WO2016157739A1 - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
WO2016157739A1
WO2016157739A1 PCT/JP2016/001275 JP2016001275W WO2016157739A1 WO 2016157739 A1 WO2016157739 A1 WO 2016157739A1 JP 2016001275 W JP2016001275 W JP 2016001275W WO 2016157739 A1 WO2016157739 A1 WO 2016157739A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
semiconductor light
semiconductor
light emitting
Prior art date
Application number
PCT/JP2016/001275
Other languages
French (fr)
Japanese (ja)
Inventor
信一郎 能崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2017509227A priority Critical patent/JP6785221B2/en
Publication of WO2016157739A1 publication Critical patent/WO2016157739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • Patent Document 1 discloses a structure of a conventional semiconductor light emitting element.
  • a conventional semiconductor light emitting device has a DBR reflection layer, an n-type semiconductor region, an active layer, and a multilayer film in which low refractive index regions and high refractive index regions are alternately laminated on a low resistance substrate made of silicon single crystal. P-type semiconductor regions are sequentially stacked. Furthermore, a current limiting layer made of n-type GaN and a light-transmitting conductive film are laminated thereon, and a first electrode is formed on the current limiting layer made of n-type GaN. On the other hand, a second electrode is provided on the back surface of the low-resistance substrate made of silicon single crystal.
  • the dopant concentration is higher in the high refractive index region than in the low refractive index region, and the crystallinity is higher than that in the low refractive index region.
  • the rate area is lower.
  • Patent Document 1 when the structure described in Patent Document 1 is used to achieve a low refractive index layer that achieves both low resistance and high crystallinity of a semiconductor light emitting device, it has the following problems.
  • the present disclosure has been made to solve the above-described problems, and provides a semiconductor light-emitting device having a cladding layer having a low refractive index, a low resistance, and a high crystallinity without causing dislocation or crack due to strain.
  • a semiconductor light emitting element includes a substrate, a first conductivity type first cladding layer disposed above the substrate, and a first cladding layer.
  • a first guide layer of a first conductivity type disposed; an active layer disposed above the first guide layer; a second guide layer disposed above the active layer; and a second guide layer And a second clad layer of a second conductivity type different from the first conductivity type, and disposed between the first clad layer and the first guide layer, the first conductivity type
  • the first heavily doped layer has a higher dopant concentration than the average dopant concentration of the first cladding layer.
  • a semiconductor light emitting element having a clad layer having a low refractive index, a low resistance, and a high crystallinity without causing dislocations and cracks due to strain.
  • FIG. 1A is a plan view of a semiconductor light emitting element according to Embodiment 1.
  • FIG. 1B is a cross-sectional view of the semiconductor light emitting element according to Embodiment 1.
  • FIG. 1C is a perspective view of the semiconductor light emitting device according to Embodiment 1.
  • FIG. 2A is a diagram illustrating a band structure of the semiconductor light emitting device according to the first embodiment.
  • 2B is a diagram illustrating a band structure of a comparative example of the semiconductor light emitting element according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing the surface morphology of the semiconductor light emitting device and the comparative example according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing each manufacturing process of the semiconductor light emitting device according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the semiconductor light emitting device according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the semiconductor light emitting device according to the third embodiment.
  • the present disclosure also includes various modifications in which the present embodiment has been modified within the scope conceived by those skilled in the art. In addition, it is possible to combine at least some of the plurality of embodiments without departing from the gist of the present disclosure.
  • the term “upward” does not indicate the upward direction (vertically upward) in absolute space recognition, but is a term defined by a relative positional relationship based on the stacking order in the stacking configuration.
  • the term “above” means not only when two components are spaced apart from each other and another component is present between the two components, but the two components are in close contact with each other. It is also applied to the case where two components are in contact with each other.
  • Embodiment 1 [1-1. Construction] First, the structure of the semiconductor light emitting element according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1A, 1B, and 1C.
  • FIG. 1A is a plan view of the semiconductor light emitting device 110 according to the present embodiment.
  • FIG. 1B is a cross-sectional view of the semiconductor light emitting device 110 according to the present embodiment.
  • FIG. 1B shows a cross section taken along line IB-IB shown in FIG. 1A.
  • FIG. 1C is a perspective view of the semiconductor light emitting device 110 according to the present embodiment.
  • the semiconductor light emitting device 110 includes a substrate 111, an n-type cladding layer 112, a heavily doped layer 125, an n-side guide layer 113, an active layer 114, a p-side guide layer 115, and a p-type.
  • a clad layer 116 and a p-type contact layer 117 are provided.
  • the semiconductor light emitting device 110 further includes a current blocking layer 121, a p-electrode 122, and an n-electrode 123.
  • the semiconductor light emitting device 110 includes an n-type cladding layer 112, a heavily doped layer 125, an n-side guide layer 113, an active layer 114, a p-side guide layer 115, a p-type cladding layer 116, and a p-type contact layer 117 on a substrate 111. Are stacked in order.
  • the substrate 111 is, for example, an n-type GaN substrate.
  • As the substrate 111 it is also possible to use a heterogeneous substrate such as an n-type SiC substrate, an n-type GaAs substrate, or an n-type Si substrate, or an insulating substrate such as a sapphire substrate.
  • the thickness of the substrate 111 is preferably about 60 to 100 ⁇ m. With such a configuration, the yield in the cleavage process can be improved.
  • the n-side guide layer 113 is a first guide layer that is disposed above the n-type cladding layer 112 (the positive direction of the z-axis shown in FIGS. 1A, 1B, and 1C) and has an n-type conductivity. .
  • the n-side guide layer 113 is made of, for example, n-type GaN containing undoped or n-type dopants.
  • the film thickness of the n-side guide layer 113 is preferably about 100 to 300 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
  • the active layer 114 is a light emitting layer disposed above the n-side guide layer 113.
  • the active layer 114 has, for example, a structure in which three layers of InGaN quantum well layers and GaN quantum barrier layers are alternately stacked.
  • the active layer 114 may be undoped. Further, at least one of the quantum well layer and the quantum barrier layer may contain an n-type dopant.
  • the active layer 114 is adjusted to emit light having an arbitrary wavelength of, for example, about 400 to 650 nm.
  • the thickness of the active layer 114 is preferably about 30 to 100 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
  • the thickness of the InGaN quantum well layer is preferably about 2.5 to 7.5 nm. With such a configuration, it is possible to achieve both good crystallinity and effective light emission recombination in the well layer.
  • the film thickness of the GaN quantum barrier layer is preferably about 3.0 to 15.0 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
  • the p-side guide layer 115 is a second guide layer that is disposed above the active layer 114 and has a p-type conductivity.
  • the p-side guide layer 115 is made of, for example, GaN containing a p-type dopant or undoped n-type GaN.
  • the film thickness of the p-side guide layer 115 is preferably about 50 to 200 nm. With such a configuration, it is possible to achieve both good crystallinity and light confinement in the vicinity of the active layer.
  • the p-type cladding layer 116 is a second cladding layer disposed above the p-side guide layer 115 and having a p-type conductivity.
  • the p-type cladding layer 116 is made of, for example, AlGaN containing a p-type dopant.
  • the p-type contact layer 117 is disposed above the p-type cladding layer 116 and is a layer in contact with the p-electrode.
  • the p-type contact layer 117 is made of, for example, GaN containing a p-type dopant.
  • Si or Ge can be used as the n-type dopant
  • Mg or the like can be used as the p-type dopant.
  • n-type or p-type it is assumed that any of the aforementioned dopants is included.
  • the n-type cladding layer 112 is a first cladding layer that is disposed above the substrate 111 and has an n-type conductivity.
  • the n-type cladding layer 112 is composed of a multilayer film including a first n-type semiconductor layer 112a and a second n-type semiconductor layer 112b.
  • the refractive index of the first n-type semiconductor layer 112a is different from the refractive index of the second n-type semiconductor layer 112b.
  • the first n-type semiconductor layer 112a is a first semiconductor layer whose conductivity type is n-type, and Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1) may be included, and for example, it may be made of AlInN.
  • the second n-type semiconductor layer 112b is a second semiconductor layer having an n-type conductivity, and In z Ga 1-z N (0 ⁇ z) having a higher refractive index than that of the first n-type semiconductor layer 112a. ⁇ 1) may be included, and for example, it may be composed of GaN.
  • the film thickness of the n-type cladding layer 112 is preferably about 500 to 1000 nm.
  • the film thickness of the first n-type semiconductor layer 112a is preferably about 0.5 to 2 nm. With such a configuration, both good crystallinity and good tunneling current can be achieved.
  • the film thickness of the second n-type semiconductor layer 112b is preferably about 1.0 to 3.0 nm.
  • the heavily doped layer 125 is disposed between the n-type cladding layer 112 and the n-side guide layer 113, and the n-type dopant concentration is higher than the average dopant concentration of the n-type cladding layer 112.
  • the n-type dopant doped into the heavily doped layer 125 is, for example, Si.
  • the heavily doped layer 125 only needs to contain Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1), for example, GaN.
  • the n-type cladding layer 112 or the n-side guide layer 113 and the high-concentration doped layer 125 have the same composition, they can be regarded as a part of the n-type cladding layer 112 or one of the n-side guide layer 113. It can also be regarded as a part.
  • the concentration of the dopant in the heavily doped layer 125 is desirably 1 ⁇ 10 20 cm ⁇ 3 or more and 1 ⁇ 10 22 cm ⁇ 3 or less.
  • the film thickness of the heavily doped layer 125 is desirably 0.5 nm or more and 1.5 nm or less. With such a configuration, both good crystallinity and good tunneling current can be achieved.
  • the dopant concentration decreases from the n-side guide layer 113 side toward the substrate 111 side.
  • the first n-type semiconductor layer 112a is preferably undoped, and the second n-type semiconductor layer 112b is preferably doped with an n-type dopant.
  • An optical waveguide extending in the y-axis direction is formed on the surface of the semiconductor light emitting device 110 as shown in FIGS. 1A and 1C.
  • the optical waveguide has a ridge structure dug up to a part of the p-type cladding layer 116.
  • a current blocking layer 121 is disposed so as to cover the ridge structure.
  • the current block layer 121 is an insulating layer made of, for example, SiO 2 .
  • the current blocking layer 121 is provided with an opening for exposing the p-type contact layer 117.
  • a p-electrode 122 is formed in contact with the p-type contact layer 117 in the opening.
  • the p-electrode 122 is an electrode made of a single layer or a multilayer film of one or more metals such as Cr, Ti, Ni, Pd, Pt, and Au.
  • An n-electrode 123 is formed on the back surface of the substrate 111.
  • the n-electrode 123 is an electrode composed of a single layer or a multilayer film of one or more metals such as Cr, Ti, Ni, Pd, Pt, and Au.
  • the semiconductor light emitting device 110 has a structure in which a laser operation or a super luminescent diode operation is performed by injecting a current between the p electrode 122 and the n electrode 123.
  • n-type semiconductor layer layers from the substrate 111 to the n-side guide layer 113 are collectively referred to as an n-type semiconductor layer.
  • FIG. 2A is a diagram illustrating a band structure of the semiconductor light emitting device according to this embodiment.
