LED (natural light LED EXLN-NW022050E11JW) as an alternative to sunlight from an angle of 45 degrees with respect to the normal direction of the glass surface. Similar to the color spot evaluation test 1 except that the surface of the laminated glass plate was observed from the front side and the oblique direction from the same side as the side where the natural light LED was arranged with respect to the plane of the laminated glass plate in a state reflected by the surface. Evaluated.
  • natural light LED natural light LED EXLN-NW022050E11JW
  • the laminated glass sheet can be suitably used, for example, for window materials for general buildings and high-rise buildings, lighting from the roof, covering materials for greenhouses for agriculture, and window materials for vehicles such as automobiles and trains. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention solves the problem of color unevenness or the like in a glass plate formed by laminating a transparent resin molded body. In a laminated glass plate according to the present invention, an orientation film having a retardation of 3000-150000 nm, a transparent resin molded body, and a glass plate are laminated.

Description

積層ガラス板Laminated glass plate
 配向フィルム、透明樹脂成形体、及びガラス板が積層した積層ガラス板が開示される。 A laminated glass plate in which an oriented film, a transparent resin molded body, and a glass plate are laminated is disclosed.
 透明樹脂成形体は、耐物理的衝撃性に優れ、光透過性に優れることから、一般建築物及び高層ビル等で使用される窓材、屋根からの明かり採り、額縁及び展示ケース、自動車及び電車等の乗り物に使用される窓材等に広く使用されている。 Transparent resin moldings are excellent in physical impact resistance and light transmission, so window materials used in general buildings and high-rise buildings, lighting from roofs, frames and display cases, automobiles and trains It is widely used for window materials used for vehicles such as.
 しかしながら、透明樹脂成形体は、透明で採光性に優れる点においては、無機材料であるガラスに匹敵するが、耐薬品性、耐候性、及び耐擦傷性ではガラスに劣る。また、表面の質感もガラスに及ばず、高級感の演出にはガラスの方が適している。 However, the transparent resin molded body is comparable to glass, which is an inorganic material, in terms of transparency and excellent daylighting properties, but is inferior to glass in terms of chemical resistance, weather resistance, and scratch resistance. Also, the surface texture does not reach that of glass, and glass is more suitable for producing a high-class feeling.
 このような観点から、透明樹脂成形体にガラス板を積層したガラス板が多数提案されている。例えば、特許文献1には、ガラス/ポリビニルブチラール/ポリカーボネート/ポリビニルブチラール/ガラスを順次に積層した積層ガラス板が提案されている。特許文献1には、耐候性及び耐擦傷性に優れるガラス板で透明樹脂成形体を挟むことで、ガラス板及び透明樹脂成形体の夫々の短所を夫々の長所で補完することが提案されている。 From such a viewpoint, many glass plates in which a glass plate is laminated on a transparent resin molded body have been proposed. For example, Patent Document 1 proposes a laminated glass plate in which glass / polyvinyl butyral / polycarbonate / polyvinyl butyral / glass are sequentially laminated. Patent Document 1 proposes that each of the advantages of the glass plate and the transparent resin molded body is complemented by sandwiching the transparent resin molded body with a glass plate having excellent weather resistance and scratch resistance. .
特開平6-915号公報JP-A-6-915
 透明樹脂成形体とガラス板とを組み合わせた積層ガラス板を、例えば、高層ビル等の建築物の窓ガラスに使用した場合、窓ガラスに太陽光及び蛍光灯等などの光が照射されると、色斑(虹斑を含む)が観察されるという問題が見つかった。 When a laminated glass plate combining a transparent resin molded body and a glass plate is used, for example, for a window glass of a building such as a high-rise building, when the window glass is irradiated with light such as sunlight and a fluorescent lamp, A problem was found in which colored spots (including rainbow spots) were observed.
 また、樹脂材料は、ガラスと比較して、色のバリエーションに富み、無色で透明度の高い製品、透明性着色品、及び不透明な着色品等様々な製品に使用されている。例えば、装飾品のカバー及びケース等である。これらの用途においても、例えば、外光が透明樹脂成形体で反射した場合に僅かに色斑を呈するという問題が見つかった。 Also, resin materials are rich in color variations compared to glass, and are used in various products such as colorless and highly transparent products, transparent colored products, and opaque colored products. For example, a decorative article cover and case. Also in these applications, for example, a problem has been found in which slightly colored spots appear when external light is reflected by a transparent resin molding.
 これらの透明樹脂成形体が積層したガラス板における色斑の問題等を解決することが課題である。 It is a problem to solve the problem of color spots in a glass plate in which these transparent resin moldings are laminated.
 リタデーションが3000nm以上150000nm以下に制御された配向フィルムを利用することによって上記の問題が解決されることが見出された。斯かる知見に基づき、下記に代表される発明が提供される。 It has been found that the above problem can be solved by using an oriented film whose retardation is controlled to 3000 nm or more and 150,000 nm or less. Based on such knowledge, the invention represented by the following is provided.
項1.
3000以上150000nm以下のリタデーションを有する配向フィルム、
透明樹脂成形体、及び
ガラス板、
が積層した積層ガラス板。
項2.
透明樹脂成形体がアクリル樹脂、及びポリカーボネート樹脂からなる群より選択される少なくとも1種の樹脂で形成される、項1に記載の積層ガラス板。
項3.
配向フィルムがポリエステルフィルムである、項1又は2に記載の積層ガラス板。
項4. 
建材用である、項1~3のいずれかに記載の積層ガラス板。
項5
乗り物用である、請求項1~3のいずれかに記載の積層ガラス板。
項6.
3000以上150000nm以下のリタデーションを有する配向フィルム、
透明樹脂成形体、及び
ガラス板、
が積層した窓ガラス。
Item 1.
An oriented film having a retardation of 3000 to 150,000 nm,
Transparent resin molded body and glass plate,
A laminated glass plate laminated.
Item 2.
Item 2. The laminated glass sheet according to Item 1, wherein the transparent resin molded body is formed of at least one resin selected from the group consisting of an acrylic resin and a polycarbonate resin.
Item 3.
Item 3. The laminated glass plate according to Item 1 or 2, wherein the oriented film is a polyester film.
Item 4.
