WO2016157946A1 - Device and method for manufacturing flow volume control device - Google Patents
Device and method for manufacturing flow volume control device Download PDFInfo
- Publication number
- WO2016157946A1 WO2016157946A1 PCT/JP2016/051495 JP2016051495W WO2016157946A1 WO 2016157946 A1 WO2016157946 A1 WO 2016157946A1 JP 2016051495 W JP2016051495 W JP 2016051495W WO 2016157946 A1 WO2016157946 A1 WO 2016157946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- casing
- cylinder
- load
- engagement groove
- control device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/30—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
- F02M69/32—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an air by-pass around the air throttle valve or with an auxiliary air passage, e.g. with a variably controlled valve therein
Definitions
- the present invention relates to a manufacturing apparatus and a manufacturing method for a flow rate control device having a first casing that houses an operation source and a second casing that houses a control valve that is operated by the operation source.
- Air is supplied to the combustion chamber of the internal combustion engine mounted on the automobile.
- the supply amount of air in other words, the flow rate of air toward the combustion chamber is controlled so that the combustion in the combustion chamber is maintained in a suitable state.
- This flow control is performed by a flow control device.
- the flow control device includes a first casing that houses an operation source such as a motor, and a first valve that operates by the operation source and controls the opening degree of the air flow passage. 2 casings. The first casing and the second casing are connected by bolts.
- the applicant of the present invention relates to a case in which both the first casing and the second casing are made of a resin composition containing at least a thermoplastic resin, and a heat-generating wire is inserted into either the first casing or the second casing.
- An engaging groove is formed on one of the remaining parts of the second casing or the first casing, and the inner wall of the engaging groove and the engaging protrusion are welded to each other. Therefore, a technique for joining the first casing and the second casing is proposed.
- the elastic member such as a spring is used to heat the wire while the first casing is pressed against the second casing, thereby melting the inner wall of the engagement groove and the engagement convex portion.
- the inner wall of the groove is welded to the engaging projection.
- the present invention has been made to solve the above-described problem, and presses the first casing and the second casing with an appropriate load to stably weld the inner wall of the engagement groove and the engagement convex portion. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method for a flow rate control device that can be used.
- the present invention relates to a manufacturing apparatus and a manufacturing apparatus for a flow rate control device having a first casing that houses an operating source, and a second casing that houses a control valve that operates by the operating source and controls the opening of a fluid flow path.
- a flow rate control device having a first casing that houses an operating source, and a second casing that houses a control valve that operates by the operating source and controls the opening of a fluid flow path.
- an engagement groove in which a heat-generating wire is inserted is formed in either the first casing or the second casing containing resin, and the second casing or the first casing is formed.
- One of the remaining portions is provided with an engaging convex portion that enters the engaging groove.
- the flow rate control device manufacturing apparatus includes a cylinder, a heat generation unit, a state detection unit, and a control unit.
- the cylinder presses the first casing relative to the second casing to cause the engagement protrusion to enter the engagement groove.
- the heat generating means causes the wire to generate heat and welds the inner wall of the engagement groove and the engagement protrusion to each other to join the first casing and the second casing.
- the state detection means detects the state of the resin on the inner wall of the engagement groove and the engagement protrusion.
- the control means performs a pressing operation of the cylinder against the first casing and the second casing when welding the inner wall of the engagement groove and the engagement convex portion based on the detection result of the state detection means. Control.
- the method for manufacturing a flow control device includes first to third steps.
- the first step in a state where the wire is inserted into the engagement groove, the cylinder is pressed against the second casing relative to the second casing by the cylinder to cause the engagement protrusion to enter the engagement groove.
- the wire is heated to melt the inner wall of the engagement groove and the engagement protrusion.
- the state detection means detects the resin state on the inner wall of the engagement groove and the engagement protrusion, and based on the detection result of the state detection means, the engagement groove inner wall and the engagement groove
- the pressing operation of the cylinder against the first casing and the second casing at the time of welding the joint convex portion is controlled by the control means.
- the first casing and the first casing when welding the inner wall of the engagement groove and the engagement convex portion based on the detection result (the state of the resin) of the state detection means. 2)
- the pressing operation of the cylinder against the casing is controlled. Accordingly, the first casing and the second casing are pressed with an appropriate load according to the state of the resin (for example, the melting speed of the resin), and the inner wall of the engagement groove and the engagement convex portion are It becomes possible to make it weld stably. As a result, the quality of the flow control device can be improved.
- the state detection means is a load detection sensor that detects a load applied from the cylinder to the first casing and the second casing, or a load of a load current that flows to the cylinder motor when the cylinder is driven.
- a load current detection sensor for detecting a current value is included.
- the control means may press the cylinder at a predetermined pressing speed. Thereby, an appropriate load according to the melting rate of the resin can be set.
- FIG. 2 is a cross-sectional view taken along line II-II in FIG.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2, showing a state in which the first casing and the second casing are close to each other as softening of the engaging protrusions and the like proceeds from FIG. 3.
- It is a schematic block diagram of the manufacturing apparatus which concerns on embodiment of this invention. It is a flowchart which shows operation
- Timing chart which shows the time passage of the load for every pressing speed at the time of welding of the 1st casing and the 2nd casing. It is a timing chart which shows the time passage of the load and welding current value at the time of welding of the 1st casing and the 2nd casing.
- the flow control device is manufactured by the manufacturing apparatus and manufacturing method.
- the flow control device 10 will be described with reference to FIGS.
- the flow rate control device 10 is provided in, for example, an internal combustion engine (not shown) of a motorcycle, and the flow rate of air supplied to the internal combustion engine, that is, so-called intake air flow. Control.
- the flow control device 10 is attached to the internal combustion engine via a throttle body 12.
- An outline of the throttle body 12 will be described.
- the throttle body 12 is formed with an intake passage 14 communicating with an intake port of the internal combustion engine.
- a throttle valve 16 is installed in the intake passage 14 so as to be openable and closable.
- a bypass forward path 18 and a bypass return path 20 are formed in the throttle body 12.
- the bypass forward path 18 is connected to the intake passage 14 upstream of the throttle valve 16, and the bypass return path 20 is connected to the intake passage 14 downstream of the throttle valve 16.
- the flow control device 10 includes a first casing 24 that houses a motor 22 as an operation source, and a second casing 28 that is connected (joined) to the first casing 24 and houses a control valve 26.
- the flow control device 10 is positioned and fixed by attaching the second casing 28 to the throttle body 12.
- the first casing 24 includes a coupler portion 32 that houses the power supply terminal 30, a substantially cylindrical main body portion 34 that is continuous with the coupler portion 32, and a first flange portion 36 that has a slightly larger diameter than the main body portion 34. And integrally. That is, the 1st casing 24 consists of a single member.
- a bottomed first motor housing hole 38 is formed in the main body 34 so as to be depressed. Almost half of the motor body of the motor 22 is fitted into the first motor housing hole 38. The motor 22 is electrically connected to the power supply terminal 30.
- An annular engagement convex portion 40 is formed on the end surface of the first flange portion 36 facing the second casing 28 so as to be directed toward the second casing 28. As will be described later, the engaging convex portion 40 serves to connect (join) the first casing 24 and the second casing 28.
- the second casing 28 includes a second flange portion 42 that faces the first flange portion 36, a valve housing portion 48 in which a second motor housing hole 44 and a sliding hole 46 are formed, and the valve housing.
- a mounting portion 50 that is provided at the end of the portion 48 and is mounted on the throttle body 12 is integrally provided. That is, the second casing 28 is also composed of a single member.
- An annular engagement groove 52 is formed on the end surface of the second flange portion 42 facing the first flange portion 36 at a position corresponding to the position of the engagement convex portion 40. As shown in FIG. 2, which is a cross-sectional view taken along the line II-II in FIG. 1, the engaging groove 52 accommodates a wire 54 that functions as a heating wire. Further, the engaging convex portion 40 enters the engaging groove 52 (see FIG. 1).
- the outer wall of the engaging projection 40 and the inner wall (at least one of the two side walls or the bottom wall) of the engaging groove 52 are integrated with each other by welding. By this welding, the first casing 24 and the second casing 28 are joined (connected).
- the space between the wire 54 and the bottom wall or the two side walls of the engagement groove 52 is filled with a cured product of a resin composition such as PBT (Poly Butylene Terephtalate) softened during welding. In other words, no gap is recognized between the wire 54 and the engagement convex portion 40 or the engagement groove 52.
- PBT Poly Butylene Terephtalate
- a step portion 56 (see FIGS. 3 and 4) is formed. As will be described later, the end surface of the first flange portion 36 abuts on the stepped portion 56 during welding.
- the wire 54 includes an annular portion 58 that is curved so that predetermined portions of one metal wire (for example, a copper wire or a stainless steel wire) are separated from each other, and a radial direction from the annular portion 58. It has the 1st electrode contact part 60 and the 2nd electrode contact part 62 which protruded outward. The first electrode contact portion 60 and the second electrode contact portion 62 are separated from each other by approximately 180 °.
- one metal wire for example, a copper wire or a stainless steel wire
- the first electrode abutting portion 60 is configured by converging the longitudinal ends of the wire 54, while the second electrode abutting portion 62 folds an intermediate portion of the wire 54 to form an annular portion. It is configured by forming two linearly shaped portions from 58 in the diametrically outward direction.
- ribs 64a and 64b are formed to protrude from the first flange portion 36, and ribs 64c and 64d are formed to protrude from the second flange portion.
- An insertion hole 66a is formed through the ribs 64a and 64c, while an insertion hole 66b is formed through the ribs 64b and 64d.
- the first electrode contact portion 60 of the wire 54 is exposed in the insertion hole 66a, and the second electrode contact portion 62 is exposed in the insertion hole 66b.
- the second motor housing hole 44 houses the motor body together with the first motor housing hole 38.
- a seal member 68 made of rubber and having a disk shape is interposed between the second motor housing hole 44 and the sliding hole 46.
- the seal member 68 divides the second motor accommodation hole 44 and the sliding hole 46.
- a through hole is formed in the seal member 68.
- the rotating shaft 70 of the motor 22 protrudes into the sliding hole 46 through this through hole.
- a screw part is engraved at the tip of the rotating shaft 70, and a slider 72 is screwed into the screw part. As a result, the slider 72 is fitted on the rotary shaft 70.
- the rotation shaft 70 can selectively perform either forward rotation or reverse rotation.
- the control valve 26 is a hollow body, and the slider 72 is housed inside the hollow of the control valve 26 while being inserted into the coil spring 74.
- the control valve 26 has a bottom wall 26a formed with a U-shaped groove at its longitudinal end.
- One end of the coil spring 74 having a large diameter is seated on the bottom wall 26a.
- the other end with the small diameter is seated on the large diameter portion 72 a of the slider 72.
- an inlet communication path 76 for communicating the bypass forward path 18 and the sliding hole 46 and an outlet communication path 78 for communicating the sliding hole 46 and the bypass return path 20 are formed in the mounting portion 50.
- Bypass bypass 18, inlet communication path 76, sliding hole 46, outlet communication path 78, and bypass return path 20 form a bypass path that bypasses throttle valve 16.
- a manufacturing apparatus 80 and a manufacturing method according to the present embodiment for manufacturing the flow rate control apparatus 10 configured as described above will be described with reference to FIGS.
- the flow control device 10 will be described with reference to FIGS.
- the manufacturing apparatus 80 includes a support base 82 that supports the second casing 28 of the flow control apparatus 10 as schematically shown in FIG.
- the support base 82 includes a base 82a, a plurality of support posts 82b standing from the base 82a, and a support plate 82c fixed to the upper end of each support post 82b.
- An insertion hole 82d penetrating in the vertical direction is formed at substantially the center of the support plate 82c.
- the second casing 28 is supported by the support base 82 by inserting the valve accommodating portion 48 through the insertion hole 82d and placing the second flange portion 42 on the upper surface of the support plate 82c.
- a pressing mechanism 84 that presses the main body 34 of the first casing 24 from above is provided above the first casing 24 connected to the second casing 28.
- the pressing mechanism 84 includes a cylinder 88 such as an electric cylinder that drives the cylinder motor 85 to move the cylinder rod 86 forward and backward with respect to the main body 34.
- the cylinder rod 86 is inserted through an insertion hole 92 penetrating in the vertical direction substantially at the center of the plate 90.
- the distal end portion 94 of the cylinder rod 86 is configured as a plate member having a larger diameter than the cylinder rod 86.
- the plate 90 is supported by a support plate 98 via a plurality of support columns 96, and a load cell (load detection sensor, state detection means) 100 is fixed on the upper surface of the support plate 98 so as to face the plate 90. .
- the load cell 100 detects the pressing force (load) when the cylinder rod 86 advances downward and the tip end portion 94 presses the load cell 100.
