WO2016158157A1 - Novel episulfide compound and optical material composition containing same - Google Patents

Novel episulfide compound and optical material composition containing same Download PDF

Info

Publication number
WO2016158157A1
WO2016158157A1 PCT/JP2016/056154 JP2016056154W WO2016158157A1 WO 2016158157 A1 WO2016158157 A1 WO 2016158157A1 JP 2016056154 W JP2016056154 W JP 2016056154W WO 2016158157 A1 WO2016158157 A1 WO 2016158157A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
formula
compound represented
mass
composition
Prior art date
Application number
PCT/JP2016/056154
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 西森
嘉村 輝雄
堀越 裕
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP16772041.6A priority Critical patent/EP3208268B1/en
Priority to US15/521,723 priority patent/US10065940B2/en
Priority to BR112017011529-8A priority patent/BR112017011529B1/en
Priority to JP2017509421A priority patent/JP6245408B2/en
Priority to CN201680011627.4A priority patent/CN107250125B/en
Priority to KR1020187015401A priority patent/KR102482153B1/en
Priority to KR1020177013553A priority patent/KR20170066660A/en
Publication of WO2016158157A1 publication Critical patent/WO2016158157A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D331/00Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
    • C07D331/02Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3874Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing heterocyclic rings having at least one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts

Definitions

  • the present invention relates to a novel episulfide compound and a composition for optical materials containing the same, and in particular, a novel episulfide compound suitably used for optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, filters, and especially plastic lenses. And an optical material composition containing the same.
  • Plastic lenses are light and tough and easy to dye.
  • the performance particularly required for the plastic lens is low specific gravity, high transparency and low yellowness, and high optical refractive index, high Abbe number, high heat resistance, high strength and the like.
  • a high refractive index enables the lens to be thinned, and a high Abbe number reduces the chromatic aberration of the lens.
  • organic compounds having sulfur atoms have been reported for the purpose of high refractive index and high Abbe number. Among them, it is known that a polyepisulfide compound having a sulfur atom has a good balance between the refractive index and the Abbe number (Patent Document 1).
  • Patent Documents 2 to 5 Since polyepisulfide compounds can react with various compounds, compositions with various compounds have been proposed to improve physical properties (Patent Documents 2 to 5).
  • lenses produced from episulfide compounds may be difficult to dye by methods commonly used in plastic lenses, and may not sufficiently meet the required characteristics of spectacle lenses where design is important.
  • the releasability is poor, so the lens may be missing at the time of demolding, or the releasability is too good to peel off from the mold during polymerization and the required surface accuracy may not be obtained.
  • An object of the present invention is to provide a composition for an optical material capable of suppressing a decrease in the yield rate due to defective release and an optical material excellent in dyeability.
  • an episulfide compound represented by the following formula (1) As a result of intensive studies in view of such circumstances, the present inventors have obtained an episulfide compound represented by the following formula (1), an episulfide compound represented by the following formula (1), and the following formula (2).
  • This problem was solved by the composition for optical materials containing the episulfide compound represented, and it came to this invention. That is, the present invention is as follows.
  • An optical material composition comprising an episulfide compound represented by the formula (1) described in the above ⁇ 1> and an episulfide compound represented by the following formula (2).
  • ⁇ 3> The composition for optical materials according to ⁇ 2>, wherein the content of the episulfide compound represented by the formula (1) is 0.001 to 5.0% by mass.
  • ⁇ 4> The composition for optical materials according to the above ⁇ 2> or ⁇ 3>, wherein the content of the episulfide compound represented by the formula (2) is 40 to 99.999% by mass.
  • ⁇ 5> The composition for optical materials according to any one of ⁇ 2> to ⁇ 4>, further including polythiol.
  • ⁇ 6> The composition for optical materials according to any one of ⁇ 2> to ⁇ 5>, further containing sulfur.
  • ⁇ 10> An optical lens including the optical material according to ⁇ 9>.
  • ⁇ 11> A step of adding 0.0001% by mass to 10% by mass of a polymerization catalyst with respect to the total amount of the composition for optical materials according to any one of the above ⁇ 2> to ⁇ 7>, and curing by polymerization. It is a manufacturing method of an optical material.
  • ⁇ 12> The method for producing an optical material according to ⁇ 11>, wherein the episulfide compound represented by the formula (2) and sulfur are partially polymerized in advance and then polymerized and cured.
  • an optical material having a high refractive index when produced, it is possible to obtain a composition for an optical material that is unlikely to cause defective release and that provides an optical material having excellent dyeability.
  • the present invention is an optical material composition comprising an episulfide compound represented by the formula (1), and an episulfide compound represented by the formula (1) and a polymerizable compound.
  • the polymerizable compound include an episulfide compound, a vinyl compound, a methacrylic compound, an acrylic compound, and an allyl compound, preferably an episulfide compound, and more preferably an episulfide compound represented by the formula (2).
  • the ratio of the episulfide compound represented by the formula (1) in the composition for optical materials of the present invention is preferably 0.001 to 5.0% by mass, more preferably 0.005 to 3.0. % By mass, particularly preferably 0.01 to 1.0% by mass.
  • the proportion of the polymerizable compound in the composition for optical materials of the present invention is preferably 95.0 to 99.999% by mass, more preferably 97.0 to 99.995% by mass, and particularly The content is preferably 99.0 to 99.99% by mass.
  • the proportion of the episulfide compound represented by the formula (2) in the composition for optical materials is 40 to 99.999 mass%. It is preferably 50 to 99.995% by mass, particularly preferably 60 to 99.99% by mass.
  • the episulfide compound represented by the formula (1) and the episulfide compound represented by the formula (2) will be described in detail.
  • the present invention is an episulfide compound represented by the formula (1), and the episulfide compound represented by the formula (1) is used in the composition for optical materials of the present invention.
  • the episulfide compound represented by the formula (1) preferably, m and p are integers of 0 to 2, n and q are integers of 0 or 1, more preferably m and p are 0 and n and q are 1, or n and q Is a compound in which n and q are 0.
  • the episulfide compound represented by the formula (1) may be used alone or in combination of two or more.
  • a manufacturing method is not specifically limited.
  • a method for producing an episulfide compound represented by the formula (1) of the present invention a compound represented by the following formula (3) is first obtained by reacting hydrogen sulfide or polythiol with an epihalohydrin compound.
  • the obtained compound represented by the formula (3) is obtained by using thiourea, thiocyanate, etc.
  • a compound represented by the formula (4) is obtained by using thiourea, thiocyanate, etc.
  • a compound represented by the following formula (5) is obtained by reacting a compound represented by the formula (4) with an epihalohydrin compound, and then the obtained formula After the compound represented by (5) is reacted with an alkali to proceed the dehydrohalogenation reaction to obtain a compound represented by the following formula (6), it is further represented by the obtained formula (6).
  • the compound is reacted with a thiating agent such as thiourea or thiocyanate to obtain an episulfide compound represented by the formula (1).
  • the compound represented by the formula (4) is reacted with 3-mercapto-1,2-propylene sulfide to represent the compound represented by the formula (1).
  • An episulfide compound is obtained.
  • a compound represented by the formula (3) is reacted with an alkali to proceed a dehydrohalogenation reaction to obtain a compound represented by the following formula (7), and then with hydrogen sulfide.
  • an episulfide compound represented by: (In the formula, X represents a halogen atom, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.) (In the formula, X represents a halogen atom.) (In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.) (In the formula, m and p are integers of 0 to 4, and n and q are integers of 0 to 2.)
  • the compound represented by Formula (3) is obtained by reaction of hydrogen sulfide or a polythiol compound with an epihalohydrin compound.
  • polythiol compounds are methanedithiol, 1,2-dimercaptoethane, 1,3-dimercaptopropane, 1,4-dimercaptobutane, and bis (2-mercaptoethyl) sulfide.
  • hydrogen sulfide or polythiol compounds hydrogen sulfide, 1,2-dimercaptoethane, and bis (2-mercaptoethyl) sulfide are preferable, and hydrogen sulfide is most preferable.
  • the epihalohydrin compound include epichlorohydrin and epibromohydrin, with epichlorohydrin being preferred.
  • a catalyst is preferably used. Examples of the catalyst include inorganic acid, organic acid, Lewis acid, silicic acid, boric acid, quaternary ammonium salt, inorganic base, organic base and the like.
  • organic acids quaternary ammonium salts, and inorganic bases
  • quaternary ammonium salts and inorganic bases include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium acetate, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium acetate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium acetate, tetrahexylammonium.
  • Examples include chloride, tetrahexylammonium bromide, tetrahexylammonium acetate, tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylammonium acetate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. Of these, sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferred.
  • the amount of the catalyst added is not particularly limited as long as the reaction is allowed to proceed. However, it is preferably used in an amount of 0.00001 to 0.5 mol, more preferably 0.001 to 0.1 mol, relative to 1 mol of epihalohydrin. . If the amount is less than 0.00001 mol, the reaction does not proceed or becomes too slow, which is not preferable.
  • the ratio of epihalohydrin to hydrogen sulfide or polythiol compound is not particularly limited as long as the reaction proceeds.
  • the molar ratio of epihalohydrin to H of thiol group (SH group) or hydrogen sulfide of polythiol compound is 0.3. -4, more preferably 0.4-3, still more preferably 0.5-2. If it is less than 0.3 or exceeds 4, the surplus of unreacted raw materials increases, which is not economically preferable.
  • a solvent may or may not be used, but when used, water, alcohols, ethers, ketones, aromatic hydrocarbons, halogenated hydrocarbons and the like are used. Specific examples include water, methanol, ethanol, propanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone, benzene, toluene, xylene, dichloroethane, chloroform, chlorobenzene and the like. Is mentioned.
  • the reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably ⁇ 10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 40 ° C.
  • the reaction time is not particularly limited, but is usually 20 hours or less. If it is less than ⁇ 10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
  • a compound represented by the formula (4) is obtained by reacting a compound represented by the formula (3) with a thiating agent such as thiourea or thiocyanate.
  • a thiating agent such as thiourea or thiocyanate.
  • Preferred thiating agents are thiurea, sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate, and a particularly preferred compound is thiourea.
  • the thialating agent the number of moles corresponding to the halogen of the compound represented by the formula (3), that is, the theoretical amount is used. If importance is attached to the reaction rate and purity, the theoretical amount is 2.5 times the theoretical amount. Use moles.
  • the molar amount is preferably 1.3 times the theoretical amount to 2.0 times the theoretical amount, more preferably 1.5 times the theoretical amount to 2.0 times the theoretical amount.
  • the solvent is not particularly limited as long as it dissolves the chelating agent, the compound represented by the formula (4), and the compound represented by the formula (3). Specific examples include alcohols such as methanol and ethanol.
  • the reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is carried out at 10 ° C to 50 ° C. When the temperature is lower than 10 ° C., in addition to the decrease in the reaction rate, the thiating agent is insufficiently dissolved and the reaction does not proceed sufficiently. When the temperature exceeds 50 ° C., the formation of the polymer becomes remarkable.
  • an acid or acid anhydride or an ammonium salt during the reaction.
  • the acid or acid anhydride used include nitric acid, hydrochloric acid, perchloric acid, hypochlorous acid, chlorine dioxide, hydrofluoric acid, sulfuric acid, fuming sulfuric acid, sulfuryl chloride, boric acid, arsenic acid, arsenous acid, Pyroarsenic acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphorus oxychloride, phosphorus oxybromide, phosphorus sulfide, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, hydrocyanic acid, chromic acid, anhydrous nitric acid, anhydrous sulfuric acid, Inorganic acidic compounds such as boron oxide, arsenic pentoxide, phosphorus pentoxide, chromic anhydride, silica gel, silica alumina, aluminum chloride, zinc
  • Phenols methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, dodecanesulfonic acid, benzenesulfonic acid, o-toluenesulfonic acid, m-toluenesulfonic acid, p-toluenesulfonic acid, ethylbenzenesulfonic acid, butylbenzenesulfonic acid , Dodecylbenzenesulfonic acid, p-phenolsulfonic acid, o-cresolsulfonic acid, metanilic acid, sulfanilic acid, 4B-acid, diaminostilbenesulfonic acid, biphenylsulfonic acid, ⁇ -naphthalenesulfonic acid, ⁇ -naphthalenesulfonic acid, peri acid Laurent acid, sulfonic acids such as phenyl J acid, etc., and can be used in
  • formic acid acetic acid, peracetic acid, thioacetic acid, succinic acid, tartaric acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipine Acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodipropionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3 -Methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, benzylic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -na
  • the amount added is usually in the range of 0.001% to 10% by weight, preferably 0.01% to 5% by weight, based on the total amount of the reaction solution.
  • the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield may decrease remarkably.
  • Specific examples of ammonium salts include ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium propionate, ammonium benzoate, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium phosphate, ammonium hydroxide, and the like. Is mentioned. More preferred are ammonium nitrate, ammonium sulfate, and ammonium chloride, and most preferred is ammonium nitrate.
  • the compound represented by Formula (5) is obtained by reaction of the compound represented by Formula (4) with an epihalohydrin compound.
  • the epihalohydrin compound include epichlorohydrin and epibromohydrin, with epichlorohydrin being preferred.
  • a catalyst is preferably used. Examples of the catalyst include inorganic acid, organic acid, Lewis acid, silicic acid, boric acid, quaternary ammonium salt, inorganic base, organic base and the like.
  • organic acids quaternary ammonium salts, and inorganic bases
  • quaternary ammonium salts and inorganic bases include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium acetate, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium acetate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium acetate, tetrahexylammonium.
  • Examples include chloride, tetrahexylammonium bromide, tetrahexylammonium acetate, tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylammonium acetate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. Of these, sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferred.
  • the amount of the catalyst added is not particularly limited as long as the reaction is allowed to proceed. However, it is preferably used in an amount of 0.00001 to 0.5 mol, more preferably 0.001 to 0.1 mol, relative to 1 mol of epihalohydrin. . If the amount is less than 0.00001 mol, the reaction does not proceed or becomes too slow, which is not preferable.
  • the proportion of the epihalohydrin and the compound represented by the formula (4) is not particularly limited as long as the reaction proceeds, but preferably the epihalohydrin to the thiol group (SH group) of the compound represented by the formula (4)
  • the molar ratio is 0.3 to 4, more preferably 0.4 to 3, and still more preferably 0.5 to 2. If it is less than 0.3 or exceeds 4, the surplus of unreacted raw materials increases, which is not economically preferable.
  • a solvent may or may not be used, but when used, water, alcohols, ethers, ketones, aromatic hydrocarbons, halogenated hydrocarbons and the like are used. Specific examples include water, methanol, ethanol, propanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone, benzene, toluene, xylene, dichloroethane, chloroform, chlorobenzene and the like. Is mentioned.
  • the reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably ⁇ 10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 40 ° C.
  • the reaction time is not particularly limited, but is usually 20 hours or less. If it is less than ⁇ 10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
  • the compound represented by the formula (7) can be produced from the compound represented by the formula (3) by the same method.
  • the compound represented by the formula (6) is obtained by reacting the compound represented by the formula (5) with an alkali.
  • the alkali include hydroxides of ammonia, alkali metals, and alkaline earth metals.
  • the amount of alkali to be used cannot be generally defined by the compound represented by the formula (5) as a raw material, but usually the alkali is 0.8 to 1 relative to the halogen equivalent in the compound represented by the formula (5). .2 equivalents, preferably 0.84 to 1.14 equivalents, more preferably 0.90 to 1.1 equivalents. When the amount of alkali is small or large, the yield decreases.
  • the solvent used in the reaction is not particularly limited and any solvent may be used, but preferably water, alcohols, ethers, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons. And the like are used. These may be used alone or in combination.
  • alcohols include methanol, ethanol, propanol, isopropanol, etc.
  • ethers include diethyl ether, tetrahydrofuran, dioxane, etc.
  • ketones include methyl cellosolve.
  • Ethyl cellosolve Ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone and the like
  • specific examples of aliphatic hydrocarbons include hexane, heptane, octane and the like
  • specific examples of aromatic hydrocarbons include benzene , Toluene, xylene and the like.
  • Specific examples of the halogenated hydrocarbons include dichloroethane, chloroform, chlorobenzene and the like. More preferred are water and alcohols, and specific examples thereof include water, methanol, propanol and isopropanol. Of these, water and methanol are preferred.
  • the amount of the solvent is not particularly limited, but is usually 5 to 1000 parts by weight, preferably 50 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the compound represented by the formula (3). is there.
  • the reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably ⁇ 10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 30 ° C.
  • the reaction time is not particularly limited, but is usually 20 hours or less. If it is less than ⁇ 10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
  • n and q of Formula (1) are represented by 0 from the compound represented by Formula (6).
  • the compound represented by Formula (1) can also be manufactured from the compound represented by Formula (8) by the same method.
  • An episulfide compound represented by the formula (1) is obtained by reacting a compound represented by the formula (6) with a thiating agent such as thiourea or thiocyanate.
  • thiating agents are thiurea, sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate, and a particularly preferred compound is thiourea.
  • the thialating agent the number of moles corresponding to the epoxy of the compound represented by formula (6), that is, the theoretical amount is used.
  • the solvent is not particularly limited as long as it dissolves the chelating agent, the compound represented by the formula (6), and the episulfide compound represented by the formula (1), but specific examples include alcohols such as methanol and ethanol.
  • the reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is carried out at 10 ° C to 50 ° C. When the temperature is lower than 10 ° C., in addition to the decrease in the reaction rate, the thiating agent is insufficiently dissolved and the reaction does not proceed sufficiently. When the temperature exceeds 50 ° C., the formation of the polymer becomes remarkable.
  • an acid or acid anhydride or an ammonium salt during the reaction.
  • the acid or acid anhydride used include nitric acid, hydrochloric acid, perchloric acid, hypochlorous acid, chlorine dioxide, hydrofluoric acid, sulfuric acid, fuming sulfuric acid, sulfuryl chloride, boric acid, arsenic acid, arsenous acid, Pyroarsenic acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphorus oxychloride, phosphorus oxybromide, phosphorus sulfide, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, hydrocyanic acid, chromic acid, anhydrous nitric acid, anhydrous sulfuric acid, Inorganic acidic compounds such as boron oxide, arsenic pentoxide, phosphorus pentoxide, chromic anhydride, silica gel, silica alumina, aluminum chloride, zinc
  • Phenols methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, dodecanesulfonic acid, benzenesulfonic acid, o-toluenesulfonic acid, m-toluenesulfonic acid, p-toluenesulfonic acid, ethylbenzenesulfonic acid, butylbenzenesulfonic acid , Dodecylbenzenesulfonic acid, p-phenolsulfonic acid, o-cresolsulfonic acid, metanilic acid, sulfanilic acid, 4B-acid, diaminostilbenesulfonic acid, biphenylsulfonic acid, ⁇ -naphthalenesulfonic acid, ⁇ -naphthalenesulfonic acid, peri acid Laurent acid, sulfonic acids such as phenyl J acid, etc., and can be used in
  • formic acid acetic acid, peracetic acid, thioacetic acid, succinic acid, tartaric acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipine Acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodipropionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3 -Methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, benzylic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -na
  • the amount added is usually in the range of 0.001% to 10% by weight, preferably 0.01% to 5% by weight, based on the total amount of the reaction solution.
  • the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield may decrease remarkably.
  • Specific examples of ammonium salts include ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium propionate, ammonium benzoate, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium phosphate, ammonium hydroxide, and the like. Is mentioned. More preferred are ammonium nitrate, ammonium sulfate, and ammonium chloride, and most preferred is ammonium nitrate.
  • n and q are 1 from the compound represented by Formula (4).
  • a compound represented by the formula (4) and 3-mercapto-1,2-propylene sulfide are reacted with an oxidizing agent to obtain an episulfide compound represented by the formula (1).
  • Preferred oxidizing agents are halogen, hydrogen peroxide, permanganate, and chromic acid, more preferably halogen and hydrogen peroxide, and particularly preferably iodine.
  • the solvent is not particularly limited as long as it dissolves the oxidizing agent, the compound represented by formula (4), and the episulfide compound represented by formula (1). Specific examples include alcohols such as methanol and ethanol.
  • the reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is performed at ⁇ 30 ° C. to 20 ° C. When the temperature is lower than ⁇ 30 ° C., the reaction does not proceed sufficiently due to a decrease in the reaction rate, and when it exceeds 20 ° C., the reaction may proceed excessively.
  • an episulfide compound represented by the formula (2) can be used as the polymerizable compound.
  • Specific examples of the episulfide compound represented by the formula (2) include bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropylthio) methane, 1,2 And episulfides such as -bis ( ⁇ -epithiopropylthio) ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, and 1,4-bis ( ⁇ -epithiopropylthio) butane.
  • the episulfide compound represented by the formula (2) may be used alone or in combination of two or more.
  • the composition for optical materials of the present invention may contain a polythiol compound as a polymerizable compound in order to improve the color tone when the resulting resin is heated.
  • the content of the polythiol compound is usually 1 to 25% by mass, preferably 2 to 25% by mass, particularly preferably 5 to 20% by mass, when the total amount of the composition for optical materials is 100% by mass. .
  • the content of the polythiol compound is less than 1% by mass, yellowing may occur during lens molding, and when it exceeds 25% by mass, the heat resistance may decrease.
  • the polythiol compound used in the present invention may be used alone or in combination of two or more.
  • Specific examples thereof include methanedithiol, methanetrithiol, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 1,3-dimercaptopropane, 2,2-dimercaptopropane, 1,4-dimer.
  • preferred specific examples are bis (2-mercaptoethyl) sulfide, 2,5-dimercaptomethyl-1,4-dithiane, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercapto).
  • Methyl) benzene 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di Mercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 1,1,3,3 -Tetrakis (mercaptomethylthio) propane, pentaerythritol tetrakismercaptopropionate, pentaerythritol tetrakis Thioglycolate, trimethylolpropane tristhioglycolate), and trimethylolpropane trismercaptopropionate, more preferably bis (2-mercaptoethyl) sulfide, 2,5-bis (2-mer
  • the composition for optical materials of the present invention may contain a polyisocyanate compound as a polymerizable compound in order to improve the strength of the resulting resin.
  • the content of the polyisocyanate compound is usually 1 to 25% by mass, preferably 2 to 25% by mass, particularly preferably 5 to 20% by mass, when the total composition for optical materials is 100% by mass. is there. If the content of the polyisocyanate compound is less than 1% by mass, the strength may decrease, and if it exceeds 25% by mass, the color tone may deteriorate.
  • the polyisocyanate compound used in the present invention may be used alone or in combination of two or more.
  • diethylene diisocyanate tetramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, isophorone diisocyanate, 2,6-bis (isocyanatomethyl) decahydronaphthalene, lysine triisocyanate, tolylene diisocyanate, o-tolidine diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, 3- (2'-isocyanatocyclohexyl) propyl isocyanate, isopropylidenebis (cyclohexyl isocyanate) ), 2,2′-bis (4- Socyanate phenyl) propane, triphenylme
  • polyisocyanate compounds used in the present invention are not limited to these, and these may be used alone or in combination of two or more.
  • preferred examples are isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethylxylylene diisocyanate.
  • 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatemethyl) norbornene, and 2,5-diisocyanatomethyl-1,4-dithiane among which preferable compounds Is isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, Is (isocyanatomethyl) cyclohexane, and m- xylylene diisocyanate, are particularly preferred compounds, isophorone diisocyanate, m- xylylene diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane.
  • the ratio of the SH group in the polythiol compound to the NCO group of the polyisocyanate compound is preferably 1.0 to 2. 5, more preferably 1.25 to 2.25, and still more preferably 1.5 to 2.0. If the above ratio is less than 1.0, it may be colored yellow at the time of lens molding, and if it exceeds 2.5, the heat resistance may be lowered.
  • the composition for optical materials of the present invention may contain sulfur as a polymerizable compound in order to improve the refractive index of the obtained resin.
  • the content of sulfur is usually 0.1 to 15% by mass, preferably 0.2 to 10% by mass, particularly preferably 0.3% when the total composition for optical materials is 100% by mass. ⁇ 5% by mass.
  • the compound represented by the formula (2) and sulfur may be partially polymerized in advance.
  • the shape of sulfur used in the present invention may be any shape. Specifically, the sulfur is finely divided sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimated sulfur or the like, but preferably finely divided sulfur with fine particles.
  • the production method of sulfur used in the present invention may be any production method.
  • Sulfur production methods include sublimation purification from natural sulfur ore, mining by melting sulfur buried underground, recovery methods using hydrogen sulfide obtained from oil and natural gas desulfurization processes, etc. Any method is acceptable.
  • the particle size of sulfur used in the present invention is preferably smaller than 10 mesh, that is, the sulfur is finer than 10 mesh. When the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve sulfur. For this reason, an unfavorable reaction or the like may occur in the first step, resulting in a problem.
  • the particle size of sulfur is more preferably smaller than 30 mesh, and most preferably smaller than 60 mesh.
  • the purity of sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, still more preferably 99.5% or more, and most preferably 99.9% or more.
  • the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity is less than 98%.
  • the composition of the present invention may be a polymerization curable composition comprising a composition for optical materials and a polymerization catalyst.
  • a polymerization catalyst amine, phosphine, onium salt and the like are used, and onium salts, particularly quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts are particularly preferable.
  • Quaternary ammonium salts and quaternary phosphonium salts having good compatibility with the material composition are more preferable, and quaternary phosphonium salts are more preferable.
  • More preferable polymerization catalysts include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, tetra And quaternary phosphonium salts such as phenylphosphonium bromide.
  • more preferred polymerization catalysts are tetra-n-butylammonium bromide, triethylbenzylammonium chloride, and tetra-n-butylphosphonium bromide.
  • the addition amount of the polymerization catalyst varies depending on the components of the composition, the mixing ratio and the polymerization curing method, but cannot be determined unconditionally.
  • the total amount of the composition for optical materials is 100% by mass (amount not including the polymerization catalyst).
  • To 0.0001 mass% to 10 mass% preferably 0.001 mass% to 5 mass%, more preferably 0.01 mass% to 1 mass%, and most preferably 0.01 mass% to 0.001 mass%. 5% by mass.
  • the addition amount of the polymerization catalyst is more than 10% by mass, polymerization may occur rapidly. On the other hand, if the addition amount of the polymerization catalyst is less than 0.0001% by mass, the composition for optical materials may not be sufficiently cured and the heat resistance may be poor.
  • an optical material is produced by the production method of the present invention, it is possible to further improve the practicality of the resulting optical material by adding additives such as an ultraviolet absorber, a bluing agent, and a pigment to the optical material composition. Of course it is possible.
  • Preferred examples of the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole, 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl) ) -2H-benzotriazole, and 2- (2-hydroxy-5-t-octylph) Sulfonyl) is -2H- benzotriazole.
  • the added amount of these ultraviolet absorbers is usually 0.01 to 5% by
  • a polymerization regulator can be added as necessary for the purpose of extending the pot life or dispersing the polymerization heat.
  • the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Among these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group.
  • More preferred compounds are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, and triphenylantimony dichloride, the most preferred compounds are Dibutyltin dichloride.
  • the polymerization regulator may be used alone or in combination of two or more.
  • the addition amount of the polymerization regulator is 0.0001 to 5.0% by mass, preferably 0.0005 to 3.0% by mass, more preferably 100% by mass of the total composition for optical materials.
  • the addition amount of the polymerization regulator is less than 0.0001% by mass, a sufficient pot life cannot be secured in the resulting optical material, and when the addition amount of the polymerization regulator is more than 5.0% by mass, The material composition may not be sufficiently cured, and the heat resistance of the obtained optical material may be reduced.
  • the optical material composition or the polymerization curable composition thus obtained is cast into a mold or the like and polymerized to obtain an optical material.
  • the polymerization of the composition of the present invention is usually performed as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually ⁇ 10 ° C. to 140 ° C.
  • the polymerization is performed by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature from 0.1 ° C.
  • the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistant coating, antireflection or imparting antifogging properties as necessary.
  • the optical material of the present invention can be suitably used as an optical lens.
  • Optical lenses manufactured using the composition of the present invention are excellent in stability, hue, light resistance, and transparency, and thus, conventionally, expensive high refractive index glass lenses such as telescopes, binoculars, and television projectors have been used. It can be used in various fields and is extremely useful. If necessary, it is preferably used in the form of an aspheric lens. Since an aspherical lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration by combining a plurality of spherical lenses, which reduces weight and reduces production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • A, B, and C are acceptable levels.
  • Method for evaluating releasability 100 -10D lenses were produced by the method described in the examples, and the releasability from the mold after polymerization and curing was evaluated. A with no lens chipping was designated as A, 1 or 2 was designated as B, and 3 or more was designated as C. A and B are acceptable levels.
  • Evaluation method of peeling 100 -10D lenses were prepared by the method described in the examples, and the lens after polymerization curing was observed with a mercury lamp, and peeling was evaluated from the number of occurrences of surface accuracy defects on the lens surface. . A case where no lens peeling occurred was designated as A, 1 or 2 pieces were designated as B, and 3 or more pieces were designated as C. A and B are acceptable levels.
  • Example 1 19.5 g (0.2 mol) of epichlorohydrin, 30 g of water, 5 g of methanol, and 0.2 g of 32% aqueous sodium hydroxide solution were placed in a 1 L flask, and 1,7-dimercapto obtained in the above synthesis example while stirring. -2,6-dihydroxy-4-thiaheptane (21.4 g, 0.1 mol) was added dropwise while maintaining the liquid temperature at 5 to 15 ° C. to give bis- (2,6-dihydroxy-7-chloro-4-thiaheptyl) sulfide. Obtained.
  • Example 2 1,7-dimercapto-2,6-dihydroxy-4-thiaheptane 15 g (0.07 mol), 3-mercapto-1,2-propylene sulfide 15 g (0.14 mol) obtained in the synthesis example, toluene 100 mL, methanol 100 mL And 23.2 g (0.14 mol) of potassium iodide were added to the 1 L flask. While stirring while maintaining the internal temperature at ⁇ 20 ° C., 35.6 g (0.14 mol) of iodine solid was charged in portions and aged for 4 hours.
  • Example 3 As the episulfide compound represented by the above formula (2), bis ( ⁇ -epithiopropyl) sulfide (hereinafter referred to as “b-1 compound”) was obtained in Example 1 as the episulfide compound represented by the above formula (1).
  • the obtained bis- (2-hydroxy-6,7-epithio-4-thiaheptyl) -sulfide (hereinafter referred to as “a-1 compound”) was added to obtain a composition containing 0.001% by mass of the a-1 compound. It was.
  • the mixture was degassed and stirred for 2.5 hours at a reaction temperature of 15 ° C. and a vacuum of 0.27 kPa, and the mixture was reacted to obtain a reaction mixture.
  • 6.8 parts by mass of bis (2-mercaptoethyl) sulfide was added to the reaction mixture in the reaction flask, degassed and stirred at 15 ° C. for 30 minutes and at a vacuum of 0.27 kPa to obtain a composition for optical materials. Obtained.
  • the obtained composition for optical material was poured into a mold composed of two glass plates and a tape, held at 30 ° C. for 30 hours, heated to 100 ° C. over 10 hours, and finally at 100 ° C. for 1 hour.
  • Table 1 summarizes the evaluation results of releasability from the mold, peeling, and dyeability.
  • Example 10 As the episulfide compound represented by the above formula (2), bis ( ⁇ -epithiopropyl) disulfide (hereinafter referred to as “b-2 compound”) was obtained as the episulfide compound represented by the above formula (1) in Example 2. And a bis- (2-hydroxy-7,8-epithio-4,5-dithiaoctyl) -sulfide (hereinafter referred to as “a-2 compound”) added, and a composition containing 0.001% by mass of the a-2 compound Got.
  • a-2 compound bis- (2-hydroxy-7,8-epithio-4,5-dithiaoctyl) -sulfide
  • the mixture was degassed and stirred for 2.5 hours at a reaction temperature of 15 ° C. and a vacuum of 0.27 kPa, and the mixture was reacted to obtain a reaction mixture.
  • 6.8 parts by mass of bis (2-mercaptoethyl) sulfide was added to the reaction mixture in the reaction flask, degassed and stirred at 15 ° C. for 30 minutes and at a vacuum of 0.27 kPa to obtain a composition for optical materials. Obtained.
  • the obtained composition for optical material was poured into a mold composed of two glass plates and a tape, held at 30 ° C. for 30 hours, heated to 100 ° C. over 10 hours, and finally at 100 ° C. for 1 hour.
  • Examples 3 to 8 and 10 to 15 were evaluated to pass levels in all of peeling, releasability, and dyeability.
  • Examples 9 and 16 were good in peeling and dyeing properties, but were not good in releasability.
  • Comparative Examples 1 and 2 that do not contain the episulfide compound represented by the formula (1) had poor release properties but poor evaluation of peeling and dyeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Eyeglasses (AREA)