  • An outline of the layer structure of the n-type semiconductor layer is shown in the upper part of FIG. 2A.
  • a graph showing the energy level of the conduction band with respect to the position of the n-type semiconductor layer is shown in the lower part of FIG. 2A.
  • “E” represents a power of 10.
  • “1E18” represents 10 to the 18th power, that is, 10 18 .
  • Curve 150 in the graph shown in FIG. 2A shows the energy level when the heavily doped layer 125 has an n-type dopant concentration of 5 ⁇ 10 19 cm ⁇ 3 .
  • Curve 152 represents the energy level when the heavily doped layer 125 has an n-type dopant concentration of 7 ⁇ 10 19 cm ⁇ 3 .
  • Curve 154 represents the energy level when the heavily doped layer 125 has an n-type dopant concentration of 1 ⁇ 10 20 cm ⁇ 3 .
  • the n-type dopant concentration of the layers other than the heavily doped layer 125 of the n-type semiconductor layer is 1 ⁇ 10 18 cm ⁇ 3 .
  • FIG. 2B is a diagram showing a band structure of a comparative example of the semiconductor light emitting device according to this embodiment.
  • FIG. 2B shows a graph showing the energy level of the conduction band with respect to the position of the n-type semiconductor layer of the comparative example.
  • the layer structure of the n-type semiconductor layer of the comparative example is different from the n-type semiconductor layer according to the present embodiment in that the highly doped layer 125 is not provided, and is identical in other points.
  • a curve 160 in the graph shown in FIG. 2B indicates the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 1 ⁇ 10 19 cm ⁇ 3 .
  • Curve 162 represents the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 5 ⁇ 10 19 cm ⁇ 3 .
  • Curve 164 shows the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 1 ⁇ 10 20 cm ⁇ 3 .
  • the n-type cladding layer 112 is a multilayer film in which first n-type semiconductor layers 112a made of AlInN and second n-type semiconductor layers 112b made of GaN are alternately stacked. ing.
  • the doping concentration at which good current-voltage characteristics are obtained is as high as about 1 ⁇ 10 20 cm ⁇ 3 .
  • the crystallinity of the n-type cladding layer 112 is deteriorated.
  • the energy barrier having the largest width is the interface between the n-type cladding layer 112 and the n-side guide layer 113.
  • the semiconductor light emitting device 110 includes the high-concentration doped layer 125 in which the n-type dopant is locally doped between the n-type cladding layer 112 and the n-side guide layer 113.
  • the energy barrier in the vicinity of the interface between the n-type cladding layer 112 and the n-side guide layer 113 that inhibits the electric conduction of the n-type cladding layer 112 can be effectively reduced by the charge of the ionized dopant. Therefore, even if the average dopant concentration of the n-type cladding layer 112 is lowered, the electrical characteristics can be maintained, and the crystal quality of the n-type cladding layer 112 can be kept high. As a result, the semiconductor light emitting device 110 having the n-type cladding layer 112 having a low refractive index, low resistance, and high crystallinity can be realized without generating dislocations and cracks due to strain.
  • FIG. 3 is a diagram illustrating the surface morphology of the semiconductor light emitting device 110 according to the present embodiment and the semiconductor light emitting device according to the comparative example. 3 shows (1) no doping, (2) a case where the entire n-type cladding layer 112 is uniformly doped (5 ⁇ 10 19 cm ⁇ 3 ), and (3) the n-type cladding layer 112 and the n-side guide. The surface morphology of each sample is shown when only the interface with the layer 113 is heavily doped (the interface 1.5 nm is 1 ⁇ 10 20 cm ⁇ 3 and the other regions are 5 ⁇ 10 18 cm ⁇ 3 ).
  • FIG. 3 is a diagram of the surface morphology observed with the crystal grown up to the n-side guide layer 113. Further, the upper part of FIG. 3 shows an image obtained by an atomic force microscope (AFM), and the lower part shows a differential image of AFM.
  • AFM atomic force microscope
  • the first n-type semiconductor layer 112a is composed of AlInN having an In composition of 17% and a film thickness of 1.5 nm.
  • the second n-type semiconductor layer 112b is made of GaN and has a thickness of 1.5 nm. These two kinds of materials are laminated in 67 cycles, and the total film thickness is 201 nm.
  • the uniformly doped sample of (2) has a surface morphology with more pits than the other two samples.
  • the surface morphology of the undoped sample (1) and the sample (2) including the heavily doped layer 125 at the interface between the n-type cladding layer 112 and the n-side guide layer 113 are approximately the same. That is, in the sample including the heavily doped layer 125 at the interface with the n-side guide layer 113, no increase in pits due to doping is observed. In other words, high crystallinity is maintained in the sample including the heavily doped layer 125.
  • both a uniformly doped sample and a highly doped sample only at the interface between the n-type cladding layer 112 and the n-side guide layer 113 were obtained.
  • FIG. 4 is a cross-sectional view showing each manufacturing process of the semiconductor light emitting device 110 according to the first embodiment.
  • an n-type clad layer 112 is formed on a substrate 111 made of GaN having n-type conductivity by using MOCVD (Metal Organic Chemical Vapor Deposition).
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the n-type cladding layer 112 is formed on the substrate 111 by alternately laminating the first n-type semiconductor layer 112a made of AlInN and the second n-type semiconductor layer 112b made of GaN.
  • the heavily doped layer 125, the n-side guide layer 113, the active layer 114, the p-side guide layer 115, the p-type cladding film 116M, and the n-type cladding layer 112 are formed.
  • a p-type contact film 117M is sequentially formed.
  • the high-concentration doped layer 125 can be formed by supplying a high-concentration dopant (eg, SiH 4) at the same time as the crystal raw material. Further, if the supply of the crystal raw material is interrupted immediately after the formation of the high-concentration doped layer 125, the dopant concentration of the high-concentration doped layer 125 can be increased by a pile-up phenomenon.
  • an SiO 2 mask (not shown) is formed on the p-type contact film 117M by plasma CVD (Chemical Vapor Deposition) method or the like. Thereafter, a stripe pattern is formed on the SiO 2 mask by using a photolithography method and a dry etching method to expose the p-type contact film 117M. Subsequently, for example, dry etching using Cl 2 gas is performed to remove the exposed portion of the p-type contact film 117M, and a part of the p-type cladding film 116M is etched. Thereafter, the SiO 2 mask is removed by wet etching such as HF to form the p-type contact layer 117 and the p-type cladding layer 116 as shown in FIG.
  • plasma CVD Chemical Vapor Deposition
  • a current blocking layer 121 made of, for example, SiO 2 is formed on the p-type cladding layer 116 and the p-type contact layer 117 by plasma CVD or the like. Subsequently, the current blocking layer 121 is etched using photolithography and dry etching so that the p-type contact layer 117 is exposed. Next, the p-electrode 122 is formed so as to be in electrical contact with the p-type contact layer 117 by using a photolithography method and a vacuum evaporation method.
  • an n-electrode 123 made of a multilayer film of Ti, Al, Ni, Au or the like is formed on the back surface of the substrate 111 by using a photolithography method and a vacuum deposition method ((c) in FIG. 4).
  • chip separation of the semiconductor light emitting element is performed by dicing using a blade or cleavage (not shown).
  • the semiconductor light emitting device 110 according to the first embodiment can be realized.
  • FIG. 5 is a cross-sectional view of the semiconductor light emitting device 210 according to the second embodiment.
  • the main difference between the present embodiment and the first embodiment is the configuration of the p-type cladding layer 216 and the high-concentration doped layer 225.
  • the p-type cladding layer 216 of the semiconductor light emitting device 210 is configured by a multilayer film including a first p-type semiconductor layer 216a and a second p-type semiconductor layer 216b. Is done.
  • the first p-type semiconductor layer 216a is a third semiconductor layer whose conductivity type is p-type, and is Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y). ⁇ 1) may be included.
  • the second p-type semiconductor layer 216b is a fourth semiconductor layer having a p-type conductivity and may contain In z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the thickness of the p-type cladding layer 216 is preferably about 200 to 1000 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
  • the film thickness of the first p-type semiconductor layer 216a is preferably 0.5 nm or more and 2 nm or less.
  • the film thickness of the second p-type semiconductor layer 216b is preferably about 1.0 to 3.0 nm. With such a configuration, both good crystallinity and good tunneling current can be achieved.
  • the heavily doped layer 225 is disposed between the p-type cladding layer 216 and the p-side guide layer 115, and the p-type dopant concentration is higher than the average dopant concentration of the p-type cladding layer 216.
  • the p-type dopant doped into the heavily doped layer 225 is, for example, Mg.
  • the heavily doped layer 225 only needs to contain Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1), and is, for example, GaN. If the p-type cladding layer 216 and the p-side guide layer 115 and the heavily doped layer 225 have the same composition, they can be regarded as a part of the p-type cladding layer 216 or one of the p-side guide layer 115. It can also be regarded as a part.
  • the dopant concentration of the heavily doped layer 225 is 1 ⁇ 10 20 cm ⁇ 3 or more and 10 ⁇ 10 22 cm ⁇ 3 or less.
  • the film thickness of the heavily doped layer 225 is preferably 0.5 nm or more and 1.5 nm or less. With such a configuration, both good crystallinity and good tunneling current can be achieved.
  • the p-type cladding layer 216 has a structure in which the dopant concentration decreases from the p-side guide layer 115 side toward the p-type contact layer 117 side.
  • the p-type cladding layer 216 has a structure in which first p-type semiconductor layers 216a made of, for example, AlInN and second p-type semiconductor layers 216b made of, for example, GaN are alternately stacked. Further, Mg is doped at a high concentration at the interface between the p-side guide layer 115 and the p-type cladding layer 216.
  • the semiconductor light emitting device 210 has such a structure, the p-side guide layer 115 and the p-type cladding layer 216 generated to compensate the polarization in the p-type cladding layer 216, as in the first embodiment, The large energy barrier at the interface can be reduced by the charge of the ionized acceptor. Further, since the doping concentration can be reduced as the average of the p-type cladding layer 216, both crystallinity and current-voltage characteristics can be achieved.
  • a semiconductor light emitting device having a clad layer having low refractive index, low resistance, and high crystallinity can be realized.
  • FIG. 6 is a cross-sectional view of the semiconductor light emitting device according to the third embodiment.
  • the p-type cladding layer 316 is composed of a multilayer film including a first p-type semiconductor layer 316a and a second p-type semiconductor layer 316b.
  • the first p-type semiconductor layer 316a is a third semiconductor layer having a conductivity type of p-type, and Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1) may be included.
  • the second p-type semiconductor layer 316b is a fourth semiconductor layer having a conductivity type of p-type, and may include In z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the semiconductor light emitting element 310 is provided with a current blocking layer 321 in which an opening for exposing a part of the p-type contact layer 317 is formed on the p-type contact layer 317.
  • a first p-electrode 322 a made of, for example, ITO is disposed on the opening and the current blocking layer 321.
  • the second p electrode 322b electrically connected to the first p electrode 322a is disposed so as not to overlap with the opening of the current blocking layer 321 in plan view.
  • the second p-electrode 322b is composed of a single layer or a multilayer of at least one metal such as Cr, Ti, Ni, Pd, Pt, Au, for example.
