JP4860430B2 - Load measuring device - Google Patents

Load measuring device Download PDF

Info

Publication number
JP4860430B2
JP4860430B2 JP2006291098A JP2006291098A JP4860430B2 JP 4860430 B2 JP4860430 B2 JP 4860430B2 JP 2006291098 A JP2006291098 A JP 2006291098A JP 2006291098 A JP2006291098 A JP 2006291098A JP 4860430 B2 JP4860430 B2 JP 4860430B2
Authority
JP
Japan
Prior art keywords
sheet
load
elastic body
measuring device
load measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006291098A
Other languages
Japanese (ja)
Other versions
JP2008107231A (en
Inventor
義明 林
喜代一 澤田
守 田中
Original Assignee
株式会社イマック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イマック filed Critical 株式会社イマック
Priority to JP2006291098A priority Critical patent/JP4860430B2/en
Publication of JP2008107231A publication Critical patent/JP2008107231A/en
Application granted granted Critical
Publication of JP4860430B2 publication Critical patent/JP4860430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)

Description

本発明は、荷重の分布に依存しないシート状の荷重計測装置およびそれを用いたリハビリテーション用歩行具に関するものである。   The present invention relates to a sheet-like load measuring device that does not depend on load distribution and a rehabilitation walking device using the same.

下肢の骨折等の治療後に回復を早める目的で、免荷歩行訓練がリハビリテーションの一環として行われる。これは松葉杖や平行棒を使用して最初は全体重の1/3程度からスタートして、1/2、2/3と下肢に掛ける荷重を徐々に増していくものである。その具体的な方法は、患者が免荷する方の足で体重計を踏んで、その指示値が目標とする荷重になった時の感覚を記憶して、その記憶のみを頼りにして免荷歩行を行う方法が専らである。   In order to expedite recovery after treatment of fractures of the lower limbs, unloaded walking training is performed as part of rehabilitation. This uses crutches and parallel bars to start from about 1/3 of the total weight and gradually increase the load on the lower limbs to 1/2, 2/3. The specific method is that the patient steps on the weight-free foot and memorizes the sense when the indicated value reaches the target load. The way of walking is exclusively.

しかし感覚の記憶のみを頼りにするこのような方法では、患者は体重の掛け過ぎを恐れる心理が強く、その不安感は切実なものにならざるを得ない。その結果として、目標値よりも相当軽加重での歩行になっているのが通例である。またこれは回復を早めるリハビリテーションの効果を抑制するため、入院期間や通院期間の長期化の原因となっている。   However, with such a method that relies only on sensory memory, the patient has a strong psychology of fear of overweight, and his anxiety must be compelling. As a result, it is usual to walk with a lighter weight than the target value. In addition, this suppresses the effects of rehabilitation that accelerates recovery, leading to prolonged hospitalization and hospitalization.

患者が心理的にも安心して効果的な免荷歩行訓練を行うためには、目標値を越える荷重が下肢に加わった時に、即座に報知する手段が必要であるが、実用化されていない現状である。このような実情に鑑み、歪ゲージで構成する複数個の荷重センサを靴に組み込んで、それらのセンサからの荷重信号を用いて、予め設定した目標値に達すると通報ブザーを鳴らす荷重計測装置が特開平7−204236号公報に開示されている。   In order for a patient to perform effective gait training with peace of mind psychologically, a means to immediately notify when a load exceeding the target value is applied to the lower limb is necessary, but it has not been put into practical use. It is. In view of such a situation, a load measuring device that assembles a plurality of load sensors composed of strain gauges into shoes and uses a load signal from these sensors to sound a notification buzzer when a preset target value is reached. This is disclosed in Japanese Patent Laid-Open No. 7-204236.

