WO2016158025A1 - Cross-sectional area measuring device for tensile testing object - Google Patents

Cross-sectional area measuring device for tensile testing object Download PDF

Info

Publication number
WO2016158025A1
WO2016158025A1 PCT/JP2016/054043 JP2016054043W WO2016158025A1 WO 2016158025 A1 WO2016158025 A1 WO 2016158025A1 JP 2016054043 W JP2016054043 W JP 2016054043W WO 2016158025 A1 WO2016158025 A1 WO 2016158025A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
test object
sectional area
distance
distance sensor
Prior art date
Application number
PCT/JP2016/054043
Other languages
French (fr)
Japanese (ja)
Inventor
岩▲崎▼ 清隆
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Publication of WO2016158025A1 publication Critical patent/WO2016158025A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Definitions

  • the present invention relates to a cross-sectional area measuring apparatus for a tensile test object, and more particularly to a cross-sectional area measuring apparatus for a tensile test object for measuring the cross-sectional area of the test object in a state set in a tensile tester. .
  • the anterior cruciate ligament inside the knee joint is a tissue that connects the femur and the tibia so that the knee joint movement can be performed stably. If this anterior cruciate ligament is damaged, there is currently no excellent artificial ligament, so an anterior cruciate ligament reconstruction that uses a healthy self-tendon collected from a part of your body to reconstruct the anterior cruciate ligament Has been done. On the other hand, new artificial ligaments made of biological tissue collected from animals have been researched and developed so that damaged knee anterior cruciate ligaments can be reconstructed without collecting autologous tendons from their bodies. In producing the artificial ligament, it is necessary to acellularize the collected animal tissue using a technique such as Patent Document 1.
  • the cross-sectional area of each test object must be regarded as a perfect circle, ellipse, square, etc., and the cross-sectional area of the test object must be obtained. There will be a difference. Further, the cross-sectional area of the test object that changes with time during the tensile test cannot be measured, and the true stress of the test object used as the evaluation of the mechanical characteristics cannot be obtained.
  • the present invention has been devised in order to solve such problems.
  • the purpose of the present invention is to non-contact the cross-sectional area that changes during a tensile test over time for a test object set in a tensile tester.
  • An object of the present invention is to provide an apparatus for measuring a cross-sectional area of a tensile test object that can be measured by the above method.
  • the present invention is mainly attached to a tensile testing machine in which a test object to be subjected to a tensile test is set, and measures a cross-sectional area for measuring a cross-sectional area of the test object during the tensile test.
  • a distance measuring means for obtaining an internal distance, which is a distance from a reference point located at the center of the cross-sectional area, at a plurality of positions of a peripheral portion in a predetermined cross-sectional area of the test object;
  • Data processing means for obtaining an area of the cross-sectional area based on each internal distance obtained by the means, and in the data processing means, the test object is set in the tensile tester and is subjected to a tensile test.
  • a configuration is adopted in which the area of the cross-sectional area to be deformed is obtained over time.
  • the area of the predetermined cross-sectional area of the test object remains in non-contact with the test object in the tensile test as well as before and after the tensile test with the test object set in the tensile tester. Can be determined over time. Therefore, even if the shape of the test object is not uniform, it is possible to measure a cross-sectional area closer to the true value while performing a tensile test, and to determine the area of the cross-sectional area deformed by the tensile test over time. Various evaluation values depending on the cross-sectional area for evaluating the mechanical properties of the test object such as true stress can be obtained more accurately.
  • (A), (B), (C) is a conceptual diagram for demonstrating the measurement principle of the cross-sectional area of a test object.
  • FIG. 1 is a conceptual diagram showing the configuration of the cross-sectional area measuring apparatus according to the present embodiment
  • FIG. 2 is a conceptual view in plan view for explaining the principle of measuring the cross-sectional area of the test object. It is shown.
  • the cross-sectional area measuring apparatus 10 is attached to a known tensile tester 11 that sets a predetermined test object T such as a living tissue and performs a tensile test.
  • a known tensile tester 11 that sets a predetermined test object T such as a living tissue and performs a tensile test.
  • This is a device that measures the cross-sectional area of the test object T over time in a non-contact state with the test object T at the time.
  • Data processing means 14 for obtaining the area of the cross-sectional area A based on the obtained data of each internal distance Rn is provided.
  • the distance measuring means 13 is disposed outside the test object T and is capable of measuring an external distance Ln (see FIG. 2), which is a distance from the surface portion of the test object T, and the test object
  • Ln an external distance from the surface portion of the test object T
  • the distance sensor moving mechanism 17 that moves the distance sensor 16 with respect to T
  • the recording unit 18 that records the measurement value of the distance sensor 16 at a certain timing
  • a calculation unit 19 for calculating each internal distance Rn is provided.
  • a laser displacement meter that irradiates the test object T with laser light and can measure the distance from the test object T based on the state of reflected light from the test object T is used. .
  • various sensors can be adopted as long as the distance from the surface portion of the test object T can be measured.
  • the distance sensor moving mechanism 17 is attached to the lower side of the tensile testing machine 11 and arranged so as to surround the periphery thereof, and is provided so as to be movable along the guide rail 21.
  • the guide rail 21 has a perfect ring shape, and is arranged so that the center thereof coincides with the center of the jig that holds the test object T set on the tensile tester 11.
  • the stage 22 is engaged with the guide rail 21 via a gear (not shown) or the like, and has a structure that can move along the guide rail 21 by rotating the gear with the power of the motor 23. With this structure, the distance sensor 16 supported by the stage 22 rotates around the center line of the test object T along a tensile direction (hereinafter, referred to as “vertical direction”) at the time of a tensile test with a constant rotation radius r. It becomes possible.
  • the stage 22 includes a vertical movement mechanism capable of moving the distance sensor 16 in the vertical direction, and a radial movement mechanism capable of moving the distance sensor 16 in the radial direction so as to be separated from and close to the test object T. Yes.
  • the position of the distance sensor 16 can be adjusted in the vertical direction and the radial direction.