  • the n-type cladding layer 112 and the p-type cladding layer 316 are designed so that the reflectance at the wavelength of the light generated in the active layer 314 is increased by adjusting the film thickness and period of the multilayer films having different refractive indexes. be able to.
  • the semiconductor light emitting device 310 is laser-induced in the stacking direction by injecting a current between the second p electrode 322 b and the n electrode 323. It is structured to operate as a vertical cavity surface emitting laser that emits light.
  • the conductivity type on the substrate 111 side is n-type, but the conductivity type on the substrate 111 side may be p-type.
  • the semiconductor light emitting device includes a substrate, a first conductivity type first cladding layer disposed above the substrate, and a first conductivity type first cladding disposed above the first cladding layer. 1 guide layer, an active layer disposed above the first guide layer, a second guide layer disposed above the active layer, and a first guide layer disposed above the second guide layer, A second cladding layer of a second conductivity type different from the conductivity type.
  • the semiconductor light emitting device is disposed between the first cladding layer and the first guide layer, and the dopant concentration of the first conductivity type is higher than the average dopant concentration of the first cladding layer. Having a high, first heavily doped layer;
  • a semiconductor light emitting device using a nitride semiconductor has been described.
  • the technology of the present disclosure can also be applied to a semiconductor light emitting device using another material.
  • the technology of the present disclosure can also be applied to a semiconductor light emitting device in the gallium arsenide-based infrared region.
  • the semiconductor light emitting device can be applied to an optical pickup of an optical drive, a light source for illumination, and the like that require high efficiency and reliability because its cladding layer has low resistance and high crystallinity.

Abstract

A semiconductor light-emitting element (110) is provided with: a substrate (111); a first cladding layer (n-type cladding layer (112)) of a first electroconductivity type disposed above the substrate (111); a first guide layer (n-side guide layer (113)) of the first electroconductivity type disposed above the first cladding layer; an active layer (114) disposed above the first guide layer; a second guide layer (p-side guide layer (115)) disposed above the active layer (114); and a second cladding layer (p-type cladding layer (116)) that is disposed above the second guide layer and is of a second electroconductivity type different from the first electroconductivity type. The semiconductor light-emitting element has a first highly-doped layer which is disposed between the first cladding layer and the first guide layer, and in which the first-electroconductivity-type dopant concentration is higher than the mean dopant concentration of the first cladding layer.

Description

半導体発光素子Semiconductor light emitting device
 本開示は、半導体発光素子に関する。 The present disclosure relates to a semiconductor light emitting device.
 特許文献1には、従来の半導体発光素子の構造が開示されている。従来の半導体発光素子はシリコン単結晶から成る低抵抗性基板上に、低屈折率領域と高屈折率領域とが交互に積層された多層膜からなるDBR反射層、n型半導体領域、活性層及びp型半導体領域が順に積層される。さらに、その上にn型GaNからなる電流制限層及び光透過性導電膜が積層され、n型GaNからなる電流制限層上に第1の電極が形成される。一方、シリコン単結晶からなる低抵抗性基板の裏面には、第2の電極が設けられている。このとき、上記DBR反射層を構成する低屈折率領域及び高屈折率領域において、ドーパント濃度が低屈折率領域よりも高屈折率領域の方が高く、結晶性が低屈折率領域よりも高屈折率領域の方が低い。 Patent Document 1 discloses a structure of a conventional semiconductor light emitting element. A conventional semiconductor light emitting device has a DBR reflection layer, an n-type semiconductor region, an active layer, and a multilayer film in which low refractive index regions and high refractive index regions are alternately laminated on a low resistance substrate made of silicon single crystal. P-type semiconductor regions are sequentially stacked. Furthermore, a current limiting layer made of n-type GaN and a light-transmitting conductive film are laminated thereon, and a first electrode is formed on the current limiting layer made of n-type GaN. On the other hand, a second electrode is provided on the back surface of the low-resistance substrate made of silicon single crystal. At this time, in the low refractive index region and the high refractive index region constituting the DBR reflection layer, the dopant concentration is higher in the high refractive index region than in the low refractive index region, and the crystallinity is higher than that in the low refractive index region. The rate area is lower.
特開2003-142730号公報JP 2003-142730 A
 しかしながら、特許文献1に記載された構造を用いて、半導体発光素子の低抵抗及び高結晶性を両立した低屈折率層を実現しようとする場合、以下のような課題を有する。 However, when the structure described in Patent Document 1 is used to achieve a low refractive index layer that achieves both low resistance and high crystallinity of a semiconductor light emitting device, it has the following problems.
 まず、特許文献1に記載されているように、GaNに対して格子不整合を有するAlGaN系材料を、低屈折率領域に用いた場合、厚膜化に伴って歪が蓄積され、転位やクラックが発生してしまう。 First, as described in Patent Document 1, when an AlGaN-based material having a lattice mismatch with respect to GaN is used in a low refractive index region, strain accumulates as the film thickness increases, causing dislocations and cracks. Will occur.
 一方、GaNに対して格子整合するAlInGaN系材料を、低屈折率領域に用いた場合、厚膜化に伴う歪の問題は解消される。しかしながら、十分に低抵抗なDBR反射層を実現するためには、比較的低抵抗化しやすい高屈折率領域に高濃度のドーパントを供給する必要がある。その結果、高屈折率領域の結晶性が低下するため、高屈折率領域の上に形成される低屈折率領域の結晶性も低下し、DBR反射層全体の結晶性が低下してしまう。 On the other hand, when an AlInGaN-based material that is lattice-matched to GaN is used in the low refractive index region, the problem of distortion associated with increasing the film thickness is solved. However, in order to realize a sufficiently low resistance DBR reflection layer, it is necessary to supply a high concentration dopant to a high refractive index region where resistance is relatively low. As a result, since the crystallinity of the high refractive index region is lowered, the crystallinity of the low refractive index region formed on the high refractive index region is also lowered, and the crystallinity of the entire DBR reflection layer is lowered.
 本開示は上記課題を解決するためになされたものであり、歪による転位やクラックを発生させることなく、低屈折率、低抵抗及び高結晶性を兼ね備えるクラッド層を有する半導体発光素子を提供する。 The present disclosure has been made to solve the above-described problems, and provides a semiconductor light-emitting device having a cladding layer having a low refractive index, a low resistance, and a high crystallinity without causing dislocation or crack due to strain.
 上記の課題解決のために、本開示の一態様に係る半導体発光素子は、基板と、基板の上方に配置された第1導電型の第1のクラッド層と、第1のクラッド層の上方に配置された第1導電型の第1のガイド層と、第1のガイド層の上方に配置された活性層と、活性層の上方に配置された第2のガイド層と、第2のガイド層の上方に配置された、第1導電型とは異なる第2導電型の第2のクラッド層とを備え、第1のクラッド層と第1のガイド層との間に配置され、第1導電型のドーパント濃度が、第1のクラッド層の平均のドーパント濃度よりも高い、第1の高濃度ドープ層を有する。 In order to solve the above problem, a semiconductor light emitting element according to one embodiment of the present disclosure includes a substrate, a first conductivity type first cladding layer disposed above the substrate, and a first cladding layer. A first guide layer of a first conductivity type disposed; an active layer disposed above the first guide layer; a second guide layer disposed above the active layer; and a second guide layer And a second clad layer of a second conductivity type different from the first conductivity type, and disposed between the first clad layer and the first guide layer, the first conductivity type The first heavily doped layer has a higher dopant concentration than the average dopant concentration of the first cladding layer.
 本開示によれば、歪による転位やクラックを発生させることなく、低屈折率、低抵抗及び高結晶性を兼ね備えるクラッド層を有する半導体発光素子を提供できる。 According to the present disclosure, it is possible to provide a semiconductor light emitting element having a clad layer having a low refractive index, a low resistance, and a high crystallinity without causing dislocations and cracks due to strain.
図1Aは、実施形態1に係る半導体発光素子の平面図である。1A is a plan view of a semiconductor light emitting element according to Embodiment 1. FIG. 図1Bは、実施形態1に係る半導体発光素子の断面図である。1B is a cross-sectional view of the semiconductor light emitting element according to Embodiment 1. FIG. 図1Cは、実施形態1に係る半導体発光素子の斜視図である。1C is a perspective view of the semiconductor light emitting device according to Embodiment 1. FIG. 図2Aは、実施形態1に係る半導体発光素子のバンド構造を表す図である。FIG. 2A is a diagram illustrating a band structure of the semiconductor light emitting device according to the first embodiment. 図2Bは、実施形態1に係る半導体発光素子の比較例のバンド構造を表す図である。2B is a diagram illustrating a band structure of a comparative example of the semiconductor light emitting element according to Embodiment 1. FIG. 図3は、実施形態1に係る半導体発光素子及び比較例の表面モフォロジを示す図である。FIG. 3 is a diagram showing the surface morphology of the semiconductor light emitting device and the comparative example according to the first embodiment. 図4は、実施形態1に係る半導体発光素子の各製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing each manufacturing process of the semiconductor light emitting device according to the first embodiment. 図5は、実施形態2に係る半導体発光素子の断面図である。FIG. 5 is a cross-sectional view of the semiconductor light emitting device according to the second embodiment. 図6は、実施形態3に係る半導体発光素子の断面図である。FIG. 6 is a cross-sectional view of the semiconductor light emitting device according to the third embodiment.
 以下、各実施形態について図面を参照して説明する。本開示は、以下の実施形態に限定されない。図面は、模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。実質的に同じ部分を表す場合であっても、図面により寸法や比率が異なって表される場合もある。実質的に同じ構成要素には、同一の記号を付して詳細な説明は適宜省略することがある。以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, each embodiment will be described with reference to the drawings. The present disclosure is not limited to the following embodiments. The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Even in the case where substantially the same part is represented, the dimensions and ratio may be represented differently depending on the drawing. Substantially the same components are denoted by the same symbols, and detailed description may be omitted as appropriate. Among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as optional constituent elements.
 本開示の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本開示に含まれる。また、本開示の主旨を逸脱しない範囲において、複数の実施形態の少なくとも一部を組み合わせることも可能である。 Unless otherwise deviating from the gist of the present disclosure, the present disclosure also includes various modifications in which the present embodiment has been modified within the scope conceived by those skilled in the art. In addition, it is possible to combine at least some of the plurality of embodiments without departing from the gist of the present disclosure.
 また、本明細書において、「上方」という用語は、絶対的な空間認識における上方向(鉛直上方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。 Also, in this specification, the term “upward” does not indicate the upward direction (vertically upward) in absolute space recognition, but is a term defined by a relative positional relationship based on the stacking order in the stacking configuration. Used as In addition, the term “above” means not only when two components are spaced apart from each other and another component is present between the two components, but the two components are in close contact with each other. It is also applied to the case where two components are in contact with each other.
 (実施形態1)
 [1-1.構造]
 まず、本開示の実施形態1に係る半導体発光素子の構造について、図1A、図1B及び図1Cを用いて説明する。
(Embodiment 1)
[1-1. Construction]
First, the structure of the semiconductor light emitting element according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1A, 1B, and 1C.
 図1Aは、本実施形態に係る半導体発光素子110の平面図である。 FIG. 1A is a plan view of the semiconductor light emitting device 110 according to the present embodiment.