しかしながらこの方法では、以下のような問題点がある。第1に、個別の歪ゲージを使用するため足裏全体に分布する荷重を歪ゲージ部分に集中させる必要があり、そのために構造が複雑になり履物(靴)に組み込まなければならない。第2に、荷重の一部は荷重センサのケースに分担され歪に寄与しないため、荷重量に対するセンサ出力の直線性を得るのが難しい。第3に、足サイズによりセンサの間隔を調整する必要がある。第4に、複数の荷重センサの複数の出力から全荷重を計測する方法については明示されていないが、通常は各個のセンサの出力を個別に電気信号に変換した後加算するものと思料され、センサの数に等しい数の電気信号変換手段を要する。
特開平7−204236号公報
However, this method has the following problems. First, since individual strain gauges are used, it is necessary to concentrate the load distributed over the entire sole on the strain gauge portion, which complicates the structure and must be incorporated into footwear (shoes). Second, since a part of the load is shared by the load sensor case and does not contribute to the strain, it is difficult to obtain linearity of the sensor output with respect to the load amount. Third, it is necessary to adjust the sensor interval according to the foot size. Fourth, although the method of measuring the total load from a plurality of outputs of a plurality of load sensors is not specified, it is usually considered that the output of each individual sensor is individually converted into an electrical signal and then added. A number of electrical signal conversion means equal to the number of sensors is required.
JP-A-7-204236

解決しようとする課題は、荷重の分布に依存しないシート状の荷重計測装置を提供し、それを免荷歩行訓練用歩行具に適用するものである。   The problem to be solved is to provide a sheet-like load measuring device that does not depend on the load distribution, and to apply it to a walking implement for load-free walking training.

本発明は、シート状弾性体に任意に分散して印加される垂直荷重の総量を、概シート状弾性体の静電容量の変化を電気的に検出することにより行うことを最も主要な特徴とする。   The main feature of the present invention is that the total amount of vertical load applied in an arbitrarily distributed manner to the sheet-like elastic body is performed by electrically detecting a change in the capacitance of the sheet-like elastic body. To do.

本発明の荷重計測装置は、多数の空隙または窪みを周期的に設けたシート状弾性体を誘電体とし、シート状導電性弾性体を電極とすることにより、誘電体の厚さが荷重に比例して変化する結果、任意に分散して印加される垂直荷重の総量を、概シート状弾性体の静電容量の変化を電気的に検出することにより行うことができるので、これを市販の靴等に介在させることにより実用的な免荷歩行訓練用歩行具を提供できるという利点がある。荷重による厚み変化を、計測すべき最大荷重圧力に対して30%以下にすることによって、荷重の総量を30%以下の誤差精度で測定できる。   The load measuring device of the present invention uses a sheet-like elastic body provided with a number of voids or depressions periodically as a dielectric, and a sheet-like conductive elastic body as an electrode, so that the thickness of the dielectric is proportional to the load. As a result, the total amount of the vertical load that is arbitrarily distributed and applied can be performed by electrically detecting the change in the capacitance of the generally sheet-like elastic body. There is an advantage that a practical walking aid for load-free walking can be provided. By making the thickness change due to the load 30% or less with respect to the maximum load pressure to be measured, the total load can be measured with an error accuracy of 30% or less.

シート状弾性体に分散して印加される垂直荷重の総量と、概シート状弾性体の静電容量の変化とをよい精度で比例的に変化させて、静電容量の変化を電気的に測定することにより垂直荷重の総量を計測するという目的を、最小の部品点数で、センサ部全体の厚みを損なわずに実現した。   The change in capacitance is electrically measured by proportionally changing the total amount of vertical load applied in a distributed manner to the sheet-like elastic body and the change in capacitance of the roughly sheet-like elastic body with good accuracy. By doing so, the purpose of measuring the total amount of vertical load was realized with the minimum number of parts and without sacrificing the thickness of the entire sensor section.

