WO2016157980A1 - Carbon-dioxide manufacturing facility and carbon-dioxide manufacturing method - Google Patents

Carbon-dioxide manufacturing facility and carbon-dioxide manufacturing method Download PDF

Info

Publication number
WO2016157980A1
WO2016157980A1 PCT/JP2016/052671 JP2016052671W WO2016157980A1 WO 2016157980 A1 WO2016157980 A1 WO 2016157980A1 JP 2016052671 W JP2016052671 W JP 2016052671W WO 2016157980 A1 WO2016157980 A1 WO 2016157980A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
carbon
tower
absorption tower
Prior art date
Application number
PCT/JP2016/052671
Other languages
French (fr)
Japanese (ja)
Inventor
修 若村
大介 萩生
知弘 三村
Original Assignee
新日鉄住金エンジニアリング株式会社
Nsプラント設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社, Nsプラント設計株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Publication of WO2016157980A1 publication Critical patent/WO2016157980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to an equipment and method for producing high purity carbon dioxide from exhaust gas containing carbon dioxide.
  • Patent Documents 1 to 3 disclose techniques for treating a mixed gas containing carbon dioxide by the PSA method or the like.
  • exhaust gas contains various trace components (impurities) in addition to carbon dioxide.
  • trace components include sulfur compounds, nitrogen compounds, hydrocarbons, carbon monoxide, oxygen, and the like.
  • these trace components are easily mixed into the product carbon dioxide, and there is still room for improvement in order to produce higher purity carbon dioxide.
  • the present invention provides a carbon dioxide production facility capable of producing high purity carbon dioxide while being relatively compact, and also provides a method capable of efficiently producing high purity carbon dioxide.
  • the inventors of the present invention have developed a technique for producing high-purity carbon dioxide while suppressing the cost required for equipment and operation in a chemical absorption method which is one of carbon dioxide separation methods.
  • the inventors of the present invention have the characteristics of the trace component in the exhaust gas with respect to the amine solution used as the carbon dioxide absorption liquid, more specifically, whether the trace component has an adverse effect on the amine solution.
  • An evaluation test was conducted as to whether or not the trace component was incorporated into the amine solution.
  • the following present invention has been made on the basis of new findings obtained from the test results.
  • the carbon dioxide production facility includes a desulfurization apparatus to which exhaust gas that is a raw material gas for producing carbon dioxide is supplied, an absorption tower in which the exhaust gas from the desulfurization apparatus and the amine solution are in gas-liquid contact, A regeneration tower for heat-treating an amine solution from an absorption tower that has absorbed carbon dioxide, a reduction catalyst in which a reduction catalyst is accommodated and a carbon dioxide-containing gas from the regeneration tower is in contact with the reduction catalyst, and activated carbon are accommodated. And an adsorption treatment device in which the carbon dioxide-containing gas from the reduction treatment device comes into contact with the activated carbon.
  • a desulfurization device In the carbon dioxide production facility, a desulfurization device, an absorption tower, a regeneration tower, a reduction treatment device, and an adsorption treatment device are arranged in this order from the upstream side toward the downstream side.
  • the absorption tower and the regeneration tower constitute a CO 2 chemical absorption device.
  • the arrangement of the apparatus and tower constituting the carbon dioxide production facility is based on the above-mentioned new knowledge, that is, the present inventors pay attention to the characteristics of the trace component contained in the raw material gas with respect to the amine solution.
  • the trace components here include sulfur content (reducing / oxidizing properties), aromatic compounds, NO x (nitrogen monoxide and nitrogen dioxide), aromatic compounds, hydrocarbons, tar content, carbon monoxide and oxygen. means.
  • the characteristics of the component that can be contained in the exhaust gas with respect to the amine solution and the measures for removing it are as follows.
  • Sulfur oxide Sulfur oxide has the characteristic of reducing the performance of the amine solution.
  • the desulfurization apparatus should be arranged upstream of the CO 2 chemical absorption apparatus (absorption tower and regeneration tower). It is preferable to reduce the sulfur oxide concentration of the exhaust gas to about 5 ppm by mass or less by treatment in the desulfurization apparatus.
  • Examples of the solution used for the desulfurization treatment include an alkaline aqueous solution.
  • NO X nitrogen monoxide and nitrogen dioxide
  • oxygen These components have a characteristic that they are not easily absorbed by the amine solution even when they come into contact with the amine solution. Therefore, most of these components are discharged from the upper part of the absorption tower. However, for example, a very small amount of oxygen is absorbed in the amine solution or mixed in as bubbles, and then moves to the gas phase in the regeneration tower, resulting in part of the impurities of the carbon dioxide-containing gas. On the basis of the amount of these components in the raw material gas, the amount in the carbon dioxide-containing gas is diluted to 1/50 to 1/10000.
  • NO X and oxygen are removed by a reduction treatment device arranged upstream of the adsorption treatment device.
  • a reduction treatment device arranged upstream of the adsorption treatment device.
  • a reductive decomposition apparatus using hydrogen and a noble metal catalyst may be used. The removal process may reduce the concentration of the NO X and oxygen remaining in the carbon dioxide-containing gas to less than 5 mass ppm.
  • BTX aromatic hydrocarbon
  • hydrocarbon having 5 or more carbon atoms These components do not particularly affect the amine solution, but have the property of being absorbed by the amine solution in the absorption tower. These components absorbed in the amine solution are vaporized by being heated in the regeneration tower and become part of the impurities of the carbon dioxide-containing gas. In this carbon dioxide-containing gas, as compared with the raw material gas, the purity of carbon dioxide is increased, so that the total amount of gas is reduced. Therefore, these components are concentrated. By supplying the concentrated gas to the adsorption processing apparatus, efficient removal processing can be performed in the apparatus.
  • BTX means benzene, toluene and xylene.
  • the present inventors grasped the behavior of each trace component with respect to the amine solution, and reflected this in the arrangement of each device in the carbon dioxide production facility. Thereby, the efficient removal process of each trace component is implement
  • some components do not need to be removed because they are diluted in carbon dioxide, which is a product.
  • the components (component (3) and component (4)) absorbed or mixed in the amine solution are relatively concentrated in the carbon dioxide-containing gas. From these things, according to this invention, while being able to make an installation compact, the amount of adsorbents and the amount of catalysts to be used can be reduced.
  • each device is not arranged as described above, and for example, all kinds of harmful trace components contained in the exhaust gas are tried to be removed upstream of the CO 2 chemical absorption device (absorption tower and regeneration tower).
  • the concentration of trace components is low and a large amount of exhaust gas must be supplied to each device (such as a reduction treatment device and an adsorption treatment device).
  • the amount of adsorbent and catalyst required is enormous and the equipment becomes large and economically unsuitable.
  • the present invention provides a carbon dioxide production method.
  • This method includes a first step of desulfurizing an exhaust gas that is a raw material gas for producing carbon dioxide, a second step of bringing the exhaust gas and the amine solution after the first step into gas-liquid contact in an absorption tower, carbon dioxide The third step of heat-treating the amine solution from the absorption tower that has absorbed the catalyst in the regeneration tower, the fourth step of bringing the carbon dioxide-containing gas from the regeneration tower into contact with the reduction catalyst, and the carbon dioxide-containing gas after the fourth step And a fifth step of bringing activated carbon into contact with each other. According to this method, sufficiently high purity carbon dioxide can be efficiently produced.
  • a carbon dioxide production facility 20 shown in FIG. 1 includes a desulfurization apparatus 1, an absorption tower 2, a regeneration tower 3, a catalyst tower (reduction treatment apparatus) 8, and an adsorption tower (adsorption treatment apparatus) 9. They are arranged in this order from upstream to downstream.
  • the absorption tower 2 and the regeneration tower 3 constitute a CO 2 chemical absorption device 10.
  • piping for transferring a fluid is referred to as a “line”.
  • the desulfurization apparatus 1 is an apparatus for removing sulfur oxides contained in exhaust gas that is a raw material gas. Exhaust gas is supplied to the desulfurization apparatus 1 through the line L1.
  • the desulfurization apparatus 1 has a filling tank 1a inside.
  • An alkaline aqueous solution is supplied to the desulfurization apparatus 1 through a line (not shown).
  • the source gas and the aqueous alkali solution come into gas-liquid contact, so that the sulfur oxide is absorbed into the alkaline solution.
  • the alkaline aqueous solution include a calcium carbonate aqueous solution, a sodium hydroxide aqueous solution, a magnesium hydroxide aqueous solution, and aqueous ammonia.
  • Examples of the exhaust gas that can be a raw material gas for producing carbon dioxide include exhaust gas or combustion exhaust gas from facilities such as steelworks.
  • CO 2 concentration such as LNG thermal power plant exhaust gas is relatively low ( ⁇ 5% by volume)
  • the exhaust gas as the raw material gas may contain the following components (1) to (4) in addition to carbon dioxide.
  • the grouping of the components is based on the properties for the amine solution as described above.
  • the exhaust gas that can be used as the raw material gas does not necessarily include all of the components (1) to (4), and may not include any of these components.
  • steelworks blast furnace gas BFG
  • BFG steelworks blast furnace gas
  • NO X nitrogen monoxide and nitrogen dioxide
  • oxygen Component (4) Hydrogen sulfide, Aromatic hydrocarbons (BTX) and hydrocarbons with 5 or more carbon atoms
  • Table 1 shows the components contained in the exhaust gas that can be used as the source gas and the preferred ranges of the contents.
  • the component (2) in Table 1 has the characteristic that it is difficult to be absorbed by the amine solution even if it contacts the amine solution in the absorption tower as described above, most of it is discharged from the upper part of the absorption tower. There is no particular preferred range for the content.
  • the absorption tower 2 is for making the amine solution absorb the carbon dioxide in the exhaust gas by bringing the exhaust gas containing carbon dioxide and the amine solution into gas-liquid contact.
  • the exhaust gas after the desulfurization treatment is transferred to the absorption tower 2 through a line L2 connected to the upper part of the desulfurization apparatus 1.
  • amine solution amines such as a monoethanolamine solution (MEA solution) and a methyldiethanolamine solution (MDEA solution) can be used and are not particularly limited.
  • the tower bottom of the absorption tower 2 has an inlet 2a to which a line L2 is connected and an outlet 2b for discharging an amine solution (rich liquid) that has absorbed carbon dioxide.
  • a line L3 is connected to the outlet 2b.
  • the top of the absorption tower 2 has an inlet 2c to which the lean liquid from the regeneration tower 3 is supplied, and an outlet 2d for discharging a gas that is not absorbed by the amine solution.
  • a line L5 for transferring the lean liquid from the regeneration tower 3 is connected to the inlet 2c.
  • the absorption tower 2 has, for example, a metal or resin filling tank 2e in order to efficiently bring the exhaust gas into contact with the amine solution.
  • the outlet 2d is connected to a line L4 for releasing a gas that is not absorbed by the amine solution.
  • the lean liquid becomes a rich liquid.
  • the lean liquid and the rich liquid are based on the carbon dioxide concentration, respectively.
  • An amine solution having carbon dioxide below a predetermined concentration is called a lean liquid, and an amine solution having carbon dioxide at a predetermined concentration or higher is referred to as a lean liquid. It is called rich liquid.
