WO2016158380A1 - シースレスce-ms用スプレーデバイスの作成方法、シースレスce-ms用スプレーデバイス、及び、シースレスce-ms装置 - Google Patents

シースレスce-ms用スプレーデバイスの作成方法、シースレスce-ms用スプレーデバイス、及び、シースレスce-ms装置 Download PDF

Info

Publication number
WO2016158380A1
WO2016158380A1 PCT/JP2016/058131 JP2016058131W WO2016158380A1 WO 2016158380 A1 WO2016158380 A1 WO 2016158380A1 JP 2016058131 W JP2016058131 W JP 2016058131W WO 2016158380 A1 WO2016158380 A1 WO 2016158380A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
sheathless
insulating plate
spray device
passage hole
Prior art date
Application number
PCT/JP2016/058131
Other languages
English (en)
French (fr)
Inventor
朋義 曽我
明由 平山
阿部 弘
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Priority to DE112016000855.4T priority Critical patent/DE112016000855B4/de
Priority to US15/552,918 priority patent/US9978573B2/en
Publication of WO2016158380A1 publication Critical patent/WO2016158380A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/0445Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol
    • H01J49/045Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol with means for using a nebulising gas, i.e. pneumatically assisted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0404Capillaries used for transferring samples or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation

Definitions

  • the present invention relates to a method for producing a spray device for sheathless CE (capillary electrophoresis) -MS (mass spectrometry), a spray device for sheathless CE-MS, and a sheathless CE-MS apparatus.
  • the present invention relates to a method for producing a spray device for sheathless CE-MS that can be performed, for example, a spray device for sheathless CE-MS produced by the production method, and a sheathless CE-MS apparatus including the same.
  • Capillary electrophoresis-mass spectrometry which is one of the metabolome measurement methods, is very effective for the measurement of ionic metabolites in various biological samples.
  • Gas chromatography-mass spectrometry GC
  • the -MS) method and the liquid chromatography-mass spectrometry (LC-MS) method are very specific analysis methods because most measurement objects do not overlap.
  • a capillary 14 is formed at the tip of a needle 12 made of, for example, stainless steel built in an electrospray interface (ESI) spray (hereinafter simply referred to as a spray) 10 called a nebulizer.
  • ESI electrospray interface
  • a solution containing an organic solvent called a sheath liquid 18 is mixed with a buffered electrophoretic solution (hereinafter simply referred to as an electrophoretic solution or a buffer) 16 that comes out of the inside, and further, fine droplets are generated from the outside to perform ionization.
  • a nebulizer gas made of nitrogen gas is sprayed to promote voltage application for electrophoresis and ionization of metabolites in the electrophoresis solution 16 (see Patent Documents 1 to 3).
  • This sheath liquid 18 enabled stable measurement.
  • the concentration sensitivity (detection sensitivity when measuring the same concentration sample) is inferior to other metabolome analysis methods.
  • the cause of the decrease in sensitivity in the CE-MS method is that the electrophoretic solution 16 emerging from the capillary 14 at the tip of the nebulizer (10) described above is mixed with the sheath solution 18 to dilute the measurement object in the sample. It is because it will be done.
  • the flow rate of the electrophoresis solution 16 is 50 nL / min
  • the flow rate of the sheath solution 18 is 10 ⁇ L / min. It was found to be diluted about 200 times.
  • the concentration sensitivity in CE-MS is up to 200 times. Can be expected to rise.
  • the sheathless method is expected to increase the sensitivity because there is no dilution at the outlet of the capillary 14, while it is difficult to perform stable CE-MS measurement because there is no sheath liquid 18.
  • the following three sheathless CE-MS methods have been reported so far.
  • An electrophoretic solution reservoir is provided in the middle of the capillary to perform normal electrophoresis, and the compound in the electrophoretic solution is taken off-line using electro-osmotic flow (liquid flow that occurs spontaneously when voltage is applied) EOF.
  • electro-osmotic flow liquid flow that occurs spontaneously when voltage is applied
  • JP 2001-83119 A Japanese Patent No. 3341765 Japanese Patent No. 4385171
  • the spray is not stabilized by oxygen or hydrogen generated by electrolysis at the electrodes, and measurement cannot be performed well.
  • this interface is obtained by chemically treating the tip of a capillary 14 having an inner diameter of 30 ⁇ m and an outer diameter of 150 ⁇ m with hydrofluoric acid and reducing the glass thickness to about 5 ⁇ m to form a porous tip 15.
  • 16 allows permeation of ions in 16 and achieves electrophoresis.
  • 20 is an electrophoretic liquid capillary for supplying an electrophoretic liquid made of a conductive liquid. Permeation through the porous tip 15 is limited to hydrogen ions and hydroxide ions, and metabolite ions in the sample do not permeate and are carried directly to the capillary 14 outlet for detection. This makes sheathless CE-MS possible (Non-Patent Document 4).