Abstract

According to the present invention, it is possible to provide an optical material composition that contains an episulfide compound represented by formula (1) and an episulfide compound represented by formula (2). According to this optical material composition, it is possible to suppress a reduction in the yield rate caused by molding defects, and possible to obtain an optical material having excellent dyeability. (In formula (1), m and p are each an integer between 0 and 4, and n and q are each an integer between 0 and 2.) (In formula (2), m is an integer between 0 and 4 and n is an integer between 0 and 2.)

Description

新規なエピスルフィド化合物およびそれを含む光学材料用組成物Novel episulfide compound and composition for optical material containing the same
 本発明は新規なエピスルフィド化合物およびそれを含む光学材料用組成物に関し、特に、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でもプラスチックレンズに好適に使用される新規なエピスルフィド化合物およびそれを含む光学材料用組成物に関する。 The present invention relates to a novel episulfide compound and a composition for optical materials containing the same, and in particular, a novel episulfide compound suitably used for optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, filters, and especially plastic lenses. And an optical material composition containing the same.
 プラスチックレンズは軽量かつ靭性に富み、染色も容易である。プラスチックレンズに特に要求される性能は、低比重、高透明性および低黄色度、光学性能として高屈折率、高アッベ数、高耐熱性、高強度などである。高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減する。
 近年、高屈折率および高アッベ数を目的として、硫黄原子を有する有機化合物を用いた例が数多く報告されている。中でも硫黄原子を有するポリエピスルフィド化合物は屈折率とアッベ数のバランスが良いことが知られている(特許文献1)。また、ポリエピスルフィド化合物は様々な化合物と反応可能であることから、物性向上のため各種化合物との組成物が提案されている(特許文献2~5)。
 しかしながら、エピスルフィド化合物から生産されるレンズはプラスチックレンズにおいて一般的に用いられる方法では染色が困難な場合があり、意匠性が重視される眼鏡レンズの要求特性に十分には達していない場合があった。また、高度数レンズでは、離型性が悪いために脱型時にレンズが欠けたり、離型性が良すぎるために重合中にモールドから剥がれて必要な面精度が得られないという場合もあった。
Plastic lenses are light and tough and easy to dye. The performance particularly required for the plastic lens is low specific gravity, high transparency and low yellowness, and high optical refractive index, high Abbe number, high heat resistance, high strength and the like. A high refractive index enables the lens to be thinned, and a high Abbe number reduces the chromatic aberration of the lens.
In recent years, many examples using organic compounds having sulfur atoms have been reported for the purpose of high refractive index and high Abbe number. Among them, it is known that a polyepisulfide compound having a sulfur atom has a good balance between the refractive index and the Abbe number (Patent Document 1). Since polyepisulfide compounds can react with various compounds, compositions with various compounds have been proposed to improve physical properties (Patent Documents 2 to 5).
However, lenses produced from episulfide compounds may be difficult to dye by methods commonly used in plastic lenses, and may not sufficiently meet the required characteristics of spectacle lenses where design is important. . In addition, with high-number lenses, the releasability is poor, so the lens may be missing at the time of demolding, or the releasability is too good to peel off from the mold during polymerization and the required surface accuracy may not be obtained. .
特開平09-110979号公報Japanese Patent Application Laid-Open No. 09-110979 特開平10-298287号公報Japanese Patent Laid-Open No. 10-298287 特開2001-002783号公報JP 2001-002783 A 特開2001-131257号公報JP 2001-131257 A 特開2002-122701号公報JP 2002-122701 A
 本発明の課題は、離型不良による良品率低下を抑制可能な光学材料用組成物、および染色性に優れた光学材料を提供することである。 An object of the present invention is to provide a composition for an optical material capable of suppressing a decrease in the yield rate due to defective release and an optical material excellent in dyeability.
 本発明者らは、このような状況に鑑み鋭意研究を重ねた結果、下記式(1)で表されるエピスルフィド化合物、ならびに下記式(1)で表されるエピスルフィド化合物および下記式(2)で表されるエピスルフィド化合物とを含む光学材料用組成物により本課題を解決し、本発明に至った。即ち、本発明は以下の通りである。
<1> 下記式(1)で表されるエピスルフィド化合物である。
Figure JPOXMLDOC01-appb-C000003
(式中、m、pは0~4の整数、n、qは0~2の整数を示す。)
<2> 上記<1>に記載の式(1)で表されるエピスルフィド化合物と下記式(2)で表されるエピスルフィド化合物とを含む光学材料用組成物である。
Figure JPOXMLDOC01-appb-C000004
(式中、mは0~4の整数、nは0~2の整数を示す。)
<3> 前記式(1)で表されるエピスルフィド化合物の含有量が0.001~5.0質量%である、上記<2>に記載の光学材料用組成物である。
<4> 前記式(2)で表されるエピスルフィド化合物の含有量が40~99.999質量%である、上記<2>または<3>に記載の光学材料用組成物である。
<5> さらにポリチオールを含む上記<2>から<4>のいずれかに記載の光学材料用組成物である。
<6> さらに硫黄を含む上記<2>から<5>のいずれかに記載の光学材料用組成物である。
<7> さらにポリイソシアネートを含む上記<5>または<6>に記載の光学材料用組成物である。
<8> 上記<2>から<7>のいずれかに記載の光学材料用組成物と、該光学材料用組成物の総量に対して0.0001質量%~10質量%の重合触媒とを含む重合硬化性組成物である。
<9> 上記<2>から<7>のいずれかに記載の光学材料用組成物または上記<8>に記載の重合硬化性組成物を硬化した光学材料である。
<10> 上記<9>に記載の光学材料を含む光学レンズである。
<11> 上記<2>から<7>のいずれかに記載の光学材料用組成物の総量に対して、重合触媒を0.0001質量%~10質量%添加し、重合硬化する工程を含む、光学材料の製造方法である。
<12> 式(2)で表されるエピスルフィド化合物と硫黄を予め一部重合反応させた後に重合硬化させる、上記<11>に記載の光学材料の製造方法である。
As a result of intensive studies in view of such circumstances, the present inventors have obtained an episulfide compound represented by the following formula (1), an episulfide compound represented by the following formula (1), and the following formula (2). This problem was solved by the composition for optical materials containing the episulfide compound represented, and it came to this invention. That is, the present invention is as follows.
<1> An episulfide compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the formula, m and p are integers of 0 to 4, and n and q are integers of 0 to 2.)
<2> An optical material composition comprising an episulfide compound represented by the formula (1) described in the above <1> and an episulfide compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
(In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
<3> The composition for optical materials according to <2>, wherein the content of the episulfide compound represented by the formula (1) is 0.001 to 5.0% by mass.
<4> The composition for optical materials according to the above <2> or <3>, wherein the content of the episulfide compound represented by the formula (2) is 40 to 99.999% by mass.
<5> The composition for optical materials according to any one of <2> to <4>, further including polythiol.
<6> The composition for optical materials according to any one of <2> to <5>, further containing sulfur.
<7> The composition for optical materials according to <5> or <6>, further including polyisocyanate.
<8> The composition for optical materials according to any one of <2> to <7> above, and 0.0001% by mass to 10% by mass of a polymerization catalyst based on the total amount of the composition for optical materials. It is a polymerization curable composition.
<9> An optical material obtained by curing the composition for optical materials according to any one of <2> to <7> or the polymerization curable composition according to <8>.
<10> An optical lens including the optical material according to <9>.
<11> A step of adding 0.0001% by mass to 10% by mass of a polymerization catalyst with respect to the total amount of the composition for optical materials according to any one of the above <2> to <7>, and curing by polymerization. It is a manufacturing method of an optical material.
<12> The method for producing an optical material according to <11>, wherein the episulfide compound represented by the formula (2) and sulfur are partially polymerized in advance and then polymerized and cured.
 本発明により、高屈折率を有する光学材料を製造する際、離型不良が起きにくく、かつ染色性に優れた光学材料が得られる光学材料用組成物を得ることができる。 According to the present invention, when an optical material having a high refractive index is produced, it is possible to obtain a composition for an optical material that is unlikely to cause defective release and that provides an optical material having excellent dyeability.
 以下、本発明を詳細に説明する。
 本発明は、前記式(1)で表されるエピスルフィド化合物、及び前記式(1)で表されるエピスルフィド化合物と重合性化合物とを含む光学材料用組成物である。重合性化合物としては、エピスルフィド化合物、ビニル化合物、メタクリル化合物、アクリル化合物、アリル化合物などが挙げられるが、好ましくはエピスルフィド化合物であり、より好ましくは前記式(2)で表されるエピスルフィド化合物である。
 本発明の光学材料用組成物中の前記式(1)で表されるエピスルフィド化合物の割合は、0.001~5.0質量%であることが好ましく、より好ましくは0.005~3.0質量%であり、特に好ましくは0.01~1.0質量%である。式(1)で表されるエピスルフィド化合物が0.001質量%を下回ると十分な効果が得られない場合があり、5.0質量%を超えると離型性が悪化する場合がある。また、本発明の光学材料用組成物中の重合性化合物の割合は、95.0~99.999質量%であることが好ましく、より好ましくは97.0~99.995質量%であり、特に好ましくは99.0~99.99質量%である。重合性化合物として前記式(2)で表されるエピスルフィド化合物を用いる場合、光学材料用組成物中の前記式(2)で表されるエピスルフィド化合物の割合は、40~99.999質量%であることが好ましく、より好ましくは50~99.995質量%であり、特に好ましくは60~99.99質量%である。
 以下、前記式(1)で表されるエピスルフィド化合物、および前記式(2)で表されるエピスルフィド化合物について詳細に説明する。
Hereinafter, the present invention will be described in detail.
The present invention is an optical material composition comprising an episulfide compound represented by the formula (1), and an episulfide compound represented by the formula (1) and a polymerizable compound. Examples of the polymerizable compound include an episulfide compound, a vinyl compound, a methacrylic compound, an acrylic compound, and an allyl compound, preferably an episulfide compound, and more preferably an episulfide compound represented by the formula (2).
The ratio of the episulfide compound represented by the formula (1) in the composition for optical materials of the present invention is preferably 0.001 to 5.0% by mass, more preferably 0.005 to 3.0. % By mass, particularly preferably 0.01 to 1.0% by mass. If the episulfide compound represented by the formula (1) is less than 0.001% by mass, a sufficient effect may not be obtained, and if it exceeds 5.0% by mass, the releasability may be deteriorated. The proportion of the polymerizable compound in the composition for optical materials of the present invention is preferably 95.0 to 99.999% by mass, more preferably 97.0 to 99.995% by mass, and particularly The content is preferably 99.0 to 99.99% by mass. When the episulfide compound represented by the formula (2) is used as the polymerizable compound, the proportion of the episulfide compound represented by the formula (2) in the composition for optical materials is 40 to 99.999 mass%. It is preferably 50 to 99.995% by mass, particularly preferably 60 to 99.99% by mass.
Hereinafter, the episulfide compound represented by the formula (1) and the episulfide compound represented by the formula (2) will be described in detail.
 本発明は、前記式(1)で表されるエピスルフィド化合物であり、また式(1)で表されるエピスルフィド化合物は、本発明の光学材料用組成物に使用される。式(1)中、好ましくは、mおよびpは0~2の整数、nおよびqは0または1の整数であり、より好ましくはmおよびpが0でnおよびqが1、またはnおよびqが0の化合物であり、最も好ましくはnおよびqが0の化合物である。式(1)で表されるエピスルフィド化合物は単独でも、2種類以上を混合して用いてもかまわない。 The present invention is an episulfide compound represented by the formula (1), and the episulfide compound represented by the formula (1) is used in the composition for optical materials of the present invention. In the formula (1), preferably, m and p are integers of 0 to 2, n and q are integers of 0 or 1, more preferably m and p are 0 and n and q are 1, or n and q Is a compound in which n and q are 0. The episulfide compound represented by the formula (1) may be used alone or in combination of two or more.
 以下、本発明の式(1)で表されるエピスルフィド化合物の製造方法について説明するが、製造方法は特に限定されない。
 本発明の式(1)で表されるエピスルフィド化合物の製造方法としては、まず硫化水素またはポリチオールとエピハロヒドリン化合物との反応により下記式(3)で表される化合物を得る。nおよびqが0の化合物、または、mおよびpが0、nおよびqが1の化合物を得る場合には、次いで得られた式(3)で表される化合物をチオ尿素、チオシアン酸塩等のチア化剤と反応させて式(4)で表される化合物を得る。nおよびqが0の化合物を製造する場合には、式(4)で表される化合物とエピハロヒドリン化合物との反応により下記式(5)で表される化合物を得た後、次いで得られた式(5)で表される化合物をアルカリと反応させて脱ハロゲン化水素反応を進行させて下記式(6)で表される化合物を得た後、さらに得られた式(6)で表される化合物をチオ尿素、チオシアン酸塩等のチア化剤と反応させて式(1)で表されるエピスルフィド化合物を得る。
 mおよびpが0、nおよびqが1の化合物を製造する場合には、式(4)で表される化合物と3-メルカプト-1,2-プロピレンスルフィドを反応させて式(1)で表されるエピスルフィド化合物を得る。他の製造方法としては、式(3)で表される化合物をアルカリと反応させて脱ハロゲン化水素反応を進行させて下記式(7)で表される化合物を得た後、硫化水素との反応で下記式(8)で表される化合物を得た後、さらに得られた式(8)で表される化合物をチオ尿素、チオシアン酸塩等のチア化剤と反応させて式(1)で表されるエピスルフィド化合物を得る方法もある。
Figure JPOXMLDOC01-appb-C000005
(式中、Xはハロゲン原子、mは0~4の整数、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、Xはハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式中、mは0~4の整数、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(式中、mおよびpは0~4の整数、nおよびqは0~2の整数を示す。)
Hereinafter, although the manufacturing method of the episulfide compound represented by Formula (1) of this invention is demonstrated, a manufacturing method is not specifically limited.
As a method for producing an episulfide compound represented by the formula (1) of the present invention, a compound represented by the following formula (3) is first obtained by reacting hydrogen sulfide or polythiol with an epihalohydrin compound. When obtaining a compound in which n and q are 0, or a compound in which m and p are 0, n and q are 1, the obtained compound represented by the formula (3) is obtained by using thiourea, thiocyanate, etc. To obtain a compound represented by the formula (4). In the case of producing a compound in which n and q are 0, a compound represented by the following formula (5) is obtained by reacting a compound represented by the formula (4) with an epihalohydrin compound, and then the obtained formula After the compound represented by (5) is reacted with an alkali to proceed the dehydrohalogenation reaction to obtain a compound represented by the following formula (6), it is further represented by the obtained formula (6). The compound is reacted with a thiating agent such as thiourea or thiocyanate to obtain an episulfide compound represented by the formula (1).
In the case of producing a compound in which m and p are 0, and n and q are 1, the compound represented by the formula (4) is reacted with 3-mercapto-1,2-propylene sulfide to represent the compound represented by the formula (1). An episulfide compound is obtained. As another production method, a compound represented by the formula (3) is reacted with an alkali to proceed a dehydrohalogenation reaction to obtain a compound represented by the following formula (7), and then with hydrogen sulfide. After obtaining the compound represented by the following formula (8) by the reaction, the compound represented by the following formula (8) is further reacted with a thiating agent such as thiourea and thiocyanate to formula (1) There is also a method for obtaining an episulfide compound represented by:
Figure JPOXMLDOC01-appb-C000005
(In the formula, X represents a halogen atom, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(In the formula, X represents a halogen atom.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
Figure JPOXMLDOC01-appb-C000010
(In the formula, m and p are integers of 0 to 4, and n and q are integers of 0 to 2.)
 式(3)で表される化合物の製造方法について記載する。エピハロヒドリン化合物に替えて式(7)で表される化合物を用いることで式(8)で表される化合物も同様の方法で製造することができる。
 式(3)で表される化合物は、硫化水素またはポリチオール化合物と、エピハロヒドリン化合物との反応で得られる。ポリチオール化合物を例示すると、メタンジチオール、1,2-ジメルカプトエタン、1,3-ジメルカプトプロパン、1,4-ジメルカプトブタン、ビス(2-メルカプトエチル)スルフィドである。硫化水素またはポリチオール化合物の中で、好ましくは硫化水素、1,2-ジメルカプトエタン、及びビス(2-メルカプトエチル)スルフィドであり、最も好ましくは硫化水素である。エピハロヒドリン化合物としては、エピクロロヒドリンやエピブロモヒドリン等を例示できるが、好ましくはエピクロロヒドリンである。
 エピハロヒドリンと、硫化水素またはポリチオール化合物を反応させる際、好ましくは触媒を使用する。触媒としては無機酸、有機酸、ルイス酸、ケイ酸、ホウ酸、第4級アンモニウム塩、無機塩基、有機塩基などが挙げられる。好ましくは有機酸、第4級アンモニウム塩、及び無機塩基であり、より好ましくは第4級アンモニウム塩、及び無機塩基である。具体例としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムアセテート、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムアセテート、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムアセテート、テトラヘキシルアンモニウムクロライド、テトラヘキシルアンモニウムブロマイド、テトラヘキシルアンモニウムアセテート、テトラオクチルアンモニウムクロライド、テトラオクチルアンモニウムブロマイド、テトラオクチルアンモニウムアセテート、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられる。中でも好ましくは水酸化ナトリウム、水酸化カリウム、及び水酸化カルシウムである。
It describes about the manufacturing method of the compound represented by Formula (3). By using the compound represented by the formula (7) instead of the epihalohydrin compound, the compound represented by the formula (8) can also be produced by the same method.
The compound represented by Formula (3) is obtained by reaction of hydrogen sulfide or a polythiol compound with an epihalohydrin compound. Examples of polythiol compounds are methanedithiol, 1,2-dimercaptoethane, 1,3-dimercaptopropane, 1,4-dimercaptobutane, and bis (2-mercaptoethyl) sulfide. Of the hydrogen sulfide or polythiol compounds, hydrogen sulfide, 1,2-dimercaptoethane, and bis (2-mercaptoethyl) sulfide are preferable, and hydrogen sulfide is most preferable. Examples of the epihalohydrin compound include epichlorohydrin and epibromohydrin, with epichlorohydrin being preferred.
In the reaction of epihalohydrin with hydrogen sulfide or a polythiol compound, a catalyst is preferably used. Examples of the catalyst include inorganic acid, organic acid, Lewis acid, silicic acid, boric acid, quaternary ammonium salt, inorganic base, organic base and the like. Preferred are organic acids, quaternary ammonium salts, and inorganic bases, and more preferred are quaternary ammonium salts and inorganic bases. Specific examples include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium acetate, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium acetate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium acetate, tetrahexylammonium. Examples include chloride, tetrahexylammonium bromide, tetrahexylammonium acetate, tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylammonium acetate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. Of these, sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferred.
 触媒の添加量は、反応を進行させるためであれば特に制限はないが、好ましくはエピハロヒドリン1モルに対し、0.00001~0.5モル、より好ましくは0.001~0.1モル使用する。0.00001モル未満では反応が進行しないか遅くなりすぎで好ましくなく、0.5モルを超えると反応が進行しすぎて制御が困難となり好ましくない。
 エピハロヒドリンと、硫化水素もしくはポリチオール化合物の割合は、反応が進行するのであれば特に制限はないが、好ましくはポリチオール化合物のチオール基(SH基)または硫化水素のHに対するエピハロヒドリンのモル比は0.3~4、より好ましくは0.4~3、更に好ましくは0.5~2である。0.3未満もしくは4を超えた場合では未反応の原材料の余剰が多くなり、経済的に好ましくない。