- a pressing plate 104 is connected to the bottom surface of the support plate 98 via a plurality of support columns 102.
- the pressing plate 104 can press (press) the main body 34 of the first casing 24 from above. Accordingly, the load cell 100 detects the pressing force from the tip end portion 94 of the cylinder rod 86, that is, the load acting on the first casing 24 and the second casing 28 from the pressing mechanism 84 via the main body portion 34.
- Insulating receiving pins 110a and 110b are inserted into the insertion holes 66a and 66b shown in FIGS. 2 to 4, respectively, and electrode tips 112a and 112b are inserted (see FIGS. 3 to 5). That is, the receiving electrode 110a and the electrode tip 112a sandwich the first electrode contact portion 60 from above and below, while the receiving pin 110b and the electrode tip 112b sandwich the second electrode contact portion 62 from above and below.
- the manufacturing apparatus 80 includes a PLC 116 and a controller 118 that constitute the control unit 114, a motor driver 119 that drives the cylinder motor 85 of the cylinder 88, and a current value of a load current that flows through the cylinder motor 85 (A load current detection sensor (state detection means) 119a for detecting a load current value), a welding power source 120 for energizing the wire 54 via the electrode tips 112a and 112b, and a weld flowing to the wire 54 via the electrode tips 112a and 112b. It further has a welding current detection sensor 122 that detects a current value (welding current value) of the current.
- the PLC 116 controls controller 118.
- the controller 118 receives the control command from the PLC 116 and controls the entire manufacturing apparatus 80 by controlling the cylinder 88 and the welding power source 120. That is, the controller 118 starts driving control of the cylinder 88 by controlling the motor driver 119 and driving the cylinder motor 85 based on the control signal from the PLC 116.
- the welding power source 120 energizes the wire 54 via the electrode tips 112a and 112b based on a control signal from the controller 118. Therefore, the welding power source 120 and the electrode tips 112a and 112b constitute a heating means 124 that energizes the wire 54 to generate heat.
- the controller 118 detects the load or load current detected by the load cell 100 after starting to press the main casing 34 of the first casing 24 by driving the cylinder 88 and starting to energize the wire 54 from the welding power source 120. Based on the load current value detected by the detection sensor 119a, the pressing operation from the cylinder 88 to the main body 34 can be controlled.
- the rotating shaft 70 of the motor 22 is passed through the through hole of the seal member 68, and the control valve 26 is assembled to the screw portion exposed from the through hole via the slider 72 and the coil spring 74.
- the motor body of the motor 22 is inserted into the first motor housing hole 38, while the control valve 26 is inserted into the sliding hole 46 through the second motor housing hole 44.
- the first flange portion 36 and the second flange portion 42 are brought close to each other, and the engaging convex portion 40 is inserted into the engaging groove 52.
- the wire 54 is deformed into the shape shown in FIG. In this case, the distal end wall of the engaging convex portion 40 is in contact with the wire 54, and at this time, the end surface of the first flange portion 36 is not in contact with the top surface of the stepped portion 56. A predetermined clearance is formed. In this state, when the valve accommodating portion 48 of the second casing 28 is inserted into the insertion hole 82d, the second flange portion 42 is placed on the upper surface of the support plate 82c, so that the first casing 24 and the second casing 28 are moved. It can be supported by the support base 82.
- the insulating receiving pins 110a and 110b are inserted into the insertion holes 66a and 66b, and the electrode tips 112a and 112b are inserted. That is, the receiving electrode 110a and the electrode tip 112a sandwich the first electrode contact portion 60 from above and below, while the receiving pin 110b and the electrode tip 112b sandwich the second electrode contact portion 62 from above and below.
- step S1 of FIG. 6 first, the pressing speed and the load current limit value are preset in the controller 118. At that time, the pressing speed is set to a predetermined pressing speed (for example, x [mm / s]) using a timing chart of FIG.
- the load current limit value is set to a predetermined value as the upper limit of the load current.
- the PLC 116 outputs a control signal instructing the start of the pressing operation to the first casing 24 to the controller 118.
- the controller 118 drives the motor driver 119 based on the input control signal, and the motor driver 119 drives and controls the cylinder motor 85 to drive the cylinder 88. Accordingly, the cylinder rod 86 is directed downward toward the first casing 24 at a predetermined pressing speed.
- the load cell 100 detects the pressing force from the distal end portion 94 and outputs a detection signal corresponding to the detected pressing force to the controller 118. To do.
- the cylinder rod 86 further presses the load cell 100 via the distal end portion 94, the load cell 100, the support plate 98, the columns 96 and 102, the plate 90, and the pressing plate 104 are integrally lowered by the pressing force.
- the load cell 100 can output a detection signal corresponding to the pressing force to the controller 118.
- the controller 118 has, for example, a magnitude of a pressing force (load) according to a detection signal from the load cell 100 such that the magnitude of a predetermined load when the pressing mechanism 84 presses the first casing 24 and the second casing 28. If it is determined, the process proceeds to the next step S3.
- step S3 the controller 118 outputs a control signal for starting energization to the wire 54 to the welding power source 120. Based on the input control signal, the welding power source 120 energizes the electrode tip 112a through the wire 54 so that a welding current flows from the electrode tip 112b to the electrode tip 112b.
- step S4 the wire 54 generates heat due to the energization.
- the portions of the wire 54 other than the first electrode contact portion 60 and the second electrode contact portion 62 are in contact with at least the bottom wall of the engagement groove 52 and the tip wall of the engagement protrusion 40. Therefore, the heat from the wire 54 is transmitted to each wall portion of the engagement groove 52 and the engagement convex portion 40, and both the wall portions of the engagement groove 52 and the outer wall portion of the engagement convex portion 40 are transmitted.
- the wall (resin composition) softens and becomes flowable.
- step S3, S4 comprises a 2nd step.
- step S5 the controller 118 monitors the presence or absence of a decrease in load detected by the load cell 100 or the presence or absence of a decrease in load current value detected by the load current detection sensor 119a.
- step S6 the controller 118 sends a control signal for causing the first casing 24 to perform a further pressing operation to the motor driver 119. Output.
- the pressing mechanism 84 melts the softened resin composition even if it intends to push the first casing 24 toward the second casing 28 with the same load. Depending on the case, the first casing 24 is pushed in quickly. Thereby, the load which acts on the 1st casing 24 and the 2nd casing 28 will fall. As a result, compared to before the resin composition is softened, the load received by the first casing 24 and the second casing 28 is reduced, the load current value is also reduced, and each wall of the engagement groove 52 is appropriately loaded. It becomes impossible to weld a part and the engagement convex part 40.
- the controller 118 monitors the decrease in the load or load current value reflecting the state of the molten resin composition and detects that the decrease in the load or the load current value has occurred, an appropriate load can be obtained.
- the cylinder motor 85 of the cylinder 88 is driven and controlled by controlling the motor driver 119 so as to return to (to maintain a constant load).
- the controller 118 controls the motor driver 119 so as to increase the pressing force to drive and control the cylinder motor 85 of the cylinder 88.
- the cylinder rod 86 further proceeds toward the first casing 24.
- the first casing 24 is further pushed into the second casing 28 side, and the load received by the first casing 24 and the second casing 28 increases (returns) (step S7).
- the value of the load current flowing through the cylinder motor 85 of the cylinder 88 also increases.
- step S8 the controller 118 monitors whether or not the load current value detected by the load current detection sensor 119a has increased to the load current limit value. In this case, when it is detected that the load current value has increased to the load current limit value (step S8: YES), the controller 118 stops the pressing operation on the first casing 24 in the next step S9. Therefore, the motor driver 119 is controlled.
- step S ⁇ b> 10 the progress of the cylinder rod 86 is stopped by stopping the driving of the cylinder motor 85 by stopping the motor driver 119.
- steps S5 to S10 constitute the third step.
- the controller 118 determines whether or not the welding of each wall portion of the engagement groove 52 and the engagement convex portion 40 has been completed. Specifically, when the engagement convex portion 40 enters the engagement groove 52, the end surface of the first flange portion 36 comes into contact with the top surface of the step portion 56, the first flange portion 36 is dammed, and the engagement It is determined whether or not the joint protrusion 40 is prevented from further entering the engagement groove 52.
- step S11 NO
- the process returns to step S4, and the processes of steps S4 to S10 are repeated.
- step S6 the controller 118 controls the motor driver 119 to resume the driving of the cylinder motor 85 of the cylinder 88 and the first casing by the cylinder rod 86. 24 and the second casing 28 are pressed again.
- step S11 when it is confirmed in step S11 that the above welding has been completed (step S11: YES), the controller 118 controls the welding power source 120 to stop energization of the wire 54. Thereby, the heat generation of the wire 54 is completed, and the softened and fluidized resin composition is cured. By this curing, the first casing 24 and the second casing 28 are joined and integrated.
- the controller 118 controls the motor driver 119 to drive the cylinder motor 85 of the cylinder 88 and retract the cylinder rod 86 upward.
- the plate 90, the respective columns 96 and 102, the support plate 98, and the pressing plate 104 are integrally moved upward, and the pressing plate 104 is moved to the first casing 24. Separated from the main body 34. Thereby, the 1st casing 24 and the 2nd casing 28 are released from a pressing state. Thereafter, the receiving pins 110a and 110b and the electrode tips 112a and 112b are taken out from the insertion holes 66a and 66b, respectively.
- FIG. 7 is a timing chart illustrating a temporal change in load for each pressing speed (x [mm / s] to 9 x [mm / s]) of the cylinder rod 86 from the time when the resin composition starts to melt. is there.
- the controller 118 drives the cylinder motor 85 of the cylinder 88 under the control of the motor driver 119 to increase the pressing force as in the processing of steps S4 to S11 in FIG.
- the load repeatedly moves up and down as time passes. This is because the process of steps S4 to S11 in FIG. 6 is repeated to drive and stop the cylinder 88 (the cylinder rod 86). This is because the reduction and return of the load are repeated by repeatedly performing (start and stop of the progress).
- the controller 118 sets the pressing speed according to the above conditions, A load current limit value may be set.
- FIG. 8 is a timing chart showing the passage of time between the load received by the first casing 24 and the second casing 28 until the welding is completed and the welding current value flowing through the wire 54.
- energization of the wire 54 is started at time t0, and a welding current having a substantially constant value is allowed to flow in time zones t0 to t1 and t1 to t2, respectively, and then the energization is stopped at time t2.
- the welding current value decreases in the order of the time periods t0 to t1 and t1 to t2.
- the process of steps S4 to S11 in FIG. 6 is repeatedly performed, so that the cylinder 88 is repeatedly driven and stopped, and the load is repeatedly lowered and returned, whereby the load repeatedly moves up and down over time. To do.
- the controller 118 of the control means 114 is configured so that the load received by the first casing 24 and the second casing 28 reflecting the state of the resin composition, or the cylinder motor 85 of the cylinder 88.
- the pressing operation of the cylinder 88 against the first casing 24 and the second casing 28 when welding the inner wall of the engagement groove 52 and the engagement convex portion 40 is controlled based on the load current value flowing through the cylinder.
- the first casing 24 and the second casing 28 are pressed with an appropriate load according to the state of the resin composition (for example, the melting rate of the resin composition), and the inner wall of the engagement groove 52 and the engagement convex portion 40 are Can be stably welded.
- the quality of the flow control device 10 can be improved.
- the load cell 100 detects the load applied to the first casing 24 and the second casing 28 from the cylinder rod 86, or the load current detection sensor 119a flows to the cylinder motor 85 when the cylinder 88 is driven. Detects the load current value.
- the controller 118 detects a decrease in the load or load current value accompanying the melting of the resin composition on the inner wall of the engagement groove 52 and the engagement projection 40, the operation of pressing the cylinder rod 86 at a predetermined pressing speed. Can be performed. Thereby, the suitable load according to the melting rate of the resin composition can be set.
- the first casing 24 and the second casing 28 can be integrated without using bolts or mounting plates. Therefore, it is possible to reduce the number of parts constituting the flow control device 10. Moreover, the complicated operation
- the control valve 26 moves under the control action of an engine control unit (ECU) (not shown) electrically connected to the power feeding terminal 30 in FIG.
- ECU engine control unit
- the opening degree of the outlet communication passage 78 is adjusted. That is, when the throttle valve 16 is fully closed, the ECU moves the control valve 26 based on the information related to the operating state of the internal combustion engine so that the outlet communication path 78 has an appropriate opening degree.
- the ECU rotates the rotation shaft 70 by, for example, a predetermined amount in the forward rotation direction by controlling the amount of power supplied to the motor 22 via the power supply terminal 30.