  • the vertical position adjustment of the distance sensor 16 is performed, for example, when the position of the cross-sectional area A of the test object T to be measured for the cross-sectional area is changed, and the radial position adjustment of the distance sensor 16 is performed. For example, it is performed according to the difference in the specification of the distance sensor 16 and the thickness of the test object T.
  • the angle sensor 25 is provided such that when the stage 22 rotates along the guide rail 21, the angular position of the stage 22 relative to the reference position can be measured with a predetermined position of the guide rail 21 as a reference position.
  • an encoder is used in the present embodiment. Therefore, the rotation value of the distance sensor 16 supported by the stage 22 with respect to the reference position is specified by the measurement value of the angle sensor 25.
  • the distance sensor moving mechanism 17 if the distance sensor 16 is configured to be able to rotate around the test object T with a constant rotation radius r around the reference point O of the cross-sectional area A, The configuration is not limited to that described above.
  • the recording unit 18 stores the external distance Ln that is a measurement value of the distance sensor 16 as follows, that is, is fixed to the stage 22 so that the distance sensor 16 cannot move vertically and radially. From this state, the distance sensor 16 makes one rotation around the test object T along the guide rail 21. At that time, for each position of the distance sensor 16 where the displacement angle ⁇ of the rotation angle of the distance sensor 16 is constant based on the measurement value of the angle sensor 25, the distance from the surface portion of the test object T measured by the distance sensor 16 is calculated. The shortest separation distance is recorded as the external distance Ln.
  • each position of the surface portion of the test object T that has the shortest separation distance from the distance sensor 16 is positioned on the periphery of the cross-sectional area A for which the cross-sectional area is obtained.
  • the displacement angle ⁇ is set to 1 degree.
  • the external distance Ln can be measured for each constant displacement angle ⁇ .
  • the external distance Ln may be measured by the distance sensor 16 at regular intervals using a timer or the like that is not used. In this case, the angle sensor 25 is omitted, or the measurement value from the angle sensor 25 is not used. May be.
  • the calculation unit 19 subtracts the external distance Ln at each position Pn of the peripheral portion of the cross-sectional area A measured by the distance sensor 16 from the constant rotation radius r, thereby allowing the internal distance Rn at each position Pn of the peripheral portion. Is calculated. That is, as described above, the reference point O, which is the center of the cross-sectional area A of the test object T, and the center of the guide rail 21 coincide with each other in plan view, and the guide rail 21 has a perfect circle shape.
  • the rotation radius r of the distance sensor 16 that rotates and moves along the guide rail 21 is constant regardless of the position of the distance sensor 16 on the guide rail 21, and the rotation radius r is stored in advance.
  • the external distance Ln that is a measurement value of the distance sensor 16 at each of the positions Pn at equal intervals, that is, the distance between each position Pn of the surface portion of the test object T and the distance sensor 16. Is subtracted from the constant rotation radius r, the internal distance Rn at each position Pn of the peripheral portion of the cross-sectional area A is obtained.
  • the distance measuring means 13 is not limited to the above-described configuration, and an internal distance that is a distance from the reference point O for a plurality of positions Pn on the periphery in the cross-sectional area A of the test object T. As long as Rn can be obtained, various configurations and structures can be employed.
  • the data processing means 14 divides the cross-sectional area A into a sector shape having a displacement angle ⁇ with the reference point O as a vertex, as shown in FIG.
  • the area is obtained by triangular approximation, and the areas of the divided portions are added to obtain the area of the cross-sectional area A. That is, the internal distances Rn ⁇ 1, Rn at the positions Pn ⁇ 1, Pn of the two neighboring edges and the angle formed by the line segment connecting the positions Pn ⁇ 1, Pn at this time with the reference point O, respectively.
  • the area of a triangle having the vertices at the positions Pn ⁇ 1, Pn and the reference point O is obtained, and the area of the triangle is obtained over the entire area of the cross-sectional area A and added. The area is calculated.
  • the area S in the cross-sectional area A of the test object T is calculated from the internal distance Rn for each position Pn of the peripheral portion of the cross-sectional area A obtained by the calculation unit 19 and the displacement angle ⁇ by the following equation. Desired.
  • the evaluation value of the mechanical properties of the test object T depending on the cross-sectional area is obtained from the cross-sectional area of the test object T obtained and the tensile force by the tensile testing machine 11. It is also possible to provide a function for calculating. In this case, for example, the distance sensor 16 is continuously rotated around the test object T, and the true stress about the cross-sectional area of the test object T obtained every rotation of the distance sensor 16 can be calculated. . As a result, even when the cross-sectional area A of the test object T is deformed over time by the tensile test, the area of the cross-sectional area A can be measured while performing a tensile test without contact with the test object T. The true stress can be obtained over time from the value.
  • the distance sensor 16 is rotated once around the test object T and the area of the cross-sectional area A is obtained, the distance sensor 16 is moved up and down by the mechanism of the stage 22 described above, and then is returned to the stage 22 again. It is possible to obtain the cross-sectional area at other positions in the vertical direction of the test object T by rotating the distance sensor 16 once again after fixing.
  • the cross-sectional area measuring device 10 the vertical movement of the distance sensor 16 can be automated so that the minimum cross-sectional area of the test object T during the tensile test can be specified.
  • the present invention can be used as a cross-sectional area measuring apparatus capable of measuring a cross-sectional area in a state where a biological tissue such as a non-uniform ligament collected from an animal is set in a tensile tester.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The purpose of the present invention is to enable, for a testing object set in a tensile testing machine, contactless measurement over time of the cross-sectional area, which changes during tensile testing. The cross-sectional area measuring device 10 for a tensile testing object is provided with a distance measurement means 13 for finding each internal distance Rn, which is the distance from the origin point O positioned at the center of a predetermined cross-sectional region A of a testing object T to a plurality of positions Pn at the peripheral edge portion of the cross-sectional region A, and a data processing means 14 for finding the area of the cross-sectional region A on the basis of each internal distance Rn found by the distance measurement means 13. The area of the cross-sectional region A, which deforms by tensile testing, is found over time by the data processing means 14 with the testing object T set in a tensile testing machine 11.