The amount of the catalyst added is not particularly limited as long as the reaction is allowed to proceed. However, it is preferably used in an amount of 0.00001 to 0.5 mol, more preferably 0.001 to 0.1 mol, relative to 1 mol of epihalohydrin. . If the amount is less than 0.00001 mol, the reaction does not proceed or becomes too slow, which is not preferable.
The ratio of epihalohydrin to hydrogen sulfide or polythiol compound is not particularly limited as long as the reaction proceeds. Preferably, the molar ratio of epihalohydrin to H of thiol group (SH group) or hydrogen sulfide of polythiol compound is 0.3. -4, more preferably 0.4-3, still more preferably 0.5-2. If it is less than 0.3 or exceeds 4, the surplus of unreacted raw materials increases, which is not economically preferable.
 溶媒は使用してもしなくてもよいが、使用する場合は水、アルコール類、エーテル類、ケトン類、芳香族炭化水素類、ハロゲン化炭化水素類などが用いられる。具体例としては、水、メタノール、エタノール、プロパノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、ジオキサン、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、メチルエチルケトン、アセトン、ベンゼン、トルエン、キシレン、ジクロロエタン、クロロホルム、クロロベンゼン等が挙げられる。中でも好ましくは水、メタノール、及びトルエンであり、特に好ましくは水、及びメタノールである。
 反応温度は、反応を進行させるためであれば特に制限はないが、好ましくは-10℃~80℃、より好ましくは0℃~50℃、更に好ましくは0℃~40℃である。反応時間は特に制限はないが、通常は20時間以下である。-10℃未満では反応が進行しないか遅くなりすぎで好ましくなく、80℃を超えるとオリゴマー化して高分子量となり好ましくない。
A solvent may or may not be used, but when used, water, alcohols, ethers, ketones, aromatic hydrocarbons, halogenated hydrocarbons and the like are used. Specific examples include water, methanol, ethanol, propanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone, benzene, toluene, xylene, dichloroethane, chloroform, chlorobenzene and the like. Is mentioned. Among these, water, methanol, and toluene are preferable, and water and methanol are particularly preferable.
The reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably −10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 40 ° C. The reaction time is not particularly limited, but is usually 20 hours or less. If it is less than −10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
 式(3)で表される化合物から式(4)で表される化合物の製造方法について記載する。
 式(3)で表される化合物とチオ尿素、チオシアン酸塩等のチア化剤を反応させて式(4)で表される化合物を得る。好ましいチア化剤は、チオ尿素、チオシアン酸ナトリウム、チオシアン酸カリウム、及びチオシアン酸アンモニウムであり、特に好ましい化合物はチオ尿素である。チア化剤は、式(3)で表される化合物のハロゲンに対応するモル数、すなわち理論量を使用するが、反応速度、純度を重視するのであれば理論量~理論量の2.5倍モルを使用する。好ましくは理論量の1.3倍モル~理論量の2.0倍モルであり、より好ましくは理論量の1.5倍モル~理論量の2.0倍モルである。
 溶媒は、チア化剤と、式(4)で表される化合物、及び式(3)で表される化合物を溶解するのであれば特に制限はないが、具体例としてメタノール、エタノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ等のヒドロキシエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類、水などが挙げられる。好ましくはアルコール類、芳香族炭化水素、及び水であり、より好ましくはメタノール、及びトルエンである。これらは単独でも混合して用いてもかまわない。
 反応温度は、反応が進行するのであれば特に制限はないが、通常は10℃~50℃で実施する。10℃未満の場合、反応速度の低下に加え、チア化剤が溶解不十分となり反応が十分に進行せず、50℃を超える場合、ポリマーの生成が顕著となる。
It describes about the manufacturing method of the compound represented by Formula (4) from the compound represented by Formula (3).
A compound represented by the formula (4) is obtained by reacting a compound represented by the formula (3) with a thiating agent such as thiourea or thiocyanate. Preferred thiating agents are thiurea, sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate, and a particularly preferred compound is thiourea. As the thialating agent, the number of moles corresponding to the halogen of the compound represented by the formula (3), that is, the theoretical amount is used. If importance is attached to the reaction rate and purity, the theoretical amount is 2.5 times the theoretical amount. Use moles. The molar amount is preferably 1.3 times the theoretical amount to 2.0 times the theoretical amount, more preferably 1.5 times the theoretical amount to 2.0 times the theoretical amount.
The solvent is not particularly limited as long as it dissolves the chelating agent, the compound represented by the formula (4), and the compound represented by the formula (3). Specific examples include alcohols such as methanol and ethanol. , Ethers such as diethyl ether, tetrahydrofuran and dioxane, hydroxy ethers such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, aromatic hydrocarbons such as benzene and toluene, halogenated carbonization such as dichloromethane, chloroform and chlorobenzene Examples include hydrogen and water. Preferred are alcohols, aromatic hydrocarbons, and water, and more preferred are methanol and toluene. These may be used alone or in combination.
The reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is carried out at 10 ° C to 50 ° C. When the temperature is lower than 10 ° C., in addition to the decrease in the reaction rate, the thiating agent is insufficiently dissolved and the reaction does not proceed sufficiently. When the temperature exceeds 50 ° C., the formation of the polymer becomes remarkable.
 反応時に、酸もしくは酸無水物、アンモニウム塩を添加することは好ましいことである。使用する酸もしくは酸無水物の具体例としては、硝酸、塩酸、過塩素酸、次亜塩素酸、二酸化塩素、フッ酸、硫酸、発煙硫酸、塩化スルフリル、ホウ酸、ヒ酸、亜ヒ酸、ピロヒ酸、燐酸、亜リン酸、次亜リン酸、オキシ塩化リン、オキシ臭化リン、硫化リン、三塩化リン、三臭化リン、五塩化リン、青酸、クロム酸、無水硝酸、無水硫酸、酸化ホウ素、五酸化ヒ酸、五酸化燐、無水クロム酸、シリカゲル、シリカアルミナ、塩化アルミニウム、塩化亜鉛等の無機の酸性化合物、蟻酸、酢酸、過酢酸、チオ酢酸、蓚酸、酒石酸、プロピオン酸、酪酸、コハク酸、吉草酸、カプロン酸、カプリル酸、ナフテン酸、メチルメルカプトプロピオネート、マロン酸、グルタル酸、アジピン酸、シクロヘキサンカルボン酸、チオジプロピオン酸、ジチオジプロピオン酸酢酸、マレイン酸、安息香酸、フェニル酢酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、サリチル酸、2-メトキシ安息香酸、3-メトキシ安息香酸、ベンゾイル安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、ベンジル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸等の有機カルボン酸類、モノ、ジおよびトリメチルホスフェート、モノ、ジおよびトリエチルホスフェート、モノ、ジおよびトリイソブチルホスフェート、モノ、ジおよびトリブチルホスフェート、モノ、ジおよびトリラウリルホスフェート等のリン酸類およびこれらのホスフェート部分がホスファイトとなった亜リン酸類、ジメチルジチオリン酸に代表されるジアルキルジチオリン酸類等の有機リン化合物、フェノール、カテコール、t-ブチルカテコール、2,6-ジ-t-ブチルクレゾール、2,6-ジ-t-ブチルエチルフェノール、レゾルシン、ハイドロキノン、フロログルシン、ピロガロール、クレゾール、エチルフェノール、ブチルフェノール、ノニルフェノール、ヒドロキシフェニル酢酸、ヒドロキシフェニルプロピオン酸、ヒドロキシフェニル酢酸アミド、ヒドロキシフェニル酢酸メチル、ヒドロキシフェニル酢酸エチル、ヒドロキシフェネチルアルコール、ヒドロキシフェネチルアミン、ヒドロキシベンズアルデヒド、フェニルフェノール、ビスフェノール-A、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、ビスフェノール-F、ビスフェノール-S、α-ナフトール、β-ナフトール、アミノフェノール、クロロフェノール、2,4,6-トリクロロフェノール等のフェノール類、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸、ドデカンスルホン酸、ベンゼンスルホン酸、o-トルエンスルホン酸、m-トルエンスルホン酸、p-トルエンスルホン酸、エチルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、p-フェノールスルホン酸、o-クレゾールスルホン酸、メタニル酸、スルファニル酸、4B-酸、ジアミノスチルベンスルホン酸、ビフェニルスルホン酸、α-ナフタレンスルホン酸、β-ナフタレンスルホン酸、ペリ酸、ローレント酸、フェニルJ酸等のスルホン酸類、等が挙げられ、これらのいくつかを併用することも可能である。好ましくは、蟻酸、酢酸、過酢酸、チオ酢酸、蓚酸、酒石酸、プロピオン酸、酪酸、コハク酸、吉草酸、カプロン酸、カプリル酸、ナフテン酸、メチルメルカプトプロピオネート、マロン酸、グルタル酸、アジピン酸、シクロヘキサンカルボン酸、チオジプロピオン酸、ジチオジプロピオン酸酢酸、マレイン酸、安息香酸、フェニル酢酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、サリチル酸、2-メトキシ安息香酸、3-メトキシ安息香酸、ベンゾイル安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、ベンジル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸の有機カルボン酸類であり、より好ましくは無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸の酸無水物であり、最も好ましくは無水酢酸である。添加量は通常反応液総量に対して0.001質量%~10質量%の範囲で用いられるが、好ましくは0.01質量%~5質量%である。添加量が0.001質量%未満ではポリマーの生成が顕著となって反応収率が低下し、10質量%を超えると収率が著しく低下することがある。また、アンモニウム塩の具体例としては、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、蟻酸アンモニウム、酢酸アンモニウム、プロピオン酸アンモニウム、安息香酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、水酸化アンモニウムなどが挙げられる。より好ましくは硝酸アンモニウム、硫酸アンモニウム、及び塩化アンモニウムであり、最も好ましくは硝酸アンモニウムである。 It is preferable to add an acid or acid anhydride or an ammonium salt during the reaction. Specific examples of the acid or acid anhydride used include nitric acid, hydrochloric acid, perchloric acid, hypochlorous acid, chlorine dioxide, hydrofluoric acid, sulfuric acid, fuming sulfuric acid, sulfuryl chloride, boric acid, arsenic acid, arsenous acid, Pyroarsenic acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphorus oxychloride, phosphorus oxybromide, phosphorus sulfide, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, hydrocyanic acid, chromic acid, anhydrous nitric acid, anhydrous sulfuric acid, Inorganic acidic compounds such as boron oxide, arsenic pentoxide, phosphorus pentoxide, chromic anhydride, silica gel, silica alumina, aluminum chloride, zinc chloride, formic acid, acetic acid, peracetic acid, thioacetic acid, oxalic acid, tartaric acid, propionic acid, Butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipic acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodi Lopionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3-methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic Acid, terephthalic acid, salicylic acid, benzylic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, pyrone anhydride Organic carboxylic acids such as merit acid, trimellitic anhydride, trifluoroacetic anhydride, mono, di and trimethyl phosphate, mono, di and triethyl phosphate, mono, di and triisobutyl phosphate, mono, di and tributyl phosphate, mono, di And trilauryl phosphate Acids and phosphorous acids in which these phosphate moieties are phosphites, organic phosphorus compounds such as dialkyldithiophosphoric acids represented by dimethyldithiophosphoric acid, phenol, catechol, t-butylcatechol, 2,6-di-t- Butyl cresol, 2,6-di-t-butylethylphenol, resorcin, hydroquinone, phloroglucin, pyrogallol, cresol, ethylphenol, butylphenol, nonylphenol, hydroxyphenylacetic acid, hydroxyphenylpropionic acid, hydroxyphenylacetamide, methyl hydroxyphenylacetate Hydroxyethyl ethyl acetate, hydroxyphenethyl alcohol, hydroxyphenethylamine, hydroxybenzaldehyde, phenylphenol, bisphenol-A, , 2'-methylene-bis (4-methyl-6-t-butylphenol), bisphenol-F, bisphenol-S, α-naphthol, β-naphthol, aminophenol, chlorophenol, 2,4,6-trichlorophenol, etc. Phenols, methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, dodecanesulfonic acid, benzenesulfonic acid, o-toluenesulfonic acid, m-toluenesulfonic acid, p-toluenesulfonic acid, ethylbenzenesulfonic acid, butylbenzenesulfonic acid , Dodecylbenzenesulfonic acid, p-phenolsulfonic acid, o-cresolsulfonic acid, metanilic acid, sulfanilic acid, 4B-acid, diaminostilbenesulfonic acid, biphenylsulfonic acid, α-naphthalenesulfonic acid, β-naphthalenesulfonic acid, peri acid Laurent acid, sulfonic acids such as phenyl J acid, etc., and can be used in combination of some of these. Preferably, formic acid, acetic acid, peracetic acid, thioacetic acid, succinic acid, tartaric acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipine Acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodipropionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3 -Methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, benzylic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, anhydrous Maleic acid, benzoic anhydride, phthalic anhydride, pyromellitic anhydride, trime anhydride Organic carboxylic acids such as litnic acid and trifluoroacetic anhydride, more preferably acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, pyromellitic anhydride, triflic anhydride Mellitic acid, an acid anhydride of trifluoroacetic anhydride, and most preferably acetic anhydride. The amount added is usually in the range of 0.001% to 10% by weight, preferably 0.01% to 5% by weight, based on the total amount of the reaction solution. When the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield may decrease remarkably. Specific examples of ammonium salts include ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium propionate, ammonium benzoate, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium phosphate, ammonium hydroxide, and the like. Is mentioned. More preferred are ammonium nitrate, ammonium sulfate, and ammonium chloride, and most preferred is ammonium nitrate.
 式(4)で表される化合物から式(5)で表される化合物の製造方法について記載する。
 式(5)で表される化合物は、式(4)で表される化合物とエピハロヒドリン化合物との反応で得られる。エピハロヒドリン化合物としては、エピクロロヒドリンやエピブロモヒドリン等を例示できるが、好ましくはエピクロロヒドリンである。
 エピハロヒドリンと、式(4)で表される化合物を反応させる際、好ましくは触媒を使用する。触媒としては無機酸、有機酸、ルイス酸、ケイ酸、ホウ酸、第4級アンモニウム塩、無機塩基、有機塩基などが挙げられる。好ましくは有機酸、第4級アンモニウム塩、及び無機塩基であり、より好ましくは第4級アンモニウム塩、及び無機塩基である。具体例としては、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムアセテート、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムアセテート、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムアセテート、テトラヘキシルアンモニウムクロライド、テトラヘキシルアンモニウムブロマイド、テトラヘキシルアンモニウムアセテート、テトラオクチルアンモニウムクロライド、テトラオクチルアンモニウムブロマイド、テトラオクチルアンモニウムアセテート、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられる。中でも好ましくは水酸化ナトリウム、水酸化カリウム、及び水酸化カルシウムである。
It describes about the manufacturing method of the compound represented by Formula (5) from the compound represented by Formula (4).
The compound represented by Formula (5) is obtained by reaction of the compound represented by Formula (4) with an epihalohydrin compound. Examples of the epihalohydrin compound include epichlorohydrin and epibromohydrin, with epichlorohydrin being preferred.
When the epihalohydrin is reacted with the compound represented by the formula (4), a catalyst is preferably used. Examples of the catalyst include inorganic acid, organic acid, Lewis acid, silicic acid, boric acid, quaternary ammonium salt, inorganic base, organic base and the like. Preferred are organic acids, quaternary ammonium salts, and inorganic bases, and more preferred are quaternary ammonium salts and inorganic bases. Specific examples include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium acetate, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium acetate, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium acetate, tetrahexylammonium. Examples include chloride, tetrahexylammonium bromide, tetrahexylammonium acetate, tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylammonium acetate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. Of these, sodium hydroxide, potassium hydroxide, and calcium hydroxide are preferred.
 触媒の添加量は、反応を進行させるためであれば特に制限はないが、好ましくはエピハロヒドリン1モルに対し、0.00001~0.5モル、より好ましくは0.001~0.1モル使用する。0.00001モル未満では反応が進行しないか遅くなりすぎで好ましくなく、0.5モルを超えると反応が進行しすぎて制御が困難となり好ましくない。
 エピハロヒドリンと、式(4)で表される化合物の割合は、反応が進行するのであれば特に制限はないが、好ましくは式(4)で表される化合物のチオール基(SH基)に対するエピハロヒドリンのモル比は0.3~4、より好ましくは0.4~3、更に好ましくは0.5~2である。0.3未満もしくは4を超えた場合では未反応の原材料の余剰が多くなり、経済的に好ましくない。
The amount of the catalyst added is not particularly limited as long as the reaction is allowed to proceed. However, it is preferably used in an amount of 0.00001 to 0.5 mol, more preferably 0.001 to 0.1 mol, relative to 1 mol of epihalohydrin. . If the amount is less than 0.00001 mol, the reaction does not proceed or becomes too slow, which is not preferable.
The proportion of the epihalohydrin and the compound represented by the formula (4) is not particularly limited as long as the reaction proceeds, but preferably the epihalohydrin to the thiol group (SH group) of the compound represented by the formula (4) The molar ratio is 0.3 to 4, more preferably 0.4 to 3, and still more preferably 0.5 to 2. If it is less than 0.3 or exceeds 4, the surplus of unreacted raw materials increases, which is not economically preferable.
 溶媒は使用してもしなくてもよいが、使用する場合は水、アルコール類、エーテル類、ケトン類、芳香族炭化水素類、ハロゲン化炭化水素類などが用いられる。具体例としては、水、メタノール、エタノール、プロパノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、ジオキサン、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、メチルエチルケトン、アセトン、ベンゼン、トルエン、キシレン、ジクロロエタン、クロロホルム、クロロベンゼン等が挙げられる。中でも好ましくは水、メタノール、及びトルエンであり、特に好ましくは水、及びメタノールである。
 反応温度は、反応を進行させるためであれば特に制限はないが、好ましくは-10℃~80℃、より好ましくは0℃~50℃、更に好ましくは0℃~40℃である。反応時間は特に制限はないが、通常は20時間以下である。-10℃未満では反応が進行しないか遅くなりすぎで好ましくなく、80℃を超えるとオリゴマー化して高分子量となり好ましくない。
A solvent may or may not be used, but when used, water, alcohols, ethers, ketones, aromatic hydrocarbons, halogenated hydrocarbons and the like are used. Specific examples include water, methanol, ethanol, propanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone, benzene, toluene, xylene, dichloroethane, chloroform, chlorobenzene and the like. Is mentioned. Among these, water, methanol, and toluene are preferable, and water and methanol are particularly preferable.
The reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably −10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 40 ° C. The reaction time is not particularly limited, but is usually 20 hours or less. If it is less than −10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
 式(5)で表される化合物から式(6)で表される化合物の製造方法について記載する。式(3)で表される化合物から式(7)で表される化合物も同様の方法で製造できる。
 式(6)で表される化合物は、式(5)で表される化合物をアルカリと反応させて得られるが、アルカリの具体例としては、アンモニア、アルカリ金属及びアルカリ土類金属の水酸化物、アルカリ金属及びアルカリ土類金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ金属及びアルカリ土類金属のアンモニウム塩などが挙げられる。これらは水溶液として用いても良い。好ましくは水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、及び炭酸水素カリウムであり、より好ましくは、水酸化ナトリウム、及び水酸化カリウムである。
 使用するアルカリの量は原料となる式(5)で表される化合物により一概に規定できないが、通常はアルカリを式(5)で表される化合物中のハロゲン当量に対し、0.8~1.2当量、好ましくは0.84~1.14当量、より好ましくは0.90~1.1当量使用する。アルカリ量が少ない場合、もしくは多い場合は、収量が低下する。
It describes about the manufacturing method of the compound represented by Formula (6) from the compound represented by Formula (5). The compound represented by the formula (7) can be produced from the compound represented by the formula (3) by the same method.
The compound represented by the formula (6) is obtained by reacting the compound represented by the formula (5) with an alkali. Specific examples of the alkali include hydroxides of ammonia, alkali metals, and alkaline earth metals. And alkali metal and alkaline earth metal carbonates, alkali metal hydrogen carbonates, alkali metal and alkaline earth metal ammonium salts, and the like. These may be used as an aqueous solution. Sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate are preferable, and sodium hydroxide and potassium hydroxide are more preferable.
The amount of alkali to be used cannot be generally defined by the compound represented by the formula (5) as a raw material, but usually the alkali is 0.8 to 1 relative to the halogen equivalent in the compound represented by the formula (5). .2 equivalents, preferably 0.84 to 1.14 equivalents, more preferably 0.90 to 1.1 equivalents. When the amount of alkali is small or large, the yield decreases.