- the rotational driving force at this time is converted into a driving force for linear motion of the control valve 26 via the slider 72. Therefore, for example, the control valve 26 in the sliding hole 46 is displaced from the position shown in FIG. 1 to the outlet communication passage 78 side. At this time, the control valve 26 is in sliding contact with the inner wall of the sliding hole 46.
- the opening of the outlet communication passage 78 is closed to a predetermined degree by the displaced control valve 26. As a result, the opening degree of the outlet communication passage 78 is adjusted. That is, the control valve 26 controls the opening degree of the bypass passage that is a flow passage of air (intake air) that is a fluid.
- the air (intake air) introduced into the intake passage 14 enters the slide hole 46 from the bypass outward passage 18 via the inlet communication passage 76, and returns to the intake passage 14 from the outlet communication passage 78 through the bypass return passage 20.
- intake air is returned to the intake passage 14 through the inside of the flow control device 10, that is, the bypass passage.
- the intake air flowing through the bypass passage is controlled to a flow rate corresponding to the opening degree of the outlet communication passage 78.
- the ECU rotates the rotating shaft 70 of the motor 22 by, for example, a predetermined amount in the reverse rotation direction.
- the control valve 26 returns to the position shown in FIG. 1 while sliding on the inner wall of the sliding hole 46.
- the opening of the outlet communication passage 78 is fully opened.
- the present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
- the engaging groove 52 is formed in the first flange portion 36 of the first casing 24 and the engaging convex portion 40 is provided in the second flange portion 42 of the second casing 28. Good.
- the pressing mechanism 84 presses the main body 34 of the first casing 24 has been described. If the pressing mechanism 84 can press the first casing 24 relative to the second casing 28, the above effects can be easily obtained. Therefore, in the present embodiment, even if the manufacturing apparatus 80 is configured such that the pressing mechanism 84 presses the second casing 28 against the first casing 24, the above-described effects can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
In a manufacturing device (80) for a flow volume control device (10), a cylinder rod (86) of a cylinder (88) is used to press together a first casing (24) and a second casing (28), and a wire rod (54) is made to generate heat, thereby welding together the inner wall of an engaging groove (52) and an engaging protrusion (40). A load cell (100) detects a load applied to the first casing (24) and the second casing (28), and a load current detection sensor (119a) detects the value of a load current flowing in a cylinder motor (85). On the basis of the load or the load current value, a controller (118) controls the pressing operation of the cylinder (88) with respect to the first casing (24) and second casing (28) when the inner wall of the engaging groove (52) and the engaging protrusion (40) are welded together.
Description
本発明は、動作源を収容した第1ケーシングと、前記動作源によって動作する制御弁を収容した第2ケーシングとを有する流量制御装置の製造装置及び製造方法に関する。
The present invention relates to a manufacturing apparatus and a manufacturing method for a flow rate control device having a first casing that houses an operation source and a second casing that houses a control valve that is operated by the operation source.
自動車に搭載される内燃機関の燃焼室には、空気が供給される。ここで、空気の供給量、換言すれば、燃焼室に向かう空気の流量は、燃焼室での燃焼が好適な状態に維持されるように制御される。この流量制御は、流量制御装置によって営まれる。
Air is supplied to the combustion chamber of the internal combustion engine mounted on the automobile. Here, the supply amount of air, in other words, the flow rate of air toward the combustion chamber is controlled so that the combustion in the combustion chamber is maintained in a suitable state. This flow control is performed by a flow control device.
この種の流量制御装置として、特許第4555822号公報に記載されたものが知られている。この従来技術につき概略説明すると、該流量制御装置は、モータ等の動作源を収容した第1ケーシングと、前記動作源によって動作し、空気の流通路の開度を制御する制御弁を収容した第2ケーシングとを有する。これら第1ケーシング及び第2ケーシングは、ボルトによって連結される。
As this type of flow control device, one described in Japanese Patent No. 4555822 is known. Briefly describing this prior art, the flow control device includes a first casing that houses an operation source such as a motor, and a first valve that operates by the operation source and controls the opening degree of the air flow passage. 2 casings. The first casing and the second casing are connected by bolts.
第1ケーシングと第2ケーシングとをボルトで連結する場合、第1ケーシングに取付板を外嵌するようにしている。すなわち、上記した従来技術では、ボルトや取付板が必要な分、部品点数が多くなる。さらに、ボルトを螺回する作業が必要であるので煩雑であり、また、作業効率を向上させることが容易ではない。
When connecting the first casing and the second casing with a bolt, a mounting plate is externally fitted to the first casing. That is, in the above-described prior art, the number of parts is increased by the amount of bolts and mounting plates required. Furthermore, since the operation | work which twists a volt | bolt is required, it is complicated, and it is not easy to improve work efficiency.
そこで、本出願人は、第1ケーシング及び第2ケーシングの双方を少なくとも熱可塑性樹脂を含有する樹脂組成物とし、第1ケーシング又は第2ケーシングのいずれか一方に、発熱可能な線材を挿入した係合溝を形成するとともに、第2ケーシング又は第1ケーシングの残余の一方に、該係合溝に進入する係合凸部を設け、係合溝の内壁と係合凸部とを互いに溶着することで、第1ケーシングと第2ケーシングとを接合する技術を提案している。
Therefore, the applicant of the present invention relates to a case in which both the first casing and the second casing are made of a resin composition containing at least a thermoplastic resin, and a heat-generating wire is inserted into either the first casing or the second casing. An engaging groove is formed on one of the remaining parts of the second casing or the first casing, and the inner wall of the engaging groove and the engaging protrusion are welded to each other. Therefore, a technique for joining the first casing and the second casing is proposed.
この場合、バネ等の弾性手段を用いて、第1ケーシングを第2ケーシングに相対的に押し付けた状態で線材を発熱させることで、係合溝の内壁と係合凸部とを溶融し、係合溝の内壁と前記係合凸部とを溶着する。
In this case, the elastic member such as a spring is used to heat the wire while the first casing is pressed against the second casing, thereby melting the inner wall of the engagement groove and the engagement convex portion. The inner wall of the groove is welded to the engaging projection.
しかしながら、係合溝の内壁と係合凸部とが溶融すると、溶融した樹脂が流動するため、弾性手段から第1ケーシング及び第2ケーシングにかかる荷重が低下してしまう。すなわち、弾性手段は、第1ケーシング及び第2ケーシングを押圧するのみで、荷重を調整することができない。そのため、適切な荷重で第1ケーシング及び第2ケーシングを押圧して、係合溝の内壁と係合凸部とを溶着させることが難しくなる。
However, when the inner wall of the engagement groove and the engagement protrusion melt, the molten resin flows, and the load applied to the first casing and the second casing from the elastic means is reduced. That is, the elastic means only presses the first casing and the second casing, and cannot adjust the load. Therefore, it becomes difficult to press the first casing and the second casing with an appropriate load to weld the inner wall of the engagement groove and the engagement convex portion.
本発明は、上記した問題を解決するためになされたもので、適切な荷重で第1ケーシング及び第2ケーシングを押圧して、係合溝の内壁と係合凸部とを安定して溶着させることが可能となる流量制御装置の製造装置及び製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problem, and presses the first casing and the second casing with an appropriate load to stably weld the inner wall of the engagement groove and the engagement convex portion. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method for a flow rate control device that can be used.
本発明は、動作源を収容した第1ケーシングと、前記動作源によって動作して流体の流通路の開度を制御する制御弁を収容した第2ケーシングとを有する流量制御装置の製造装置及び製造方法に関する。前記流量制御装置では、樹脂を含有する前記第1ケーシング又は前記第2ケーシングのいずれか一方に、発熱可能な線材を挿入した係合溝が形成されるとともに、前記第2ケーシング又は前記第1ケーシングの残余の一方に、前記係合溝に進入する係合凸部が設けられている。
The present invention relates to a manufacturing apparatus and a manufacturing apparatus for a flow rate control device having a first casing that houses an operating source, and a second casing that houses a control valve that operates by the operating source and controls the opening of a fluid flow path. Regarding the method. In the flow control device, an engagement groove in which a heat-generating wire is inserted is formed in either the first casing or the second casing containing resin, and the second casing or the first casing is formed. One of the remaining portions is provided with an engaging convex portion that enters the engaging groove.
この場合、前記の目的を達成するため、本発明に係る流量制御装置の製造装置は、シリンダ、発熱手段、状態検出手段及び制御手段を有する。前記シリンダは、前記係合溝に前記線材を挿入した状態で、前記第1ケーシングを前記第2ケーシングに相対的に押し付けて前記係合溝に前記係合凸部を進入させる。前記発熱手段は、前記線材を発熱させて、前記係合溝の内壁と前記係合凸部とを互いに溶着させることにより、前記第1ケーシングと前記第2ケーシングとを接合させる。前記状態検出手段は、前記係合溝の内壁及び前記係合凸部における樹脂の状態を検出する。前記制御手段は、前記状態検出手段の検出結果に基づいて、前記係合溝の内壁と前記係合凸部とを溶着する際の前記第1ケーシング及び前記第2ケーシングに対する前記シリンダの押付動作を制御する。
In this case, in order to achieve the above-described object, the flow rate control device manufacturing apparatus according to the present invention includes a cylinder, a heat generation unit, a state detection unit, and a control unit. In the state where the wire is inserted into the engagement groove, the cylinder presses the first casing relative to the second casing to cause the engagement protrusion to enter the engagement groove. The heat generating means causes the wire to generate heat and welds the inner wall of the engagement groove and the engagement protrusion to each other to join the first casing and the second casing. The state detection means detects the state of the resin on the inner wall of the engagement groove and the engagement protrusion. The control means performs a pressing operation of the cylinder against the first casing and the second casing when welding the inner wall of the engagement groove and the engagement convex portion based on the detection result of the state detection means. Control.
また、前記の目的を達成するため、本発明に係る流量制御装置の製造方法は、第1~第3ステップを有する。前記第1ステップでは、前記係合溝に前記線材を挿入した状態で、シリンダにより前記第1ケーシングを前記第2ケーシングに相対的に押し付けて前記係合溝に前記係合凸部を進入させる。前記第2ステップでは、前記線材を発熱させて、前記係合溝の内壁と前記係合凸部とを溶融させる。前記第3ステップでは、前記係合溝の内壁及び前記係合凸部における樹脂の状態を状態検出手段で検出し、前記状態検出手段の検出結果に基づいて、前記係合溝の内壁と前記係合凸部とを溶着する際の前記第1ケーシング及び前記第2ケーシングに対する前記シリンダの押付動作を制御手段により制御する。
In order to achieve the above object, the method for manufacturing a flow control device according to the present invention includes first to third steps. In the first step, in a state where the wire is inserted into the engagement groove, the cylinder is pressed against the second casing relative to the second casing by the cylinder to cause the engagement protrusion to enter the engagement groove. In the second step, the wire is heated to melt the inner wall of the engagement groove and the engagement protrusion. In the third step, the state detection means detects the resin state on the inner wall of the engagement groove and the engagement protrusion, and based on the detection result of the state detection means, the engagement groove inner wall and the engagement groove The pressing operation of the cylinder against the first casing and the second casing at the time of welding the joint convex portion is controlled by the control means.
このように、本発明では、前記状態検出手段の検出結果(前記樹脂の状態)に基づいて、前記係合溝の内壁と前記係合凸部とを溶着する際の前記第1ケーシング及び前記第2ケーシングに対する前記シリンダの押付動作を制御する。これにより、前記樹脂の状態(例えば、前記樹脂の溶融速度)に応じた適切な荷重で前記第1ケーシング及び前記第2ケーシングを押圧し、前記係合溝の内壁と前記係合凸部とを安定に溶着させることが可能となる。この結果、前記流量制御装置の品質を高めることができる。
Thus, in the present invention, the first casing and the first casing when welding the inner wall of the engagement groove and the engagement convex portion based on the detection result (the state of the resin) of the state detection means. 2) The pressing operation of the cylinder against the casing is controlled. Accordingly, the first casing and the second casing are pressed with an appropriate load according to the state of the resin (for example, the melting speed of the resin), and the inner wall of the engagement groove and the engagement convex portion are It becomes possible to make it weld stably. As a result, the quality of the flow control device can be improved.
