WO2016157831A1 - 風力発電システムおよびその制御方法 - Google Patents

風力発電システムおよびその制御方法 Download PDF

Info

Publication number
WO2016157831A1
WO2016157831A1 PCT/JP2016/001650 JP2016001650W WO2016157831A1 WO 2016157831 A1 WO2016157831 A1 WO 2016157831A1 JP 2016001650 W JP2016001650 W JP 2016001650W WO 2016157831 A1 WO2016157831 A1 WO 2016157831A1
Authority
WO
WIPO (PCT)
Prior art keywords
windmill
generator
state
wind
power generation
Prior art date
Application number
PCT/JP2016/001650
Other languages
English (en)
French (fr)
Inventor
田中 元史
俊樹 大迫
敏雅 山田
寿 松田
志村 尚彦
祐太 大西
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to DE112016001476.7T priority Critical patent/DE112016001476T5/de
Publication of WO2016157831A1 publication Critical patent/WO2016157831A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Embodiments of the present invention relate to a wind power generation system and a control method thereof.
  • Wind power generation is being introduced worldwide. However, geographical constraints can prevent the spread of wind power generation.
  • An aerodynamic improvement device that controls the airflow in the vicinity of the blade and improves the aerodynamic characteristics of the blade is used.
  • An aerodynamic improvement device includes an airflow generator.
  • the air flow generator generates a plasma flow by applying a voltage to a pair of electrodes arranged on the blade. As a result, the wing lift increases.
  • the aerodynamic improvement device be stopped in a time zone where the wind condition (wind condition) is good and it is not necessary to improve the aerodynamic characteristics of the blade. Further, during operation of the aerodynamic improvement device, it is desirable to adjust its characteristics according to the wind conditions. Thus, the operating state of the aerodynamic improvement device may change depending on the wind conditions and the like.
  • the wind turbine is controlled according to the wind conditions in order to stabilize output, prevent reduction in efficiency, reduce fatigue accumulation, and reduce noise. That is, the wind turbine pitch angle, yaw angle, rotation speed, and generator torque are controlled by predetermined control parameters, and the aerodynamic characteristics of the blades are changed in accordance with the wind conditions.
  • the operating state (running or stopping) of the aerodynamic improvement device also affects the aerodynamic characteristics of the wing. For this reason, it is desirable to change the control parameter of a windmill according to the operation state of an aerodynamic improvement apparatus.
  • Wind turbine control parameters are generally included in the control database in the wind turbine controller.
  • this control database is typically kept secret as the manufacturer's know-how and is not disclosed to the user side (business operators, maintenance companies, etc.).
  • the problem to be solved by the present invention is to provide a wind power generation system and a wind power generation method capable of changing the control parameters of the windmill in accordance with the state of the aerodynamic improvement device without changing the control database of the windmill. .
  • the wind power generation system of the embodiment includes a windmill, a generator, an aerodynamic regulator, a measuring instrument, a windmill controller, and a converter.
  • a windmill has a wing
  • the generator generates electricity by rotating the windmill.
  • the aerodynamic adjuster is disposed on the wing and adjusts the aerodynamic state of the wing.
  • the measuring instrument measures the state of at least one of the wind, the windmill, and the generator, and outputs a state signal that represents the result of this measurement.
  • the windmill controller outputs a control signal for controlling at least one of the windmill and the generator based on the state signal.
  • the converter converts the state signal or the control signal in response to adjustment of the aerodynamic state by the aerodynamic regulator.
  • FIG. 1 shows schematic structure of a wind power generation system. It is a figure which shows the structural example of the airflow generator used for a wind power generation system. It is a figure which shows the example of the voltage waveform applied to a wind power generation system. It is a figure which shows 1st Embodiment of a structure of the control system of a wind power generation system. It is a control map which shows the relationship between the rotation speed of a windmill (generator), and the torque of a generator. It is a figure which shows the input-output characteristic of the signal converter in 1st Embodiment. It is a figure which shows 2nd Embodiment of a structure of the control system of a wind power generation system. It is a figure which shows the input-output characteristic of the signal converter in 2nd Embodiment.
  • FIG. 1 is a diagram showing a configuration of a wind power generation system.
  • FIG. 2 is a diagram showing a configuration of an airflow generator as an aerodynamic improvement device of the wind turbine power generation system of FIG.
  • the wind power generation system 10 of this embodiment includes a tower 30, a nacelle 31, a windmill unit 40, and a wind direction anemometer 50.
  • the tower 30 is installed on the ground 20, and the windmill unit 40 is disposed on the top thereof.
  • the anemometer 50 is attached to the upper surface of the nacelle 31.
  • the windmill unit (windmill) 40 includes a rotating shaft (rotor) 41 and three windmill blades (wings) 42.
  • the number of wind turbine blades 42 is three, but the number can be changed as appropriate.
  • the number of windmill blades 42 may be 2, 4, or 5 or more.
  • the rotating shaft 41 is a rotating shaft of a generator 150 described later.
  • the windmill blade 42 is supported by the rotating shaft 41 and rotates by receiving wind (airflow) from the front.
  • the windmill unit 40 rotates by receiving wind on the windmill blade 42, and applies torque generated by the rotation to the generator 150 to generate power.
  • a generator 150 is accommodated in the nacelle 31.
  • the generator 150 has a rotating shaft 41 protruding from the nacelle 31, and the wind turbine blade 42 is supported on the rotating shaft 41. That is, the wind turbine blade 42 is supported by the rotating shaft 41 of the generator 150 (see FIG. 4) protruding from the nacelle 31.
  • this is the configuration when the windmill is not equipped with a gearbox.
  • the windmill blade 42 is supported by the rotating shaft of a gearbox.
  • Wind direction anemometer 50 measures the state of wind (direction and speed) and transmits each measurement data to the wind turbine controller (see FIG. 4).
  • Each windmill blade 42 includes an airflow generator 60 as an aerodynamic improvement device (aerodynamic adjuster that adjusts the aerodynamic state of the blade).
  • the outer portion is made of a dielectric material.
  • the dielectric material include GFRP (glass fiber reinforced resin) obtained by solidifying glass fiber with a synthetic resin.
  • the dielectric material is not limited to this, and may be any dielectric material that constitutes a known wind turbine blade body.
  • the entire wind turbine blade 42 need not be made of a dielectric material, and at least a portion where the airflow generator 60 is disposed may be made of a dielectric material. That is, it is only necessary to insulate the electrodes of the airflow generator 60 and the electrodes of the airflow generator 60 and the wind turbine blade body.
  • the airflow generator 60 can be operated and stopped by an on / off operation of a switch (not shown) by an operator. Further, the airflow generation function can be adjusted by changing the voltage, frequency, duty ratio, and the like applied to the airflow generator 60 by using a nearby or remote adjuster. The airflow generator 60 during operation generates an airflow on the wind turbine blades 42 in a steady or unsteady manner. As a result, the aerodynamic characteristics of the wind turbine blade 42 can be improved by increasing the lift of the wind turbine blade 42 or reducing the drag force.
  • the airflow generator 60 is preferably switched between operation and stop as appropriate. For example, operation and stop can be switched when the number of rotations of the generator 150 reaches a predetermined value. Moreover, you may switch an operation
  • the operation / stop switching of the airflow generator 60 may be either human or automatic.
  • the airflow generator 60 is disposed at the front edge of the wind turbine blade 42.
  • the air flow generator 60 includes a first electrode 61 and a second electrode 62.
  • a dielectric 63 is disposed between the first electrode 61 and the second electrode 62.
  • the first electrode 61 is disposed on the surface of the dielectric 63
  • the second electrode 62 is embedded in the dielectric 63.
  • the dielectric material constituting the dielectric 63 is not particularly limited, and can be appropriately selected from known dielectric materials made of solids according to the application and environment used.
  • the wind turbine blades 42 are manufactured as follows.
  • a wind turbine blade body is produced by impregnating a glass fiber laminate with a resin (a manufacturing method such as a prepreg or a resin transfer).
  • the first electrode 61 and the second electrode 62 of the airflow generator 60 can be formed by laminating a metal foil strip or a metal plate between the fibers (manufacture of the wind turbine blade 42).
  • the wind turbine blade 42 can also be manufactured by adhering a separately produced air flow generator to the surface of the shaped wind turbine blade.
  • the manufacturing method of the windmill blade 42 is not restricted to this.
  • the configuration of the airflow generator 60 is not limited to this.
  • a groove portion is formed in the wind turbine blade 42, and the airflow generator 60 (the first electrode 61, the second electrode 62, and the dielectric 63) is fitted into the groove portion, and the airflow generator 60 is moved from the surface of the windmill blade 42. You may make it not protrude.
  • the wind turbine blade 42 is made of a dielectric material such as GFRP (glass fiber reinforced resin) obtained by solidifying glass fiber with a synthetic resin
  • the constituent material of the wind turbine blade 42 itself can be used as the dielectric 63.
  • the first electrode 61 is directly disposed on the surface of the wind turbine blade 42, and the second electrode 62 is directly embedded in the wind turbine blade 42 so as to be separated from the first electrode 61.
  • the first electrode 61 can be disposed on the front edge of the wind turbine blade 42, and the second electrode 62 can be disposed on the blade upper surface 42 a on the back side of the wind turbine blade 42. At this time, the edge of the first electrode 61 on the second electrode 62 side is disposed on the front edge of the wind turbine blade 42.
  • the airflow generator 60 may be disposed at a position where airflow separation on the blade surface can be controlled, and the position is not particularly limited. However, it is preferable to arrange the airflow generator 60 at the front edge of the wind turbine blade 42 in order to control the flow accurately.
  • the first electrode 61 and the second electrode 62 are arranged so that the plasma-induced flow flows from the first electrode 61 toward the second electrode 62.
  • the plasma induced flow flows from the front edge of the wind turbine blade 42 toward the back side 42 a of the blade surface.
  • a plurality of air flow generators 60 are arranged in the blade width direction from the root of the wind turbine blade 42 toward the end.
  • each airflow generator 60 is controlled separately.
  • the voltage applied between the first electrode 61 and the second electrode 62 is controlled for each airflow generator 60.
  • one air flow generator 60 is disposed in the blade width direction on the front edge portion of the wind turbine blade 42.
  • the first electrode 61 and the second electrode 62 are electrically connected to a discharge power supply 65 that functions as a voltage application mechanism via a cable wiring 64, respectively.
  • a voltage is applied between the first electrode 61 and the second electrode 62.
  • the discharge power source is, for example, a pulse-like voltage (positive polarity, negative polarity, both positive and negative polarities (alternating voltage)) between the first electrode 61 and the second electrode 62 (eg, pulse modulation voltage).
  • a pulse-like voltage positive polarity, negative polarity, both positive and negative polarities (alternating voltage)
  • alternating voltage alternating voltage
  • the discharge power supply 65 can apply a voltage between the first electrode 61 and the second electrode 62 by changing the current-voltage characteristics such as the voltage value, frequency, current waveform, and duty ratio.
  • the discharge power supply 65 can be either a plurality or a single.
  • a discharge power source 65 may be used for each airflow generator 60.
  • One discharge power source 65 that can drive the plurality of airflow generators 60 independently of each other may be used.
  • pulse modulation control a control method for turning on the applied voltage from the discharge power supply 65 for a predetermined time and turning it off for a predetermined time is called pulse modulation control.
  • the ON / OFF frequency is the pulse modulation frequency f.
  • the fundamental frequency shown in FIG. 3 is the frequency of the applied voltage itself.
