WO2016157442A1 - Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders - Google Patents

Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders Download PDF

Info

Publication number
WO2016157442A1
WO2016157442A1 PCT/JP2015/060228 JP2015060228W WO2016157442A1 WO 2016157442 A1 WO2016157442 A1 WO 2016157442A1 JP 2015060228 W JP2015060228 W JP 2015060228W WO 2016157442 A1 WO2016157442 A1 WO 2016157442A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
blade
compressor
calculated
instantaneous
Prior art date
Application number
PCT/JP2015/060228
Other languages
French (fr)
Japanese (ja)
Inventor
健五 友成
和一 生司
宏則 岩元
Original Assignee
株式会社電子応用
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電子応用 filed Critical 株式会社電子応用
Priority to PCT/JP2015/060228 priority Critical patent/WO2016157442A1/en
Publication of WO2016157442A1 publication Critical patent/WO2016157442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals

Definitions

  • the present invention relates to an angular velocity estimation device that estimates an angular velocity of a compressor rotor used in a compressor, an energy estimation device that estimates the kinetic energy of the rotor using the angular velocity estimation device, and an internal combustion engine using the energy estimation device
  • the present invention relates to an inter-cylinder variation estimation apparatus.
  • a pressure sensor that outputs a signal in response to pressure fluctuation caused by passage of a blade of the compressor rotating body in a compressor housing that houses the compressor rotating body.
  • a pressure sensor that outputs a signal in response to pressure fluctuation caused by passage of a blade of the compressor rotating body in a compressor housing that houses the compressor rotating body.
  • Patent Document 1 analyzes the frequency of the signal from the pressure sensor, measures the fundamental frequency of the signal, and calculates the rotational speed of the compressor rotor based on this fundamental frequency. According to Patent Document 1, it is said that the rotation speed of the compressor rotating body can be detected by using the pressure sensor regardless of the thickness of the blade of the compressor rotating body.
  • a rotation speed sensor for detecting the passage of the blade by generating an eddy current in the blade of the compressor rotating body is used in the compressor housing that houses the compressor rotating body.
  • the rotation speed sensor described in Patent Document 2 includes a coil that generates a magnetic field when energized, and a U-shaped core that emits the magnetic field generated by the coil to a space through which the blade passes. According to Patent Document 2, by using such a rotational speed sensor, it is possible to detect the passage of the blade even if the detection target is as thin as the blade. In the apparatus of Patent Document 2, one pulse is generated every time the number of blade passage detections reaches a predetermined number, and the number of rotations is detected based on this pulse.
  • Patent Document 1 and Patent Document 2 described above can detect the average rotational speed of the compressor rotor, but can accurately detect the instantaneous angular velocity of the compressor rotor. could not. That is, even if the angular velocity of the compressor rotor changes during one rotation of the compressor rotor, this cannot be accurately detected.
  • an object of the present invention is to provide an angular velocity detection device that can accurately detect an instantaneous angular velocity of a compressor rotor.
  • an angular velocity detection device for estimating an angular velocity of a compressor rotating body having a plurality of blades, and each of predetermined angular positions in a housing that houses the compressor rotating body is determined.
  • a passage detection device that detects that a blade has passed, and a calculation device that calculates an angular velocity of the compressor rotor, wherein the calculation device includes at least one of the plurality of blades based on an output of the passage detection device.
  • An angular velocity calculation unit that calculates a time interval between two specific pairs of blades passing through the predetermined angular position, and calculates an instantaneous angular velocity of the compressor rotor based on the calculated time interval.
  • An angular velocity detection device is provided.
  • the pair of blades are two adjacent blades.
  • the calculation device calculates the instantaneous angular velocity calculated by the angular velocity calculation unit based on a shape error of a blade of the compressor rotating body.
  • the angular velocity calculated based on the time interval between the passage of a plurality of pairs of blades is corrected so that they coincide with each other as the instantaneous angular velocity of the compressor rotor
  • An angular velocity correction unit for calculating is further provided.
  • the calculation device further includes an angular velocity correction unit that calculates an instantaneous angular velocity by multiplying the angular velocity calculated by the angular velocity calculation unit by a correction coefficient.
  • the correction coefficient is an instantaneous angular velocity calculated by the angular velocity calculation unit based on a time interval during which a plurality of pairs of blades pass when the compressor rotating body is rotated at a constant angular velocity.
  • the instantaneous angular velocities calculated by multiplying the corresponding correction coefficients are set to be equal to each other.
  • the passage detection device is an eddy current sensor or an electromagnetic pickup sensor.
  • energy detection for calculating instantaneous kinetic energy of a rotating body including the compressor rotating body based on the angular velocity estimated by the angular velocity detecting device according to any one of the first to fifth inventions.