具体的に、前記状態検出手段は、前記シリンダから前記第1ケーシング及び前記第2ケーシングにかかる荷重を検出する荷重検出センサ、又は、前記シリンダが駆動する際に、シリンダモータに流れる負荷電流の負荷電流値を検出する負荷電流検出センサを含む。ここで、前記係合溝の内壁及び前記係合凸部における前記樹脂の溶融に伴う前記荷重の低下を前記荷重検出センサが検出した場合、又は、前記負荷電流値の低下を前記負荷電流検出センサが検出した場合、前記制御手段は、前記シリンダを所定の押付速度によって押付動作させればよい。これにより、前記樹脂の溶融速度に応じた適切な荷重を設定することができる。
Specifically, the state detection means is a load detection sensor that detects a load applied from the cylinder to the first casing and the second casing, or a load of a load current that flows to the cylinder motor when the cylinder is driven. A load current detection sensor for detecting a current value is included. Here, when the load detection sensor detects a decrease in the load accompanying the melting of the resin in the inner wall of the engagement groove and the engagement projection, or a decrease in the load current value is detected in the load current detection sensor. If detected, the control means may press the cylinder at a predetermined pressing speed. Thereby, an appropriate load according to the melting rate of the resin can be set.
以下、本発明に係る流量制御装置の製造装置及び製造方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
Hereinafter, preferred embodiments of a manufacturing apparatus and a manufacturing method of a flow control device according to the present invention will be described in detail with reference to the accompanying drawings.
ここでは、本実施の形態に係る流量制御装置の製造装置及び製造方法(以下、本実施の形態に係る製造装置及び製造方法ともいう。)の説明に先立ち、該製造装置及び製造方法によって製造された流量制御装置10について、図1~図4を参照しながら説明する。
Here, prior to the description of the manufacturing apparatus and manufacturing method of the flow control device according to the present embodiment (hereinafter also referred to as the manufacturing apparatus and manufacturing method according to the present embodiment), the flow control device is manufactured by the manufacturing apparatus and manufacturing method. The flow control device 10 will be described with reference to FIGS.
図1の概略側面断面図に示すように、流量制御装置10は、例えば、自動二輪車の内燃機関(図示せず)に設けられ、該内燃機関に供給される空気、すなわち、いわゆる吸気の流量を制御する。
As shown in the schematic side sectional view of FIG. 1, the flow rate control device 10 is provided in, for example, an internal combustion engine (not shown) of a motorcycle, and the flow rate of air supplied to the internal combustion engine, that is, so-called intake air flow. Control.
流量制御装置10は、スロットルボディ12を介して前記内燃機関に装着される。このスロットルボディ12につき概略説明すると、該スロットルボディ12には、内燃機関の吸気ポートに連通する吸気道14が形成されている。この吸気道14には、スロットルバルブ16が開閉可能に設置される。また、スロットルボディ12内には、バイパス往路18及びバイパス復路20が形成される。バイパス往路18はスロットルバルブ16の上流側で吸気道14に連なり、バイパス復路20はスロットルバルブ16の下流側で吸気道14に連なる。
The flow control device 10 is attached to the internal combustion engine via a throttle body 12. An outline of the throttle body 12 will be described. The throttle body 12 is formed with an intake passage 14 communicating with an intake port of the internal combustion engine. A throttle valve 16 is installed in the intake passage 14 so as to be openable and closable. In addition, a bypass forward path 18 and a bypass return path 20 are formed in the throttle body 12. The bypass forward path 18 is connected to the intake passage 14 upstream of the throttle valve 16, and the bypass return path 20 is connected to the intake passage 14 downstream of the throttle valve 16.
流量制御装置10は、動作源としてのモータ22を収容した第1ケーシング24と、該第1ケーシング24に連結(接合)され且つ制御弁26を収容した第2ケーシング28とを有する。流量制御装置10は、第2ケーシング28がスロットルボディ12に装着されることで位置決め固定されている。
The flow control device 10 includes a first casing 24 that houses a motor 22 as an operation source, and a second casing 28 that is connected (joined) to the first casing 24 and houses a control valve 26. The flow control device 10 is positioned and fixed by attaching the second casing 28 to the throttle body 12.
第1ケーシング24は、給電用端子30を収容したカプラ部32と、該カプラ部32に連なる略円筒形状の本体部34と、該本体部34に比して若干大径な第1フランジ部36とを一体的に有する。すなわち、第1ケーシング24は単一部材からなる。
The first casing 24 includes a coupler portion 32 that houses the power supply terminal 30, a substantially cylindrical main body portion 34 that is continuous with the coupler portion 32, and a first flange portion 36 that has a slightly larger diameter than the main body portion 34. And integrally. That is, the 1st casing 24 consists of a single member.
本体部34には、有底の第1モータ収容孔38が陥没形成される。前記モータ22のモータ本体の略半分は、この第1モータ収容孔38に嵌合される。モータ22は、前記給電用端子30に電気的に接続されている。
A bottomed first motor housing hole 38 is formed in the main body 34 so as to be depressed. Almost half of the motor body of the motor 22 is fitted into the first motor housing hole 38. The motor 22 is electrically connected to the power supply terminal 30.
第1フランジ部36の、第2ケーシング28に臨む側の端面には、環状の係合凸部40が第2ケーシング28に指向するように突出形成されている。後述するように、この係合凸部40が、第1ケーシング24と第2ケーシング28との連結(接合)を担う。
An annular engagement convex portion 40 is formed on the end surface of the first flange portion 36 facing the second casing 28 so as to be directed toward the second casing 28. As will be described later, the engaging convex portion 40 serves to connect (join) the first casing 24 and the second casing 28.
一方、第2ケーシング28は、第1フランジ部36に対向する第2フランジ部42と、その内部に第2モータ収容孔44及び摺動孔46が形成された弁収容部48と、該弁収容部48の端部に設けられてスロットルボディ12に装着される装着部50とを一体的に有する。すなわち、第2ケーシング28もまた、単一部材からなる。
On the other hand, the second casing 28 includes a second flange portion 42 that faces the first flange portion 36, a valve housing portion 48 in which a second motor housing hole 44 and a sliding hole 46 are formed, and the valve housing. A mounting portion 50 that is provided at the end of the portion 48 and is mounted on the throttle body 12 is integrally provided. That is, the second casing 28 is also composed of a single member.
第2フランジ部42の、第1フランジ部36に対向する端面には、係合凸部40の位置に対応する位置に、環状の係合溝52が形成される。図1中のII-II線矢視断面図である図2に示すように、該係合溝52には、電熱線として機能する線材54が収容される。また、係合溝52には、前記係合凸部40が進入する(図1参照)。
An annular engagement groove 52 is formed on the end surface of the second flange portion 42 facing the first flange portion 36 at a position corresponding to the position of the engagement convex portion 40. As shown in FIG. 2, which is a cross-sectional view taken along the line II-II in FIG. 1, the engaging groove 52 accommodates a wire 54 that functions as a heating wire. Further, the engaging convex portion 40 enters the engaging groove 52 (see FIG. 1).
係合凸部40の外壁と、係合溝52の内壁(2個の側壁又は底壁の少なくともいずれか)とは、溶着によって互いに一体化している。この溶着により、第1ケーシング24と第2ケーシング28とが接合(連結)されている。なお、線材54と係合溝52の底壁ないし2個の側壁との間は、溶着時に軟化したPBT(Poly Butylene Terephtalate)等の樹脂組成物の硬化物で充填されている。換言すれば、線材54と、係合凸部40ないし係合溝52との間に、間隙は認められない。
The outer wall of the engaging projection 40 and the inner wall (at least one of the two side walls or the bottom wall) of the engaging groove 52 are integrated with each other by welding. By this welding, the first casing 24 and the second casing 28 are joined (connected). The space between the wire 54 and the bottom wall or the two side walls of the engagement groove 52 is filled with a cured product of a resin composition such as PBT (Poly Butylene Terephtalate) softened during welding. In other words, no gap is recognized between the wire 54 and the engagement convex portion 40 or the engagement groove 52.
係合凸部40の近傍には、段部56(図3及び図4参照)が形成される。後述するように、溶着時には、第1フランジ部36の端面が段部56に当接する。
In the vicinity of the engaging convex portion 40, a step portion 56 (see FIGS. 3 and 4) is formed. As will be described later, the end surface of the first flange portion 36 abuts on the stepped portion 56 during welding.
図2に示すように、線材54は、1本の金属線(例えば、銅線又はステンレス線)の所定部位が互いに離間するように湾曲された円環部58と、円環部58から直径方向外方に突出した第1電極当接部60及び第2電極当接部62とを有する。第1電極当接部60と第2電極当接部62とは、互いに略180°離間している。
As shown in FIG. 2, the wire 54 includes an annular portion 58 that is curved so that predetermined portions of one metal wire (for example, a copper wire or a stainless steel wire) are separated from each other, and a radial direction from the annular portion 58. It has the 1st electrode contact part 60 and the 2nd electrode contact part 62 which protruded outward. The first electrode contact portion 60 and the second electrode contact portion 62 are separated from each other by approximately 180 °.
第1電極当接部60は、線材54の長手方向端部同士が集束されることで構成され、一方で、第2電極当接部62は、線材54の中間部分を折り返して、円環部58から直径方向外方に2つの直線形状部を形成することにより構成される。
The first electrode abutting portion 60 is configured by converging the longitudinal ends of the wire 54, while the second electrode abutting portion 62 folds an intermediate portion of the wire 54 to form an annular portion. It is configured by forming two linearly shaped portions from 58 in the diametrically outward direction.
図2~図4に示すように、第1フランジ部36にはリブ64a、64bが突出形成され、且つ、第2フランジ部42にはリブ64c、64dが突出形成される。リブ64a、64cには挿入孔66aが貫通形成される一方、リブ64b、64dには挿入孔66bが貫通形成される。線材54の第1電極当接部60は挿入孔66a内に露呈し、第2電極当接部62は挿入孔66b内に露呈する。
As shown in FIGS. 2 to 4, ribs 64a and 64b are formed to protrude from the first flange portion 36, and ribs 64c and 64d are formed to protrude from the second flange portion. An insertion hole 66a is formed through the ribs 64a and 64c, while an insertion hole 66b is formed through the ribs 64b and 64d. The first electrode contact portion 60 of the wire 54 is exposed in the insertion hole 66a, and the second electrode contact portion 62 is exposed in the insertion hole 66b.
図1に戻り、第2モータ収容孔44は、前記第1モータ収容孔38とともにモータ本体を収容する。ここで、第2モータ収容孔44と摺動孔46との間には、ゴムからなり且つ円盤形状をなすシール部材68が介在する。このシール部材68により、第2モータ収容孔44と摺動孔46とが区分されている。
Returning to FIG. 1, the second motor housing hole 44 houses the motor body together with the first motor housing hole 38. Here, a seal member 68 made of rubber and having a disk shape is interposed between the second motor housing hole 44 and the sliding hole 46. The seal member 68 divides the second motor accommodation hole 44 and the sliding hole 46.
シール部材68には、貫通孔が形成される。前記モータ22の回転軸70は、この貫通孔を通って摺動孔46に突出する。回転軸70の先端部にはネジ部が刻設されており、該ネジ部にはスライダ72が螺合される。これにより、スライダ72が回転軸70に外嵌されている。なお、回転軸70は、正回転及び逆回転のいずれかが選択的に可能である。
A through hole is formed in the seal member 68. The rotating shaft 70 of the motor 22 protrudes into the sliding hole 46 through this through hole. A screw part is engraved at the tip of the rotating shaft 70, and a slider 72 is screwed into the screw part. As a result, the slider 72 is fitted on the rotary shaft 70. Note that the rotation shaft 70 can selectively perform either forward rotation or reverse rotation.
前記制御弁26は中空体であり、スライダ72は、コイルスプリング74内に挿入された状態で、該制御弁26の中空内部に収容される。制御弁26は、その長手方向端部に、U字型溝が形成された底壁26aを有する。前記コイルスプリング74の大径な一端は、この底壁26aに着座する。一方、小径な他端は、スライダ72の大径部72aに着座する。
The control valve 26 is a hollow body, and the slider 72 is housed inside the hollow of the control valve 26 while being inserted into the coil spring 74. The control valve 26 has a bottom wall 26a formed with a U-shaped groove at its longitudinal end. One end of the coil spring 74 having a large diameter is seated on the bottom wall 26a. On the other hand, the other end with the small diameter is seated on the large diameter portion 72 a of the slider 72.
装着部50には、バイパス往路18及び摺動孔46を連通させる入口連通路76と、摺動孔46及びバイパス復路20を連通させる出口連通路78とが形成される。バイパス往路18、入口連通路76、摺動孔46、出口連通路78及びバイパス復路20により、スロットルバルブ16を迂回するバイパス通路が形成される。
In the mounting portion 50, an inlet communication path 76 for communicating the bypass forward path 18 and the sliding hole 46 and an outlet communication path 78 for communicating the sliding hole 46 and the bypass return path 20 are formed. Bypass bypass 18, inlet communication path 76, sliding hole 46, outlet communication path 78, and bypass return path 20 form a bypass path that bypasses throttle valve 16.