  • the pulse modulation frequency f is preferably set so as to satisfy the following relational expression (1).
  • one airflow generator 60 has a predetermined width in the blade width direction. For this reason, even in one airflow generator 60, the chord length C and the relative speed U change in the width direction of the airflow generator 60. For this reason, it is preferable that the chord length C and the relative speed U be an average value in the wing width direction at the wing portion where each airflow generator 60 is disposed.
  • Low temperature plasma can give energy only to electrons in gas (air). For this reason, it is possible to generate electrons and ions by ionizing the gas with little heating of the gas. The generated electrons and ions move by the electric field, and they collide with gas molecules. As a result, the momentum of ions moves to gas molecules, and the gas molecules move.
  • an air flow can be generated near the electrode by discharge.
  • the magnitude and direction of the airflow can be controlled by changing the current-voltage characteristics such as the voltage, frequency, current waveform, and duty ratio applied to the electrodes.
  • airflow is generated in the direction from the front edge to the rear edge of the blade upper surface 42a of the wind turbine blade body, but the direction of the airflow can be changed by installing the electrodes.
  • FIG. 4 is a block diagram showing a first embodiment of the system configuration in the wind power generation system.
  • the wind power generation system includes a wind condition measurement unit 100, a power generation state measurement unit 110, a measurement unit 90 such as a windmill state measurement unit 120, a pitch driver 130, a yaw driver 140, a generator 150, An airflow generator 60, an airflow generator controller 170, a signal converter 180, and a windmill controller 190 are provided.
  • the wind power generation system further includes a discharge power source (not shown) that drives the airflow generator 60.
  • the generator 150 generates electricity by the rotation of the windmill that receives the airflow.
  • the windmill controller 190 is a wind condition (wind state such as wind speed and wind direction) measured by the measurement section 90 (wind condition measurement section 100, power generation state measurement section 110, windmill state measurement section 120), and Based on the output state and the state of the windmill, the pitch of the windmill, the yaw, and the load state of the generator 150 are controlled.
  • the airflow generator 60 can be operated, stopped, or adjusted in capacity.
  • the airflow generator 60 can improve the aerodynamic characteristics of the wind turbine blade 42. That is, during the operation of the airflow generator 60, the lift to the wind turbine blade (blade) 42 increases and the drag decreases.
  • the airflow generator controller 170 drives the airflow generator 60 based on the state information measured by the measurement unit 90 (wind condition measurement unit 100, power generation state measurement unit 110, windmill state measurement unit 120). In addition to this, the airflow generator controller 170 controls the signal converter 180 according to the operating state of the airflow generator 60.
  • the signal converter 180 converts the state signal sent from the measuring unit 90 to the windmill controller 190 to have a value or signal level different from the original state signal. As a result, the pitch, yaw, and generator load of the windmill are adjusted to appropriate states according to the state of the airflow generator 60.
  • the signal converter 180 controlled by the airflow generator controller 170 converts the state signal different from the original state signal if the airflow generator 60 is in an operating state, and the airflow generator 60 operates. If it is in the stop state, the state signal is relayed (the state signal is not converted).
  • the generator 150 generates electric power by the rotation of the wind turbine blades 42 and generates torque in a direction that suppresses the rotation of the wind turbine blades 42.
  • the wind condition measuring unit (wind condition measuring instrument) 100 has a wind direction anemometer 50.
  • the wind direction anemometer 50 is a sensor that measures the speed and direction of the wind flowing into the wind turbine blades 42.
  • the anemometer 50 is disposed, for example, in the upper part of the nacelle 35 shown in FIG.
  • the wind condition measuring unit 100 may be installed not in the upper part of the nacelle 35 but in a wind condition observation tower installed in front of the windmill or the like.
  • the wind condition measuring unit 100 measures the wind speed and the wind direction at a place away from the measuring unit by using a laser or an ultrasonic wave instead of the wind direction anemometer 50, a rider (LIDAR) or soda : Sound Detection and Ranging) and the like.
  • the power generation state measuring unit (power generation state measuring instrument) 110 is arranged in the generator 150 and is different from the torque (rotation torque on the windmill side) serving as a load that suppresses the rotation of the rotating shaft (windmill blade 42), Measure the generator torque).
  • the torque sensor may not calculate the torque directly, but may calculate the torque by dividing the power generation output by the angular velocity.
  • a voltmeter, an ammeter, a wattmeter or the like is used to measure the generator output.
  • a voltmeter etc. can be arrange
  • the windmill state measuring unit (windmill state measuring instrument) 120 includes a rotation speed sensor, a pitch angle sensor, and a yaw angle sensor, and the rotation speed (or rotation of the generator 150) of the rotation shaft (rotor) 41 of the windmill blade 42. Number), and the pitch angle and yaw angle of the wind turbine blade 42 are measured.
  • the measurement unit 90 may include a sensor (for example, a vibration meter, a surface pressure gauge, a strain gauge) for measuring vibrations of the windmill, a fluid state, a load state and the like. That is, the measurement unit 90 measures at least one of the wind condition, the power generation state of the generator 150, and the state of the windmill unit 40.
  • a sensor for example, a vibration meter, a surface pressure gauge, a strain gauge
  • the signal converter 180 converts or relays a state signal sent from the measuring unit 90 to the windmill controller 190.
  • the windmill controller 190 includes a built-in windmill based on the wind condition, the generator output state, and the windmill state measured by the measurement unit 90 (the wind condition measurement unit 100, the generator measurement unit 110, and the windmill state measurement unit 120). With reference to a control database 191 (hereinafter referred to as “DB191”), the pitch angle of the wind turbine blades 42, the yaw angle of the wind turbine section 40, and the load state of the generator 150 are controlled.
  • DB191 control database 191
  • the wind turbine controller 190 can be mainly configured from, for example, a computing device (CPU), a read-only memory (ROM), and a random access memory (RAM).
  • CPU computing device
  • ROM read-only memory
  • RAM random access memory
  • CPU executes various calculations using programs and data stored in ROM or RAM. This calculation is realized by a computer device, for example.
  • the DB 191 can be composed of a storage device (memory, hard disk device, etc.). Data can be input to the windmill control DB 191 via a keyboard, a mouse, an external input interface, etc. (not shown).
  • the DB 191 stores a plurality of control maps (for example, the curves 51 and 52 in FIG. 5) that associate measurement values (wind speed, wind direction, rotation speed, etc.) with control target values (wind turbine torque, yaw angle, pitch angle, etc.). .
  • the DB 191 stores, as an example, a control map as shown in a “stop curve 51” in FIG. 5 that shows characteristics of torque generated by the generator with respect to the rotational speed of the generator.
  • the pitch driver 130 is controlled by the windmill controller 190 to adjust the pitch angle of the windmill blades 42.
  • the pitch driver 130 adjusts the blade angle (pitch angle) of the wind turbine blade 42 according to the control signal (information) sent from the wind turbine controller 190.
  • the windmill controller 190 sends, for example, a control signal corresponding to the rotational speed of the windmill blade 42 detected by the rotational speed sensor to the pitch driver 130.
  • the windmill controller 190 may send a control signal corresponding to the windmill output obtained from the values of the voltmeter / ammeter of the generator state measuring unit to the pitch driver 130.
  • the yaw driver 140 turns (rotates) the nacelle 31.
  • the windmill controller 190 sends a control signal based on the detected wind condition information (wind speed, wind direction, etc.) to the yaw driver 140.
  • the yaw driver 140 turns (rotates) the nacelle 31 in accordance with a control signal (information) sent from the windmill controller 190, and adjusts the direction of the rotor (rotating shaft 41) of the windmill to the wind direction.
  • the airflow generator controller 170 includes a built-in airflow generation based on the wind condition, the generator output state, and the windmill state measured by the wind condition measuring unit 100, the generator measuring unit 110, and the windmill state measuring unit 120.
  • the airflow generator 60 is controlled with reference to the device control database 171 (hereinafter referred to as “DB171”).
  • the airflow generator controller 170 can be mainly configured from, for example, a computing device (CPU), a read-only memory (ROM), and a random access memory (RAM).
  • CPU computing device
  • ROM read-only memory
  • RAM random access memory
  • the CPU executes various calculations using programs and data stored in the ROM and RAM. This calculation is realized by a computer device, for example.
  • the DB 171 can be composed of a storage device (memory, hard disk device, etc.). Data can be input to the DB 171 via a keyboard, a mouse, an external input interface, etc. (not shown).
  • the DB 171 stores a plurality of control maps that associate measurement values (wind speed, wind direction, rotation speed, etc.) with operating parameters of the airflow generator 60 that is an aerodynamic improvement device.
  • the control map may be expressed as a curve, a function, a control characteristic, or the like.
  • the operating parameters of the airflow generator 60 are, for example, current-voltage characteristics (applied voltage to the electrode, frequency, current waveform, modulation frequency, duty ratio, etc.) for each airflow generator 60.
  • the airflow generator 60 adjusts the voltage applied to the electrodes, the frequency, the current waveform, the modulation frequency, and the duty ratio based on the signal from the airflow generator controller 170. As a result, the strength of the airflow from the leading edge of the blade upper surface 42a to the direction along the trailing edge is adjusted, and the aerodynamic state of the wind turbine blade 42 is improved.
  • the signal converter 180 is disposed between the measurement unit 90 and the windmill controller 190.
  • the signal converter 180 converts or relays a signal sent from the measuring unit 90 to the windmill controller 190.
  • the airflow generator controller 170 switches a function (conversion table) for the signal converter 180 to convert a signal according to the operation state (operation, stop) of the airflow generator 60 (see FIG. 6).
  • the signal converter 180 converts a signal sent from the measuring unit 90 to the windmill controller 190.
  • the pitch angle of the windmill, the yaw angle, and the load on the generator 150 are adjusted to an appropriate state according to the state of the airflow generator 60.
  • the conversion function can be held by the signal converter 180. Instead of switching a plurality of conversion functions (conversion tables), use or non-use of one conversion function (conversion table) may be switched. This is because when the airflow generator controller 170 is stopped, signal conversion, that is, no conversion table is required. At this time, the signal converter 180 relays the signal without converting it.
  • FIG. 5 is a diagram showing a rotational speed-torque curve of the generator of this wind turbine power generation system.
  • I * (d ⁇ / dt) Tw ⁇ Tm (Formula 1)
  • I Moment of inertia of windmill ⁇ : Angular velocity of windmill
  • Tw Torque of windmill (hereinafter referred to as “windmill torque”)
  • Tm Torque of the generator 150 (hereinafter referred to as “generator torque”)
  • the wind turbine torque Tw is determined by the performance of the wind and the blades, and is an amount determined by the wind condition at that time.
  • the generator torque Tm is related to the amount of power generated by the generator 150. For this reason, the generator torque Tm can be controlled by adjusting the excitation current of the generator 150, for example. For example, when the output end of the generator 150 is opened (no power generation), the generator torque Tm theoretically becomes zero. In this case, if the friction is ignored, the number of revolutions of the windmill increases without limit as long as the wind blows.
