WO2016158425A1 - Load measuring apparatus - Google Patents

Load measuring apparatus Download PDF

Info

Publication number
WO2016158425A1
WO2016158425A1 PCT/JP2016/058365 JP2016058365W WO2016158425A1 WO 2016158425 A1 WO2016158425 A1 WO 2016158425A1 JP 2016058365 W JP2016058365 W JP 2016058365W WO 2016158425 A1 WO2016158425 A1 WO 2016158425A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
elastic body
conductive elastic
load
bodies
Prior art date
Application number
PCT/JP2016/058365
Other languages
French (fr)
Japanese (ja)
Inventor
田中 守
勇三 今堀
山口 和也
計之 藤本
正光 小谷
Original Assignee
株式会社 イマック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 イマック filed Critical 株式会社 イマック
Priority to JP2017509541A priority Critical patent/JP6522740B2/en
Publication of WO2016158425A1 publication Critical patent/WO2016158425A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a load measuring device including a load sensor portion provided on the inner bottom of footwear.
  • a load measuring device including a load sensor unit provided on the inner bottom of footwear is known.
  • This load measuring device can measure the load applied to the lower limbs during free walking. Therefore, it is useful for rehabilitation of the lower limbs and the like that gradually increase the load applied to the lower limbs.
  • Some of these load measuring devices electrically detect a change in capacitance due to a load in the load sensor unit.
  • the capacitance is changed corresponding to partial loads formed on shoe soles and applied to each part of the sole (the rear foot part, the left front foot part, and the right front foot part).
  • a walking factor analyzer load measuring device having a plurality of variable capacitance pressure sensors (load sensor units) is disclosed.
  • the change in capacitance of the variable capacitor of the variable capacitance pressure sensor is taken out as a change in pulse oscillation frequency.
  • This walking factor analyzer can measure the partial load of each part and analyze the walking state more strictly.
  • Patent Document 2 discloses a load measuring unit (load sensor unit) that is formed in conformity with the contour shape of the back surface of the wearer's foot and detects capacitance at a plurality of locations on the back surface of the foot that changes due to weight shift.
  • a center-of-gravity position detection device (load measurement device) is disclosed. Time until one of the upper electrode and the lower electrode forming the capacitance is connected to GND and the other is connected to a constant voltage power source, and the voltage value between the upper electrode and the lower electrode reaches a predetermined value To calculate the capacitance.
  • the center-of-gravity position detection device can detect the movement of the center-of-gravity position.
  • Patent Document 3 a sheet-like elastic body in which a large number of voids or depressions are periodically provided and a flat sheet-like elastic body made of the same material are used as dielectrics, and these dielectrics are sandwiched.
  • a load measuring device having a load sensor portion formed by forming two capacitors using three sheet-like conductive elastic bodies as electrodes is disclosed. This load measuring device detects the total amount of load that is distributed across the load sensor section, and differentially detects the change in capacitance due to the load of the two capacitors. Therefore, it is possible to measure with higher accuracy than those described in Patent Documents 1 and 2.
  • the present invention has been made in view of the above reasons, and its purpose is to measure the partial load applied to each part of the sole, and to measure stably and highly accurately with respect to environmental changes such as noise and temperature. It is in providing the load measuring device which can do.
  • a load measuring device includes a first sheet-like elastic body provided with a large number of gaps or depressions and a flat second sheet made of the same material.
  • a plurality of first sheet-like elastic bodies sandwiched between the first sheet-like conductive elastic body and the first sheet-like conductive elastic body.
  • Two sheet-like conductive elastic bodies, and a second sheet-like conductive elastic body sandwiching the second sheet-like elastic bodies between the plurality of second sheet-like conductive elastic bodies.
  • An electric circuit unit including a current output circuit and a current measurement circuit that measures each alternating current flowing through the terminals of the plurality of second sheet-like conductive elastic bodies and converts each alternating current into a load measurement voltage. .
  • the plurality of second sheet-like conductive elastic bodies have a shape in which a single sheet-like conductive elastic body is divided into a plurality of portions by thin grooves.
  • the plurality of second sheet-like conductive elastic bodies are four of a thumb side front part, a little finger side front part, a thumb side rear part, and a little finger side rear part.
  • the load measuring apparatus of the present invention it is possible to measure the partial load applied to each part of the sole, and it is possible to measure stably and accurately with respect to environmental changes such as noise and temperature.
  • the load measuring device 1 includes a load sensor unit 2 and an electric circuit unit 3.
  • the load sensor unit 2 is provided on the inner bottom 4a of the footwear 4 as shown in FIG.
  • the load sensor unit 2 includes a first sheet-like elastic body 21 and a second sheet-like elastic body 22 as dielectrics, and a first sheet-like conductive elastic body 23 and a plurality of ( As shown in FIG. 1, a plurality of capacitors (a plurality of capacitors, for example, four) are used with the second sheet-like conductive elastic bodies 24a, 24b, 24c, 24d and the third sheet-like conductive elastic bodies 25 as electrodes.
  • First capacitors Ca 1 , Cb 1 , Cc 1 , Cd 1 and a plurality of second capacitors Ca 2 , Cb 2 , Cc 2 , Cd 2 ) are formed.
  • the first sheet-like elastic elastic body 23 and the second sheet-like conductive elastic body 24a are used as the first sheet-like elastic elastic body 24a.
  • the part sandwiching the body 21 forms the first capacitor Ca 1
  • the second sheet-like elastic body 24 a and the third sheet-like conductive elastic body 25 constitute the second sheet-like elastic body.
  • a portion where 22 is sandwiched forms a second capacitor Ca 2
  • the first capacitor Ca 1 and the second capacitor Ca 2 become the partial load sensor 2 a.
  • a portion in which the first sheet-like elastic body 21 is sandwiched between the first sheet-like conductive elastic body 23 and the second sheet-like conductive elastic body 24b forms a first capacitor Cb1, 2 of the sheet-like conductive elastic body 24b and the third sheet-like conductive elastic member 25 and the second sheet-like elastic member 22 a portion sandwiched sandwich form a second capacitor Cb 2, first The capacitor Cb 1 and the second capacitor Cb 2 serve as the partial load sensor 2b.
  • the first sheet-like conductive elastic body 23 and the first sheet-like elastic member 21 a portion sandwiched sandwiched between the second sheet-like conductive elastic body 24d is formed a first capacitor Cd 1, the 2 of the sheet-like conductive elastic body 24d and a third sheet-like conductive elastic member 25 and the second sheet-like elastic member 22 a portion sandwiched sandwich form a second capacitor Cd 2, first comprising capacitors Cd 1 between the second capacitor Cd 2 and partial load sensor 2d.
  • Each of the partial load sensors 2a to 2d detects the load (partial load) over the entire area defined by each of the second sheet-like conductive elastic bodies 24a to 24d.
  • the first sheet-like conductive elastic body 23 has a terminal 23t
  • the plurality of second sheet-like conductive elastic bodies 24a to 24d have terminals 24at, 24bt, 24ct, 24dt
  • a third sheet-like conductive elastic body 25 are provided with terminals 25t, respectively (see FIG. 1), connected to an electric circuit unit 3 to be described in detail later through wiring, and from the electric circuit unit 3 to the load sensor unit 2 or from the load sensor unit 2 to the electric circuit unit 3 An electrical signal (voltage or current) is sent to.
  • the load sensor unit 2 and the electric circuit unit 3 are used.
  • the number of wirings between is (number of partial load sensors 2a to 2d) +2.
  • the electric circuit unit 3 there are two AC output circuits for applying an AC voltage to the load sensor unit 2, a first AC output circuit 31 and a second AC output circuit 32. This means that the first sheet-like conductive elastic body 23 and the third sheet-like conductive elastic body 25 are not used in common in the partial load sensors 2a to 2d, and a plurality of first sheet-like conductive elastic bodies are used.
  • the number of wirings is (the number of partial load sensors 2a to 2d) ⁇ 3
  • the number of AC output circuits of the electric circuit unit 3 is Since (the number of partial load sensors 2a to 2d) ⁇ 2, when the first sheet-like conductive elastic body 23 and the third sheet-like conductive elastic body 25 are used in common by the partial load sensors 2a to 2d. This shows that the number of wirings and AC output circuits can be greatly reduced.
  • the conductive elastic body 25 is substantially the same as the shape of the inner bottom 4a of the footwear 4.
  • the first sheet-like elastic body 21 is provided with a large number of gaps or depressions 21s periodically, and the second sheet-like elastic body 22 is provided with the first sheet-like elasticity.
  • the body 21 is made of the same material (that is, a large number of voids or depressions are not provided periodically). Since the first sheet-like elastic body 21 is periodically provided with a large number of voids or depressions 21s, when a load is applied, the volume commensurate with the decrease in thickness expands in this portion, so that the load is almost equal to the load. The thickness changes proportionally. On the other hand, the second sheet-like elastic body 22 is so small that a change in thickness with respect to a load can be ignored.