  • the regeneration tower 3 is for recovering a carbon dioxide-containing gas containing carbon dioxide at a high concentration from the rich liquid by heating the rich liquid from the absorption tower 2.
  • the rich liquid is regenerated by the heat treatment in the regeneration tower 3 to become a lean liquid.
  • the tower bottom of the regeneration tower 3 has an outlet 3a to which a line L5 is connected.
  • the line L5 has a line L5a branched in the middle.
  • the line L5a may be branched from the main body of the regeneration tower 3.
  • a reboiler 4 is provided in the middle of the line L5a, and its tip is connected to an inlet 3b formed in the lower part of the regeneration tower 3.
  • the reboiler 4 has a temperature control unit 4 a for controlling the temperature of the amine solution in the reboiler 4.
  • the tower top of the regeneration tower 3 has an inlet 3c to which the line L3 is connected and an outlet 3d for discharging the carbon dioxide-containing gas.
  • the regeneration tower 3 has a filling tank 3f made of, for example, metal or resin.
  • the rich absorption liquid flows downward through the filling tank 3f, and carbon dioxide is separated at that time. Carbon dioxide is also separated by heating with the reboiler 4. Water vapor is also separated from the rich liquid simultaneously with carbon dioxide.
  • the amine solution (lean liquid) regenerated by separating carbon dioxide and the like is discharged from the outlet 3a and returned to the absorption tower 2 through the line L5.
  • the line L3 for transferring the rich liquid to the regeneration tower 3 has a pump P1 and a heat exchanger H1 in the middle thereof.
  • the rich liquid transferred in the line L3 is heated to a predetermined temperature by heat exchange with the lean liquid in the heat exchanger H1.
  • the line L5 for returning the lean liquid to the absorption tower 2 has a pump P2 and a heat exchanger H2 in the middle thereof.
  • the lean liquid is cooled to a predetermined temperature by heat exchange in the heat exchangers H1 and H2.
  • a line L6 for transferring the carbon dioxide-containing gas is connected to the outlet 3d of the regeneration tower 3.
  • the carbon dioxide-containing gas flowing in the line L6 is cooled, for example, by heat exchange with another gas, and moisture is removed by the gas-liquid separator 5 provided in the middle of the line L6.
  • the water recovered by the gas-liquid separator 5 is returned into the regeneration tower 3 through the line L7 from an inlet 3e provided at the top of the regeneration tower 3.
  • the carbon dioxide-containing gas separated by the gas-liquid separator 5 is transferred to the catalyst tower 8 through the line L6 and the line L8.
  • a pressure control valve 6 for controlling the pressure of the regeneration tower 3 and a compressor 7 for increasing the pressure of the carbon dioxide-containing gas are provided in the middle of the line L8, a pressure control valve 6 for controlling the pressure of the regeneration tower 3 and a compressor 7 for increasing the pressure of the carbon dioxide-containing gas are provided.
  • Catalyst column 8 is for removing NO X and oxygen contained in the carbon dioxide-containing gas.
  • Carbon dioxide-containing gas from the regeneration tower 3 is supplied to the catalyst tower 8 through the line L8.
  • the catalyst tower 8 has a catalyst layer 8a filled with a reduction catalyst. By passing the carbon dioxide-containing gas through the catalyst layer 8a, NO x and oxygen contained in the carbon dioxide-containing gas are removed.
  • the reduction catalyst a known deoxygenation catalyst can be used, and a catalyst in which a noble metal (for example, platinum, palladium, rhodium, ruthenium or an alloy thereof) is supported on a carrier (for example, aluminum oxide or magnesium oxide) can be used.
  • the carbon dioxide-containing gas from which these components have been removed is transferred to the adsorption tower 9 through the line L9.
  • the catalyst Since the amount of carbon dioxide-containing gas supplied to the catalyst tower 8 is reduced to about a fraction of the amount of the raw material gas, the catalyst is compared with the case where the catalyst tower 8 is provided upstream of the absorption tower 2. The amount of processing gas in the tower 8 can be made sufficiently small.
  • the adsorption tower 9 is for removing hydrogen sulfide, hydrocarbons having 5 or more carbon atoms, aromatic hydrocarbons (BTX) and the like contained in the carbon dioxide-containing gas from the catalyst tower 8.
  • the adsorption tower 9 has an activated carbon layer 9a filled with activated carbon inside. When the carbon dioxide-containing gas passes through the activated carbon layer 9a, the above components contained in the carbon dioxide-containing gas are removed.
  • a line L10 is connected to the adsorption tower 9, and the product carbon dioxide is transferred to a destination (for example, a CO 2 liquefaction facility) through the line L10. Similar to the catalyst tower 8 described above, the treatment gas amount in the adsorption tower 9 can be sufficiently reduced compared to the case where the adsorption tower 9 is provided upstream of the absorption tower 2.
  • exhaust gas raw material gas
  • exhaust gas desulfurization treatment is performed in the desulfurization apparatus 1 (first step).
  • the alkaline aqueous solution absorbs sulfur oxides contained in the exhaust gas by spraying an alkaline aqueous solution on the exhaust gas, for example. From the viewpoint of sufficiently reducing the influence on the subsequent amine solution, it is preferable to reduce the sulfur oxide concentration of the exhaust gas to about 5 ppm by mass or less (more preferably 1 ppm by mass or less) by the treatment in the desulfurization apparatus 1.
  • the exhaust gas from the desulfurization apparatus 1 is supplied to the absorption tower 2 through the line L2, and the exhaust gas and the amine solution are brought into gas-liquid contact in the absorption tower 2 (second step). This causes the amine solution to absorb carbon dioxide.
  • the component (4) is also absorbed in the amine solution together with carbon dioxide.
  • most of the component (2) and the component (3) are not absorbed by the amine solution and discharged from the outlet 2d. Based on the amount of the component (2) and the component (3) in the raw material gas, the dilution of the amount in the carbon dioxide-containing gas is 1/50 to 1/10000.
  • the temperature in the absorption tower 2 may be set according to, for example, the type of amine solution, and is preferably 20 to 50 ° C., more preferably 30 to 40 ° C.
  • the pressure in the absorption tower 2 may be about 0 to 1.0 MPa.
  • the rich liquid is supplied to the regeneration tower 3 through the line L3, and the rich liquid is heated in the regeneration tower 3 (third step). This separates carbon dioxide from the rich liquid and regenerates the rich liquid into a lean liquid.
  • the components (2) to (4) are separated from the rich liquid together with carbon dioxide. What is necessary is just to set the temperature in the regeneration tower 3 according to the kind of amine solution, for example, Preferably it is 80-130 degreeC.
  • the pressure in the regeneration tower 3 may be about 0 to 0.3 MPa.
  • the carbon dioxide-containing gas from the regeneration tower 3 is supplied to the gas-liquid separator 5 through the line L6 to remove moisture, and further supplied to the catalyst tower 8 through the line L8.
  • the carbon dioxide concentration of the carbon dioxide-containing gas supplied to the catalyst tower 8 is preferably 99% by volume or more, and more preferably 99.9% by volume. If the carbon dioxide concentration at this point is 99.9% by volume or more, product carbon dioxide with sufficiently high purity can be finally produced.
  • the carbon dioxide-containing gas is brought into contact with the reduction catalyst (fourth step). Thereby, the component (3) contained in the carbon dioxide-containing gas is decomposed and removed.
  • the reduction treatment may be performed under a hydrogen atmosphere.
  • the temperature in the catalyst tower 8 may be about 100 to 300 ° C.
  • the pressure in the catalyst tower 8 may be about 0 to 3 MPa.
  • the NO x concentration of the carbon dioxide-containing gas it is preferable to reduce the NO x concentration of the carbon dioxide-containing gas to 5 mass ppm or less (more preferably 1 mass ppm or less) by the treatment in the catalyst tower 8.
  • the carbon dioxide-containing gas and activated carbon are brought into contact (fifth step). Thereby, the said component (4) contained in a carbon dioxide containing gas is removed.
  • the temperature in the adsorption tower 9 may be about 0 to 40 ° C.
  • the pressure in the adsorption tower 9 may be about 0 to 3 MPa.
  • Table 2 shows a suitable range of the purity of the product carbon dioxide and a range of allowable amounts of impurities (trace components) that can remain in the product carbon dioxide.
  • Product carbon dioxide can also be used as industrial carbon dioxide (for example, for beverages and for welding) by satisfying the conditions in the table below.
  • “ND” means “Not Detected”.
  • FIG. 2 is a configuration diagram schematically showing a carbon dioxide production facility 30 according to another embodiment of the present invention.
  • a shutoff device 12 is provided in the line L1.
  • the shutoff device 12 is controlled so as to operate when the composition of the exhaust gas deviates from the normal range and the content of the trace component rises to a predetermined value or more.
  • the processing capacity of the CO 2 chemical absorption device 10 and the downstream device can be set in accordance with the normal range, and the equipment can be made more compact and the cost required for the equipment can be reduced. it can.
  • the shut-off device 12 includes, for example, a switching valve, a sensor that monitors the amount of a trace component in the exhaust gas, and a transmission unit that sends a signal from the sensor to the switching valve to close the switching valve.
  • shutoff device 12 may be provided on the upstream side of the CO 2 chemical absorption system 10, instead installed in the line L1, or may be installed in the line L2 as well as installed in the line L1.
  • the carbon dioxide production method by the carbon dioxide production facility 30 is based on the carbon dioxide production method described above, and shuts off the supply of the raw material gas (or exhaust gas) to the absorption tower 2 when the concentration of the predetermined component of the raw material gas increases. You may further provide a process. For example, when the source gas is combustion exhaust gas, the shutoff device 12 may be operated when the amount of unburned components contained in the source gas increases. An increase in the unburned component can be detected by a decrease in the residual oxygen concentration of the combustion exhaust gas or an increase in the residual CO concentration. Or you may set operation
  • a buffer tank 15 may be provided in the middle of the line L3.
  • the buffer tank 15 is a trace component in the exhaust gas and can be absorbed or mixed in the amine solution (sulfur oxide, hydrogen sulfide, hydrocarbon having 5 or more carbon atoms, aromatic hydrocarbon, be varied within the amount of the NO X and oxygen) for a short time (eg 1-3 minutes), there is an advantage that it can be leveled.
  • the processing capacity of the regeneration tower 3 and the downstream apparatus can be set in accordance with the leveled amount of trace components, and the equipment can be made more compact and high-quality manufactured carbon dioxide can be produced. It can be manufactured stably and at low cost.
  • the buffer tank 15 in the middle of the line L3, there is an advantage that a large-scale buffer tank 15 is not required.
  • a buffer tank is to be provided in the line L1 or the line L2 through which the exhaust gas is transferred, it is necessary to prepare an extremely large tank.
  • the provision of the buffer tank 15 also has an effect that the fluctuation range of the product carbon dioxide concentration and the impurity concentration can be sufficiently reduced.
  • the variation range can be suppressed to about several tenths or less.
  • the buffer tank 15 may have a residence time of 1 minute or longer, and may be about 5 to 15 minutes.
  • the residence time is a value calculated by dividing the volume V B of the buffer tank 15 by the average flow rate Q in the steady state of the rich liquid (amine solution) flowing through the line L3 (V B / Q ).
  • the carbon dioxide production facility 30 shown in FIG. 2 is provided with the buffer tank 15 in the line L3 for transferring the rich liquid, but instead of the buffer tank 15, a buffer section (a space that performs the buffer function of the rich liquid) is provided. You may provide in the tower bottom part of the absorption tower 2, the tower bottom part of the regeneration tower 3, or the reboiler 4. Furthermore, the carbon dioxide production facility 30 includes both the shut-off device 12 and the buffer tank 15. However, only one of the shut-off device 12 and the buffer tank 15 is provided to the carbon dioxide production facility 20 to provide carbon dioxide. Manufacturing equipment may be configured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