 反応時に使用する溶媒は、特に制限は無くいかなる溶媒を使用しても良いが、好ましくは水、アルコール類、エーテル類、ケトン類、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類などが用いられる。これらは単独でも混合して用いても構わない。アルコール類の具体例としては、メタノール、エタノール、プロパノール、イソプロパノールなどが挙げられ、エーテル類の具体例としては、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられ、ケトン類の具体例としては、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、メチルエチルケトン、アセトンなどが挙げられ、脂肪族炭化水素類の具体例としては、ヘキサン、ヘプタン、オクタンなどが挙げられ、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどが挙げられ、ハロゲン化炭化水素類の具体例としては、ジクロロエタン、クロロホルム、クロロベンゼンなどが挙げられる。より好ましくは水、及びアルコール類であり、その具体例としては、水、メタノール、プロパノール、イソプロパノールなどが挙げられる。中でも好ましくは水、及びメタノールである。
 溶媒の量は特に制限はないが、通常は式(3)で表される化合物100質量部に対し、5~1000質量部、好ましくは50~500質量部、より好ましくは100~300質量部である。
 反応温度は、反応を進行させるためであれば特に制限はないが、好ましくは-10℃~80℃、より好ましくは0℃~50℃、更に好ましくは0℃~30℃である。反応時間は特に制限はないが、通常は20時間以下である。-10℃未満では反応が進行しないか遅くなりすぎで好ましくなく、80℃を超えるとオリゴマー化して高分子量となり好ましくない。
The solvent used in the reaction is not particularly limited and any solvent may be used, but preferably water, alcohols, ethers, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons. And the like are used. These may be used alone or in combination. Specific examples of alcohols include methanol, ethanol, propanol, isopropanol, etc. Specific examples of ethers include diethyl ether, tetrahydrofuran, dioxane, etc. Specific examples of ketones include methyl cellosolve. , Ethyl cellosolve, butyl cellosolve, methyl ethyl ketone, acetone and the like, specific examples of aliphatic hydrocarbons include hexane, heptane, octane and the like, and specific examples of aromatic hydrocarbons include benzene , Toluene, xylene and the like. Specific examples of the halogenated hydrocarbons include dichloroethane, chloroform, chlorobenzene and the like. More preferred are water and alcohols, and specific examples thereof include water, methanol, propanol and isopropanol. Of these, water and methanol are preferred.
The amount of the solvent is not particularly limited, but is usually 5 to 1000 parts by weight, preferably 50 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the compound represented by the formula (3). is there.
The reaction temperature is not particularly limited as long as the reaction is allowed to proceed, but is preferably −10 ° C. to 80 ° C., more preferably 0 ° C. to 50 ° C., and further preferably 0 ° C. to 30 ° C. The reaction time is not particularly limited, but is usually 20 hours or less. If it is less than −10 ° C., it is not preferable because the reaction does not proceed or becomes too slow.
 式(6)で表される化合物から式(1)のnおよびqが0で表される化合物の製造方法について記載する。式(8)で表される化合物から式(1)で表される化合物も同様の方法で製造できる。
 式(6)で表される化合物とチオ尿素、チオシアン酸塩等のチア化剤を反応させて式(1)で表されるエピスルフィド化合物を得る。好ましいチア化剤は、チオ尿素、チオシアン酸ナトリウム、チオシアン酸カリウム、及びチオシアン酸アンモニウムであり、特に好ましい化合物はチオ尿素である。チア化剤は、式(6)で表される化合物のエポキシに対応するモル数、すなわち理論量を使用するが、反応速度、純度を重視するのであれば理論量~理論量の2.5倍モルを使用する。好ましくは理論量の1.3倍モル~理論量の2.0倍モルであり、より好ましくは理論量の1.5倍モル~理論量の2.0倍モルである。
 溶媒は、チア化剤と、式(6)で表される化合物、及び式(1)で表されるエピスルフィド化合物を溶解するのであれば特に制限はないが、具体例としてメタノール、エタノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ等のヒドロキシエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類、水などが挙げられる。好ましくはアルコール類、芳香族炭化水素、及び水であり、より好ましくはメタノール、及びトルエンである、これらは単独でも混合して用いてもかまわない。
 反応温度は、反応が進行するのであれば特に制限はないが、通常は10℃~50℃で実施する。10℃未満の場合、反応速度の低下に加え、チア化剤が溶解不十分となり反応が十分に進行せず、50℃を超える場合、ポリマーの生成が顕著となる。
It describes about the manufacturing method of the compound in which n and q of Formula (1) are represented by 0 from the compound represented by Formula (6). The compound represented by Formula (1) can also be manufactured from the compound represented by Formula (8) by the same method.
An episulfide compound represented by the formula (1) is obtained by reacting a compound represented by the formula (6) with a thiating agent such as thiourea or thiocyanate. Preferred thiating agents are thiurea, sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate, and a particularly preferred compound is thiourea. As the thialating agent, the number of moles corresponding to the epoxy of the compound represented by formula (6), that is, the theoretical amount is used. If importance is attached to the reaction rate and purity, the theoretical amount to 2.5 times the theoretical amount. Use moles. The molar amount is preferably 1.3 times the theoretical amount to 2.0 times the theoretical amount, more preferably 1.5 times the theoretical amount to 2.0 times the theoretical amount.
The solvent is not particularly limited as long as it dissolves the chelating agent, the compound represented by the formula (6), and the episulfide compound represented by the formula (1), but specific examples include alcohols such as methanol and ethanol. , Ethers such as diethyl ether, tetrahydrofuran and dioxane, hydroxy ethers such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, aromatic hydrocarbons such as benzene and toluene, and halogenation such as dichloromethane, chloroform and chlorobenzene Examples include hydrocarbons and water. Alcohols, aromatic hydrocarbons, and water are preferable, and methanol and toluene are more preferable. These may be used alone or in combination.
The reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is carried out at 10 ° C to 50 ° C. When the temperature is lower than 10 ° C., in addition to the decrease in the reaction rate, the thiating agent is insufficiently dissolved and the reaction does not proceed sufficiently. When the temperature exceeds 50 ° C., the formation of the polymer becomes remarkable.
 反応時に、酸もしくは酸無水物、アンモニウム塩を添加することは好ましいことである。使用する酸もしくは酸無水物の具体例としては、硝酸、塩酸、過塩素酸、次亜塩素酸、二酸化塩素、フッ酸、硫酸、発煙硫酸、塩化スルフリル、ホウ酸、ヒ酸、亜ヒ酸、ピロヒ酸、燐酸、亜リン酸、次亜リン酸、オキシ塩化リン、オキシ臭化リン、硫化リン、三塩化リン、三臭化リン、五塩化リン、青酸、クロム酸、無水硝酸、無水硫酸、酸化ホウ素、五酸化ヒ酸、五酸化燐、無水クロム酸、シリカゲル、シリカアルミナ、塩化アルミニウム、塩化亜鉛等の無機の酸性化合物、蟻酸、酢酸、過酢酸、チオ酢酸、蓚酸、酒石酸、プロピオン酸、酪酸、コハク酸、吉草酸、カプロン酸、カプリル酸、ナフテン酸、メチルメルカプトプロピオネート、マロン酸、グルタル酸、アジピン酸、シクロヘキサンカルボン酸、チオジプロピオン酸、ジチオジプロピオン酸酢酸、マレイン酸、安息香酸、フェニル酢酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、サリチル酸、2-メトキシ安息香酸、3-メトキシ安息香酸、ベンゾイル安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、ベンジル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸等の有機カルボン酸類、モノ、ジおよびトリメチルホスフェート、モノ、ジおよびトリエチルホスフェート、モノ、ジおよびトリイソブチルホスフェート、モノ、ジおよびトリブチルホスフェート、モノ、ジおよびトリラウリルホスフェート等のリン酸類およびこれらのホスフェート部分がホスファイトとなった亜リン酸類、ジメチルジチオリン酸に代表されるジアルキルジチオリン酸類等の有機リン化合物、フェノール、カテコール、t-ブチルカテコール、2,6-ジ-t-ブチルクレゾール、2,6-ジ-t-ブチルエチルフェノール、レゾルシン、ハイドロキノン、フロログルシン、ピロガロール、クレゾール、エチルフェノール、ブチルフェノール、ノニルフェノール、ヒドロキシフェニル酢酸、ヒドロキシフェニルプロピオン酸、ヒドロキシフェニル酢酸アミド、ヒドロキシフェニル酢酸メチル、ヒドロキシフェニル酢酸エチル、ヒドロキシフェネチルアルコール、ヒドロキシフェネチルアミン、ヒドロキシベンズアルデヒド、フェニルフェノール、ビスフェノール-A、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、ビスフェノール-F、ビスフェノール-S、α-ナフトール、β-ナフトール、アミノフェノール、クロロフェノール、2,4,6-トリクロロフェノール等のフェノール類、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸、ドデカンスルホン酸、ベンゼンスルホン酸、o-トルエンスルホン酸、m-トルエンスルホン酸、p-トルエンスルホン酸、エチルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、p-フェノールスルホン酸、o-クレゾールスルホン酸、メタニル酸、スルファニル酸、4B-酸、ジアミノスチルベンスルホン酸、ビフェニルスルホン酸、α-ナフタレンスルホン酸、β-ナフタレンスルホン酸、ペリ酸、ローレント酸、フェニルJ酸等のスルホン酸類、等が挙げられ、これらのいくつかを併用することも可能である。好ましくは、蟻酸、酢酸、過酢酸、チオ酢酸、蓚酸、酒石酸、プロピオン酸、酪酸、コハク酸、吉草酸、カプロン酸、カプリル酸、ナフテン酸、メチルメルカプトプロピオネート、マロン酸、グルタル酸、アジピン酸、シクロヘキサンカルボン酸、チオジプロピオン酸、ジチオジプロピオン酸酢酸、マレイン酸、安息香酸、フェニル酢酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、サリチル酸、2-メトキシ安息香酸、3-メトキシ安息香酸、ベンゾイル安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、ベンジル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸の有機カルボン酸類であり、より好ましくは無水酢酸、無水プロピオン酸、無水酪酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸、無水トリフルオロ酢酸の酸無水物であり、最も好ましくは無水酢酸である。添加量は通常反応液総量に対して0.001質量%~10質量%の範囲で用いられるが、好ましくは0.01質量%~5質量%である。添加量が0.001質量%未満ではポリマーの生成が顕著となって反応収率が低下し、10質量%を超えると収率が著しく低下することがある。また、アンモニウム塩の具体例としては、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、蟻酸アンモニウム、酢酸アンモニウム、プロピオン酸アンモニウム、安息香酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、水酸化アンモニウムなどが挙げられる。より好ましくは硝酸アンモニウム、硫酸アンモニウム、及び塩化アンモニウムであり、最も好ましくは硝酸アンモニウムである。 It is preferable to add an acid or acid anhydride or an ammonium salt during the reaction. Specific examples of the acid or acid anhydride used include nitric acid, hydrochloric acid, perchloric acid, hypochlorous acid, chlorine dioxide, hydrofluoric acid, sulfuric acid, fuming sulfuric acid, sulfuryl chloride, boric acid, arsenic acid, arsenous acid, Pyroarsenic acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphorus oxychloride, phosphorus oxybromide, phosphorus sulfide, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, hydrocyanic acid, chromic acid, anhydrous nitric acid, anhydrous sulfuric acid, Inorganic acidic compounds such as boron oxide, arsenic pentoxide, phosphorus pentoxide, chromic anhydride, silica gel, silica alumina, aluminum chloride, zinc chloride, formic acid, acetic acid, peracetic acid, thioacetic acid, oxalic acid, tartaric acid, propionic acid, Butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipic acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodi Lopionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3-methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic Acid, terephthalic acid, salicylic acid, benzylic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, pyrone anhydride Organic carboxylic acids such as merit acid, trimellitic anhydride, trifluoroacetic anhydride, mono, di and trimethyl phosphate, mono, di and triethyl phosphate, mono, di and triisobutyl phosphate, mono, di and tributyl phosphate, mono, di And trilauryl phosphate Acids and phosphorous acids in which these phosphate moieties are phosphites, organic phosphorus compounds such as dialkyldithiophosphoric acids represented by dimethyldithiophosphoric acid, phenol, catechol, t-butylcatechol, 2,6-di-t- Butyl cresol, 2,6-di-t-butylethylphenol, resorcin, hydroquinone, phloroglucin, pyrogallol, cresol, ethylphenol, butylphenol, nonylphenol, hydroxyphenylacetic acid, hydroxyphenylpropionic acid, hydroxyphenylacetamide, methyl hydroxyphenylacetate Hydroxyethyl ethyl acetate, hydroxyphenethyl alcohol, hydroxyphenethylamine, hydroxybenzaldehyde, phenylphenol, bisphenol-A, , 2'-methylene-bis (4-methyl-6-t-butylphenol), bisphenol-F, bisphenol-S, α-naphthol, β-naphthol, aminophenol, chlorophenol, 2,4,6-trichlorophenol, etc. Phenols, methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, dodecanesulfonic acid, benzenesulfonic acid, o-toluenesulfonic acid, m-toluenesulfonic acid, p-toluenesulfonic acid, ethylbenzenesulfonic acid, butylbenzenesulfonic acid , Dodecylbenzenesulfonic acid, p-phenolsulfonic acid, o-cresolsulfonic acid, metanilic acid, sulfanilic acid, 4B-acid, diaminostilbenesulfonic acid, biphenylsulfonic acid, α-naphthalenesulfonic acid, β-naphthalenesulfonic acid, peri acid Laurent acid, sulfonic acids such as phenyl J acid, etc., and can be used in combination of some of these. Preferably, formic acid, acetic acid, peracetic acid, thioacetic acid, succinic acid, tartaric acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic acid, caprylic acid, naphthenic acid, methyl mercaptopropionate, malonic acid, glutaric acid, adipine Acid, cyclohexanecarboxylic acid, thiodipropionic acid, dithiodipropionic acid acetic acid, maleic acid, benzoic acid, phenylacetic acid, o-toluic acid, m-toluic acid, p-toluic acid, salicylic acid, 2-methoxybenzoic acid, 3 -Methoxybenzoic acid, benzoylbenzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, benzylic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, anhydrous Maleic acid, benzoic anhydride, phthalic anhydride, pyromellitic anhydride, trime anhydride Organic carboxylic acids such as litnic acid and trifluoroacetic anhydride, more preferably acetic anhydride, propionic anhydride, butyric anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, pyromellitic anhydride, triflic anhydride Mellitic acid, an acid anhydride of trifluoroacetic anhydride, and most preferably acetic anhydride. The amount added is usually in the range of 0.001% to 10% by weight, preferably 0.01% to 5% by weight, based on the total amount of the reaction solution. When the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield may decrease remarkably. Specific examples of ammonium salts include ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium propionate, ammonium benzoate, ammonium sulfate, ammonium nitrate, ammonium carbonate, ammonium phosphate, ammonium hydroxide, and the like. Is mentioned. More preferred are ammonium nitrate, ammonium sulfate, and ammonium chloride, and most preferred is ammonium nitrate.
 式(4)で表される化合物から式(1)のmおよびpが0、nおよびqが1で表される化合物の製造方法について記載する。
 式(4)で表される化合物と3-メルカプト-1,2-プロピレンスルフィドを酸化剤で反応させて式(1)で表されるエピスルフィド化合物を得る。好ましい酸化剤はハロゲン、過酸化水素、過マンガン酸塩、及びクロム酸であり、より好ましくはハロゲン、及び過酸化水素であり、特に好ましくはヨウ素である。
 溶媒は、酸化剤と、式(4)で表される化合物、及び式(1)で表されるエピスルフィド化合物を溶解するのであれば特に制限はないが、具体例としてメタノール、エタノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ等のヒドロキシエーテル類、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類、水などが挙げられる。好ましくはアルコール類、芳香族炭化水素、及び水であり、より好ましくはメタノール、及びトルエンである、これらは単独でも混合して用いてもかまわない。
 反応温度は、反応が進行するのであれば特に制限はないが、通常は-30℃~20℃で実施する。-30℃未満の場合、反応速度の低下により反応が十分に進行せず、20℃を超える場合、反応が過剰に進行することがある。
It describes about the manufacturing method of the compound in which m and p of Formula (1) are 0, n and q are 1 from the compound represented by Formula (4).
A compound represented by the formula (4) and 3-mercapto-1,2-propylene sulfide are reacted with an oxidizing agent to obtain an episulfide compound represented by the formula (1). Preferred oxidizing agents are halogen, hydrogen peroxide, permanganate, and chromic acid, more preferably halogen and hydrogen peroxide, and particularly preferably iodine.
The solvent is not particularly limited as long as it dissolves the oxidizing agent, the compound represented by formula (4), and the episulfide compound represented by formula (1). Specific examples include alcohols such as methanol and ethanol. , Ethers such as diethyl ether, tetrahydrofuran and dioxane, hydroxy ethers such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, aromatic hydrocarbons such as benzene and toluene, halogenated carbonization such as dichloromethane, chloroform and chlorobenzene Examples include hydrogen and water. Alcohols, aromatic hydrocarbons, and water are preferable, and methanol and toluene are more preferable. These may be used alone or in combination.
The reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is performed at −30 ° C. to 20 ° C. When the temperature is lower than −30 ° C., the reaction does not proceed sufficiently due to a decrease in the reaction rate, and when it exceeds 20 ° C., the reaction may proceed excessively.
 本発明の光学材料用組成物では、重合性化合物として前記式(2)で表されるエピスルフィド化合物を用いることができる。式(2)で表されるエピスルフィド化合物の具体例としては、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタンなどのエピスルフィド類が挙げられる。式(2)で表されるエピスルフィド化合物は単独でも、2種類以上を混合して用いてもかまわない。
 中でも好ましい化合物は、ビス(β-エピチオプロピル)スルフィド(式(2)でn=0)、ビス(β-エピチオプロピル)ジスルフィド(式(2)でm=0、n=1)であり、最も好ましい化合物は、ビス(β-エピチオプロピル)スルフィド(式(2)でn=0)である。
In the composition for optical materials of the present invention, an episulfide compound represented by the formula (2) can be used as the polymerizable compound. Specific examples of the episulfide compound represented by the formula (2) include bis (β-epithiopropyl) sulfide, bis (β-epithiopropyl) disulfide, bis (β-epithiopropylthio) methane, 1,2 And episulfides such as -bis (β-epithiopropylthio) ethane, 1,3-bis (β-epithiopropylthio) propane, and 1,4-bis (β-epithiopropylthio) butane. The episulfide compound represented by the formula (2) may be used alone or in combination of two or more.
Among them, preferred compounds are bis (β-epithiopropyl) sulfide (n = 0 in formula (2)) and bis (β-epithiopropyl) disulfide (m = 0 in formula (2), n = 1). The most preferred compound is bis (β-epithiopropyl) sulfide (n = 0 in the formula (2)).
 本発明の光学材料用組成物は、得られる樹脂の加熱時の色調を改善するためポリチオール化合物を重合性化合物として含んでも良い。ポリチオール化合物の含有量は、光学材料用組成物の合計を100質量%とした場合、通常は1~25質量%であり、好ましくは2~25質量%、特に好ましくは5~20質量%である。ポリチオール化合物の含有量が1質量%を下回るとレンズ成型時に黄変する場合があり、25質量%を超えると耐熱性が低下する場合がある。本発明で使用するポリチオール化合物は単独でも、2種類以上を混合して用いてもかまわない。
 その具体例としては、メタンジチオール、メタントリチオール、1,2-ジメルカプトエタン、1,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、2,2-ジメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)エーテル、ビス(2-メルカプトエチル)スルフィド、1,2-ビス(2-メルカプトエチルオキシ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、2,3-ジメルカプト-1-プロパノール、1,3-ジメルカプト-2-プロパノール、1,2,3-トリメルカプトプロパン、2-メルカプトメチル-1,3-ジメルカプトプロパン、2-メルカプトメチル-1,4-ジメルカプトブタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ジメルカプトメチル-1,5-ジメルカプト-3-チアペンタン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,1-トリス(メルカプトメチル)プロパン、テトラキス(メルカプトメチル)メタン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(2-メルカプトアセテート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスメルカプトプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスメルカプトプロピオネート、1,2-ジメルカプトシクロヘキサン、1,3-ジメルカプトシクロヘキサン、1,4-ジメルカプトシクロヘキサン、1,3-ビス(メルカプトメチル)シクロヘキサン、1,4-ビス(メルカプトメチル)シクロヘキサン、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ビス(2-メルカプトエチルチオメチル)-1,4-ジチアン、2,5-ジメルカプトメチル-1-チアン、2,5-ジメルカプトエチル-1-チアン、2,5-ジメルカプトメチルチオフェン、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、2,2’-ジメルカプトビフェニル、4、4’-ジメルカプトビフェニル、ビス(4-メルカプトフェニル)メタン、2,2-ビス(4-メルカプトフェニル)プロパン、ビス(4-メルカプトフェニル)エーテル、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトフェニル)スルホン、ビス(4-メルカプトメチルフェニル)メタン、2,2-ビス(4-メルカプトメチルフェニル)プロパン、ビス(4-メルカプトメチルフェニル)エーテル、ビス(4-メルカプトメチルフェニル)スルフィド、2,5-ジメルカプト-1,3,4-チアジアゾール、3,4-チオフェンジチオール、1、1、3、3-テトラキス(メルカプトメチルチオ)プロパンなどを挙げることができる。