以上のように構成される流量制御装置10を製造するための本実施の形態に係る製造装置80及び製造方法について、図5~図8を参照しながら説明する。ここでは、必要に応じて、流量制御装置10を図示した図1~図4も参照しながら説明する。
A manufacturing apparatus 80 and a manufacturing method according to the present embodiment for manufacturing the flow rate control apparatus 10 configured as described above will be described with reference to FIGS. Here, the flow control device 10 will be described with reference to FIGS.
本実施の形態に係る製造装置80は、図5で概略的に示すように、流量制御装置10の第2ケーシング28を支持する支持台82を有する。支持台82は、ベース82aと、ベース82aから立設する複数の支柱82bと、各支柱82bの上端に固定された支持板82cとから構成される。支持板82cの略中心には、上下方向に貫通する挿通孔82dが形成されている。この場合、挿通孔82dに弁収容部48を挿通させ、第2フランジ部42を支持板82cの上面に載置することにより、第2ケーシング28が支持台82に支持される。
The manufacturing apparatus 80 according to the present embodiment includes a support base 82 that supports the second casing 28 of the flow control apparatus 10 as schematically shown in FIG. The support base 82 includes a base 82a, a plurality of support posts 82b standing from the base 82a, and a support plate 82c fixed to the upper end of each support post 82b. An insertion hole 82d penetrating in the vertical direction is formed at substantially the center of the support plate 82c. In this case, the second casing 28 is supported by the support base 82 by inserting the valve accommodating portion 48 through the insertion hole 82d and placing the second flange portion 42 on the upper surface of the support plate 82c.
第2ケーシング28に連結された第1ケーシング24の上方には、第1ケーシング24の本体部34を上方から押し付ける押付機構84が設けられている。押付機構84は、シリンダモータ85を駆動することにより、シリンダロッド86を本体部34に対して上下方向に進退させる電動シリンダ等のシリンダ88を備える。
A pressing mechanism 84 that presses the main body 34 of the first casing 24 from above is provided above the first casing 24 connected to the second casing 28. The pressing mechanism 84 includes a cylinder 88 such as an electric cylinder that drives the cylinder motor 85 to move the cylinder rod 86 forward and backward with respect to the main body 34.
シリンダロッド86は、プレート90の略中心に上下方向に貫通した挿通孔92を挿通する。シリンダロッド86の先端部94は、シリンダロッド86よりも大径の板状部材として構成されている。プレート90は、複数の支柱96を介して支持板98に支持され、該支持板98の上面には、プレート90と対向するようにロードセル(荷重検出センサ、状態検出手段)100が固定されている。ロードセル100は、シリンダロッド86が下方に進行し、先端部94がロードセル100を押し付けた際に、その押付力(荷重)を検出する。支持板98の底面には、複数の支柱102を介して押付板104が連結されている。
The cylinder rod 86 is inserted through an insertion hole 92 penetrating in the vertical direction substantially at the center of the plate 90. The distal end portion 94 of the cylinder rod 86 is configured as a plate member having a larger diameter than the cylinder rod 86. The plate 90 is supported by a support plate 98 via a plurality of support columns 96, and a load cell (load detection sensor, state detection means) 100 is fixed on the upper surface of the support plate 98 so as to face the plate 90. . The load cell 100 detects the pressing force (load) when the cylinder rod 86 advances downward and the tip end portion 94 presses the load cell 100. A pressing plate 104 is connected to the bottom surface of the support plate 98 via a plurality of support columns 102.
ここで、シリンダ88のシリンダモータ85が駆動し、シリンダロッド86が下方向に進行して先端部94がロードセル100を押圧すると、ロードセル100を固定する支持板98、各支柱96、102、プレート90及び押付板104が一体的に下方向に変位する。この結果、押付板104は、第1ケーシング24の本体部34を上方から押圧する(押し付ける)ことができる。従って、ロードセル100は、シリンダロッド86の先端部94からの押付力、すなわち、押付機構84から本体部34を介して第1ケーシング24及び第2ケーシング28に作用する荷重を検出する。
Here, when the cylinder motor 85 of the cylinder 88 is driven and the cylinder rod 86 advances downward and the tip end portion 94 presses the load cell 100, the support plate 98 for fixing the load cell 100, the respective columns 96 and 102, and the plate 90. And the pressing plate 104 is displaced downward integrally. As a result, the pressing plate 104 can press (press) the main body 34 of the first casing 24 from above. Accordingly, the load cell 100 detects the pressing force from the tip end portion 94 of the cylinder rod 86, that is, the load acting on the first casing 24 and the second casing 28 from the pressing mechanism 84 via the main body portion 34.
一方、シリンダ88のシリンダモータ85が駆動し、シリンダロッド86が上方向に後退すると、第1ケーシング24は、押付板104による押圧状態から解放される。この場合、シリンダロッド86が上方向に後退して、プレート90の底面に先端部94が当接すると、プレート90、各支柱96、102、支持板98及び押付板104は、一体的に上方向に変位する。これにより、押付板104は、第1ケーシング24の本体部34から離間する。
On the other hand, when the cylinder motor 85 of the cylinder 88 is driven and the cylinder rod 86 is retracted upward, the first casing 24 is released from the pressed state by the pressing plate 104. In this case, when the cylinder rod 86 is retracted upward and the tip end portion 94 comes into contact with the bottom surface of the plate 90, the plate 90, the respective columns 96 and 102, the support plate 98, and the pressing plate 104 are integrally moved upward. It is displaced to. As a result, the pressing plate 104 is separated from the main body 34 of the first casing 24.
図2~図4に示す挿入孔66a、66bの各々には、絶縁性の受ピン110a、110bが挿入されるとともに、電極チップ112a、112bが挿入されている(図3~図5参照)。すなわち、受ピン110aと電極チップ112aとで第1電極当接部60を上下方向から挟持する一方、受ピン110bと電極チップ112bとで第2電極当接部62を上下方向から挟持する。
Insulating receiving pins 110a and 110b are inserted into the insertion holes 66a and 66b shown in FIGS. 2 to 4, respectively, and electrode tips 112a and 112b are inserted (see FIGS. 3 to 5). That is, the receiving electrode 110a and the electrode tip 112a sandwich the first electrode contact portion 60 from above and below, while the receiving pin 110b and the electrode tip 112b sandwich the second electrode contact portion 62 from above and below.
また、本実施の形態に係る製造装置80は、制御手段114を構成するPLC116及びコントローラ118と、シリンダ88のシリンダモータ85を駆動させるモータドライバ119と、シリンダモータ85に流れる負荷電流の電流値(負荷電流値)を検出する負荷電流検出センサ(状態検出手段)119aと、電極チップ112a、112bを介して線材54に通電する溶着電源120と、電極チップ112a、112bを介して線材54に流れる溶着電流の電流値(溶着電流値)を検出する溶着電流検出センサ122とをさらに有する。
In addition, the manufacturing apparatus 80 according to the present embodiment includes a PLC 116 and a controller 118 that constitute the control unit 114, a motor driver 119 that drives the cylinder motor 85 of the cylinder 88, and a current value of a load current that flows through the cylinder motor 85 ( A load current detection sensor (state detection means) 119a for detecting a load current value), a welding power source 120 for energizing the wire 54 via the electrode tips 112a and 112b, and a weld flowing to the wire 54 via the electrode tips 112a and 112b. It further has a welding current detection sensor 122 that detects a current value (welding current value) of the current.
PLC116は、コントローラ118を制御する。コントローラ118は、PLC116からの制御指令を受けて、シリンダ88及び溶着電源120を制御することにより、製造装置80全体を制御する。すなわち、コントローラ118は、PLC116からの制御信号に基づき、モータドライバ119を制御してシリンダモータ85を駆動させることにより、シリンダ88の駆動制御を開始する。一方、溶着電源120は、コントローラ118からの制御信号に基づき、電極チップ112a、112bを介して線材54への通電を行う。従って、溶着電源120及び電極チップ112a、112bは、線材54に通電して該線材54を発熱させる発熱手段124を構成する。
PLC 116 controls controller 118. The controller 118 receives the control command from the PLC 116 and controls the entire manufacturing apparatus 80 by controlling the cylinder 88 and the welding power source 120. That is, the controller 118 starts driving control of the cylinder 88 by controlling the motor driver 119 and driving the cylinder motor 85 based on the control signal from the PLC 116. On the other hand, the welding power source 120 energizes the wire 54 via the electrode tips 112a and 112b based on a control signal from the controller 118. Therefore, the welding power source 120 and the electrode tips 112a and 112b constitute a heating means 124 that energizes the wire 54 to generate heat.
また、コントローラ118は、シリンダ88の駆動による第1ケーシング24の本体部34への押付開始、及び、溶着電源120から線材54への通電開始の後、ロードセル100が検出した荷重、又は、負荷電流検出センサ119aが検出した負荷電流値に基づき、シリンダ88から本体部34に対する押付動作を制御することもできる。
In addition, the controller 118 detects the load or load current detected by the load cell 100 after starting to press the main casing 34 of the first casing 24 by driving the cylinder 88 and starting to energize the wire 54 from the welding power source 120. Based on the load current value detected by the detection sensor 119a, the pressing operation from the cylinder 88 to the main body 34 can be controlled.
次に、本実施の形態に係る製造装置80の動作(製造方法)について、図6~図8を参照しながら説明する。
Next, the operation (manufacturing method) of the manufacturing apparatus 80 according to the present embodiment will be described with reference to FIGS.
この場合、はじめに、モータ22の回転軸70をシール部材68の貫通孔に通し、該貫通孔から露呈したネジ部に、スライダ72及びコイルスプリング74を介して制御弁26を組み付ける。次に、モータ22のモータ本体を第1モータ収容孔38に挿入する一方、制御弁26を、第2モータ収容孔44を通して摺動孔46に挿入する。さらに、第1フランジ部36と第2フランジ部42とを接近させ、係合凸部40を係合溝52に挿入する。
In this case, first, the rotating shaft 70 of the motor 22 is passed through the through hole of the seal member 68, and the control valve 26 is assembled to the screw portion exposed from the through hole via the slider 72 and the coil spring 74. Next, the motor body of the motor 22 is inserted into the first motor housing hole 38, while the control valve 26 is inserted into the sliding hole 46 through the second motor housing hole 44. Further, the first flange portion 36 and the second flange portion 42 are brought close to each other, and the engaging convex portion 40 is inserted into the engaging groove 52.
なお、線材54は、図2に示す形状に変形した上で、係合溝52に予め挿入しておく。この場合、係合凸部40の先端壁は、線材54に当接した状態となり、この時点では、第1フランジ部36の端面は段部56の頂面に当接しておらず、両面の間に所定のクリアランスが形成される。この状態で、第2ケーシング28の弁収容部48を挿通孔82dに挿通させると、第2フランジ部42が支持板82cの上面に載置されるので、第1ケーシング24及び第2ケーシング28を支持台82に支持することができる。
The wire 54 is deformed into the shape shown in FIG. In this case, the distal end wall of the engaging convex portion 40 is in contact with the wire 54, and at this time, the end surface of the first flange portion 36 is not in contact with the top surface of the stepped portion 56. A predetermined clearance is formed. In this state, when the valve accommodating portion 48 of the second casing 28 is inserted into the insertion hole 82d, the second flange portion 42 is placed on the upper surface of the support plate 82c, so that the first casing 24 and the second casing 28 are moved. It can be supported by the support base 82.
次に、挿入孔66a、66bの各々に絶縁性の受ピン110a、110bを挿入するとともに、電極チップ112a、112bを挿入する。すなわち、受ピン110aと電極チップ112aとで第1電極当接部60を上下方向から挟持する一方、受ピン110bと電極チップ112bとで第2電極当接部62を上下方向から挟持する。
Next, the insulating receiving pins 110a and 110b are inserted into the insertion holes 66a and 66b, and the electrode tips 112a and 112b are inserted. That is, the receiving electrode 110a and the electrode tip 112a sandwich the first electrode contact portion 60 from above and below, while the receiving pin 110b and the electrode tip 112b sandwich the second electrode contact portion 62 from above and below.
以上の準備を行った後に図6のフローチャートに示す処理が実行される。すなわち、図6のステップS1において、先ず、コントローラ118に押付速度及び負荷電流制限値を予め設定する。その際、押付速度は、後述する図7のタイミングチャートを用いて、所定の押付速度(例えば、x[mm/s])に設定する。また、負荷電流制限値は、負荷電流の上限として、所定の値を設定する。
After making the above preparations, the processing shown in the flowchart of FIG. 6 is executed. That is, in step S1 of FIG. 6, first, the pressing speed and the load current limit value are preset in the controller 118. At that time, the pressing speed is set to a predetermined pressing speed (for example, x [mm / s]) using a timing chart of FIG. The load current limit value is set to a predetermined value as the upper limit of the load current.