  • Non-Patent Document 5 describes that a crack is created in a capillary for CZE (capillary electrophoresis) and electrochemical detection in CE is performed, but application to CE-MS is not considered. It was.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a spray device that can be produced by a cheaper and simpler procedure and can be adapted to capillaries with various inner diameters.
  • the present invention relates to a method for producing a spray device for a sheathless CE-MS, the step of processing the tip of the capillary into an acute angle, and the step of opening an electrophoretic liquid passage hole through which an electrophoretic liquid can pass through a flexible insulating plate.
  • a step of opening the entry apertures, a step of inserting and fixing the electrode to the electrode insertion hole by having, is obtained by solving the above problems.
  • the step of forming the crack includes a step of scratching a surface of the portion of the electrophoresis solution passage hole of the capillary with a cutter, and a portion of the electrophoresis solution passage hole by bending the capillary by bending the insulating plate. Forming cracks.
  • the insulating plate can be a plastic plate or a glass plate.
  • the electrodialysis membrane can be an ion conversion membrane.
  • the reservoir can be made of an insulator.
  • the cutter can be a ceramic cutter.
  • the present invention also provides a capillary in which a tip is processed at an acute angle and a crack is formed in an intermediate portion, and an electrophoretic solution passing through which the electrophoretic solution can pass through the portion where the capillary is bonded and fixed.
  • An insulating plate in which holes are formed, an electrodialysis membrane adhered on the electrophoresis solution passage hole of the insulating plate, a reservoir placed on a non-capillary side of the insulating plate for containing electrophoresis solution,
  • the present invention provides a spray device for a sheathless CE-MS, comprising: an electrode inserted and fixed on an upper portion of a reservoir.
  • the present invention also provides a sheathless CE-MS apparatus comprising the above-described spray device.
  • the feature of the present invention lies in a method for producing a novel spray device for sheathless CE-MS, which combines a capillary micropore production technique and an electrodialysis membrane.
  • the basic principle is [Background Art] (3), in which an electrophoresis solution reservoir is provided in the middle of the capillary and normal electrophoresis is performed, and the compound in the electrophoresis solution is electrophoresed offline using electroosmotic flow EOF. It is applied.
  • the capillaries used for analysis have a very small inner diameter of several tens of ⁇ m, and it is necessary to carefully perform them under a microscope in order to combine them with high precision. After fixing to a flexible insulating plate made of a plate, by bending the insulating plate and creating cracks, it is possible to achieve high-precision bonding without the need for special equipment or tools. Yes. Also, the tip of the capillary is sharpened so that it can be easily sprayed. Further, by using an electrodialysis membrane having a very low molecular weight cut off (for example, a cut-off mass of 100 Da), leakage from the crack of the measurement object is minimized.
  • the target compound is moved only by the electroosmotic flow before the crack and the peak shape may spread as the distance from the crack to the capillary outlet increases, for example, the distance from the crack to the capillary outlet is 2 cm or less.
  • the capillary used in the spray device of the present invention can be applied to any inner diameter, and is highly versatile.
  • Sectional drawing which shows schematic structure of the nebulizer (spray) used with the conventional sheath flow CE-MS method
  • Sectional drawing which shows the capillary tip of an example of the conventional sheathless interface
  • Sectional view showing the capillary tip of another example
  • a sectional view showing the vicinity of the capillary tip of another example
  • the flowchart which shows the preparation procedure of the spray device in embodiment of this invention
  • perspective view showing the production process A) Front view, (B) Bottom view, (C) Side view showing the completed spray device 1 is a schematic diagram showing the overall configuration of a CE-MS apparatus equipped with an embodiment according to the present invention.
  • the figure which shows the result of connecting the created sheathless CE-MS device to the time-of-flight mass spectrometer (TOFMS) and comparing the sensitivity with the conventional sheath flow TOFMS The figure which shows the result of having connected the same triple quadrupole type mass spectrometer (QqQMS) and comparing the sensitivity of the conventional sheath flow TOFMS and the sheathless TOFMS shown in FIG.
  • a polyimide coating at the tip of the capillary 14 is processed into an acute angle with, for example, a mini router (for example, PROXXON, MM30GC, whetstone 150) as illustrated in FIG.
  • a mini router for example, PROXXON, MM30GC, whetstone 150
  • the capillary 14 in addition to a general fused silica capillary, any capillary such as a coating capillary proposed by the inventor in Patent Document 1 can be used.
  • the method of processing the capillary tip into an acute angle is not limited to the method using a mini router.