 これらのなかで好ましい具体例は、ビス(2-メルカプトエチル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、4、8-ジメルカプトメチル-1、11-ジメルカプト-3、6、9-トリチアウンデカン、4、7-ジメルカプトメチル-1、11-ジメルカプト-3、6、9-トリチアウンデカン、5、7-ジメルカプトメチル-1、11-ジメルカプト-3、6、9-トリチアウンデカン、1、1、3、3-テトラキス(メルカプトメチルチオ)プロパン、ペンタエリスリトールテトラキスメルカプトプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、トリメチロールプロパントリスチオグリコレート)、及びトリメチロールプロパントリスメルカプトプロピオネートであり、より好ましくは、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(2-メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,3-ビス(メルカプトメチル)ベンゼン、ペンタエリスリトールテトラキスメルカプトプロピオネート、及びペンタエリスリトールテトラキスチオグリコレートであり、特に好ましい化合物は、ビス(2-メルカプトエチル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンである。
The composition for optical materials of the present invention may contain a polythiol compound as a polymerizable compound in order to improve the color tone when the resulting resin is heated. The content of the polythiol compound is usually 1 to 25% by mass, preferably 2 to 25% by mass, particularly preferably 5 to 20% by mass, when the total amount of the composition for optical materials is 100% by mass. . When the content of the polythiol compound is less than 1% by mass, yellowing may occur during lens molding, and when it exceeds 25% by mass, the heat resistance may decrease. The polythiol compound used in the present invention may be used alone or in combination of two or more.
Specific examples thereof include methanedithiol, methanetrithiol, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 1,3-dimercaptopropane, 2,2-dimercaptopropane, 1,4-dimer. Mercaptobutane, 1,6-dimercaptohexane, bis (2-mercaptoethyl) ether, bis (2-mercaptoethyl) sulfide, 1,2-bis (2-mercaptoethyloxy) ethane, 1,2-bis (2 -Mercaptoethylthio) ethane, 2,3-dimercapto-1-propanol, 1,3-dimercapto-2-propanol, 1,2,3-trimercaptopropane, 2-mercaptomethyl-1,3-dimercaptopropane, 2-mercaptomethyl-1,4-dimercaptobutane, 2- (2-mercaptoethylthio) -1, Dimercaptopropane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 2,4-dimercaptomethyl-1,5-dimercapto-3-thiapentane, 4,8-dimercaptomethyl-1, 11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11- Dimercapto-3,6,9-trithiaundecane, 1,1,1-tris (mercaptomethyl) propane, tetrakis (mercaptomethyl) methane, ethylene glycol bis (2-mercaptoacetate), ethylene glycol bis (3-mercaptopro Pionate), diethylene glycol bis (2-mercaptoacetate), die Lenglycol bis (3-mercaptopropionate), 1,4-butanediol bis (2-mercaptoacetate), 1,4-butanediol bis (3-mercaptopropionate), trimethylolpropane tristhioglycolate, Trimethylolpropane trismercaptopropionate, pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakismercaptopropionate, 1,2-dimercaptocyclohexane, 1,3-dimercaptocyclohexane, 1,4-dimercaptocyclohexane, 1, 3-bis (mercaptomethyl) cyclohexane, 1,4-bis (mercaptomethyl) cyclohexane, 2,5-dimercaptomethyl-1,4-dithiane, 2,5-dimercaptomethyl-1,4-dithiane 2,5-bis (2-mercaptoethylthiomethyl) -1,4-dithian, 2,5-dimercaptomethyl-1-thian, 2,5-dimercaptoethyl-1-thian, 2,5-di Mercaptomethylthiophene, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 2,2'-dimercaptobiphenyl, 4,4'-dimercaptobiphenyl, bis (4-mercaptophenyl) methane, 2,2-bis (4-mercaptophenyl) propane, bis (4-mercaptophenyl) ether, bis (4-mercaptophenyl) sulfide, bis (4-mercaptophenyl) sulfone, bis (4-mercaptomethylpheny ) Methane, 2,2-bis (4-mercaptomethylphenyl) propane, bis (4-mercaptomethylphenyl) ether, bis (4-mercaptomethylphenyl) sulfide, 2,5-dimercapto-1,3,4-thiadiazole 3,4-thiophenedithiol, 1,1,3,3-tetrakis (mercaptomethylthio) propane and the like.
Among these, preferred specific examples are bis (2-mercaptoethyl) sulfide, 2,5-dimercaptomethyl-1,4-dithiane, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercapto). Methyl) benzene, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di Mercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 1,1,3,3 -Tetrakis (mercaptomethylthio) propane, pentaerythritol tetrakismercaptopropionate, pentaerythritol tetrakis Thioglycolate, trimethylolpropane tristhioglycolate), and trimethylolpropane trismercaptopropionate, more preferably bis (2-mercaptoethyl) sulfide, 2,5-bis (2-mercaptomethyl)- 1,4-dithiane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 1,3-bis (mercaptomethyl) benzene, pentaerythritol tetrakismercaptopropionate, and pentaerythritol tetrakisthioglycolate Particularly preferred compounds are bis (2-mercaptoethyl) sulfide, 2,5-dimercaptomethyl-1,4-dithiane, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane.
 本発明の光学材料用組成物は、得られる樹脂の強度を改善するためポリイソシアネート化合物を重合性化合物として含んでも良い。ポリイソシアネート化合物の含有量は、光学材料用組成物の合計を100質量%とした場合、通常は1~25質量%であり、好ましくは2~25質量%、特に好ましくは5~20質量%である。ポリイソシアネート化合物の含有量が1質量%を下回ると強度が低下する場合があり、25質量%を超えると色調が悪化する場合がある。本発明で使用するポリイソシアネート化合物は単独でも、2種類以上を混合して用いてもかまわない。
 その具体例としては、ジエチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、2,6-ビス(イソシアネートメチル)デカヒドロナフタレン、リジントリイソシアネート、トリレンジイソシアネート、o-トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、3-(2’-イソシアネートシクロヘキシル)プロピルイソシアネート、イソプロピリデンビス(シクロヘキシルイソシアネート)、2,2’-ビス(4-イソシアネートフェニル)プロパン、トリフェニルメタントリイソシアネート、ビス(ジイソシアネートトリル)フェニルメタン、4,4’,4’’-トリイソシアネート-2,5-ジメトキシフェニルアミン、3,3’-ジメトキシベンジジン-4,4’-ジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジイソシアネートビフェニル、4,4’-ジイソシアネート-3,3’-ジメチルビフェニル、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,1’-メチレンビス(4-イソシアネートベンゼン)、1,1’-メチレンビス(3-メチル-4-イソシアネートベンゼン)、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート、1,3-ビス(2-イソシアネート-2-プロピル)ベンゼン、2,6-ビス(イソシアネートメチル)ナフタレン、1,5-ナフタレンジイソシアネート、ビス(イソシアネートメチル)テトラヒドロジシクロペンタジエン、ビス(イソシアネートメチル)ジシクロペンタジエン、ビス(イソシアネートメチル)テトラヒドロチオフェン、ビス(イソシアネートメチル)ノルボルネン、ビス(イソシアネートメチル)アダマンタン、チオジエチルジイソシアネート、チオジプロピルジイソシアネート、チオジヘキシルジイソシアネート、ビス〔(4-イソシアネートメチル)フェニル〕スルフィド、2,5-ジイソシアネート-1,4-ジチアン、2,5-ジイソシアネートメチル-1,4-ジチアン、2,5-ジイソシアネートメチルチオフェン、ジチオジエチルジイソシアネート、ジチオジプロピルジイソシアネートなどを挙げることができる。
The composition for optical materials of the present invention may contain a polyisocyanate compound as a polymerizable compound in order to improve the strength of the resulting resin. The content of the polyisocyanate compound is usually 1 to 25% by mass, preferably 2 to 25% by mass, particularly preferably 5 to 20% by mass, when the total composition for optical materials is 100% by mass. is there. If the content of the polyisocyanate compound is less than 1% by mass, the strength may decrease, and if it exceeds 25% by mass, the color tone may deteriorate. The polyisocyanate compound used in the present invention may be used alone or in combination of two or more.
Specific examples thereof include diethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, isophorone diisocyanate, 2,6-bis (isocyanatomethyl) decahydronaphthalene, lysine triisocyanate, tolylene diisocyanate, o-tolidine diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, 3- (2'-isocyanatocyclohexyl) propyl isocyanate, isopropylidenebis (cyclohexyl isocyanate) ), 2,2′-bis (4- Socyanate phenyl) propane, triphenylmethane triisocyanate, bis (diisocyanatotolyl) phenylmethane, 4,4 ′, 4 ″ -triisocyanate-2,5-dimethoxyphenylamine, 3,3′-dimethoxybenzidine-4, 4'-diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 4,4'-diisocyanate biphenyl, 4,4'-diisocyanate-3,3'-dimethylbiphenyl, dicyclohexylmethane-4,4'- Diisocyanate, 1,1'-methylenebis (4-isocyanatebenzene), 1,1'-methylenebis (3-methyl-4-isocyanatebenzene), m-xylylene diisocyanate, p-xylylene diisocyanate, m-tetramethylxylylene diene Socyanate, p-tetramethylxylylene diisocyanate, 1,3-bis (2-isocyanate-2-propyl) benzene, 2,6-bis (isocyanatomethyl) naphthalene, 1,5-naphthalene diisocyanate, bis (isocyanatomethyl) tetrahydro Dicyclopentadiene, bis (isocyanatemethyl) dicyclopentadiene, bis (isocyanatemethyl) tetrahydrothiophene, bis (isocyanatemethyl) norbornene, bis (isocyanatemethyl) adamantane, thiodiethyldiisocyanate, thiodipropyldiisocyanate, thiodihexyldiisocyanate, bis [ (4-Isocyanatemethyl) phenyl] sulfide, 2,5-diisocyanate-1,4-dithiane, 2,5-diisocyanate Methyl-1,4-dithiane, 2,5-diisocyanate methyl thiophene, dithio diethyl diisocyanate, and the like dithio dipropyl diisocyanate.
 しかしながら、本発明で使用されるポリイソシアネート化合物はこれらに限定されるわけではなく、また、これらは単独でも、2種類以上を混合して使用してもかまわない。
 これらのなかで好ましい具体例は、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシリレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、ビス(イソシアネートメチル)ノルボルネン、および2,5-ジイソシアネートメチル-1,4-ジチアンであり、中でも好ましい化合物は、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、及びm-キシリレンジイソシアネートであり、特に好ましい化合物は、イソホロンジイソシアネート、m-キシリレンジイソシアネート、及び1,3-ビス(イソシアネートメチル)シクロヘキサンである。
However, the polyisocyanate compounds used in the present invention are not limited to these, and these may be used alone or in combination of two or more.
Of these, preferred examples are isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, m-tetramethylxylylene diisocyanate, p-tetramethylxylylene diisocyanate. 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, bis (isocyanatemethyl) norbornene, and 2,5-diisocyanatomethyl-1,4-dithiane, among which preferable compounds Is isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, Is (isocyanatomethyl) cyclohexane, and m- xylylene diisocyanate, are particularly preferred compounds, isophorone diisocyanate, m- xylylene diisocyanate, and 1,3-bis (isocyanatomethyl) cyclohexane.
 さらに、ポリイソシアネート化合物のNCO基に対するポリチオール化合物中のSH基の割合、即ち[ポリチオール化合物のSH基数/ポリイソシアネート化合物のNCO基数](SH基/NCO基)は、好ましくは1.0~2.5であり、より好ましくは1.25~2.25であり、さらに好ましくは1.5~2.0である。上記割合が1.0を下回るとレンズ成型時に黄色く着色する場合があり、2.5を上回ると耐熱性が低下する場合がある。 Further, the ratio of the SH group in the polythiol compound to the NCO group of the polyisocyanate compound, that is, [the number of SH groups of the polythiol compound / the number of NCO groups of the polyisocyanate compound] (SH group / NCO group) is preferably 1.0 to 2. 5, more preferably 1.25 to 2.25, and still more preferably 1.5 to 2.0. If the above ratio is less than 1.0, it may be colored yellow at the time of lens molding, and if it exceeds 2.5, the heat resistance may be lowered.
 本発明の光学材料用組成物は、得られる樹脂の屈折率を向上するため硫黄を重合性化合物として含んでも良い。硫黄の含有量は、光学材料用組成物の合計を100質量%とした場合、通常は0.1~15質量%であり、好ましくは、0.2~10質量%、特に好ましくは0.3~5質量%である。また、本発明の光学材料の製造法においては、前記式(2)で表される化合物と硫黄とを予め一部重合反応させておくこともできる。
 本発明で用いる硫黄の形状はいかなる形状でもかまわない。具体的には、硫黄は、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等であるが、好ましくは、粒子の細かい微粉硫黄である。
 本発明に用いる硫黄の製法はいかなる製法でもかまわない。硫黄の製法は、天然硫黄鉱からの昇華精製法、地下に埋蔵する硫黄の溶融法による採掘、石油や天然ガスの脱硫工程などから得られる硫化水素等を原料とする回収法等があるが、いずれの製法でもかまわない。
 本発明に用いる硫黄の粒径は10メッシュより小さいこと、即ち硫黄が10メッシュより細かい微粉であることが好ましい。硫黄の粒径が10メッシュより大きい場合、硫黄が完全に溶解しにくい。このため、第1工程で好ましくない反応等が起き、不具合が生じる場合がある。硫黄の粒径は、30メッシュより小さいことがより好ましく、60メッシュより小さいことが最も好ましい。
 本発明に用いる硫黄の純度は、好ましくは98%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上であり、最も好ましくは99.9%以上である。硫黄の純度が98%以上であると、98%未満である場合に比べて、得られる光学材料の色調がより改善する。
The composition for optical materials of the present invention may contain sulfur as a polymerizable compound in order to improve the refractive index of the obtained resin. The content of sulfur is usually 0.1 to 15% by mass, preferably 0.2 to 10% by mass, particularly preferably 0.3% when the total composition for optical materials is 100% by mass. ~ 5% by mass. In the method for producing an optical material of the present invention, the compound represented by the formula (2) and sulfur may be partially polymerized in advance.
The shape of sulfur used in the present invention may be any shape. Specifically, the sulfur is finely divided sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimated sulfur or the like, but preferably finely divided sulfur with fine particles.
The production method of sulfur used in the present invention may be any production method. Sulfur production methods include sublimation purification from natural sulfur ore, mining by melting sulfur buried underground, recovery methods using hydrogen sulfide obtained from oil and natural gas desulfurization processes, etc. Any method is acceptable.
The particle size of sulfur used in the present invention is preferably smaller than 10 mesh, that is, the sulfur is finer than 10 mesh. When the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve sulfur. For this reason, an unfavorable reaction or the like may occur in the first step, resulting in a problem. The particle size of sulfur is more preferably smaller than 30 mesh, and most preferably smaller than 60 mesh.
The purity of sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, still more preferably 99.5% or more, and most preferably 99.9% or more. When the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity is less than 98%.
 本発明の光学材料用組成物を重合硬化して光学材料を得るに際して、重合触媒を添加することが好ましい。本発明の組成物は、光学材料用組成物と重合触媒とを含む重合硬化性組成物であり得る。重合触媒としてはアミン、ホスフィン、オニウム塩などが用いられるが、特にオニウム塩、中でも第4級アンモニウム塩、第4級ホスホニウム塩、第3級スルホニウム塩、及び第2級ヨードニウム塩が好ましく、中でも光学材料用組成物との相溶性の良好な第4級アンモニウム塩および第4級ホスホニウム塩がより好ましく、第4級ホスホニウム塩がさらに好ましい。より好ましい重合触媒としては、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1-n-ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい重合触媒は、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、及びテトラ-n-ブチルホスホニウムブロマイドである。
 重合触媒の添加量は、組成物の成分、混合比および重合硬化方法によって変化するため一概には決められないが、通常は光学材料用組成物の合計100質量%(重合触媒を含まない量)に対して、0.0001質量%~10質量%、好ましくは0.001質量%~5質量%、より好ましくは0.01質量%~1質量%、最も好ましくは0.01質量%~0.5質量%である。重合触媒の添加量が10質量%より多いと急速に重合する場合がある。また、重合触媒の添加量が0.0001質量%より少ないと光学材料用組成物が十分に硬化せず耐熱性が不良となる場合がある。
When the optical material composition of the present invention is polymerized and cured to obtain an optical material, it is preferable to add a polymerization catalyst. The composition of the present invention may be a polymerization curable composition comprising a composition for optical materials and a polymerization catalyst. As the polymerization catalyst, amine, phosphine, onium salt and the like are used, and onium salts, particularly quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts are particularly preferable. Quaternary ammonium salts and quaternary phosphonium salts having good compatibility with the material composition are more preferable, and quaternary phosphonium salts are more preferable. More preferable polymerization catalysts include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, tetra And quaternary phosphonium salts such as phenylphosphonium bromide. Of these, more preferred polymerization catalysts are tetra-n-butylammonium bromide, triethylbenzylammonium chloride, and tetra-n-butylphosphonium bromide.
The addition amount of the polymerization catalyst varies depending on the components of the composition, the mixing ratio and the polymerization curing method, but cannot be determined unconditionally. Usually, the total amount of the composition for optical materials is 100% by mass (amount not including the polymerization catalyst). To 0.0001 mass% to 10 mass%, preferably 0.001 mass% to 5 mass%, more preferably 0.01 mass% to 1 mass%, and most preferably 0.01 mass% to 0.001 mass%. 5% by mass. When the addition amount of the polymerization catalyst is more than 10% by mass, polymerization may occur rapidly. On the other hand, if the addition amount of the polymerization catalyst is less than 0.0001% by mass, the composition for optical materials may not be sufficiently cured and the heat resistance may be poor.
 また、本発明の製造方法で光学材料を製造する際、光学材料用組成物に紫外線吸収剤、ブルーイング剤、顔料等の添加剤を加え、得られる光学材料の実用性をより向上せしめることはもちろん可能である。
 紫外線吸収剤の好ましい例としてはベンゾトリアゾール系化合物であり、特に好ましい化合物は、2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3、5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-メトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-エトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-ブトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチロキシフェニル)-2H-ベンゾトリアゾール、及び2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾールである。
 これら紫外線吸収剤の添加量は、通常、光学材料用組成物の合計100質量%に対してそれぞれ0.01~5質量%である。
Further, when an optical material is produced by the production method of the present invention, it is possible to further improve the practicality of the resulting optical material by adding additives such as an ultraviolet absorber, a bluing agent, and a pigment to the optical material composition. Of course it is possible.
Preferred examples of the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole, 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl) ) -2H-benzotriazole, and 2- (2-hydroxy-5-t-octylph) Sulfonyl) is -2H- benzotriazole.
The added amount of these ultraviolet absorbers is usually 0.01 to 5% by mass with respect to 100% by mass in total of the composition for optical materials.
 光学材料用組成物を重合硬化させる際に、ポットライフの延長や重合発熱の分散化などを目的として、必要に応じて重合調整剤を添加することができる。重合調整剤は、長期周期律表における第13~16族のハロゲン化物を挙げることができる。これらのうち好ましいものは、ケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物であり、より好ましいものはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。さらに好ましい化合物は、ジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、及びトリフェニルアンチモンジクロライドであり、最も好ましい化合物は、ジブチルスズジクロライドである。重合調整剤は単独でも2種類以上を混合して使用してもかまわない。
 重合調整剤の添加量は、光学材料用組成物の総計100質量%に対して、0.0001~5.0質量%であり、好ましくは0.0005~3.0質量%であり、より好ましくは0.001~2.0質量%である。重合調整剤の添加量が0.0001質量%よりも少ない場合、得られる光学材料において充分なポットライフが確保できず、重合調整剤の添加量が5.0質量%よりも多い場合は、光学材料用組成物が充分に硬化せず、得られる光学材料の耐熱性が低下する場合がある。
When the composition for optical material is polymerized and cured, a polymerization regulator can be added as necessary for the purpose of extending the pot life or dispersing the polymerization heat. Examples of the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Among these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group. More preferred compounds are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, and triphenylantimony dichloride, the most preferred compounds are Dibutyltin dichloride. The polymerization regulator may be used alone or in combination of two or more.