  • the generator When the generator is a permanent magnet type synchronous generator, the output voltage and phase to the system are changed by a converter for connecting the generator output to the system to adjust the power output to the system. As a result, the generator torque Tm is controlled.
  • the generator torque Tm can be controlled by adjusting the output impedance (load) of the generator 150 (that is, by adjusting how much power is generated).
  • the windmill controller 190 of a general windmill power generation system that does not include the airflow generator 60 includes a control map that indicates the relationship between the rotational speed and the torque, as illustrated in “curve 51 at the time of stop” in FIG. 5, for example. .
  • the wind turbine controller 190 controls the generated torque, that is, the power generation amount of the generator, with reference to this control map according to the rotational speed.
  • This rotational speed-torque control map is normally set so that the peripheral speed ratio ⁇ of the wind turbine takes an optimum value so that wind energy can be extracted to the maximum.
  • r * ⁇ / U r: Rotating radius of windmill ⁇ : Angular speed of windmill U: Relative speed of wind with respect to wings
  • the value of the peripheral speed ratio ⁇ is set to, for example, 5 to 7 (preferably 6).
  • the generator torque Tm (the load of the generator) is controlled based on the wind speed and the rotational speed of the windmill (the relative speed U is the wind speed). And can be calculated based on the rotational speed of the windmill).
  • the windmill is designed to extract energy from the wind most efficiently at the set peripheral speed ratio.
  • an aerodynamic improvement device such as the airflow generator 60 is installed later on the optimally designed windmill, the peripheral speed ratio of the windmill may deviate from the optimum value.
  • the windmill torque Tw at a certain wind speed becomes larger than when the airflow generator 60 is not working.
  • a signal converter 180 is arranged between the wind turbine state measuring unit 120 (rotational speed sensor or the like) and the wind turbine controller 190. As shown in FIG. 6, the signal converter 180 converts the rotational speed signal in accordance with the operation state (running state or stopped state) of the airflow generator 60.
  • the horizontal axis (Rx axis) in FIG. 6 represents an input rotational speed signal (rotational speed input).
  • the vertical axis (Ry axis) represents the output rotation speed signal (rotation speed output).
  • the rotational speed input to the signal converter 180 is output as it is from the signal converter 180 and sent to the wind turbine controller 190.
  • the function 61 conversion table
  • the signal converter 180 relays the signal without converting it.
  • the rotational speed input input to the signal converter 180 is converted based on the “operation function 62” in FIG. 6 and sent to the windmill controller 190.
  • an apparent rotational speed signal (information indicating the rotational speed) different from the actual rotational speed is sent from the signal converter 191 to the wind turbine controller 190.
  • the relationship between the actual rotational speed and the torque is changed from the “stop curve 51” when the air flow generator 60 is stopped to the “operation curve 52 when the air flow generator 60 is operated. ”.
  • FIG. 5 is a diagram illustrating an example of a control state when the signal converter 180 is used.
  • the regions of the generator 150 (wind turbine blades 42) at the rotational speeds a and b are divided into a low rotation region, a medium rotation region, and a high rotation region (hereinafter referred to as “low rotation region”). , “Medium rotation range” and “high rotation range”).
  • low rotation region a medium rotation region
  • high rotation region hereinafter referred to as “low rotation region”.
  • the generator torque is increased particularly in the middle rotation region as compared to when the airflow generator 60 is stopped (see the curve 52).
  • the curve 51 in the middle rotation region has a shape (linear shape) in which the generator torque and the rotation speed are almost linear functions, and is connected to the curve 51 in the low rotation region and the high rotation region.
  • the curve 52 during operation is substantially the same as the curve 51 below a certain number of revolutions and above the rated number of revolutions.
  • the curve 52 at the time of operation is a generator torque that is substantially constant (same) even when the rotational speed changes in the middle rotation region, where the generator torque on the low rotation region side is large.
  • the curve 52 approaches the curve 51 as the rotation speed increases in the middle rotation range.
  • the reason why the generator torque is increased on the low rotation side in the middle rotation range is that the increase rate of the wind turbine torque by the air flow generator 60 is larger on the lower rotation side. If the generator 150 is controlled using the curve 51 during the operation of the airflow generator 60, the number of revolutions is greater than when the airflow generator 60 is stopped. In this case, the peripheral speed ratio becomes larger than the design value, and the power generation efficiency decreases. For this reason, the generator torque is increased on the low rotation side of the middle rotation region, thereby preventing a decrease in power generation efficiency.
  • the increase rate of the wind turbine torque by the airflow generator 60 decreases as the rotation speed increases.
  • the characteristics are not changed from those when the air flow generator 60 is not provided. For this reason, the curve 52 is brought closer to the curve 51 as the rotation speed increases in the middle rotation range.
  • a signal converter 180 is disposed between the measurement unit 90 and the windmill controller 190, and the airflow generator controller 170 controls the signal converter 180.
  • the conversion function (conversion table) of the signal converter 180 is switched according to the operating state of the airflow generator 60 to control the windmill. As a result, it is not necessary to change the DB 191 of the windmill controller 190, and for example, it becomes easy to install the airflow generator 60 in an existing windmill.
  • the peripheral speed ratio can be kept near the optimum value.
  • the power generation efficiency of the wind turbine power generation system 10 can be improved and further maximized, and the power generation amount can be increased.
  • FIG. 7 is a block diagram showing a system configuration of the second embodiment.
  • FIG. 8 is a diagram showing the conversion characteristics of the control signal by the signal converter 181.
  • the signal converter 181 converts or relays a control signal (such as a torque control command) sent from the windmill controller 190 to the generator 150.
  • the signal converter 181 converts or relays control signals sent from the windmill controller 190 to the pitch driver 130 and the yaw driver 140. That is, the signal converter 181 converts or relays the control signal sent from the windmill controller 190 to the windmill unit 40 and the generator 150.
  • the airflow generator controller 170 controls the signal converter 181 according to the operating state of the airflow generator 60.
  • the signal converter 181 converts at least one control signal sent from the windmill controller 190 to the pitch driver 130, the yaw driver 140, and the generator 150.
  • the pitch, yaw, and generator load of the windmill are adjusted to the optimum state according to the operating state (running state or stopped state) of the airflow generator 60.
  • the signal converter 181 controlled by the airflow generator controller 170 converts the control signal to be different from the original signal when the airflow generator 60 is in an operating state, and the airflow generator 60 stops operating. If so, relay the control signal.
  • a signal converter 181 is arranged between the windmill controller 190, the windmill drive unit (pitch driver 130, yaw driver 140), and the generator 150. As shown in FIG. 8, the signal converter 181 converts a control signal (such as a torque command) to the generator 150, for example, according to the operating state (running state or stopped state) of the airflow generator 60. In addition, the signal converter 181 may convert control signals to the pitch driver 130 and the yaw driver 140.
  • the horizontal axis (Tx axis) in FIG. 8 represents a torque control signal (input torque control signal) input to the signal converter 181.
  • the vertical axis (Ty axis) represents a torque control signal (output torque control signal) output from the signal converter 181.
  • the command signal to the generator 150 input to the signal converter 181 is directly output (simply relayed) from the signal converter 181 and sent to the generator 150.
  • the function 81 conversion table
  • the signal converter 181 relays the signal without converting it.
  • the command signal to the generator 150 input to the signal converter 181 is converted by the “function 82 during operation” shown in FIG. 8 and sent to the generator 150.
  • the function 82 during operation converts the control signal of the generator 150 so that the generator torque in the middle rotation range is increased more than usual. As a result of this conversion, a control signal different from the command signal from the actual windmill controller 190 is sent from the signal converter 181 to the generator 150.
  • the conversion function can be held by the signal converter 181. Instead of switching a plurality of conversion functions (conversion tables), use or non-use of one conversion function (conversion table) may be switched. This is because when the airflow generator controller 170 is stopped, signal conversion, that is, no conversion table is required.
  • a signal converter 181 is disposed between the windmill controller 190, the windmill drive unit (pitch driver 130, yaw driver 140), and the generator 150, and the airflow generator controller 170 performs signal conversion.
  • the device 181 is controlled.
  • the conversion function (conversion table) of the signal converter 181 is switched according to the operating state of the airflow generator 60 to control the windmill. As a result, it is not necessary to change the DB 191 of the windmill controller 190, and for example, it becomes easy to install the airflow generator 60 in an existing windmill.
  • the signal between the windmill controller 190 and the windmill drive unit / generator 150 is often transmitted not by analog communication but by protocol communication such as CAN or OPEN.
  • the signal converter 181 may be a kind of virtual device instead of a simple analog signal converter. This virtual device receives the protocol communication from the transmission side, adds a certain process to the content, and transmits it to the reception side. In this case, since a phase delay occurs due to communication transmission, it is desirable to stabilize the control response by adding a control logic that compensates for the phase delay.
  • signal converters 180 and 181 for input / output signals of the windmill controller 190 are provided, and the airflow generator controller 170 controls each converter. It becomes possible to make the control parameters of the windmill correspond to the state of the airflow generator 60 without changing the database (DB191) for windmill control. As a result, even when the airflow generator 60 is mounted on an existing windmill, the efficiency of the windmill power generation system can be easily improved and further maximized.
  • analog control signals are assumed as signals on the vertical and horizontal axes, but not only analog signals but also various forms of signals such as digital signals and pulse signals may be used.
  • the signal received by the signal converter 181 is converted into a signal that can be recognized by the receiving side, and the signal converter 181 can handle various types of signals.
  • the example in which the airflow generator 60 that generates the airflow by the action of the discharge plasma is provided as the aerodynamic improvement device.
  • a synthetic jet or a flap may be used as the aerodynamic improvement device. .
  • the synthetic jet can be created using, for example, a MEMS (Micro Electro Mechanical System) element.
  • a MEMS Micro Electro Mechanical System
  • the curve 52 in the middle rotation region is set to a substantially constant (same) torque even when the rotation speed is changed, so that the curve 52 gradually approaches the curve 51.
  • a curve obtained by moving the curve 51 upward as it is (a characteristic map in which the generator torque is generally higher than the curve 51 at the time of stopping) may be used as the curve 52.
  • each component of the control system shown in the above embodiment may be realized by a program installed in a storage device (storage such as a hard disk device of a computer).
  • the program may be stored in a computer-readable electronic medium.
  • the computer reads the program on the electronic medium, the functions of the above embodiments can be realized on the computer.
  • Examples of the electronic medium include a recording medium such as a CD-ROM, a flash memory, and a removable medium. Further, the configuration may be realized by distributing and storing components in different computers connected via a network, and communicating between computers in which the components are functioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