  • An apparatus is provided.
  • an inter-cylinder variation estimation device for estimating variation related to combustion between cylinders in an internal combustion engine having an exhaust turbocharger and having a plurality of cylinders, the energy detection device according to the first aspect of the invention.
  • An internal combustion engine comprising: a variation estimation unit that estimates variation between cylinders based on the instantaneous kinetic energy calculated by the energy detection device; and the compressor rotating body is a compressor rotating body of the exhaust turbocharger.
  • An engine cylinder-to-cylinder variation estimation apparatus is provided.
  • the instantaneous kinetic energy of the rotating body calculated by the energy detecting device is a plurality of times during one cycle of the internal combustion engine according to the number of cylinders of the internal combustion engine.
  • the variation estimator calculates values of arbitrary parameters obtained from the transition of kinetic energy while the kinetic energy varies up and down once within the same cycle of the internal combustion engine. The inter-cylinder variation is estimated by comparison.
  • an angular velocity detection device that can accurately detect an instantaneous angular velocity of a compressor rotor.
  • FIG. 1 is a sectional view schematically showing a compressor of an exhaust turbocharger of an internal combustion engine.
  • FIG. 2 is a plan view schematically showing a compressor rotor (impeller) used in the compressor shown in FIG.
  • FIG. 3 is a diagram schematically showing the detection principle by the eddy current sensor.
  • FIG. 4 is a diagram showing the transition of output when an eddy current sensor is used as the passage detection sensor.
  • FIG. 5 is a diagram showing transition of output when an eddy current sensor is used as the passage detection sensor.
  • FIG. 6 is a diagram showing the transition of the angular velocity detected while the compressor rotor rotates once.
  • FIG. 7 is a plan view similar to FIG. 2, schematically showing the compressor rotor.
  • FIG. 1 is a sectional view schematically showing a compressor of an exhaust turbocharger of an internal combustion engine.
  • FIG. 2 is a plan view schematically showing a compressor rotor (impeller) used in the compressor shown in FIG.
  • FIG. 8 shows a measurement result when the measurement is actually performed in a state where the compressor rotating body is rotated at a constant angular velocity.
  • FIG. 9 is a flowchart showing a control routine of the instantaneous angular velocity detection process described above.
  • FIG. 10 is a schematic overall view of an internal combustion engine having an exhaust turbocharger.
  • FIG. 11 is a diagram showing the transition of the angular velocity and the kinetic energy of the rotating body of the exhaust turbocharger in one cycle of the internal combustion engine shown in FIG.
  • FIG. 12 is a diagram showing the transition of the angular velocity and kinetic energy of the rotating body of the exhaust turbocharger in one cycle of the internal combustion engine shown in FIG.
  • FIG. 1 is a cross-sectional view schematically showing a compressor of an exhaust turbocharger of an internal combustion engine, and the angular velocity detection device of the present invention for detecting the angular velocity of a compressor rotating body is used for this compressor.
  • FIG. 2 is a plan view schematically showing a compressor rotating body (impeller) used in the compressor shown in FIG.
  • the compressor 1 includes a compressor rotating body 2 that compresses gas and a housing 3 that houses the compressor rotating body 2.
  • the compressor rotor 2 is connected to a turbine (not shown) of an exhaust turbocharger via a shaft 4 and extends from the surface of the center body 21 in the radial direction or the axial direction of the compressor rotor 2.
  • the central body 21 is fixed to the shaft 4 so that the axis L thereof is coaxial with the axis of the shaft 4.
  • the compressor rotor 2 of the present embodiment has twelve blades 22 having the same shape and arranged at equal intervals.
  • blades are numbered (B1 to B12) for easy understanding of the description in this specification.
  • the number of blades 22 is not limited to 12 and may be more than 12 or less than 12.
  • the plurality of blades 22 are configured to extend in the radial direction or the axial direction of the compressor rotating body 2.
  • the plurality of blades 22 may have any shape such as a curved shape as long as the fluid flowing into the compressor 1 can be compressed.
  • the blades 22 are not necessarily arranged at equal intervals, and a part or all of the blades 22 may be configured to have a shape different from that of the other blades.
  • the housing 3 has a central passage 31 that extends through the center of the housing 3 and an annular passage 32 that extends around the central passage 31.
  • One end of the central passage 31 is open and constitutes an inlet 33 through which fluid flows.
  • An annular passage 32 is disposed around the other end of the central passage 31, and the compressor rotor 2 is disposed in the central passage 31 inside the annular passage 32. Therefore, the fluid flowing in from the inlet 33 flows out through the central passage 31 and into the annular passage 32 via the compressor rotor 2.
  • the compressor rotating body 2 can rotate around its axis L in the housing 3. Further, the compressor rotor 2 is configured such that, when rotated, the radial end of the blade 22 moves in the circumferential direction along the inner peripheral surface with a slight gap from the inner peripheral surface of the housing 3.