The addition amount of the polymerization regulator is 0.0001 to 5.0% by mass, preferably 0.0005 to 3.0% by mass, more preferably 100% by mass of the total composition for optical materials. Is 0.001 to 2.0 mass%. When the addition amount of the polymerization regulator is less than 0.0001% by mass, a sufficient pot life cannot be secured in the resulting optical material, and when the addition amount of the polymerization regulator is more than 5.0% by mass, The material composition may not be sufficiently cured, and the heat resistance of the obtained optical material may be reduced.
 このようにして得られた光学材料用組成物または重合硬化性組成物はモールド等の型に注型し、重合させて光学材料とする。
 本発明の組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める上からも好ましい。
 本発明の組成物の重合は通常、以下のようにして行われる。即ち、硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。
 また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい処理である。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
 本発明の光学材料は光学レンズとして好適に用いることができる。本発明の組成物を用いて製造される光学レンズは、安定性、色相、耐光性、透明性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
The optical material composition or the polymerization curable composition thus obtained is cast into a mold or the like and polymerized to obtain an optical material.
In casting the composition of the present invention, it is preferable from the viewpoint of improving the quality of the optical material of the present invention to remove impurities by filtering with a filter having a pore diameter of about 0.1 to 5 μm.
The polymerization of the composition of the present invention is usually performed as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually −10 ° C. to 140 ° C. The polymerization is performed by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature from 0.1 ° C. to 100 ° C./h, a step of lowering the temperature by 0.1 ° C. to 100 ° C./h, or these steps. Do it in combination.
In addition, after the curing is completed, annealing the obtained optical material at a temperature of 50 to 150 ° C. for about 10 minutes to 5 hours is a preferable treatment for removing the distortion of the optical material of the present invention. Further, the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistant coating, antireflection or imparting antifogging properties as necessary.
The optical material of the present invention can be suitably used as an optical lens. Optical lenses manufactured using the composition of the present invention are excellent in stability, hue, light resistance, and transparency, and thus, conventionally, expensive high refractive index glass lenses such as telescopes, binoculars, and television projectors have been used. It can be used in various fields and is extremely useful. If necessary, it is preferably used in the form of an aspheric lens. Since an aspherical lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration by combining a plurality of spherical lenses, which reduces weight and reduces production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
 以下、本発明の内容を、実施例及び比較例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。
 1.染色性の評価方法
 下記の組成の染色浴に光学材料を90℃で30分浸漬した後に全光線透過率を測定した。測定値から下記式により算出した値を染色性とした。
染色性=100-全光線透過率(%)
染色浴組成:
セイコープラックス ダイヤコート ブラウンD0.2重量%
セイコープラックス 染色助剤0.3重量%
ベンジルアルコール 2.0重量%
 染色性が70以上のものをA、55以上70未満のものをB、40以上55未満のものをC、40未満のものをDとした。A、B、Cが合格レベルである。
 2.離型性の評価方法
 実施例に記載の方法で-10Dのレンズを100枚作製し、重合硬化後のモールドからの離型性を評価した。レンズの欠けが発生しなかったものをA、1~2枚であるものをB、3枚以上であるものをCとした。A、Bが合格レベルである。
 3.ハガレの評価方法
 実施例に記載の方法で-10Dのレンズを100枚作製し、重合硬化後のレンズを水銀ランプで観察し、レンズ表面の表面精度不良が発生した枚数からハガレの評価を行った。レンズのハガレが発生しなかったものをA、1~2枚であるものをB、3枚以上であるものをCとした。A、Bが合格レベルである。
Hereinafter, although the content of the present invention will be described with reference to examples and comparative examples, the present invention is not limited to the following examples.
1. Evaluation Method of Dyeability After the optical material was immersed in a dyeing bath having the following composition at 90 ° C. for 30 minutes, the total light transmittance was measured. The value calculated from the measured value by the following formula was defined as dyeability.
Dyeing property = 100−total light transmittance (%)
Dye bath composition:
Seiko Plax Diamond Coat Brown D0.2% by weight
Seiko Plax dyeing aid 0.3% by weight
Benzyl alcohol 2.0% by weight
A dyeing property of 70 or more was designated as A, 55 or more and less than 70 as B, 40 or more and less than 55 as C, and D as less than 40. A, B, and C are acceptable levels.
2. Method for evaluating releasability 100 -10D lenses were produced by the method described in the examples, and the releasability from the mold after polymerization and curing was evaluated. A with no lens chipping was designated as A, 1 or 2 was designated as B, and 3 or more was designated as C. A and B are acceptable levels.
3. Evaluation method of peeling: 100 -10D lenses were prepared by the method described in the examples, and the lens after polymerization curing was observed with a mercury lamp, and peeling was evaluated from the number of occurrences of surface accuracy defects on the lens surface. . A case where no lens peeling occurred was designated as A, 1 or 2 pieces were designated as B, and 3 or more pieces were designated as C. A and B are acceptable levels.
合成例
 エピクロルヒドリン185g(2.0mol)、水30g、メタノール5g、及び32%水酸化ナトリウム水溶液1.5gを3Lフラスコに入れ、攪拌しながら硫化水素35g(1.0mol)を液温5~15℃に保ちつつ吹き込み、ビス(3-クロロ-2-ヒドロキシプロピル)スルフィド210g(0.96mol)を得た。
 その後、トルエン750ml、メタノール750ml、無水酢酸0.3g、及びチオ尿素350gを投入し、40℃で10時間反応させた。反応終了後水を加えて洗浄し、得られた有機層を10%硫酸で洗浄したのち水洗し、溶媒を留去、その後カラムで精製し、1,7-ジメルカプト-2,6-ジヒドロキシ-4-チアヘプタンを139g(0.65mol)得た。
Synthesis Example 185 g (2.0 mol) of epichlorohydrin, 30 g of water, 5 g of methanol, and 1.5 g of 32% aqueous sodium hydroxide solution were placed in a 3 L flask, and 35 g (1.0 mol) of hydrogen sulfide was added at a liquid temperature of 5 to 15 ° C. while stirring. The mixture was blown in while maintaining bis (3-chloro-2-hydroxypropyl) sulfide (210 g, 0.96 mol).
Thereafter, 750 ml of toluene, 750 ml of methanol, 0.3 g of acetic anhydride and 350 g of thiourea were added and reacted at 40 ° C. for 10 hours. After completion of the reaction, water was added for washing, and the resulting organic layer was washed with 10% sulfuric acid and then with water, the solvent was distilled off, and then purified with a column to obtain 1,7-dimercapto-2,6-dihydroxy-4. -139 g (0.65 mol) of thiaheptane was obtained.
実施例1
 エピクロロヒドリン19.5g(0.2mol)、水30g、メタノール5g、及び32%水酸化ナトリウム水溶液0.2gを1Lフラスコに入れ、撹拌しながら上記合成例で得られた1,7-ジメルカプト-2,6-ジヒドロキシ-4-チアヘプタン21.4g(0.1mol)を液温5~15℃に保ちつつ滴下し、ビス-(2,6-ジヒドロキシ-7-クロロ-4-チアヘプチル)スルフィドを得た。
 水100gを投入したのち、32%水酸化ナトリウム水溶液25gを0~10℃に保ちながら滴下した。その後、メチルイソブチルケトン100gを投入して抽出し、得られた有機層を1%酢酸で洗浄したのち水洗し、溶媒を留去、その後カラムで精製し、ビス-(2-ヒドロキシ-6,7-エポキシ-4-チアヘプチル)スルフィドを20g(0.06mol)得た。
 その後、トルエン200ml、メタノール200ml、無水酢酸0.2g、及びチオ尿素19gを投入し、40℃で10時間反応させた。反応終了後、水を加えて洗浄し、得られた有機層を10%硫酸で洗浄したのち水洗し、溶媒を留去、その後カラムで精製し、下記構造式で表されるビス-(2-ヒドロキシ-6,7-エピチオ-4-チアヘプチル)スルフィド16g(0.04mol)を得た。
Figure JPOXMLDOC01-appb-C000011
 H-NMR(CDCl):2.0ppm(2H)、2.2-2.7ppm(18H)、3.8ppm(2H)
 13C-NMR(CDCl):26ppm(2C)、33ppm(4C)、44ppm(2C)、45ppm(2C)、77ppm(2C)
Example 1
19.5 g (0.2 mol) of epichlorohydrin, 30 g of water, 5 g of methanol, and 0.2 g of 32% aqueous sodium hydroxide solution were placed in a 1 L flask, and 1,7-dimercapto obtained in the above synthesis example while stirring. -2,6-dihydroxy-4-thiaheptane (21.4 g, 0.1 mol) was added dropwise while maintaining the liquid temperature at 5 to 15 ° C. to give bis- (2,6-dihydroxy-7-chloro-4-thiaheptyl) sulfide. Obtained.
After adding 100 g of water, 25 g of a 32% aqueous sodium hydroxide solution was added dropwise while maintaining the temperature at 0 to 10 ° C. Thereafter, 100 g of methyl isobutyl ketone was added for extraction, and the resulting organic layer was washed with 1% acetic acid and then with water, the solvent was distilled off, and then purified with a column to obtain bis- (2-hydroxy-6,7 -Epoxy-4-thiaheptyl) sulfide (20 g, 0.06 mol) was obtained.
Thereafter, 200 ml of toluene, 200 ml of methanol, 0.2 g of acetic anhydride, and 19 g of thiourea were added and reacted at 40 ° C. for 10 hours. After completion of the reaction, water was added for washing, and the resulting organic layer was washed with 10% sulfuric acid and then with water, the solvent was distilled off, and then purified with a column, and bis- (2- 16 g (0.04 mol) of hydroxy-6,7-epithio-4-thiaheptyl) sulfide was obtained.
Figure JPOXMLDOC01-appb-C000011
1 H-NMR (CDCl 3 ): 2.0 ppm (2H), 2.2-2.7 ppm (18H), 3.8 ppm (2H)
13 C-NMR (CDCl 3 ): 26 ppm (2C), 33 ppm (4C), 44 ppm (2C), 45 ppm (2C), 77 ppm (2C)
実施例2
 合成例で得られた1,7-ジメルカプト-2,6-ジヒドロキシ-4-チアヘプタン15g(0.07mol)、3-メルカプト-1,2-プロピレンスルフィド15g(0.14mol)、トルエン100mL、メタノール100mL、及びヨウ化カリウム23.2g(0.14mol)を1Lフラスコに加えた。内温を-20℃で保ちながら撹拌したところに、ヨウ素固体35.6g(0.14mol)を分割装入し4時間熟成した。反応終了後、トルエン100mLを追加して有機層を取り出し濾過後、食塩水、1%硫酸、食塩水で洗浄を行った。得られた有機層を無水硫酸マグネシウムで脱水後濾過し、得られた濾液の溶媒を留去した。その後、カラムで精製することで下記構造式で表されるビス-(2-ヒドロキシ-7,8-エピチオ-4,5-ジチアオクチル)スルフィド11.4g(0.03mol)得た。
Figure JPOXMLDOC01-appb-C000012
 H-NMR(CDCl):2.0ppm(2H)、2.2-3.0ppm(18H)、3.8ppm(2H)
 13C-NMR(CDCl):24ppm(2C)、33ppm(4C)、45ppm(2C)、46ppm(2C)、78ppm(2C)
Example 2
1,7-dimercapto-2,6-dihydroxy-4-thiaheptane 15 g (0.07 mol), 3-mercapto-1,2-propylene sulfide 15 g (0.14 mol) obtained in the synthesis example, toluene 100 mL, methanol 100 mL And 23.2 g (0.14 mol) of potassium iodide were added to the 1 L flask. While stirring while maintaining the internal temperature at −20 ° C., 35.6 g (0.14 mol) of iodine solid was charged in portions and aged for 4 hours. After completion of the reaction, 100 mL of toluene was added, the organic layer was taken out, filtered, and washed with brine, 1% sulfuric acid, and brine. The obtained organic layer was dehydrated over anhydrous magnesium sulfate and filtered, and the solvent of the obtained filtrate was distilled off. Thereafter, purification with a column yielded 11.4 g (0.03 mol) of bis- (2-hydroxy-7,8-epithio-4,5-dithiaoctyl) sulfide represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000012
1 H-NMR (CDCl 3 ): 2.0 ppm (2H), 2.2-3.0 ppm (18H), 3.8 ppm (2H)
13 C-NMR (CDCl 3 ): 24 ppm (2C), 33 ppm (4C), 45 ppm (2C), 46 ppm (2C), 78 ppm (2C)
実施例3
 上記式(2)で表されるエピスルフィド化合物としてビス(β-エピチオプロピル)スルフィド(以下、「b-1化合物」)に、上記式(1)で表されるエピスルフィド化合物として実施例1で得られたビス-(2-ヒドロキシ-6,7-エピチオ-4-チアヘプチル)-スルフィド(以下、「a-1化合物」)を添加し、a-1化合物を0.001質量%含む組成物を得た。得られた組成物79.0質量部、硫黄0.5質量部、及び紫外線吸収剤として2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕(共同薬品株式会社製、商品名バイオソーブ583)0.9質量部を30℃、一時間混合し、均一にして第一液を得た。その後に、第一液について10℃まで冷却を行った。ペンタエリスリトールテトラキスメルカプトプロピオネート6.6質量部、テトラ-n-ブチルホスホニウムブロマイド0.08質量部、及びジブチルスズジクロライド0.01質量部を20℃の混合温度でよく混合し、均一とした後、第一液に加え、15℃の混合温度で30分撹拌し、均一にして第二液を得た。離型剤のゼレックUN(Stepan社製)0.01質量部、及びm-キシリレンジイソシアネート7.1質量部を20℃でよく混合し、均一とした後、第二液に加え、得られた混合物について15℃の反応温度、0.27kPaの真空度で2.5時間脱気および撹拌を行い、混合物を反応させ、反応混合物を得た。ビス(2-メルカプトエチル)スルフィドを6.8質量部、反応フラスコ中の反応混合物に加え、15℃で30分、0.27kPaの真空度で脱気および撹拌を行い、光学材料用組成物を得た。得られた光学材料用組成物を2枚のガラス板とテープから構成されるモールドに注入し、30℃で30時間保持し、100℃まで10時間かけて昇温させ、最後に100℃で1時間保持し、重合硬化させた。放冷後、モールドから離型し、110℃で60分アニール処理を行った。モールドからの離型性やハガレ、染色性の評価結果を表1にまとめた。
Example 3
As the episulfide compound represented by the above formula (2), bis (β-epithiopropyl) sulfide (hereinafter referred to as “b-1 compound”) was obtained in Example 1 as the episulfide compound represented by the above formula (1). The obtained bis- (2-hydroxy-6,7-epithio-4-thiaheptyl) -sulfide (hereinafter referred to as “a-1 compound”) was added to obtain a composition containing 0.001% by mass of the a-1 compound. It was. 79.0 parts by mass of the obtained composition, 0.5 part by mass of sulfur, and 2,2-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H- Benzotriazol-2-yl) phenol] (trade name Biosorb 583, manufactured by Kyodo Yakuhin Co., Ltd.) 0.9 parts by mass was mixed at 30 ° C. for 1 hour to obtain a first solution. Thereafter, the first liquid was cooled to 10 ° C. After thoroughly mixing 6.6 parts by mass of pentaerythritol tetrakismercaptopropionate, 0.08 parts by mass of tetra-n-butylphosphonium bromide, and 0.01 parts by mass of dibutyltin dichloride at a mixing temperature of 20 ° C. and uniforming, In addition to the first liquid, the mixture was stirred for 30 minutes at a mixing temperature of 15 ° C. to obtain a second liquid that was uniform. A release agent Zelec UN (manufactured by Stepan) 0.01 parts by mass and m-xylylene diisocyanate 7.1 parts by mass were mixed well at 20 ° C., and the mixture was homogenized and added to the second liquid. The mixture was degassed and stirred for 2.5 hours at a reaction temperature of 15 ° C. and a vacuum of 0.27 kPa, and the mixture was reacted to obtain a reaction mixture. 6.8 parts by mass of bis (2-mercaptoethyl) sulfide was added to the reaction mixture in the reaction flask, degassed and stirred at 15 ° C. for 30 minutes and at a vacuum of 0.27 kPa to obtain a composition for optical materials. Obtained. The obtained composition for optical material was poured into a mold composed of two glass plates and a tape, held at 30 ° C. for 30 hours, heated to 100 ° C. over 10 hours, and finally at 100 ° C. for 1 hour. It was held for a time and polymerized and cured. After cooling, the mold was released from the mold and annealed at 110 ° C. for 60 minutes. Table 1 summarizes the evaluation results of releasability from the mold, peeling, and dyeability.
実施例4~9、比較例1
 a-1化合物(式(1)の化合物)の添加量以外は実施例3に従って光学材料を得た。それらの評価結果を表1にまとめた。
Examples 4 to 9, Comparative Example 1
An optical material was obtained according to Example 3 except for the addition amount of the a-1 compound (compound of formula (1)). The evaluation results are summarized in Table 1.
実施例10
 上記式(2)で表されるエピスルフィド化合物としてビス(β-エピチオプロピル)ジスルフィド(以下、「b-2化合物」)に、上記式(1)で表されるエピスルフィド化合物として実施例2で得られたビス-(2-ヒドロキシ-7,8-エピチオ-4,5-ジチアオクチル)-スルフィド(以下、「a-2化合物」)を添加し、a-2化合物を0.001質量%含む組成物を得た。得られた組成物79.0質量部、硫黄0.5質量部、及び紫外線吸収剤として2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕(共同薬品株式会社製、商品名バイオソーブ583)0.9質量部を30℃、一時間混合し、均一にして第一液を得た。その後に、第一液について10℃まで冷却を行った。ペンタエリスリトールテトラキスメルカプトプロピオネート6.6質量部、テトラ-n-ブチルホスホニウムブロマイド0.08質量部、及びジブチルスズジクロライド0.01質量部を20℃の混合温度でよく混合し、均一とした後、第一液に加え、15℃の混合温度で30分撹拌し、均一にして第二液を得た。離型剤のゼレックUN(Stepan社製)0.01質量部、及びm-キシリレンジイソシアネート7.1質量部を20℃でよく混合し、均一とした後、第二液に加え、得られた混合物について15℃の反応温度、0.27kPaの真空度で2.5時間脱気および撹拌を行い、混合物を反応させ、反応混合物を得た。ビス(2-メルカプトエチル)スルフィドを6.8質量部、反応フラスコ中の反応混合物に加え、15℃で30分、0.27kPaの真空度で脱気および撹拌を行い、光学材料用組成物を得た。得られた光学材料用組成物を2枚のガラス板とテープから構成されるモールドに注入し、30℃で30時間保持し、100℃まで10時間かけて昇温させ、最後に100℃で1時間保持し、重合硬化させた。放冷後、モールドから離型し、110℃で60分アニール処理を行った。モールドからの離型性やハガレ、染色性の評価を表1にまとめた。
Example 10
As the episulfide compound represented by the above formula (2), bis (β-epithiopropyl) disulfide (hereinafter referred to as “b-2 compound”) was obtained as the episulfide compound represented by the above formula (1) in Example 2. And a bis- (2-hydroxy-7,8-epithio-4,5-dithiaoctyl) -sulfide (hereinafter referred to as “a-2 compound”) added, and a composition containing 0.001% by mass of the a-2 compound Got. 79.0 parts by mass of the obtained composition, 0.5 part by mass of sulfur, and 2,2-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H- Benzotriazol-2-yl) phenol] (trade name Biosorb 583, manufactured by Kyodo Yakuhin Co., Ltd.) 0.9 parts by mass was mixed at 30 ° C. for 1 hour to obtain a first solution. Thereafter, the first liquid was cooled to 10 ° C. After thoroughly mixing 6.6 parts by mass of pentaerythritol tetrakismercaptopropionate, 0.08 parts by mass of tetra-n-butylphosphonium bromide, and 0.01 parts by mass of dibutyltin dichloride at a mixing temperature of 20 ° C. and uniforming, In addition to the first liquid, the mixture was stirred for 30 minutes at a mixing temperature of 15 ° C. to obtain a second liquid that was uniform. A release agent Zelec UN (manufactured by Stepan) 0.01 parts by mass and m-xylylene diisocyanate 7.1 parts by mass were mixed well at 20 ° C., and the mixture was homogenized and added to the second liquid. The mixture was degassed and stirred for 2.5 hours at a reaction temperature of 15 ° C. and a vacuum of 0.27 kPa, and the mixture was reacted to obtain a reaction mixture. 6.8 parts by mass of bis (2-mercaptoethyl) sulfide was added to the reaction mixture in the reaction flask, degassed and stirred at 15 ° C. for 30 minutes and at a vacuum of 0.27 kPa to obtain a composition for optical materials. Obtained. The obtained composition for optical material was poured into a mold composed of two glass plates and a tape, held at 30 ° C. for 30 hours, heated to 100 ° C. over 10 hours, and finally at 100 ° C. for 1 hour. It was held for a time and polymerized and cured. After cooling, the mold was released from the mold and annealed at 110 ° C. for 60 minutes. Table 1 summarizes the evaluation of releasability, peeling, and dyeability from the mold.
実施例11~16、比較例2
 a-2化合物(式(1)の化合物)の添加量以外は実施例10に従って光学材料を得た。それらの評価結果を表1にまとめた。
Examples 11 to 16, Comparative Example 2
An optical material was obtained according to Example 10 except for the addition amount of the a-2 compound (compound of formula (1)). The evaluation results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1からわかるように、実施例3~8及び10~15は、ハガレ、離型性、及び染色性のすべてにおいて合格レベルの評価であった。一方、実施例9及び16は、ハガレや染色性は良いものの、離型性が良くなかった。式(1)で表されるエピスルフィド化合物を含まない比較例1及び2は、離型性は良いものの、ハガレや染色性の評価が悪かった。 As can be seen from Table 1, Examples 3 to 8 and 10 to 15 were evaluated to pass levels in all of peeling, releasability, and dyeability. On the other hand, Examples 9 and 16 were good in peeling and dyeing properties, but were not good in releasability. Comparative Examples 1 and 2 that do not contain the episulfide compound represented by the formula (1) had poor release properties but poor evaluation of peeling and dyeability.