  • the capacitance values of the plurality of first capacitors Ca 1 to Cd 1 and the plurality of second capacitors Ca 2 to Cd 2 can be expressed by the following equations, respectively.
  • Ca 1 ⁇ 1 ⁇ (Sa / da 1 )
  • Ca 2 ⁇ 2 ⁇ (Sa / d 2 )
  • Cb 1 ⁇ 1 ⁇ (Sb / db 1 )
  • Cb 2 ⁇ 2 ⁇ (Sb / d 2 )
  • Cc 1 ⁇ 1 ⁇ (Sc / dc 1 )
  • Cc 2 ⁇ 2 ⁇ (Sc / d 2 )
  • Cd 1 ⁇ 1 ⁇ (Sd / dd 1 )
  • Cd 2 ⁇ 2 ⁇ (Sd / d 2 )
  • the dielectric constants of the first sheet-like elastic body 21 and the second sheet-like elastic body 22 are respectively represented by ⁇ 1 and ⁇ 2 , and the areas of the plurality of second sheet-like
  • Sa 1 , db 1 , dc 1 are the thicknesses (average thicknesses) of the first sheet-like elastic bodies 21 of the plurality of second sheet-like conductive elastic bodies 24a to 24d, respectively. , Dd 1 .
  • the plurality of second sheet-like conductive elastic bodies 24a to 24d includes a single sheet-like conductive elastic body that is divided into a plurality (four in the figure) by thin groove portions 24g.
  • the shape is preferably divided. That is, it is preferable that the gaps between the plurality of second sheet-like conductive elastic bodies 24a to 24d are narrow.
  • the entire sole can be calculated by adding all the loads measured by the four parts of the thumb side front part, the little finger side front part, the thumb side rear part, and the little finger side rear part.
  • the load applied to the front of the sole can be calculated by adding the respective loads measured at the front of the thumb and the front of the little finger, and the load applied to the rear of the bottom of the foot It is possible to calculate by adding the respective loads measured at the rear part.
  • the first sheet-like elastic body 21 and the second sheet-like elastic body 22 include a first sheet-like conductive elastic body 23 such as insulating silicon rubber, and a plurality of second sheet-like conductive elastic bodies 24a. 24d, the third sheet-like conductive elastic body 25 can be made of conductive silicon rubber or the like. Also, a plurality of sheet-like elastic bodies 23 between the first sheet-like elastic elastic body 23 and the first sheet-like elastic body 21 and between the first sheet-like elastic body 21 and the plurality of second sheet-like conductive elastic bodies 24a to 24d. Between the second sheet-like conductive elastic bodies 24a to 24d and the second sheet-like elastic body 22, and between the second sheet-like elastic body 22 and the third sheet-like conductive elastic body 25, for example, is thin. It is possible to bond using an adhesive or the like.
  • the electric circuit unit 3 applies an AC voltage V 1 to the terminal 23 t of the first sheet-like conductive elastic body 23 and applies an AC current Ia to the plurality of first capacitors Ca 1 to Cd 1. 1 , Ib 1 , Ic 1 , Id 1 , and a plurality of second capacitors Ca by applying an AC voltage V 2 to the terminal 25 t of the third sheet-like conductive elastic body 25.
  • a second AC output circuit 32 for flowing AC currents Ia 2 , Ib 2 , Ic 2 , and Id 2, and AC currents flowing to terminals 24 at to 24 dt of the second sheet-like conductive elastic bodies 24 a to 24 d
  • a plurality of current measurement circuits 33a, 33b, 33c, and 33d that measure Ia 3 , Ib 3 , Ic 3 , and Id 3 and convert them into voltages (load measurement voltages Va, Vb, Vc, and Vd).
  • the load measurement voltages Va to Vd are voltages corresponding to the load distribution (partial load).
  • the AC voltage V 1 applied to the terminal 23 t of the first sheet-like conductive elastic body 23 and the AC voltage V 2 applied to the terminal 25 t of the third sheet-like conductive elastic body 25 are:
  • the ground potential is set as a reference potential
  • the terminals 24at to 24dt of the plurality of second sheet-like conductive elastic bodies 24a to 24d are set to be held at the same potential as the ground potential.
  • the first AC output circuit 31 and the second AC output circuit 32 have a phase difference of 180 degrees between the AC currents Ia 1 to Id 1 and the AC currents Ia 2 to Id 2 when no load is applied to the load sensor unit 2. If the AC voltage V 1 and the AC voltage V 2 are adjusted (offset zero adjustment) so that the amplitudes are equal, the AC currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 Since the alternating currents Ia 2 to Id 2 flow through the second Ca 2 to Cd 2, the alternating currents Ia 3 to Id are supplied to the terminals 24 at to 24 dt of the second sheet-like conductive elastic body 24, that is, the plurality of current measuring circuits 33 a to 33 d. 3 does not flow.
  • the offset zero adjustment can be performed as follows.
  • Ca 1 ⁇ 1 ⁇ (Sa / d 1 )
  • Cb 1 ⁇ 1 ⁇ (Sb / d 1 )
  • Cc 1 ⁇ 1 ⁇ (Sc / d 1)
  • Cd 1 ⁇ 1 ⁇ (Sd / d 1 ).
  • the thickness of the first sheet-shaped elastic body 21 as d 1.
  • the capacitance ratio of the capacitor of the first sheet-like elastic body 21 and the capacitor of the second sheet-like elastic body 22 in the conductive elastic bodies 24a to 24d is all constant.
  • the alternating current ratio Ia 1 / Ia 2 , Ib 1 / Ib 2 , Ic 1 / Ic 2 , Id 1 / Id 2 are V 1 ⁇ Ca 1 / V 2 ⁇ Ca 2 , V 1 ⁇ Cb 1 / V 2 ⁇ Cb 2 , V 1 ⁇ Cc, respectively. Since 1 / V 2 ⁇ Cc 2 and V 1 ⁇ Cd 1 / V 2 ⁇ Cd 2 , they are all 1.
  • the alternating currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 flow as the alternating currents Ia 2 to Id 2 through the plurality of second capacitors Ca 2 to Cd 2 , and the second sheet AC currents Ia 3 to Id 3 do not flow through the terminals 24at to 24dt of the conductive elastic bodies 24a to 24d, that is, the current measuring circuits 33a to 33d.
  • the voltage ratio of the alternating voltage V 2 to the AC voltages V 1 In the manner described above, all of the respective partial load sensors 2a ⁇ 2d, at the same time, it is possible to offset nulling.
  • the plurality of partial load sensors 2a to 2d commonly use the first sheet-like elastic body 21 and the second sheet-like elastic body 22 as dielectrics, and the first sheet-like conductive elastic body 23 and the second sheet-like elastic body 23 This is because the three sheet-like conductive elastic bodies 25 are commonly used as electrodes.
  • the AC voltage V 1 (or AC voltage V 2 ) can have a frequency of about 10 KHz and an amplitude of about 5 V, for example.
  • the capacitance values of the plurality of first capacitors Ca 1 to Cd 1 are increased in accordance with the load distribution, and the alternating currents Ia 1 to Id 1 flowing through the first capacitors are increased.
  • the capacitance values of the plurality of second capacitors Ca 2 to Cd 2 hardly change, the alternating currents Ia 2 to Id 2 flowing through the second capacitors Ca 2 to Cd 2 hardly change. Therefore, the difference between the alternating currents Ia 1 to Id 1 and the alternating currents Ia 2 to Id 2 flows as the alternating currents Ia 3 to Id 3 in the terminals 24at to 24dt of the second sheet-like conductive elastic bodies 24a to 24d. Then, in the electric circuit unit 3, the alternating currents Ia 3 to Id 3 are converted into load measurement voltages Va to Vd.
  • load measurement is performed by the difference between the alternating currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 and the alternating currents Ia 2 to Id 2 flowing through the plurality of second capacitors Ca 2 to Cd 2. Since the voltages Va to Vd are obtained, the measurement is stable with respect to environmental changes such as noise and temperature, and highly accurate measurement is possible.
  • the electric circuit portion 3 can be disposed below the load sensor portion 2 on the inner bottom 4a of the footwear 4.
  • the terminal 23t of the first sheet-like conductive elastic body 23 in the load sensor unit 2 and the terminals 24at to 24dt of the plurality of second sheet-like conductive elastic bodies 24a to 24d pass through a short vertical wiring.
  • Short wiring contributes to stable and accurate measurement with respect to environmental changes such as noise and temperature.
  • the electric circuit part 3 can be made substantially the same as the shape of the inner bottom 4 a of the footwear 4, like the first sheet-like elastic body 21 of the load sensor part 2.
  • the electric circuit unit 3 can also be arranged at other locations of the footwear 4 by using a slightly longer cable for wiring connection with the load sensor unit 2.
  • the electric circuit unit 3 can also convert the obtained load measurement voltages Va to Vd into digital data load measurement values and send them wirelessly to a load display device 5 as shown in FIG. 2B. It is.
  • the load display device 5 displays, for example, the load measurement values as they are or displays the ratio between the load measurement values.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Provided is a load measuring apparatus capable of measuring a partial load acting on each portion of the sole of a foot, and capable of highly accurate and stable measurements with respect to environmental changes such as noise and temperature. This load measuring apparatus 1 comprises: a load sensor unit 2 obtained by forming a plurality of capacitors Ca1-Cd1, Ca2-Cd2 wherein a first sheet-shaped elastic body 21 cyclically provided with a plurality of cavities and a flat second sheet-shaped elastic body 22 serve as dielectric bodies, and a first sheet-shaped conductive elastic body 23, a plurality of second sheet-shaped conductive elastic bodies 24a-24d, and a third sheet-shaped conductive elastic body 25 serve as electrodes; and an electric circuit 3 that has first and second AC output circuits 31, 32 that apply an AC voltage to terminals 23t, 25t of the first and third sheet-shaped conductive elastic bodies 23, 25, and current measurement circuits 33a-33d that measure the AC currents flowing to terminals 24at-24dt of the plurality of the second sheet-shaped conductive elastic bodies 24a-24d, and converts the AC currents into load measurement voltages.