 図1Bは、本実施形態に係る半導体発光素子110の断面図である。図1Bは、図1Aに示されるIB-IB線における断面を示す。 FIG. 1B is a cross-sectional view of the semiconductor light emitting device 110 according to the present embodiment. FIG. 1B shows a cross section taken along line IB-IB shown in FIG. 1A.
 図1Cは、本実施形態に係る半導体発光素子110の斜視図である。 FIG. 1C is a perspective view of the semiconductor light emitting device 110 according to the present embodiment.
 図1B及び図1Cに示されるように、半導体発光素子110は、基板111、n型クラッド層112、高濃度ドープ層125、n側ガイド層113、活性層114、p側ガイド層115、p型クラッド層116及びp型コンタクト層117を備える。また、半導体発光素子110は、電流ブロック層121、p電極122及びn電極123をさらに備える。 As shown in FIGS. 1B and 1C, the semiconductor light emitting device 110 includes a substrate 111, an n-type cladding layer 112, a heavily doped layer 125, an n-side guide layer 113, an active layer 114, a p-side guide layer 115, and a p-type. A clad layer 116 and a p-type contact layer 117 are provided. The semiconductor light emitting device 110 further includes a current blocking layer 121, a p-electrode 122, and an n-electrode 123.
 半導体発光素子110は、基板111上に、n型クラッド層112、高濃度ドープ層125、n側ガイド層113、活性層114、p側ガイド層115、p型クラッド層116、p型コンタクト層117が順に積層された構造を有する。 The semiconductor light emitting device 110 includes an n-type cladding layer 112, a heavily doped layer 125, an n-side guide layer 113, an active layer 114, a p-side guide layer 115, a p-type cladding layer 116, and a p-type contact layer 117 on a substrate 111. Are stacked in order.
 基板111は、例えば、n型GaN基板である。基板111として、n型SiC基板、n型GaAs基板、n型Si基板などの異種基板、又は、サファイア基板などの絶縁基板を用いることも可能である。基板111の膜厚は、約60~100μmが好ましい。このような構成にすることで、劈開工程での歩留まりを向上することができる。 The substrate 111 is, for example, an n-type GaN substrate. As the substrate 111, it is also possible to use a heterogeneous substrate such as an n-type SiC substrate, an n-type GaAs substrate, or an n-type Si substrate, or an insulating substrate such as a sapphire substrate. The thickness of the substrate 111 is preferably about 60 to 100 μm. With such a configuration, the yield in the cleavage process can be improved.
 n側ガイド層113は、n型クラッド層112の上方(図1A、図1B及び図1Cに示されるz軸の正方向)に配置され、導電型がn型である第1のガイド層である。n側ガイド層113は、例えば、アンドープ又はn型ドーパントを含むn型のGaNで構成されている。n側ガイド層113の膜厚は、約100~300nmが好ましい。このような構成にすることで、良好な結晶性と活性層114付近への光の閉じ込めとを両立することができる。 The n-side guide layer 113 is a first guide layer that is disposed above the n-type cladding layer 112 (the positive direction of the z-axis shown in FIGS. 1A, 1B, and 1C) and has an n-type conductivity. . The n-side guide layer 113 is made of, for example, n-type GaN containing undoped or n-type dopants. The film thickness of the n-side guide layer 113 is preferably about 100 to 300 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
 活性層114は、n側ガイド層113の上方に配置された発光層である。活性層114は、例えば、InGaN量子井戸層とGaN量子障壁層とが交互に3層積層された構造を有する。活性層114は、アンドープであっても良い。また、量子井戸層及び量子障壁層の少なくとも一方がn型ドーパントを含んでいても良い。活性層114は、例えば、約400~650nmまでの任意の波長の光を発するように調整されている。活性層114の膜厚は、約30~100nmが好ましい。このような構成にすることで、良好な結晶性と活性層114付近への光の閉じ込めとを両立することができる。InGaN量子井戸層の膜厚は、約2.5~7.5nmが好ましい。このような構成にすることで、良好な結晶性と井戸層での効果的な発光再結合とを両立できる。GaN量子障壁層の膜厚は、約3.0~15.0nmが好ましい。このような構成にすることで、良好な結晶性と活性層114付近への光の閉じ込めとを両立することができる。 The active layer 114 is a light emitting layer disposed above the n-side guide layer 113. The active layer 114 has, for example, a structure in which three layers of InGaN quantum well layers and GaN quantum barrier layers are alternately stacked. The active layer 114 may be undoped. Further, at least one of the quantum well layer and the quantum barrier layer may contain an n-type dopant. The active layer 114 is adjusted to emit light having an arbitrary wavelength of, for example, about 400 to 650 nm. The thickness of the active layer 114 is preferably about 30 to 100 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved. The thickness of the InGaN quantum well layer is preferably about 2.5 to 7.5 nm. With such a configuration, it is possible to achieve both good crystallinity and effective light emission recombination in the well layer. The film thickness of the GaN quantum barrier layer is preferably about 3.0 to 15.0 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved.
 p側ガイド層115は、活性層114の上方に配置され、導電型がp型である第2のガイド層である。p側ガイド層115は、例えば、p型ドーパントを含むGaN又はアンドープのn型GaNで構成されている。p側ガイド層115の膜厚は、約50~200nmが好ましい。このような構成にすることで、良好な結晶性と活性層付近への光の閉じ込めとを両立することができる。 The p-side guide layer 115 is a second guide layer that is disposed above the active layer 114 and has a p-type conductivity. The p-side guide layer 115 is made of, for example, GaN containing a p-type dopant or undoped n-type GaN. The film thickness of the p-side guide layer 115 is preferably about 50 to 200 nm. With such a configuration, it is possible to achieve both good crystallinity and light confinement in the vicinity of the active layer.
 p型クラッド層116は、p側ガイド層115の上方に配置され、導電型がp型である第2のクラッド層である。p型クラッド層116は、例えば、p型ドーパントを含むAlGaNで構成されている。 The p-type cladding layer 116 is a second cladding layer disposed above the p-side guide layer 115 and having a p-type conductivity. The p-type cladding layer 116 is made of, for example, AlGaN containing a p-type dopant.
 p型コンタクト層117は、p型クラッド層116の上方に配置され、p電極と接触する層である。p型コンタクト層117は、例えば、p型ドーパントを含むGaNで構成されている。 The p-type contact layer 117 is disposed above the p-type cladding layer 116 and is a layer in contact with the p-electrode. The p-type contact layer 117 is made of, for example, GaN containing a p-type dopant.
 なお、n型ドーパントとしては、例えばSi、Geなどを用いることができ、p型ドーパントとしては、例えばMgなどを用いることができる。以下、特に断りの無い限り、n型又はp型という場合は、前述したドーパントのいずれかが含まれているものとする。 For example, Si or Ge can be used as the n-type dopant, and Mg or the like can be used as the p-type dopant. Hereinafter, unless otherwise specified, in the case of n-type or p-type, it is assumed that any of the aforementioned dopants is included.
 n型クラッド層112は、基板111の上方に配置され、導電型がn型である第1のクラッド層である。n型クラッド層112は、第1のn型半導体層112aと、第2のn型半導体層112bとを含む多層膜で構成される。第1のn型半導体層112aの屈折率は、第2のn型半導体層112bの屈折率とは異なる。 The n-type cladding layer 112 is a first cladding layer that is disposed above the substrate 111 and has an n-type conductivity. The n-type cladding layer 112 is composed of a multilayer film including a first n-type semiconductor layer 112a and a second n-type semiconductor layer 112b. The refractive index of the first n-type semiconductor layer 112a is different from the refractive index of the second n-type semiconductor layer 112b.
 第1のn型半導体層112aは、導電型がn型である第1の半導体層であり、AlInGa1-x-yN(0<x≦1、0≦y≦1、x+y≦1)を含んでいれば良く、例えば、AlInNで構成されてもよい。第2のn型半導体層112bは、導電型がn型である第2の半導体層であり、第1のn型半導体層112aよりも屈折率の高いInGa1-zN(0≦z≦1)を含んでいれば良く、例えば、GaNで構成されてもよい。 The first n-type semiconductor layer 112a is a first semiconductor layer whose conductivity type is n-type, and Al x In y Ga 1-xy N (0 <x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1) may be included, and for example, it may be made of AlInN. The second n-type semiconductor layer 112b is a second semiconductor layer having an n-type conductivity, and In z Ga 1-z N (0 ≦ z) having a higher refractive index than that of the first n-type semiconductor layer 112a. ≦ 1) may be included, and for example, it may be composed of GaN.
 n型クラッド層112の膜厚は、約500~1000nmが好ましい。第1のn型半導体層112aの膜厚は、約0.5~2nmであることが望ましい。このような構成にすることで、良好な結晶性と良好なトンネリング電流とを両立することができる。第2のn型半導体層112bの膜厚は、約1.0~3.0nmが好ましい。 The film thickness of the n-type cladding layer 112 is preferably about 500 to 1000 nm. The film thickness of the first n-type semiconductor layer 112a is preferably about 0.5 to 2 nm. With such a configuration, both good crystallinity and good tunneling current can be achieved. The film thickness of the second n-type semiconductor layer 112b is preferably about 1.0 to 3.0 nm.
 高濃度ドープ層125は、n型クラッド層112とn側ガイド層113との間に配置され、n型ドーパントの濃度がn型クラッド層112の平均のドーパント濃度よりも高い層である。高濃度ドープ層125にドープされるn型ドーパントは、例えば、Siである。 The heavily doped layer 125 is disposed between the n-type cladding layer 112 and the n-side guide layer 113, and the n-type dopant concentration is higher than the average dopant concentration of the n-type cladding layer 112. The n-type dopant doped into the heavily doped layer 125 is, for example, Si.
 高濃度ドープ層125は、AlInGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)を含んでいれば良く、例えば、GaNである。なお、n型クラッド層112又はn側ガイド層113と、高濃度ドープ層125とが同じ組成の場合は、n型クラッド層112の一部と見なすこともできるし、n側ガイド層113の一部と見なすこともできる。 The heavily doped layer 125 only needs to contain Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1), for example, GaN. When the n-type cladding layer 112 or the n-side guide layer 113 and the high-concentration doped layer 125 have the same composition, they can be regarded as a part of the n-type cladding layer 112 or one of the n-side guide layer 113. It can also be regarded as a part.
 高濃度ドープ層125のドーパントの濃度は、1x1020cm-3以上、1×1022cm-3以下であることが望ましい。高濃度ドープ層125の膜厚は、0.5nm以上、1.5nm以下が望ましい。このような構成にすることで、良好な結晶性と良好なトンネリング電流とを両立することができる。 The concentration of the dopant in the heavily doped layer 125 is desirably 1 × 10 20 cm −3 or more and 1 × 10 22 cm −3 or less. The film thickness of the heavily doped layer 125 is desirably 0.5 nm or more and 1.5 nm or less. With such a configuration, both good crystallinity and good tunneling current can be achieved.
 n型クラッド層112内では、n側ガイド層113側から基板111側に向かってドーパント濃度が低くなる構造となっている。第1のn型半導体層112aは、アンドープであり、第2のn型半導体層112bは、n型ドーパントでドープされていることが望ましい。 In the n-type cladding layer 112, the dopant concentration decreases from the n-side guide layer 113 side toward the substrate 111 side. The first n-type semiconductor layer 112a is preferably undoped, and the second n-type semiconductor layer 112b is preferably doped with an n-type dopant.