実施形態の風力発電システムは、風車、発電機、空力調節器、計測器、風車制御器、および変換器を有する。風車は、翼を有し、風によって回転する。発電機は、風車の回転によって発電する。空力調節器は、翼に配置され、翼の空力状態を調節する。計測器は、風、風車、および発電機の少なくともいずれかの状態を計測し、この測定の結果を表す状態信号を出力する。風車制御器は、状態信号に基づいて、風車および発電機の少なくともいずれかを制御するための制御信号を出力する。変換器は、空力調節器による空力状態の調節に対応して、前記状態信号または前記制御信号を変換する。

Description

風力発電システムおよびその制御方法
 本発明の実施形態は、風力発電システムおよびその制御方法に関する。
 風力発電の導入が世界的に進められている。しかし、地理的制約が、風力発電の普及を妨げることがある。
 地理的制約に、山岳性気象が挙げられる。山岳性気象では、風の状態(風速および風向)が激しく変動し、風力発電システムからの発電出力の安定が困難となる。
 風の状態が激しく変動すると、風力発電に用いる風車の翼から気流が剥離し易くなり、翼の効率、ひいては発電効率が低下する。また、風の状態が激しく変動すると、翼への荷重が変動し、風車各部に疲労が蓄積する。この結果、風力発電システムのメンテナンスの頻度を上げる必要が生じ、風力発電システムの導入コストが上昇する。
 国土が狭隘な場合、風力発電の普及につれて、立地環境の問題が顕在化し易くなる。特に民家や集落の近くに風力発電を建設せざるを得ない場合、騒音に関するトラブルが発生し易い。
 以上のような出力の安定化、効率の低下防止、疲労の蓄積低減、および騒音の低減のために、翼の近隣の気流を制御して翼の空力特性を改善する空力改善装置が用いられる。空力改善装置には、気流発生器が挙げられる。気流発生器は、例えば、翼に配置された一対の電極に電圧を印加することで、プラズマの流れを発生させる。この結果、翼の揚力が増大する。
特開2006-197986号公報
 空力改善装置は、その寿命や消費電力を考慮すると、風況(風の状態)がよく、翼の空力特性を改善する必要がない時間帯には、停止することが望ましい。また、空力改善装置の運転中には、風況に応じて、その特性を調整することが望ましい。このように、風況等に応じて、空力改善装置の動作状態が、変化する可能性がある。
 一方、出力の安定化、効率の低下防止、疲労の蓄積低減、および騒音の低減のために、風況に応じて、風車が制御される。すなわち、所定の制御パラメータによって、風車のピッチ角、ヨー角、回転数、および発電機のトルクを制御し、風況と対応して、翼の空力特性を変化させる。
 空力改善装置の動作状態(運転または停止)も、翼の空力特性に影響を与える。このため、空力改善装置の動作状態に応じて、風車の制御パラメータを変化させることが望ましい。
 風車の制御パラメータは、一般に、風車の制御器内の制御データベースに含まれる。しかし、この制御データベースは、メーカのノウハウとして秘匿され、ユーザ側(事業者やメンテナンス会社等)には開示されないのが通例である。
 このため、既設の風車に空力改善装置を後付する場合、制御データベースを変更することによって、空力改善装置の状態に対応して制御パラメータを調節できるようにすることは困難である。
 本発明が解決しようとする課題は、風車の制御データベースを変更することなく、空力改善装置の状態に対応して、風車の制御パラメータを変更できる風力発電システムおよび風力発電方法を提供することにある。
 実施形態の風力発電システムは、風車、発電機、空力調節器、計測器、風車制御器、および変換器を有する。風車は、翼を有し、風によって回転する。発電機は、風車の回転によって発電する。空力調節器は、翼に配置され、翼の空力状態を調節する。計測器は、風、風車、および発電機の少なくともいずれかの状態を計測し、この測定の結果を表す状態信号を出力する。風車制御器は、状態信号に基づいて、風車および発電機の少なくともいずれかを制御するための制御信号を出力する。変換器は、空力調節器による空力状態の調節に対応して、前記状態信号または前記制御信号を変換する。
風力発電システムの概要構成を示す図である。 風力発電システムに用いられる気流発生器の構成例を示す図である。 風力発電システムに印加される電圧波形の例を示す図である。 風力発電システムの制御系の構成の第1実施形態を示す図である。 風車(発電機)の回転数と発電機のトルクの関係を示す制御マップである。 第1実施形態における信号変換器の入出力特性を示す図である。 風力発電システムの制御系の構成の第2実施形態を示す図である。 第2実施形態における信号変換器の入出力特性を示す図である。
 以下、図面を参照して、実施形態を詳細に説明する。図1は風力発電システムの構成を示す図である。図2は図1の風車発電システムの空力改善装置としての気流発生器の構成を示す図である。
 図1に示すように、この実施形態の風力発電システム10は、タワー30、ナセル31、風車部40、および風向風速計50を有する。
 タワー30は、地面20に設置され、その頂部に風車部40が配置される。風向風速計50は、ナセル31の上面に取り付けられる。
 風車部(風車)40は、回転軸(ロータ)41、および3本の風車翼(翼)42を備える。この例では、風車翼42の本数は、3本であるが、その本数は適宜に変更できる。風車翼42の本数は、2、4、あるいは5以上として良い。
 回転軸41は、後述の発電機150の回転軸である。風車翼42は、回転軸41に支持され、前方からの風(気流)を受けて回転する。
 風車部40は、風車翼42に風を受けて回転し、その回転によるトルクを発電機150に与えて発電させる。
 ナセル31に発電機150が収容されている。発電機150はナセル31から突出した回転軸41を有し、この回転軸41に風車翼42が支持される。つまり風車翼42は、ナセル31から突出した発電機150(図4参照)の回転軸41に支持される。
 ただし、これは風車が増速機を備えない場合の構成である。風車が増速機を備える場合、風車翼42は増速機の回転軸に支持される。
 風向風速計50は、風の状態(向きや速度)を計測し、それぞれの計測データを風車制御器(図4参照)へ伝達する。
 風車翼42はそれぞれ、空力改善装置(翼の空力状態を調節する空力調節器)としての気流発生器60を備える。
 風車翼42の本体中、その外形部分が誘電材料で構成される。この誘電材料として、例えば、グラスファイバを合成樹脂により固形化したGFRP(グラスファイバ強化樹脂)などが挙げられる。但し、誘電材料は、これに限らず、公知の風車翼本体を構成する誘電材料であればよい。
 なお、風車翼42全体が誘電材料で構成される必要はなく、少なくとも気流発生器60を配設する部分が誘電材料で構成されればよい。すなわち、気流発生器60の電極間、および気流発生器60の電極と風車翼本体の間が絶縁されればよい。
 気流発生器60は、オペレータによるスイッチ(図示せず)のオン、オフ操作により運転、停止できる。また、近傍または遠隔の調整器によって、気流発生器60に印加する電圧、周波数、デューティ比等を変化させて、その気流発生機能を調整できる。運転時の気流発生器60は、風車翼42上に気流を定常的または非定常に発生させる。この結果、風車翼42の揚力を増大したり、抗力を低減したりして、風車翼42の空力特性を改善できる。
 気流発生器60は、適宜に、運転、停止を切り替えることが好ましい。例えば、発電機150の回転数が所定値になったときに、運転、停止を切り替えることができる。またタイマーや風力センサからの出力に基づいて、運転、停止を切り替えてもよい。
 なお、気流発生器60の運転・停止の切り替えは、人的、自動的の何れでも良い。
 図2に示すように、気流発生器60は、風車翼42の前縁部に配置される。気流発生器60は、第1の電極61と第2の電極62とを備える。第1の電極61と第2の電極62の間に、誘電体63が配置される。ここでは、第1の電極61を誘電体63の表面に配置し、第2の電極62を誘電体63内に埋設している。
 なお、誘電体63を構成する誘電材料については、特に限定されず、使用される用途や環境に応じて、公知な固体からなる誘電材料から適宜選択できる。
 ここで、風車翼42は、例えば、次のように製作される。ガラス繊維の積層体に樹脂を含浸することによって、風車翼本体が作製される(プリプレグやレジントランスファ等の製法)。このとき、繊維の間に金属箔帯や金属板を積層することで、気流発生器60の第1の電極61および第2の電極62を形成できる(風車翼42の製造)。また、整形された風車翼の表面に、別途製作した気流発生器を接着することでも、風車翼42を製造できる。なお、風車翼42の製造方法は、これに限られるものではない。
 気流発生器60の構成は、これに限られるものではない。例えば、風車翼42に溝部を形成し、この溝部に、気流発生器60(第1の電極61、第2の電極62および誘電体63)を嵌め込み、気流発生器60が風車翼42の表面から突出しないようにしてもよい。
 この場合、風車翼42が、例えば、グラスファイバを合成樹脂により固形化したGFRP(グラスファイバ強化樹脂)などの誘電材料で構成されるときには、誘電体63として風車翼42自体の構成材料を利用できる。すなわち、風車翼42の表面に第1の電極61を直接配設し、この第1の電極61と離間して風車翼42内部に第2の電極62を直接埋設する。
 ここで、第1の電極61を風車翼42の前縁上に配置し、第2の電極62を風車翼42の背側の翼上面42aに配置できる。このとき、第1の電極61の第2の電極62側の端縁が、風車翼42の前縁上に配置される。
 気流発生器60は、翼面での気流の剥離を制御できる位置に配置すればよく、特に位置は限定されない。但し、流れを的確に制御するために、気流発生器60を風車翼42の前縁に配置することが好ましい。
 このように、プラズマ誘起流が、第1の電極61から第2の電極62に向かって流れるように、第1の電極61および第2の電極62が配置される。例えば、図2に示した気流発生器60では、プラズマ誘起流は、風車翼42の前縁から翼面の背側42aに向かって流れる。
 例えば、図1に示したように、風車翼42の根本から端に向かう翼幅方向に、複数の気流発生器60が配置される。この場合、気流発生器60はそれぞれ、別個に制御される。例えば、第1の電極61と第2の電極62との間に印加される電圧が、気流発生器60毎に、制御される。
 なお、翼幅が小さい場合、例えば、1つの気流発生器60を、風車翼42の前縁部に翼幅方向に配置する。