Description

引張試験対象物の断面積測定装置Equipment for measuring the cross-sectional area of tensile test objects
 本発明は、引張試験対象物の断面積測定装置に係り、更に詳しくは、引張試験機にセットされた状態で試験対象物の断面積を測定するための引張試験対象物の断面積測定装置に関する。 The present invention relates to a cross-sectional area measuring apparatus for a tensile test object, and more particularly to a cross-sectional area measuring apparatus for a tensile test object for measuring the cross-sectional area of the test object in a state set in a tensile tester. .
 膝関節内部の膝前十字靭帯は、膝関節運動を安定して行えるように大腿骨と脛骨とを接続する組織である。この膝前十字靭帯が損傷した場合には、現状、優れた人工靭帯がないため、自分の身体の一部から採取した健常な自家腱を用いて膝前十字靭帯を再建する前十字靭帯再建術が行われている。その一方で、自家腱を自分の身体から採取することなく、損傷した膝前十字靭帯を再建できるように、動物から採取した生体由来組織等からなる新たな人工靭帯が研究開発されている。当該人工靭帯の作製に当たっては、特許文献1等の手法を用いて、採取した動物組織を無細胞化する必要がある。ところが、動物組織には、人工的に製造された材料と異なり個体差があることから、無細胞化した組織について、人体に移植可能な力学的特性を有しているかの評価が必要になる。当該力学的特性の評価の一つとしては、引張試験機を用いた引張試験に基づく評価がある。この引張試験は、特許文献2等に開示されているように、動物から採取した組織を切断、或いは、打ち抜き等により、JIS規格で定められたダンベル形状に試験片を加工して行うことが通常である。 The anterior cruciate ligament inside the knee joint is a tissue that connects the femur and the tibia so that the knee joint movement can be performed stably. If this anterior cruciate ligament is damaged, there is currently no excellent artificial ligament, so an anterior cruciate ligament reconstruction that uses a healthy self-tendon collected from a part of your body to reconstruct the anterior cruciate ligament Has been done. On the other hand, new artificial ligaments made of biological tissue collected from animals have been researched and developed so that damaged knee anterior cruciate ligaments can be reconstructed without collecting autologous tendons from their bodies. In producing the artificial ligament, it is necessary to acellularize the collected animal tissue using a technique such as Patent Document 1. However, since there are individual differences between artificially produced materials in animal tissues, it is necessary to evaluate whether the acellularized tissues have mechanical characteristics that can be transplanted into the human body. One of the evaluations of the mechanical properties is an evaluation based on a tensile test using a tensile tester. This tensile test is usually performed by processing a specimen into a dumbbell shape defined by JIS standard by cutting or punching a tissue collected from an animal as disclosed in Patent Document 2 and the like. It is.
特許第4444918号公報Japanese Patent No. 4444418 特開2014-149214号公報JP 2014-149214 A
 しかしながら、無細胞化した動物組織から作製した人工靭帯は、動物の個体差により、組織の状態が一定でないため、多数の人工靭帯の中から一部を抜き取って、ダンベル形状に加工した試験片で引張試験を行っても、他の人工靭帯の力学的特性の評価とは必ずしも一致しない。また、引張試験のために動物組織をダンベル形状に加工してしまうと、製品にならないため、無細胞化した後の動物組織の全数について引張試験を行うためには、無細胞化した動物組織をそのまま引張試験の対象物として用いることが求められる。ここで、前述の力学的特性の評価を行う際に、引張試験による試験対象物の経時的な応力変化を算出するには、試験対象物の断面積を特定する必要がある。ところが、無細胞化した動物組織をそのまま試験対象物として引張試験を行う場合、それぞれの試験対象物の形状が不均一であり、且つ、柔軟性があるため、引張試験前に行う試験対象物の外部の寸法計測だけでは、正確な断面積の算出は困難であり、応力測定等、試験対象物の断面積を用いた力学的特性の評価を正確に行うことができない。すなわち、引張試験前の初期段階において、それぞれの試験対象物の断面形状を真円状、楕円状、方形状等とみなして試験対象物の断面積を求めざるを得ず、真値とは大きな差が生じることになる。また、引張試験中に経時的に変化する試験対象物の断面積についても測定できず、前記力学的特性の評価として用いる試験対象物の真応力についても求めることができない。 However, artificial ligaments made from acellular animal tissue are not uniform because of the individual differences in the animals.Therefore, some of the artificial ligaments were extracted from many artificial ligaments and processed into dumbbell shapes. Even if a tensile test is performed, it does not necessarily coincide with the evaluation of mechanical properties of other artificial ligaments. In addition, if an animal tissue is processed into a dumbbell shape for a tensile test, it does not become a product. Therefore, in order to conduct a tensile test on the total number of animal tissues after acellularization, It is required to be used as it is as an object for a tensile test. Here, when evaluating the above-described mechanical characteristics, it is necessary to specify the cross-sectional area of the test object in order to calculate the stress change with time of the test object by the tensile test. However, when a tensile test is performed using an acellular animal tissue as it is as a test object, the shape of each test object is non-uniform and flexible. It is difficult to accurately calculate the cross-sectional area only by external dimension measurement, and it is impossible to accurately evaluate the mechanical characteristics using the cross-sectional area of the test object such as stress measurement. That is, in the initial stage before the tensile test, the cross-sectional area of each test object must be regarded as a perfect circle, ellipse, square, etc., and the cross-sectional area of the test object must be obtained. There will be a difference. Further, the cross-sectional area of the test object that changes with time during the tensile test cannot be measured, and the true stress of the test object used as the evaluation of the mechanical characteristics cannot be obtained.
 本発明は、このような課題を解決するために案出されたものであり、その目的は、引張試験機にセットされた試験対象物について、引張試験時に変化する断面積を経時的に非接触で計測することができる引張試験対象物の断面積測定装置を提供することにある。 The present invention has been devised in order to solve such problems. The purpose of the present invention is to non-contact the cross-sectional area that changes during a tensile test over time for a test object set in a tensile tester. An object of the present invention is to provide an apparatus for measuring a cross-sectional area of a tensile test object that can be measured by the above method.
 前記目的を達成するため、本発明は、主として、引張試験の対象となる試験対象物がセットされる引張試験機に付設され、引張試験時における前記試験対象物の断面積を測定する断面積測定装置であって、前記試験対象物の所定の断面領域における周縁部分の複数位置について、前記断面領域の中央に位置する基準点からの距離である内部距離をそれぞれ求める距離測定手段と、当該距離測定手段で求めた各内部距離に基づいて、前記断面領域の面積を求めるデータ処理手段とを備え、前記データ処理手段では、前記試験対象物が前記引張試験機にセットされた状態で、引張試験によって変形する前記断面領域の面積が経時的に求められる、という構成を採っている。 In order to achieve the above object, the present invention is mainly attached to a tensile testing machine in which a test object to be subjected to a tensile test is set, and measures a cross-sectional area for measuring a cross-sectional area of the test object during the tensile test. A distance measuring means for obtaining an internal distance, which is a distance from a reference point located at the center of the cross-sectional area, at a plurality of positions of a peripheral portion in a predetermined cross-sectional area of the test object; Data processing means for obtaining an area of the cross-sectional area based on each internal distance obtained by the means, and in the data processing means, the test object is set in the tensile tester and is subjected to a tensile test. A configuration is adopted in which the area of the cross-sectional area to be deformed is obtained over time.