次のステップS2(第1ステップ)において、PLC116は、第1ケーシング24に対する押付動作の開始を指示する制御信号をコントローラ118に出力する。コントローラ118は、入力された制御信号に基づきモータドライバ119を駆動させ、該モータドライバ119がシリンダモータ85を駆動制御することによりシリンダ88を駆動させる。これにより、シリンダロッド86は、第1ケーシング24に指向して、所定の押付速度で下方に進行する。
In the next step S <b> 2 (first step), the PLC 116 outputs a control signal instructing the start of the pressing operation to the first casing 24 to the controller 118. The controller 118 drives the motor driver 119 based on the input control signal, and the motor driver 119 drives and controls the cylinder motor 85 to drive the cylinder 88. Accordingly, the cylinder rod 86 is directed downward toward the first casing 24 at a predetermined pressing speed.
シリンダロッド86の先端部94がロードセル100に接触し、該ロードセル100を押圧すると、ロードセル100は、先端部94からの押付力を検出し、検出した押付力に応じた検出信号をコントローラ118に出力する。シリンダロッド86が先端部94を介してロードセル100をさらに押圧すると、前記押付力によってロードセル100、支持板98、各支柱96、102、プレート90及び押付板104が一体的に下降する。
When the distal end portion 94 of the cylinder rod 86 comes into contact with the load cell 100 and presses the load cell 100, the load cell 100 detects the pressing force from the distal end portion 94 and outputs a detection signal corresponding to the detected pressing force to the controller 118. To do. When the cylinder rod 86 further presses the load cell 100 via the distal end portion 94, the load cell 100, the support plate 98, the columns 96 and 102, the plate 90, and the pressing plate 104 are integrally lowered by the pressing force.
この結果、押付板104の底面が第1ケーシング24の本体部34に接触すると、第1ケーシング24及び第2ケーシング28は、前記押付力によって支持台82の支持板82cに押し付けられる。すなわち、第1ケーシング24及び第2ケーシング28は、押付機構84から荷重を受けることになる。従って、第1ケーシング24及び第2ケーシング28が押付板104によって押し付けられている場合、ロードセル100は、前記押付力に応じた検出信号をコントローラ118に出力することができる。
As a result, when the bottom surface of the pressing plate 104 contacts the main body 34 of the first casing 24, the first casing 24 and the second casing 28 are pressed against the support plate 82c of the support table 82 by the pressing force. That is, the first casing 24 and the second casing 28 receive a load from the pressing mechanism 84. Therefore, when the first casing 24 and the second casing 28 are pressed by the pressing plate 104, the load cell 100 can output a detection signal corresponding to the pressing force to the controller 118.
コントローラ118は、例えば、ロードセル100からの検出信号に応じた押付力(荷重)の大きさが、押付機構84が第1ケーシング24及び第2ケーシング28を押し付けているときの所定の荷重の大きさであると判断した場合、次のステップS3の処理に進む。
The controller 118 has, for example, a magnitude of a pressing force (load) according to a detection signal from the load cell 100 such that the magnitude of a predetermined load when the pressing mechanism 84 presses the first casing 24 and the second casing 28. If it is determined, the process proceeds to the next step S3.
ステップS3において、コントローラ118は、線材54への通電を開始させるための制御信号を溶着電源120に出力する。溶着電源120は、入力された制御信号に基づき、電極チップ112aから線材54を介して電極チップ112bに溶着電流が流れるように通電を行う。
In step S3, the controller 118 outputs a control signal for starting energization to the wire 54 to the welding power source 120. Based on the input control signal, the welding power source 120 energizes the electrode tip 112a through the wire 54 so that a welding current flows from the electrode tip 112b to the electrode tip 112b.
この結果、ステップS4において、線材54が前記通電によって発熱する。線材54における第1電極当接部60及び第2電極当接部62以外の部位は、少なくとも、係合溝52の底壁及び係合凸部40の先端壁に当接している。そのため、線材54からの熱は、係合溝52の各壁部と係合凸部40とに伝達され、係合溝52の各壁部、及び、係合凸部40の外壁部の双方の温度が上昇することで、壁部(樹脂組成物)が軟化して流動可能な状態となる。
As a result, in step S4, the wire 54 generates heat due to the energization. The portions of the wire 54 other than the first electrode contact portion 60 and the second electrode contact portion 62 are in contact with at least the bottom wall of the engagement groove 52 and the tip wall of the engagement protrusion 40. Therefore, the heat from the wire 54 is transmitted to each wall portion of the engagement groove 52 and the engagement convex portion 40, and both the wall portions of the engagement groove 52 and the outer wall portion of the engagement convex portion 40 are transmitted. As the temperature rises, the wall (resin composition) softens and becomes flowable.
シリンダ88のシリンダモータ85の駆動によって、シリンダロッド86は、所定の押付速度で進行し、第1ケーシング24及び第2ケーシング28は、押付板104から荷重を受けている。そのため、第1ケーシング24は、第2ケーシング28に押し込まれ、図3に示すように、係合凸部40が係合溝52に一層進入する。係合凸部40及び係合溝52の各壁部が軟化しているので、この進入は容易である。また、軟化した樹脂組成物は流動し、線材54を囲繞する。なお、上記のステップS3、S4は、第2ステップを構成する。
By driving the cylinder motor 85 of the cylinder 88, the cylinder rod 86 advances at a predetermined pressing speed, and the first casing 24 and the second casing 28 receive a load from the pressing plate 104. Therefore, the first casing 24 is pushed into the second casing 28, and the engagement protrusion 40 further enters the engagement groove 52 as shown in FIG. 3. Since each wall part of the engaging convex part 40 and the engaging groove 52 is softened, this approach is easy. The softened resin composition flows and surrounds the wire 54. In addition, said step S3, S4 comprises a 2nd step.
ステップS5において、コントローラ118は、ロードセル100が検出した荷重の低下の有無、又は、負荷電流検出センサ119aが検出した負荷電流値の低下の有無を監視する。荷重又は負荷電流値の低下を検知した場合(ステップS5:YES)、次のステップS6において、コントローラ118は、第1ケーシング24に対してさらなる押付動作を行わせるための制御信号をモータドライバ119に出力する。
In step S5, the controller 118 monitors the presence or absence of a decrease in load detected by the load cell 100 or the presence or absence of a decrease in load current value detected by the load current detection sensor 119a. When a decrease in load or load current value is detected (step S5: YES), in the next step S6, the controller 118 sends a control signal for causing the first casing 24 to perform a further pressing operation to the motor driver 119. Output.
すなわち、樹脂組成物が軟化して流動を開始すると、押付機構84は、同じ大きさの荷重で第1ケーシング24を第2ケーシング28側に押し込んでいるつもりでも、軟化した樹脂組成物の溶融速度によっては、第1ケーシング24を速く押し込むことになる。これにより、第1ケーシング24及び第2ケーシング28に作用する荷重が低下してしまう。この結果、樹脂組成物が軟化する前と比較して、第1ケーシング24及び第2ケーシング28が受ける荷重が低下するとともに、負荷電流値も低下し、適切な荷重で係合溝52の各壁部と係合凸部40とを溶着することができなくなる。
That is, when the resin composition is softened and starts to flow, the pressing mechanism 84 melts the softened resin composition even if it intends to push the first casing 24 toward the second casing 28 with the same load. Depending on the case, the first casing 24 is pushed in quickly. Thereby, the load which acts on the 1st casing 24 and the 2nd casing 28 will fall. As a result, compared to before the resin composition is softened, the load received by the first casing 24 and the second casing 28 is reduced, the load current value is also reduced, and each wall of the engagement groove 52 is appropriately loaded. It becomes impossible to weld a part and the engagement convex part 40. FIG.
そこで、コントローラ118は、溶融した樹脂組成物の状態を反映している荷重又は負荷電流値の低下を監視し、前記荷重又は前記負荷電流値の低下が発生したことを検知すれば、適切な荷重に復帰するように(一定値の荷重を維持するように)モータドライバ119を制御することで、シリンダ88のシリンダモータ85を駆動制御する。
Therefore, if the controller 118 monitors the decrease in the load or load current value reflecting the state of the molten resin composition and detects that the decrease in the load or the load current value has occurred, an appropriate load can be obtained. The cylinder motor 85 of the cylinder 88 is driven and controlled by controlling the motor driver 119 so as to return to (to maintain a constant load).
具体的に、コントローラ118は、前記荷重又は前記負荷電流値が低下している場合、押付力を増加するようにモータドライバ119を制御してシリンダ88のシリンダモータ85を駆動制御する。これにより、シリンダロッド86は、第1ケーシング24に向けてさらに進行する。この結果、第1ケーシング24は、第2ケーシング28側にさらに押し込まれ、第1ケーシング24及び第2ケーシング28が受ける荷重が増加(復帰)する(ステップS7)。荷重が増加することにより、シリンダ88のシリンダモータ85に流れる負荷電流値も上昇する。
Specifically, when the load or the load current value is reduced, the controller 118 controls the motor driver 119 so as to increase the pressing force to drive and control the cylinder motor 85 of the cylinder 88. Thereby, the cylinder rod 86 further proceeds toward the first casing 24. As a result, the first casing 24 is further pushed into the second casing 28 side, and the load received by the first casing 24 and the second casing 28 increases (returns) (step S7). As the load increases, the value of the load current flowing through the cylinder motor 85 of the cylinder 88 also increases.
ステップS8において、コントローラ118は、負荷電流検出センサ119aで検出された負荷電流値が負荷電流制限値にまで上昇しているか否かを監視する。この場合、負荷電流値が負荷電流制限値にまで上昇していることが検知された場合(ステップS8:YES)、次のステップS9において、コントローラ118は、第1ケーシング24に対する押付動作を停止させるべく、モータドライバ119を制御する。
In step S8, the controller 118 monitors whether or not the load current value detected by the load current detection sensor 119a has increased to the load current limit value. In this case, when it is detected that the load current value has increased to the load current limit value (step S8: YES), the controller 118 stops the pressing operation on the first casing 24 in the next step S9. Therefore, the motor driver 119 is controlled.
すなわち、負荷電流値が負荷電流制限値を超えた状態で押付動作を継続すると、必要以上に樹脂組成物の流動が発生し、係合溝52の各壁部と係合凸部40とを適切に溶着することができなくなるためである。この結果、ステップS10において、モータドライバ119の停止によるシリンダモータ85の駆動停止により、シリンダロッド86の進行が停止する。なお、上記のステップS5~S10は、第3ステップを構成する。
That is, if the pressing operation is continued in a state where the load current value exceeds the load current limit value, flow of the resin composition occurs more than necessary, and each wall portion of the engagement groove 52 and the engagement convex portion 40 are appropriately connected. It is because it becomes impossible to weld to. As a result, in step S <b> 10, the progress of the cylinder rod 86 is stopped by stopping the driving of the cylinder motor 85 by stopping the motor driver 119. The above steps S5 to S10 constitute the third step.
次のステップS11において、コントローラ118は、係合溝52の各壁部と係合凸部40との溶着が完了したか否かを判定する。具体的には、係合凸部40が係合溝52に進入することにより、第1フランジ部36の端面が段部56の頂面に当接し、第1フランジ部36が堰止され、係合凸部40の係合溝52へのそれ以上の進入が防止されているか否かを判定する。
In the next step S11, the controller 118 determines whether or not the welding of each wall portion of the engagement groove 52 and the engagement convex portion 40 has been completed. Specifically, when the engagement convex portion 40 enters the engagement groove 52, the end surface of the first flange portion 36 comes into contact with the top surface of the step portion 56, the first flange portion 36 is dammed, and the engagement It is determined whether or not the joint protrusion 40 is prevented from further entering the engagement groove 52.
該溶着が完了していない場合(ステップS11:NO)、ステップS4に戻り、ステップS4~S10の処理が繰り返し行われる。但し、2回目以降のステップS4~S10の処理において、ステップS6では、コントローラ118は、モータドライバ119を制御することにより、シリンダ88のシリンダモータ85の駆動を再開させ、シリンダロッド86による第1ケーシング24及び第2ケーシング28の押付動作を再度行わせる。
If the welding has not been completed (step S11: NO), the process returns to step S4, and the processes of steps S4 to S10 are repeated. However, in the second and subsequent steps S4 to S10, in step S6, the controller 118 controls the motor driver 119 to resume the driving of the cylinder motor 85 of the cylinder 88 and the first casing by the cylinder rod 86. 24 and the second casing 28 are pressed again.