Description

荷重計測装置Load measuring device
 本発明は、履物の内底に設けられる荷重センサ部を備えてなる荷重計測装置に関する。 The present invention relates to a load measuring device including a load sensor portion provided on the inner bottom of footwear.
 従来より、履物の内底に設けられる荷重センサ部を備えてなる荷重計測装置が知られている。この荷重計測装置は、下肢に掛かる荷重を自由な歩行中に計測できる。そのため、下肢にかける荷重を徐々に増していくような下肢のリハビリテーションなどに有用である。この荷重計測装置の中には、その荷重センサ部における荷重による静電容量の変化を電気的に検出するものが有る。 Conventionally, a load measuring device including a load sensor unit provided on the inner bottom of footwear is known. This load measuring device can measure the load applied to the lower limbs during free walking. Therefore, it is useful for rehabilitation of the lower limbs and the like that gradually increase the load applied to the lower limbs. Some of these load measuring devices electrically detect a change in capacitance due to a load in the load sensor unit.
 例えば、特許文献1には、靴の敷皮状に形成され、足底の各部分(後足部分、左側前足部、右側前足部)にかかる部分荷重に対応してそれぞれ静電容量が変化する複数の可変容量式圧力センサ(荷重センサ部)を有する歩行因子解析装置(荷重計測装置)が開示されている。可変容量式圧力センサの可変容量コンデンサの容量変化は、パルス発振周波数の変化として取り出される。この歩行因子解析装置は、各部分の部分荷重を計測して、より厳密な歩行状態の解析を行うことができる。 For example, in Patent Document 1, the capacitance is changed corresponding to partial loads formed on shoe soles and applied to each part of the sole (the rear foot part, the left front foot part, and the right front foot part). A walking factor analyzer (load measuring device) having a plurality of variable capacitance pressure sensors (load sensor units) is disclosed. The change in capacitance of the variable capacitor of the variable capacitance pressure sensor is taken out as a change in pulse oscillation frequency. This walking factor analyzer can measure the partial load of each part and analyze the walking state more strictly.
 また、特許文献2には、装着者の足の裏面の輪郭形状に合わせて形成され、体重移動によって変化する足の裏面の複数箇所の静電容量を検出する荷重測定部(荷重センサ部)を有する重心位置検出装置(荷重計測装置)が開示されている。静電容量を形成する上側電極と下側電極のうち一方をGNDに接続し他方を定電圧電源に接続し、上側電極と前記下側電極との間の電圧値が所定値に達するまでの時間から静電容量を演算する。この重心位置検出装置は、重心位置の移動を検出することができる。 Patent Document 2 discloses a load measuring unit (load sensor unit) that is formed in conformity with the contour shape of the back surface of the wearer's foot and detects capacitance at a plurality of locations on the back surface of the foot that changes due to weight shift. A center-of-gravity position detection device (load measurement device) is disclosed. Time until one of the upper electrode and the lower electrode forming the capacitance is connected to GND and the other is connected to a constant voltage power source, and the voltage value between the upper electrode and the lower electrode reaches a predetermined value To calculate the capacitance. The center-of-gravity position detection device can detect the movement of the center-of-gravity position.
 また、特許文献3には、多数の空隙または窪みを周期的に設けたシート状弾性体と、それと同材質の平坦なシート状弾性体とを誘電体とし、これらの誘電体をサンドイッチ状にはさんだ3枚のシート状導電性弾性体を電極として二つのコンデンサを形成してなる荷重センサ部を有する荷重計測装置が開示されている。この荷重計測装置は、荷重センサ部に分布してかかる荷重の総量を検出し、また、二つのコンデンサの荷重による静電容量の変化を差動検出するため、ノイズや温度等の環境変化に対して安定であり、特許文献1及び2に記載されたものなどに比べて、精度の高い計測が可能である。 In Patent Document 3, a sheet-like elastic body in which a large number of voids or depressions are periodically provided and a flat sheet-like elastic body made of the same material are used as dielectrics, and these dielectrics are sandwiched. A load measuring device having a load sensor portion formed by forming two capacitors using three sheet-like conductive elastic bodies as electrodes is disclosed. This load measuring device detects the total amount of load that is distributed across the load sensor section, and differentially detects the change in capacitance due to the load of the two capacitors. Therefore, it is possible to measure with higher accuracy than those described in Patent Documents 1 and 2.
特開平02-55045号公報Japanese Patent Laid-Open No. 02-55045 国際公開WO2009/084387号公報International Publication WO2009 / 084387 特開2008-107231号公報JP 2008-107231 A
 しかしながら、特許文献3に記載の荷重計測装置においても、特許文献1及び2に記載されたもののように足底の各部分にかかる部分荷重を計測して、重心動揺検査など、より厳密な歩行状態の解析が望まれる場合も有る。 However, even in the load measuring device described in Patent Document 3, the load on each part of the sole is measured as in Patent Documents 1 and 2, and the strict walking state such as the center-of-gravity sway test is performed. In some cases, analysis of the above is desired.
 本発明は、係る事由に鑑みてなされたものであり、その目的は、足底の各部分にかかる部分荷重を計測でき、かつ、ノイズや温度等の環境変化に対して安定し精度の高い計測が可能な荷重計測装置を提供することにある。 The present invention has been made in view of the above reasons, and its purpose is to measure the partial load applied to each part of the sole, and to measure stably and highly accurately with respect to environmental changes such as noise and temperature. It is in providing the load measuring device which can do.
 上記目的を達成するために、本発明の実施形態に係る荷重計測装置は、多数の空隙または窪みを周期的に設けた第1のシート状弾性体と、それと同材質の平坦な第2のシート状弾性体とを誘電体とし、第1のシート状導電性弾性体と、該第1のシート状導電性弾性体との間で前記第1のシート状弾性体をサンドイッチ状に挟む複数の第2のシート状導電性弾性体と、該複数の第2のシート状導電性弾性体との間で前記第2のシート状弾性体をサンドイッチ状に挟む第2のシート状導電性弾性体とを電極として複数のコンデンサを形成してなり、履物の内底に設けられた荷重センサ部と、前記第1のシート状導電性弾性体の端子に交流電圧を印加する第1の交流出力回路、前記第3のシート状導電性弾性体の端子に交流電圧を印加する第2の交流出力回路、前記複数の第2のシート状導電性弾性体の端子に流れる各々の交流電流を測定し各々の荷重計測電圧に変換する電流測定回路、を有する電気回路部と、を備えてなる。 In order to achieve the above object, a load measuring device according to an embodiment of the present invention includes a first sheet-like elastic body provided with a large number of gaps or depressions and a flat second sheet made of the same material. A plurality of first sheet-like elastic bodies sandwiched between the first sheet-like conductive elastic body and the first sheet-like conductive elastic body. Two sheet-like conductive elastic bodies, and a second sheet-like conductive elastic body sandwiching the second sheet-like elastic bodies between the plurality of second sheet-like conductive elastic bodies. A plurality of capacitors formed as electrodes, a load sensor provided on the inner bottom of the footwear, a first AC output circuit for applying an AC voltage to a terminal of the first sheet-like conductive elastic body, Second voltage is applied to the terminal of the third sheet-like conductive elastic body. An electric circuit unit including a current output circuit and a current measurement circuit that measures each alternating current flowing through the terminals of the plurality of second sheet-like conductive elastic bodies and converts each alternating current into a load measurement voltage. .
 好ましくは、前記複数の第2のシート状導電性弾性体は、1層のシート状導電性弾性体が細い溝部によって複数個に分断されたものの形状である。 Preferably, the plurality of second sheet-like conductive elastic bodies have a shape in which a single sheet-like conductive elastic body is divided into a plurality of portions by thin grooves.
 好ましくは、前記複数の第2のシート状導電性弾性体は、親指側前部、小指側前部、親指側後部、小指側後部の4個である。 Preferably, the plurality of second sheet-like conductive elastic bodies are four of a thumb side front part, a little finger side front part, a thumb side rear part, and a little finger side rear part.
 本発明の荷重計測装置によれば、足底の各部分にかかる部分荷重を計測でき、かつ、ノイズや温度等の環境変化に対して安定し精度の高い計測が可能になる。 According to the load measuring apparatus of the present invention, it is possible to measure the partial load applied to each part of the sole, and it is possible to measure stably and accurately with respect to environmental changes such as noise and temperature.
本発明の実施形態に係る荷重計測装置を示すブロック回路図である。It is a block circuit diagram showing a load measuring device concerning an embodiment of the present invention. 同上の荷重計測装置の使用例を示す模式図であり、(a)が履物、(b)が荷重表示装置である。It is a schematic diagram which shows the usage example of a load measuring device same as the above, (a) is footwear, (b) is a load display apparatus. 同上の荷重計測装置の荷重センサ部の模式図である。It is a schematic diagram of the load sensor part of a load measuring device same as the above. 同上の荷重計測装置の荷重センサ部の構成要素を分離して示す平面図である。It is a top view which isolate | separates and shows the component of the load sensor part of a load measuring device same as the above. 同上の荷重計測装置の荷重センサ部の詳細な構造を模式的に示すもので、(a)が拡大断面図、(b)が第1のシート状弾性体の拡大平面図である。The detailed structure of the load sensor part of a load measuring device same as the above is shown typically, (a) is an expanded sectional view, (b) is an enlarged plan view of a 1st sheet-like elastic body.