A carbon-dioxide manufacturing facility according to the present invention is provided with a desulfurizing device to be supplied with exhaust gas serving as source gas for manufacturing carbon dioxide, an absorption tower where the exhaust gas from the desulfurizing device and an amine solution come into contact with each other, a regeneration tower that heats the amine solution from the absorption tower, which has absorbed carbon dioxide, a reduction treatment device that contains a reduction catalyst therein and where carbon-dioxide-containing gas from the regeneration tower and the reduction catalyst come into contact with each other, and an adsorption treatment device that contains activated carbon therein and where the carbon-dioxide-containing gas from the reduction treatment device and the activated carbon come into contact with each other.

Description

二酸化炭素製造設備及び二酸化炭素製造方法Carbon dioxide production facility and carbon dioxide production method
 本発明は、二酸化炭素を含む排ガスから高い純度の二酸化炭素を製造するための設備及び方法に関する。 The present invention relates to an equipment and method for producing high purity carbon dioxide from exhaust gas containing carbon dioxide.
 二酸化炭素を含む混合ガスから二酸化炭素を分離する方法として、吸収法(化学吸収法及び物理吸収法)、吸着法(PSA法)並びに膜分離法などが知られている。特許文献1~3は、二酸化炭素を含む混合ガスをPSA法などによって処理する技術を開示する。 As a method for separating carbon dioxide from a mixed gas containing carbon dioxide, an absorption method (chemical absorption method and physical absorption method), an adsorption method (PSA method), a membrane separation method, and the like are known. Patent Documents 1 to 3 disclose techniques for treating a mixed gas containing carbon dioxide by the PSA method or the like.
特開平1-176416号公報Japanese Patent Laid-Open No. 1-176416 特許第5325435号公報Japanese Patent No. 5325435 特開昭63-97214号公報Japanese Unexamined Patent Publication No. 63-97214
 ところで、通常、排ガスには二酸化炭素の他に種々の微量成分(不純物)が含まれている。微量成分の例として、硫黄化合物、窒素化合物、炭化水素、一酸化炭素、酸素などが挙げられる。従来の分離方法ではこれらの微量成分が製品二酸化炭素に混入しやすく、より高純度の二酸化炭素を製造するには未だ改善の余地があった。 By the way, normally, exhaust gas contains various trace components (impurities) in addition to carbon dioxide. Examples of trace components include sulfur compounds, nitrogen compounds, hydrocarbons, carbon monoxide, oxygen, and the like. In the conventional separation method, these trace components are easily mixed into the product carbon dioxide, and there is still room for improvement in order to produce higher purity carbon dioxide.
 本発明は、比較的コンパクトでありながら高い純度の二酸化炭素を製造可能な二酸化炭素製造設備を提供するとともに、高い純度の二酸化炭素を効率的に製造可能な方法を提供する。 The present invention provides a carbon dioxide production facility capable of producing high purity carbon dioxide while being relatively compact, and also provides a method capable of efficiently producing high purity carbon dioxide.
 本発明者らは、二酸化炭素の分離法の一つである化学吸収法において、設備及びその運転に要するコストを抑えながら高純度の二酸化炭素を製造する技術の開発に取り組んだ。本発明者らは、二酸化炭素の吸収液として使用されるアミン溶液に対して排ガス中の微量成分がどのような特性を有するか、より具体的には上記微量成分がアミン溶液に悪影響を及ぼすか否か、また上記微量成分がアミン溶液に取り込まれるか否かについて評価試験を行った。以下の本発明は、この試験結果によって得られた新たな知見に基づいてなされたものである。 The inventors of the present invention have developed a technique for producing high-purity carbon dioxide while suppressing the cost required for equipment and operation in a chemical absorption method which is one of carbon dioxide separation methods. The inventors of the present invention have the characteristics of the trace component in the exhaust gas with respect to the amine solution used as the carbon dioxide absorption liquid, more specifically, whether the trace component has an adverse effect on the amine solution. An evaluation test was conducted as to whether or not the trace component was incorporated into the amine solution. The following present invention has been made on the basis of new findings obtained from the test results.
 すなわち、本発明に係る二酸化炭素製造設備は、二酸化炭素を製造するための原料ガスである排ガスが供給される脱硫装置と、脱硫装置からの排ガスとアミン溶液とが気液接触する吸収塔と、二酸化炭素を吸収した吸収塔からのアミン溶液を加熱処理する再生塔と、還元触媒が収容されており再生塔からの二酸化炭素含有ガスと還元触媒とが接触する還元処理装置と、活性炭が収容されており還元処理装置からの二酸化炭素含有ガスと活性炭とが接触する吸着処理装置とを備える。 That is, the carbon dioxide production facility according to the present invention includes a desulfurization apparatus to which exhaust gas that is a raw material gas for producing carbon dioxide is supplied, an absorption tower in which the exhaust gas from the desulfurization apparatus and the amine solution are in gas-liquid contact, A regeneration tower for heat-treating an amine solution from an absorption tower that has absorbed carbon dioxide, a reduction catalyst in which a reduction catalyst is accommodated and a carbon dioxide-containing gas from the regeneration tower is in contact with the reduction catalyst, and activated carbon are accommodated. And an adsorption treatment device in which the carbon dioxide-containing gas from the reduction treatment device comes into contact with the activated carbon.
 上記二酸化炭素製造設備は、上流側から下流側に向けて、脱硫装置、吸収塔、再生塔、還元処理装置及び吸着処理装置がこの順序で配置されている。なお、吸収塔及び再生塔はCO化学吸収装置を構成している。 In the carbon dioxide production facility, a desulfurization device, an absorption tower, a regeneration tower, a reduction treatment device, and an adsorption treatment device are arranged in this order from the upstream side toward the downstream side. The absorption tower and the regeneration tower constitute a CO 2 chemical absorption device.
 上記二酸化炭素製造設備を構成する装置及び塔の配置は、上述の新たな知見、すなわち、原料ガスに含まれる微量成分のアミン溶液に対する特性に本発明者らが着目し、得られた知見に基づくものである。ここでいう微量成分は、硫黄分(還元性/酸化性)、芳香族系化合物、NO(一酸化窒素及び二酸化窒素)、芳香族化合物、炭化水素、タール分、一酸化炭素及び酸素等を意味する。 The arrangement of the apparatus and tower constituting the carbon dioxide production facility is based on the above-mentioned new knowledge, that is, the present inventors pay attention to the characteristics of the trace component contained in the raw material gas with respect to the amine solution. Is. The trace components here include sulfur content (reducing / oxidizing properties), aromatic compounds, NO x (nitrogen monoxide and nitrogen dioxide), aromatic compounds, hydrocarbons, tar content, carbon monoxide and oxygen. means.
 排ガスに含まれ得る成分のアミン溶液に対する特性及びそれを除去するための対策は以下のとおりである。
(1)硫黄酸化物
 硫黄酸化物はアミン溶液の性能を低下させる特性を有する。このため、脱硫装置はCO化学吸収装置(吸収塔及び再生塔)の上流側に配置すべきである。脱硫装置における処理によって排ガスの硫黄酸化物濃度を5質量ppm以下程度にまで低減することが好ましい。脱硫処理に使用する溶液としてはアルカリ水溶液が挙げられる。
The characteristics of the component that can be contained in the exhaust gas with respect to the amine solution and the measures for removing it are as follows.
(1) Sulfur oxide Sulfur oxide has the characteristic of reducing the performance of the amine solution. For this reason, the desulfurization apparatus should be arranged upstream of the CO 2 chemical absorption apparatus (absorption tower and regeneration tower). It is preferable to reduce the sulfur oxide concentration of the exhaust gas to about 5 ppm by mass or less by treatment in the desulfurization apparatus. Examples of the solution used for the desulfurization treatment include an alkaline aqueous solution.
(2)一酸化炭素、メタン、炭素数2~4の炭化水素及び窒素
 これらの成分は、アミン溶液に特に影響を及ぼさず、また吸収塔内においてアミン溶液と接触してもアミン溶液に吸収されにくい特性を有する。したがって、これらの成分の大部分は吸収塔上部から排出される。ただし、例えばメタンのごく少量はアミン溶液に吸収され又は気泡として混入し、その後、再生塔において気相に移行し、二酸化炭素含有ガスの不純物の一部となる。これらの成分の原料ガス中の量を基準とすると、二酸化炭素含有ガス中のその量は1/50~1/10000にまで希釈される。したがって、これらの成分については追加の対策を施さなくてもよい。
(2) Carbon monoxide, methane, hydrocarbons having 2 to 4 carbon atoms and nitrogen These components have no particular effect on the amine solution, and are absorbed by the amine solution even if they come into contact with the amine solution in the absorption tower. It has difficult characteristics. Therefore, most of these components are discharged from the upper part of the absorption tower. However, for example, a very small amount of methane is absorbed in the amine solution or mixed as bubbles, and then moves to the gas phase in the regeneration tower and becomes part of the impurities of the carbon dioxide-containing gas. On the basis of the amount of these components in the raw material gas, the amount in the carbon dioxide-containing gas is diluted to 1/50 to 1/10000. Therefore, no additional measures need to be taken for these components.
(3)NO(一酸化窒素及び二酸化窒素)及び酸素
 これらの成分は、アミン溶液と接触してもアミン溶液に吸収されにくい特性を有する。したがって、これらの成分の大部分は吸収塔上部から排出される。ただし、例えば酸素のごく少量はアミン溶液に吸収され又は気泡として混入し、その後、再生塔において気相に移行し、その結果、二酸化炭素含有ガスの不純物の一部となる。これらの成分の原料ガス中の量を基準とすると、二酸化炭素含有ガス中のその量は1/50~1/10000にまで希釈される。これらの成分の含有量を更に低減することが必要な場合は、吸着処理装置の上流側に配置した還元処理装置によってNO及び酸素を除去する。NO及び酸素の除去には例えば水素と貴金属触媒を用いた還元分解装置などを使用すればよい。除去処理により、二酸化炭素含有ガスに残存するNO及び酸素の濃度を5質量ppm以下にまで低減してもよい。
(3) NO X (nitrogen monoxide and nitrogen dioxide) and oxygen These components have a characteristic that they are not easily absorbed by the amine solution even when they come into contact with the amine solution. Therefore, most of these components are discharged from the upper part of the absorption tower. However, for example, a very small amount of oxygen is absorbed in the amine solution or mixed in as bubbles, and then moves to the gas phase in the regeneration tower, resulting in part of the impurities of the carbon dioxide-containing gas. On the basis of the amount of these components in the raw material gas, the amount in the carbon dioxide-containing gas is diluted to 1/50 to 1/10000. When it is necessary to further reduce the contents of these components, NO X and oxygen are removed by a reduction treatment device arranged upstream of the adsorption treatment device. For removal of NO x and oxygen, for example, a reductive decomposition apparatus using hydrogen and a noble metal catalyst may be used. The removal process may reduce the concentration of the NO X and oxygen remaining in the carbon dioxide-containing gas to less than 5 mass ppm.
(4)硫化水素、芳香族炭化水素(BTX)及び炭素数5以上の炭化水素
 これらの成分は、アミン溶液に特に影響を及ぼさないものの、吸収塔においてアミン溶液に吸収される特性を有する。アミン溶液に吸収されたこれらの成分は、再生塔において加熱されることによって気化し、二酸化炭素含有ガスの不純物の一部となる。この二酸化炭素含有ガスにおいては、原料ガスと比較すると二酸化炭素の純度が上がることにより全体のガス量が少なくなるため、これらの成分は濃縮される結果となる。濃縮されたガスを吸着処理装置に供給することで、当該装置において効率的な除去処理が可能である。なお、BTXとはベンゼン、トルエン及びキシレンを意味する。
(4) Hydrogen sulfide, aromatic hydrocarbon (BTX), and hydrocarbon having 5 or more carbon atoms These components do not particularly affect the amine solution, but have the property of being absorbed by the amine solution in the absorption tower. These components absorbed in the amine solution are vaporized by being heated in the regeneration tower and become part of the impurities of the carbon dioxide-containing gas. In this carbon dioxide-containing gas, as compared with the raw material gas, the purity of carbon dioxide is increased, so that the total amount of gas is reduced. Therefore, these components are concentrated. By supplying the concentrated gas to the adsorption processing apparatus, efficient removal processing can be performed in the apparatus. BTX means benzene, toluene and xylene.