 本発明によれば、試験対象物を引張試験機にセットした状態で、引張試験の前後はもとより、引張試験時において、試験対象物に非接触のまま、試験対象物の所定の断面領域の面積を経時的に求めることができる。従って、試験対象物の形状が不均一であっても、引張試験を行いながら、より真値に近い断面積を測定することが可能であり、しかも、引張試験によって変形する断面領域の面積を経時的に求めることができ、真応力等、試験対象物の力学的特性評価のための断面積に依拠する各種の評価値をより正確に求めることができる。 According to the present invention, the area of the predetermined cross-sectional area of the test object remains in non-contact with the test object in the tensile test as well as before and after the tensile test with the test object set in the tensile tester. Can be determined over time. Therefore, even if the shape of the test object is not uniform, it is possible to measure a cross-sectional area closer to the true value while performing a tensile test, and to determine the area of the cross-sectional area deformed by the tensile test over time. Various evaluation values depending on the cross-sectional area for evaluating the mechanical properties of the test object such as true stress can be obtained more accurately.
本実施形態に係る断面積測定装置の構成を表す概念図。The conceptual diagram showing the structure of the cross-sectional area measuring apparatus which concerns on this embodiment. (A)、(B)、(C)は、試験対象物の断面積の測定原理を説明するための概念図である。(A), (B), (C) is a conceptual diagram for demonstrating the measurement principle of the cross-sectional area of a test object.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1には、本実施形態に係る断面積測定装置の構成を表す概念図が示されており、図2には、試験対象物の断面積の測定原理を説明するための平面視の概念図が示されている。 FIG. 1 is a conceptual diagram showing the configuration of the cross-sectional area measuring apparatus according to the present embodiment, and FIG. 2 is a conceptual view in plan view for explaining the principle of measuring the cross-sectional area of the test object. It is shown.
 前記断面積測定装置10は、図1に示されるように、生体組織等の所定の試験対象物Tをセットして引張試験を行う公知の引張試験機11に付設されるものであり、引張試験時の試験対象物Tに非接触の状態で、試験対象物Tの断面積を経時的に測定する装置である。 As shown in FIG. 1, the cross-sectional area measuring apparatus 10 is attached to a known tensile tester 11 that sets a predetermined test object T such as a living tissue and performs a tensile test. This is a device that measures the cross-sectional area of the test object T over time in a non-contact state with the test object T at the time.
 この断面積測定装置10は、試験対象物Tの所定の断面領域A(図2参照)における周縁部分に複数設定された各位置Pn(n=1、2・・・、m-1、m)について、断面領域Aの中央に位置する基準点Oからの距離である内部距離Rn(n=1、2・・・m-1、m)をそれぞれ求める距離測定手段13と、距離測定手段13で求めた各内部距離Rnのデータに基づいて、断面領域Aの面積を求めるデータ処理手段14とを備えている。 The cross-sectional area measuring apparatus 10 has a plurality of positions Pn (n = 1, 2,..., M−1, m) set in the peripheral portion in a predetermined cross-sectional area A (see FIG. 2) of the test object T. For the internal distance Rn (n = 1, 2,..., M−1, m), which is the distance from the reference point O located at the center of the cross-sectional area A, and the distance measuring means 13 respectively. Data processing means 14 for obtaining the area of the cross-sectional area A based on the obtained data of each internal distance Rn is provided.
 前記距離測定手段13は、試験対象物Tの外側に配置されて試験対象物Tの表面部分との離間距離である外部距離Ln(図2参照)を計測可能な距離センサ16と、試験対象物Tに対して距離センサ16を移動させる距離センサ移動機構17と、距離センサ16の計測値を一定のタイミング毎に記録する記録部18と、記録部18に記録された距離センサ19の計測値に基づいて、前記各内部距離Rnを算出する演算部19とを備えて構成されている。 The distance measuring means 13 is disposed outside the test object T and is capable of measuring an external distance Ln (see FIG. 2), which is a distance from the surface portion of the test object T, and the test object The distance sensor moving mechanism 17 that moves the distance sensor 16 with respect to T, the recording unit 18 that records the measurement value of the distance sensor 16 at a certain timing, and the measurement value of the distance sensor 19 recorded in the recording unit 18 On the basis of this, a calculation unit 19 for calculating each internal distance Rn is provided.
 前記距離センサ16として、試験対象物Tにレーザ光を照射し、試験対象物Tからの反射光の状態に基づいて試験対象物Tとの離間距離を計測可能なレーザ変位計が用いられている。なお、距離センサ16としては、試験対象物Tの表面部分からの離間距離を計測可能な限りにおいて、種々のセンサを採用することができる。 As the distance sensor 16, a laser displacement meter that irradiates the test object T with laser light and can measure the distance from the test object T based on the state of reflected light from the test object T is used. . As the distance sensor 16, various sensors can be adopted as long as the distance from the surface portion of the test object T can be measured.
 前記距離センサ移動機構17は、引張試験機11の下側に取り付けられてその周りを囲むように配置されたガイドレール21と、ガイドレール21に沿って移動可能に設けられるとともに、距離センサ16を支持するステージ22と、ステージ22を移動させる動力となるモータ23と、当該モータ23の駆動を制御するモータコントローラ24と、ステージ22の移動による距離センサ16の位置を特定するための角度センサ25とを備えて構成されている。 The distance sensor moving mechanism 17 is attached to the lower side of the tensile testing machine 11 and arranged so as to surround the periphery thereof, and is provided so as to be movable along the guide rail 21. A stage 22 to be supported, a motor 23 to be a power for moving the stage 22, a motor controller 24 for controlling the driving of the motor 23, and an angle sensor 25 for specifying the position of the distance sensor 16 by the movement of the stage 22. It is configured with.
 前記ガイドレール21は、真円のリング状をなし、その中心が、引張試験機11にセットされた試験対象物Tを保持する治具の中心に一致するように配置されている。 The guide rail 21 has a perfect ring shape, and is arranged so that the center thereof coincides with the center of the jig that holds the test object T set on the tensile tester 11.