 以下、本発明を実施するための形態を説明する。本発明の実施形態に係る荷重計測装置1は、図1に示すように、荷重センサ部2と電気回路部3と、を備えている。 Hereinafter, modes for carrying out the present invention will be described. As shown in FIG. 1, the load measuring device 1 according to the embodiment of the present invention includes a load sensor unit 2 and an electric circuit unit 3.
 荷重センサ部2は、図2(a)に示すような履物4の内底4aに設けられている。荷重センサ部2は、図3に示すように、第1のシート状弾性体21と第2のシート状弾性体22とを誘電体とし、第1のシート状導電性弾性体23と複数の(例えば4個の)第2のシート状導電性弾性体24a、24b、24c、24dと第3のシート状導電性弾性体25とを電極として、図1に示すように、複数のコンデンサ(複数の第1のコンデンサCa、Cb、Cc、Cdと複数の第2のコンデンサCa、Cb、Cc、Cd)を形成してなる。 The load sensor unit 2 is provided on the inner bottom 4a of the footwear 4 as shown in FIG. As shown in FIG. 3, the load sensor unit 2 includes a first sheet-like elastic body 21 and a second sheet-like elastic body 22 as dielectrics, and a first sheet-like conductive elastic body 23 and a plurality of ( As shown in FIG. 1, a plurality of capacitors (a plurality of capacitors, for example, four) are used with the second sheet-like conductive elastic bodies 24a, 24b, 24c, 24d and the third sheet-like conductive elastic bodies 25 as electrodes. First capacitors Ca 1 , Cb 1 , Cc 1 , Cd 1 and a plurality of second capacitors Ca 2 , Cb 2 , Cc 2 , Cd 2 ) are formed.
 つまり、例えば4個の第2のシート状導電性弾性体24a~24dの場合、第1のシート状導電性弾性体23と第2のシート状導電性弾性体24aとで第1のシート状弾性体21をサンドイッチ状に挟んだ部分が第1のコンデンサCaを形成し、第2のシート状導電性弾性体24aと第3のシート状導電性弾性体25とで第2のシート状弾性体22をサンドイッチ状に挟んだ部分が第2のコンデンサCaを形成し、第1のコンデンサCaと第2のコンデンサCaとが部分荷重センサ2aとなる。第1のシート状導電性弾性体23と第2のシート状導電性弾性体24bとで第1のシート状弾性体21をサンドイッチ状に挟んだ部分が第1のコンデンサCbを形成し、第2のシート状導電性弾性体24bと第3のシート状導電性弾性体25とで第2のシート状弾性体22をサンドイッチ状に挟んだ部分が第2のコンデンサCbを形成し、第1のコンデンサCbと第2のコンデンサCbとが部分荷重センサ2bとなる。第1のシート状導電性弾性体23と第2のシート状導電性弾性体24cとで第1のシート状弾性体21をサンドイッチ状に挟んだ部分が第1のコンデンサCcを形成し、第2のシート状導電性弾性体24cと第3のシート状導電性弾性体25とで第2のシート状弾性体22をサンドイッチ状に挟んだ部分が第2のコンデンサCcを形成し、第1のコンデンサCcと第2のコンデンサCcとが部分荷重センサ2cとなる。第1のシート状導電性弾性体23と第2のシート状導電性弾性体24dとで第1のシート状弾性体21をサンドイッチ状に挟んだ部分が第1のコンデンサCdを形成し、第2のシート状導電性弾性体24dと第3のシート状導電性弾性体25とで第2のシート状弾性体22をサンドイッチ状に挟んだ部分が第2のコンデンサCdを形成し、第1のコンデンサCdと第2のコンデンサCdとが部分荷重センサ2dとなる。これらの部分荷重センサ2a~2dは各々、第2のシート状導電性弾性体24a~24dの各々が画定する部分の全域にわたって荷重(部分荷重)を不足なく検出するものとなる。 That is, for example, in the case of four second sheet-like conductive elastic bodies 24a to 24d, the first sheet-like elastic elastic body 23 and the second sheet-like conductive elastic body 24a are used as the first sheet-like elastic elastic body 24a. The part sandwiching the body 21 forms the first capacitor Ca 1 , and the second sheet-like elastic body 24 a and the third sheet-like conductive elastic body 25 constitute the second sheet-like elastic body. A portion where 22 is sandwiched forms a second capacitor Ca 2 , and the first capacitor Ca 1 and the second capacitor Ca 2 become the partial load sensor 2 a. A portion in which the first sheet-like elastic body 21 is sandwiched between the first sheet-like conductive elastic body 23 and the second sheet-like conductive elastic body 24b forms a first capacitor Cb1, 2 of the sheet-like conductive elastic body 24b and the third sheet-like conductive elastic member 25 and the second sheet-like elastic member 22 a portion sandwiched sandwich form a second capacitor Cb 2, first The capacitor Cb 1 and the second capacitor Cb 2 serve as the partial load sensor 2b. A portion in which the first sheet-like elastic body 21 is sandwiched between the first sheet-like conductive elastic body 23 and the second sheet-like conductive elastic body 24c forms a first capacitor Cc1, A portion in which the second sheet-like elastic body 22 is sandwiched between the second sheet-like conductive elastic body 24c and the third sheet-like conductive elastic body 25 forms a second capacitor Cc2. comprising capacitors Cc 1 and the second capacitor Cc 2 and partial load sensor 2c. The first sheet-like conductive elastic body 23 and the first sheet-like elastic member 21 a portion sandwiched sandwiched between the second sheet-like conductive elastic body 24d is formed a first capacitor Cd 1, the 2 of the sheet-like conductive elastic body 24d and a third sheet-like conductive elastic member 25 and the second sheet-like elastic member 22 a portion sandwiched sandwich form a second capacitor Cd 2, first comprising capacitors Cd 1 between the second capacitor Cd 2 and partial load sensor 2d. Each of the partial load sensors 2a to 2d detects the load (partial load) over the entire area defined by each of the second sheet-like conductive elastic bodies 24a to 24d.
 第1のシート状導電性弾性体23には端子23t、複数の第2のシート状導電性弾性体24a~24dには端子24at、24bt、24ct、24dt、第3のシート状導電性弾性体25には端子25t、がそれぞれ設けられ(図1参照)、配線を通して、後に詳述する電気回路部3に接続され、電気回路部3から荷重センサ部2へ又は荷重センサ部2から電気回路部3へ電気信号(電圧又は電流)が送られる。 The first sheet-like conductive elastic body 23 has a terminal 23t, the plurality of second sheet-like conductive elastic bodies 24a to 24d have terminals 24at, 24bt, 24ct, 24dt, and a third sheet-like conductive elastic body 25. Are provided with terminals 25t, respectively (see FIG. 1), connected to an electric circuit unit 3 to be described in detail later through wiring, and from the electric circuit unit 3 to the load sensor unit 2 or from the load sensor unit 2 to the electric circuit unit 3 An electrical signal (voltage or current) is sent to.
 このように、第1のシート状導電性弾性体23と第3のシート状導電性弾性体25とを部分荷重センサ2a~2dで共通に用いているので、荷重センサ部2と電気回路部3の間の配線の数は、(部分荷重センサ2a~2dの数)+2となっている。また、後述するように電気回路部3においては、荷重センサ部2に交流電圧を印加する交流出力回路は、第1の交流出力回路31と第2の交流出力回路32の2個となる。このことは、第1のシート状導電性弾性体23と第3のシート状導電性弾性体25とを部分荷重センサ2a~2dで共通に用いずに複数の第1のシート状導電性弾性体と複数の第3のシート状導電性弾性体を用いた場合には、配線の数は、(部分荷重センサ2a~2dの数)×3となり、電気回路部3の交流出力回路の数は、(部分荷重センサ2a~2dの数)×2となるので、第1のシート状導電性弾性体23と第3のシート状導電性弾性体25とを部分荷重センサ2a~2dで共通に用いると、配線と交流出力回路の数を非常に少なくすることができることを示している。 Thus, since the first sheet-like conductive elastic body 23 and the third sheet-like conductive elastic body 25 are commonly used by the partial load sensors 2a to 2d, the load sensor unit 2 and the electric circuit unit 3 are used. The number of wirings between is (number of partial load sensors 2a to 2d) +2. Further, as will be described later, in the electric circuit unit 3, there are two AC output circuits for applying an AC voltage to the load sensor unit 2, a first AC output circuit 31 and a second AC output circuit 32. This means that the first sheet-like conductive elastic body 23 and the third sheet-like conductive elastic body 25 are not used in common in the partial load sensors 2a to 2d, and a plurality of first sheet-like conductive elastic bodies are used. When the plurality of third sheet-like conductive elastic bodies are used, the number of wirings is (the number of partial load sensors 2a to 2d) × 3, and the number of AC output circuits of the electric circuit unit 3 is Since (the number of partial load sensors 2a to 2d) × 2, when the first sheet-like conductive elastic body 23 and the third sheet-like conductive elastic body 25 are used in common by the partial load sensors 2a to 2d. This shows that the number of wirings and AC output circuits can be greatly reduced.
 第1シート状弾性体21、第2のシート状弾性体22、第1のシート状導電性弾性体23、複数の第2のシート状導電性弾性体24a~24dの集合体、第3のシート状導電性弾性体25は、図4(a)~(e)に示すように、履物4の内底4aの形状と略同一になっている。 First sheet-like elastic body 21, second sheet-like elastic body 22, first sheet-like conductive elastic body 23, an assembly of a plurality of second sheet-like conductive elastic bodies 24a to 24d, and a third sheet As shown in FIGS. 4A to 4E, the conductive elastic body 25 is substantially the same as the shape of the inner bottom 4a of the footwear 4.