図1は、本発明装置のセンサ部6の1実施例を示す。(a)は部材の構成を示し、(b)および(c)は2種類の拡大断面図、(d)は中心となる部材の拡大平面図である。本実施例では、多数の空隙または窪みを周期的に設けたシート状弾性体2と、このシート状弾性体をはさむ2枚のシート状導電性弾性体1、3を弾性接着材または粘着材を用いて積層してなる。シート状弾性体2は、同図(d)に示すように多数の空隙11または窪み12を周期的に設けている。空隙11を設けた場合のセンサ部6の拡大断面を同図(b)に、窪み12を設けた場合のセンサ部6の拡大断面を同図(c)に示す。空隙11または窪み12は面に垂直な断面を有する。部材を詳述すると、シート状弾性体2は硬度50°、厚さ2mmのゴムシートに、同図(d)に示す寸法の空隙11を設けてある。シート状導電性弾性体1、3は、体積抵抗率5Ωcm、硬度60°、厚さ0.5mmの導電性ゴムシートである。弾性接着材は市販の一液湿気硬化型弾性接着材を使用する。センサ部6の厚さは3mm、外形は靴等のインソール形状である。   FIG. 1 shows an embodiment of the sensor unit 6 of the device of the present invention. (A) shows the structure of a member, (b) and (c) are two types of enlarged sectional views, and (d) is an enlarged plan view of a central member. In the present embodiment, a sheet-like elastic body 2 provided with a large number of voids or depressions and two sheet-like conductive elastic bodies 1 and 3 sandwiching the sheet-like elastic body are made of an elastic adhesive or an adhesive material. It is used and laminated. The sheet-like elastic body 2 is periodically provided with a large number of voids 11 or depressions 12 as shown in FIG. An enlarged cross section of the sensor section 6 when the gap 11 is provided is shown in FIG. 5B, and an enlarged cross section of the sensor section 6 when the recess 12 is provided is shown in FIG. The gap 11 or the depression 12 has a cross section perpendicular to the surface. More specifically, the sheet-like elastic body 2 is provided with a gap 11 having the dimensions shown in FIG. 4D in a rubber sheet having a hardness of 50 ° and a thickness of 2 mm. The sheet-like conductive elastic bodies 1 and 3 are conductive rubber sheets having a volume resistivity of 5 Ωcm, a hardness of 60 °, and a thickness of 0.5 mm. As the elastic adhesive, a commercially available one-component moisture-curing elastic adhesive is used. The sensor unit 6 has a thickness of 3 mm, and the outer shape is an insole shape such as a shoe.

このような構成のセンサ部6は、足で踏まれるとその部分の圧力に応じて厚さの変化を生じる。外圧によるゴム材の変形は、体積を一定に保っておこなわれるが、シート状弾性体2は、多数の空隙または窪みが周期的に設けられているため、厚さの減少に見合う体積がこの部分に広がることにより、弾性体のヤング率に対応した圧縮変形が可能である。すなわち厚さの変化が比較的少ない範囲において、圧力に1次比例して厚さが減少する。   When the sensor unit 6 having such a configuration is stepped on with a foot, the thickness of the sensor unit 6 changes according to the pressure of the part. The deformation of the rubber material due to the external pressure is performed while keeping the volume constant, but the sheet-like elastic body 2 is provided with a number of voids or depressions periodically, so that the volume commensurate with the decrease in thickness is in this portion. Can be compressed and deformed corresponding to the Young's modulus of the elastic body. That is, in a range where the thickness change is relatively small, the thickness decreases in proportion to the pressure.

またこのような構成のセンサ部6は、2枚のシート状導電性弾性体1、3を電極、シート状弾性体2を誘電体とするコンデンサとみなすことができる。そうして前述の変形条件、すなわち厚さの変化が比較的少ない範囲において、圧力に1次比例して厚さが減少する、が成立すると、このコンデンサの静電容量の変化は、センサ部6に印加される全荷重によい近似で比例し、荷重の分布に依存しないことが以下の考察から示される。   Further, the sensor unit 6 having such a configuration can be regarded as a capacitor in which the two sheet-like conductive elastic bodies 1 and 3 are electrodes and the sheet-like elastic body 2 is a dielectric. If the above-described deformation condition, that is, the thickness decreases in proportion to the pressure in the range where the change in thickness is relatively small, the change in the capacitance of the capacitor is detected by the sensor unit 6. The following consideration shows that it is proportional to a good approximation to the total load applied to and does not depend on the load distribution.