 前記ステージ22は、図示しない歯車等を介してガイドレール21と係合しており、モータ23の動力によって前記歯車を回転させることにより、ガイドレール21に沿って移動可能な構造となっている。この構造により、ステージ22に支持された距離センサ16は、引張試験時の引張方向(以下、「上下方向」と称する)に沿う試験対象物Tの中心線の周りを一定の回転半径rで回転可能となる。また、ステージ22は、前記上下方向に距離センサ16を移動可能な上下方向移動機構と、試験対象物Tに離間接近可能に距離センサ16を径方向に移動可能な径方向移動機構とを備えている。これら機構は、公知の2軸方向移動機構が採用されており、詳細な構造についての図示及び説明を省略する。なお、これら機構は、手動或いは図示しないモータ等の動力による自動にて、距離センサ16の移動を行う構成の何れでも構わない。この構成によれば、距離センサ16の上下方向と径方向の位置調整が可能になる。ここで、距離センサ16の上下方向の位置調整は、例えば、断面積の測定対象となる試験対象物Tの断面領域Aの位置を変える際に行われ、距離センサ16の径方向の位置調整は、例えば、距離センサ16の仕様や試験対象物Tの太さの相違に応じて行われる。 The stage 22 is engaged with the guide rail 21 via a gear (not shown) or the like, and has a structure that can move along the guide rail 21 by rotating the gear with the power of the motor 23. With this structure, the distance sensor 16 supported by the stage 22 rotates around the center line of the test object T along a tensile direction (hereinafter, referred to as “vertical direction”) at the time of a tensile test with a constant rotation radius r. It becomes possible. The stage 22 includes a vertical movement mechanism capable of moving the distance sensor 16 in the vertical direction, and a radial movement mechanism capable of moving the distance sensor 16 in the radial direction so as to be separated from and close to the test object T. Yes. As these mechanisms, well-known biaxial moving mechanisms are employed, and illustration and description of detailed structures are omitted. These mechanisms may be configured to move the distance sensor 16 manually or automatically by power of a motor or the like (not shown). According to this configuration, the position of the distance sensor 16 can be adjusted in the vertical direction and the radial direction. Here, the vertical position adjustment of the distance sensor 16 is performed, for example, when the position of the cross-sectional area A of the test object T to be measured for the cross-sectional area is changed, and the radial position adjustment of the distance sensor 16 is performed. For example, it is performed according to the difference in the specification of the distance sensor 16 and the thickness of the test object T.
 前記角度センサ25は、ガイドレール21に沿ってステージ22が回転移動する際に、ガイドレール21の所定位置を基準位置として、当該基準位置に対するステージ22の角度変位を測定可能に設けられており、特に限定されるものではないが、本実施形態では、エンコーダが用いられている。従って、この角度センサ25の測定値により、ステージ22に支持された距離センサ16の前記基準位置に対する回転角度が特定されることになる。 The angle sensor 25 is provided such that when the stage 22 rotates along the guide rail 21, the angular position of the stage 22 relative to the reference position can be measured with a predetermined position of the guide rail 21 as a reference position. Although not particularly limited, an encoder is used in the present embodiment. Therefore, the rotation value of the distance sensor 16 supported by the stage 22 with respect to the reference position is specified by the measurement value of the angle sensor 25.
 なお、前記距離センサ移動機構17としては、距離センサ16が、断面領域Aの基準点Oを中心とした一定の回転半径rで試験対象物Tの周囲を回転移動可能とする構成であれば、前述の構成に限定されるものではない。 As the distance sensor moving mechanism 17, if the distance sensor 16 is configured to be able to rotate around the test object T with a constant rotation radius r around the reference point O of the cross-sectional area A, The configuration is not limited to that described above.
 前記記録部18では、次のようにして、距離センサ16の計測値である外部距離Lnが記憶される、すなわち、距離センサ16が上下方向及び径方向に移動不能となるようにステージ22に固定された状態から、距離センサ16がガイドレール21に沿って試験対象物Tの周りを1回転する。その際に、角度センサ25の測定値に基づき距離センサ16の回転角度の変位角Δθが一定となる距離センサ16の位置毎に、距離センサ16で計測された試験対象物Tの表面部分との最短の離間距離が外部距離Lnとして記録される。ここで、距離センサ16と最短の離間距離となる試験対象物Tの表面部分の各位置が、断面積を求める断面領域Aの周縁上に位置することになる。特に限定されるものではないが、本実施形態では、前記変位角Δθを1度としている。 The recording unit 18 stores the external distance Ln that is a measurement value of the distance sensor 16 as follows, that is, is fixed to the stage 22 so that the distance sensor 16 cannot move vertically and radially. From this state, the distance sensor 16 makes one rotation around the test object T along the guide rail 21. At that time, for each position of the distance sensor 16 where the displacement angle Δθ of the rotation angle of the distance sensor 16 is constant based on the measurement value of the angle sensor 25, the distance from the surface portion of the test object T measured by the distance sensor 16 is calculated. The shortest separation distance is recorded as the external distance Ln. Here, each position of the surface portion of the test object T that has the shortest separation distance from the distance sensor 16 is positioned on the periphery of the cross-sectional area A for which the cross-sectional area is obtained. Although not particularly limited, in the present embodiment, the displacement angle Δθ is set to 1 degree.
 なお、距離センサ16がガイドレール21に沿って一定の角速度で回転するように、モータ23が駆動する場合には、一定の前記変位角Δθ毎に外部距離Lnを計測可能となるように、図示しないタイマー等を用いて一定時間毎に距離センサ16による前記外部距離Lnの計測を行っても良く、この場合には、角度センサ25を省略し、或いは、角度センサ25からの測定値を用いなくても良い。 In the case where the motor 23 is driven so that the distance sensor 16 rotates at a constant angular velocity along the guide rail 21, the external distance Ln can be measured for each constant displacement angle Δθ. The external distance Ln may be measured by the distance sensor 16 at regular intervals using a timer or the like that is not used. In this case, the angle sensor 25 is omitted, or the measurement value from the angle sensor 25 is not used. May be.
 前記演算部19では、距離センサ16で計測された断面領域Aの周縁部分の各位置Pnにおける外部距離Lnを一定の前記回転半径rから減算することで、周縁部分の各位置Pnにおける内部距離Rnを算出するようになっている。すなわち、前述した通り、試験対象物Tの断面領域Aの中心である基準点Oとガイドレール21の中心とが平面視で一致し、且つ、ガイドレール21が真円状になっていることから、ガイドレール21に沿って回転移動する距離センサ16の回転半径rは、ガイドレール21上の距離センサ16の位置に関わらず一定であり、当該回転半径rは予め記憶されている。そこで、演算部19では、等間隔となる前記各位置Pnでの距離センサ16の計測値である外部距離Ln、すなわち、試験対象物Tの表面部分の各位置Pnと距離センサ16との離間距離を一定の回転半径rから減算することで、断面領域Aの周縁部分の各位置Pnでの前記内部距離Rnが求められることになる。 The calculation unit 19 subtracts the external distance Ln at each position Pn of the peripheral portion of the cross-sectional area A measured by the distance sensor 16 from the constant rotation radius r, thereby allowing the internal distance Rn at each position Pn of the peripheral portion. Is calculated. That is, as described above, the reference point O, which is the center of the cross-sectional area A of the test object T, and the center of the guide rail 21 coincide with each other in plan view, and the guide rail 21 has a perfect circle shape. The rotation radius r of the distance sensor 16 that rotates and moves along the guide rail 21 is constant regardless of the position of the distance sensor 16 on the guide rail 21, and the rotation radius r is stored in advance. Therefore, in the calculation unit 19, the external distance Ln that is a measurement value of the distance sensor 16 at each of the positions Pn at equal intervals, that is, the distance between each position Pn of the surface portion of the test object T and the distance sensor 16. Is subtracted from the constant rotation radius r, the internal distance Rn at each position Pn of the peripheral portion of the cross-sectional area A is obtained.