  • the housing 3 is provided with a passage detection sensor 5 that detects that the blade 22 has passed through a predetermined angular position in the housing 3. That is, the passage detection sensor 5 detects that the blade 22 has passed in front of the detection unit of the passage detection sensor 5.
  • the passage detection sensor 5 is disposed so as to face the radial end surface 22a of the blade 22 of the compressor rotor 2 and to extend in the normal direction of the radial end surface 22a of the blade 22.
  • the passage detection sensor 5 is disposed in the housing 3 on the inlet side of the compressor rotator 2. In the example shown in FIG.
  • the passage detection sensor 5 is disposed in the housing 3 adjacent to the inlet side end face 22 b of the blade 22 of the compressor rotor 2.
  • the passage detection sensor 5 is connected to an electronic control unit (ECU) 6 that also functions as a calculation device for calculating the angular velocity of the compressor rotor, and an output signal of the passage detection sensor 5 is input to the ECU 6.
  • ECU electronice control unit
  • the blade 22 of the compressor rotor 2 gradually increases in temperature from the inlet side toward the outlet side. This is because the fluid flowing through the compressor rotor 2 is pressurized from the inlet side toward the outlet side.
  • the passage detection sensor 5 is disposed in the housing 3 on the inlet side of the compressor rotator 2, and thus is disposed in a relatively low temperature region. For this reason, the influence of heat on the passage detection sensor 5 can be reduced.
  • an eddy current sensor is used as the passage detection sensor 5.
  • the eddy current sensor is a sensor that generates an output corresponding to the distance between the sensor detection unit and the metal material to be measured. The detection principle of the eddy current sensor will be briefly described below with reference to FIG.
  • the eddy current sensor 5 has a coil 25 that generates a magnetic field by an alternating excitation current at its detection part.
  • an eddy current Y is generated in the blade 22 so as to cancel the magnetic field generated by the coil 25.
  • the strength of the magnetic field X changes due to the eddy current generated in the blade 22, and as a result, the value of the current flowing through the coil 25 changes. Therefore, in the eddy current sensor 5, since the current value flowing through the coil 25 changes when the blade 22 passes through the magnetic field, the passage of the blade 22 is detected by detecting the current value (output value) flowing through the coil 25. Like to do.
  • the time when the output of the eddy current sensor 5 reaches a peak is the time when the blade 22 passes in front of the detection unit of the eddy current sensor 5 (that is, a predetermined angular position). I have to.
  • any sensor may be used as a passage detection sensor for detecting the passage of the blade 22 as long as the passage of the blade 22 can be detected.
  • An example of such a sensor is an electromagnetic pickup (MPU) sensor.
  • the MPU sensor is a sensor having a magnet and a detection coil in its detection unit.
  • the magnetic flux penetrating the detection coil changes, and the induced electromotive force of the detection coil changes accordingly.
  • the passage of the blade 22 in front of the detection unit of the MPU sensor can be detected.
  • an eddy current sensor is used as the passage detection sensor will be described.
  • FIG. 4 is a diagram showing the transition of output when an eddy current sensor is used as the passage detection sensor 5.
  • 4A shows a transition when the rotation speed of the compressor rotor 2 is relatively slow
  • FIG. 4B shows a transition when the rotation speed of the compressor rotor 2 is relatively slow.
  • the output value increases as the distance between the detection unit of the eddy current sensor 5 and the object (for example, the blade 22) passing therethrough becomes shorter. Therefore, when the blade 22 passes in front of the detection unit of the eddy current sensor 5, the output of the eddy current sensor 5 increases rapidly. Therefore, the output changed into a convex shape in FIG. 4 means that the blade 22 has passed.
  • the numbers in FIG. 4 indicate the numbers (B1 to B12) of the blades 22 that have passed in front of the detection unit of the passage detection sensor 5.
  • the instantaneous angular velocity of the compressor rotator 2 also changes while the compressor rotator 2 makes one revolution.
  • the instantaneous kinetic energy of the compressor rotor 2 can be calculated based on this.
  • combustion variations between cylinders of the internal combustion engine can be estimated based on this, as will be described later.
  • the inventors of the present application detect various instantaneous parameters (for example, for example, determining the operating state of the compressor itself and the engine using the compressor by detecting the instantaneous angular velocity of the compressor rotor 2. It has been found that the above-mentioned value of combustion variation between cylinders can be calculated.
  • the angular velocity calculation unit of the ECU 6 calculates the instantaneous angular velocity of the compressor rotor 2 based on the output of the eddy current sensor 5.
  • the time t1 is the time when the output of the eddy current sensor 5 shows a peak as the first blade B1 passes in front of the eddy current sensor 5.