Item 4. The laminated glass sheet according to any one of Items 1 to 3, which is used for building materials.
Item 5
The laminated glass sheet according to any one of claims 1 to 3, which is used for vehicles.
Item 6.
An oriented film having a retardation of 3000 to 150,000 nm,
Transparent resin molded body and glass plate,
Laminated window glass.
 太陽光及び蛍光灯等の白色光が照射された場合の色斑(虹斑)の発生が抑制された積層ガラス板が提供される。好適な一実施形態において、抑制される色斑は、積層ガラス板に斜め方向から照射された光の一部が反射する状態で観察される色斑である。 Provided is a laminated glass plate in which the occurrence of color spots (rainbow spots) when irradiated with white light such as sunlight and fluorescent lamps is provided. In a preferred embodiment, the color spots to be suppressed are color spots that are observed in a state in which a part of light irradiated to the laminated glass plate from an oblique direction is reflected.
 積層ガラス板は、3000以上150000nm以下のリタデーションを有する配向フィルム、透明樹脂成形体、ガラス板が積層されていることが好ましい。配向フィルム、透明樹脂成形体、及びガラス板の積層順序は任意である。具体的な積層順序は後述する。一実施形態において、積層ガラス板は、透明樹脂成形体の少なくとも一方の面に配向フィルムを有することが好ましく、両面に配向フィルムを有することがより好ましい。また、一実施形態において、積層ガラス板は、透明樹脂積層体の少なくとも一方の面にガラス板が積層されていることが好ましくは、両面にガラス板が積層されていることがより好ましい。これらの具体的な構成は後述する。 The laminated glass plate is preferably laminated with an oriented film having a retardation of 3000 to 150,000 nm, a transparent resin molded product, and a glass plate. The stacking order of the oriented film, the transparent resin molded body, and the glass plate is arbitrary. A specific stacking order will be described later. In one embodiment, the laminated glass plate preferably has an oriented film on at least one surface of the transparent resin molded body, and more preferably has an oriented film on both surfaces. Moreover, in one Embodiment, it is preferable that the laminated glass plate has the glass plate laminated | stacked on the at least one surface of the transparent resin laminated body, and it is more preferable that the glass plate is laminated | stacked on both surfaces. These specific configurations will be described later.
<配向フィルム>
 配向フィルムのリタデーションは、色斑を低減するという観点から、3000nm以上150000nm以下であることが好ましい。本書において、リタデーションとは、別段の断りがない限り、測定波長589nmにおけるリタデーションを意味する。また、本書において、単に「リタデーション」と記載する場合は、面内リタデーションを意味する。より効果的に虹斑の発生を抑制するという観点から、配向フィルムのリタデーションの下限値は、好ましくは4500nm以上、好ましくは6000nm以上、好ましくは8000nm以上、好ましくは10000nm以上である。一方、配向フィルムのリタデーションの上限は、それ以上のリタデーションを有する配向フィルムを用いたとしても更なる視認性の改善効果は実質的に得られず、またリタデーションの高さに応じては配向フィルムの厚みも上昇する傾向があるため、積層ガラス板の薄型化への要請に反し兼ねないという観点から、150000nmと設定されるが、更に高い値とすることもできる。透明樹脂成形体の両面に配向フィルムを有する場合、2枚の配向フィルムのリタデーションは同一であっても異なっていても良い。
<Oriented film>
The retardation of the alignment film is preferably 3000 nm or more and 150,000 nm or less from the viewpoint of reducing color spots. In this document, retardation means retardation at a measurement wavelength of 589 nm unless otherwise specified. Further, in this document, when simply described as “retardation”, it means in-plane retardation. From the viewpoint of more effectively suppressing the occurrence of rainbow spots, the lower limit value of the retardation of the oriented film is preferably 4500 nm or more, preferably 6000 nm or more, preferably 8000 nm or more, preferably 10,000 nm or more. On the other hand, the upper limit of the retardation of the oriented film is that the effect of improving the visibility is not substantially obtained even if an oriented film having a retardation higher than that is used, and depending on the height of the retardation, Since the thickness also tends to increase, it is set to 150,000 nm from the viewpoint that it may be contrary to the demand for thinning the laminated glass plate, but it can also be set to a higher value. When having an oriented film on both surfaces of a transparent resin molding, the retardation of two oriented films may be the same or different.
 色斑をより効果的に抑制するという観点から、配向フィルムは、そのリタデーション(Re)と厚さ方向リタデーション(Rth)の比(Re/Rth)が、好ましくは0.2以上であり、好ましくは0.5以上、好ましくは0.6以上である。厚さ方向リタデーションは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz及び△Nyzにそれぞれフィルム厚みdを掛けて得られるリタデーションの平均値を意味する。Re/Rthが大きいほど、複屈折の作用は等方性を増し、色斑の発生をより効果的に抑制することができる。厚さ方向リタデーションも測定波長589nmで測定される。 From the viewpoint of more effectively suppressing color spots, the orientation film has a ratio (Re / Rth) of retardation (Re) to thickness direction retardation (Rth) of preferably 0.2 or more, preferably 0.5 or more, preferably 0.6 or more. Thickness direction retardation means an average value of retardation obtained by multiplying two birefringences ΔNxz and ΔNyz by film thickness d when viewed from a cross section in the film thickness direction. As Re / Rth is larger, the birefringence action is more isotropic, and the occurrence of color spots can be more effectively suppressed. Thickness direction retardation is also measured at a measurement wavelength of 589 nm.
 Re/Rthの最大値は2.0(即ち、完全な1軸対称性フィルム)であるが、完全な1軸対称性フィルムに近づくにつれて配向方向と直交する方向の機械的強度が低下する傾向がある。よって、ポリエステルフィルムのRe/Rthの上限は、好ましくは1.2以下、好ましくは1.0以下である。 The maximum value of Re / Rth is 2.0 (that is, a perfect uniaxial symmetry film), but the mechanical strength in the direction perpendicular to the orientation direction tends to decrease as the perfect uniaxial symmetry film is approached. is there. Therefore, the upper limit of Re / Rth of the polyester film is preferably 1.2 or less, and preferably 1.0 or less.