 また、図5に示すように、第1のシート状弾性体21は、多数の空隙または窪み21sを周期的に設けたものとし、第2のシート状弾性体22は、第1のシート状弾性体21と同材質の平坦な(つまり、多数の空隙または窪みを周期的に設けていない)ものとしている。第1のシート状弾性体21は、多数の空隙または窪み21sが周期的に設けられているため、荷重を受けたとき、厚さの減少に見合う体積がこの部分に広がることにより、荷重にほぼ比例して厚さが変化する。一方、第2のシート状弾性体22は、荷重に対する厚さの変化は無視できるほど小さい。 Further, as shown in FIG. 5, the first sheet-like elastic body 21 is provided with a large number of gaps or depressions 21s periodically, and the second sheet-like elastic body 22 is provided with the first sheet-like elasticity. The body 21 is made of the same material (that is, a large number of voids or depressions are not provided periodically). Since the first sheet-like elastic body 21 is periodically provided with a large number of voids or depressions 21s, when a load is applied, the volume commensurate with the decrease in thickness expands in this portion, so that the load is almost equal to the load. The thickness changes proportionally. On the other hand, the second sheet-like elastic body 22 is so small that a change in thickness with respect to a load can be ignored.
 よって、複数の第1のコンデンサCa~Cdと複数の第2のコンデンサCa~Cdの容量値はそれぞれ、以下の式で表すことができる。
Ca=ε・(Sa/da)  Ca=ε・(Sa/d
Cb=ε・(Sb/db)  Cb=ε・(Sb/d
Cc=ε・(Sc/dc)  Cc=ε・(Sc/d
Cd=ε・(Sd/dd)  Cd=ε・(Sd/d
ここで、第1のシート状弾性体21と第2のシート状弾性体22の誘電率をそれぞれ、ε、ε、複数の第2のシート状導電性弾性体24a~24dの面積をそれぞれSa、Sb、Sc、Sd、複数の第2のシート状導電性弾性体24a~24dにおける第1のシート状弾性体21の厚さ(平均の厚さ)をそれぞれda、db、dc、ddとしている。第2のシート状弾性体22の厚さは、荷重によって変化しないとして、複数の第2のシート状導電性弾性体24a~24dにおける第1のシート状弾性体22の厚さを全てdとしている。
Therefore, the capacitance values of the plurality of first capacitors Ca 1 to Cd 1 and the plurality of second capacitors Ca 2 to Cd 2 can be expressed by the following equations, respectively.
Ca 1 = ε 1 · (Sa / da 1 ) Ca 2 = ε 2 · (Sa / d 2 )
Cb 1 = ε 1 · (Sb / db 1 ) Cb 2 = ε 2 · (Sb / d 2 )
Cc 1 = ε 1 · (Sc / dc 1 ) Cc 2 = ε 2 · (Sc / d 2 )
Cd 1 = ε 1 · (Sd / dd 1 ) Cd 2 = ε 2 · (Sd / d 2 )
Here, the dielectric constants of the first sheet-like elastic body 21 and the second sheet-like elastic body 22 are respectively represented by ε 1 and ε 2 , and the areas of the plurality of second sheet-like conductive elastic bodies 24a to 24d are respectively represented. Sa 1 , db 1 , dc 1 are the thicknesses (average thicknesses) of the first sheet-like elastic bodies 21 of the plurality of second sheet-like conductive elastic bodies 24a to 24d, respectively. , Dd 1 . The thickness of the second sheet-like elastic body 22, as unchanged by the load, as all the thickness of the first sheet-like elastic member 22 at a plurality of second sheet-like conductive elastic body 24a ~ 24d d 2 Yes.
 複数の第2のシート状導電性弾性体24a~24dは、図4(c)に示すように、1層のシート状導電性弾性体が、細い溝部24gによって複数個(図では4個)に分断されたものの形状であるのが好ましい。すなわち、複数の第2のシート状導電性弾性体24a~24dにおける互いの隙間は、狭いものであるのが好ましい。例えば、複数の第2のシート状導電性弾性体24a~24dが親指側前部、小指側前部、親指側後部、小指側後部の4個である場合、溝部24gが細いので、足底全体にかかる荷重は、親指側前部、小指側前部、親指側後部、小指側後部の4個で計測した各々の荷重を全て足し合わせて算出することができる。また、足底前部にかかる荷重は、親指側前部と小指側前部で計測した各々の荷重を足し合わせて算出することができ、足底後部にかかる荷重は、親指側後部と小指側後部で計測した各々の荷重を足し合わせて算出することができる。 As shown in FIG. 4 (c), the plurality of second sheet-like conductive elastic bodies 24a to 24d includes a single sheet-like conductive elastic body that is divided into a plurality (four in the figure) by thin groove portions 24g. The shape is preferably divided. That is, it is preferable that the gaps between the plurality of second sheet-like conductive elastic bodies 24a to 24d are narrow. For example, when the plurality of second sheet-like conductive elastic bodies 24a to 24d are four on the thumb side front part, the little finger side front part, the thumb side rear part, and the little finger side rear part, since the groove part 24g is thin, the entire sole Can be calculated by adding all the loads measured by the four parts of the thumb side front part, the little finger side front part, the thumb side rear part, and the little finger side rear part. The load applied to the front of the sole can be calculated by adding the respective loads measured at the front of the thumb and the front of the little finger, and the load applied to the rear of the bottom of the foot It is possible to calculate by adding the respective loads measured at the rear part.
 なお、第1シート状弾性体21及び第2のシート状弾性体22は、絶縁性のシリコンゴムなど、第1のシート状導電性弾性体23、複数の第2のシート状導電性弾性体24a~24d、第3のシート状導電性弾性体25は、導電性のシリコンゴムなどを用いることができる。また、第1のシート状導電性弾性体23と第1シート状弾性体21の間、第1シート状弾性体21と複数の第2のシート状導電性弾性体24a~24dの間、複数の第2のシート状導電性弾性体24a~24dと第2のシート状弾性体22の間、第2のシート状弾性体22と第3のシート状導電性弾性体25の間はそれぞれ、例えば薄い接着剤などを用いて接着することが可能である。 The first sheet-like elastic body 21 and the second sheet-like elastic body 22 include a first sheet-like conductive elastic body 23 such as insulating silicon rubber, and a plurality of second sheet-like conductive elastic bodies 24a. 24d, the third sheet-like conductive elastic body 25 can be made of conductive silicon rubber or the like. Also, a plurality of sheet-like elastic bodies 23 between the first sheet-like elastic elastic body 23 and the first sheet-like elastic body 21 and between the first sheet-like elastic body 21 and the plurality of second sheet-like conductive elastic bodies 24a to 24d. Between the second sheet-like conductive elastic bodies 24a to 24d and the second sheet-like elastic body 22, and between the second sheet-like elastic body 22 and the third sheet-like conductive elastic body 25, for example, is thin. It is possible to bond using an adhesive or the like.
 電気回路部3は、図1に示すように、第1のシート状導電性弾性体23の端子23tに交流電圧Vを印加して複数の第1のコンデンサCa~Cdに交流電流Ia、Ib、Ic、Idを流す第1の交流出力回路31と、第3のシート状導電性弾性体25の端子25tに交流電圧Vを印加して複数の第2のコンデンサCa~Cdに交流電流Ia、Ib、Ic、Idを流す第2の交流出力回路32と、第2のシート状導電性弾性体24a~24dの端子24at~24dtに流れる交流電流Ia、Ib、Ic、Idを測定し電圧(荷重計測電圧Va、Vb、Vc、Vd)に変換する複数の電流測定回路33a、33b、33c、33dと、を有している。荷重計測電圧Va~Vdは、荷重の分布(部分荷重)に応じた電圧である。本実施形態では、第1のシート状導電性弾性体23の端子23tに印加される交流電圧Vと第3のシート状導電性弾性体25の端子25tに印加される交流電圧Vは、接地電位を基準電位として設定され、複数の第2のシート状導電性弾性体24a~24dの端子24at~24dtは接地電位と同電位に保持されるように設定されている。 As shown in FIG. 1, the electric circuit unit 3 applies an AC voltage V 1 to the terminal 23 t of the first sheet-like conductive elastic body 23 and applies an AC current Ia to the plurality of first capacitors Ca 1 to Cd 1. 1 , Ib 1 , Ic 1 , Id 1 , and a plurality of second capacitors Ca by applying an AC voltage V 2 to the terminal 25 t of the third sheet-like conductive elastic body 25. 2 to Cd 2 , a second AC output circuit 32 for flowing AC currents Ia 2 , Ib 2 , Ic 2 , and Id 2, and AC currents flowing to terminals 24 at to 24 dt of the second sheet-like conductive elastic bodies 24 a to 24 d And a plurality of current measurement circuits 33a, 33b, 33c, and 33d that measure Ia 3 , Ib 3 , Ic 3 , and Id 3 and convert them into voltages (load measurement voltages Va, Vb, Vc, and Vd). The load measurement voltages Va to Vd are voltages corresponding to the load distribution (partial load). In the present embodiment, the AC voltage V 1 applied to the terminal 23 t of the first sheet-like conductive elastic body 23 and the AC voltage V 2 applied to the terminal 25 t of the third sheet-like conductive elastic body 25 are: The ground potential is set as a reference potential, and the terminals 24at to 24dt of the plurality of second sheet-like conductive elastic bodies 24a to 24d are set to be held at the same potential as the ground potential.
 第1の交流出力回路31と第2の交流出力回路32は、荷重センサ部2に荷重がかかっていないとき交流電流Ia~Idと交流電流Ia~Idが180度の位相差で振幅が等しくなるように、交流電圧Vと交流電圧Vを調整(オフセットゼロ調整)すれば、複数の第1のコンデンサCa~Cdに流れる交流電流Ia~Idは、複数の第2のCa2~Cd2に交流電流Ia~Idとして流れるので、第2のシート状導電性弾性体24の端子24at~24dt、つまり複数の電流測定回路33a~33dに交流電流Ia~Idは流れない。 The first AC output circuit 31 and the second AC output circuit 32 have a phase difference of 180 degrees between the AC currents Ia 1 to Id 1 and the AC currents Ia 2 to Id 2 when no load is applied to the load sensor unit 2. If the AC voltage V 1 and the AC voltage V 2 are adjusted (offset zero adjustment) so that the amplitudes are equal, the AC currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 Since the alternating currents Ia 2 to Id 2 flow through the second Ca 2 to Cd 2, the alternating currents Ia 3 to Id are supplied to the terminals 24 at to 24 dt of the second sheet-like conductive elastic body 24, that is, the plurality of current measuring circuits 33 a to 33 d. 3 does not flow.