  • the second blade B2, the third blade B3, and the fourth blade B4 pass in front of the eddy current sensor 5 and the output of the eddy current sensor 5 shows a peak, they are time t2, t3, and t4, respectively. .
  • the time interval ⁇ t1 from when the first blade B1 passes in front of the eddy current sensor 5 to when the second blade B2 passes can be expressed as t2-t1.
  • the angular interval between the first blade B1 and the second blade B2 is basically 2 ⁇ / 12 (rad). . Therefore, the instantaneous angular velocity of the compressor rotating body 2 from when the first blade B1 passes through the second blade B2 before the eddy current sensor 5 (hereinafter referred to as “instantaneous angular velocity after passing through the first blade”). ) 1 is calculated as 2 ⁇ / (12 ⁇ ⁇ t1).
  • the time interval ⁇ t2 between the second blade B2 and the third blade B3 can be expressed as t2-t3
  • the time interval ⁇ t3 between the third blade B3 and the fourth blade B4 can be expressed as t3-t4.
  • the angular velocity ⁇ 3 is calculated as 2 ⁇ / (12 ⁇ ⁇ t3).
  • a pair of adjacent blades that is, the i-th blade Bi and the (i + 1) th blade B (i + 1)
  • the instantaneous angular velocity ⁇ i after passing through the i-th blade Bi that is, the instantaneous angular velocity of the compressor rotor 2. ⁇ i is calculated.
  • the angular interval ⁇ i between adjacent pairs of blades (i-th blade Bi and (i + 1) -th blade B (i + 1)) as expressed by the following formula (1) is calculated as a time interval between these blades.
  • the instantaneous angular velocity ⁇ i after passing through the i-th blade is calculated.
  • the instantaneous angular velocity ⁇ i is calculated by the following equation (2).
  • the instantaneous angular velocity ⁇ is based on the time interval at which a pair of adjacent two blades 22 pass a predetermined angular position in the housing 3 (before the detection unit of the eddy current sensor 5). Thus, it is calculated as an instantaneous angular velocity while both blades pass through a predetermined angular position.
  • the pair of blades for calculating the instantaneous angular velocity ⁇ may not necessarily be the two adjacent blades 22.
  • the instantaneous angular velocity may be calculated based on the time interval between two or more blades separated in the circumferential direction, such as the time interval ⁇ t1 ′.
  • the instantaneous angular velocity is calculated based on the time interval between all adjacent pairs of blades.
  • the angular velocity need not be calculated based on the time intervals between all adjacent pairs of blades, such as not calculating the angular velocity based on the time interval between the second blade and the third blade.
  • the first blade Instantaneous angular velocity based on the time interval ⁇ t1 ′ from B1 to the fourth blade B4, and instantaneous angular velocity based on the time interval ⁇ t2 ′ from the seventh blade B7 to the tenth blade Bs10).
  • a change in the angular velocity during one rotation of the compressor rotator 2 can be detected.
  • the angular interval between the blades in a pair of blades is required as a parameter.
  • these blades do not necessarily have to be arranged at equiangular intervals.
  • the compressor rotor 2 is designed such that a plurality of blades are arranged at equal angular intervals, the plurality of blades are not necessarily arranged at equal angular intervals due to shape errors, as will be described later.
  • the instantaneous angular velocity is not calculated based on the time interval between any pair of blades, but between a specific pair of blades with known angular intervals. It is necessary to calculate the instantaneous angular velocity based on the time interval.
  • the angular velocity detection device includes a calculation device that calculates the instantaneous angular velocity ⁇ of the compressor rotor 2, and a plurality of calculation devices are provided based on the output of the passage detection sensor 5.
  • the time interval ⁇ t during which at least two specific pairs of blades 22 of the blades 22 pass through a predetermined angular position is calculated, and the instantaneous angular velocity of the compressor rotor 2 is calculated based on the calculated time interval ⁇ t.
  • An angular velocity calculation unit for calculating is provided.
  • the angular velocity detection device detects the instantaneous angular velocity of the compressor rotor for the compressor of the exhaust turbocharger of the internal combustion engine.
  • the angular velocity detection device can be applied to any compressor as long as the compressor has a compressor rotating body having a plurality of blades. Therefore, for example, it is applicable also to an axial flow type compressor etc.
  • FIG. 6 shows an example in which the instantaneous angular velocity of the compressor rotator 2 is calculated by the angular velocity calculator configured as described above in a state where the compressor rotator 2 is rotated at a constant angular velocity.
  • the horizontal axis represents the blade number
  • the vertical axis represents the instantaneous angular velocity after passing through the blade of the corresponding blade number.