 半導体発光素子110の表面には、図1A及び図1Cに示されるように、y軸方向に延びる光導波路が形成されている。当該光導波路は、p型クラッド層116の一部まで掘りこんだリッジ構造を有する。当該リッジ構造を覆うように、電流ブロック層121が配置されている。 An optical waveguide extending in the y-axis direction is formed on the surface of the semiconductor light emitting device 110 as shown in FIGS. 1A and 1C. The optical waveguide has a ridge structure dug up to a part of the p-type cladding layer 116. A current blocking layer 121 is disposed so as to cover the ridge structure.
 電流ブロック層121は、例えばSiOで構成される絶縁層である。電流ブロック層121には、p型コンタクト層117を露出させる開口が設けられている。当該開口において、p型コンタクト層117に接するように、p電極122が形成されている。 The current block layer 121 is an insulating layer made of, for example, SiO 2 . The current blocking layer 121 is provided with an opening for exposing the p-type contact layer 117. A p-electrode 122 is formed in contact with the p-type contact layer 117 in the opening.
 p電極122は、例えば、Cr、Ti、Ni、Pd、Pt、Auなどの一つ以上の金属の単層又は多層膜からなる電極である。 The p-electrode 122 is an electrode made of a single layer or a multilayer film of one or more metals such as Cr, Ti, Ni, Pd, Pt, and Au.
 基板111の裏面には、n電極123が形成されている。 An n-electrode 123 is formed on the back surface of the substrate 111.
 n電極123は、例えば、Cr、Ti、Ni、Pd、Pt、Auなどの一つ以上の金属の単層又は多層膜からなる電極である。 The n-electrode 123 is an electrode composed of a single layer or a multilayer film of one or more metals such as Cr, Ti, Ni, Pd, Pt, and Au.
 半導体発光素子110は、p電極122とn電極123との間に電流を注入することによって、レーザ動作又はスーパールミネッセントダイオード動作する構造を有する。 The semiconductor light emitting device 110 has a structure in which a laser operation or a super luminescent diode operation is performed by injecting a current between the p electrode 122 and the n electrode 123.
 基板111として絶縁基板を用いる場合は、光導波路外部の、n型クラッド層112が露出した表面に、p電極122と電気的に絶縁されたn電極を形成することによって、半導体発光素子に電力を供給することができる。 In the case where an insulating substrate is used as the substrate 111, power is supplied to the semiconductor light emitting device by forming an n electrode electrically insulated from the p electrode 122 on the surface outside the optical waveguide where the n-type cladding layer 112 is exposed. Can be supplied.
 [1-2.動作及び効果]
 続いて、本実施形態の半導体発光素子110の動作及び効果について図2A、図2B及び図3を用いて説明する。
[1-2. Operation and effect]
Next, the operation and effect of the semiconductor light emitting device 110 of this embodiment will be described with reference to FIGS. 2A, 2B, and 3.
 以下、基板111からn側ガイド層113までの層を総称して、n型半導体層と呼ぶ。 Hereinafter, layers from the substrate 111 to the n-side guide layer 113 are collectively referred to as an n-type semiconductor layer.
 まず、図2A及び図2Bを用いて、本実施形態のバンド構造について説明する。 First, the band structure of this embodiment will be described with reference to FIGS. 2A and 2B.
 図2Aは、本実施形態に係る半導体発光素子のバンド構造を表す図である。図2Aの上部には、n型半導体層の層構造の概要が示される。図2Aの下部には、n型半導体層の位置に対する伝導帯のエネルギーレベルを示すグラフが示されている。なお、図2A及び図2Bに示されるグラフにおいて、「E」は、10のべき乗を表す。例えば、「1E18」は、10の18乗、すなわち、1018を表す。 FIG. 2A is a diagram illustrating a band structure of the semiconductor light emitting device according to this embodiment. An outline of the layer structure of the n-type semiconductor layer is shown in the upper part of FIG. 2A. A graph showing the energy level of the conduction band with respect to the position of the n-type semiconductor layer is shown in the lower part of FIG. 2A. In the graphs shown in FIGS. 2A and 2B, “E” represents a power of 10. For example, “1E18” represents 10 to the 18th power, that is, 10 18 .
 図2Aに示されるグラフにおける曲線150は、高濃度ドープ層125のn型ドーパント濃度が5x1019cm-3である場合のエネルギーレベルを示している。曲線152は、高濃度ドープ層125のn型ドーパント濃度が7x1019cm-3である場合のエネルギーレベルを示している。曲線154は、高濃度ドープ層125のn型ドーパント濃度が1x1020cm-3である場合のエネルギーレベルを示している。いずれの場合も、n型半導体層の高濃度ドープ層125以外の層のn型ドーパント濃度は、1x1018cm-3である。 Curve 150 in the graph shown in FIG. 2A shows the energy level when the heavily doped layer 125 has an n-type dopant concentration of 5 × 10 19 cm −3 . Curve 152 represents the energy level when the heavily doped layer 125 has an n-type dopant concentration of 7 × 10 19 cm −3 . Curve 154 represents the energy level when the heavily doped layer 125 has an n-type dopant concentration of 1 × 10 20 cm −3 . In any case, the n-type dopant concentration of the layers other than the heavily doped layer 125 of the n-type semiconductor layer is 1 × 10 18 cm −3 .
 図2Bは、本実施形態に係る半導体発光素子の比較例のバンド構造を表す図である。図2Bは、比較例のn型半導体層の位置に対する伝導帯のエネルギーレベルを示すグラフが示されている。比較例のn型半導体層の層構造は、高濃度ドープ層125が無い点において、本実施形態に係るn型半導体層と相違し、その他の点において一致する。 FIG. 2B is a diagram showing a band structure of a comparative example of the semiconductor light emitting device according to this embodiment. FIG. 2B shows a graph showing the energy level of the conduction band with respect to the position of the n-type semiconductor layer of the comparative example. The layer structure of the n-type semiconductor layer of the comparative example is different from the n-type semiconductor layer according to the present embodiment in that the highly doped layer 125 is not provided, and is identical in other points.
 図2Bに示されるグラフにおける曲線160は、n型半導体層全体のn型ドーパント濃度が1x1019cm-3である場合のエネルギーレベルを示している。曲線162は、n型半導体層全体のn型ドーパント濃度が5x1019cm-3である場合のエネルギーレベルを示している。曲線164は、n型半導体層全体のn型ドーパント濃度が1x1020cm-3である場合のエネルギーレベルを示している。 A curve 160 in the graph shown in FIG. 2B indicates the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 1 × 10 19 cm −3 . Curve 162 represents the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 5 × 10 19 cm −3 . Curve 164 shows the energy level when the n-type dopant concentration of the entire n-type semiconductor layer is 1 × 10 20 cm −3 .
 AlInNのようなバンドギャップの大きなn型半導体材料が含まれるn型半導体層において、当該バンドギャップを通過して拡散しようとする電子は、大きなエネルギー障壁により拡散を阻害される。この影響を低減するために、n型クラッド層112は、AlInNからなる第1のn型半導体層112aと、GaNからなる第2のn型半導体層112bとが交互に積層された多層膜となっている。 In an n-type semiconductor layer containing an n-type semiconductor material having a large band gap such as AlInN, diffusion of electrons that pass through the band gap is hindered by a large energy barrier. In order to reduce this influence, the n-type cladding layer 112 is a multilayer film in which first n-type semiconductor layers 112a made of AlInN and second n-type semiconductor layers 112b made of GaN are alternately stacked. ing.
 この構成によって、電子はバンドギャップの相対的に小さい第2のn型半導体層112bをトンネリングにより伝導することができる。従って、電子を効果的にトンネリングさせるためには、第2のn型半導体層112bを高濃度にドープすることが必要となる。 With this configuration, electrons can be conducted by tunneling through the second n-type semiconductor layer 112b having a relatively small band gap. Therefore, in order to tunnel electrons effectively, it is necessary to dope the second n-type semiconductor layer 112b at a high concentration.
 しかし、曲線154及び164で示されるエネルギーレベルから分かるように、良好な電流電圧特性が得られるドープ濃度は、約1x1020cm-3と非常に高い。このため、図2Bのようにn型クラッド層112全体に均一にドープしてしまうと、n型クラッド層112の結晶性が悪くなってしまう。 However, as can be seen from the energy levels shown by curves 154 and 164, the doping concentration at which good current-voltage characteristics are obtained is as high as about 1 × 10 20 cm −3 . For this reason, if the entire n-type cladding layer 112 is doped uniformly as shown in FIG. 2B, the crystallinity of the n-type cladding layer 112 is deteriorated.
 ここで、n型クラッド層112全体のバンド構造に着目すると、最も大きな幅を持つエネルギー障壁は、n型クラッド層112とn側ガイド層113との界面であることが分かる。 Here, paying attention to the band structure of the entire n-type cladding layer 112, it can be seen that the energy barrier having the largest width is the interface between the n-type cladding layer 112 and the n-side guide layer 113.
 これは、n型クラッド層112内の分極を補償するために、n型クラッド層112とn側ガイド層113との界面に電荷が集中するためである。この大きな幅のエネルギー障壁によって、界面近傍でトンネリングの確率が低下してしまうため、良好な電流電圧特性を得られなくなってしまう。 This is because charges are concentrated on the interface between the n-type cladding layer 112 and the n-side guide layer 113 in order to compensate the polarization in the n-type cladding layer 112. This large energy barrier reduces the probability of tunneling near the interface, making it impossible to obtain good current-voltage characteristics.
 そこで、本開示に係る半導体発光素子110では、n型クラッド層112とn側ガイド層113との間に、局所的にn型ドーパントがドープされた高濃度ドープ層125を備えている。 Therefore, the semiconductor light emitting device 110 according to the present disclosure includes the high-concentration doped layer 125 in which the n-type dopant is locally doped between the n-type cladding layer 112 and the n-side guide layer 113.
 そのため、イオン化したドーパントの電荷によって、n型クラッド層112の電気伝導を阻害するn型クラッド層112とn側ガイド層113との界面近傍のエネルギー障壁を効果的に低減することができる。そのため、n型クラッド層112の平均ドーパント濃度を低下させても電気特性を維持することができ、n型クラッド層112の結晶品質を高いまま保つことが可能となる。その結果、歪による転位やクラックを発生させることなく、低屈折率、低抵抗及び高結晶性を兼ね備えるn型クラッド層112を有する半導体発光素子110を実現できる。 Therefore, the energy barrier in the vicinity of the interface between the n-type cladding layer 112 and the n-side guide layer 113 that inhibits the electric conduction of the n-type cladding layer 112 can be effectively reduced by the charge of the ionized dopant. Therefore, even if the average dopant concentration of the n-type cladding layer 112 is lowered, the electrical characteristics can be maintained, and the crystal quality of the n-type cladding layer 112 can be kept high. As a result, the semiconductor light emitting device 110 having the n-type cladding layer 112 having a low refractive index, low resistance, and high crystallinity can be realized without generating dislocations and cracks due to strain.