 なお、前記距離測定手段13としては、前述の構成に限定されるものではなく、試験対象物Tの断面領域Aにおける周縁上の複数の位置Pnについて、基準点Oからの離間距離である内部距離Rnをそれぞれ求めることができる限りにおいて、種々の構成、構造のものを採用することができる。 The distance measuring means 13 is not limited to the above-described configuration, and an internal distance that is a distance from the reference point O for a plurality of positions Pn on the periphery in the cross-sectional area A of the test object T. As long as Rn can be obtained, various configurations and structures can be employed.
 前記データ処理手段14では、断面領域Aについて、図2(B)に示されるように、基準点Oを頂点として変位角Δθの扇型形状に分割し、同図(C)に示されるように、各扇型形状の分割部分について、三角形近似により面積を求め、各分割部分の面積を加算して、断面領域Aの面積を求めるようになっている。すなわち、隣り合う2箇所の周縁の各位置Pn-1,Pnにおける内部距離Rn-1,Rnと、このときの各位置Pn-1,Pnをそれぞれ基準点Oと結ぶ線分のなす角度である変位角Δθとから、各位置Pn-1,Pnと基準点Oとを頂点とする三角形の面積を求め、当該三角形の面積を断面領域Aの全域で求めて加算することで、断面領域Aの面積を求めるようになっている。 As shown in FIG. 2B, the data processing means 14 divides the cross-sectional area A into a sector shape having a displacement angle Δθ with the reference point O as a vertex, as shown in FIG. For each fan-shaped divided portion, the area is obtained by triangular approximation, and the areas of the divided portions are added to obtain the area of the cross-sectional area A. That is, the internal distances Rn−1, Rn at the positions Pn−1, Pn of the two neighboring edges and the angle formed by the line segment connecting the positions Pn−1, Pn at this time with the reference point O, respectively. From the displacement angle Δθ, the area of a triangle having the vertices at the positions Pn−1, Pn and the reference point O is obtained, and the area of the triangle is obtained over the entire area of the cross-sectional area A and added. The area is calculated.
 具体的には、演算部19で求めた断面領域Aの周縁部分の位置Pn毎の内部距離Rnと、前記変位角Δθとから、次式によって、試験対象物Tの断面領域Aにおける面積Sが求められる。 Specifically, the area S in the cross-sectional area A of the test object T is calculated from the internal distance Rn for each position Pn of the peripheral portion of the cross-sectional area A obtained by the calculation unit 19 and the displacement angle Δθ by the following equation. Desired.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、データ処理手段14に、求めた試験対象物Tの断面積と引張試験機11による引張力とから、断面積に依拠する試験対象物Tの力学的特性の評価値、例えば、真応力等を演算する機能を備えることも可能である。この場合、例えば、試験対象物Tの周りで距離センサ16を継続して回転させ、距離センサ16の1回転毎に求められた試験対象物Tの断面積についての真応力を演算することができる。これにより、試験対象物Tの断面領域Aが、引張試験によって経時的に変形する場合でも、試験対象物Tに非接触のまま引張試験を行いながら、断面領域Aの面積を測定でき、当該測定値から真応力を経時的に求めることができる。 It should be noted that the evaluation value of the mechanical properties of the test object T depending on the cross-sectional area, for example, true stress, etc., is obtained from the cross-sectional area of the test object T obtained and the tensile force by the tensile testing machine 11. It is also possible to provide a function for calculating. In this case, for example, the distance sensor 16 is continuously rotated around the test object T, and the true stress about the cross-sectional area of the test object T obtained every rotation of the distance sensor 16 can be calculated. . As a result, even when the cross-sectional area A of the test object T is deformed over time by the tensile test, the area of the cross-sectional area A can be measured while performing a tensile test without contact with the test object T. The true stress can be obtained over time from the value.
 また、試験対象物Tの周りで距離センサ16を1回転させ、断面領域Aの面積を求めた後、前述したステージ22の機構により、距離センサ16を上下方向に移動してからステージ22に再び固定した上で、距離センサ16を再度1回転させることで、試験対象物Tの上下方向の他の位置における断面積を求めることが可能である。ここで、断面積測定装置10として、距離センサ16の上下方向の移動を自動化して、引張試験中の試験対象物Tの最小の断面積を特定可能な構成にすることもできる。この構成によれば、引張試験時において、断面積が最小となる試験対象物Tの部分が引張方向にシフトする場合でも、引張試験を行いながら試験対象物Tに非接触で、試験対象物Tの最小断面積を求めることが可能になる。 Further, after the distance sensor 16 is rotated once around the test object T and the area of the cross-sectional area A is obtained, the distance sensor 16 is moved up and down by the mechanism of the stage 22 described above, and then is returned to the stage 22 again. It is possible to obtain the cross-sectional area at other positions in the vertical direction of the test object T by rotating the distance sensor 16 once again after fixing. Here, as the cross-sectional area measuring device 10, the vertical movement of the distance sensor 16 can be automated so that the minimum cross-sectional area of the test object T during the tensile test can be specified. According to this configuration, even when the portion of the test object T having the smallest cross-sectional area is shifted in the tensile direction during the tensile test, the test object T is not in contact with the test object T while performing the tensile test. It is possible to obtain the minimum cross-sectional area.
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the apparatus according to the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.
 本発明は、動物から採取された形状不均一の靭帯等の生体組織を引張試験機にセットした状態で断面積を測定可能な断面積測定装置として利用可能となる。 The present invention can be used as a cross-sectional area measuring apparatus capable of measuring a cross-sectional area in a state where a biological tissue such as a non-uniform ligament collected from an animal is set in a tensile tester.
 10 断面積測定装置
 11 引張試験機
 12 距離測定手段
 14 データ測定手段
 16 距離センサ
 17 距離センサ移動機構
 18 記録部
 19 演算部
 A 断面領域
 O 基準点
 T 試験対象物
 Pn 位置
 Rn 内部距離
 Ln 外部距離
 r 回転半径
DESCRIPTION OF SYMBOLS 10 Cross-sectional area measuring apparatus 11 Tensile tester 12 Distance measuring means 14 Data measuring means 16 Distance sensor 17 Distance sensor moving mechanism 18 Recording part 19 Calculation part A Section area O Reference point T Test object Pn position Rn Internal distance Ln External distance r Turning radius