  • the compressor rotor 2 is rotated at a constant angular velocity. Therefore, at this time, the calculated instantaneous angular velocity ⁇ should be a constant value. However, actually, as shown in FIG. 6, the calculated instantaneous angular velocity ⁇ is not necessarily constant after passing through each blade 22. For example, in the example shown in FIG. 6, the instantaneous angular velocity after passing through the second blade is slower than the instantaneous angular velocity after passing through the first blade.
  • the inventors of the present application conducted extensive research and found that the calculated instantaneous angular velocity ⁇ does not have a constant value because the shape error of the blade 22 of the compressor rotor 2 (within the shape tolerance range). We found out that there was a main cause of error. In other words, it has been found that there is a shape error for each solid in the compressor rotor 2, and this shape error causes an error in the instantaneous angular velocity calculated by the angular velocity calculator.
  • the relationship between the calculated instantaneous angular velocity ⁇ and the shape error of the blade 22 will be described with reference to FIG.
  • FIG. 7 is a plan view similar to FIG. 2, schematically showing the compressor rotor. 7 indicates the shape of the blade 22 when the blade 22 of the compressor rotor 2 is formed as designed.
  • the plurality of blades 22 are designed to have the same shape at regular intervals.
  • the second blade B2 and the tenth blade B10 have a shape error with respect to the designed blade shape.
  • the second blade B2 has a shape shifted to the first blade side in the circumferential direction with respect to the design shape.
  • the tenth blade B10 has a shape shifted radially outward from the design shape.
  • the angle interval ⁇ between the blades changes.
  • the shape of the second blade B2 is a shape that is shifted in the circumferential direction with respect to the designed shape.
  • the actual angular interval between the first blade B1 and the second blade B2 is ⁇ 1, which is smaller than the design value ⁇ 1.
  • the actual angular interval between the second blade B2 and the third blade B3 is ⁇ 2, which is larger than the design value ⁇ 2. Accordingly, the actual angular interval ⁇ 1 between the first blade B1 and the second blade B2 is smaller than the actual angular interval ⁇ 2 between the second blade B2 and the third blade B3.
  • the instantaneous angular velocity ⁇ 1 based on the time interval ⁇ t1 from the first blade B1 to the second blade B2 is the second blade B2 to the third blade. It is calculated as being faster than the instantaneous angular velocity ⁇ 2 based on the time interval ⁇ t2 up to B3. As a result, as shown in FIG. 6, the instantaneous angular velocity after passing through the first blade B1 is calculated to be faster than the instantaneous angular velocity after passing through the second blade B2.
  • the tenth blade B10 has a shape that is shifted outward in the circumferential direction with respect to the design shape.
  • the actual angular interval between the ninth blade B9 and the tenth blade B10 is ⁇ 9 which is smaller than the design value ⁇ 9.
  • the actual angular interval between the tenth blade B10 and the eleventh blade B11 is ⁇ 10 which is larger than the design value ⁇ 10.
  • FIG. 7 shows an example of a shape error in which the shape of the blade is totally shifted in the circumferential direction or the radial direction.
  • the shape error in the blade includes various errors in addition to the above-described shape error, such as an error in the axial direction of the compressor rotor 2 and an error in the curved shape of the blade. When such a shape error occurs in the blades, the angular velocity between the blades cannot be properly detected.
  • the angular velocity correction unit of the ECU 6 causes a plurality of pairs of blades 22 when the compressor rotor 2 is rotated at a constant angular velocity based on the shape error of the blades of the compressor rotor 2.
  • a value obtained by correcting the instantaneous angular velocity calculated by the angular velocity calculating unit so that the instantaneous angular velocities calculated based on the time interval between the passages coincide with each other is calculated as the instantaneous angular velocity of the compressor rotor 2.
  • the instantaneous angular velocity calculated by the angular velocity calculator is corrected based on the angular interval between the blades in the region facing the detector of the eddy current sensor 5.
  • the instantaneous angular velocity calculated by the angular velocity calculator is corrected based on the angular interval between the portions of the blade 22 that are determined to have passed by the eddy current sensor 5.
  • correction is performed so that the instantaneous angular velocity calculated by the angular velocity calculating unit is reduced.
  • the instantaneous angular velocity calculated by the angular velocity calculating unit is corrected so as to increase.
  • the actual angular interval ⁇ 1 between the first blade B1 and the second blade B2 is smaller than the design value ⁇ 1, so that after passing through the first blade B1 calculated by the angular velocity calculation unit.
  • the instantaneous angular velocity is corrected so as to be reduced by the angular velocity correction unit.
  • the instantaneous angular velocity after passing through the second blade B2 calculated by the angular velocity calculator is Correction is performed in the correction unit so as to increase.
  • i is the pair number of the blade 22 and represents the pair of the i-th blade and the next blade.