 ここで、半導体発光素子110の電流電圧特性及び結晶性について図3を用いて説明する。 Here, the current-voltage characteristics and crystallinity of the semiconductor light emitting device 110 will be described with reference to FIG.
 図3は、本実施形態に係る半導体発光素子110及び比較例に係る半導体発光素子の表面モフォロジを示す図である。図3には、(1)ドープなしの場合、(2)n型クラッド層112全体に均一にドープ(5x1019cm-3)した場合、及び、(3)n型クラッド層112とn側ガイド層113との界面のみを高濃度ドープ(界面1.5nmは1x1020cm-3,その他の領域は5x1018cm-3)した場合の、各試料の表面モフォロジが示されている。なお、図3は、n側ガイド層113まで結晶成長した状態で、表面モフォロジを観察した図である。また、図3の上段には、原子間力顕微鏡(AFM)による画像が示され、下段には、AFMの微分像が示されている。 FIG. 3 is a diagram illustrating the surface morphology of the semiconductor light emitting device 110 according to the present embodiment and the semiconductor light emitting device according to the comparative example. 3 shows (1) no doping, (2) a case where the entire n-type cladding layer 112 is uniformly doped (5 × 10 19 cm −3 ), and (3) the n-type cladding layer 112 and the n-side guide. The surface morphology of each sample is shown when only the interface with the layer 113 is heavily doped (the interface 1.5 nm is 1 × 10 20 cm −3 and the other regions are 5 × 10 18 cm −3 ). FIG. 3 is a diagram of the surface morphology observed with the crystal grown up to the n-side guide layer 113. Further, the upper part of FIG. 3 shows an image obtained by an atomic force microscope (AFM), and the lower part shows a differential image of AFM.
 各試料において、第1のn型半導体層112aは、In組成が17%のAlInNで構成され、膜厚が1.5nmである。第2のn型半導体層112bは、GaNで構成され、膜厚が1.5nmである。この2種類の材料が67周期積層されており、総膜厚は201nmである。 In each sample, the first n-type semiconductor layer 112a is composed of AlInN having an In composition of 17% and a film thickness of 1.5 nm. The second n-type semiconductor layer 112b is made of GaN and has a thickness of 1.5 nm. These two kinds of materials are laminated in 67 cycles, and the total film thickness is 201 nm.
 図3より、(2)の均一にドープした試料は、他の2つの試料と比較してピットが多い表面モフォロジを有することがわかる。一方、(1)のドープなしの試料、及び、(2)のn型クラッド層112とn側ガイド層113との界面に高濃度ドープ層125を備える試料では表面モフォロジは同程度である。つまり、n側ガイド層113との界面に高濃度ドープ層125を備える試料では、ドープによるピットの増加は見られない。言い換えると、高濃度ドープ層125を備える試料では高結晶性が保たれている。 3 that the uniformly doped sample of (2) has a surface morphology with more pits than the other two samples. On the other hand, the surface morphology of the undoped sample (1) and the sample (2) including the heavily doped layer 125 at the interface between the n-type cladding layer 112 and the n-side guide layer 113 are approximately the same. That is, in the sample including the heavily doped layer 125 at the interface with the n-side guide layer 113, no increase in pits due to doping is observed. In other words, high crystallinity is maintained in the sample including the heavily doped layer 125.
 電流電圧特性に関しては、均一ドープした試料と、n型クラッド層112とn側ガイド層113との界面のみを高濃度ドープした試料ともに良好なものが得られた。 Regarding the current-voltage characteristics, both a uniformly doped sample and a highly doped sample only at the interface between the n-type cladding layer 112 and the n-side guide layer 113 were obtained.
 以上のことから、本開示の技術により、結晶性と電流電圧特性とを両立できることが確認できた。 From the above, it was confirmed that both the crystallinity and the current-voltage characteristics can be achieved by the technique of the present disclosure.
 [1-3.製造方法]
 続いて、本実施形態に係る半導体発光素子110の製造方法を、図4を用いて説明する。
[1-3. Production method]
Subsequently, a method for manufacturing the semiconductor light emitting device 110 according to the present embodiment will be described with reference to FIGS.
 図4は、実施形態1に係る半導体発光素子110の各製造工程を示す断面図である。 FIG. 4 is a cross-sectional view showing each manufacturing process of the semiconductor light emitting device 110 according to the first embodiment.
 まず、図4の(a)に示されるように、n型伝導性を有するGaNからなる基板111上に、MOCVD(Metal Organic Chemical Vapor Deposition)を用いて、n型クラッド層112を形成する。本実施の形態では、基板111上に、AlInNからなる第1のn型半導体層112aとGaNからなる第2のn型半導体層112bを交互に積層してn型クラッド層112を形成する。 First, as shown in FIG. 4A, an n-type clad layer 112 is formed on a substrate 111 made of GaN having n-type conductivity by using MOCVD (Metal Organic Chemical Vapor Deposition). In the present embodiment, the n-type cladding layer 112 is formed on the substrate 111 by alternately laminating the first n-type semiconductor layer 112a made of AlInN and the second n-type semiconductor layer 112b made of GaN.
 続いて、図4の(a)に示されるように、n型クラッド層112上に高濃度ドープ層125、n側ガイド層113、活性層114、p側ガイド層115、p型クラッド膜116M及びp型コンタクト膜117Mを順に形成する。なお、高濃度ドープ層125は、結晶の原料と同時に高濃度なドーパント(例えばSiH4)を供給することにより形成することができる。また、高濃度ドープ層125形成直後に結晶の原料供給を中断すると、パイルアップ現象により高濃度ドープ層125のドーパント濃度を高めることができる。 4A, the heavily doped layer 125, the n-side guide layer 113, the active layer 114, the p-side guide layer 115, the p-type cladding film 116M, and the n-type cladding layer 112 are formed. A p-type contact film 117M is sequentially formed. Note that the high-concentration doped layer 125 can be formed by supplying a high-concentration dopant (eg, SiH 4) at the same time as the crystal raw material. Further, if the supply of the crystal raw material is interrupted immediately after the formation of the high-concentration doped layer 125, the dopant concentration of the high-concentration doped layer 125 can be increased by a pile-up phenomenon.
 次に、プラズマCVD(Chemical Vapor Deposition)法などによりp型コンタクト膜117M上に、SiOマスク(図示せず)を形成する。その後、フォトリソグラフィ法とドライエッチング法とを用いて、SiOマスクにストライプ状のパターンを作製し、p型コンタクト膜117Mを露出させる。続いて、例えばClガスによるドライエッチングを施し、p型コンタクト膜117Mの露出部を除去し、p型クラッド膜116Mの一部をエッチングする。その後、HFなどのウェットエッチングにより、SiOマスクを除去することにより、図4の(b)に示されるような、p型コンタクト層117及びp型クラッド層116を形成する。 Next, an SiO 2 mask (not shown) is formed on the p-type contact film 117M by plasma CVD (Chemical Vapor Deposition) method or the like. Thereafter, a stripe pattern is formed on the SiO 2 mask by using a photolithography method and a dry etching method to expose the p-type contact film 117M. Subsequently, for example, dry etching using Cl 2 gas is performed to remove the exposed portion of the p-type contact film 117M, and a part of the p-type cladding film 116M is etched. Thereafter, the SiO 2 mask is removed by wet etching such as HF to form the p-type contact layer 117 and the p-type cladding layer 116 as shown in FIG.
 次に、プラズマCVD法などによって、例えばSiOからなる電流ブロック層121を、p型クラッド層116及びp型コンタクト層117上に形成する。続いてフォトリソグラフィ法とドライエッチング法とを用いて、p型コンタクト層117が露出するように、電流ブロック層121をエッチングする。次に、フォトリソグラフィ法と真空蒸着法を用いて、p型コンタクト層117と電気的に接するように、p電極122を形成する。次に、フォトリソグラフィ法と真空蒸着法を用いて、基板111の裏面にTi、Al、Ni、Auなどの多層膜からなるn電極123を形成する(図4の(c))。 Next, a current blocking layer 121 made of, for example, SiO 2 is formed on the p-type cladding layer 116 and the p-type contact layer 117 by plasma CVD or the like. Subsequently, the current blocking layer 121 is etched using photolithography and dry etching so that the p-type contact layer 117 is exposed. Next, the p-electrode 122 is formed so as to be in electrical contact with the p-type contact layer 117 by using a photolithography method and a vacuum evaporation method. Next, an n-electrode 123 made of a multilayer film of Ti, Al, Ni, Au or the like is formed on the back surface of the substrate 111 by using a photolithography method and a vacuum deposition method ((c) in FIG. 4).
 最後に、ブレードを用いたダイシング、又は劈開により半導体発光素子のチップ分離を行う(図示せず)。 Finally, chip separation of the semiconductor light emitting element is performed by dicing using a blade or cleavage (not shown).
 以上により、本実施形態1に係る半導体発光素子110を実現できる。 Thus, the semiconductor light emitting device 110 according to the first embodiment can be realized.
 (実施形態2)
 [2-1.構造]
 次に、実施形態2に係る半導体発光素子の構造について、図5を用いて、実施形態1との違いを中心に説明する。
(Embodiment 2)
[2-1. Construction]
Next, the structure of the semiconductor light emitting device according to the second embodiment will be described with reference to FIG. 5 focusing on differences from the first embodiment.
 図5は、実施形態2に係る半導体発光素子210の断面図である。 FIG. 5 is a cross-sectional view of the semiconductor light emitting device 210 according to the second embodiment.
 本実施形態と実施形態1との主な差異は、p型クラッド層216の構成、及び、高濃度ドープ層225を備える点である。 The main difference between the present embodiment and the first embodiment is the configuration of the p-type cladding layer 216 and the high-concentration doped layer 225.
 図5に示されるように、本実施形態に係る半導体発光素子210のp型クラッド層216は、第1のp型半導体層216aと、第2のp型半導体層216bとを含む多層膜で構成される。第1のp型半導体層216aは、導電型がp型である第3の半導体層であり、AlInGa1-x-yN(0<x≦1、0≦y≦1、x+y≦1)を含んでいれば良い。第2のp型半導体層216bは、導電型がp型である第4の半導体層であり、InGa1-zN(0≦z≦1)を含んでいれば良い。 As shown in FIG. 5, the p-type cladding layer 216 of the semiconductor light emitting device 210 according to the present embodiment is configured by a multilayer film including a first p-type semiconductor layer 216a and a second p-type semiconductor layer 216b. Is done. The first p-type semiconductor layer 216a is a third semiconductor layer whose conductivity type is p-type, and is Al x In y Ga 1-xy N (0 <x ≦ 1, 0 ≦ y ≦ 1, x + y). ≦ 1) may be included. The second p-type semiconductor layer 216b is a fourth semiconductor layer having a p-type conductivity and may contain In z Ga 1-z N (0 ≦ z ≦ 1).
 p型クラッド層216の膜厚は、約200~1000nmが好ましい。このような構成にすることで、良好な結晶性と活性層114付近への光の閉じ込めとを両立することができる。第1のp型半導体層216aの膜厚は、0.5nm以上、2nm以下であることが望ましい。第2のp型半導体層216bの膜厚は、約1.0~3.0nmが好ましい。このような構成にすることで、良好な結晶性と良好なトンネリング電流とを両立することができる。 The thickness of the p-type cladding layer 216 is preferably about 200 to 1000 nm. With such a configuration, both good crystallinity and light confinement near the active layer 114 can be achieved. The film thickness of the first p-type semiconductor layer 216a is preferably 0.5 nm or more and 2 nm or less. The film thickness of the second p-type semiconductor layer 216b is preferably about 1.0 to 3.0 nm. With such a configuration, both good crystallinity and good tunneling current can be achieved.