 第1の電極61および第2の電極62は、図2に示すように、それぞれケーブル配線64を介して、電圧を印加機構として機能する放電用電源65に電気的に接続される。この放電用電源65を起動することで、第1の電極61と第2の電極62との間に電圧が印加される。
 放電用電源は、第1の電極61と第2の電極62との間に、例えば、パルス状(正極性、負極性、正負の両極性(交番電圧))の電圧(例えば、パルス変調電圧)や、交流状(正弦波、断続正弦波)の電圧を印加できる。
 このように、放電用電源65は、電圧値、周波数、電流波形、デューティ比などの電流電圧特性などを変化させて、第1の電極61と第2の電極62との間に電圧を印加できる。
 複数の気流発生器60を備える場合、放電用電源65は、複数、単数の何れも可能である。気流発生器60毎に放電用電源65を用いてもよい。複数の気流発生器60を互いに独立して駆動できる1つの放電用電源65を用いてもよい。
 ここで、図3を参照して、一般的な風力発電システムでのパルス変調制御の概要を説明する。図3に示すように、放電用電源65からの印加電圧を所定時間オン(ON)、所定時間オフ(OFF)する制御方法をパルス変調制御という。
 ON,OFFの周波数が、パルス変調周波数fである。図3に示す基本周波数は、印加電圧自体の周波数である。
 電圧をパルス変調制御する際、次の関係式(1)を満たすように、パルス変調周波数fを設定することが好ましい。
           0.1≦f*C/U≦9 …式(1)
   C: 気流発生器60が配置された翼部での風車翼42の翼弦長
   U: 気流発生器60が配置された翼部での翼に対する風の相対速度(翼の周速度と風速とを合成した速度)
 図3に示すように、複数の気流発生器60を翼幅方向に配置する場合でも、1の気流発生器60は、翼幅方向に所定の幅を有する。このため、1の気流発生器60でも、翼弦長Cや相対速度Uは、この気流発生器60の幅方向に変化する。このため、翼弦長Cや相対速度Uは、各気流発生器60が配置された翼部での翼幅方向の平均値とすることが好ましい。
 ここで、気流発生器60によって気流が発生する原理を説明する。
 放電用電源65から第1の電極61と第2の電極62との間に一定の閾値以上の電圧が印加されると、第1の電極61と第2の電極62との間に放電が発生する。
 両電極が風車翼本体の翼上面42aに露出している場合、コロナ放電が発生する。一方、少なくとも一方の電極が風車翼本体に埋設されている場合、バリア放電が発生する。これらの放電によって、低温プラズマが生成される。
 低温プラズマは、気体(空気)中の電子のみに、エネルギーを与えることができる。このため、気体をほとんど加熱せずに、気体を電離して、電子およびイオンを生成できる。生成された電子やイオンは、電界によって移動し、それらが気体分子と衝突する。この結果、イオンの運動量が気体分子に移行し、気体分子が移動する。
 すなわち、放電によって、電極付近に気流を発生できる。この気流の大きさや向きは、電極に印加する電圧、周波数、電流波形、デューティ比などの電流電圧特性を変化させることで、制御できる。
 ここでは、風車翼本体の翼上面42aの前縁から後縁に沿う方向の気流を発生させているが、電極の設置によって、気流の向きを変更できる。
 図4は風力発電システムにおけるシステム構成の第1実施形態を示すブロック図である。図4に示すように、この風力発電システムは、風況計測部100、発電状態計測部110、風車状態計測部120などの計測部90、ピッチ駆動器130、ヨー駆動器140、発電機150、気流発生器60、気流発生器制御器170、信号変換器180、風車制御器190を備える。さらに風力発電システムは、気流発生器60を駆動する放電用電源(図示せず)を備える。
 発電機150は、気流を受ける風車の回転によって、発電する。風車制御器190は、計測部90(風況計測部100、発電状態計測部110、風車状態計測部120)によって計測された、風況(風速、風向などの風の状態)、発電機150の出力状態、風車の状態を基に、風車のピッチ、ヨー、発電機150の負荷状態を制御する。
 気流発生器60は運転、停止、またはその能力の調整が可能である。気流発生器60は、風車翼42の空力特性を改善できる。すなわち、気流発生器60の運転時には風車翼(翼)42への揚力が増大し、抗力が低減する。
 気流発生器制御器170は、計測部90(風況計測部100、発電状態計測部110、風車状態計測部120)によって計測された状態情報に基づいて、気流発生器60を駆動する。これに加えて、気流発生器制御器170は、風気流発生器60の動作状態に応じて、信号変換器180を制御する。信号変換器180は、計測部90から風車制御器190に送られる状態信号を変換し、元の状態信号と異なる値または信号レベルとする。この結果、風車のピッチ、ヨー、発電機負荷が、気流発生器60の状態に応じた適切な状態に調整される。
 すなわち、気流発生器制御器170によって制御された信号変換器180は、気流発生器60が運転状態であれば、状態信号を元の状態信号とは異なるように変換し、気流発生器60が運転停止状態であれば、状態信号を中継する(状態信号を変換しない)。
 発電機150は、風車翼42の回転により発電し、風車翼42の回転を抑える方向のトルクを発生する。
 風況計測部(風の状態の計測器)100は、風向風速計50を有する。風向風速計50は風車翼42に流入する風の速度、および風向を計測するセンサである。風向風速計50は、例えば図1に示したナセル35の上部に配置される。
 風況計測部100は、ナセル35の上部ではなく、風車の前方等に設置された風況観測塔に設置されてもよい。
 また、風況計測部100は、風向風速計50に代えて、レーザや超音波によって、計測部から離れた場所の風速および風向を計測する、ライダー(LIDAR: Light Detection and Ranging)やソーダ(Sodor: Sound Detection and Ranging)等を有してもよい。
 発電状態計測部(発電状態の計測器)110は、発電機150に配置され、回転軸(風車翼42)の回転を抑制する負荷となるトルク(風車側の回転トルクと異なるため、以下では「発電機トルク」称す)を計測する。
 トルクセンサは、トルクを直接的に計測せず、発電出力を角速度で割って、トルクを算出してもよい。この場合、発電機出力を計測するために、電圧計、電流計、電力計等が用いられる。電圧計等は、発電機または発電機と電力変換装置の間に配置できる。
 風車状態計測部(風車の状態の計測器)120は、回転数センサ、ピッチ角センサ、およびヨー角センサを含み、風車翼42の回転軸(ロータ)41の回転数(または発電機150の回転数)、風車翼42のピッチ角度、ヨー角度を計測する。
 計測部90は、この他、風車の振動、流体状態、荷重状態等を計測するセンサ(例えば、振動計、表面圧力計、ひずみ計)を含んでもよい。すなわち、計測部90は、風況状態、発電機150の発電状態、風車部40の状態のうちの少なくとも一つの状態を計測する。
 信号変換器180は、計測部90から風車制御器190へ送られる状態信号を変換または中継する。
 風車制御器190は、計測部90(風況計測部100、発電機計測部110、風車状態計測部120)により計測された、風況、発電機出力状態、風車状態を基に、内蔵する風車制御データベース191(以下「DB191」と称す)を参照して、風車翼42のピッチ角、風車部40のヨー角、発電機150の負荷状態を制御する。
 この風車制御器190は、例えば、演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)から主に構成できる。
 CPUは、ROMやRAMに格納されたプログラムやデータなどを用いて各種の演算を実行する。この演算は、例えば、コンピュータ装置で実現される。
 DB191は、記憶装置(メモリ、ハードディスク装置など)で構成できる。風車制御DB191には、図示しないキーボード、マウス、外部入力インターフェースなどを介して、データを入力できる。
 DB191は、計測値(風速、風向、回転数等)と制御対象値(風車トルク、ヨー角度、ピッチ角度等)とを関連付ける複数の制御マップ(例えば、図5の曲線51,52)を記憶する。
 DB191は、一例として、発電機の回転数に対して発電機に発生させるトルクの特性を示す図5の「停止の曲線51」に示すような制御マップを記憶する。
 ピッチ駆動器130は、風車制御器190により制御されて、風車翼42のピッチ角度を調整する。ピッチ駆動器130は、風車制御器190から送られた制御信号(情報)に応じて、風車翼42の翼の角度(ピッチ角度)を調整する。
 風車制御器190は、例えば、回転数センサにより検知された風車翼42の回転数に対応する制御信号をピッチ駆動器130に送る。
 風車制御器190は、発電機状態計測部の電圧計・電流計の値から求めた風車出力に対応する制御信号をピッチ駆動器130に送ってもよい。
 ヨー駆動器140は、ナセル31を旋回(回転)させる。風車制御器190は、検知された風況情報(風速、風向など)に基づく制御信号をヨー駆動器140に送る。ヨー駆動器140は、風車制御器190から送られた制御信号(情報)に応じて、ナセル31を旋回(回転)させ、風車のロータ(回転軸41)の向きを風向に合わせる。
 気流発生器制御器170は、風況計測部100、発電機計測部110、風車状態計測部120により計測された、風況、発電機出力状態、風車状態を基に、内蔵されている気流発生器制御データベース171(以下「DB171」と称す)を参照して、気流発生器60を制御する。
 この気流発生器制御器170は、例えば、演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)から主に構成できる。
 CPUでは、ROMやRAMに格納されたプログラムやデータなどを用いて各種の演算を実行する。この演算は、例えば、コンピュータ装置で実現される。
 DB171は、記憶装置(メモリ、ハードディスク装置など)で構成できる。このDB171には、図示しない、キーボード、マウス、外部入力インターフェースなどを介して、データを入力できる。
 DB171は、計測値(風速、風向、回転数等)と、空力改善装置である気流発生器60の運転パラメータを関連付ける複数の制御マップを記憶する。制御マップは、曲線、関数、制御特性などと表現してもよい。
 気流発生器60の運転パラメータとは、例えば、気流発生器60毎の電流電圧特性(電極への印加電圧、周波数、電流波形、変調周波数、デューティ比等)である。