 オフセットゼロ調整は、以下のようにすることができる。荷重センサ部2に荷重がかかっていないときは、Ca=ε・(Sa/d)、Cb=ε・(Sb/d)、Cc=ε・(Sc/d)、Cd=ε・(Sd/d)、となる。ここで、第1のシート状弾性体21の厚さをdとしている。従って、Ca/Ca=Cb/Cb=Cc/Cc=Cd/Cd=(ε・d)/(ε・d)となり、複数の第2のシート状導電性弾性体24a~24dにおける第1のシート状弾性体21のコンデンサと第2のシート状弾性体22のコンデンサの容量比は、全て一定になる。 The offset zero adjustment can be performed as follows. When no load is applied to the load sensor unit 2, Ca 1 = ε 1 · (Sa / d 1 ), Cb 1 = ε 1 · (Sb / d 1 ), Cc 1 = ε 1 · (Sc / d 1) ), Cd 1 = ε 1 · (Sd / d 1 ). Here, the thickness of the first sheet-shaped elastic body 21 as d 1. Accordingly, Ca 1 / Ca 2 = Cb 1 / Cb 2 = Cc 1 / Cc 2 = Cd 1 / Cd 2 = (ε 1 · d 2 ) / (ε 2 · d 1 ), and a plurality of second sheet shapes The capacitance ratio of the capacitor of the first sheet-like elastic body 21 and the capacitor of the second sheet-like elastic body 22 in the conductive elastic bodies 24a to 24d is all constant.
 ここで交流電圧Vと交流電圧Vの電圧比を、V/V=(ε・d)/(ε・d)に設定すれば、交流電流の比Ia/Ia、Ib/Ib、Ic/Ic、Id/Idはそれぞれ、V・Ca/V・Ca、V・Cb/V・Cb、V・Cc/V・Cc、V・Cd/V・Cdであるから、それぞれ、全て1となる。よって、複数の第1のコンデンサCa~Cdに流れる交流電流Ia~Idは、複数の第2のコンデンサCa~Cdに交流電流Ia~Idとして流れ、第2のシート状導電性弾性体24a~24dの端子24at~24dt、つまり電流測定回路33a~33dに交流電流Ia~Idは流れない。このように、交流電圧Vと交流電圧Vの電圧比を上記のようにすることで、各々の部分荷重センサ2a~2dの全てについて、同時に、オフセットゼロ調整をすることができる。これは、複数の部分荷重センサ2a~2dが、第1のシート状弾性体21と第2のシート状弾性体22を誘電体として共通に用い、第1のシート状導電性弾性体23と第3のシート状導電性弾性体25を電極として共通に用いているからである。なお、交流電圧V(又は交流電圧V)は、例えば、周波数が約10KHz、振幅が約5Vとすることができる。 Here, if the voltage ratio between the alternating voltage V 2 and the alternating voltage V 1 is set to V 2 / V 1 = (ε 1 · d 2 ) / (ε 2 · d 1 ), the alternating current ratio Ia 1 / Ia 2 , Ib 1 / Ib 2 , Ic 1 / Ic 2 , Id 1 / Id 2 are V 1 · Ca 1 / V 2 · Ca 2 , V 1 · Cb 1 / V 2 · Cb 2 , V 1 · Cc, respectively. Since 1 / V 2 · Cc 2 and V 1 · Cd 1 / V 2 · Cd 2 , they are all 1. Therefore, the alternating currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 flow as the alternating currents Ia 2 to Id 2 through the plurality of second capacitors Ca 2 to Cd 2 , and the second sheet AC currents Ia 3 to Id 3 do not flow through the terminals 24at to 24dt of the conductive elastic bodies 24a to 24d, that is, the current measuring circuits 33a to 33d. Thus, the voltage ratio of the alternating voltage V 2 to the AC voltages V 1 In the manner described above, all of the respective partial load sensors 2a ~ 2d, at the same time, it is possible to offset nulling. This is because the plurality of partial load sensors 2a to 2d commonly use the first sheet-like elastic body 21 and the second sheet-like elastic body 22 as dielectrics, and the first sheet-like conductive elastic body 23 and the second sheet-like elastic body 23 This is because the three sheet-like conductive elastic bodies 25 are commonly used as electrodes. Note that the AC voltage V 1 (or AC voltage V 2 ) can have a frequency of about 10 KHz and an amplitude of about 5 V, for example.
 荷重センサ部2に荷重がかかると、荷重の分布に応じて複数の第1のコンデンサCa~Cdの容量値が大きくなり、それに流れる交流電流Ia~Idが大きくなる。一方、複数の第2のコンデンサCa~Cdの容量値はほとんど変化しないので、それに流れる交流電流Ia~Idはほとんど変化しない。よって、第2のシート状導電性弾性体24a~24dの端子24at~24dtに交流電流Ia~Idと交流電流Ia~Idの差が交流電流Ia~Idとして流れる。そして、電気回路部3において、交流電流Ia~Idが荷重計測電圧Va~Vdに変換される。 When a load is applied to the load sensor unit 2, the capacitance values of the plurality of first capacitors Ca 1 to Cd 1 are increased in accordance with the load distribution, and the alternating currents Ia 1 to Id 1 flowing through the first capacitors are increased. On the other hand, since the capacitance values of the plurality of second capacitors Ca 2 to Cd 2 hardly change, the alternating currents Ia 2 to Id 2 flowing through the second capacitors Ca 2 to Cd 2 hardly change. Therefore, the difference between the alternating currents Ia 1 to Id 1 and the alternating currents Ia 2 to Id 2 flows as the alternating currents Ia 3 to Id 3 in the terminals 24at to 24dt of the second sheet-like conductive elastic bodies 24a to 24d. Then, in the electric circuit unit 3, the alternating currents Ia 3 to Id 3 are converted into load measurement voltages Va to Vd.
 このように、複数の第1のコンデンサCa~Cdに流れる交流電流Ia~Idと複数の第2のコンデンサCa~Cdに流れる交流電流Ia~Idの差によって荷重計測電圧Va~Vdを得るので、ノイズや温度等の環境変化に対して安定であり、精度の高い計測が可能である。 Thus, load measurement is performed by the difference between the alternating currents Ia 1 to Id 1 flowing through the plurality of first capacitors Ca 1 to Cd 1 and the alternating currents Ia 2 to Id 2 flowing through the plurality of second capacitors Ca 2 to Cd 2. Since the voltages Va to Vd are obtained, the measurement is stable with respect to environmental changes such as noise and temperature, and highly accurate measurement is possible.
 電気回路部3は、履物4の内底4aにおいて荷重センサ部2の下部に配置することが可能である。この場合、荷重センサ部2における第1のシート状導電性弾性体23の端子23tと、複数の第2のシート状導電性弾性体24a~24dの端子24at~24dtは、垂直方向の短い配線を通して、電気回路部3に接続される。短い配線は、ノイズや温度等の環境変化に対して安定し精度の高い計測に寄与する。また、電気回路部3は、荷重センサ部2の第1のシート状弾性体21等と同様に、履物4の内底4aの形状と略同一にすることができる。なお、電気回路部3は、荷重センサ部2との接続の配線に少し長いケーブルを用いて、履物4の他の箇所に配置することも可能である。 The electric circuit portion 3 can be disposed below the load sensor portion 2 on the inner bottom 4a of the footwear 4. In this case, the terminal 23t of the first sheet-like conductive elastic body 23 in the load sensor unit 2 and the terminals 24at to 24dt of the plurality of second sheet-like conductive elastic bodies 24a to 24d pass through a short vertical wiring. , Connected to the electric circuit section 3. Short wiring contributes to stable and accurate measurement with respect to environmental changes such as noise and temperature. Moreover, the electric circuit part 3 can be made substantially the same as the shape of the inner bottom 4 a of the footwear 4, like the first sheet-like elastic body 21 of the load sensor part 2. The electric circuit unit 3 can also be arranged at other locations of the footwear 4 by using a slightly longer cable for wiring connection with the load sensor unit 2.
 電気回路部3は、そこで得られた荷重計測電圧Va~Vdを、デジタルデータの荷重計測値に変換して、図2(b)に示すような荷重表示装置5に無線で送出することも可能である。荷重表示装置5は、例えば、荷重計測値をそのまま表示したり、荷重計測値の相互間の比率を表示したりする。 The electric circuit unit 3 can also convert the obtained load measurement voltages Va to Vd into digital data load measurement values and send them wirelessly to a load display device 5 as shown in FIG. 2B. It is. The load display device 5 displays, for example, the load measurement values as they are or displays the ratio between the load measurement values.
 以上、本発明の実施形態に係る荷重計測装置について説明したが、本発明は、実施形態に記載したものに限られることなく、請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。 As described above, the load measuring device according to the embodiment of the present invention has been described, but the present invention is not limited to the one described in the embodiment, and various design changes can be made within the scope of the matters described in the claims. Is possible.
 1  荷重計測装置
 2  荷重センサ部
 21 第1のシート状弾性体
 22 第2のシート状弾性体
 21s 第1のシート状弾性体の空隙または窪み
 23 第1のシート状導電性弾性体
 23t 第1のシート状導電性弾性体の端子
 24a~24d 複数の第2のシート状導電性弾性体
 24at~24dt 複数の第2のシート状導電性弾性体の端子
 25 第3のシート状導電性弾性体
 25t 第3のシート状導電性弾性体の端子
 3  電気回路部
 31 第1の交流出力回路
 32 第2の交流出力回路
 33a~33d 電流測定回路
 4  履物
 4a 内底
 5  荷重表示装置
 Ca~Cd 複数の第1のコンデンサ
 Ca~Cd 複数の第2のコンデンサ
 Ia~Id 複数の第1のコンデンサに流れる交流電流
 Ia~Id 複数の第2のコンデンサに流れる交流電流
 Ia~Id 複数の第2のシート状導電性弾性体の端子に流れる交流電流
 V 第1の交流出力回路が出力する交流電圧
 V 第2の交流出力回路が出力する交流電圧
 Va~Vd 荷重計測電圧
DESCRIPTION OF SYMBOLS 1 Load measuring device 2 Load sensor part 21 1st sheet-like elastic body 22 2nd sheet-like elastic body 21s The space | gap or hollow of 1st sheet-like elastic body 23 1st sheet-like conductive elastic body 23t 1st Sheet-like conductive elastic body terminals 24a to 24d A plurality of second sheet-like conductive elastic bodies 24at to 24dt A plurality of second sheet-like conductive elastic body terminals 25 Third sheet-like conductive elastic bodies 25t First 3 Sheet-like conductive elastic body terminals 3 Electrical circuit section 31 First AC output circuit 32 Second AC output circuit 33a to 33d Current measurement circuit 4 Footwear 4a Inner bottom 5 Load display device Ca 1 to Cd 1 a first capacitor Ca 2 ~ Cd 2 a plurality of second capacitors Ia 1 ~ Id 1 more first alternating current Ia 2 ~ Id 2 a plurality of second capacitor flowing through the capacitor AC alternating current Ia 3 ~ Id 3 a plurality of second alternating current V 1 first AC output circuit that flows through the terminal of the sheet-like conductive elastic body is output AC voltage V 2 second AC output circuit outputs Voltage Va ~ Vd Load measurement voltage