 高濃度ドープ層225は、p型クラッド層216とp側ガイド層115との間に配置され、p型ドーパントの濃度がp型クラッド層216の平均のドーパント濃度よりも高い層である。高濃度ドープ層225にドープされるp型ドーパントは、例えば、Mgである。 The heavily doped layer 225 is disposed between the p-type cladding layer 216 and the p-side guide layer 115, and the p-type dopant concentration is higher than the average dopant concentration of the p-type cladding layer 216. The p-type dopant doped into the heavily doped layer 225 is, for example, Mg.
 高濃度ドープ層225は、AlInGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)を含んでいれば良く、例えば、GaNである。なお、p型クラッド層216やp側ガイド層115と、高濃度ドープ層225とが同じ組成の場合は、p型クラッド層216の一部と見なすことも出来るし、p側ガイド層115の一部と見なすこともできる。 The heavily doped layer 225 only needs to contain Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1), and is, for example, GaN. If the p-type cladding layer 216 and the p-side guide layer 115 and the heavily doped layer 225 have the same composition, they can be regarded as a part of the p-type cladding layer 216 or one of the p-side guide layer 115. It can also be regarded as a part.
 高濃度ドープ層225のドーパントの濃度は、1x1020cm-3以上、10×1022cm-3以下となることが望ましい。高濃度ドープ層225の膜厚は0.5nm以上、1.5nm以下が望ましい。このような構成にすることで、良好な結晶性と良好なトンネリング電流とを両立することができる。 It is desirable that the dopant concentration of the heavily doped layer 225 is 1 × 10 20 cm −3 or more and 10 × 10 22 cm −3 or less. The film thickness of the heavily doped layer 225 is preferably 0.5 nm or more and 1.5 nm or less. With such a configuration, both good crystallinity and good tunneling current can be achieved.
 p型クラッド層216は、p側ガイド層115側からp型コンタクト層117側に向かってドーパント濃度が低くなる構造を有する。 The p-type cladding layer 216 has a structure in which the dopant concentration decreases from the p-side guide layer 115 side toward the p-type contact layer 117 side.
 [2-2.動作及び効果]
 続いて、本実施形態の半導体発光素子210の効果について説明する。
[2-2. Operation and effect]
Next, effects of the semiconductor light emitting device 210 of the present embodiment will be described.
 実施形態2では、p型クラッド層216が、例えばAlInNからなる第1のp型半導体層216aと、例えばGaNからなる第2のp型半導体層216bとが交互に積層された構造を有する。さらに、p側ガイド層115とp型クラッド層216との界面には、Mgが高濃度にドープされている。 In the second embodiment, the p-type cladding layer 216 has a structure in which first p-type semiconductor layers 216a made of, for example, AlInN and second p-type semiconductor layers 216b made of, for example, GaN are alternately stacked. Further, Mg is doped at a high concentration at the interface between the p-side guide layer 115 and the p-type cladding layer 216.
 半導体発光素子210がこのような構造を有することによって、実施形態1の場合と同様に、p型クラッド層216内の分極を補償するために発生したp側ガイド層115とp型クラッド層216との界面の大きなエネルギー障壁を、イオン化したアクセプタの電荷によって低減できる。また、p型クラッド層216の平均としてはドープ濃度を低減できるため、結晶性と電流電圧特性を両立することができる。 Since the semiconductor light emitting device 210 has such a structure, the p-side guide layer 115 and the p-type cladding layer 216 generated to compensate the polarization in the p-type cladding layer 216, as in the first embodiment, The large energy barrier at the interface can be reduced by the charge of the ionized acceptor. Further, since the doping concentration can be reduced as the average of the p-type cladding layer 216, both crystallinity and current-voltage characteristics can be achieved.
 以上により、低屈折率、低抵抗及び高結晶性を兼ね備えるクラッド層を有する半導体発光素子を実現できる。 As described above, a semiconductor light emitting device having a clad layer having low refractive index, low resistance, and high crystallinity can be realized.
 (実施形態3)
 [3-1.構造]
 続いて、実施形態3に係る半導体発光素子の構造について、図6を用いて、実施形態2との違いを中心に説明する。
(Embodiment 3)
[3-1. Construction]
Next, the structure of the semiconductor light emitting device according to the third embodiment will be described with reference to FIG. 6 focusing on differences from the second embodiment.
 図6は、実施形態3に係る半導体発光素子の断面図である。 FIG. 6 is a cross-sectional view of the semiconductor light emitting device according to the third embodiment.
 p型クラッド層316は、第1のp型半導体層316aと、第2のp型半導体層316bとを含む多層膜で構成される。第1のp型半導体層316aは、導電型がp型である第3の半導体層であり、AlInGa1-x-yN(0<x≦1、0≦y≦1、x+y≦1)を含んでいれば良い。第2のp型半導体層316bは、導電型がp型である第4の半導体層であり、InGa1-zN(0≦z≦1)を含んでいれば良い。 The p-type cladding layer 316 is composed of a multilayer film including a first p-type semiconductor layer 316a and a second p-type semiconductor layer 316b. The first p-type semiconductor layer 316a is a third semiconductor layer having a conductivity type of p-type, and Al x In y Ga 1-xy N (0 <x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1) may be included. The second p-type semiconductor layer 316b is a fourth semiconductor layer having a conductivity type of p-type, and may include In z Ga 1-z N (0 ≦ z ≦ 1).
 半導体発光素子310には、p型コンタクト層317の上に、p型コンタクト層317の一部を露出させる開口部が形成された電流ブロック層321が設けられている。当該開口部と電流ブロック層321との上には、例えばITOからなる第1のp電極322aが配置されている。第1のp電極322aと電気的に接続された第2のp電極322bが、平面視において、電流ブロック層321の開口部と重ならないように配置されている。第2のp電極322bは、例えば、Cr、Ti、Ni、Pd、Pt、Auなどの少なくとも一つ以上の金属の単層又は多層膜から構成されている。 The semiconductor light emitting element 310 is provided with a current blocking layer 321 in which an opening for exposing a part of the p-type contact layer 317 is formed on the p-type contact layer 317. A first p-electrode 322 a made of, for example, ITO is disposed on the opening and the current blocking layer 321. The second p electrode 322b electrically connected to the first p electrode 322a is disposed so as not to overlap with the opening of the current blocking layer 321 in plan view. The second p-electrode 322b is composed of a single layer or a multilayer of at least one metal such as Cr, Ti, Ni, Pd, Pt, Au, for example.
 n型クラッド層112とp型クラッド層316とは、屈折率の異なる多層膜の膜厚や周期を調整することによって、活性層314で発生する光の波長における反射率が高くなるように設計することができる。この場合、半導体発光素子310の積層方向に共振器が形成されるため、第2のp電極322bとn電極323との間に電流を注入することによって、半導体発光素子310は、積層方向にレーザ光を発する垂直共振器面発光レーザとして動作する構造となっている。 The n-type cladding layer 112 and the p-type cladding layer 316 are designed so that the reflectance at the wavelength of the light generated in the active layer 314 is increased by adjusting the film thickness and period of the multilayer films having different refractive indexes. be able to. In this case, since the resonator is formed in the stacking direction of the semiconductor light emitting device 310, the semiconductor light emitting device 310 is laser-induced in the stacking direction by injecting a current between the second p electrode 322 b and the n electrode 323. It is structured to operate as a vertical cavity surface emitting laser that emits light.
 以上のような構成を有する本実施形態においても、低屈折率、低抵抗及び高結晶性を兼ね備えるクラッド層を有する半導体発光素子を実現できる。 Also in the present embodiment having the above-described configuration, it is possible to realize a semiconductor light emitting element having a cladding layer having both a low refractive index, low resistance, and high crystallinity.
 (変形例など)
 以上、本開示に係る半導体発光素子について、各実施形態に基づいて説明したが、本開示は上記各実施形態に限定されない。
(Variations, etc.)
As mentioned above, although the semiconductor light emitting element concerning this indication was explained based on each embodiment, this indication is not limited to each above-mentioned embodiment.
 例えば、上記実施形態では、基板111側の導電型をn型としたが、基板111側の導電型をp型としてもよい。つまり、本開示に係る半導体発光素子は、基板と、基板の上方に配置された第1導電型の第1のクラッド層と、第1のクラッド層の上方に配置された第1導電型の第1のガイド層と、第1のガイド層の上方に配置された活性層と、活性層の上方に配置された第2のガイド層と、第2のガイド層の上方に配置された、第1導電型とは異なる第2導電型の第2のクラッド層とを備える。そして、本開示に係る半導体発光素子は、第1のクラッド層と第1のガイド層との間に配置され、第1導電型のドーパント濃度が、第1のクラッド層の平均のドーパント濃度よりも高い、第1の高濃度ドープ層を有する。 For example, in the above embodiment, the conductivity type on the substrate 111 side is n-type, but the conductivity type on the substrate 111 side may be p-type. In other words, the semiconductor light emitting device according to the present disclosure includes a substrate, a first conductivity type first cladding layer disposed above the substrate, and a first conductivity type first cladding disposed above the first cladding layer. 1 guide layer, an active layer disposed above the first guide layer, a second guide layer disposed above the active layer, and a first guide layer disposed above the second guide layer, A second cladding layer of a second conductivity type different from the conductivity type. The semiconductor light emitting device according to the present disclosure is disposed between the first cladding layer and the first guide layer, and the dopant concentration of the first conductivity type is higher than the average dopant concentration of the first cladding layer. Having a high, first heavily doped layer;
 また、上記実施形態においては、窒化物半導体を用いる半導体発光素子を示したが、本開示の技術は、他の材料を用いる半導体発光素子にも適用できる。例えば、本開示の技術はガリウム砒素系の赤外領域の半導体発光素子にも適用することができる。 In the above embodiment, a semiconductor light emitting device using a nitride semiconductor has been described. However, the technology of the present disclosure can also be applied to a semiconductor light emitting device using another material. For example, the technology of the present disclosure can also be applied to a semiconductor light emitting device in the gallium arsenide-based infrared region.
 本開示に係る半導体発光素子は、そのクラッド層が低抵抗かつ高結晶性であることから、高効率及び信頼性が要求される光学ドライブの光ピックアップ、照明用光源などに適用することができる。 The semiconductor light emitting device according to the present disclosure can be applied to an optical pickup of an optical drive, a light source for illumination, and the like that require high efficiency and reliability because its cladding layer has low resistance and high crystallinity.