 リタデーションは、公知の手法に従って測定することができる。具体的には、2軸方向の屈折率と厚みを測定して求めることができる。商業的に入手可能な自動複屈折測定装置(例えば、KOBRA-21ADH:王子計測機器株式会社製)を用いて求めることもできる。 Retardation can be measured according to a known method. Specifically, it can be determined by measuring the refractive index and thickness in the biaxial direction. It can also be determined using a commercially available automatic birefringence measuring apparatus (for example, KOBRA-21ADH: manufactured by Oji Scientific Instruments).
 配向フィルムは、公知の手法を適宜選択して製造することができる。例えば、配向フィルムは、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、シクロオレフィン樹脂、液晶性ポリマー樹脂、及びセルロース系樹脂に液晶化合物を添加した樹脂から成る群より選択される一種以上を用いて製造することができる。従って、配向フィルムは、ポリエステルフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、シンジオタクチックポリスチレンフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、シクロオレフィンフィルム、液晶性フィルム、セルロース系樹脂に液晶化合物が添加されたフィルムであり得る。 The oriented film can be produced by appropriately selecting a known method. For example, the alignment film is a polyester resin, a polycarbonate resin, a polystyrene resin, a syndiotactic polystyrene resin, a polyether ether ketone resin, a polyphenylene sulfide resin, a cycloolefin resin, a liquid crystalline polymer resin, and a liquid crystal compound added to a cellulose resin. It can manufacture using 1 or more types selected from the group which consists of resin. Therefore, the orientation film is a polyester film, polycarbonate film, polystyrene film, syndiotactic polystyrene film, polyetheretherketone film, polyphenylene sulfide film, cycloolefin film, liquid crystalline film, film in which a liquid crystal compound is added to a cellulose resin. It can be.
 配向フィルムの好ましい原料樹脂は、ポリカーボネート、ポリエステル、及びシンジオタクチックポリスチレンから成る群より選択される一種以上の樹脂である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。ポリエチレンテレフタレート及びポリエチレンナフタレートに代表されるポリエステルは固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得られるので配向フィルムの原料として好ましい。特に、ポリエチレンナフタレートは、ポリエステルの中でも固有複屈折率が大きいことから、リタデーションを特に高くしたい場合や、リタデーションを高く保ちながらフィルム厚みを薄くしたい場合に好適である。 The preferred raw material resin for the oriented film is one or more resins selected from the group consisting of polycarbonate, polyester, and syndiotactic polystyrene. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching. Polyesters typified by polyethylene terephthalate and polyethylene naphthalate have a large intrinsic birefringence, and can be obtained relatively easily even when the film is thin, so that they are preferable as raw materials for oriented films. In particular, polyethylene naphthalate has a large intrinsic birefringence among polyesters, and therefore is suitable for a case where it is desired to make the retardation particularly high or a case where it is desired to reduce the film thickness while keeping the retardation high.
<配向フィルムの製造方法>
 以下に、ポリエステルフィルムを例に、配向フィルムの製造方法を説明する。ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。
<Method for producing oriented film>
Below, the manufacturing method of an oriented film is demonstrated to a polyester film as an example. The polyester film can be obtained by condensing an arbitrary dicarboxylic acid and a diol. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid. Acid, diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
 ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等を挙げることができる。 Examples of the diol include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
 ポリエステルフィルムを構成するジカルボン酸成分とジオール成分はそれぞれ1種又は2種以上を適宜組み合わせて用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートである。ポリエステル樹脂は他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリタデーションを制御することができる。 The dicarboxylic acid component and the diol component constituting the polyester film may be used alone or in combination of two or more. Specific polyester resins constituting the polyester film include, for example, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate and polyethylene naphthalate, preferably polyethylene terephthalate. . The polyester resin may contain other copolymer components. From the viewpoint of mechanical strength, the proportion of the copolymer components is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol% or less. . These resins are excellent in transparency and excellent in thermal and mechanical properties. Moreover, retardation of these resins can be easily controlled by stretching.
 ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施すことにより配向ポリエステルフィルムが挙げられる。ポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても良い。上記配向フィルムは斜め45度に延伸されたものであってもよい。 The polyester film can be obtained according to a general production method. Specifically, the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then in the transverse direction by a tenter. An oriented polyester film is mentioned by extending | stretching and heat-processing. The polyester film may be a uniaxially stretched film or a biaxially stretched film. The oriented film may be stretched at an angle of 45 degrees.
 ポリエステルフィルムを得るための製造条件は、公知の手法に従って適宜設定することが出来る。例えば、縦延伸温度及び横延伸温度は、通常80~130℃であり、好ましくは90~120℃である。縦延伸倍率は、通常1.0~3.5倍であり、好ましくは1.0倍~3.0倍である。また、横延伸倍率は、通常2.5~6.0倍であり、好ましくは3.0~5.5倍である。  The production conditions for obtaining the polyester film can be appropriately set according to a known method. For example, the longitudinal stretching temperature and the transverse stretching temperature are usually 80 to 130 ° C., preferably 90 to 120 ° C. The longitudinal draw ratio is usually 1.0 to 3.5 times, preferably 1.0 to 3.0 times. The transverse draw ratio is usually 2.5 to 6.0 times, preferably 3.0 to 5.5 times.
 リタデーションを特定範囲に制御することは、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行うことができる。例えば、縦延伸と横延伸の延伸倍率差が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、縦延伸と横延伸の延伸倍率差が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。また、延伸温度が高いほど、トータル延伸倍率が低いほど、リタデーションと厚さ方向リタデーションの比(Re/Rth)が低いフィルムが得やすくなる。逆に、延伸温度が低いほど、トータル延伸倍率が高いほど、リタデーションと厚さ方向リタデーションの比(Re/Rth)が高いフィルムが得られる。更に、熱処理温度は、通常140~240℃が好ましく、好ましくは180~240℃である。 The retardation can be controlled within a specific range by appropriately setting the stretching ratio, stretching temperature, and film thickness. For example, it becomes easier to obtain a higher retardation as the stretching ratio between the longitudinal stretching and the lateral stretching is higher, the stretching temperature is lower, and the film is thicker. On the contrary, it becomes easier to obtain a lower retardation as the stretching ratio between the longitudinal stretching and the lateral stretching is lower, the stretching temperature is higher, and the film thickness is thinner. Moreover, the higher the stretching temperature and the lower the total stretching ratio, the easier it is to obtain a film having a lower ratio of retardation to thickness direction (Re / Rth). Conversely, a film having a higher ratio of retardation to thickness direction retardation (Re / Rth) can be obtained as the stretching temperature is lower and the total stretching ratio is higher. Further, the heat treatment temperature is usually preferably 140 to 240 ° C, and preferably 180 to 240 ° C.
 ポリエステルフィルムにおけるリタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。リタデーション差をつけるために縦延伸倍率を低くすると、縦厚み斑の値が高くなる場合がある。縦厚み斑の値は延伸倍率のある特定の範囲で非常に高くなる領域があるため、そのような範囲を外すように製膜条件を設定することが望ましい。 In order to suppress retardation fluctuation in the polyester film, it is preferable that the thickness unevenness of the film is small. If the longitudinal stretching ratio is lowered to make a retardation difference, the value of the longitudinal thickness unevenness may be increased. Since there is a region where the value of the vertical thickness unevenness becomes very high in a specific range of the draw ratio, it is desirable to set the film forming conditions so as to exclude such a range.
 配向フィルムの厚み斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。フィルムの厚み斑は、任意の手段で測定することができる。例えば、フィルムの流れ方向に連続したテープ状サンプル(長さ3m)を採取し、市販される測定器(例えば、(株)セイコー・イーエム製電子マイクロメータ ミリトロン1240)を用いて、1cmピッチで100点の厚みを測定し、厚みの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚み斑(%)を算出することができる。厚み斑(%)=((dmax-dmin)/d)×100 The thickness unevenness of the oriented film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% or less. Is particularly preferred. The thickness unevenness of the film can be measured by any means. For example, a tape-like sample (length 3 m) continuous in the film flow direction is collected, and 100 cm at a 1 cm pitch using a commercially available measuring instrument (for example, an electronic micrometer manufactured by Seiko EM Co., Ltd. Millitron 1240). The thickness of the point is measured, the maximum value (dmax), the minimum value (dmin), and the average value (d) of the thickness are obtained, and the thickness unevenness (%) can be calculated by the following formula. Thickness unevenness (%) = ((dmax−dmin) / d) × 100
 配向フィルムの厚みは特に制限されない。例えば、配向フィルムの厚みの下限は、20μm以上、好ましくは50μm以上であり、配向フィルムの厚みの上限は300μm以下、好ましくは250μm以下である。 The thickness of the oriented film is not particularly limited. For example, the lower limit of the thickness of the oriented film is 20 μm or more, preferably 50 μm or more, and the upper limit of the thickness of the oriented film is 300 μm or less, preferably 250 μm or less.
<透明樹脂成形体>
 透明樹脂成型体は、透明性を有する熱可塑性樹脂から、公知の手法を適宜選択して製造することができる。透明樹脂成形体の原料樹脂として、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリスチレン(PS)、アクリル樹脂、塩化ビニル樹脂、及びポリメチルペンテン(PMP)等が挙げられる。これらの中でも、機械的強度に優れているという観点から、ポリカーボネート(PC)、及びアクリル樹脂なら成る群より選択される1種以上が好ましい。
<Transparent resin molding>
The transparent resin molding can be produced by appropriately selecting a known technique from a thermoplastic resin having transparency. Examples of the raw material resin for the transparent resin molding include polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), polystyrene (PS), acrylic resin, vinyl chloride resin, and polymethylpentene (PMP). . Among these, from the viewpoint of excellent mechanical strength, at least one selected from the group consisting of polycarbonate (PC) and acrylic resin is preferable.
 透明樹脂成形体は、任意の形状であり得、例えば、フィルム又はシート等の平面状、曲面状、筐体又は筐体の一部であり得る。 The transparent resin molded body may have an arbitrary shape, and may be, for example, a planar shape such as a film or a sheet, a curved surface shape, a casing, or a part of the casing.
 透明樹脂成形体は、典型的に、タデーションが150nm以上ある部分が存在する。 A transparent resin molded body typically has a portion having a retardation of 150 nm or more.
 透明樹脂成形体の厚みは任意であるが、例えば0.1mm以上又は0.2mm以上である。透明樹脂成形体の厚みの上限は、例えば、5mm以下又は4mm以下である。 The thickness of the transparent resin molded body is arbitrary, but is, for example, 0.1 mm or more or 0.2 mm or more. The upper limit of the thickness of the transparent resin molded body is, for example, 5 mm or less or 4 mm or less.
 透明樹脂成形体の製造方法は、特に限定されず、熱可塑性樹脂組成物について一般に採用されている成形法を任意に採用することができる。例えば、透明樹脂成形体が未延伸シートである場合には、溶融押出し法、カレンダー成形法、射出成形法、シートのプレス成形法、真空成形法、圧空成形法等を挙げることができる。透明樹脂成形体は多層シートであってもよく、延伸又は未延伸フィルムをインモールド成形、インサート成形等したものであってもよい。 The method for producing the transparent resin molded body is not particularly limited, and a molding method generally adopted for the thermoplastic resin composition can be arbitrarily adopted. For example, when the transparent resin molding is an unstretched sheet, a melt extrusion method, a calender molding method, an injection molding method, a sheet press molding method, a vacuum molding method, a pressure molding method, and the like can be exemplified. The transparent resin molded body may be a multilayer sheet, or a stretched or unstretched film obtained by in-mold molding, insert molding, or the like.
 透明樹脂成形体は、延伸されていなくても、成形時の流動又は歪みの名残で分子が配向している。特に、射出成型体では分子が不規則な配向を有している。これが原因となって、外光が透明樹脂成形体に照射された際に、色斑が観察されると推察されるが、透明樹脂成形体の少なくとも一方の面に配向フィルムを積層するという簡便な構成で、色斑発生を抑制することができる。 Even if the transparent resin molded body is not stretched, the molecules are oriented with the remnant of flow or distortion during molding. In particular, in the injection-molded product, the molecules have an irregular orientation. Because of this, it is assumed that color spots are observed when external light is applied to the transparent resin molded product, but it is easy to stack an alignment film on at least one surface of the transparent resin molded product. With the configuration, the occurrence of color spots can be suppressed.