Claims (12)

  1.  下記式(1)で表されるエピスルフィド化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、m、pは0~4の整数、n、qは0~2の整数を示す。)
    An episulfide compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, m and p are integers of 0 to 4, and n and q are integers of 0 to 2.)
  2.  請求項1に記載の式(1)で表されるエピスルフィド化合物と下記式(2)で表されるエピスルフィド化合物とを含む光学材料用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは0~4の整数、nは0~2の整数を示す。)
    The composition for optical materials containing the episulfide compound represented by Formula (1) of Claim 1 and the episulfide compound represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
  3.  前記式(1)で表されるエピスルフィド化合物の含有量が0.001~5.0質量%である、請求項2に記載の光学材料用組成物。 The composition for optical materials according to claim 2, wherein the content of the episulfide compound represented by the formula (1) is 0.001 to 5.0 mass%.
  4.  前記式(2)で表されるエピスルフィド化合物の含有量が40~99.999質量%である、請求項2または3に記載の光学材料用組成物。 The composition for optical materials according to claim 2 or 3, wherein the content of the episulfide compound represented by the formula (2) is 40 to 99.999 mass%.
  5.  さらにポリチオールを含む請求項2から4のいずれかに記載の光学材料用組成物。 Furthermore, the composition for optical materials in any one of Claim 2 to 4 containing a polythiol.
  6.  さらに硫黄を含む請求項2から5のいずれかに記載の光学材料用組成物。 The composition for optical materials according to any one of claims 2 to 5, further comprising sulfur.
  7.  さらにポリイソシアネートを含む請求項5または6に記載の光学材料用組成物。 Furthermore, the composition for optical materials of Claim 5 or 6 containing polyisocyanate.
  8.  請求項2から7のいずれかに記載の光学材料用組成物と、該光学材料用組成物の総量に対して0.0001質量%~10質量%の重合触媒とを含む重合硬化性組成物。 A polymerization curable composition comprising the optical material composition according to any one of claims 2 to 7 and 0.0001 mass% to 10 mass% of a polymerization catalyst based on a total amount of the optical material composition.
  9.  請求項2から7のいずれかに記載の光学材料用組成物または請求項8に記載の重合硬化性組成物を硬化した光学材料。 An optical material obtained by curing the composition for an optical material according to any one of claims 2 to 7 or the polymerization curable composition according to claim 8.
  10.  請求項9に記載の光学材料を含む光学レンズ。 An optical lens comprising the optical material according to claim 9.
  11.  請求項2から7のいずれかに記載の光学材料用組成物の総量に対して、重合触媒を0.0001質量%~10質量%添加し、重合硬化する工程を含む、光学材料の製造方法。 A method for producing an optical material, comprising a step of adding 0.0001% by mass to 10% by mass of a polymerization catalyst with respect to the total amount of the composition for an optical material according to any one of claims 2 to 7, followed by polymerization and curing.
  12.  式(2)で表されるエピスルフィド化合物と硫黄を予め一部重合反応させた後に重合硬化させる、請求項11に記載の光学材料の製造方法。 The method for producing an optical material according to claim 11, wherein the episulfide compound represented by the formula (2) and sulfur are partially polymerized in advance and then polymerized and cured.
PCT/JP2016/056154 2015-03-31 2016-03-01 Novel episulfide compound and optical material composition containing same WO2016158157A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16772041.6A EP3208268B1 (en) 2015-03-31 2016-03-01 Novel episulfide compound and optical material composition containing same
US15/521,723 US10065940B2 (en) 2015-03-31 2016-03-01 Episulfide compound and optical material composition containing same
BR112017011529-8A BR112017011529B1 (en) 2015-03-31 2016-03-01 EPISSULPHIDE COMPOUND, COMPOSITION FOR OPTICAL MATERIALS, POLYMERIZABLE AND CURABLE COMPOSITION, OPTICAL MATERIAL, OPTICAL LENS, AND METHOD FOR THE PRODUCTION OF AN OPTICAL MATERIAL
JP2017509421A JP6245408B2 (en) 2015-03-31 2016-03-01 Novel episulfide compound and composition for optical material containing the same
CN201680011627.4A CN107250125B (en) 2015-03-31 2016-03-01 Novel episulfide compounds and the composition for optical material comprising it
KR1020187015401A KR102482153B1 (en) 2015-03-31 2016-03-01 Novel episulfide compound and optical material composition containing same
KR1020177013553A KR20170066660A (en) 2015-03-31 2016-03-01 Novel episulfide compound and optical material composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-072688 2015-03-31
JP2015072688 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158157A1 true WO2016158157A1 (en) 2016-10-06