  • the corrected instantaneous angular velocity ⁇ mi is calculated by the following equation (3) by multiplying each instantaneous angular velocity ⁇ i calculated by the angular velocity calculating unit by the correction coefficient ki calculated in this way.
  • ⁇ mi ki ⁇ ⁇ i (3)
  • the instantaneous angular velocity ⁇ mi after correction calculated in this way is calculated by removing the influence of the shape error of the blade 22, and thus has a value close to the actual angular velocity of the compressor rotor 2.
  • FIG. 8 shows a measurement result when the measurement is actually performed in a state where the compressor rotating body 2 is rotated at a constant angular velocity.
  • FIG. 8A shows the transition of the angular velocity calculated during one rotation of the compressor rotor 2 when the correction by the angular velocity correction unit as described above is not performed.
  • FIG. 8B shows the transition of the angular velocity calculated during one rotation of the compressor rotor 2 when the angular velocity is corrected by the angular velocity correcting unit as described above.
  • the angular velocity calculated during one rotation of the compressor rotator 2 before the angular velocity correction varies greatly, whereas the compressor rotator 2 rotates once after the angular velocity correction.
  • the calculated angular velocity remains substantially constant. Therefore, according to this embodiment, the angular velocity of the compressor rotating body 2 can be accurately calculated by correcting the angular velocity calculated by the angular velocity calculating unit with the angular velocity correcting unit as described above.
  • the shape of the blade 22 of the compressor rotor 2 is measured three-dimensionally, and the correction coefficient is calculated based on the measurement result.
  • the correction coefficient may be calculated based on other methods.
  • the compressor rotator 2 is rotated at a constant angular velocity by flowing a steady flow into a turbine of an exhaust turbocharger connected to the compressor rotator 2.
  • the angular velocity calculation unit described above may detect the angular velocity of the compressor rotor 2 and calculate a correction coefficient based on the detected angular velocity.
  • the compressor rotates based on the time interval from when the first blade B1 passes in front of the detection unit of the eddy current sensor 5 until the first blade B1 passes in front of the detection unit of the eddy current sensor 5.
  • the actual angular velocity ⁇ r of the body 2 is calculated.
  • the angular velocity ⁇ i after passing through the i-th blade 22 is calculated by the angular velocity calculator.
  • the instantaneous angular velocity calculated by multiplying each instantaneous angular velocity ⁇ i calculated by the angular velocity calculating unit by the correction coefficient ki calculated in this way rotates the compressor rotor 2 at a constant angular velocity. If they are, they will be equal to each other.
  • the correction coefficient is the instantaneous angular velocity calculated by the angular velocity calculator based on the time interval between the passage of the plurality of pairs of blades when the compressor rotor 2 is rotated at a constant angular velocity. Furthermore, it can be said that the instantaneous angular velocities calculated by multiplying the corresponding correction coefficients are set to be equal to each other.
  • the correction coefficient ki By calculating the correction coefficient ki in this way, three-dimensional measurement of the compressor rotor 2 is not necessary. In addition, even when the shape of the blade 22 changes over time as the compressor is used, the correction coefficient ki can be calculated while the compressor 22 is mounted on the internal combustion engine without being disassembled.
  • FIG. 9 is a flowchart showing a control routine of the instantaneous angular velocity detection process described above.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • step S11 it is determined whether or not the passage of the blade 22 is detected by the eddy current sensor 5. If it is determined by the eddy current sensor 5 that the passage of the blade 22 has not been detected, the control routine is terminated.
  • step S11 if it is determined in step S11 that the passage of the blade 22 is detected by the eddy current sensor 5, the process proceeds to step S12.
  • step S12 a new blade number i is obtained by adding 1 to the blade number i. Therefore, the blade number i substantially indicates the number of the blade 22 that has passed in front of the detection unit of the eddy current sensor 5 in step S11.
  • step S13 a time interval ⁇ ti from the previous detection of the passage of the blade 22 in step S11 to the detection of the passage of the blade 22 in step S11 is calculated.
  • step S14 the angular velocity ⁇ i is calculated using the above-described equation (1) or equation (2) based on the time interval ⁇ ti calculated in step S13.
  • step S15 a correction coefficient ki corresponding to the i-th blade stored in the ECU 6 is acquired.
  • step S16 the corrected angular velocity ⁇ mi is calculated by the above equation (3) by multiplying the angular velocity ⁇ i calculated in step S14 by the correction coefficient ki acquired in step S15.
  • step S17 it is determined whether or not the blade number i is the same as the total blade number n of the compressor rotor 2. When it is determined that the blade number i is less than the total number n of blades, the control routine is terminated. On the other hand, if it is determined in step S17 that the blade number i is the same as the total number n of blades, the process proceeds to step S18. In step S18, the blade number i is set to 0, and the control routine is terminated. In the control routine after the blade number i is set to 0, when the passage of the blade 22 is detected by the eddy current sensor 5 in step S11, the process proceeds to step S12, and the blade number i is set to 1. become.