 本発明者らはアミン溶液に対する各微量成分の挙動を把握し、これを二酸化炭素製造設備における各装置の配置に反映させた。これにより、各微量成分の効率的な除去処理が実現される。微量成分の種類及び濃度によっては製品である二酸化炭素中に希釈されるため、そもそも除去処理を行う必要がない成分((2)の成分)もある。他方、アミン溶液に吸収され又は混入した成分(成分(3)及び成分(4))は二酸化炭素含有ガス中に比較的濃縮された状態となる。これらのことから、本発明によれば、設備をコンパクト化できるとともに、使用する吸着材量及び触媒量を低減できる。これに対し、各装置を上記のような配置とせず、例えば、排ガスに含まれる有害な微量成分の全種類を、CO化学吸収装置(吸収塔及び再生塔)の上流側で除去しようとした場合、微量成分の濃度が低く且つ多量の排ガスを各装置(還元処理装置及び吸着処理装置など)に供給しなければならない。この場合、必要とされる吸着剤及び触媒の量が膨大な量となり設備が大型化するとともに経済的に見合わないものとなる。 The present inventors grasped the behavior of each trace component with respect to the amine solution, and reflected this in the arrangement of each device in the carbon dioxide production facility. Thereby, the efficient removal process of each trace component is implement | achieved. Depending on the type and concentration of the trace component, some components (component (2)) do not need to be removed because they are diluted in carbon dioxide, which is a product. On the other hand, the components (component (3) and component (4)) absorbed or mixed in the amine solution are relatively concentrated in the carbon dioxide-containing gas. From these things, according to this invention, while being able to make an installation compact, the amount of adsorbents and the amount of catalysts to be used can be reduced. On the other hand, each device is not arranged as described above, and for example, all kinds of harmful trace components contained in the exhaust gas are tried to be removed upstream of the CO 2 chemical absorption device (absorption tower and regeneration tower). In this case, the concentration of trace components is low and a large amount of exhaust gas must be supplied to each device (such as a reduction treatment device and an adsorption treatment device). In this case, the amount of adsorbent and catalyst required is enormous and the equipment becomes large and economically unsuitable.
 本発明は二酸化炭素製造方法を提供する。この方法は、二酸化炭素を製造するための原料ガスである排ガスを脱硫処理する第1工程と、第1工程後の排ガスとアミン溶液とを吸収塔において気液接触させる第2工程と、二酸化炭素を吸収した吸収塔からのアミン溶液を再生塔において加熱処理する第3工程と、再生塔からの二酸化炭素含有ガスと還元触媒とを接触させる第4工程と、第4工程後の二酸化炭素含有ガスと活性炭とを接触させる第5工程とを備える。この方法によれば、十分に高純度の二酸化炭素を効率的に製造できる。 The present invention provides a carbon dioxide production method. This method includes a first step of desulfurizing an exhaust gas that is a raw material gas for producing carbon dioxide, a second step of bringing the exhaust gas and the amine solution after the first step into gas-liquid contact in an absorption tower, carbon dioxide The third step of heat-treating the amine solution from the absorption tower that has absorbed the catalyst in the regeneration tower, the fourth step of bringing the carbon dioxide-containing gas from the regeneration tower into contact with the reduction catalyst, and the carbon dioxide-containing gas after the fourth step And a fifth step of bringing activated carbon into contact with each other. According to this method, sufficiently high purity carbon dioxide can be efficiently produced.
 本発明によれば、十分に高い純度の二酸化炭素を効率的に製造できる。 According to the present invention, sufficiently high purity carbon dioxide can be efficiently produced.
本発明に係る二酸化炭素製造設備の一実施形態を模式的に示す構成図である。It is a lineblock diagram showing typically one embodiment of the carbon dioxide production equipment concerning the present invention. 本発明に係る二酸化炭素製造設備の他の実施形態を模式的に示す構成図である。It is a block diagram which shows typically other embodiment of the carbon dioxide manufacturing facility which concerns on this invention.
<二酸化炭素製造設備>
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。図1に示す二酸化炭素製造設備20は、脱硫装置1と、吸収塔2と、再生塔3と、触媒塔(還元処理装置)8と、吸着塔(吸着処理装置)9とを備え、これらが上流から下流に向けてこの順序で配置されている。吸収塔2と再生塔3とによってCO化学吸収装置10が構成されている。以下、各装置について説明する。以下の説明において、流体を移送するための配管を「ライン」と称する。
<CO2 production facility>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A carbon dioxide production facility 20 shown in FIG. 1 includes a desulfurization apparatus 1, an absorption tower 2, a regeneration tower 3, a catalyst tower (reduction treatment apparatus) 8, and an adsorption tower (adsorption treatment apparatus) 9. They are arranged in this order from upstream to downstream. The absorption tower 2 and the regeneration tower 3 constitute a CO 2 chemical absorption device 10. Hereinafter, each device will be described. In the following description, piping for transferring a fluid is referred to as a “line”.
 脱硫装置1は、原料ガスである排ガスに含まれる硫黄酸化物を除去するための装置である。ラインL1を通じて排ガスが脱硫装置1に供給される。脱硫装置1は、内部に充填槽1aを有する。脱硫装置1には図示しないラインを通じてアルカリ水溶液が供給される。充填槽1aにおいて原料ガスとアルカリ水溶液とが気液接触することでアルカリ溶液に硫黄酸化物が吸収される。アルカリ水溶液としては、炭酸カルシウム水溶液、水酸化ナトリウム水溶液、水酸化マグネシウム水溶液及びアンモニア水などが挙げられる。 The desulfurization apparatus 1 is an apparatus for removing sulfur oxides contained in exhaust gas that is a raw material gas. Exhaust gas is supplied to the desulfurization apparatus 1 through the line L1. The desulfurization apparatus 1 has a filling tank 1a inside. An alkaline aqueous solution is supplied to the desulfurization apparatus 1 through a line (not shown). In the filling tank 1a, the source gas and the aqueous alkali solution come into gas-liquid contact, so that the sulfur oxide is absorbed into the alkaline solution. Examples of the alkaline aqueous solution include a calcium carbonate aqueous solution, a sodium hydroxide aqueous solution, a magnesium hydroxide aqueous solution, and aqueous ammonia.
 二酸化炭素製造用の原料ガスとなり得る排ガスとしては、例えば製鉄所等の設備からの排ガス又は燃焼排ガスが挙げられる。その他の原料ガスとして、LNG火力発電所排ガスのようなCO濃度が比較的低い(≧5体積%)ガスから、製油所の水素製造工程からのオフガスのようなCO濃度が比較的高い(≦60体積%)ガスなどが挙げられる。 Examples of the exhaust gas that can be a raw material gas for producing carbon dioxide include exhaust gas or combustion exhaust gas from facilities such as steelworks. As other raw material gases, CO 2 concentration such as LNG thermal power plant exhaust gas is relatively low (≧ 5% by volume), and CO 2 concentration such as off-gas from refinery hydrogen production process is relatively high ( <= 60 volume%) gas etc. are mentioned.
 原料ガスである排ガスは、二酸化炭素の他に以下の成分(1)~(4)を含み得る。成分のグループ分けは、上述のとおり、アミン溶液に対する特性に基づくものである。なお、原料ガスとして使用し得る排ガスは、必ずしも成分(1)~(4)の全てを含んでいる必要はなく、これらの成分のうちいずれかを含有しなくてもよい。例えば、製鉄所高炉ガス(BFG)は、硫黄酸化物及び窒素酸化物はほとんど含まないガスである。
 成分(1)硫黄酸化物
 成分(2)一酸化炭素、メタン、炭素数2~4の炭化水素及び窒素
 成分(3)NO(一酸化窒素及び二酸化窒素)及び酸素
 成分(4)硫化水素、芳香族炭化水素(BTX)及び炭素数5以上の炭化水素
The exhaust gas as the raw material gas may contain the following components (1) to (4) in addition to carbon dioxide. The grouping of the components is based on the properties for the amine solution as described above. Note that the exhaust gas that can be used as the raw material gas does not necessarily include all of the components (1) to (4), and may not include any of these components. For example, steelworks blast furnace gas (BFG) is a gas that hardly contains sulfur oxides and nitrogen oxides.
Component (1) Sulfur oxide Component (2) Carbon monoxide, methane, C2-C4 hydrocarbon and nitrogen Component (3) NO X (nitrogen monoxide and nitrogen dioxide) and oxygen Component (4) Hydrogen sulfide, Aromatic hydrocarbons (BTX) and hydrocarbons with 5 or more carbon atoms
 表1に原料ガスとして使用可能な排ガスに含まれる成分及びその含有量の好適な範囲を示す。なお、表1中の成分(2)は、上述のとおり、吸収塔内においてアミン溶液と接触してもアミン溶液に吸収されにくい特性を有し、その大部分は吸収塔上部から排出されるため、含有量の好適な範囲は特にない。 Table 1 shows the components contained in the exhaust gas that can be used as the source gas and the preferred ranges of the contents. In addition, since the component (2) in Table 1 has the characteristic that it is difficult to be absorbed by the amine solution even if it contacts the amine solution in the absorption tower as described above, most of it is discharged from the upper part of the absorption tower. There is no particular preferred range for the content.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 吸収塔2は、二酸化炭素を含む排ガスとアミン溶液とを気液接触させてアミン溶液に排ガス中の二酸化炭素を吸収させるためのものである。脱硫装置1の上部に接続されたラインL2を通じ、脱硫処理後の排ガスが吸収塔2へと移送される。アミン溶液としては、モノエタノールアミン溶液(MEA溶液)、メチルジエタノールアミン溶液(MDEA溶液)などのアミン類を使用でき、特に制限されない。 The absorption tower 2 is for making the amine solution absorb the carbon dioxide in the exhaust gas by bringing the exhaust gas containing carbon dioxide and the amine solution into gas-liquid contact. The exhaust gas after the desulfurization treatment is transferred to the absorption tower 2 through a line L2 connected to the upper part of the desulfurization apparatus 1. As the amine solution, amines such as a monoethanolamine solution (MEA solution) and a methyldiethanolamine solution (MDEA solution) can be used and are not particularly limited.
 吸収塔2の塔底部は、ラインL2が接続された入口2aと、二酸化炭素を吸収したアミン溶液(リッチ液)を排出する出口2bとを有する。出口2bにはラインL3が接続されている。吸収塔2の塔頂部は、再生塔3からのリーン液が供給される入口2cと、アミン溶液に吸収されないガスを排出する出口2dとを有する。入口2cには再生塔3からのリーン液を移送するラインL5が接続されている。吸収塔2は、排ガスとアミン溶液とを効率的に接触させるため、例えば金属製又は樹脂製の充填槽2eを内部に有する。なお、出口2dにはアミン溶液に吸収されないガスを放出するためのラインL4が接続されている。 The tower bottom of the absorption tower 2 has an inlet 2a to which a line L2 is connected and an outlet 2b for discharging an amine solution (rich liquid) that has absorbed carbon dioxide. A line L3 is connected to the outlet 2b. The top of the absorption tower 2 has an inlet 2c to which the lean liquid from the regeneration tower 3 is supplied, and an outlet 2d for discharging a gas that is not absorbed by the amine solution. A line L5 for transferring the lean liquid from the regeneration tower 3 is connected to the inlet 2c. The absorption tower 2 has, for example, a metal or resin filling tank 2e in order to efficiently bring the exhaust gas into contact with the amine solution. The outlet 2d is connected to a line L4 for releasing a gas that is not absorbed by the amine solution.
 入口2cからのアミン溶液(リーン液)が充填槽2eにおいて排ガスと接触すると、発熱を伴う反応によって排ガス中の二酸化炭素を吸収する。これによりリーン液がリッチ液となる。なお、ここでいうリーン液及びリッチ液はそれぞれ二酸化炭素濃度を基準とするものであり、二酸化炭素が所定濃度未満であるアミン溶液をリーン液といい、二酸化炭素が所定濃度以上であるアミン溶液をリッチ液という。 When the amine solution (lean liquid) from the inlet 2c comes into contact with the exhaust gas in the filling tank 2e, carbon dioxide in the exhaust gas is absorbed by a reaction accompanied by heat generation. Thereby, the lean liquid becomes a rich liquid. The lean liquid and the rich liquid here are based on the carbon dioxide concentration, respectively. An amine solution having carbon dioxide below a predetermined concentration is called a lean liquid, and an amine solution having carbon dioxide at a predetermined concentration or higher is referred to as a lean liquid. It is called rich liquid.