  • an electrophoretic solution passage hole through which an electrophoretic solution can pass through a flexible insulating plate for example, an acrylic resin plastic plate having a thickness of about 2 mm. 42 is opened.
  • the size of the electrophoretic liquid passage hole 42 is preferably small, but if it is too small, the electrophoretic liquid does not enter due to the surface tension. Therefore, the diameter is preferably about 2 mm. It is possible to use a pipette with a diameter of 1 mm.
  • the insulating plate 40 in addition to the acrylic resin plastic plate, polystyrene, polypropylene, polycarbonate, PET resin, AS resin, PVC (vinyl chloride), etc., which are not altered by the electrophoresis solution used in CE-MS, force A plastic plate that bends slightly when added, or a glass plate that can be bent, such as ultra-thin flexible glass (for example, Willow Glass (registered trademark) of Corning (registered trademark)) can be used.
  • ultra-thin flexible glass for example, Willow Glass (registered trademark) of Corning (registered trademark)
  • an electrodialysis membrane 44 made of, for example, an ion exchange membrane (for example, cellulose acetate membrane manufactured by HARVARD apparatus, 7427-CA100) so as to cover the electrophoresis solution passage hole 42 is formed.
  • Glue for example, cellulose acetate membrane manufactured by HARVARD apparatus, 7427-CA100
  • the type of electrodialysis membrane 44 is not limited to an ion exchange membrane.
  • step 130 as illustrated in FIG. 7C, the capillary 14 is bonded and fixed to the portion other than the electrophoresis solution passage hole 42 of the insulating plate 40 with an adhesive 46 so that there is no gap.
  • step 140 After allowing the adhesive 46 to solidify and the capillary 14 to stop moving, in step 140, for example, a ceramic cutter is used to scratch the electrophoretic solution passage hole 42 immediately above the electrodialysis membrane 44 of the capillary 14. Then, by holding both ends of the insulating plate 40 and slightly bending the insulating plate 40, a crack (crack) 48 as illustrated in FIG. 7D is formed in the capillary 14.
  • step 150 the process proceeds to step 150, and as illustrated in FIG. 7E, the entire insulating plate 40 is coated with an adhesive 46, and the capillary 14 is completely fixed.
  • the process proceeds to step 160, and as illustrated in FIG. 7F, the insulating plate 40 is inverted, and the reservoir 50 for placing the electrophoresis solution 16 on the opposite side of the insulating plate 40 (the upper side in use) is installed.
  • the reservoir 50 can be made of an arbitrary insulator such as polypropylene and other plastics that does not deteriorate with the electrophoresis solution used in CE-MS.
  • the electrophoresis solution 16 any volatile material such as formic acid, acetic acid, ammonium formate, ammonium acetate, and ammonium carbonate can be used.
  • an electrode insertion hole 52 for inserting an electrode is opened in the upper part of the reservoir 50 as illustrated in FIG. 7 (G).
  • the diameter of the electrode insertion hole 52 can be set to, for example, about 1 mm in accordance with the size of the electrode.
  • an electrode for example, platinum electrode
  • reference numeral 54 denotes an adhesive for fixing the reservoir 50 to the insulating plate 40.
  • the adhesives 46 and 54 for example, a silylated urethane resin, a cyanoacrylate resin, a urethane resin, or the like that does not change in the electrophoresis solution used in CE-MS can be used.
  • Fig. 9 shows a state in which the completed spray device is connected between CE 70 and MS 80 to constitute a sheathless CE-MS apparatus.
  • reference numeral 56 denotes a base plate.
  • CE Capillary Electrophoresis
  • the capillary 14 fused silica capillaries having various inner diameters (for example, an inner diameter of 50 ⁇ m, an outer diameter of 360 ⁇ m, etc.) can be used.
  • As buffer 16 10% (v / v) acetic acid (pH about 2.2) was used.
  • the applied voltage was +30 kV, and the capillary temperature was 20 ° C.
  • the sample was injected for 15 seconds at 50 mbar using the pressure method.
  • Fig. 10 shows the result of sensitivity comparison with the conventional sheath flow TOFMS by connecting the created sheathless CE-MS device to TOFMS.
  • FIG. 11 shows the result of sensitivity comparison between the sheathless CE-MS apparatus connected to the QqQMS and the conventional sheath flow TOFMS and the sheathless TOFMS shown in FIG.
  • the sensitivity increased with all the compounds compared to sheath flow TOFMS, and the sensitivity was increased 709 times with glutamine, 580 times with cystathionine, and 561 times with S-adenosylmethionine.
  • a CE-MS device capable of measuring compounds with high sensitivity can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Plasma & Fusion (AREA)
  • Urology & Nephrology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 キャピラリー14の先端を鋭角に加工する一方、可撓性を有する絶縁板40に、泳動液16が通過可能な泳動液通過孔42を開け、泳動液通過孔42を覆うように電気透析膜44を接着し、電気透析膜44の上側の泳動液通過孔42以外の部分の絶縁板40に、キャピラリー14を隙間のないように接着固定し、泳動液通過孔42以外の部分が絶縁板40に完全に固定されたキャピラリー14の泳動液通過孔42の部分にクラック48を形成し、キャピラリー14を絶縁板40に完全に接着固定し、絶縁板40のキャピラリー非固定側面に、泳動液16を入れるためのリザーバー50を設置し、リザーバー50の上部に、電極60を挿入するための電極挿入孔52を開け、電極挿入孔52に電極60を挿入して固定する。これによって、簡単な構成のシースレスCE-MS用スプレーデバイスにより、高感度測定を可能にする。