  • the instantaneous angular velocity calculated in this way can be used for various purposes.
  • an example of use in the case where the angular velocity of the rotating body of the exhaust turbocharger of the internal combustion engine is detected will be described.
  • FIG. 10 is a schematic overall view of an internal combustion engine having an exhaust turbocharger.
  • 41 is an engine body
  • 42 is a combustion chamber of each cylinder
  • 43 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 42
  • 44 is an intake manifold
  • 45 is an exhaust manifold.
  • the intake manifold 44 is connected to the outlet of the compressor 1 of the exhaust turbocharger 47 via an intake duct 46
  • the inlet of the compressor 1 is connected to an air cleaner 49 via an air flow meter 48.
  • An electrically controlled throttle valve 50 is arranged in the intake duct 46, and a cooling device 51 for cooling intake air flowing in the intake duct 46 is arranged around the intake duct 46.
  • the exhaust manifold 45 is connected to the inlet of the exhaust turbine 10 of the exhaust turbocharger 47, and the outlet of the exhaust turbine 10 is connected to an exhaust purification device 60 equipped with a three-way catalyst or the like.
  • the engine body 41 has four cylinders, but the number of cylinders may not be four as long as there are a plurality of cylinders.
  • each fuel injection valve 43 is connected to a fuel tank 56 via a fuel supply pipe 55.
  • the fuel in the fuel tank 56 is supplied to the fuel injection valve 43 by the fuel pump 57 via the fuel supply pipes 55.
  • the air flow meter 8 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the ECU 6. Further, as described above, the eddy current sensor 5 attached to the housing 3 of the compressor 1 is connected to the ECU 6, and the output voltage of the eddy current sensor 5 is input to the ECU. On the other hand, the ECU 6 is connected to the fuel injection valve 43, the throttle valve 50 driving device, the EGR control valve 53, and the fuel pump 57, and controls the driving thereof.
  • the instantaneous kinetic energy KE of the rotating body of the exhaust turbocharger 47 is calculated based on the following formula (4).
  • KE I ⁇ ⁇ 2/2 ... (4)
  • I is the moment of inertia of the rotating body of the exhaust turbocharger 47
  • is the instantaneous angular velocity of the rotating body. Since the angular speed of the rotating body of the exhaust turbocharger 47 is equal to the angular speed of the compressor rotating body 2, the instantaneous kinetic energy of the rotating body is calculated by obtaining the angular speed of the compressor rotating body 2 calculated as described above. be able to.
  • the moment of inertia of the rotating body of the exhaust turbocharger 47 is obtained in advance. Specifically, it is obtained by calculation from the shape and material of the rotating body. Thereafter, during use of the exhaust turbocharger 47, the instantaneous angular velocity ⁇ of the compressor rotor 2 is calculated as described above, and the exhaust turbocharger 47 of the exhaust turbocharger 47 is calculated by the above equation (4) based on the calculated angular velocity ⁇ . The kinetic energy of the rotating body is calculated.
  • the instantaneous angular velocity of the compressor rotor 2 can be accurately calculated by performing the correction by the angular velocity correction unit, so the instantaneous kinetic energy of the rotor of the exhaust turbocharger 47 can be calculated. It can be calculated accurately.
  • FIG. 11 is a graph showing the transition of the angular velocity and kinetic energy of the rotating body of the exhaust turbocharger 47 in one cycle of the internal combustion engine shown in FIG.
  • the horizontal axis in the figure indicates the crank angle of the internal combustion engine.
  • the solid line in FIG. 11 indicates the kinetic energy of the rotating body of the exhaust turbocharger 47, and the broken line indicates the angular velocity of the rotating body.
  • the angular velocity of the rotating body of the exhaust turbocharger 47 changes in accordance with the crank angle of the internal combustion engine.
  • the exhaust valve of the first cylinder is opened and the exhaust gas starts to flow out of the combustion chamber 42
  • the exhaust gas flowing into the exhaust turbine 10 of the exhaust turbocharger 47 increases.
  • the angular velocity of the exhaust turbine 10 is increased, and accordingly, the angular velocity of the compressor rotor 2 is also increased.
  • the kinetic energy of the rotating body of the exhaust turbocharger 47 is also increased.
  • the amount of increase in the kinetic energy of the rotor of the exhaust turbocharger 47 during the exhaust stroke of the fourth cylinder ( ⁇ KE in FIG. 11) is from the combustion chamber 42 of the fourth cylinder. It is proportional to the exhaust energy of the exhaust gas discharged.