Claims (3)

  1.  多数の空隙または窪みを周期的に設けた第1のシート状弾性体と、それと同材質の平坦な第2のシート状弾性体とを誘電体とし、第1のシート状導電性弾性体と、該第1のシート状導電性弾性体との間で前記第1のシート状弾性体をサンドイッチ状に挟む複数の第2のシート状導電性弾性体と、該複数の第2のシート状導電性弾性体との間で前記第2のシート状弾性体をサンドイッチ状に挟む第2のシート状導電性弾性体とを電極として複数のコンデンサを形成してなり、履物の内底に設けられた荷重センサ部と、
     前記第1のシート状導電性弾性体の端子に交流電圧を印加する第1の交流出力回路、前記第3のシート状導電性弾性体の端子に交流電圧を印加する第2の交流出力回路、前記複数の第2のシート状導電性弾性体の端子に流れる各々の交流電流を測定し各々の荷重計測電圧に変換する電流測定回路、を有する電気回路部と、を備えてなることを特徴とする荷重計測装置。
    A first sheet-like elastic body provided with a plurality of voids or depressions periodically and a flat second sheet-like elastic body made of the same material as a dielectric, and a first sheet-like conductive elastic body, A plurality of second sheet-like conductive elastic bodies sandwiching the first sheet-like elastic body between the first sheet-like conductive elastic bodies and the plurality of second sheet-like conductive bodies A load provided on the inner bottom of the footwear, wherein a plurality of capacitors are formed by using the second sheet-like conductive elastic body sandwiching the second sheet-like elastic body between the elastic body and an electrode. A sensor unit;
    A first AC output circuit for applying an AC voltage to a terminal of the first sheet-like conductive elastic body; a second AC output circuit for applying an AC voltage to a terminal of the third sheet-like conductive elastic body; And an electric circuit unit having a current measurement circuit that measures each alternating current flowing through the terminals of the plurality of second sheet-like conductive elastic bodies and converts each alternating current into a respective load measurement voltage. Load measuring device.
  2.  請求項1に記載の荷重計測装置において、
     前記複数の第2のシート状導電性弾性体は、1層のシート状導電性弾性体が細い溝部によって複数個に分断されたものの形状であることを特徴とする荷重計測装置。
    In the load measuring device according to claim 1,
    The plurality of second sheet-like conductive elastic bodies are in the shape of a single-layer sheet-like conductive elastic body divided into a plurality of thin groove portions.
  3.  請求項1又は2に記載の荷重計測装置において、
     前記複数の第2のシート状導電性弾性体は、親指側前部、小指側前部、親指側後部、小指側後部の4個であることを特徴とする荷重計測装置。
    In the load measuring device according to claim 1 or 2,
    The plurality of second sheet-like conductive elastic bodies are four of a thumb side front part, a little finger side front part, a thumb side rear part, and a little finger side rear part.
PCT/JP2016/058365 2015-03-30 2016-03-16 Load measuring apparatus WO2016158425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509541A JP6522740B2 (en) 2015-03-30 2016-03-16 Load measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068149 2015-03-30
JP2015-068149 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158425A1 true WO2016158425A1 (en) 2016-10-06