一方、ステップS11において、上記の溶着が完了したことを確認すると(ステップS11:YES)、コントローラ118は、溶着電源120を制御して、線材54への通電を停止する。これにより、線材54の発熱が終了し、軟化及び流動した樹脂組成物が硬化する。この硬化により第1ケーシング24と第2ケーシング28とが接合され、一体化されるに至る。
On the other hand, when it is confirmed in step S11 that the above welding has been completed (step S11: YES), the controller 118 controls the welding power source 120 to stop energization of the wire 54. Thereby, the heat generation of the wire 54 is completed, and the softened and fluidized resin composition is cured. By this curing, the first casing 24 and the second casing 28 are joined and integrated.
次に、コントローラ118は、第1ケーシング24を押付状態から解放するため、モータドライバ119を制御することによりシリンダ88のシリンダモータ85を駆動させ、シリンダロッド86を上方に後退させる。シリンダロッド86の先端部94がプレート90に当接すれば、プレート90、各支柱96、102、支持板98及び押付板104が一体的に上方に移動し、該押付板104が第1ケーシング24の本体部34から離間する。これにより、第1ケーシング24及び第2ケーシング28は、押付状態から解放される。その後、受ピン110a、110b及び電極チップ112a、112bを挿入孔66a、66bからそれぞれ取り出す。
Next, in order to release the first casing 24 from the pressed state, the controller 118 controls the motor driver 119 to drive the cylinder motor 85 of the cylinder 88 and retract the cylinder rod 86 upward. When the distal end portion 94 of the cylinder rod 86 comes into contact with the plate 90, the plate 90, the respective columns 96 and 102, the support plate 98, and the pressing plate 104 are integrally moved upward, and the pressing plate 104 is moved to the first casing 24. Separated from the main body 34. Thereby, the 1st casing 24 and the 2nd casing 28 are released from a pressing state. Thereafter, the receiving pins 110a and 110b and the electrode tips 112a and 112b are taken out from the insertion holes 66a and 66b, respectively.
図7は、樹脂組成物が溶融を開始した時点からのシリンダロッド86の押付速度(x[mm/s]~9x[mm/s])毎の荷重の時間的な変化を図示したタイミングチャートである。
FIG. 7 is a timing chart illustrating a temporal change in load for each pressing speed (x [mm / s] to 9 x [mm / s]) of the cylinder rod 86 from the time when the resin composition starts to melt. is there.
この場合、樹脂組成物の溶融後、時間経過に伴って、荷重が溶融直前の値から低下する。そこで、コントローラ118は、図6のステップS4~S11の処理のように、モータドライバ119の制御によりシリンダ88のシリンダモータ85を駆動させ、押付力を増加させることにより、具体的には、第1ケーシング24に対するシリンダロッド86の進行の開始及び停止を繰り返し行うことにより、溶融直前の値から荷重が低下しないように、一定値の荷重を維持させつつ、溶着を適切に行わせることが可能となる。なお、図7では、時間経過に伴って荷重が繰り返し上下動しているが、これは、図6のステップS4~S11の処理を繰り返し行うことにより、シリンダ88の駆動及び停止(シリンダロッド86の進行の開始及び停止)を繰り返し行うことで、荷重の低下及び復帰が繰り返されるためである。
In this case, after the resin composition is melted, the load decreases from the value immediately before melting as time elapses. Therefore, the controller 118 drives the cylinder motor 85 of the cylinder 88 under the control of the motor driver 119 to increase the pressing force as in the processing of steps S4 to S11 in FIG. By repeatedly starting and stopping the progress of the cylinder rod 86 with respect to the casing 24, welding can be appropriately performed while maintaining a constant load so that the load does not decrease from the value immediately before melting. . In FIG. 7, the load repeatedly moves up and down as time passes. This is because the process of steps S4 to S11 in FIG. 6 is repeated to drive and stop the cylinder 88 (the cylinder rod 86). This is because the reduction and return of the load are repeated by repeatedly performing (start and stop of the progress).
また、図7に示すように、シリンダロッド86の移動速度(押付速度)が大きい程、溶融後の荷重の落ち込みが大きくなるので、できるだけ低速の押付速度(例えば、x[mm/s])でシリンダロッド86の進行の開始又は停止を繰り返し行わせることが望ましい。
Further, as shown in FIG. 7, the larger the moving speed (pressing speed) of the cylinder rod 86, the larger the drop of the load after melting, so that the pressing speed is as low as possible (for example, x [mm / s]). It is desirable to repeatedly start or stop the progress of the cylinder rod 86.
さらに、樹脂組成物の材質や荷重の大きさ等の各種条件によっては、該樹脂組成物の溶融速度が異なってくるため、コントローラ118には、上記の条件に応じて押付速度を設定するとともに、負荷電流制限値を設定すればよい。
Furthermore, since the melting rate of the resin composition varies depending on various conditions such as the material of the resin composition and the magnitude of the load, the controller 118 sets the pressing speed according to the above conditions, A load current limit value may be set.
図8は、溶着が完了するまでに第1ケーシング24及び第2ケーシング28が受ける荷重と、線材54に流れる溶着電流値との時間経過を示すタイミングチャートである。図8において、時点t0で線材54に対する通電を開始し、時点t0~t1、t1~t2の各時間帯で、略一定値の溶着電流をそれぞれ流した後に、時点t2で通電を停止する。この場合、t0~t1、t1~t2の各時間帯の順に、溶着電流値が低下する。この場合でも、図6のステップS4~S11の処理を繰り返し行うことで、シリンダ88が駆動及び停止を繰り返し行い、荷重の低下及び復帰が繰り返されることにより、時間経過に伴って荷重が繰り返し上下動する。
FIG. 8 is a timing chart showing the passage of time between the load received by the first casing 24 and the second casing 28 until the welding is completed and the welding current value flowing through the wire 54. In FIG. 8, energization of the wire 54 is started at time t0, and a welding current having a substantially constant value is allowed to flow in time zones t0 to t1 and t1 to t2, respectively, and then the energization is stopped at time t2. In this case, the welding current value decreases in the order of the time periods t0 to t1 and t1 to t2. Even in this case, the process of steps S4 to S11 in FIG. 6 is repeatedly performed, so that the cylinder 88 is repeatedly driven and stopped, and the load is repeatedly lowered and returned, whereby the load repeatedly moves up and down over time. To do.
以上のように、本実施の形態によれば、制御手段114のコントローラ118は、樹脂組成物の状態を反映する第1ケーシング24及び第2ケーシング28が受ける荷重、又は、シリンダ88のシリンダモータ85に流れる負荷電流値に基づいて、係合溝52の内壁と係合凸部40とを溶着する際の第1ケーシング24及び第2ケーシング28に対するシリンダ88の押付動作を制御する。これにより、樹脂組成物の状態(例えば、樹脂組成物の溶融速度)に応じた適切な荷重で第1ケーシング24及び第2ケーシング28を押し付け、係合溝52の内壁と係合凸部40とを安定に溶着させることが可能となる。この結果、流量制御装置10の品質を高めることができる。
As described above, according to the present embodiment, the controller 118 of the control means 114 is configured so that the load received by the first casing 24 and the second casing 28 reflecting the state of the resin composition, or the cylinder motor 85 of the cylinder 88. The pressing operation of the cylinder 88 against the first casing 24 and the second casing 28 when welding the inner wall of the engagement groove 52 and the engagement convex portion 40 is controlled based on the load current value flowing through the cylinder. Thus, the first casing 24 and the second casing 28 are pressed with an appropriate load according to the state of the resin composition (for example, the melting rate of the resin composition), and the inner wall of the engagement groove 52 and the engagement convex portion 40 are Can be stably welded. As a result, the quality of the flow control device 10 can be improved.
この場合、ロードセル100は、シリンダロッド86から第1ケーシング24及び第2ケーシング28にかかる荷重を検出し、又は、負荷電流検出センサ119aは、シリンダ88を駆動させた際に、シリンダモータ85に流れる負荷電流値を検出する。この結果、コントローラ118は、係合溝52の内壁及び係合凸部40における樹脂組成物の溶融に伴う荷重又は負荷電流値の低下を検知すれば、所定の押付速度によるシリンダロッド86の押付動作を行わせることができる。これにより、樹脂組成物の溶融速度に応じた適切な荷重を設定することができる。
In this case, the load cell 100 detects the load applied to the first casing 24 and the second casing 28 from the cylinder rod 86, or the load current detection sensor 119a flows to the cylinder motor 85 when the cylinder 88 is driven. Detects the load current value. As a result, if the controller 118 detects a decrease in the load or load current value accompanying the melting of the resin composition on the inner wall of the engagement groove 52 and the engagement projection 40, the operation of pressing the cylinder rod 86 at a predetermined pressing speed. Can be performed. Thereby, the suitable load according to the melting rate of the resin composition can be set.
また、本実施の形態によれば、下記の効果も得られる。すなわち、本実施の形態では、ボルトや取付板を用いることなく第1ケーシング24と第2ケーシング28とを一体化することができる。従って、流量制御装置10を構成する部品の点数を低減することが可能となる。また、ボルトを螺回する煩雑な作業が不要となる。しかも、線材54の発熱開始から接合終了までに要する時間は、ボルトの螺回に要する時間よりも短い。このため、作業効率が向上するという利点もある。
Further, according to the present embodiment, the following effects can also be obtained. That is, in the present embodiment, the first casing 24 and the second casing 28 can be integrated without using bolts or mounting plates. Therefore, it is possible to reduce the number of parts constituting the flow control device 10. Moreover, the complicated operation | work which twists a volt | bolt becomes unnecessary. Moreover, the time required from the start of heat generation of the wire 54 to the end of joining is shorter than the time required for screwing the bolt. For this reason, there also exists an advantage that work efficiency improves.
このように構成された流量制御装置10は、図1中の前記給電用端子30に対して電気的に接続された図示しないエンジンコントロールユニット(ECU)の制御作用下に制御弁26が移動することで、出口連通路78の開度を調節する。すなわち、ECUは、スロットルバルブ16が全閉であるときに、内燃機関の運転状況に関する情報に基づき、出口連通路78が適切な開度となるように制御弁26を移動させる。
In the flow control device 10 configured in this way, the control valve 26 moves under the control action of an engine control unit (ECU) (not shown) electrically connected to the power feeding terminal 30 in FIG. Thus, the opening degree of the outlet communication passage 78 is adjusted. That is, when the throttle valve 16 is fully closed, the ECU moves the control valve 26 based on the information related to the operating state of the internal combustion engine so that the outlet communication path 78 has an appropriate opening degree.
具体的には、ECUは、給電用端子30を介してのモータ22への通電量を制御することで、その回転軸70を、例えば、正回転方向に所定量回転させる。この際の回転駆動力は、スライダ72を介して、制御弁26の直線運動の駆動力に変換される。従って、摺動孔46内の制御弁26が、例えば、図1に示す位置から出口連通路78側に変位する。この際、制御弁26は、摺動孔46の内壁に摺接する。
Specifically, the ECU rotates the rotation shaft 70 by, for example, a predetermined amount in the forward rotation direction by controlling the amount of power supplied to the motor 22 via the power supply terminal 30. The rotational driving force at this time is converted into a driving force for linear motion of the control valve 26 via the slider 72. Therefore, for example, the control valve 26 in the sliding hole 46 is displaced from the position shown in FIG. 1 to the outlet communication passage 78 side. At this time, the control valve 26 is in sliding contact with the inner wall of the sliding hole 46.
変位した制御弁26によって、出口連通路78の開口が所定の程度で閉塞される。これにより、出口連通路78の開度調整がなされる。すなわち、制御弁26は、流体である空気(吸気)の流通路であるバイパス通路の開度を制御する。
The opening of the outlet communication passage 78 is closed to a predetermined degree by the displaced control valve 26. As a result, the opening degree of the outlet communication passage 78 is adjusted. That is, the control valve 26 controls the opening degree of the bypass passage that is a flow passage of air (intake air) that is a fluid.
吸気道14に導入された空気(吸気)は、バイパス往路18から入口連通路76を介して摺動孔46内に進入し、出口連通路78からバイパス復路20を経て吸気道14に戻る。以上のように、スロットルバルブ16が全閉状態であっても、吸気は、流量制御装置10の内部、すなわち、バイパス通路を介して吸気道14に戻される。勿論、バイパス通路を流通する吸気は、出口連通路78の開度に対応する流量に制御される。
The air (intake air) introduced into the intake passage 14 enters the slide hole 46 from the bypass outward passage 18 via the inlet communication passage 76, and returns to the intake passage 14 from the outlet communication passage 78 through the bypass return passage 20. As described above, even when the throttle valve 16 is in the fully closed state, the intake air is returned to the intake passage 14 through the inside of the flow control device 10, that is, the bypass passage. Of course, the intake air flowing through the bypass passage is controlled to a flow rate corresponding to the opening degree of the outlet communication passage 78.