Claims (6)

  1.  引張試験の対象となる試験対象物がセットされる引張試験機に付設され、引張試験時における前記試験対象物の断面積を測定する断面積測定装置であって、
     前記試験対象物の所定の断面領域における周縁部分の複数位置について、前記断面領域の中央に位置する基準点からの距離である内部距離をそれぞれ求める距離測定手段と、当該距離測定手段で求めた各内部距離に基づいて、前記断面領域の面積を求めるデータ処理手段とを備え、
     前記データ処理手段では、前記試験対象物が前記引張試験機にセットされた状態で、引張試験によって変形する前記断面領域の面積が経時的に求められることを特徴とする引張試験対象物の断面積測定装置。
    A cross-sectional area measuring device that is attached to a tensile testing machine in which a test object to be subjected to a tensile test is set and measures a cross-sectional area of the test object at the time of a tensile test,
    For a plurality of positions of a peripheral portion in a predetermined cross-sectional area of the test object, distance measuring means for obtaining an internal distance that is a distance from a reference point located at the center of the cross-sectional area, and each of the distance measuring means obtained by the distance measuring means Data processing means for determining the area of the cross-sectional area based on the internal distance,
    In the data processing means, the area of the cross-sectional area that is deformed by a tensile test is obtained over time in a state where the test object is set in the tensile tester. measuring device.
  2.  前記データ処理手段では、隣り合う2箇所の前記周縁部分の位置における前記内部距離と、当該各位置をそれぞれ基準点と結ぶ線分のなす角度とから、2箇所の前記各位置と前記基準点とを頂点とする三角形の面積を求め、当該三角形の面積を前記断面領域の全域で求めて加算することで、当該断面領域の面積を求めることを特徴とする請求項1記載の引張試験対象物の断面積測定装置。 In the data processing means, each of the two positions and the reference point are determined from the internal distance at the positions of the two adjacent peripheral portions and an angle formed by a line segment connecting the positions to the reference point. The area of the cross-sectional area is obtained by calculating the area of the triangle having the vertex as a vertex, and calculating and adding the area of the triangle over the entire cross-sectional area. Cross-sectional area measuring device.
  3.  前記距離測定手段は、前記試験対象物の外側に配置されて当該試験対象物の表面部分との離間距離である外部距離を計測可能な距離センサと、前記試験対象物に対して距離センサを移動させる距離センサ移動機構と、前記距離センサの計測値を一定のタイミング毎に記録する記録部と、当該記録部に記録された前記距離センサの計測値に基づいて、前記各内部距離を算出する演算部とを備え、
     前記距離センサ移動機構は、前記距離センサが、前記基準点を中心とした一定の回転半径で前記試験対象物の周囲を回転移動可能となるように設けられ、
     前記演算部では、前記距離センサで計測された前記周縁部分の各位置における前記外部距離を前記半径から減算することで、当該周縁部分の各位置における前記内部距離を算出することを特徴とする請求項1又は2記載の引張試験対象物の断面積測定装置。
    The distance measuring means is disposed outside the test object and is capable of measuring an external distance that is a distance from the surface portion of the test object, and moves the distance sensor relative to the test object A distance sensor moving mechanism, a recording unit that records measurement values of the distance sensor at certain timings, and an operation that calculates each internal distance based on the measurement values of the distance sensor recorded in the recording unit With
    The distance sensor moving mechanism is provided so that the distance sensor can rotate around the test object with a constant rotation radius centered on the reference point,
    The computing unit calculates the internal distance at each position of the peripheral portion by subtracting the external distance at each position of the peripheral portion measured by the distance sensor from the radius. Item 3. An apparatus for measuring a cross-sectional area of a tensile test object according to item 1 or 2.
  4.  前記距離センサ移動機構は、前記試験対象物の引張方向に前記距離センサを移動可能に設けられ、
     前記データ処理手段では、前記引張方向に沿う前記距離センサの移動により、前記引張方向に沿う前記試験対象物の複数の断面領域について、引張試験時の経時的な面積変化を求めることを特徴とする請求項3記載の引張試験対象物の断面積測定装置。
    The distance sensor moving mechanism is provided to be able to move the distance sensor in a tensile direction of the test object,
    The data processing means is characterized in that, by movement of the distance sensor along the tension direction, an area change with time during a tensile test is obtained for a plurality of cross-sectional areas of the test object along the tension direction. The apparatus for measuring a cross-sectional area of a tensile test object according to claim 3.
  5.  前記距離センサ移動機構は、前記試験対象物に離間接近する方向に位置調整可能に設けられ、当該離間接近方向に位置調整された後で、前記距離センサが、前記基準点を中心とした一定の半径で前記試験対象物の周囲を回転移動することを特徴とする請求項3記載の引張試験対象物の断面積測定装置。 The distance sensor moving mechanism is provided such that the position of the distance sensor can be adjusted in the direction of separating and approaching the test object. After the position of the distance sensor is adjusted in the direction of separating and approaching, the distance sensor is fixed to the reference point. The apparatus for measuring a cross-sectional area of a tensile test object according to claim 3, wherein the apparatus rotates and moves around the test object with a radius.
  6.  前記データ処理手段は、引張試験時に経時的に変化する前記試験対象物の断面積から、当該試験対象物の力学的特性を評価するための値を演算する機能を更に備えたことを特徴とする請求項1記載の引張試験対象物の断面積測定装置。 The data processing means is further provided with a function of calculating a value for evaluating a mechanical property of the test object from a cross-sectional area of the test object that changes with time during a tensile test. An apparatus for measuring a cross-sectional area of a tensile test object according to claim 1.
PCT/JP2016/054043 2015-03-31 2016-02-11 Cross-sectional area measuring device for tensile testing object WO2016158025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070866 2015-03-31
JP2015070866A JP2016191588A (en) 2015-03-31 2015-03-31 Cross sectional area measurement device of object subjected to tensile test