Figure 0004860430
Figure 0004860430

以上の考察から明らかなように、静電容量の変化を測定することにより全荷重を計測することができ、その誤差率は圧縮率に等しい。荷重が分布している場合は、最も荷重圧力が高い部分の圧縮率が誤差の上限になる。免荷歩行訓練の場合は、30%程度までの誤差は許容されるため、最大荷重圧力に対する圧縮量は30%以下にする必要がある。荷重に対する圧縮量は、シート状弾性体2の硬度と図1(d)の空隙または窪みの寸法で調整できる。なお電極として用いるシートは、本例のゴムシートのように十分な弾性が不可欠であり、弾性のない蒸着フィルム等を使用すると、荷重を加えた時に面方向の応力によって永久歪を生じ繰り返し使用に耐えない。また電極として用いるシート状導電性弾性体の有する体積固有抵抗は、センサ部6の静電容量に直列接続された抵抗となるが、荷重による抵抗値変化や荷重の分布に依存する抵抗値変化は計測値の誤差要因となるため、小さくする必要がある。本例の場合100Ωcmを越えると誤差が無視できなくなる。   As is clear from the above consideration, the total load can be measured by measuring the change in capacitance, and the error rate is equal to the compression rate. When the load is distributed, the compression rate of the portion with the highest load pressure becomes the upper limit of the error. In the case of load-free walking training, an error of up to about 30% is allowed, so the compression amount with respect to the maximum load pressure needs to be 30% or less. The amount of compression with respect to the load can be adjusted by the hardness of the sheet-like elastic body 2 and the size of the gap or dent in FIG. It should be noted that the sheet used as the electrode must have sufficient elasticity like the rubber sheet of this example, and if an inelastic film or the like is used, permanent deformation occurs due to surface stress when a load is applied, and the sheet is used repeatedly. I can't stand it. The volume specific resistance of the sheet-like conductive elastic body used as the electrode is a resistance connected in series to the capacitance of the sensor unit 6, but the resistance value change depending on the load distribution and the load value change is not Since it becomes an error factor of a measured value, it is necessary to make it small. In this example, the error cannot be ignored if it exceeds 100 Ωcm.

センサ部の静電容量を測定し所定の荷重を越えると警報を出力する電気回路部7は、種々の方法が周知であるが図3に一例を示す。図において、正弦波電圧発生回路で発生させた10kHz、5Vの正弦波電圧を、センサ部6の2枚のシート状導電性弾性体1、3でなる電極の一方に印加し、他方の電極を電流電圧変換回路に接続する。前記正弦波電圧がセンサ部6の誘電体に加わると、正弦波電流が流れる。この電流の大きさは、正弦波電圧を一定にするとセンサ部6の静電容量に比例する。この正弦波電流が電流電圧変換回路に入力されると、回路は電流値に比例した正弦波電圧を出力する。この正弦波電圧を、印加した正弦波電圧の周波数と同じ10kHzに同調させた狭帯域フィルタを通過させると、回路の直流オフセット電圧や商用周波等のノイズが除去され、精度の高い計測信号電圧が得られる。この電圧と、警報を出すべき荷重に合わせて設定した電圧とを比較回路で比較し、設定電圧を超えると警報を出力する。別にセンサ部6の静電容量を発振回路の一部となし、静電容量の変化を発振周波数の変化で検出する方法も用いることが可能であるが、周知であり詳述しない。   Various methods are well known for the electric circuit unit 7 that measures the electrostatic capacity of the sensor unit and outputs an alarm when a predetermined load is exceeded. An example is shown in FIG. In the figure, a 10 kHz, 5 V sine wave voltage generated by a sine wave voltage generation circuit is applied to one of the two electrodes of the sheet-like conductive elastic bodies 1, 3 of the sensor unit 6, and the other electrode is applied. Connect to current-voltage converter. When the sine wave voltage is applied to the dielectric of the sensor unit 6, a sine wave current flows. The magnitude of this current is proportional to the capacitance of the sensor unit 6 when the sine wave voltage is constant. When this sine wave current is input to the current-voltage conversion circuit, the circuit outputs a sine wave voltage proportional to the current value. When this sine wave voltage is passed through a narrow band filter tuned to the same 10 kHz frequency as the applied sine wave voltage, noise such as DC offset voltage and commercial frequency of the circuit is removed, and a highly accurate measurement signal voltage is obtained. can get. This voltage is compared with a voltage set in accordance with the load for which an alarm should be issued by a comparison circuit, and an alarm is output when the voltage exceeds the set voltage. Alternatively, it is possible to use a method in which the capacitance of the sensor unit 6 is made a part of the oscillation circuit and a change in capacitance is detected by a change in oscillation frequency, but this is well known and will not be described in detail.

本実施例の荷重計測装置は、センサ部6の構成は3枚のシートを積層したシンプルなものであり、形状は薄いシート状であり、任意に分散した荷重の総量をよい精度で計測できるため、これを市販の靴やサンダル等の履物に設置することにより、足のサイズや荷重の掛け方に依存しない免荷歩行訓練のための実用的なリハビリテーション用歩行具が実現できる。   In the load measuring device of this embodiment, the configuration of the sensor unit 6 is a simple one in which three sheets are laminated, the shape is a thin sheet, and the total amount of arbitrarily distributed loads can be measured with good accuracy. By installing this on footwear such as commercially available shoes or sandals, a practical rehabilitation walking tool for load-free walking training that does not depend on the size of the foot or how to apply the load can be realized.