110、210、310 半導体発光素子
111 基板
112 n型クラッド層(第1のクラッド層)
112a 第1のn型半導体層(第1の半導体層)
112b 第2のn型半導体層(第2の半導体層)
113 n側ガイド層(第1のガイド層)
114、314 活性層
115 p側ガイド層(第2のガイド層)
116、216、316 p型クラッド層(第2のクラッド層)
116M p型クラッド膜
117、317 p型コンタクト層
117M p型コンタクト膜
121、321 電流ブロック層
122 p電極
123、323 n電極
125、225 高濃度ドープ層
216a、316a 第1のp型半導体層(第3の半導体層)
216b、316b 第2のp型半導体層(第4の半導体層)
322a 第1のp電極
322b 第2のp電極
110, 210, 310 Semiconductor light emitting device 111 Substrate 112 n-type cladding layer (first cladding layer)
112a First n-type semiconductor layer (first semiconductor layer)
112b Second n-type semiconductor layer (second semiconductor layer)
113 n-side guide layer (first guide layer)
114, 314 Active layer 115 p-side guide layer (second guide layer)
116, 216, 316 p-type cladding layer (second cladding layer)
116M p-type cladding film 117, 317 p-type contact layer 117M p- type contact film 121, 321 current blocking layer 122 p-electrode 123, 323 n- electrode 125, 225 heavily doped layer 216a, 316a first p-type semiconductor layer (first 3 semiconductor layers)
216b, 316b Second p-type semiconductor layer (fourth semiconductor layer)
322a first p-electrode 322b second p-electrode

Claims (13)

  1.  基板と、
     前記基板の上方に配置された第1導電型の第1のクラッド層と、
     前記第1のクラッド層の上方に配置された前記第1導電型の第1のガイド層と、
     前記第1のガイド層の上方に配置された活性層と、
     前記活性層の上方に配置された第2のガイド層と、
     前記第2のガイド層の上方に配置された、前記第1導電型とは異なる第2導電型の第2のクラッド層とを備え、
     前記第1のクラッド層と前記第1のガイド層との間に配置され、前記第1導電型のドーパント濃度が、前記第1のクラッド層の平均のドーパント濃度よりも高い、第1の高濃度ドープ層を有する
     半導体発光素子。
    A substrate,
    A first conductivity type first cladding layer disposed above the substrate;
    A first guide layer of the first conductivity type disposed above the first cladding layer;
    An active layer disposed above the first guide layer;
    A second guide layer disposed above the active layer;
    A second cladding layer of a second conductivity type different from the first conductivity type, disposed above the second guide layer,
    A first high concentration disposed between the first cladding layer and the first guide layer, wherein the first conductivity type dopant concentration is higher than an average dopant concentration of the first cladding layer. A semiconductor light emitting device having a doped layer.
  2.  前記第1のクラッド層は、第1の半導体層と、第2の半導体層とを含む多層膜からなり、
     前記第1の半導体層の屈折率は、前記第2の半導体層の屈折率と異なる
     請求項1に記載の半導体発光素子。
    The first cladding layer is composed of a multilayer film including a first semiconductor layer and a second semiconductor layer,
    The semiconductor light emitting element according to claim 1, wherein a refractive index of the first semiconductor layer is different from a refractive index of the second semiconductor layer.
  3.  前記第1の半導体層は、AlInGa1-x-yN(0<x≦1、0≦y≦1、x+y≦1)を含む
     請求項2に記載の半導体発光素子。
    The semiconductor light-emitting element according to claim 2, wherein the first semiconductor layer includes Al x In y Ga 1-xy N (0 <x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1).
  4.  前記第2の半導体層は、InGa1-zN(0≦z≦1)を含む
     請求項2又は3に記載の半導体発光素子。
    The semiconductor light emitting element according to claim 2, wherein the second semiconductor layer includes In z Ga 1-z N (0 ≦ z ≦ 1).
  5.  前記第2の半導体層は、前記第1導電型のドーパントがドープされている
     請求項2~4のいずれか1項に記載の半導体発光素子。
    The semiconductor light-emitting device according to claim 2, wherein the second semiconductor layer is doped with the dopant of the first conductivity type.
  6.  前記第1の半導体層は、アンドープである
     請求項2~5のいずれか1項に記載の半導体発光素子。
    6. The semiconductor light emitting element according to claim 2, wherein the first semiconductor layer is undoped.
  7.  前記第1の高濃度ドープ層のドーパント濃度が、1x1020cm-3以上である
     請求項1~6のいずれか1項に記載の半導体発光素子。
    7. The semiconductor light emitting device according to claim 1, wherein a dopant concentration of the first heavily doped layer is 1 × 10 20 cm −3 or more.
  8.  前記第1の高濃度ドープ層の厚さは、1.5nm以下である
     請求項1~7のいずれか1項に記載の半導体発光素子。
    The semiconductor light-emitting element according to claim 1, wherein a thickness of the first highly doped layer is 1.5 nm or less.
  9.  前記第1のクラッド層のドーパント濃度が、前記第1のガイド層側から、前記基板側に向かうにつれて、低くなっている
     請求項1~8のいずれか1項に記載の半導体発光素子。
    The semiconductor light emitting element according to any one of claims 1 to 8, wherein a dopant concentration of the first cladding layer decreases from the first guide layer side toward the substrate side.
  10.  前記第2のクラッド層と前記第2のガイド層との間に配置され、前記第2導電型のドーパント濃度が、前記第2のクラッド層の平均のドーパント濃度よりも高い、第2の高濃度ドープ層をさらに備える
     請求項1~9のいずれか1項に記載の半導体発光素子。
    A second high concentration disposed between the second cladding layer and the second guide layer, wherein the second conductivity type dopant concentration is higher than an average dopant concentration of the second cladding layer; The semiconductor light-emitting element according to claim 1, further comprising a doped layer.
  11.  前記第2のクラッド層は、第3の半導体層と、第4の半導体層とを含む多層膜からなり、
     前記第3の半導体層の屈折率は、前記第4の半導体層の屈折率と異なる
     請求項1~10のいずれか1項に記載の半導体発光素子。
    The second cladding layer is composed of a multilayer film including a third semiconductor layer and a fourth semiconductor layer,
    The semiconductor light-emitting element according to any one of claims 1 to 10, wherein a refractive index of the third semiconductor layer is different from a refractive index of the fourth semiconductor layer.
  12.  前記第1のクラッド層、前記第1のガイド層、前記活性層、前記第2のガイド層、及び、前記第2のクラッド層は、いずれも窒化物半導体から構成される
     請求項1~11のいずれか1項に記載の半導体発光素子。
    The first clad layer, the first guide layer, the active layer, the second guide layer, and the second clad layer are all made of a nitride semiconductor. The semiconductor light emitting element of any one of Claims.
  13.  前記第1導電型は、n型である
     請求項1~12のいずれか1項に記載の半導体発光素子。
    The semiconductor light-emitting element according to claim 1, wherein the first conductivity type is an n-type.
PCT/JP2016/001275 2015-03-30 2016-03-09 Semiconductor light-emitting element WO2016157739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509227A JP6785221B2 (en) 2015-03-30 2016-03-09 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070290 2015-03-30
JP2015-070290 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157739A1 true WO2016157739A1 (en) 2016-10-06

Family

ID=57005442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001275 WO2016157739A1 (en) 2015-03-30 2016-03-09 Semiconductor light-emitting element

Country Status (2)

Country Link
JP (1) JP6785221B2 (en)
WO (1) WO2016157739A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031591A (en) * 1998-07-08 2000-01-28 Toshiba Corp Semiconductor light emitting element
JP2000151023A (en) * 1998-11-05 2000-05-30 Fujitsu Ltd Semiconductor light emitting device
JP2000164925A (en) * 1998-11-24 2000-06-16 Showa Denko Kk Nitride semiconductor led
JP2007059756A (en) * 2005-08-26 2007-03-08 Rohm Co Ltd Semiconductor light emitting device
JP2011187572A (en) * 2010-03-05 2011-09-22 Showa Denko Kk Method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, electronic device and mechanical apparatus
JP2012018963A (en) * 2010-07-06 2012-01-26 Sony Corp Semiconductor laser
JP2012256952A (en) * 1999-12-02 2012-12-27 Cree Inc High efficiency light emitter with reduced polarization induced charge
WO2015001692A1 (en) * 2013-07-04 2015-01-08 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element
JP2015026659A (en) * 2013-07-25 2015-02-05 豊田合成株式会社 Group iii nitride semiconductor light-emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231603A (en) * 2008-03-24 2009-10-08 Sumitomo Electric Ind Ltd Production method of surface-emitting semiconductor laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031591A (en) * 1998-07-08 2000-01-28 Toshiba Corp Semiconductor light emitting element
JP2000151023A (en) * 1998-11-05 2000-05-30 Fujitsu Ltd Semiconductor light emitting device
JP2000164925A (en) * 1998-11-24 2000-06-16 Showa Denko Kk Nitride semiconductor led
JP2012256952A (en) * 1999-12-02 2012-12-27 Cree Inc High efficiency light emitter with reduced polarization induced charge
JP2007059756A (en) * 2005-08-26 2007-03-08 Rohm Co Ltd Semiconductor light emitting device
JP2011187572A (en) * 2010-03-05 2011-09-22 Showa Denko Kk Method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, electronic device and mechanical apparatus
JP2012018963A (en) * 2010-07-06 2012-01-26 Sony Corp Semiconductor laser
WO2015001692A1 (en) * 2013-07-04 2015-01-08 パナソニックIpマネジメント株式会社 Semiconductor light-emitting element
JP2015026659A (en) * 2013-07-25 2015-02-05 豊田合成株式会社 Group iii nitride semiconductor light-emitting element

Also Published As

Publication number Publication date
JPWO2016157739A1 (en) 2018-01-25
JP6785221B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
TWI337373B (en) Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers and related devices
US9059356B1 (en) Laterally injected light-emitting diode and laser diode
JP4928866B2 (en) Nitride semiconductor vertical cavity surface emitting laser
JP5963004B2 (en) Nitride semiconductor light emitting device
JP2004289157A (en) Laser diode structure and manufacturing method thereof
JP6152848B2 (en) Semiconductor light emitting device
JP2007066981A (en) Semiconductor device
KR20220100554A (en) Uv light emitting device
US20140361248A1 (en) Semiconductor light emitting device
JP2011124442A (en) Semiconductor laser device, and method of manufacturing the same
JPWO2006109418A1 (en) Semiconductor light emitting device
TW201501352A (en) Nitride semiconductor multilayer film reflector and light-emitting element using same
US20160056339A1 (en) Semiconductor light emitting device and method of producing the same
JP6280112B2 (en) Reduction or elimination of nanopipe defects in III-nitride structures
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
WO2023042675A1 (en) Vertical cavity light-emitting element
KR100751632B1 (en) Light emitting device
US20110235664A1 (en) Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
JP2016066670A (en) Semiconductor laser
JP2006245163A (en) Nitride semiconductor photoelectric conversion element and manufacturing method thereof
JP2018137327A (en) Nitride semiconductor laser
WO2016157739A1 (en) Semiconductor light-emitting element
JP2011205148A (en) Semiconductor device
JP2011040477A (en) Semiconductor light emitting element
JP2008244360A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771633

Country of ref document: EP

Kind code of ref document: A1