Description

シースレスCE-MS用スプレーデバイスの作成方法、シースレスCE-MS用スプレーデバイス、及び、シースレスCE-MS装置
 本発明は、シースレスCE(キャピラリー電気泳動)-MS(質量分析)用スプレーデバイスの作成方法、シースレスCE-MS用スプレーデバイス、及び、シースレスCE-MS装置に係り、特に、化合物を高感度に測定することが可能なシースレスCE-MS用スプレーデバイスの作成方法、例えば該作成方法によって作成されたシースレスCE-MS用スプレーデバイス、及び、これを備えたシースレスCE-MS装置に関する。
 メタボローム測定法の一つである、キャピラリー電気泳動-質量分析(CE-MS)法は、様々な生体試料中のイオン性代謝物の測定に非常に有効であり、ガスクロマトグラフィー-質量分析(GC-MS)法や、液体クロマトグラフィー-質量分析(LC-MS)法とは大部分の測定対象が重複しないため、非常に特異性の高い分析法である。
 通常、CE-MSにおいては、図1に示す如く、ネブライザーと呼ばれるエレクトロスプレーインターフェース(ESI)スプレー(以下、単にスプレーと称する)10に内蔵された、例えばステンレス製のニードル12の先端で、キャピラリー14の中から出てくる緩衝泳動液(以下、単に泳動液又はバッファと称する)16にシース液18と呼ばれる有機溶媒を含む溶液を混合し、更にその外側より、細かい液滴を生成してイオン化を促進するための、例えば窒素ガスでなるネブライザーガスを噴霧することによって、電気泳動のための電圧印加と泳動液16中の代謝物のイオン化を行っている(特許文献1~3参照)。このシース液18によって安定した測定が可能になった。
 しかしながら、現在のシース液18を用いたCE-MS法の大きな問題点は、他のメタボローム解析手法と比べて濃度感度(同じ濃度のサンプルを測定した際の検出感度)が劣ることである。CE-MS法で感度が低下する原因は、前述したネブライザー(10)の先端でキャピラリー14中から出てくる泳動液16が、シース液18と混合することによって、試料中の測定対象物が希釈されてしまうためである。例えば、発明者らが通常行っている測定条件において、その希釈率を計算したところ、泳動液16の流速は50nL/minであるのに対し、シース液18の流速は10μL/minであることから、約200倍希釈されていることがわかった。
 従って、ネブライザー(10)先端でのシース液18による代謝物の希釈を低減させる、もしくは、シース液18を使わないシースレス測定法が可能になれば、CE-MSでの濃度感度が最大で200倍に上昇することが期待できる。
 シースレス法はキャピラリー14出口での希釈が無いために感度の上昇が見込める一方、シース液18が無いために安定的なCE-MS測定を行うことが難しい。これまでに大きく分けると次の3つのシースレスCE-MS法が報告されている。
(1)図2に示す如く、キャピラリー14に微小な穴を開けてキャピラリー14に電極22を直接埋め込み、接着剤24で固定して電気泳動を行う方法(非特許文献1)。
(2)図3に示す如く、キャピラリー14の出口に導電性金属(例えば金など)26を蒸着させて電気泳動を行う方法(非特許文献2)。
(3)キャピラリーの途中に泳動液リザーバーを設けて通常の電気泳動を行いながら、泳動液中の化合物を電気浸透流(電圧を印加した際に自然発生する液流)EOFを利用してオフラインで泳動させる方法(非特許文献3)。
特開2001-83119号公報 特許第3341765号公報 特許第4385171号公報
Cao, P and Moini M,"A Novel Sheathless Interface for Capillary Electrophoresis / Electrospray Ionization Mass Spectrometry Using an In-capillary Electrode", J. Am. Soc. Mass Spectrom. 8, 561-564, 1997. Kele Z., Ferenc G., Klement E., Toth GK., Janaky T.,"Design and performance of a sheathless capillary electrophoresis/mass spectrometry interface by combining fused-silica capillaries with gold-coated nanoelectrospray tips", Rapid Commun. Mass Spectrom. 19, 881-885, 2005. Shi LH., Jin YX., Moon DC., Kim SK. and Park SR."A sheathless CE/ESI-MS interface with an ionophore membrane-packed electro-conduction channel", Electrophoresis 30, 1661-1669, 2009. Faserl K., Sarg B., Kremser L. and Lindner H."Optimization and Evaluation of a Sheathless Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography-Electrospray Ionization Mass Spectrometry", Anal. Chem. 83, 7297-7305, 2011. Whang C-W and Chen I-C. Cellulose acetate-coated porous polymer joint for capillary zone electrophoresis. Anal. Chem., 64 (1992), 2461-2464. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., and Nishioka, T.,"Quantitative Metabolome Analysis Using Capillary Electrophoresis Mass Spectrometry", J. Proteome Res. 2, 488-494, 2003. Soga, T., Baran, R., Suematsu M., Ueno, Y., Ikeda, S., Sakurakawa T., Kakazu, Y., Ishikawa, T., Robert, M., Nishioka, T., Tomita, M.,"Differential Metabolomics Reveals Ophthalmic Acid As An Oxidative Stress Biomarker Indicating Hepatic Glutathione Consumption", J. Biol. Chem. 281, 16768-16776, 2006.