 再生塔3は、吸収塔2からのリッチ液を加熱することにより、リッチ液から二酸化炭素を高い濃度で含む二酸化炭素含有ガスを回収するためのものである。再生塔3における加熱処理によってリッチ液が再生されてリーン液となる。 The regeneration tower 3 is for recovering a carbon dioxide-containing gas containing carbon dioxide at a high concentration from the rich liquid by heating the rich liquid from the absorption tower 2. The rich liquid is regenerated by the heat treatment in the regeneration tower 3 to become a lean liquid.
 再生塔3の塔底部は、ラインL5が接続された出口3aを有する。ラインL5は途中で分岐したラインL5aを有する。なお、ラインL5aは再生塔3の本体から分岐していてもよい。ラインL5aの途中にはリボイラ4が設けられ、また、その先端は再生塔3の下部に形成された入口3bに接続されている。リボイラ4はリボイラ4内のアミン溶液の温度を制御するための温度制御部4aを有する。 The tower bottom of the regeneration tower 3 has an outlet 3a to which a line L5 is connected. The line L5 has a line L5a branched in the middle. The line L5a may be branched from the main body of the regeneration tower 3. A reboiler 4 is provided in the middle of the line L5a, and its tip is connected to an inlet 3b formed in the lower part of the regeneration tower 3. The reboiler 4 has a temperature control unit 4 a for controlling the temperature of the amine solution in the reboiler 4.
 再生塔3の塔頂部は、ラインL3が接続された入口3cと、二酸化炭素含有ガスを排出するための出口3dとを有する。再生塔3は、例えば金属製又は樹脂製の充填槽3fを内部に有する。リッチ吸収液が充填槽3fを下方へ流れ、その際に二酸化炭素が分離される。またリボイラ4による加熱によっても二酸化炭素が分離される。リッチ液からは二酸化炭素と同時に水蒸気も分離される。二酸化炭素等が分離されて再生したアミン溶液(リーン液)は出口3aから排出され、ラインL5を通じて吸収塔2へと返送される。 The tower top of the regeneration tower 3 has an inlet 3c to which the line L3 is connected and an outlet 3d for discharging the carbon dioxide-containing gas. The regeneration tower 3 has a filling tank 3f made of, for example, metal or resin. The rich absorption liquid flows downward through the filling tank 3f, and carbon dioxide is separated at that time. Carbon dioxide is also separated by heating with the reboiler 4. Water vapor is also separated from the rich liquid simultaneously with carbon dioxide. The amine solution (lean liquid) regenerated by separating carbon dioxide and the like is discharged from the outlet 3a and returned to the absorption tower 2 through the line L5.
 リッチ液を再生塔3に移送するためのラインL3は、その途中にポンプP1と、熱交換器H1とを有する。ラインL3で移送されるリッチ液は、熱交換器H1におけるリーン液との熱交換によって所定温度まで加熱される。 The line L3 for transferring the rich liquid to the regeneration tower 3 has a pump P1 and a heat exchanger H1 in the middle thereof. The rich liquid transferred in the line L3 is heated to a predetermined temperature by heat exchange with the lean liquid in the heat exchanger H1.
 リーン液を吸収塔2に返送するためのラインL5は、その途中にポンプP2と、熱交換器H2とを有する。リーン液は、熱交換器H1,H2における熱交換によって所定温度まで冷却される。 The line L5 for returning the lean liquid to the absorption tower 2 has a pump P2 and a heat exchanger H2 in the middle thereof. The lean liquid is cooled to a predetermined temperature by heat exchange in the heat exchangers H1 and H2.
 再生塔3の出口3dには二酸化炭素含有ガスを移送するためのラインL6が接続されている。ラインL6内を流れる二酸化炭素含有ガスは、例えば他のガスとの熱交換によって冷却され、ラインL6の途中に設けられた気液分離器5によって水分が除去される。気液分離器5で回収された水は、再生塔3上部に設けられた入口3eからラインL7を通じて再生塔3内に戻される。気液分離器5で分離された二酸化炭素含有ガスは、ラインL6及びラインL8を通じて触媒塔8へと移送される。ラインL8の途中には、再生塔3の圧力を制御するための圧力制御弁6と、二酸化炭素含有ガスを昇圧するための圧縮機7とが設けられている。 A line L6 for transferring the carbon dioxide-containing gas is connected to the outlet 3d of the regeneration tower 3. The carbon dioxide-containing gas flowing in the line L6 is cooled, for example, by heat exchange with another gas, and moisture is removed by the gas-liquid separator 5 provided in the middle of the line L6. The water recovered by the gas-liquid separator 5 is returned into the regeneration tower 3 through the line L7 from an inlet 3e provided at the top of the regeneration tower 3. The carbon dioxide-containing gas separated by the gas-liquid separator 5 is transferred to the catalyst tower 8 through the line L6 and the line L8. In the middle of the line L8, a pressure control valve 6 for controlling the pressure of the regeneration tower 3 and a compressor 7 for increasing the pressure of the carbon dioxide-containing gas are provided.
 触媒塔8は、二酸化炭素含有ガスに含まれるNO及び酸素を除去するためのものである。ラインL8を通じて再生塔3からの二酸化炭素含有ガスが触媒塔8に供給される。触媒塔8は、還元触媒が充填された触媒層8aを内部に有する。二酸化炭素含有ガスが触媒層8aを通過することで、二酸化炭素含有ガスに含まれるNO及び酸素が除去される。還元触媒としては、公知の脱酸素触媒を使用でき、担体(例えば、酸化アルミニウム、酸化マグネシウム)に貴金属(例えば、白金、パラジウム、ロジウム、ルテニウム又はこれらの合金)を担持させた触媒を使用できる。これらの成分が除去された二酸化炭素含有ガスは、ラインL9を通じて吸着塔9へと移送される。 Catalyst column 8 is for removing NO X and oxygen contained in the carbon dioxide-containing gas. Carbon dioxide-containing gas from the regeneration tower 3 is supplied to the catalyst tower 8 through the line L8. The catalyst tower 8 has a catalyst layer 8a filled with a reduction catalyst. By passing the carbon dioxide-containing gas through the catalyst layer 8a, NO x and oxygen contained in the carbon dioxide-containing gas are removed. As the reduction catalyst, a known deoxygenation catalyst can be used, and a catalyst in which a noble metal (for example, platinum, palladium, rhodium, ruthenium or an alloy thereof) is supported on a carrier (for example, aluminum oxide or magnesium oxide) can be used. The carbon dioxide-containing gas from which these components have been removed is transferred to the adsorption tower 9 through the line L9.
 触媒塔8に供給される二酸化炭素含有ガスの量は原料ガスの量の数分の一程度にまで低減されるため、触媒塔8を吸収塔2よりも上流側に設ける場合と比較して触媒塔8の処理ガス量を十分に小さくできる。 Since the amount of carbon dioxide-containing gas supplied to the catalyst tower 8 is reduced to about a fraction of the amount of the raw material gas, the catalyst is compared with the case where the catalyst tower 8 is provided upstream of the absorption tower 2. The amount of processing gas in the tower 8 can be made sufficiently small.
 吸着塔9は、触媒塔8からの二酸化炭素含有ガスに含まれる硫化水素、炭素数5以上の炭化水素及び芳香族炭化水素(BTX)等を除去するためのものである。吸着塔9は、活性炭が充填された活性炭層9aを内部に有する。二酸化炭素含有ガスが活性炭層9aを通過することで、二酸化炭素含有ガスに含まれる上記成分が除去される。吸着塔9にはラインL10が接続されており、ラインL10を通じて製品二酸化炭素が目的地(例えばCO液化設備)まで移送される。吸着塔9の処理ガス量は上述の触媒塔8と同様、吸着塔9を吸収塔2よりも上流側に設ける場合と比較して吸着塔9の処理ガス量を十分に小さくできる。 The adsorption tower 9 is for removing hydrogen sulfide, hydrocarbons having 5 or more carbon atoms, aromatic hydrocarbons (BTX) and the like contained in the carbon dioxide-containing gas from the catalyst tower 8. The adsorption tower 9 has an activated carbon layer 9a filled with activated carbon inside. When the carbon dioxide-containing gas passes through the activated carbon layer 9a, the above components contained in the carbon dioxide-containing gas are removed. A line L10 is connected to the adsorption tower 9, and the product carbon dioxide is transferred to a destination (for example, a CO 2 liquefaction facility) through the line L10. Similar to the catalyst tower 8 described above, the treatment gas amount in the adsorption tower 9 can be sufficiently reduced compared to the case where the adsorption tower 9 is provided upstream of the absorption tower 2.
<二酸化炭素製造方法>
 次に、上述の二酸化炭素製造設備20によって製品二酸化炭素を製造する方法について説明する。まず、ラインL1を通じて排ガス(原料ガス)を脱硫装置1に供給し、脱硫装置1内において排ガスの脱硫処理を行う(第1工程)。
<CO2 production method>
Next, a method for producing product carbon dioxide by the carbon dioxide production facility 20 will be described. First, exhaust gas (raw material gas) is supplied to the desulfurization apparatus 1 through the line L1, and exhaust gas desulfurization treatment is performed in the desulfurization apparatus 1 (first step).
 脱硫装置1内においては、排ガスに対してアルカリ水溶液を例えば噴霧することによって排ガスに含まれる硫黄酸化物をアルカリ水溶液に吸収させる。後段のアミン溶液に与える影響を十分に小さくする観点から、脱硫装置1における処理によって排ガスの硫黄酸化物濃度を5質量ppm以下程度(より好ましくは1質量ppm以下)にまで低減することが好ましい。 In the desulfurization apparatus 1, the alkaline aqueous solution absorbs sulfur oxides contained in the exhaust gas by spraying an alkaline aqueous solution on the exhaust gas, for example. From the viewpoint of sufficiently reducing the influence on the subsequent amine solution, it is preferable to reduce the sulfur oxide concentration of the exhaust gas to about 5 ppm by mass or less (more preferably 1 ppm by mass or less) by the treatment in the desulfurization apparatus 1.
 脱硫装置1からの排ガスをラインL2を通じて吸収塔2に供給し、吸収塔2内において排ガスとアミン溶液とを気液接触させる(第2工程)。これにより、アミン溶液に二酸化炭素を吸収させる。アミン溶液には二酸化炭素とともに上記成分(4)も吸収される。一方、成分(2)及び成分(3)の大部分はアミン溶液に吸収されずに出口2dから排出される。原料ガス中の上記成分(2)及び成分(3)の量を基準とすると、二酸化炭素含有ガス中のその量の希釈度は1/50~1/10000となる。 The exhaust gas from the desulfurization apparatus 1 is supplied to the absorption tower 2 through the line L2, and the exhaust gas and the amine solution are brought into gas-liquid contact in the absorption tower 2 (second step). This causes the amine solution to absorb carbon dioxide. The component (4) is also absorbed in the amine solution together with carbon dioxide. On the other hand, most of the component (2) and the component (3) are not absorbed by the amine solution and discharged from the outlet 2d. Based on the amount of the component (2) and the component (3) in the raw material gas, the dilution of the amount in the carbon dioxide-containing gas is 1/50 to 1/10000.
 吸収塔2内の温度は、例えばアミン溶液の種類に応じて設定すればよく、好ましくは20~50℃であり、より好ましくは30~40℃である。吸収塔2内の圧力は0~1.0MPa程度とすればよい。 The temperature in the absorption tower 2 may be set according to, for example, the type of amine solution, and is preferably 20 to 50 ° C., more preferably 30 to 40 ° C. The pressure in the absorption tower 2 may be about 0 to 1.0 MPa.
 再生塔3にラインL3を通じてリッチ液を供給し、再生塔3内においてリッチ液を加熱処理する(第3工程)。これにより、リッチ液から二酸化炭素を分離させるとともにリッチ液をリーン液に再生させる。リッチ液からは二酸化炭素とともに上記成分(2)~(4)も分離される。再生塔3内の温度は、例えばアミン溶液の種類に応じて設定すればよく、好ましくは80~130℃である。再生塔3内の圧力は0~0.3MPa程度とすればよい。 The rich liquid is supplied to the regeneration tower 3 through the line L3, and the rich liquid is heated in the regeneration tower 3 (third step). This separates carbon dioxide from the rich liquid and regenerates the rich liquid into a lean liquid. The components (2) to (4) are separated from the rich liquid together with carbon dioxide. What is necessary is just to set the temperature in the regeneration tower 3 according to the kind of amine solution, for example, Preferably it is 80-130 degreeC. The pressure in the regeneration tower 3 may be about 0 to 0.3 MPa.