 気流発生器60は、気流発生器制御器170からの信号に基づいて、電極への印加電圧、周波数、電流波形、変調周波数、デューティ比を調整する。この結果、翼上面42aの前縁から後縁に沿う方向に向かう気流の強さが調整され、風車翼42の空力状態が改善する。
 信号変換器180は、計測部90と風車制御器190との間に配置される。信号変換器180は、計測部90から風車制御器190に送られる信号を変換または中継する。気流発生器制御器170は、気流発生器60の動作状態(運転、停止)に応じて、信号変換器180が信号を変換するための関数(変換テーブル)を切り替える(図6参照)。信号変換器180は、計測部90から風車制御器190に送られる信号を変換する。この結果、風車のピッチ角、ヨー角、発電機150の負荷が、気流発生器60の状態に応じた適切な状態に調整される。
 変換関数(変換テーブル)は、信号変換器180が保持することができる。
 なお、複数の変換関数(変換テーブル)を切り替える代わりに、1つの変換関数(変換テーブル)の使用、不使用を切り替えてもよい。気流発生器制御器170の停止時は、信号の変換、すなわち変換テーブルが不要だからである。このとき、信号変換器180は、信号を変換せず、中継することになる。
 以下、図5、図6を参照してこの第1実施形態の風車発電システムの動作を説明する。図5はこの風車発電システムの発電機の回転数-トルク曲線を示す図である。
 通常、風力発電システムは、摩擦等を無視すれば、次の(式1)で決まる角速度とトルクで運転される。 
  I*(dω/dt)=Tw-Tm・・・(式1)
   I: 風車の慣性モーメント
   ω: 風車の角速度
   Tw: 風車のトルク(以下「風車トルク」という)
   Tm:発電機150のトルク(以下「発電機トルク」という)
 風車トルクTwは、風と翼の性能で決定され、その時の風況によって決まる量である。
 発電機トルクTmは、発電機150の発電量と関係する。このため、発電機150の、例えば励磁電流を調節することにより、発電機トルクTmを制御できる。例えば、発電機150の出力端を開放すると(発電しない)、理論上、発電機トルクTmは0となる。この場合、摩擦を無視すれば、風が吹く限り、風車の回転数は際限なく増加する。
 発電機が永久磁石型同期発電機の場合、発電機の出力を系統に接続するためのコンバータによって、系統への出力電圧と位相を変更して、系統への発電出力を調節する。この結果、発電機トルクTmが制御される。
 換言すると、発電機150の出力インピーダンス(負荷)を調整することで(すなわち、どれくらい発電するかを調整することで)、発電機トルクTmは制御できる。
 気流発生器60を備えない一般的な風車発電システムの、風車制御器190は、例えば、図5の「停止時の曲線51」に示すような、回転数とトルクの関係を示す制御マップを備える。風車制御器190は、回転数に応じて、この制御マップを参照して、発生トルク、すなわち発電機の発電量を制御する。
 この回転数-トルクの制御マップは、風力エネルギーを最大限に取り出せるようにするため、通常、風車の周速比λが最適値をとるように設定されている。
  λ=r*ω/U
   r: 風車の回転半径
   ω: 風車の角速度
   U: 翼に対する風の相対速度
 周速比λの値は、例えば、5~7(好ましくは、6)に設定される。
 このようにして発電機トルクTmを制御する場合、風の速度および風車の回転数に基づいて、発電機トルクTm(発電機の負荷)を制御することになる(相対速度Uは、風の速度および風車の回転数に基づいて算出できる)。
 風車は、その設定周速比において、風からもっとも効率的にエネルギーを取り出せるように、設計されている。
 しかし、最適設計された風車に、気流発生器60などの空力改善装置を後から設置した場合、風車の周速比が最適値からずれる可能性がある。
 例えば、図1、2の気流発生器60が働いて翼の揚力が増大した場合、ある風速での風車トルクTwが、気流発生器60が働いていないときと比べて、大きくなる。
 この場合、従来の回転数-発電機のトルク特性(制御マップ)をそのまま用いると、風車トルクTwが発電機トルクTmに比べて大きくなる。このため、回転数が増加傾向となり、風車の周速比が最適値より大きくなる。この結果、翼が風からエネルギーを取り出す効率が低下する。
 この実施形態の風車発電システムでは、図4に示すように、風車状態計測部120(回転数センサ等)と風車制御器190との間に信号変換器180を配置されている。気流発生器60の動作状態(運転状態か停止状態か)に応じて、図6に示すように、信号変換器180が回転数の信号を変換する。
 この例では、気流発生器60の停止時と運転時で、異なる変換曲線(停止時の関数61、運転時の関数62)を用いる。図6の横軸(Rx軸)は、入力される回転数信号(回転数入力)を表す。縦軸(Ry軸)は、出力される回転数信号(回転数出力)を表す。
 気流発生器60の停止時の変換曲線(停止時の関数61)は、「Ry=Rx」(傾き1の直線)である。このとき、信号変換器180に入力された回転数は、信号変換器180からそのまま出力され、風車制御器190に送られる。
 なお、停止時の関数61(変換テーブル)は、信号を変換しないのと同様であり、使用しないことも可能である。このとき、信号変換器180は、信号を変換せず、中継することになる。
 気流発生器60の運転時において、信号変換器180に入力された回転数入力は、図6の「運転時の関数62」に基づいて変換され、風車制御器190に送られる。この変換の結果、信号変換器191から風車制御器190へ、実際の回転数とは異なる見かけの回転数信号(回転数を示す情報)が送られる。
 この結果、実際の回転数とトルクの関係は、図5に示すように、気流発生器60の停止時の「停止の曲線51」から、気流発生器60の運転時の「運転時の曲線52」に切り替わる。
 図5は信号変換器180を用いた場合の制御状態の一例を示す図である。上記した信号変換器180の作用に対応して、発電機150の(風車翼42の)回転数a~bの領域を低回転領域、中回転領域、および高回転領域(以下「低回転域」、「中回転域」、および「高回転域」と称す)に区分している。気流発生器60の運転時では、気流発生器60の停止時と比べて、特に、中回転域において、発電機トルクが増加している(曲線52参照)。
 停止時の曲線51では、一定回転数(回転数a)以下で発電機トルクがほとんど発生しない。一方、定格回転数(回転数b)以上で発電機トルクが極端に大きくなる(回転数が定格回転数を越えて、発電機150などが破損するのを防ぐため)。中回転域の曲線51は、発電機トルクと回転数がほぼ一次関数のような形状(直線的な形状)で、低回転域および高回転域の曲線51と繋がる。
 運転時の曲線52は、一定回転数以下、定格回転数以上では、曲線51とほぼ同じである。しかし、運転時の曲線52は、中回転域において、低回転域側での発電機トルクが大きく、回転数が変化してもほぼ一定の(同じ)発電機トルクである。この結果、曲線52は、中回転域において、回転数が大きくなるにつれて、曲線51に近づいている。
 曲線52において、中回転域の低回転側で発電機トルクを大きくしているのは、低回転側ほど気流発生器60による風車トルクの増大率が大きいためである。仮に、気流発生器60の運転時に、曲線51を用いて、発電機150を制御したとすると、気流発生器60の停止時よりも、回転数が大きくなる。この場合、周速比が設計値より大きくなり、発電効率は低下する。このため、中回転域の低回転側で発電機トルクを大きくして、発電効率の低下を防止している。
 中回転域において、回転数が大きくなるにつれて、気流発生器60による風車トルクの増大率は小さくなる。この結果、中回転域の高回転側では、気流発生器60がない場合と、特性が変わらなくなってくる。このため、中回転域において、回転数が大きくなるにつれて、曲線52を曲線51に近づけている。
 第1実施形態では、計測部90と風車制御器190との間に信号変換器180を配置し、気流発生器制御器170が信号変換器180を制御している。気流発生器60の動作状態に応じて、信号変換器180の変換関数(変換テーブル)を切り替え、風車を制御する。この結果、風車制御器190のDB191の変更が不要となり、例えば、既設の風車に気流発生器60を設置することが容易となる。
 信号変換器180の変換関数を、気流発生器60の状態に応じて最適化することで、気流発生器60の運転が不要な風況の良い場合、気流発生器60の運転が必要な風況の悪い場合のいずれでも、周速比を最適値付近に保てるようになる。この結果、風車発電システム10の発電効率が向上し、さらには最大化でき、ひいては、発電量を増大できる。
(第2実施形態)
 次に、図7、図8を参照して第2実施形態を説明する。図7は第2実施形態のシステム構成を示すブロック図である。図8は信号変換器181による制御信号の変換特性を示す図である。
 図7に示すように、信号変換器181は、風車制御器190から発電機150に送られる制御信号(トルク制御指令など)を変換または中継する。この他、信号変換器181は、風車制御器190からピッチ駆動器130、ヨー駆動器140に送られる制御信号を変換または中継する。つまり信号変換器181は、風車制御器190から風車部40および発電機150へ送られる制御信号を変換または中継する。
 気流発生器制御器170は、気流発生器60の動作状態に応じて、信号変換器181を制御する。信号変換器181は、風車制御器190から、ピッチ駆動器130、ヨー駆動器140、発電機150に送られる少なくとも一つの制御信号を変換する。この結果、風車のピッチ、ヨー、発電機負荷が、気流発生器60の動作状態(運転状態か停止状態か)に応じた最適な状態に調整される。
 すなわち、気流発生器制御器170によって制御された信号変換器181は、気流発生器60が運転状態であれば、制御信号を元の信号とは異なるように変換し、気流発生器60が運転停止状態であれば、制御信号を中継する。
 図7に示すように、この第2実施形態では、風車制御器190と風車駆動部(ピッチ駆動器130、ヨー駆動器140)および発電機150との間に信号変換器181を配置する。図8に示すように、気流発生器60の動作状態(運転状態か停止状態か)に応じて、信号変換器181は、例えば発電機150への制御信号(トルク指令など)を変換する。この他、信号変換器181は、ピッチ駆動器130、ヨー駆動器140への制御信号を変換してもよい。
 この例では、気流発生器60の停止時、運転時で、異なる変換関数(変換テーブル)を用いる。図8の横軸(Tx軸)は、信号変換器181に入力されるトルク制御信号(入力トルク制御信号)を表す。縦軸(Ty軸)は、信号変換器181から出力されるトルク制御信号(出力トルク制御信号)を表す。