 しかしながら、(1)や(2)の方法は、電極における電気分解により発生する酸素や水素によってスプレーが安定せず、うまく測定が行うことができない。
 一方、(3)の方法については、エービーサイエックス社でCESI-MSという製品名称で市販されているものが存在する。
 このインターフェイスは、図4に示す如く、内径30μm、外径150μmのキャピラリー14の先端約3cmをフッ酸により化学処理し、ガラス厚を約5μmまで薄くすることにより多孔質の先端15として、泳動液16中のイオンの透過を可能とし、電気泳動を達成している。図4において、20は導電性液体でなる泳動液供給用の泳動液キャピラリーである。多孔質の先端15を透過できるのは水素イオンや水酸化物イオンに限定され、試料中の代謝物イオンなどは透過せずにそのままキャピラリー14出口まで運ばれ検出される。これによって、シースレスCE-MSを可能にしている(非特許文献4)。
 しかしながら、この装置は非常に高価であり、また使用できるキャピラリーのラインアップも現在のところは内径30μmのみであるという問題点を有していた。
 一方、非特許文献5には、CZE(キャピラリー電気泳動)用キャピラリーにクラックを作成して、CEにおける電気化学検出を行うことが記載されているが、CE-MSへの適用は考えられていなかった。
 本発明は、前記従来の問題点を解決するべくなされたもので、より安価且つ簡便な手順で作成でき、様々な内径のキャピラリーに対応可能なスプレーデバイスを提供することを課題とする。
 本発明は、シースレスCE-MS用スプレーデバイスの作成方法において、キャピラリーの先端を鋭角に加工するステップと、可撓性を有する絶縁板に、泳動液が通過可能な泳動液通過孔を開けるステップと、前記泳動液通過孔を覆うように電気透析膜を接着するステップと、該電気透析膜の上側の前記泳動液通過孔以外の部分の絶縁板に、キャピラリーを隙間のないように接着固定するステップと、前記泳動液通過孔以外の部分が絶縁板に完全に固定されたキャピラリーの前記泳動液通過孔の部分にクラックを形成するステップと、キャピラリーを絶縁板に完全に接着固定するステップと、絶縁板のキャピラリー非固定側面に、泳動液を入れるためのリザーバーを設置するステップと、該リザーバーの上部に、電極を挿入するための電極挿入孔を開けるステップと、前記電極挿入孔に電極を挿入して固定するステップと、を有することにより、前記課題を解決したものである。      
 ここで、前記クラックを形成するステップは、キャピラリーの前記泳動液通過孔の部分の表面にカッターで傷を付けるステップと、絶縁板を撓ませることによりキャピラリーを曲げて、前記泳動液通過孔の部分にクラックを形成するステップと、を有することができる。
  又、前記絶縁板を、プラスチックプレート又はガラスプレートとすることができる。
 又、前記電気透析膜をイオン変換膜とすることができる。
 又、前記リザーバーを絶縁体製とすることができる。
 又、前記カッターをセラミックカッターとすることができる。
 本発明は、又、先端が鋭角に加工され、中間部にクラックが形成されたキャピラリーと、該キャピラリーが接着固定される、前記クラックが形成された部分に、泳動液が通過可能な泳動液通過孔が形成された絶縁板と、該絶縁板の泳動液通過孔上に接着された電気透析膜と、前記絶縁板のキャピラリー非固定側面に設置された、泳動液を入れるためのリザーバーと、該リザーバーの上部に挿入・固定された電極と、を備えたことを特徴とするシースレスCE-MS用スプレーデバイスを提供するものである。
 本発明は、又、前記のスプレーデバイスを備えたことを特徴とするシースレスCE-MS装置を提供するものである。
 本発明の特徴は、キャピラリーの微細孔作成技術と電気透析膜を組み合わせた新規なシースレスCE-MS用スプレーデバイスの作成方法にある。基本原理は、[背景技術](3)のキャピラリーの途中に泳動液リザーバーを設けて通常の電気泳動を行いながら、泳動液中の化合物を電気浸透流EOFを利用してオフラインで泳動させる方法を応用したものである。
 分析に用いるキャピラリーは内径が数十μmと非常に微細であり、これらを精度良く結合するには顕微鏡下で慎重に行う必要があり、非常に手間であったが、本発明ではキャピラリーを例えばプラスチックプレートでなる可撓性を有する絶縁板に固定した後、絶縁板を撓ませてクラック(きず)を入れることにより、特別な装置や工具を必要とすることなく、精度の高い結合を可能にしている。また、キャピラリー先端の形状もスプレーがしやすいように鋭角加工を施している。更に、分画分子量の非常に小さい(例えばカットオフ質量100Da)電気透析膜を用いることによって、測定対象物のクラックからの漏出を最小限に抑えている。この装置を用いることにより、電気分解をスプレーヤーの先端から手前で起こして、従来のシースレスCE-MSで問題となっていたガスの発生によるスプレーの乱れを防ぐことが可能になる。従って、本発明によれば、特に陽イオンのメタボローム測定において、従来法に比べ数倍~数百倍の高感度測定が可能になる。
 更に、クラックより先では、対象化合物は電気浸透流のみによって移動しており、クラックからキャピラリー出口までの距離が長くなるほどピーク形状が広がる恐れがあるため、例えばクラックからキャピラリー出口までの距離を2cm以下にして、ピークの格差を最小限に抑えることが可能である。また、本発明のスプレーデバイスで用いるキャピラリーは、どのような内径のものにも適用可能であり、汎用性が高い。
従来のシースフローCE-MS法で用いられているネブライザー(スプレー)の概略構成を示す断面図 従来のシースレスインターフェイスの一例のキャピラリー先端を示す断面図 同じく他の例のキャピラリー先端を示す断面図 同じく更に他の例のキャピラリー先端周辺を示す断面図 本発明の実施形態におけるスプレーデバイスの作成手順を示す流れ図 同じくキャピラリー先端を鋭角加工している状態を示す斜視図 同じく作成工程を示す斜視図 完成したスプレーデバイスを示す(A)正面図、(B)底面図、(C)側面図 本発明に係る実施形態が装着されたCE-MS装置の全体構成を示す概略図 作成したシースレスCE-MSデバイスを飛行時間型質量分析計(TOFMS)に接続し、従来のシースフローTOFMSとの感度比較を行った結果を示す図 同じく三連四重極型質量分析計(QqQMS)に接続し、従来のシースフローTOFMS及び図10に示したシースレスTOFMSとの感度比較を行った結果を示す図