図2は、本発明装置のセンサ部8の他の実施例を示す。(a)は部材の構成、(b)は拡大断面図である。本実施例では、多数の空隙または窪みを周期的に設けたシート状弾性体2と、平坦なシート状弾性体4と、これらのシート状弾性体をサンドイッチ状にはさむ3枚のシート状導電性弾性体1、3、5を弾性接着材または粘着材を用いて積層してなる。シート状弾性体2は、図1(d)と同様に多数の空隙11または窪みを周期的に設けている。一方平坦なシート状弾性体4は空隙や窪みを有さない。空隙11を設けた場合のセンサ部8の拡大断面を同図(b)に示す。部材を詳述すると、シート状弾性体2は実施例1と同様のゴムシートである。シート状導電性弾性体1、3、5は、実施例1と同様の導電性ゴムシートである。弾性接着材は実施例1と同様の弾性接着材を使用する。センサの厚さは4mm、外形は靴等のインソール形状である。   FIG. 2 shows another embodiment of the sensor unit 8 of the device of the present invention. (A) is a structure of a member, (b) is an expanded sectional view. In this embodiment, a sheet-like elastic body 2 provided with a large number of gaps or depressions periodically, a flat sheet-like elastic body 4, and three sheet-like conductive materials sandwiching these sheet-like elastic bodies in a sandwich shape. The elastic bodies 1, 3, and 5 are laminated using an elastic adhesive material or an adhesive material. The sheet-like elastic body 2 is periodically provided with a large number of voids 11 or depressions as in FIG. On the other hand, the flat sheet-like elastic body 4 does not have voids or depressions. An enlarged cross section of the sensor unit 8 when the air gap 11 is provided is shown in FIG. The members will be described in detail. The sheet-like elastic body 2 is a rubber sheet similar to that of the first embodiment. The sheet-like conductive elastic bodies 1, 3 and 5 are the same conductive rubber sheets as in the first embodiment. As the elastic adhesive, the same elastic adhesive as in Example 1 is used. The thickness of the sensor is 4 mm, and the outer shape is an insole shape such as shoes.

このような構成のセンサ部8は、足で踏まれると実施例1と同様の圧縮変形が可能である。すなわち厚さの変化が比較的少ない範囲において、圧力に1次比例して厚さが減少する。これに対してシート状弾性体4は、面方向への体積移動ができないため厚さの変化は無視できるほど小さい。   The sensor unit 8 having such a configuration can be compressed and deformed in the same manner as in the first embodiment when stepped on with a foot. That is, in a range where the thickness change is relatively small, the thickness decreases in proportion to the pressure. On the other hand, since the sheet-like elastic body 4 cannot move in the surface direction, the change in thickness is so small that it can be ignored.

またこのような構成のセンサ部8は電気回路的には、2枚のシート状導電性弾性体1、3を電極、シート状弾性体2を誘電体とするコンデンサ、および2枚のシート状導電性弾性体3、5を電極、シート状弾性体4を誘電体とするコンデンサとみなすことができる。シート状弾性体2を誘電体とするコンデンサにおいては、第1の実施例と同様にこのコンデンサの静電容量の変化は、センサ部8に印加される全荷重によい近似で比例し、荷重の分布に依存しない。なお、シート状導電性弾性体3の外寸を、シート状導電性弾性体1および5と比較して数mm縮小すると、シート状導電性弾性体3がシート状導電性弾性体1および5によって電気的にガードでき、その結果浮遊容量の影響が解消できる利点がある。   In addition, the sensor unit 8 having such a configuration is electrically connected to a capacitor having two sheet-like conductive elastic bodies 1 and 3 as electrodes and a sheet-like elastic body 2 as a dielectric, and two sheet-like conductive bodies. It can be considered that the elastic elastic bodies 3 and 5 are electrodes and the sheet-like elastic body 4 is a capacitor. In the capacitor using the sheet-like elastic body 2 as a dielectric, the change in the capacitance of the capacitor is proportional to the total load applied to the sensor unit 8 in a good approximation as in the first embodiment. Independent of distribution. In addition, when the outer dimension of the sheet-like conductive elastic body 3 is reduced by several mm as compared with the sheet-like conductive elastic bodies 1 and 5, the sheet-like conductive elastic body 3 is moved by the sheet-like conductive elastic bodies 1 and 5. There is an advantage that it can be electrically guarded, and as a result, the effects of stray capacitance can be eliminated.