 再生塔3からの二酸化炭素含有ガスをラインL6を通じて気液分離器5に供給して水分を除去した後、更にラインL8を通じて触媒塔8に供給する。触媒塔8に供給される二酸化炭素含有ガスの二酸化炭素濃度は、好ましくは99体積%以上であり、より好ましくは99.9体積%である。この時点での二酸化炭素濃度が99.9体積%以上であれば、十分に高い純度の製品二酸化炭素を最終的に製造できる。 The carbon dioxide-containing gas from the regeneration tower 3 is supplied to the gas-liquid separator 5 through the line L6 to remove moisture, and further supplied to the catalyst tower 8 through the line L8. The carbon dioxide concentration of the carbon dioxide-containing gas supplied to the catalyst tower 8 is preferably 99% by volume or more, and more preferably 99.9% by volume. If the carbon dioxide concentration at this point is 99.9% by volume or more, product carbon dioxide with sufficiently high purity can be finally produced.
 触媒塔8内において、二酸化炭素含有ガスと還元触媒とを接触させる(第4工程)。これにより、二酸化炭素含有ガスに含まれる成分(3)を分解除去する。貴金属担持触媒を使用する場合は、水素雰囲気下とし還元処理をすればよい。触媒塔8内の温度は100~300℃程度とすればよい。触媒塔8内の圧力は0~3MPa程度とすればよい。 In the catalyst tower 8, the carbon dioxide-containing gas is brought into contact with the reduction catalyst (fourth step). Thereby, the component (3) contained in the carbon dioxide-containing gas is decomposed and removed. When a noble metal supported catalyst is used, the reduction treatment may be performed under a hydrogen atmosphere. The temperature in the catalyst tower 8 may be about 100 to 300 ° C. The pressure in the catalyst tower 8 may be about 0 to 3 MPa.
 製品二酸化炭素の品質確保の観点から、触媒塔8における処理によって二酸化炭素含有ガスのNO濃度を5質量ppm以下(より好ましくは1質量ppm以下)にまで低減することが好ましい。 From the viewpoint of ensuring the quality of the product carbon dioxide, it is preferable to reduce the NO x concentration of the carbon dioxide-containing gas to 5 mass ppm or less (more preferably 1 mass ppm or less) by the treatment in the catalyst tower 8.
 吸着塔9内において、二酸化炭素含有ガスと活性炭とを接触させる(第5工程)。これにより、二酸化炭素含有ガスに含まれる上記成分(4)を除去する。吸着塔9内の温度は0~40℃程度とすればよい。吸着塔9内の圧力は0~3MPa程度とすればよい。 In the adsorption tower 9, the carbon dioxide-containing gas and activated carbon are brought into contact (fifth step). Thereby, the said component (4) contained in a carbon dioxide containing gas is removed. The temperature in the adsorption tower 9 may be about 0 to 40 ° C. The pressure in the adsorption tower 9 may be about 0 to 3 MPa.
 表2に製品二酸化炭素の純度の好適な範囲とともに、これに残存し得る不純物(微量成分)の許容量の範囲を示す。製品二酸化炭素は、下表の条件を満たすことにより工業用二酸化炭素(例えば飲料用及び溶接用)として使用することも可能である。表2中、「N.D.」は不検出(Not Detected)を意味する。 Table 2 shows a suitable range of the purity of the product carbon dioxide and a range of allowable amounts of impurities (trace components) that can remain in the product carbon dioxide. Product carbon dioxide can also be used as industrial carbon dioxide (for example, for beverages and for welding) by satisfying the conditions in the table below. In Table 2, “ND” means “Not Detected”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。図2は本発明の他の実施形態に係る二酸化炭素製造設備30を模式的に示す構成図である。図2に示すとおり、二酸化炭素製造設備30においてはラインL1に遮断装置12が設けられている。遮断装置12は、排ガスの組成が通常時の範囲から逸脱し、微量成分の含有量が所定値以上に上昇した場合に作動するように制御されている。遮断装置12を設けることで、過剰の微量成分がCO化学吸収装置10及びその下流側の装置(触媒塔8及び吸着塔9)に導入されることを防止できる。これにより、CO化学吸収装置10及びその下流側の装置の処理能力を通常時の範囲に合せて設定することができ、設備のより一層のコンパクト化が可能であるとともに設備に要するコストを削減できる。 As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to the said embodiment. FIG. 2 is a configuration diagram schematically showing a carbon dioxide production facility 30 according to another embodiment of the present invention. As shown in FIG. 2, in the carbon dioxide production facility 30, a shutoff device 12 is provided in the line L1. The shutoff device 12 is controlled so as to operate when the composition of the exhaust gas deviates from the normal range and the content of the trace component rises to a predetermined value or more. By providing the shut-off device 12, it is possible to prevent excessive trace components from being introduced into the CO 2 chemical absorption device 10 and its downstream devices (catalyst tower 8 and adsorption tower 9). As a result, the processing capacity of the CO 2 chemical absorption device 10 and the downstream device can be set in accordance with the normal range, and the equipment can be made more compact and the cost required for the equipment can be reduced. it can.
 遮断装置12は、例えば、切替弁と、排ガス中の微量成分の量を監視するセンサーと、センサーからの信号を切替弁に送って切替弁を閉じるための発信手段とによって構成される。なお、遮断装置12は、CO化学吸収装置10の上流側に設置すればよく、ラインL1に設置する代わりに、あるいは、ラインL1に設置するとともにラインL2に設置してもよい。 The shut-off device 12 includes, for example, a switching valve, a sensor that monitors the amount of a trace component in the exhaust gas, and a transmission unit that sends a signal from the sensor to the switching valve to close the switching valve. Incidentally, shutoff device 12 may be provided on the upstream side of the CO 2 chemical absorption system 10, instead installed in the line L1, or may be installed in the line L2 as well as installed in the line L1.
 二酸化炭素製造設備30による二酸化炭素製造方法は、上述の二酸化炭素製造方法をベースとし、原料ガスの所定成分の濃度が上昇したときに吸収塔2への原料ガス(又は排ガス)の供給を遮断する工程を更に備えてもよい。例えば、原料ガスが燃焼排ガスである場合、原料ガスに含まれる未燃成分の量が増加したときに遮断装置12が作動するようにしてもよい。なお、未燃成分の増加は、燃焼排ガスの残存酸素濃度の低下、又は、残存CO濃度の上昇によって検知することができる。あるいは、排ガスの硫黄酸化物濃度が所定値を超えたときに、排ガスの供給が止まるように遮断装置12の動作を設定してもよい。排ガスの硫黄酸化物濃度が上昇したときに排ガスの供給を遮断することで、脱硫装置1で除去しきれなかった硫黄酸化物が吸収塔2に至り、アミン溶液を劣化させることを十分に抑制できる。 The carbon dioxide production method by the carbon dioxide production facility 30 is based on the carbon dioxide production method described above, and shuts off the supply of the raw material gas (or exhaust gas) to the absorption tower 2 when the concentration of the predetermined component of the raw material gas increases. You may further provide a process. For example, when the source gas is combustion exhaust gas, the shutoff device 12 may be operated when the amount of unburned components contained in the source gas increases. An increase in the unburned component can be detected by a decrease in the residual oxygen concentration of the combustion exhaust gas or an increase in the residual CO concentration. Or you may set operation | movement of the interruption | blocking apparatus 12 so that supply of waste gas may stop when the sulfur oxide density | concentration of waste gas exceeds a predetermined value. By shutting off the supply of exhaust gas when the sulfur oxide concentration of the exhaust gas increases, it is possible to sufficiently suppress the sulfur oxide that could not be removed by the desulfurization apparatus 1 from reaching the absorption tower 2 and deteriorating the amine solution. .
 また、図2に示すように、ラインL3の途中にバッファタンク15を設けてもよい。この位置にバッファタンク15を設けることで、排ガス中の微量成分であってアミン溶液に吸収され又は混入し得る成分(硫黄酸化物、硫化水素、炭素数5以上の炭化水素、芳香族炭化水素、NO及び酸素)の量が短時間(例えば1~3分)のうちに変動しても、それを平準化できるという利点がある。これにより、再生塔3及びその下流側の装置の処理能力を平準化された微量成分量に合せて設定することができ、設備の一層のコンパクト化が可能であるとともに高品質の製造二酸化炭素を安定的且つ低コストで製造できる。また、バッファタンク15をラインL3の途中に設けることで、バッファタンク15として大規模なものを必要としないという利点がある。例えば、排ガスが移送されるラインL1又はラインL2にバッファタンクを設けようとした場合、極めて大規模なタンクを準備する必要がある。また、バッファタンク15を設けることで、製品二酸化炭素濃度及び不純物濃度の変動幅を十分に小さくできるという効果も奏される。原料ガスである排ガスの組成変動の程度にもよるが、バッファタンク15を設けない場合と比較し、これらの変動幅を数十分の一程度以下に抑えることができる。バッファタンク15の容量は、例えば排ガスに含まれる微量成分量の変動の幅及び頻度に応じて設定すればよい。バッファタンク15の滞留時間は1分以上であればよく、5~15分程度であってもよい。なお、ここでいう滞留時間とは、バッファタンク15の容量Vを、ラインL3を流れるリッチ液(アミン溶液)の定常状態における平均流量Qによって除すことによって算出される値(V/Q)を意味する。 Further, as shown in FIG. 2, a buffer tank 15 may be provided in the middle of the line L3. By providing the buffer tank 15 at this position, it is a trace component in the exhaust gas and can be absorbed or mixed in the amine solution (sulfur oxide, hydrogen sulfide, hydrocarbon having 5 or more carbon atoms, aromatic hydrocarbon, be varied within the amount of the NO X and oxygen) for a short time (eg 1-3 minutes), there is an advantage that it can be leveled. As a result, the processing capacity of the regeneration tower 3 and the downstream apparatus can be set in accordance with the leveled amount of trace components, and the equipment can be made more compact and high-quality manufactured carbon dioxide can be produced. It can be manufactured stably and at low cost. Further, by providing the buffer tank 15 in the middle of the line L3, there is an advantage that a large-scale buffer tank 15 is not required. For example, when a buffer tank is to be provided in the line L1 or the line L2 through which the exhaust gas is transferred, it is necessary to prepare an extremely large tank. In addition, the provision of the buffer tank 15 also has an effect that the fluctuation range of the product carbon dioxide concentration and the impurity concentration can be sufficiently reduced. Although depending on the degree of composition variation of the exhaust gas that is the raw material gas, compared with the case where the buffer tank 15 is not provided, the variation range can be suppressed to about several tenths or less. What is necessary is just to set the capacity | capacitance of the buffer tank 15 according to the width and frequency of the fluctuation | variation of the trace amount component contained in exhaust gas, for example. The buffer tank 15 may have a residence time of 1 minute or longer, and may be about 5 to 15 minutes. The residence time here is a value calculated by dividing the volume V B of the buffer tank 15 by the average flow rate Q in the steady state of the rich liquid (amine solution) flowing through the line L3 (V B / Q ).
 また、図2に示す二酸化炭素製造設備30は、リッチ液を移送するラインL3にバッファタンク15を設けられているが、バッファタンク15の代わりにバッファ部(リッチ液のバッファ機能を果たす空間)を吸収塔2の塔底部内又は再生塔3の塔底部内、あるいは、リボイラ4に設けてもよい。更に、二酸化炭素製造設備30は遮断装置12及びバッファタンク15の両方を具備するものであるが、二酸化炭素製造設備20に対して遮断装置12及びバッファタンク15のいずれか一方のみを設けて二酸化炭素製造設備を構成してもよい。 In addition, the carbon dioxide production facility 30 shown in FIG. 2 is provided with the buffer tank 15 in the line L3 for transferring the rich liquid, but instead of the buffer tank 15, a buffer section (a space that performs the buffer function of the rich liquid) is provided. You may provide in the tower bottom part of the absorption tower 2, the tower bottom part of the regeneration tower 3, or the reboiler 4. Furthermore, the carbon dioxide production facility 30 includes both the shut-off device 12 and the buffer tank 15. However, only one of the shut-off device 12 and the buffer tank 15 is provided to the carbon dioxide production facility 20 to provide carbon dioxide. Manufacturing equipment may be configured.
 本発明によれば、十分に高い純度の二酸化炭素を効率的に製造できる。 According to the present invention, sufficiently high purity carbon dioxide can be efficiently produced.
1…脱硫装置、2…吸収塔、3…再生塔、8…触媒塔(還元処理装置)、9…吸着塔(吸着処理装置)、10…CO化学吸収装置、12…遮断装置、15…バッファタンク(バッファ部)、20,30…二酸化炭素製造設備。 1 ... desulfurizer, 2 ... absorption tower, 3 ... regeneration column, 8 ... catalyst column (reduction processing unit), 9 ... adsorption tower (adsorption treatment apparatus), 10 ... CO 2 chemical absorption device, 12 ... blocking device, 15 ... Buffer tank (buffer part), 20, 30 ... Carbon dioxide production facility.