<ガラス板>
 ガラス板は、建築物又は乗り物等の窓、或いは展示ケースに使用されるようなガラス板であればその材質、形状、大きさ等は任意であり、特に制限されない。ガラス板は平面状、曲面状であってよい。ガラス板を構成するガラスは、例えば、ケイ酸塩ガラスであり、好ましくはシリカガラス、ホウ珪酸ガラス、ソーダライムガラス、及びアルミノ珪酸塩ガラスから成る群より選択される1種以上であり、より好ましくは無アルカリガラスである。ガラスは一般的に耐候性に優れるが、ガラスにアルカリ成分が含有されている場合には、長期間に亘って外部環境に曝された状況で使用を続けると、表面において陽イオンが脱落し、いわゆるソーダ吹きの現象が生じ、構造的に粗となり、ガラスの透光性が悪化するおそれがある。無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が1000ppm以下のガラスのことである。ガラスに含まれるアルカリ成分の重量比は、好ましくは500ppm以下であり、より好ましくは300ppm以下である。また、ガラスとして化学強化ガラス又は物理強化ガラスを使用することもできる。一実施形態(例えば、積層ガラス板を窓用ガラスに用いる場合)において、ガラス板はソーダライムガラス(ソーダガラス)で形成されたガラス板であることが好ましい。
<Glass plate>
As long as the glass plate is a glass plate used for windows of buildings or vehicles, or display cases, the material, shape, size, and the like are arbitrary and are not particularly limited. The glass plate may be flat or curved. The glass constituting the glass plate is, for example, silicate glass, preferably one or more selected from the group consisting of silica glass, borosilicate glass, soda lime glass, and aluminosilicate glass, and more preferably. Is alkali-free glass. Although glass is generally excellent in weather resistance, when an alkali component is contained in the glass, if the glass is used in a situation where it is exposed to the external environment for a long period of time, cations are dropped on the surface, A so-called soda blowing phenomenon occurs, the structure becomes rough, and the translucency of the glass may be deteriorated. The alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component weight ratio of 1000 ppm or less. The weight ratio of the alkali component contained in the glass is preferably 500 ppm or less, more preferably 300 ppm or less. Moreover, chemically tempered glass or physical tempered glass can also be used as glass. In one embodiment (for example, when a laminated glass plate is used for window glass), the glass plate is preferably a glass plate formed of soda lime glass (soda glass).
 ガラス板の厚みは任意である。ガラス板の厚みの下限は、好ましくは10μm以上、より好ましくは50μm以上、更に好ましくは100μm以上である。ガラス板の厚みの上限は、1.5cm以下が好ましく、1cm以下が好ましく、0.7cm以下が好ましく、0.5cm以下が好ましく、0.3cm以下が好ましく、好ましくは1000μm以下、より好ましくは500μm以下、更に好ましくは300μm以下である。ガラス板の厚みが大きいほど積層ガラス板の強度が上がる。一方、ガラス板の厚みが薄いほど、積層ガラス板の厚みにおける重量を軽減することができる。一実施形態においてガラス板の厚みは、透明樹脂成形体の厚みより小さいことが好ましい。これにより、積層ガラス板おける、ガラス板が占める割合が減少するため、積層ガラス板の軽量化を図ることができる。また、ガラスとして化学強化ガラスを使用する場合、その厚みは、300μm以上1000μm以下であることが好ましい。 The thickness of the glass plate is arbitrary. The lower limit of the thickness of the glass plate is preferably 10 μm or more, more preferably 50 μm or more, and still more preferably 100 μm or more. The upper limit of the thickness of the glass plate is preferably 1.5 cm or less, preferably 1 cm or less, preferably 0.7 cm or less, preferably 0.5 cm or less, preferably 0.3 cm or less, preferably 1000 μm or less, more preferably 500 μm. Hereinafter, it is more preferably 300 μm or less. The greater the thickness of the glass plate, the higher the strength of the laminated glass plate. On the other hand, as the thickness of the glass plate is thinner, the weight in the thickness of the laminated glass plate can be reduced. In one embodiment, the thickness of the glass plate is preferably smaller than the thickness of the transparent resin molded body. Thereby, since the ratio for which a glass plate accounts in a laminated glass plate reduces, the weight reduction of a laminated glass plate can be achieved. Moreover, when using chemically strengthened glass as glass, it is preferable that the thickness is 300 micrometers or more and 1000 micrometers or less.
 ガラスの密度は、低いことが好ましい。これにより、ガラスの軽量化を図ることができ、ひいては積層ガラス板の軽量化を図ることができる。具体的には、ガラスの密度は2.6g/cm以下であることが好ましく、2.5g/cm以下であることがより好ましい。 The density of the glass is preferably low. Thereby, the weight reduction of glass can be achieved and the weight reduction of a laminated glass board can be achieved by extension. Specifically, the density of the glass is preferably 2.6 g / cm 3 or less, and more preferably 2.5 g / cm 3 or less.
 このような特性を満たすガラス板は公知であり、任意の製造方法で得ることが可能である。 A glass plate satisfying such characteristics is known and can be obtained by any manufacturing method.
 配向フィルム、透明樹脂成形体、及びガラス板を積層をする際には、公知の接着剤を用いることができる。接着剤の種類は任意であり、特に制限されない。 When laminating an oriented film, a transparent resin molded body, and a glass plate, a known adhesive can be used. The kind of adhesive is arbitrary and is not particularly limited.
 積層ガラスの構造は、上述する配向フィルム、透明樹脂成形体、及びガラス板が積層されている限り、任意である。想定される積層ガラスの好適な積層順序(構成)を下記に例示する。
(A)ガラス板/配向フィルム/透明樹脂成形体/配向フィルム/ガラス板
(B)ガラス板/配向フィルム/透明樹脂成形体/ガラス板
(C)ガラス板/配向フィルム/透明樹脂成形体/ガラス板/配向フィルム
(D)ガラス板/配向フィルム/透明樹脂成形体
(E)配向フィルム/ガラス板/透明樹脂成形体
(F)ガラス板/透明樹脂成形体/配向フィルム
The structure of the laminated glass is arbitrary as long as the above-described oriented film, transparent resin molded body, and glass plate are laminated. Examples of suitable stacking order (configuration) of the assumed laminated glass are given below.