 以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。
 以下、本発明に係るスプレーデバイスの作成方法を、図5を用いて説明する。
 まず最初に、ステップ100で、キャピラリー14先端の例えばポリイミド被膜を、図6に例示する如く、例えばミニルーター(例えばPROXXON社製,MM30GC,砥石150番)等で鋭角に加工する。この工程は、スプレーを安定的に行うために必要である。ここで、キャピラリー14としては、一般的なフューズドシリカキャピラリーの他、例えば発明者が特許文献1で提案したコーティングキャピラリーなど、任意のキャピラリーを用いることができる。なお、キャピラリー先端を鋭角に加工する方法は、ミニルーターによる方法に限定されない。
 次いで、ステップ110で、可撓性を有する絶縁板(例えば厚さ約2mmのアクリル樹脂製のプラスチックプレート)40に、図7(A)に例示する如く、泳動液が通過可能な泳動液通過孔42を開ける。ここで、泳動液通過孔42の大きさは小さい方が好ましいが、小さすぎると表面張力で泳動液が入っていかなくなるので、直径2mm程度が望ましい。なお、ピペットで入れれば直径1mmでも可能である。
 前記絶縁板40の種類としては、アクリル樹脂製のプラスチックプレートの他、ポリスチレン、ポリプロピレン、ポリカーボネート、PET樹脂、AS樹脂、PVC(塩化ビニール)など、CE-MSで用いる泳動液によって変質せず、力を加えると僅かに曲がるプラスチックプレートや、超薄型フレキシブルガラス(例えばコーニング(登録商標)社のWillow Glass(登録商標))など曲げられるガラスプレートを用いることができる。
 次いで、ステップ120で、図7(B)に例示する如く、泳動液通過孔42を覆うように例えばイオン交換膜(例えばHARVARD apparatus製の酢酸セルロース膜,7427-CA100)でなる電気透析膜44を接着する。なお、電気透析膜44の種類はイオン交換膜に限定されない。
 次いで、ステップ130で、図7(C)に例示する如く、絶縁板40の泳動液通過孔42以外の部分にキャピラリー14を隙間が無いように接着剤46で接着固定する。
 接着剤46が固化し、キャピラリー14が動かなくなるまで放置した後、ステップ140で、例えばセラミックカッターを用いてキャピラリー14の電気透析膜44の直上の泳動液通過孔42の所に傷をつける。そして、絶縁板40の両端を持ち、絶縁板40を僅かに撓ませることによって、キャピラリー14に、図7(D)に例示するようなクラック(ひび)48を形成する。
 次いで、ステップ150に進み、図7(E)に例示する如く、絶縁板40全体に接着剤46を塗り、キャピラリー14を完全に固定する。
 次いで、ステップ160に進み、図7(F)に例示する如く、絶縁板40を反転させ、絶縁板40の反対側(使用時の上側)に泳動液16を入れるためのリザーバー50を設置する。ここで、リザーバー50は、例えばポリプロピレンや他のプラスチック等、CE-MSで用いる泳動液で変質しない任意の絶縁体製とすることができる。又、泳動液16としては、ギ酸、酢酸、ギ酸アンモニウム、酢酸アンモニウム、炭酸アンモニウムなどの揮発性のあるものであれば何でも使用可能である。
 次いで、ステップ170に進み、図7(G)に例示する如く、リザーバー50の上部に、電極を挿入するための電極挿入孔52を開ける。電極挿入孔52の直径は、電極のサイズに合わせて、例えば1mm程度とすることができる。
 次いで、ステップ180に進み、図8に示す如く、電極挿入孔52に電極(例えば白金電極)60を挿入してスプレーデバイスを完成する。図において、54は、リザーバー50を絶縁板40に固定するための接着剤である。
 前記接着剤46、54としては、例えばシリル化ウレタン樹脂、シアノアクリレート樹脂、ウレタン樹脂など、CE-MSで用いる泳動液で変質しないものを用いることができる。
 完成したスプレーデバイスを、CE70とMS80の間に接続してシースレスCE-MS装置を構成した状態を図9に示す。図において、56はベースプレートである。
 図9に示したシースレスCE-MS装置を用いて測定を行った。陽イオン性代謝物質測定条件は、次のとおりである(非特許文献6、7参照)。
(i)キャピラリー電気泳動(CE)の分析条件
 キャピラリー14には、様々な内径のフューズドシリカキャピラリー(例えば内径50μm、外径360μmなど)を用いることが可能である。緩衝液16には、10%(v/v)酢酸(pH約2.2)を用いた。印加電圧は、+30kV、キャピラリー温度は20℃で測定した。試料は、加圧法を用いて50mbarで15秒間注入した。
(ii)飛行時間型質量分析計(TOFMS)の分析条件
 正イオンモードを用い、イオン化電圧は1.8kV、フラグメンター電圧は175V、スキマー電圧は50V、OctRF電圧は100Vに設定した。乾燥ガスには窒素を使用し、温度300℃に設定した。質量電荷比(m/z)50~1,000までの化合物を対象に、スキャン速度1.5サイクル/秒で測定を行った。
(iii)三連四重極型質量分析計(QqQMS)の分析条件
 正イオンモードを用い、イオン化電圧は2.4kV、フラグメンター電圧は90Vに設定した。乾燥ガスには窒素を使用し、温度300℃に設定した。多重反応モニタリング(MRM)法によって、各化合物名に最適化されたプレカーサーm/z、プロダクトm/z、コリジョンエネルギーにて測定を行った。
 作成したシースレスCE-MS装置をTOFMSに接続し、従来のシースフローTOFMSとの感度比較を行った結果を図10に示す。
 53種の陽イオン性代謝物質標準溶液を測定した結果、83%(45/54)の化合物で2倍以上の感度上昇が見られ、平均3.8倍の感度上昇が達成された。なお、ヒポキサンチンとスペルミジンについては感度が低下したが、これは、泳動液によりバックグランドノイズが増えたためと考えられる。従って、泳動液の種類を変えることで容易に対応できる。
 又、このシースレスCE-MS装置をQqQMSに接続し、従来のシースフローTOFMS及び図10に示したシースレスTOFMSとの感度比較を行った結果を図11に示す。この場合には、シースフローTOFMSに比べて全ての化合物で感度が上昇し、グルタミンで709倍、シスタチオニンで580倍、S-アデノシルメチオニンで561倍の高感度化が達成できた。
 化合物を高感度に測定可能なCE-MS装置を提供できる。
 10…スプレー
 12…ニードル
 14…キャピラリー
 16…泳動(緩衝)液
 40…絶縁板
 42…泳動液通過孔
 44…電気透析膜
 46、54…接着剤
 48…クラック
 50…リザーバー
 52…電極挿入孔
 60…電極