Claims (14)

  1.  二酸化炭素を製造するための原料ガスである排ガスが供給される脱硫装置と、
     前記脱硫装置からの排ガスとアミン溶液とが気液接触する吸収塔と、
     二酸化炭素を吸収した前記吸収塔からのアミン溶液を加熱処理する再生塔と、
     還元触媒が収容されており、前記再生塔からの二酸化炭素含有ガスと前記還元触媒とが接触する還元処理装置と、
     活性炭が収容されており、前記還元処理装置からの二酸化炭素含有ガスと活性炭とが接触する吸着処理装置と、
    を備える二酸化炭素製造設備。
    A desulfurization apparatus to which exhaust gas, which is a raw material gas for producing carbon dioxide, is supplied;
    An absorption tower in which the exhaust gas from the desulfurizer and the amine solution are in gas-liquid contact;
    A regeneration tower for heat-treating an amine solution from the absorption tower that has absorbed carbon dioxide;
    A reduction catalyst containing a reduction catalyst, and the carbon dioxide-containing gas from the regeneration tower and the reduction catalyst are in contact with each other;
    Activated carbon is accommodated, and an adsorption treatment device in which the carbon dioxide-containing gas from the reduction treatment device comes into contact with the activated carbon,
    A carbon dioxide production facility comprising:
  2.  前記原料ガスは硫黄酸化物を含有し、前記脱硫装置内において、前記原料ガスと、アルカリ水溶液とが気液接触する、請求項1に記載の二酸化炭素製造設備。 The carbon dioxide production facility according to claim 1, wherein the raw material gas contains sulfur oxide, and the raw material gas and an aqueous alkali solution are in gas-liquid contact in the desulfurization apparatus.
  3.  前記原料ガスは、一酸化炭素、メタン、炭素数2~4の炭化水素及び窒素からなる群から選ばれる一種以上の成分を含有し、当該成分は前記吸収塔から排出される、請求項1又は2に記載の二酸化炭素製造設備。 The source gas contains one or more components selected from the group consisting of carbon monoxide, methane, hydrocarbons having 2 to 4 carbon atoms, and nitrogen, and the components are discharged from the absorption tower. 2. The carbon dioxide production facility according to 2.
  4.  前記原料ガスは、硫化水素、芳香族炭化水素及び炭素数5以上の炭化水素からなる群から選ばれる一種以上の成分を含有し、当該成分は前記吸着処理装置における前記活性炭に吸着される、請求項1~3のいずれか一項に記載の二酸化炭素製造設備。 The source gas contains one or more components selected from the group consisting of hydrogen sulfide, aromatic hydrocarbons, and hydrocarbons having 5 or more carbon atoms, and the components are adsorbed by the activated carbon in the adsorption treatment apparatus. Item 4. The carbon dioxide production facility according to any one of Items 1 to 3.
  5.  前記原料ガスは、NO及び酸素の少なくとも一方を含有し、前記再生塔からの二酸化炭素含有ガスに残存するNO及び酸素は前記還元処理装置の前記還元触媒によって除去される、請求項1~4のいずれか一項に記載の二酸化炭素製造設備。 The raw material gas contains at least one of the NO X and oxygen, NO X and oxygen remaining in the carbon dioxide-containing gas from the regenerator is removed by the reduction catalyst of the reduction treatment apparatus according to claim 1 5. The carbon dioxide production facility according to any one of 4 above.
  6.  前記吸収塔において二酸化炭素を吸収したアミン溶液を、一時的に受け入れるとともに滞留させるバッファ部を更に備える、請求項1~5のいずれか一項に記載の二酸化炭素製造設備。 The carbon dioxide production facility according to any one of claims 1 to 5, further comprising a buffer unit that temporarily receives and retains the amine solution that has absorbed carbon dioxide in the absorption tower.
  7.  前記吸収塔への前記排ガスの供給を止める遮断装置を前記吸収塔の上流側に備える、請求項1~6のいずれか一項に記載の二酸化炭素製造設備。 The carbon dioxide production facility according to any one of claims 1 to 6, comprising a shut-off device for stopping the supply of the exhaust gas to the absorption tower on the upstream side of the absorption tower.
  8.  二酸化炭素を製造するための原料ガスである排ガスを脱硫処理する第1工程と、
     前記第1工程後の排ガスとアミン溶液とを吸収塔において気液接触させる第2工程と、
     二酸化炭素を吸収した前記吸収塔からのアミン溶液を再生塔において加熱処理する第3工程と、
     前記再生塔からの二酸化炭素含有ガスと還元触媒とを接触させる第4工程と、
     前記第4工程後の二酸化炭素含有ガスと活性炭とを接触させる第5工程と、
    を備える二酸化炭素製造方法。
    A first step of desulfurizing exhaust gas which is a raw material gas for producing carbon dioxide;
    A second step of bringing the exhaust gas and the amine solution after the first step into gas-liquid contact in an absorption tower;
    A third step of heat-treating an amine solution from the absorption tower that has absorbed carbon dioxide in a regeneration tower;
    A fourth step of bringing the carbon dioxide-containing gas from the regeneration tower into contact with the reduction catalyst;
    A fifth step of bringing the carbon dioxide-containing gas after the fourth step into contact with activated carbon;
    A carbon dioxide production method comprising:
  9.  前記原料ガスは硫黄酸化物を含有し、前記脱硫処理は、前記原料ガスと、アルカリ水溶液とを気液接触させるものであり、前記排ガスの硫黄酸化物濃度を5体積ppm以下にまで低減する、請求項8に記載の二酸化炭素製造方法。 The raw material gas contains sulfur oxide, and the desulfurization treatment is a gas-liquid contact between the raw material gas and an alkaline aqueous solution, and the sulfur oxide concentration of the exhaust gas is reduced to 5 ppm by volume or less. The carbon dioxide production method according to claim 8.
  10.  前記原料ガスは、一酸化炭素、メタン、炭素数2~4の炭化水素及び窒素からなる群から選ばれる一種以上の成分を含有し、当該成分を前記吸収塔から排出する、請求項8又は9に記載の二酸化炭素製造方法。 The raw material gas contains one or more components selected from the group consisting of carbon monoxide, methane, hydrocarbons having 2 to 4 carbon atoms, and nitrogen, and the components are discharged from the absorption tower. The carbon dioxide manufacturing method as described in 2.
  11.  前記原料ガスは、硫化水素、芳香族炭化水素及び炭素数5以上の炭化水素からなる群から選ばれる一種以上の成分を含有し、当該成分は前記第5工程における前記活性炭に吸着される、請求項8~10のいずれか一項に記載の二酸化炭素製造方法。 The source gas contains one or more components selected from the group consisting of hydrogen sulfide, aromatic hydrocarbons and hydrocarbons having 5 or more carbon atoms, and the components are adsorbed on the activated carbon in the fifth step. Item 11. The method for producing carbon dioxide according to any one of Items 8 to 10.
  12.  前記第4工程において、前記再生塔からの二酸化炭素含有ガスに残存するNOを還元することによって二酸化炭素含有ガスに残存するNO濃度を5体積ppm以下にまで低減する、請求項8~11のいずれか一項に記載の二酸化炭素製造方法。 The NO x concentration remaining in the carbon dioxide-containing gas is reduced to 5 ppm by volume or less by reducing NO x remaining in the carbon dioxide-containing gas from the regeneration tower in the fourth step. The carbon dioxide manufacturing method as described in any one of these.
  13.  前記吸収塔において二酸化炭素を吸収したアミン溶液を、バッファ部に導入するとともに前記バッファ部において当該アミン溶液を滞留させる、請求項8~12のいずれか一項に記載の二酸化炭素製造方法。 The method for producing carbon dioxide according to any one of claims 8 to 12, wherein the amine solution that has absorbed carbon dioxide in the absorption tower is introduced into the buffer unit and the amine solution is retained in the buffer unit.
  14.  前記原料ガスの所定成分の濃度が上昇したとき、前記吸収塔へのガスの供給を遮断する工程を更に備える、請求項8~13のいずれか一項に記載の二酸化炭素製造方法。 The method for producing carbon dioxide according to any one of claims 8 to 13, further comprising a step of shutting off the supply of gas to the absorption tower when the concentration of a predetermined component of the raw material gas increases.
PCT/JP2016/052671 2015-03-30 2016-01-29 Carbon-dioxide manufacturing facility and carbon-dioxide manufacturing method WO2016157980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069684A JP6297006B2 (en) 2015-03-30 2015-03-30 Carbon dioxide production facility and carbon dioxide production method
JP2015-069684 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157980A1 true WO2016157980A1 (en) 2016-10-06