Family

ID=57007071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058365 WO2016158425A1 (en) 2015-03-30 2016-03-16 Load measuring apparatus

Country Status (2)

Country Link
JP (1) JP6522740B2 (en)
WO (1) WO2016158425A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644961B1 (en) * 2019-03-28 2020-02-12 住友理工株式会社 Electrostatic transducer and method of manufacturing the same
JPWO2020137036A1 (en) * 2018-12-24 2021-11-11 住友理工株式会社 Electrostatic transducer and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241802A (en) * 1991-01-16 1992-08-28 Hitachi Metals Ltd Ski boot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241802A (en) * 1991-01-16 1992-08-28 Hitachi Metals Ltd Ski boot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137036A1 (en) * 2018-12-24 2021-11-11 住友理工株式会社 Electrostatic transducer and its manufacturing method
JP7364596B2 (en) 2018-12-24 2023-10-18 住友理工株式会社 electrostatic transducer
JP6644961B1 (en) * 2019-03-28 2020-02-12 住友理工株式会社 Electrostatic transducer and method of manufacturing the same
WO2020194670A1 (en) * 2019-03-28 2020-10-01 住友理工株式会社 Electrostatic transducer and method for manufacturing same
CN112020635A (en) * 2019-03-28 2020-12-01 住友理工株式会社 Electrostatic transducer and method of manufacturing the same
CN112020635B (en) * 2019-03-28 2022-06-14 住友理工株式会社 Electrostatic transducer and method of manufacturing the same

Also Published As

Publication number Publication date
JP6522740B2 (en) 2019-05-29
JPWO2016158425A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
EP3004830B1 (en) An improved pressure sensor structure
EP2862209B1 (en) Self-sensing dielectric elastomer device
WO2011125725A1 (en) Capacitance-type sensor device and capacitance-type sensor capacitance measuring device
JP5951005B2 (en) Method and apparatus for non-contact detection of the potential of an object with two different values of electric flux
WO2017168608A1 (en) Contactless voltage measurement device and contactless voltage measurement method
WO2016158425A1 (en) Load measuring apparatus
US10527643B2 (en) Inertia sensor with improved detection sensitivity using servo voltage to detect a physical quantity
KR101825902B1 (en) Piezoresistive micromechanical sensor component and corresponding measuring method
US20160362291A1 (en) Micromechanical component having a split, galvanically isolated active structure, and method for operating such a component
JP4860430B2 (en) Load measuring device
US20200158489A1 (en) Sensor misalignment measuring device
Yu et al. Elastic Capacitive Tactile Array Pressure Sensor System.
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP6534231B2 (en) Load measurement system
WO2015133212A1 (en) Voltage measuring apparatus and voltage measuring method
JP2010185721A (en) Method and device for inspecting capacitance-type acceleration sensor
JP6734588B2 (en) Load measuring shoes
WO2019073104A1 (en) A device, a method, a computer program product and an apparatus for measuring pressure distribution between a foot and a surface
KR101415047B1 (en) Plantar pressure measurement devices
KR101182531B1 (en) Capacitor sensor comprising layered electrode and method of obtaining magnitude and direction of force using thereof
KR20160022707A (en) Load measuring device capable of output characteristic compensation
Guo et al. Electrical interference suppression technique for 26× 26 high-density ground reaction sensor array
WO2024070102A1 (en) Load detecting device and detecting circuit
US9772421B2 (en) Beam detector with control circuit
JP5716249B2 (en) Adapter components for measurement systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772308

Country of ref document: EP

Kind code of ref document: A1