(A) Glass plate / alignment film / transparent resin molded body / alignment film / glass plate (B) glass plate / alignment film / transparent resin molding / glass plate (C) glass plate / alignment film / transparent resin molding / glass Plate / alignment film (D) glass plate / alignment film / transparent resin molding (E) orientation film / glass plate / transparent resin molding (F) glass plate / transparent resin molding / alignment film
 配向フィルム、透明樹脂成形体、及び配向フィルムは、接着剤の他、それらの接着を促進するための機能層(易接着層)を介して積層されていても良い。 The oriented film, the transparent resin molded body, and the oriented film may be laminated via a functional layer (easy-adhesive layer) for promoting their adhesion in addition to the adhesive.
 一実施形態において、積層ガラス板は、建築物の窓ガラスとして使用される。一実施形態において、積層ガラス板は、自動車、電車、船舶、及び飛行機等の乗り物の窓ガラス(フロントガラスを含む)として使用される。一実施形態において、積層ガラス板は、展示ケース又は額縁用のガラス板として使用される。積層ガラス板の形状、大きさは任意であり、特に制限されるものではなく、平面状または曲面状であってよい。 In one embodiment, the laminated glass plate is used as a window glass of a building. In one embodiment, the laminated glass plate is used as a window glass (including a windshield) for vehicles such as automobiles, trains, ships, and airplanes. In one embodiment, the laminated glass plate is used as a glass plate for a display case or a picture frame. The shape and size of the laminated glass plate are arbitrary and are not particularly limited, and may be flat or curved.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. These are all included in the technical scope of the present invention.
<配向フィルムの作製>
配向フィルム1
 固有粘度0.62dl/gのPET樹脂ペレットを135℃で6時間減圧乾燥(1Torr)した後、押出機に供給し、285℃で溶解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。
<Preparation of oriented film>
Oriented film 1
PET resin pellets having an intrinsic viscosity of 0.62 dl / g were dried under reduced pressure (1 Torr) at 135 ° C. for 6 hours, then supplied to an extruder and dissolved at 285 ° C. This polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy 10 μm particle 95% cut), extruded into a sheet form from the die, and then applied to a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method It was wound and solidified by cooling to make an unstretched film.
 上記未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、225℃で、30秒間処理し、さらに幅方向に3%の緩和処理を行い、フィルム厚み約100μmの一軸配向の配向フィルム1を得た。リタデーション値は10200nmであった。Rthは、13233nm、Re/Rth比は0.771であった。 The unstretched film was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at 225 ° C. for 30 seconds, and further subjected to a 3% relaxation treatment in the width direction to obtain a uniaxially oriented film 1 having a film thickness of about 100 μm. . The retardation value was 10200 nm. Rth was 13233 nm and Re / Rth ratio was 0.771.
配向フィルム2
 未延伸フィルムの厚みを変更することにより、フィルムの厚みを約80μmとする以外は、配向フィルム1と同様にして一軸配向の配向フィルム2を得た。リタデーション値は8300nmであった。Rthは、10700nm、Re/Rth比は0.776であった。 
Oriented film 2
By changing the thickness of the unstretched film, a uniaxially oriented oriented film 2 was obtained in the same manner as the oriented film 1 except that the thickness of the film was about 80 μm. The retardation value was 8300 nm. Rth was 10700 nm and the Re / Rth ratio was 0.776.
配向フィルム3
 未延伸フィルムの厚みを変更することにより、フィルムの厚みを約50μmとする以外は、配向フィルム1と同様にして一軸配向の配向フィルム3を得た。リタデーション値は5200nmであった。Rthは6600nm、Re/Rth比は0.788であった。
Oriented film 3
By changing the thickness of the unstretched film, a uniaxially oriented alignment film 3 was obtained in the same manner as the alignment film 1 except that the thickness of the film was about 50 μm. The retardation value was 5200 nm. Rth was 6600 nm and Re / Rth ratio was 0.788.
配向フィルム4
 未延伸フィルムを、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2.0倍延伸した後、配向フィルム1と同様の方法で幅方向に4.0倍延伸した以外は配向フィルム1と同様にして、フィルム厚み約50μmの二軸配向の配向フィルム4を得た。リタデーション値は3200nmであった。Rthは7340nm、Re/Rth比は0.436であった。
Oriented film 4
The unstretched film is heated to 105 ° C. using a heated roll group and an infrared heater, and then stretched 2.0 times in the running direction by a roll group having a difference in peripheral speed, and then in the same manner as the oriented film 1. A biaxially oriented oriented film 4 having a film thickness of about 50 μm was obtained in the same manner as the oriented film 1 except that the film was stretched 4.0 times in the width direction. The retardation value was 3200 nm. Rth was 7340 nm and Re / Rth ratio was 0.436.
 配向フィルムのリタデーション(Re)は、次の通り測定した。即ち、二枚の偏光板を用いて、フィルムの配向主軸方向を求め、配向主軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T)によって589nmの波長で求め、前記二軸の屈折率差の絶対値(|Nx-Ny|)を屈折率の異方性(△Nxy)として求めた。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。 The retardation (Re) of the oriented film was measured as follows. That is, using two polarizing plates, the orientation principal axis direction of the film was obtained, and a 4 cm × 2 cm rectangle was cut out so that the orientation principal axis directions were orthogonal to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined with an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) at a wavelength of 589 nm. The absolute value (| Nx−Ny |) of the refractive index difference of the shaft was determined as the anisotropy (ΔNxy) of the refractive index. The thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Retardation (Re) was determined from the product (ΔNxy × d) of refractive index anisotropy (ΔNxy) and film thickness d (nm).
 また、リタデーションの測定と同様の方法でNx、Ny、Nzとフィルム厚みd(nm)を求め、(△Nxz×d)、(△Nyz×d)の平均値を算出して厚さ方向リタデーション(Rth)を求めた。 Further, Nx, Ny, Nz and film thickness d (nm) are obtained by the same method as the measurement of retardation, and the average value of (ΔNxz × d) and (ΔNyz × d) is calculated to obtain a thickness direction retardation ( Rth) was determined.