Claims (8)

  1.  キャピラリーの先端を鋭角に加工するステップと、
     可撓性を有する絶縁板に、泳動液が通過可能な泳動液通過孔を開けるステップと、
     前記泳動液通過孔を覆うように電気透析膜を接着するステップと、
     該電気透析膜の上側の前記泳動液通過孔以外の部分の絶縁板に、キャピラリーを隙間のないように接着固定するステップと、
     前記泳動液通過孔以外の部分が絶縁板に完全に固定されたキャピラリーの前記泳動液通過孔の部分にクラックを形成するステップと、
     キャピラリーを絶縁板に完全に接着固定するステップと、
     絶縁板のキャピラリー非固定側面に、泳動液を入れるためのリザーバーを設置するステップと、
     該リザーバーの上部に、電極を挿入するための電極挿入孔を開けるステップと、
     前記電極挿入孔に電極を挿入して固定するステップと、
     を有することを特徴とするシースレスCE-MS用スプレーデバイスの作成方法。
  2.  前記クラックを形成するステップが、
     キャピラリーの前記泳動液通過孔の部分の表面にカッターで傷を付けるステップと、
     絶縁板を撓ませることによりキャピラリーを曲げて、前記泳動液通過孔の部分にクラックを形成するステップと、
     を有することを特徴とする請求項1に記載のシースレスCE-MS用スプレーデバイスの作成方法。
  3.  前記絶縁板が、プラスチックプレート又はガラスプレートである請求項1又は2に記載のシースレスCE-MS用スプレーデバイスの作成方法。
  4.  前記電気透析膜がイオン交換膜である請求項1に記載のシースレスCE-MS用スプレーデバイスの作成方法。
  5.  前記リザーバーが絶縁体製である請求項1に記載のシースレスCE-MS用スプレーデバイスの作成方法。
  6.  前記カッターがセラミックカッターである請求項2に記載のシースレスCE-MS用スプレーデバイスの作成方法。
  7.  先端が鋭角に加工され、中間部にクラックが形成されたキャピラリーと、
     該キャピラリーが接着固定される、前記クラックが形成された部分に、泳動液が通過可能な泳動液通過孔が形成された絶縁板と、
     該絶縁板の泳動液通過孔上に接着された電気透析膜と、
     前記絶縁板のキャピラリー非固定側面に設置された、泳動液を入れるためのリザーバーと、
     該リザーバーの上部に挿入・固定された電極と、
     を備えたことを特徴とするシースレスCE-MS用スプレーデバイス。
  8.  請求項7に記載のスプレーデバイスを備えたことを特徴とするシースレスCE-MS装置。
PCT/JP2016/058131 2015-04-01 2016-03-15 シースレスce-ms用スプレーデバイスの作成方法、シースレスce-ms用スプレーデバイス、及び、シースレスce-ms装置 WO2016158380A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000855.4T DE112016000855B4 (de) 2015-04-01 2016-03-15 Verfahren zum Herstellen einer Sprühvorrichtung für hüllenlose CE-MS, Sprühvorrichtung für hüllenlose CE-MS und hüllenlose CE-MS Vorrichtung
US15/552,918 US9978573B2 (en) 2015-04-01 2016-03-15 Method of creating spray device for sheathless CE-MS, spray device for sheathless CE-MS, and sheathless CE-MS device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015075494A JP6498497B2 (ja) 2015-04-01 2015-04-01 シースレスce−ms用スプレーデバイスの作成方法、シースレスce−ms用スプレーデバイス、及び、シースレスce−ms装置
JP2015-075494 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158380A1 true WO2016158380A1 (ja) 2016-10-06

Family

ID=57007113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058131 WO2016158380A1 (ja) 2015-04-01 2016-03-15 シースレスce-ms用スプレーデバイスの作成方法、シースレスce-ms用スプレーデバイス、及び、シースレスce-ms装置

Country Status (4)