本例のセンサ部8に接続する電気回路部9を図4に示す。図において、正弦波電圧発生回路で発生させた正弦波電圧を、センサ部9のシート状導電性弾性体1でなる電極に印加する。またこの正弦波電圧の電圧と位相を以下の値にゲイン&位相調整回路で調整し、シート状導電性弾性体5でなる電極に印加する。シート状導電性弾性体3でなる電極を電流電圧変換回路に接続し、センサ部8に荷重が加わっていない時の電流電圧変換回路出力が0になるように、前記ゲイン&位相調整する。このようにすることで、センサ部8のふたつのコンデンサを流れる電流の和は、荷重がない時にはキャンセルしあって0となっている。ゲインは、二つの誘電体に同材質のゴムを用いた場合、厚さの逆比にほぼ等しく約1/4となり、位相差は約180°であるが、電極の直列抵抗分と誘電体の誘電損失に等価な抵抗分だけ180°からずらせる必要がある。   FIG. 4 shows an electric circuit unit 9 connected to the sensor unit 8 of this example. In the figure, a sine wave voltage generated by a sine wave voltage generation circuit is applied to an electrode made of the sheet-like conductive elastic body 1 of the sensor unit 9. Further, the voltage and phase of this sine wave voltage are adjusted to the following values by a gain & phase adjustment circuit and applied to the electrode made of the sheet-like conductive elastic body 5. An electrode made of the sheet-like conductive elastic body 3 is connected to a current-voltage conversion circuit, and the gain and phase adjustment is performed so that the output of the current-voltage conversion circuit becomes zero when no load is applied to the sensor unit 8. By doing in this way, the sum of the currents flowing through the two capacitors of the sensor unit 8 is canceled by 0 when there is no load. When the rubber of the same material is used for the two dielectrics, the gain is approximately equal to the inverse ratio of the thickness and is about 1/4 and the phase difference is about 180 °, but the series resistance of the electrode and the dielectric It is necessary to shift from 180 ° by the resistance equivalent to the dielectric loss.

センサ部8に荷重が加わると、シート状弾性体2を誘電体とするコンデンサの静電容量が前述の通り全荷重に比例して増加するのに対し、シート状弾性体4を誘電体とするコンデンサは、前述の通り厚さの変化がなく静電容量は不変である。その結果全荷重に比例した電流が電流電圧変換回路に流れる。この出力電圧を、印加した正弦波電圧の周波数に同調させた狭帯域フィルタを介することで、回路の直流オフセット電圧や商用周波のノイズが除去され、精度の高い計測信号電圧が得られる。この電圧と、警報を出すべき荷重に合わせて設定した電圧とを比較回路で比較し、設定電圧を超えると警報を出力する。   When a load is applied to the sensor unit 8, the capacitance of the capacitor using the sheet-like elastic body 2 as a dielectric increases in proportion to the total load as described above, whereas the sheet-like elastic body 4 is used as a dielectric. As described above, the capacitor has no change in thickness and the capacitance is unchanged. As a result, a current proportional to the total load flows through the current-voltage conversion circuit. By passing this output voltage through a narrow band filter tuned to the frequency of the applied sine wave voltage, the DC offset voltage of the circuit and the commercial frequency noise are removed, and a highly accurate measurement signal voltage can be obtained. This voltage is compared with a voltage set in accordance with the load for which an alarm should be issued by a comparison circuit, and an alarm is output when the voltage exceeds the set voltage.

本実施例の荷重計測装置は、実施例1と同様の特長に加えて、二つのコンデンサの差分電流を測定するため、二種の誘電体を同材質にすることにより温度等の環境条件の変化に対して安定であり、また荷重による静電容量の変化に比例した電流を測定するため、より微小な荷重に対しても高精度な計測が可能である。   In addition to the same features as in the first embodiment, the load measuring device of the present embodiment measures the differential current between the two capacitors, and therefore changes the environmental conditions such as temperature by using the same material for the two types of dielectrics. In addition, since a current proportional to a change in capacitance due to a load is measured, highly accurate measurement can be performed even for a smaller load.