 気流発生器60の停止時の変換関数(停止時の関数81)は、「Ty=Tx」(傾き1の直線)である。このとき、信号変換器181に入力された発電機150への指令信号は、信号変換器181からそのまま出力(単に中継)され、発電機150に送られる。
 なお、停止時の関数81(変換テーブル)は、信号を変換しないのと同様であり、使用しないことも可能である。このとき、信号変換器181は、信号を変換せず、中継することになる。
 気流発生器60の運転時において、信号変換器181に入力された発電機150への指令信号は、図8に示す「運転時の関数82」により変換されて発電機150に送られる。
 「運転時の関数82」は、中回転域の発電機トルクを通常よりも増強させるように、発電機150の制御信号を変換する。この変換の結果、信号変換器181から発電機150へは、実際の風車制御器190からの指令信号と異なる制御信号が送られる。
 この結果、実際の回転数とトルクの関係は、図5に示したように、気流発生器60の停止時の「停止時の曲線51」から、気流発生器60の運転時の「運転時の曲線52」に切り替わる。これにより、第1実施形態で説明したのと同様の効果を得ることができる。
 変換関数(変換テーブル)は、信号変換器181が保持することができる。
 なお、複数の変換関数(変換テーブル)を切り替える代わりに、1つの変換関数(変換テーブル)の使用、不使用を切り替えてもよい。気流発生器制御器170の停止時は、信号の変換、すなわち変換テーブルが不要だからである。
 第2実施形態では、風車制御器190と風車駆動部(ピッチ駆動器130、ヨー駆動器140)および発電機150との間に信号変換器181を配置し、気流発生器制御器170が信号変換器181を制御している。気流発生器60の動作状態に応じて、信号変換器181の変換関数(変換テーブル)を切り替え、風車を制御する。この結果、風車制御器190のDB191の変更が不要となり、例えば、既設の風車に気流発生器60を設置することが容易となる。
 風車制御器190と風車駆動部および発電機150との間の信号は、アナログ通信ではなく、CAN、OPEN等のプロトコル通信で伝送される場合が多い。このような場合、信号変換器181は、単なるアナログ信号変換器ではなく、一種の仮想デバイスとしてもよい。この仮想デバイスは、送信側からのプロトコル通信を受信し、その内容に一定の処理を加え、受信側に送信する。この場合、通信の伝送による位相遅れが発生するため、位相遅れを補償する制御ロジックを追加して、制御応答の安定化を図ることが望ましい。
 以上の少なくとも一つの実施形態では、風車制御器190の入出力信号に対する信号変換器180、181を設け、それぞれの変換器を気流発生器制御器170が制御する。風車制御用のデータベース(DB191)を変更することなく、風車の制御パラメータを気流発生器60の状態に対応させることが可能となる。この結果、既設の風車に気流発生器60を搭載する場合でも、風車発電システムの効率を容易に向上し、さらには最大化できる。
 図8では、縦軸と横軸の信号としてアナログの制御信号を想定したが、アナログ信号だけでなく、デジタル信号、パルス信号等、あらゆる形態の信号でもよい。信号変換器181に受信される信号を、信号変換器181が、受信側が認識できる信号に変換して送ることで、種々の形態の信号に対処できる。
 上記実施形態では、空力改善装置として、放電プラズマの作用により気流を発生させる気流発生器60を設けた例について説明したが、この他、空力改善装置として、シンセティックジェット、あるいはフラップを用いてもよい。 
 シンセティックジェットは、例えば、MEMS(Micro Electro Mechanical System)素子を用いて、作成できる。翼に孔を設け、孔の中にMEMS素子を配置することで、翼にシンセティックジェットを設置できる。孔の中のMEMS素子を駆動(例えば、振動)することで、空気を孔から噴出、吸入できる。
 上記実施形態では、中回転域の曲線52を回転数が変化してもほぼ一定の(同じ)トルクとして、曲線52が曲線51に徐々に近づくようにしている。この他、図5に示すように、曲線51をそのまま上へ移動した曲線(発電機トルクを停止時の曲線51よりも全体的に高めた特性マップ)を曲線52としてもよい。
 また上記実施形態に示した制御系の各構成要素の一部を記憶装置(コンピュータのハードディスク装置などのストレージ)にインストールしたプログラムで実現してもよい。また上記プログラムを、コンピュータ読取可能な電子媒体(electronic media)に記憶してもよい。電子媒体上のプログラムをコンピュータが読み取ることで、上記実施形態の機能をコンピュータ上で実現できる。
 電子媒体としては、例えば、CD-ROM等の記録媒体、フラッシュメモリ、リムーバブルメディア(Removable media)等が含まれる。さらに、ネットワークを介して接続した異なるコンピュータに構成要素を分散して記憶し、各構成要素を機能させたコンピュータ間で通信することで実現してもよい。
 ここでは、空力改善装置として、風車翼まわりの空力特性を改善する装置を想定している。しかし、風車翼まわりに限らず、ナセルまわり、ハブまわり、タワーまわりの流れも風車の効率に影響する。このため、これらの風車機器まわりの流れを改善するための装置に対しても、本実施形態を適用できる。
 以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更ができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  翼を有し、風によって回転する風車と、
     前記風車の回転によって発電する発電機と、
     前記翼に配置され、前記翼の空力状態を調節する空力調節器と、
     前記風、前記風車、および前記発電機の少なくともいずれかの状態を計測し、この測定の結果を表す状態信号を出力する計測器と、
     前記状態信号に基づいて、前記風車および前記発電機の少なくともいずれかを制御するための制御信号を出力する風車制御器と、
     前記空力調節器による空力状態の調節に対応して、前記状態信号または前記制御信号を変換する変換器と、
    を具備する風力発電システム。
  2.  前記変換器が、前記空力状態の調節に対応して、前記変換に用いる変換テーブルを切り替える
    請求項1記載の風力発電システム。
  3.  前記空力調節器の運転および停止が切り替え可能であり、
     前記変換器が、前記運転または停止に対応して、前記状態信号または前記制御信号を変換または中継する
    請求項1または2に記載の風力発電システム。
  4.  前記空力調節器を制御する制御器
    をさらに具備する請求項1乃至3のいずれか1項に記載の風力発電システム。
  5.  前記制御器が前記変換器を制御する、
    請求項4記載の風力発電システム。
  6.  前記状態信号が、前記風の速度、向き、および前記風車の回転数の少なくともいずれかを表し、
     前記制御信号が、前記翼のピッチ角、ヨー角、および前記発電機の負荷の少なくともいずれかを制御するための信号である
    請求項1乃至5のいずれか1項に記載の風力発電システム。
  7.  前記状態信号が、前記風の速度および前記風車の回転数を表し、
     前記制御信号が、前記発電機の負荷を制御するための信号である
    請求項6に記載の風力発電システム。
  8.  前記空力調節器が、放電によって気流を発生させる気流発生器である、
    請求項1乃至7のいずれか1項に記載の風力発電システム。
  9.  風力発電システムの制御方法であって、
     前記風力発電システムが、
       翼を有し、風によって回転する風車と、
       前記風車の回転によって発電する発電機と、
       前記翼に配置され、前記翼の空力状態を調節する空力調節器と、を具備し、
     前記制御方法が、
       前記風、前記風車、および前記発電機の少なくともいずれかの状態を計測し、この測定の結果を表す状態信号を出力する工程と、
       前記状態信号に基づいて、前記風車および前記発電機の少なくともいずれかを制御するための制御信号を出力する工程と、
       前記空力調節器による空力状態の調節に対応して、前記状態信号または前記制御信号を変換する工程と、
    を具備する風力発電システムの制御方法。
  10.  前記変換する工程が、前記空力状態の調節に対応して、前記変換に用いる変換テーブルを切り替える工程を有する
    請求項9記載の風力発電システムの制御方法。
  11.  前記空力調節器の運転および停止が切り替え可能であり、
     前記変換する工程が、前記運転または停止に対応して、前記状態信号または前記制御信号を変換または中継する工程を有する
    請求項9または10に記載の風力発電システムの制御方法。
  12.  前記状態信号が、前記風の速度、向き、および前記風車の回転数の少なくともいずれかを表し、
     前記制御信号が、前記翼のピッチ角、ヨー角、および前記発電機の負荷の少なくともいずれかを制御するための信号である
    請求項9乃至11のいずれか1項に記載の風力発電システムの制御方法。
  13.  前記状態信号が、前記風の速度および前記風車の回転数を表し、
     前記制御信号が、前記発電機の負荷を制御するための信号である
    請求項12に記載の風力発電システムの制御方法。
  14.  前記空力調節器が、放電によって気流を発生させる気流発生器である、
    請求項9乃至13のいずれか1項に記載の風力発電システムの制御方法。
PCT/JP2016/001650 2015-04-01 2016-03-22 風力発電システムおよびその制御方法 WO2016157831A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016001476.7T DE112016001476T5 (de) 2015-04-01 2016-03-22 Windenergieerzeugungssystem und Verfahren zum Steuern desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075024 2015-04-01
JP2015075024A JP2016194280A (ja) 2015-04-01 2015-04-01 風力発電システムおよび風力発電システムの制御方法