Family

ID=57005735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052671 WO2016157980A1 (en) 2015-03-30 2016-01-29 Carbon-dioxide manufacturing facility and carbon-dioxide manufacturing method

Country Status (2)

Country Link
JP (1) JP6297006B2 (en)
WO (1) WO2016157980A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606928A (en) * 2017-09-01 2018-01-19 苏州卓润赛豚节能环保科技有限公司 A kind of low temperature exhaust heat processing equipment of dry tail gas
CN109420407A (en) * 2017-08-31 2019-03-05 双叶产业株式会社 The method of carbon dioxide contained in carbon dioxide application equipment and recycling burning waste gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514806A (en) * 2018-03-31 2018-09-11 广西金茂生物化工有限公司 A kind of flue gas desulfurization device and method
JP7013322B2 (en) * 2018-05-16 2022-01-31 株式会社東芝 Carbon dioxide capture system and its operation method
US20220234000A1 (en) * 2019-05-28 2022-07-28 Tokuyama Corporation Method for recovering carbon dioxide gas and other gases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130010A (en) * 1996-10-24 1998-05-19 Nippon Sanso Kk Purifying method of gaseous carbon dioxide and device therefor
JPH10130009A (en) * 1996-10-24 1998-05-19 Nippon Sanso Kk Purifying method of gaseous carbon dioxide and device therefor
JP2008126154A (en) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd Treatment method and treatment apparatus of exhaust gas
JP2013158685A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Co2 recovery device
JP2014226622A (en) * 2013-05-24 2014-12-08 バブコック日立株式会社 Carbon dioxide recovery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130010A (en) * 1996-10-24 1998-05-19 Nippon Sanso Kk Purifying method of gaseous carbon dioxide and device therefor
JPH10130009A (en) * 1996-10-24 1998-05-19 Nippon Sanso Kk Purifying method of gaseous carbon dioxide and device therefor
JP2008126154A (en) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd Treatment method and treatment apparatus of exhaust gas
JP2013158685A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Co2 recovery device
JP2014226622A (en) * 2013-05-24 2014-12-08 バブコック日立株式会社 Carbon dioxide recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420407A (en) * 2017-08-31 2019-03-05 双叶产业株式会社 The method of carbon dioxide contained in carbon dioxide application equipment and recycling burning waste gas
CN109420407B (en) * 2017-08-31 2021-10-15 双叶产业株式会社 Carbon dioxide application apparatus and method for recovering carbon dioxide contained in combustion exhaust gas
CN107606928A (en) * 2017-09-01 2018-01-19 苏州卓润赛豚节能环保科技有限公司 A kind of low temperature exhaust heat processing equipment of dry tail gas

Also Published As

Publication number Publication date
JP2016188161A (en) 2016-11-04
JP6297006B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
US11186529B2 (en) Advanced oxidative coupling of methane
US10960343B2 (en) Methods and systems for performing chemical separations
WO2016157980A1 (en) Carbon-dioxide manufacturing facility and carbon-dioxide manufacturing method
KR101887843B1 (en) System and Method for Generating Power and Enhanced Oil Recovery
EP2565154B1 (en) Process and apparatus for producing hydrogen and carbon monoxide
AU2012347153B2 (en) Method and device for separating hydrogen sulfide and hydrogen production system using the same
EA025315B1 (en) Swing adsorption processes utilizing controlled adsorption fronts
AU2014216630B2 (en) Process for floating liquified natural gas pretreatment
WO2011149724A2 (en) Treatment of natural gas feeds
BRPI0614551A2 (en) method and system for purifying a gas
WO2014193928A1 (en) Removal of sulfur compounds from natural gas streams
JP2013124193A (en) Method and apparatus for purifying helium gas
US10619114B2 (en) Pretreatment equipment for hydrocarbon gas to be liquefied and shipping base equipment
KR102035870B1 (en) Purifying method and purifying apparatus for argon gas
WO2021130530A1 (en) Regeneration schemes for a two-stage adsorption process for claus tail gas treatment
JP2016187796A (en) Carbon dioxide manufacturing facility and carbon dioxide manufacturing method
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
JP2012162444A (en) Refining method and refining apparatus of helium gas
KR20180053161A (en) CO2 recovery method using phase separation during CO2 absorption in hydrazine aqueous solution
JP2019177315A (en) Gas refining apparatus and gas refining method
KR20120116339A (en) Purifying method and purifying apparatus for argon gas
Abdul Manan Optimization of High Content Sour Gas Treating Unit using Amine Solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771864

Country of ref document: EP

Kind code of ref document: A1