Country Link
US (1) US9978573B2 (ja)
JP (1) JP6498497B2 (ja)
DE (1) DE112016000855B4 (ja)
WO (1) WO2016158380A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180624B1 (ko) * 2017-10-11 2020-11-18 주식회사 엘지화학 Maldi 질량분석법을 이용한 고분자의 정량분석방법 및 고분자 정량분석을 위한 maldi 질량분석용 시편의 제조방법
CN110988102B (zh) * 2019-12-10 2022-09-30 北京工业大学 一种可视化无鞘流的单细胞质谱分析系统
CN112834596B (zh) * 2020-12-30 2022-08-30 武汉大学 一种基于丙烯酰胺导电凝胶的无鞘流ce-ms接口装置及应用
CN115078510A (zh) * 2022-05-12 2022-09-20 天津国科医工科技发展有限公司 无鞘液ce-ms接口装置、制造方法、ce-ms联用仪、ce-ms联用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993633A (en) * 1997-07-31 1999-11-30 Battelle Memorial Institute Capillary electrophoresis electrospray ionization mass spectrometry interface
WO2015197072A1 (en) * 2014-06-23 2015-12-30 Københavns Universitet Electrical contacts for ce-ms interfaces based on generating cracks/fractures along the capillary

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083119A (ja) 1999-09-13 2001-03-30 Yokogawa Analytical Systems Inc アミノ酸分析方法及び装置
JP3341765B1 (ja) 2001-07-25 2002-11-05 学校法人慶應義塾 陰イオン性化合物の分離分析方法及び装置
JP4385171B1 (ja) 2009-03-10 2009-12-16 学校法人慶應義塾 シースフロー方式のキャピラリー電気泳動−質量分析計法による陰イオン性化合物の測定装置
CN105723213B (zh) * 2013-08-29 2019-09-13 圣母大学 高灵敏度电喷射接口
US9543137B2 (en) * 2014-12-12 2017-01-10 Agilent Technologies, Inc. Sample droplet generation from segmented fluid flow and related devices and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993633A (en) * 1997-07-31 1999-11-30 Battelle Memorial Institute Capillary electrophoresis electrospray ionization mass spectrometry interface
WO2015197072A1 (en) * 2014-06-23 2015-12-30 Københavns Universitet Electrical contacts for ce-ms interfaces based on generating cracks/fractures along the capillary

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FASERL K.: "Optimization and Evaluation of a Sheathless Capillary Electrophoresis- Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography-Electrospray Ionization Mass Spectrometry", ANAL. CHEM., vol. 83, no. 19, 2011, pages 7297 - 7305, XP055317266 *
SHI LH.: "A sheathless CE/ESI-MS interface with an ionophore membrane-packed electro-conduction channel", ELECTROPHORESIS, vol. 30, no. 10, 2009, pages 1661 - 1669, XP055317264 *
WANG J.: "Enhanced Neuropeptide Profiling via Capillary Electrophoresis Off-Line Coupled with MALDI FTMS", ANAL. CHEM., vol. 80, no. 16, 2008, pages 6168 - 6177, XP055317276 *

Also Published As

Publication number Publication date
DE112016000855B4 (de) 2019-05-29
JP2016194492A (ja) 2016-11-17
US9978573B2 (en) 2018-05-22
DE112016000855T5 (de) 2017-11-09
US20180033599A1 (en) 2018-02-01
JP6498497B2 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
Maziarz et al. Polyaniline: a conductive polymer coating for durable nanospray emitters
Zamfir Recent advances in sheathless interfacing of capillary electrophoresis and electrospray ionization mass spectrometry
JP5455649B2 (ja) 接続型低フロー分離技術
Haselberg et al. Performance of a sheathless porous tip sprayer for capillary electrophoresis–electrospray ionization-mass spectrometry of intact proteins
EP2250490B9 (en) Self-contained capillary electrophoresis system for interfacing with mass spectrometry
Ramautar et al. CE–MS for proteomics: Advances in interface development and application
WO2016158380A1 (ja) シースレスce-ms用スプレーデバイスの作成方法、シースレスce-ms用スプレーデバイス、及び、シースレスce-ms装置
US20060192107A1 (en) Methods and apparatus for porous membrane electrospray and multiplexed coupling of microfluidic systems with mass spectrometry
Bonvin et al. Evaluation of a sheathless nanospray interface based on a porous tip sprayer for CE‐ESI‐MS coupling
US7544932B2 (en) Contiguous capillary electrospray sources and analytical devices
Gou et al. Hyphenation of capillary zone electrophoresis with mass spectrometry for proteomic analysis: Optimization and comparison of two coupling interfaces
Lazar et al. General considerations for optimizing a capillary electrophoresis–electrospray ionization time-of-flight mass spectrometry system
Trapp et al. A soft on‐column metal coating procedure for robust sheathless electrospray emitters used in capillary electrophoresis‐mass spectrometry
Shui et al. Micro‐electrospray with stainless steel emitters
WO2019129276A1 (zh) 感应纳升电喷雾离子源及其工作方法
JPWO2007029431A1 (ja) 質量分析装置の検出質量較正方法
Guček et al. Coupling of capillary zone electrophoresis to mass spectrometry (MS and MS/MS) via a nanoelectrospray interface for the characterisation of some β‐agonists
Risley et al. Electrospray ionization interface development for capillary electrophoresis–mass spectrometry
Shah et al. Overview on capillary electrophoresis with mass spectrometry: application in peptide analysis and proteomics
Covey et al. Nanospray electrospray ionization development
Moini Capillary electrophoresis-electrospray ionization mass spectrometry of amino acids, peptides, and proteins
Neusüß et al. Coupling of capillary electromigration techniques to mass spectrometry
Chen et al. Compatible buffer for capillary electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry
KR100971057B1 (ko) 금속 와이어가 삽입된 전자 분무 이온화용 분무 바늘
Rudaz et al. 13 Chiral CE–MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000855

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772263

Country of ref document: EP

Kind code of ref document: A1