Publications (1)

Publication Number Publication Date
WO2016157831A1 true WO2016157831A1 (ja) 2016-10-06

Family

ID=57005745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001650 WO2016157831A1 (ja) 2015-04-01 2016-03-22 風力発電システムおよびその制御方法

Country Status (3)

Country Link
JP (1) JP2016194280A (ja)
DE (1) DE112016001476T5 (ja)
WO (1) WO2016157831A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293959B2 (en) * 2003-05-05 2007-11-13 Lm Glasfibeer A/S Wind turbine blade with lift-regulating means
JP2011163352A (ja) * 2011-06-03 2011-08-25 Toshiba Corp 風力発電システムの制御方法
JP2014181705A (ja) * 2013-03-15 2014-09-29 Frontier Wind Llc 分散制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293959B2 (en) * 2003-05-05 2007-11-13 Lm Glasfibeer A/S Wind turbine blade with lift-regulating means
JP2011163352A (ja) * 2011-06-03 2011-08-25 Toshiba Corp 風力発電システムの制御方法
JP2014181705A (ja) * 2013-03-15 2014-09-29 Frontier Wind Llc 分散制御システム

Also Published As

Publication number Publication date
DE112016001476T5 (de) 2017-12-14
JP2016194280A (ja) 2016-11-17

Similar Documents

Publication Publication Date Title
EP2556248B1 (en) A wind turbine
EP2556249B1 (en) A wind turbine
JP5979887B2 (ja) ピッチ角オフセット信号を決定するための、および、速度回避制御のための風力タービンロータのロータ周波数を制御するための方法およびシステム
EP2674617B1 (en) Wind turbine rotor control
DK179069B1 (en) A wind turbine and a method of operating a wind turbine with a rotational speed exclusion zone
CN103807096A (zh) 风力涡轮机及其控制方法
KR102128848B1 (ko) 등가 풍속을 결정하는 방법
JP2011503407A (ja) 2つの連続するプロペラを備えた風力タービン
EP2757258B1 (en) Wind power generator
CN103835881B (zh) 基于电动有效阻尼的独立变桨系统及变桨方法
KR20170000933A (ko) 시간 지연 추정을 이용한 풍력 터빈의 피치 제어 시스템
US20140050580A1 (en) Wind turbine with actuating tail and method of operation
WO2009153614A2 (en) Means and method of wind turbine control for maximum power acquisition
Zhang et al. Adaptive robust control of floating offshore wind turbine based on sliding mode
KR100743931B1 (ko) 풍력발전기 및 그 제어방법
WO2019034218A1 (en) MULTI-ROTOR WIND CONTROL STRATEGY BASED ON OPERATING STATE
EP2706229B1 (en) Turbine and control system of the over-power of said turbine
US20110164975A1 (en) Wind turbine rotor blades including controllable depressions
WO2016157831A1 (ja) 風力発電システムおよびその制御方法
JP6696694B2 (ja) 風力発電システムおよび風力発電方法
JP6444740B2 (ja) 風力発電システムおよび風力発電方法
CN203867777U (zh) 一种基于电动有效阻尼的独立变桨系统
KR102191339B1 (ko) 풍력발전 시스템의 피치제어 장치 및 그 방법
KR200477799Y1 (ko) 압전소자를 이용한 풍력발전시스템용 마운트의 강성 변화 장치
JP2017082743A (ja) 風力発電システムおよび風力発電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016001476

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771723

Country of ref document: EP

Kind code of ref document: A1