<透明樹脂成形体の作製>
 樹脂として、熱変形温度140℃の住友ダウ(株)製のポリカーボネート樹脂「カリバー301-10」を用いた。この樹脂を押出機にて溶融混練し、フィードブロック及びダイの順に供給した。そして、ダイから押出した溶融樹脂を、対向配置した第1冷却ロールと第2冷却ロールとの間に挟みこんで成形及び冷却し、厚さ0.5mmを有する単層構成の樹脂板を得た。これを透明樹脂成形体として積層ガラス板の作成に用いた。
<Preparation of transparent resin molding>
As the resin, polycarbonate resin “Caliber 301-10” manufactured by Sumitomo Dow Co., Ltd. having a heat distortion temperature of 140 ° C. was used. This resin was melt-kneaded with an extruder and fed in the order of a feed block and a die. Then, the molten resin extruded from the die was sandwiched between the first cooling roll and the second cooling roll arranged opposite to each other, and molded and cooled to obtain a single-layer resin plate having a thickness of 0.5 mm. . This was used for production of a laminated glass plate as a transparent resin molding.
 透明樹脂成形体のリタデーション(Re)は、KOBRA(21ADH、王子計測機器(株)製)を用いて、波長589nmにおけるリタデーション値を測定した。 The retardation (Re) of the transparent resin molded body was measured for the retardation value at a wavelength of 589 nm using KOBRA (21ADH, manufactured by Oji Scientific Instruments).
<積層ガラス板の作製>
 透明樹脂成形体の片方の面に粘着剤を介して、上記の配向フィルム1、2、3又は4を貼り合わせ、樹脂積層体を作成した。次に樹脂積層体の配向フィルムが積層されている面側に、粘着剤を介して、ガラス板(厚み5mm)を積層し、積層ガラスを作製した。比較対象として、配向フィルムを用いずに透明樹脂成形体に直接ガラス板を積層した積層ガラスを作製した。
<Production of laminated glass plate>
The oriented film 1, 2, 3 or 4 was bonded to one surface of the transparent resin molded body via an adhesive to prepare a resin laminate. Next, the glass plate (thickness 5 mm) was laminated | stacked through the adhesive on the surface side by which the oriented film of the resin laminated body was laminated | stacked, and the laminated glass was produced. As a comparison object, a laminated glass in which a glass plate was directly laminated on a transparent resin molded body without using an oriented film was produced.
<色斑の評価試験A>
 積層ガラス板の平面に対して、一方の面側に太陽光の代替として自然光LED(CCS製、自然光LED EXLN-NW022050E11JW)を配置し、もう一方の面側から積層ガラス板の表面を、正面及び斜め方向から観察し、下記の評価基準に従って評価した。積層ガラス板は、ガラス板が透明樹脂成形体よりも視認側となるように配置した。
<Color Spot Evaluation Test A>
A natural light LED (CCS, natural light LED EXLN-NW022050E11JW) is placed on one side of the plane of the laminated glass plate as an alternative to sunlight, and the surface of the laminated glass plate is It observed from the diagonal direction and evaluated according to the following evaluation criteria. The laminated glass plate was disposed so that the glass plate was closer to the viewing side than the transparent resin molded body.
<評価基準>
◎: 色斑は観察されない。
○: 薄く色斑が観察されるが視認性に問題なし。
×: はっきりとした色斑が観察される。
<Evaluation criteria>
A: Color spots are not observed.
○: Light color spots are observed, but there is no problem in visibility.
X: A clear color spot is observed.
 評価結果を下記の表1に示す。 Evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、配向フィルムを積層していない積層ガラスでははっきりとした色斑が観察されたが、配向フィルム1~4のいずれかを積層することによってその色斑が解消されることが確認された。また、配向フィルム1又は2を用いた場合には、より顕著に色斑が解消されることが確認された。 As shown in Table 1, clear color spots were observed in the laminated glass on which the oriented film was not laminated, but the color spots could be eliminated by laminating any of the oriented films 1 to 4. confirmed. Moreover, when the oriented film 1 or 2 was used, it was confirmed that a color spot is eliminated more notably.
<色斑の評価試験B>
 積層ガラス板のガラス面に、ガラス面の法線方向に対し45度斜め方向から太陽光の代替として自然光LED(CCS製、自然光LED EXLN-NW022050E11JW)の光を照射し、その一部がガラス板表面で反射した状態で、積層ガラス板の平面に対し自然光LEDを配置した側と同一側から、積層ガラス板の表面を正面及び斜め方向から観察した以外は、上記色斑の評価試験1と同様に評価した。
<Color Spot Evaluation Test B>
The glass surface of the laminated glass plate is irradiated with natural light LED (natural light LED EXLN-NW022050E11JW) as an alternative to sunlight from an angle of 45 degrees with respect to the normal direction of the glass surface. Similar to the color spot evaluation test 1 except that the surface of the laminated glass plate was observed from the front side and the oblique direction from the same side as the side where the natural light LED was arranged with respect to the plane of the laminated glass plate in a state reflected by the surface. Evaluated.
 評価結果を下記の表2に示す。 Evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、積層ガラスのガラス面に斜め方向から太陽光が入射する場合も、配向フィルムが積層されていない積層ガラスの場合は、虹斑が観察されることが確認された。一方、配向フィルム1~4のいずれかを積層することによって、その色斑が解消されることが確認された。また、配向フィルム1又は2を用いた場合には、より顕著に色斑が解消されることが確認された。 As shown in Table 2, it was confirmed that rainbow spots were observed even when sunlight was incident on the glass surface of the laminated glass from an oblique direction, and in the case of laminated glass on which no oriented film was laminated. On the other hand, it was confirmed that the color spots were eliminated by laminating any one of the oriented films 1 to 4. Moreover, when the oriented film 1 or 2 was used, it was confirmed that a color spot is eliminated more notably.
 積層ガラス板は、例えば、一般建築物及び高層ビル等の窓材、屋根からの明かり採り、農業用温室の被覆材、自動車及び電車等の乗り物等の窓材等に好適に使用することができる。 The laminated glass sheet can be suitably used, for example, for window materials for general buildings and high-rise buildings, lighting from the roof, covering materials for greenhouses for agriculture, and window materials for vehicles such as automobiles and trains. .