構成が簡素なること、形状が薄いこと、分散荷重の総量が計測できることから、狭いところでの荷重計測に適用でき、特に市販の履物に適用して実用的なリハビリテーション用歩行具が実現できる。   Since the configuration is simple, the shape is thin, and the total amount of distributed load can be measured, it can be applied to load measurement in a narrow place, and in particular, it can be applied to commercially available footwear and a practical rehabilitation walking implement can be realized.

荷重計測装置のセンサ部の実施方法を示した説明図である。(実施例1)It is explanatory drawing which showed the implementation method of the sensor part of a load measuring device. Example 1 荷重計測装置のセンサ部の実施方法を示した説明図である。(実施例2)It is explanatory drawing which showed the implementation method of the sensor part of a load measuring device. (Example 2) 荷重計測装置の電気回路部の実施方法を示した説明図である。(実施例1)It is explanatory drawing which showed the implementation method of the electric circuit part of a load measuring device. Example 1 荷重計測装置の電気回路部の実施方法を示した説明図である。(実施例24It is explanatory drawing which showed the implementation method of the electric circuit part of a load measuring device. Example 24

符号の説明Explanation of symbols

1 シート状導電性弾性体
2 多数の空隙または窪みを周期的に設けたシート状弾性体
3 シート状導電性弾性体
4 平坦なシート状弾性体
5 シート状導電性弾性体
6 センサ部(実施例1)
7 電気回路部(実施例1)
8 センサ部(実施例2)
9 電気回路部(実施例2)
11 空隙
12 窪み
DESCRIPTION OF SYMBOLS 1 Sheet-like electroconductive elastic body 2 Sheet-like elastic body which provided many space | gap or hollow periodically 3 Sheet-like electroconductive elastic body 4 Flat sheet-like elastic body 5 Sheet-like electroconductive elastic body 6 Sensor part (Example) 1)
7 Electrical circuit section (Example 1)
8 Sensor unit (Example 2)
9 Electrical circuit section (Example 2)
11 void 12 dimple

Claims (4)

多数の空隙または窪みを周期的に設けたシート状弾性体と、このシート状弾性体と同材質であって、該空隙または窪みを有さず面方向への体積移動ができない平坦なシート状弾性体と、を誘電体とし、これらの誘電体をサンドイッチ状にはさんだ3枚のシート状導電性弾性体を電極として二つのコンデンサを形成してなるセンサ部と、
これらのコンデンサの静電容量の差分の変化を計測して作動する電気回路部と、からなり、
前記センサ部は、足で踏まれると圧縮変形し、
前記空隙または窪みを設けたシート状弾性体の厚みは、荷重によって、計測すべき最大荷重圧力に対して30%以下の範囲で変化することを特徴とする荷重計測装置。
A sheet-like elastic body in which a large number of voids or depressions are periodically provided, and a flat sheet-like elasticity that is the same material as the sheet-like elastic body and does not have the voids or depressions and cannot move in the surface direction. and body, was a dielectric, a sensor unit formed by forming two capacitors these dielectrics as electrodes 3 sheet-like conductive elastic body sandwiched sandwich,
And the electric circuit portion that operates by measuring the change in the difference in capacitance of these capacitors consist,
The sensor part is compressed and deformed when stepped on with a foot,
The thickness of the gap or indentation provided a sheet-like elastic body, the load thus load measuring apparatus characterized by varying the range of 30% or less of the maximum load pressure to be measured.
請求項1記載の荷重計測装置において、The load measuring device according to claim 1,
前記3枚のシート状導電性弾性体のうち中央のものの外寸は、両側の2枚のものと比較して縮小されていることを特徴とする荷重計測装置。A load measuring device characterized in that an outer dimension of a central one of the three sheet-like conductive elastic bodies is reduced as compared with two sheets on both sides.
請求項1または請求項2記載の荷重計測装置を靴等に適用して、これにより歩行時の荷重があらかじめ設定した荷重を超過すると警報を発するようにしたことを特徴とするリハビリテーション用歩行具。   3. A walking tool for rehabilitation characterized in that the load measuring device according to claim 1 or 2 is applied to a shoe or the like, whereby a warning is issued when a load during walking exceeds a preset load. 前記シート状導電性弾性体の体積抵抗率が100Ωcm以下であることを特徴とする請求項1〜3のいずれか1項記載の荷重計測装置およびリハビリテーション用歩行具。 The volume resistivity of the sheet-like conductive elastic body is 100 Ωcm or less, and the load measuring device and rehabilitation walking device according to any one of claims 1 to 3 .
JP2006291098A 2006-10-26 2006-10-26 Load measuring device Active JP4860430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291098A JP4860430B2 (en) 2006-10-26 2006-10-26 Load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291098A JP4860430B2 (en) 2006-10-26 2006-10-26 Load measuring device