Publications (1)

Publication Number Publication Date
WO2016158025A1 true WO2016158025A1 (en) 2016-10-06

Family

ID=57006683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054043 WO2016158025A1 (en) 2015-03-31 2016-02-11 Cross-sectional area measuring device for tensile testing object

Country Status (2)

Country Link
JP (1) JP2016191588A (en)
WO (1) WO2016158025A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626211A (en) * 1979-08-08 1981-03-13 Nippon Steel Corp Deciding device for bar stock sectional area
US20030182069A1 (en) * 2002-02-08 2003-09-25 Banes Albert J. Method and system for measuring properties of deformable material specimens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626211A (en) * 1979-08-08 1981-03-13 Nippon Steel Corp Deciding device for bar stock sectional area
US20030182069A1 (en) * 2002-02-08 2003-09-25 Banes Albert J. Method and system for measuring properties of deformable material specimens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POKHAI G.GABRIEL ET AL.: "A New Laser Reflectance System Capable of Measuring Changing Cross-Sectional Area of Soft Tissues During Tensile Testing", JOURNAL OF BIOMECHANICAL ENGINEERING, vol. 131, no. 9, September 2009 (2009-09-01), pages 094504 - 1 - 094504-5 *

Also Published As

Publication number Publication date
JP2016191588A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
Kong et al. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks
CN105686793B (en) Measurement method
WO2011115257A1 (en) Shape measurement method and shape measurement apparatus for tires
RU2440569C1 (en) Apparatus for non-destructive testing of material of object using ultrasonic waves
JP2007313208A5 (en)
CN103424088B (en) A kind of chamfering measuring instrument
BRPI0923657B1 (en) AUTOMATED NON-DESTRUCTIVE TESTING PROCESS OF A MECHANICAL PART
JP2010223903A (en) Transmitted wavefront measuring method, refractive-index distribution measuring method, method of manufacturing optical element, and transmitted wavefront measuring apparatus
PH12018501598A1 (en) Method and system for optical three-dimensional topography measurement
KR20120049217A (en) Method for determining weights of eggs, and apparatus
WO2008097345A3 (en) Wide parallel beam diffraction imaging method and system
JP2009198276A (en) Rubber testing machine
Hernandez-Montes et al. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
WO2016158025A1 (en) Cross-sectional area measuring device for tensile testing object
JPWO2019065107A1 (en) Gear positioning device, stress measurement system, gear positioning method and stress measurement method
Conrad et al. GPU-based digital image correlation system for uniaxial and biaxial crack growth investigations
JP2015522158A (en) Method and apparatus for detecting cracks in eggshell
Roos et al. In-belt vibration monitoring of conveyor belt idler bearings by using wavelet package decomposition and artificial intelligence
RU2718406C1 (en) Method for x-ray inspection of article internal structure
KR20060102810A (en) Joint roughness profiler and method thereof
JP2011137781A (en) Precise electromagnetic wave diffraction measuring apparatus
CN105091725B (en) A kind of articular cartilage damage wear evaluation method
JP2018201742A5 (en)
Bračun et al. Surface defect detection on power transmission belts using laser profilometry
Palechor et al. Damage identification in beams using experimental data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771909

Country of ref document: EP

Kind code of ref document: A1