吸気の流量の増加が必要なときには、ECUは、モータ22の回転軸70を、例えば、逆回転方向に所定量回転させる。これに追従し、制御弁26が、摺動孔46の内壁に摺接しながら図1に示す位置に戻る。その結果、出口連通路78の開口が全開状態となる。
When it is necessary to increase the flow rate of the intake air, the ECU rotates the rotating shaft 70 of the motor 22 by, for example, a predetermined amount in the reverse rotation direction. Following this, the control valve 26 returns to the position shown in FIG. 1 while sliding on the inner wall of the sliding hole 46. As a result, the opening of the outlet communication passage 78 is fully opened.
以上の動作の際、第1ケーシング24と第2ケーシング28の間に十分な気密性が保たれる。上記したように、係合溝52と係合凸部40の間で溶着不良が発生することが回避されているからである。
In the above operation, sufficient airtightness is maintained between the first casing 24 and the second casing 28. This is because the occurrence of poor welding between the engagement groove 52 and the engagement projection 40 is avoided as described above.
本発明は、上記した実施の形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
例えば、上記とは逆に、第1ケーシング24の第1フランジ部36に係合溝52を形成するとともに、第2ケーシング28の第2フランジ部42に係合凸部40を設けるようにしてもよい。
For example, contrary to the above, the engaging groove 52 is formed in the first flange portion 36 of the first casing 24 and the engaging convex portion 40 is provided in the second flange portion 42 of the second casing 28. Good.
また、上記の実施の形態では、押付機構84が第1ケーシング24の本体部34を押し付ける場合について説明した。押付機構84は、第1ケーシング24を第2ケーシング28に対して相対的に押し付けることができれば、上記の各効果が容易に得られる。従って、本実施の形態では、押付機構84が第2ケーシング28を第1ケーシング24に押し付けるように製造装置80を構成しても、上記の各効果が得られる。
In the above embodiment, the case where the pressing mechanism 84 presses the main body 34 of the first casing 24 has been described. If the pressing mechanism 84 can press the first casing 24 relative to the second casing 28, the above effects can be easily obtained. Therefore, in the present embodiment, even if the manufacturing apparatus 80 is configured such that the pressing mechanism 84 presses the second casing 28 against the first casing 24, the above-described effects can be obtained.
Claims (3)
- 動作源(22)を収容した第1ケーシング(24)と、前記動作源(22)によって動作して流体の流通路(18、20)の開度を制御する制御弁(26)を収容した第2ケーシング(28)とを有する流量制御装置(10)の製造装置(80)であって、
前記流量制御装置(10)は、樹脂を含有する前記第1ケーシング(24)又は前記第2ケーシング(28)のいずれか一方に、発熱可能な線材(54)を挿入した係合溝(52)が形成されるとともに、前記第2ケーシング(28)又は前記第1ケーシング(24)の残余の一方に、前記係合溝(52)に進入する係合凸部(40)が設けられ、
前記製造装置(80)は、
前記係合溝(52)に前記線材(54)を挿入した状態で、前記第1ケーシング(24)を前記第2ケーシング(28)に相対的に押し付けて前記係合溝(52)に前記係合凸部(40)を進入させるシリンダ(88)と、
前記線材(54)を発熱させて、前記係合溝(52)の内壁と前記係合凸部(40)とを互いに溶着させることにより、前記第1ケーシング(24)と前記第2ケーシング(28)とを接合させる発熱手段(124)と、
前記係合溝(52)の内壁及び前記係合凸部(40)における樹脂の状態を検出する状態検出手段(100、119a)と、
前記状態検出手段(100、119a)の検出結果に基づいて、前記係合溝(52)の内壁と前記係合凸部(40)とを溶着する際の前記第1ケーシング(24)及び前記第2ケーシング(28)に対する前記シリンダ(88)の押付動作を制御する制御手段(114)と、
を有することを特徴とする流量制御装置(10)の製造装置(80)。 A first casing (24) containing an operation source (22) and a first control valve (26) which operates by the operation source (22) and controls the opening degree of the fluid flow passages (18, 20). A production device (80) for a flow control device (10) having two casings (28),
The flow control device (10) includes an engagement groove (52) in which a heat-generating wire (54) is inserted into either the first casing (24) or the second casing (28) containing resin. Is formed, and one of the remaining portions of the second casing (28) or the first casing (24) is provided with an engaging protrusion (40) that enters the engaging groove (52),
The manufacturing apparatus (80)
With the wire (54) inserted into the engagement groove (52), the first casing (24) is pressed against the second casing (28) relatively to the engagement groove (52). A cylinder (88) for allowing the joint (40) to enter,
The first casing (24) and the second casing (28) are formed by causing the wire (54) to generate heat and welding the inner wall of the engagement groove (52) and the engagement protrusion (40) to each other. And a heating means (124) for bonding
State detection means (100, 119a) for detecting the state of the resin in the inner wall of the engagement groove (52) and the engagement protrusion (40);
Based on the detection result of the state detection means (100, 119a), the first casing (24) and the first casing when the inner wall of the engagement groove (52) and the engagement protrusion (40) are welded together. Control means (114) for controlling the pressing operation of the cylinder (88) against the two casings (28);
An apparatus (80) for manufacturing a flow rate control device (10), comprising: - 請求項1記載の流量制御装置(10)の製造装置(80)において、
前記状態検出手段(100、119a)は、前記シリンダ(88)から前記第1ケーシング(24)及び前記第2ケーシング(28)にかかる荷重を検出する荷重検出センサ(100)、又は、前記シリンダ(88)が駆動する際に、シリンダモータ(85)に流れる負荷電流の負荷電流値を検出する負荷電流検出センサ(119a)を含み、
前記係合溝(52)の内壁及び前記係合凸部(40)における前記樹脂の溶融に伴う前記荷重の低下を前記荷重検出センサ(100)が検出した場合、又は、前記負荷電流値の低下を前記負荷電流検出センサ(119a)が検出した場合、前記制御手段(114)は、前記シリンダ(88)を所定の押付速度によって押付動作させることを特徴とする流量制御装置(10)の製造装置(80)。 In the manufacturing apparatus (80) of the flow control device (10) according to claim 1,
The state detection means (100, 119a) includes a load detection sensor (100) for detecting a load applied from the cylinder (88) to the first casing (24) and the second casing (28), or the cylinder ( 88) includes a load current detection sensor (119a) that detects a load current value of a load current flowing through the cylinder motor (85) when driving,
When the load detection sensor (100) detects a decrease in the load accompanying the melting of the resin in the inner wall of the engagement groove (52) and the engagement protrusion (40), or a decrease in the load current value Is detected by the load current detection sensor (119a), the control means (114) presses the cylinder (88) at a predetermined pressing speed to produce the flow rate control device (10). (80). - 動作源(22)を収容した第1ケーシング(24)と、前記動作源(22)によって動作して流体の流通路(18、20)の開度を制御する制御弁(26)を収容した第2ケーシング(28)とを有する流量制御装置(10)の製造方法であって、
前記流量制御装置(10)は、樹脂を含有する前記第1ケーシング(24)又は前記第2ケーシング(28)のいずれか一方に、発熱可能な線材(54)を挿入した係合溝(52)が形成されるとともに、前記第2ケーシング(28)又は前記第1ケーシング(24)の残余の一方に、前記係合溝(52)に進入する係合凸部(40)が設けられ、
前記製造方法は、
前記係合溝(52)に前記線材(54)を挿入した状態で、シリンダ(88)により前記第1ケーシング(24)を前記第2ケーシング(28)に相対的に押し付けて前記係合溝(52)に前記係合凸部(40)を進入させる第1ステップ(S2)と、
前記線材(54)を発熱させて、前記係合溝(52)の内壁と前記係合凸部(40)とを溶融させる第2ステップ(S3、S4)と、
前記係合溝(52)の内壁及び前記係合凸部(40)における樹脂の状態を状態検出手段(100、119a)で検出し、前記状態検出手段(100、119a)の検出結果に基づいて、前記係合溝(52)の内壁と前記係合凸部(40)とを溶着する際の前記第1ケーシング(24)及び前記第2ケーシング(28)に対する前記シリンダ(88)の押付動作を制御手段(114)により制御する第3ステップ(S5~S10)と、
を有することを特徴とする流量制御装置(10)の製造方法。 A first casing (24) containing an operation source (22) and a first control valve (26) which operates by the operation source (22) and controls the opening degree of the fluid flow passages (18, 20). A flow rate control device (10) having two casings (28), comprising:
The flow control device (10) includes an engagement groove (52) in which a heat-generating wire (54) is inserted into either the first casing (24) or the second casing (28) containing resin. Is formed, and one of the remaining portions of the second casing (28) or the first casing (24) is provided with an engaging protrusion (40) that enters the engaging groove (52),
The manufacturing method includes:
With the wire (54) inserted into the engagement groove (52), the cylinder (88) presses the first casing (24) against the second casing (28) relatively to the engagement groove ( 52) a first step (S2) for causing the engaging projection (40) to enter;
A second step (S3, S4) for causing the wire (54) to generate heat and melting the inner wall of the engagement groove (52) and the engagement protrusion (40);
The state detection means (100, 119a) detects the state of the resin on the inner wall of the engagement groove (52) and the engagement protrusion (40), and based on the detection result of the state detection means (100, 119a). The pressing operation of the cylinder (88) against the first casing (24) and the second casing (28) when welding the inner wall of the engaging groove (52) and the engaging projection (40). A third step (S5 to S10) controlled by the control means (114);
A method of manufacturing a flow rate control device (10), comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-069794 | 2015-03-30 | ||
JP2015069794A JP6453692B2 (en) | 2015-03-30 | 2015-03-30 | Manufacturing apparatus and manufacturing method of flow control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016157946A1 true WO2016157946A1 (en) | 2016-10-06 |
Family
ID=57005534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051495 WO2016157946A1 (en) | 2015-03-30 | 2016-01-20 | Device and method for manufacturing flow volume control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6453692B2 (en) |
WO (1) | WO2016157946A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4555822B2 (en) * | 2004-03-31 | 2010-10-06 | 株式会社ケーヒン | Idle air control device for fuel injection device |
JP2014156797A (en) * | 2013-02-14 | 2014-08-28 | Keihin Corp | Flow rate controller |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724706Y2 (en) * | 1990-01-19 | 1995-06-05 | シーケーディ株式会社 | Assembly structure of solenoid valve |
JP5489214B2 (en) * | 2009-12-21 | 2014-05-14 | ムネカタインダストリアルマシナリー株式会社 | Thermal welding method for thermoplastic resin molded products |
-
2015
- 2015-03-30 JP JP2015069794A patent/JP6453692B2/en active Active
-
2016
- 2016-01-20 WO PCT/JP2016/051495 patent/WO2016157946A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4555822B2 (en) * | 2004-03-31 | 2010-10-06 | 株式会社ケーヒン | Idle air control device for fuel injection device |
JP2014156797A (en) * | 2013-02-14 | 2014-08-28 | Keihin Corp | Flow rate controller |
Also Published As
Publication number | Publication date |
---|---|
JP2016188634A (en) | 2016-11-04 |
JP6453692B2 (en) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2285520B1 (en) | System to prevent overloads for ultrasonic staking applications | |
CN101801628B (en) | Ultrasonic device for moulding micro plastic parts | |
US4615669A (en) | Injection molding machine | |
EP1321275B1 (en) | Thermoplastic resin injection molding machine | |
JP4965312B2 (en) | Energizing upsetter method and apparatus | |
CN107249850B (en) | Mold clamping device, molding device, and molding method | |
WO2016157946A1 (en) | Device and method for manufacturing flow volume control device | |
US6733704B2 (en) | Thermoplastic resin injection molding machine | |
US20040256073A1 (en) | Die casting machine and casting method | |
JP2011218674A (en) | Method of manufacturing metallic decorative member | |
JPWO2016208610A1 (en) | Spot welding method and apparatus | |
KR102241150B1 (en) | hot air staking machine | |
CN104703773A (en) | Method and device for producing a plastic part, especially a plastic part for an automobile, by an injection molding method | |
KR20070056355A (en) | Multi spot welder | |
US11565452B2 (en) | Injection molding apparatus and method | |
JP6533082B2 (en) | Flow control device and method of manufacturing the same | |
JP2010213441A (en) | Fusing method and fusing device | |
WO2016021392A1 (en) | Flow control device and process for producing same | |
JP2615323B2 (en) | Injection molding machine | |
JP4369396B2 (en) | Pre-plastic injection device | |
JP2002370759A (en) | Resin-made valve cover | |
Bongo | Ultrasonic Assembly of Thermoplastics | |
JPH09267223A (en) | Metallic part press-in device | |
JP4486512B2 (en) | Injection molding machine | |
KR20220034744A (en) | Plastic boss heating fusion automatic assembly device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771832 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771832 Country of ref document: EP Kind code of ref document: A1 |