Publications (2)

Publication Number Publication Date
JP2008107231A JP2008107231A (en) 2008-05-08
JP4860430B2 true JP4860430B2 (en) 2012-01-25

Family

ID=39440693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291098A Active JP4860430B2 (en) 2006-10-26 2006-10-26 Load measuring device

Country Status (1)

Country Link
JP (1) JP4860430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375924B2 (en) 2016-11-29 2022-07-05 Nec Corporation Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5603266B2 (en) * 2011-02-21 2014-10-08 東海ゴム工業株式会社 Capacitive sensor
KR101530983B1 (en) * 2014-02-13 2015-06-30 (주)온새메디 sujichim training devices
JP6734588B2 (en) * 2016-06-30 2020-08-05 株式会社レイマック Load measuring shoes
CN106361542A (en) * 2016-10-24 2017-02-01 电光防爆科技(上海)有限公司 Intelligent walking aid controller system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565195A (en) * 1969-04-16 1971-02-23 Sibany Mfg Corp Electrical weighing apparatus using capacitive flexible mat
JPS6362735A (en) * 1986-09-04 1988-03-19 Canon Inc Method of raising and lowering type wheel in printer
JPH07204236A (en) * 1994-01-14 1995-08-08 Anima Kk Load measuring device
JP4001288B2 (en) * 2003-12-04 2007-10-31 株式会社シロク Pressure sensing device using electrostatic coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375924B2 (en) 2016-11-29 2022-07-05 Nec Corporation Walking state measurement device, walking state measurement system, walking state measurement method, and storage medium for storing walking state measurement program

Also Published As

Publication number Publication date
JP2008107231A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
Laszczak et al. Development and validation of a 3D-printed interfacial stress sensor for prosthetic applications
Razian et al. Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film
Aqueveque et al. Capacitive sensors array for plantar pressure measurement insole fabricated with flexible PCB
JP4860430B2 (en) Load measuring device
Rana Application of force sensing resistor (FSR) in design of pressure scanning system for plantar pressure measurement
Lekkala Plantar shear stress measurements—A review
KR101502762B1 (en) Hybrid pressure sensor using nanofiber web
Rajala et al. Designing, manufacturing and testing of a piezoelectric polymer film in-sole sensor for plantar pressure distribution measurements
WO2003079898A1 (en) Bedsore main-factor measuring device
Klimiec et al. Measuring of foot plantar pressure—possible applications in quantitative analysis of human body mobility
US11378477B2 (en) Apparatus for measuring surface profile of normal and shear stress
Morere et al. MEMS technology sensors as a more advantageous technique for measuring foot plantar pressure and balance in humans
US10335056B2 (en) Sensor for electrically measuring a force having a spring unit arranged in-between surfaces
JP2015055510A (en) Footwear with load detection function
Li et al. Plantar pressure measurement system based on piezoelectric sensor: A review
Krestovnikov et al. Development of a circuit design for a capacitive pressure sensor, applied in walking robot foot
US20140290390A1 (en) Systems and methods for resistive microcracked pressure sensor
Heywood et al. Tri-axial plantar pressure sensor: design, calibration and characterization
JP6522740B2 (en) Load measuring device
EP3965654B1 (en) Sensor element, sensor arrangement, sensor system and method for detecting a force between a foot and a supporting surface
Boukhenous et al. A postural stability analysis by using plantar pressure measurements
Klimiec et al. PVDF sensors–research on foot pressure distribution in dynamic conditions
KR101415047B1 (en) Plantar pressure measurement devices
Hagan et al. Sensors for foot plantar pressure signal acquisition
Gao et al. Smart Insole: Stand-Alone Soft 3-Axis Force Sensing Array in a Shoe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250