Claims (6)

  1. 3000以上150000nm以下のリタデーションを有する配向フィルム、
    透明樹脂成形体、及び
    ガラス板、
    が積層した積層ガラス板。
    An oriented film having a retardation of 3000 to 150,000 nm,
    Transparent resin molded body and glass plate,
    A laminated glass plate laminated.
  2. 透明樹脂成形体がアクリル樹脂、及びポリカーボネート樹脂からなる群より選択される少なくとも1種の樹脂で形成される、請求項1に記載の積層ガラス板。 The laminated glass plate according to claim 1, wherein the transparent resin molded body is formed of at least one resin selected from the group consisting of an acrylic resin and a polycarbonate resin.
  3. 配向フィルムがポリエステルフィルムである、請求項1又は2に記載の積層ガラス板。 The laminated glass plate according to claim 1 or 2, wherein the oriented film is a polyester film.
  4. 建材用である、請求項1~3のいずれかに記載の積層ガラス板。 The laminated glass sheet according to any one of claims 1 to 3, which is used for building materials.
  5. 乗り物用である、請求項1~3のいずれかに記載の積層ガラス板。 The laminated glass sheet according to any one of claims 1 to 3, which is used for vehicles.
  6. 3000以上150000nm以下のリタデーションを有する配向フィルム、
    透明樹脂成形体、及び
    ガラス板、
    が積層した窓ガラス。
    An oriented film having a retardation of 3000 to 150,000 nm,
    Transparent resin molded body and glass plate,
    Laminated window glass.
PCT/JP2016/059301 2015-03-31 2016-03-24 Laminated glass plate WO2016158635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509853A JP6763370B2 (en) 2015-03-31 2016-03-24 Laminated glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071003 2015-03-31
JP2015-071003 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158635A1 true WO2016158635A1 (en) 2016-10-06

Family

ID=57005129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059301 WO2016158635A1 (en) 2015-03-31 2016-03-24 Laminated glass plate

Country Status (3)

Country Link
JP (1) JP6763370B2 (en)
TW (1) TWI691406B (en)
WO (1) WO2016158635A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019252A (en) * 2018-08-02 2020-02-06 東洋紡株式会社 Transparent laminate resin plate
EP3848734A4 (en) * 2018-09-04 2021-11-03 LG Chem, Ltd. Device having variable transmittance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960317A (en) * 1972-08-28 1974-06-12
JPS54139921A (en) * 1978-04-24 1979-10-30 Mitsubishi Monsanto Chem Preliminary pressureebonding heating method for laminated glass
JPH03125302U (en) * 1990-03-30 1991-12-18
JPH04163138A (en) * 1990-10-26 1992-06-08 Diafoil Co Ltd Laminate for safety glass
JP2012214026A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Multilayer laminated film, window member that uses the same, and laminated glass
JP2014012373A (en) * 2012-07-05 2014-01-23 Nippon Electric Glass Co Ltd Glass resin laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669318B1 (en) * 2013-08-30 2016-10-25 제일모직주식회사 Polarizing plate and liquid crystal display apparatus comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960317A (en) * 1972-08-28 1974-06-12
JPS54139921A (en) * 1978-04-24 1979-10-30 Mitsubishi Monsanto Chem Preliminary pressureebonding heating method for laminated glass
JPH03125302U (en) * 1990-03-30 1991-12-18
JPH04163138A (en) * 1990-10-26 1992-06-08 Diafoil Co Ltd Laminate for safety glass
JP2012214026A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Multilayer laminated film, window member that uses the same, and laminated glass
JP2014012373A (en) * 2012-07-05 2014-01-23 Nippon Electric Glass Co Ltd Glass resin laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019252A (en) * 2018-08-02 2020-02-06 東洋紡株式会社 Transparent laminate resin plate
EP3848734A4 (en) * 2018-09-04 2021-11-03 LG Chem, Ltd. Device having variable transmittance
JP2022503554A (en) * 2018-09-04 2022-01-12 エルジー・ケム・リミテッド Variable transparency device
US11391991B2 (en) 2018-09-04 2022-07-19 Lg Chem, Ltd. Transmittance-variable device
JP7102607B2 (en) 2018-09-04 2022-07-19 エルジー・ケム・リミテッド Variable transparency device

Also Published As

Publication number Publication date
JPWO2016158635A1 (en) 2018-01-25
JP6763370B2 (en) 2020-09-30
TWI691406B (en) 2020-04-21
TW201637845A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
CN108463749B (en) Polarizer protective film, polarizing plate and display device comprising same
KR102273083B1 (en) Polyester film and flexible display apparatus comprising same
WO2015141533A1 (en) Reflective polarizing film for liquid-crystal-display polarizer, liquid-crystal-display polarizer comprising same, liquid-crystal-display optical element, and liquid-crystal display
JP5819432B2 (en) Multilayer biodegradable film
KR102363956B1 (en) Polyester protective film for flexible display device
US11745470B2 (en) Polyester film and flexible display device comprising the same
JP6763370B2 (en) Laminated glass plate
JP6736763B2 (en) Multilayer laminated film
JP2022124921A (en) Biaxial oriented film
CN101298203B (en) Transparent smooth polyester film and production method thereof
KR102510619B1 (en) Biaxially oriented polyester matted film and manufacturing method thereof
JP7501048B2 (en) Biaxially oriented film
JP2020019252A (en) Transparent laminate resin plate
US20200132902A1 (en) Multilayer film stack
JP7302687B2 (en) laminated polyester film
KR20210062011A (en) Foldable display
JP7280014B2 (en) laminated polyester film
KR102315905B1 (en) Polyester-based film, display device comprising the same and manufacturing method for the same
JP6272048B2 (en) Polyester film
CN117719233A (en) Optical polyester film and preparation method thereof
JP2021157178A (en) Film
JP6441147B2 (en) Stretched multilayer laminated reflective polyester film and liquid crystal display device comprising the same
JP2005187565A (en) White polyester film for molding and molded member obtained by using the same
JP2024055258A (en) Polyester Film
JP5455608B2 (en) Optical polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772516

Country of ref document: EP

Kind code of ref document: A1