Family

ID=57004445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056154 WO2016158157A1 (en) 2015-03-31 2016-03-01 Novel episulfide compound and optical material composition containing same

Country Status (8)

Country Link
US (1) US10065940B2 (en)
EP (1) EP3208268B1 (en)
JP (1) JP6245408B2 (en)
KR (2) KR20170066660A (en)
CN (1) CN107250125B (en)
BR (1) BR112017011529B1 (en)
TW (1) TWI632141B (en)
WO (1) WO2016158157A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154690A (en) * 2017-03-16 2018-10-04 三菱瓦斯化学株式会社 Novel episulfide compound having hydroxy group and method for producing the same
WO2020003999A1 (en) * 2018-06-29 2020-01-02 三菱瓦斯化学株式会社 Method for producing polyfunctional sulfur-containing epoxy compound

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025519A (en) * 2018-08-30 2020-03-10 주식회사 케이오씨솔루션 Stabilizer for thioepoxy based optical material having high refractive index, composition for optical material comprising it and method of preparing the optical material
KR20200025927A (en) * 2018-08-31 2020-03-10 주식회사 케이오씨솔루션 Stabilizer for thioepoxy based optical material having high refractive index, composition for optical material comprising it and method of preparing the optical material
KR20210105219A (en) * 2020-02-18 2021-08-26 주식회사 케이오씨솔루션 Methods for Manufacturing Episulfide Compounds for Optical Materials, Compositions for Optical Materials Containing the Same, and High Refractive Optical Materials
CN113278149A (en) * 2020-02-19 2021-08-20 株式会社大赛璐 Process for producing polythioether compound
CN113088067B (en) * 2021-04-30 2023-02-17 江苏可奥熙光学材料科技有限公司 High-refraction episulfide modified resin and preparation method thereof
CN114605639B (en) * 2022-03-08 2023-06-02 益丰新材料股份有限公司 Cyclothio compound composition and optical material thereof
CN116478124B (en) * 2023-03-31 2023-12-01 益丰新材料股份有限公司 Novel episulfide compound and optical material composition thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083763A1 (en) * 2001-04-06 2002-10-24 Mitsubishi Gas Chemical Company, Inc. Polymerization regulators and compositions for resin
JP2003226718A (en) * 2002-02-07 2003-08-12 Mitsubishi Gas Chem Co Inc Photo-curing composition of high refractive index and its cured substance
JP2004027203A (en) * 2002-05-10 2004-01-29 Mitsui Chemicals Inc Polymerizable composition and manufacturing process of optical resin comprising it
JP2005272418A (en) * 2004-03-26 2005-10-06 Mitsui Chemicals Inc Stabilizer for episulfide compound
KR20090088240A (en) * 2008-02-14 2009-08-19 연세대학교 산학협력단 Photopolymer composition and law shrinkage photopolymer film prepared therefrom
WO2009101867A1 (en) * 2008-02-13 2009-08-20 Mitsubishi Gas Chemical Company, Inc. Composition for resin and optical lens obtained therefrom
CN101630210A (en) * 2009-08-17 2010-01-20 友达光电股份有限公司 Touch-sensitive display panel, composition for forming sealant and sealant
WO2013157490A1 (en) * 2012-04-16 2013-10-24 三菱瓦斯化学株式会社 Method for producing sulfur-containing epoxy compound

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491660B2 (en) 1995-08-16 2004-01-26 三菱瓦斯化学株式会社 Novel linear alkyl sulfide type episulfide compound
JP3465528B2 (en) 1997-04-22 2003-11-10 三菱瓦斯化学株式会社 New resin for optical materials
JP3738817B2 (en) 1999-04-23 2006-01-25 三菱瓦斯化学株式会社 Composition for optical materials
JP2001131257A (en) 1999-11-09 2001-05-15 Mitsubishi Gas Chem Co Inc Composition for resin
JP3366605B2 (en) * 1999-12-09 2003-01-14 三井化学株式会社 New episulfide compounds
JP3562579B2 (en) 2000-10-13 2004-09-08 三菱瓦斯化学株式会社 Composition for optical materials
US6872333B2 (en) 2002-02-07 2005-03-29 Mitsubishi Gas Chemical Company, Ltd. Enic compounds, sulfur-containing polyenic compound, sulfur-containing polythiol compound, high refractive index photocurable composition and cured product thereof
JP3718189B2 (en) * 2002-07-19 2005-11-16 三井化学株式会社 Polymerizable composition containing novel episulfide compound, resin and lens comprising the polymerizable composition
KR101354344B1 (en) * 2005-05-19 2014-01-22 미츠비시 가스 가가쿠 가부시키가이샤 Curable composition
TWI601720B (en) 2013-03-14 2017-10-11 三菱瓦斯化學股份有限公司 Novel episulfide and optical material compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083763A1 (en) * 2001-04-06 2002-10-24 Mitsubishi Gas Chemical Company, Inc. Polymerization regulators and compositions for resin
JP2003226718A (en) * 2002-02-07 2003-08-12 Mitsubishi Gas Chem Co Inc Photo-curing composition of high refractive index and its cured substance
JP2004027203A (en) * 2002-05-10 2004-01-29 Mitsui Chemicals Inc Polymerizable composition and manufacturing process of optical resin comprising it
JP2005272418A (en) * 2004-03-26 2005-10-06 Mitsui Chemicals Inc Stabilizer for episulfide compound
WO2009101867A1 (en) * 2008-02-13 2009-08-20 Mitsubishi Gas Chemical Company, Inc. Composition for resin and optical lens obtained therefrom
KR20090088240A (en) * 2008-02-14 2009-08-19 연세대학교 산학협력단 Photopolymer composition and law shrinkage photopolymer film prepared therefrom
CN101630210A (en) * 2009-08-17 2010-01-20 友达光电股份有限公司 Touch-sensitive display panel, composition for forming sealant and sealant
WO2013157490A1 (en) * 2012-04-16 2013-10-24 三菱瓦斯化学株式会社 Method for producing sulfur-containing epoxy compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208268A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154690A (en) * 2017-03-16 2018-10-04 三菱瓦斯化学株式会社 Novel episulfide compound having hydroxy group and method for producing the same
WO2020003999A1 (en) * 2018-06-29 2020-01-02 三菱瓦斯化学株式会社 Method for producing polyfunctional sulfur-containing epoxy compound
JPWO2020003999A1 (en) * 2018-06-29 2021-07-08 三菱瓦斯化学株式会社 Method for Producing Polyfunctional Sulfur-Containing Epoxy Compound
US11377433B2 (en) 2018-06-29 2022-07-05 Mitsubishi Gas Chemical Company, Inc. Method for producing polyfunctional sulfur-containing epoxy compound
JP7375752B2 (en) 2018-06-29 2023-11-08 三菱瓦斯化学株式会社 Method for producing polyfunctional sulfur-containing epoxy compound

Also Published As

Publication number Publication date
TW201641498A (en) 2016-12-01
KR20170066660A (en) 2017-06-14
EP3208268A1 (en) 2017-08-23
CN107250125A (en) 2017-10-13
EP3208268B1 (en) 2018-06-27
TWI632141B (en) 2018-08-11
JP6245408B2 (en) 2017-12-13
KR20180061429A (en) 2018-06-07
US20170247351A1 (en) 2017-08-31
JPWO2016158157A1 (en) 2017-08-31
CN107250125B (en) 2018-07-13
EP3208268A4 (en) 2017-12-20
KR102482153B1 (en) 2022-12-29
BR112017011529A2 (en) 2018-02-27
BR112017011529B1 (en) 2021-08-24
US10065940B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
JP5773100B2 (en) Novel episulfide compound and composition for optical material
JP6245408B2 (en) Novel episulfide compound and composition for optical material containing the same
JP5505573B1 (en) Composition for optical material and method for producing the same
JP6172414B2 (en) Novel episulfide compound and optical material composition containing the same
JP6187723B2 (en) Novel cyclic compound and composition for optical material containing the same
JP6187722B2 (en) Novel sulfur compound and composition for optical material containing the same
JP5975196B1 (en) Composition for optical material and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15521723

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016772041

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177013553

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011529

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017011529

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170531