  • the increase in the kinetic energy of the exhaust turbocharger 47 during the exhaust strokes of the first cylinder, the third cylinder, and the second cylinder is discharged from the combustion chambers 42 of the first cylinder, the third cylinder, and the second cylinder, respectively. It is proportional to the exhaust energy of the exhaust gas.
  • the exhaust energy of the exhaust gas discharged from each cylinder is basically proportional to the energy generated by the combustion in the combustion chamber 7 of each cylinder, that is, the torque generated by the combustion in the combustion chamber 7 of each cylinder.
  • the difference in combustion torque between the cylinders can be detected by comparing the amount of increase in the kinetic energy of the rotor of the exhaust turbocharger 47 during the exhaust stroke of each cylinder between the cylinders.
  • the cylinder based on the difference ( ⁇ KE) between the minimum value of the kinetic energy of the rotating body at the start of the exhaust stroke of each cylinder and the maximum value of the kinetic energy of the rotating body during the exhaust stroke of the cylinder.
  • the difference in combustion torque between the two can be detected.
  • a cylinder having a large difference between the minimum value and the maximum value is determined to be a cylinder having a large combustion torque
  • a cylinder having a small difference between the minimum value and the maximum value is determined to be a cylinder having a small combustion torque.
  • the difference from the minimum value indicates the difference in exhaust energy between these cylinders. Therefore, it is possible to detect the difference in combustion torque between the cylinders based on the minimum value of the kinetic energy at the start of the exhaust stroke of each cylinder. Specifically, when the minimum value of the kinetic energy at the start of the exhaust stroke of a certain cylinder is large, it is determined that the exhaust energy in that cylinder is large and therefore the combustion torque is large.
  • the difference in combustion torque between cylinders is detected based on the difference in the minimum value of the kinetic energy of the rotating body at the start of the exhaust stroke.
  • the calculation of the inter-cylinder difference in combustion torque can be performed by using an arbitrary parameter (for example, between a maximum value and a minimum value) that is different from the above parameter while the kinetic energy fluctuates up and down once during the exhaust stroke of each cylinder. You may carry out based on an intermediate value etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supercharger (AREA)

Abstract

A device for detecting angular speed, for estimating the angular speed of a compressor rotor (2) having a plurality of blades (22), is provided with a passage detection device (5) for detecting the passing of each blade through a predetermined angle position in a housing (3) for accommodating the compressor rotor, and a calculation device (6) for calculating the angular speed of the compressor rotor. The calculation device is provided with an angular speed calculation unit for calculating the time interval taken for at least two specific pairs of blades among the plurality of blades to pass through the predetermined angle position on the basis of the output of the passage detection device, and calculating the instantaneous angular speed of the compressor rotor on the basis of the calculated time interval.

Description

角速度推定装置、エネルギ推定装置及び気筒間バラツキ推定装置Angular velocity estimation device, energy estimation device, and inter-cylinder variation estimation device
 本発明は、コンプレッサに用いられるコンプレッサ回転体の角速度を推定する角速度推定装置と、この角速度推定装置を用いて回転体の運動エネルギを推定するエネルギ推定装置と、このエネルギ推定装置を用いた内燃機関の気筒間バラツキ推定装置とに関する。 The present invention relates to an angular velocity estimation device that estimates an angular velocity of a compressor rotor used in a compressor, an energy estimation device that estimates the kinetic energy of the rotor using the angular velocity estimation device, and an internal combustion engine using the energy estimation device The present invention relates to an inter-cylinder variation estimation apparatus.
 従来から、コンプレッサに用いられるコンプレッサ回転体の回転数、例えば内燃機関の排気ターボチャージャのコンプレッサ回転体(インペラ)等の回転数を検出するための様々な手法が提案されている。このようにして算出されたコンプレッサ回転体の回転数は、このコンプレッサ回転体の回転数が過剰になっていないかを監視するのに用いられる。 Conventionally, various methods have been proposed for detecting the rotational speed of a compressor rotor used in a compressor, for example, the compressor rotor (impeller) of an exhaust turbocharger of an internal combustion engine. The rotation speed of the compressor rotating body calculated in this way is used to monitor whether the rotation speed of the compressor rotating body is excessive.
 このようなコンプレッサ回転体の回転数を検出するための装置としては、例えば、コンプレッサ回転体を収容するコンプレッサハウジングに、コンプレッサ回転体のブレードの通過による圧力変動に応答して信号を出力する圧力センサを設けたものが提案されている(例えば、特許文献1)。特に、特許文献1に記載の装置では、圧力センサからの信号を周波数解析して信号の基本周波数を測定し、この基本周波数に基づいてコンプレッサ回転体の回転数を算出するようにしている。特許文献1によれば、圧力センサを用いることにより、コンプレッサ回転体のブレードの厚さ等に無関係にコンプレッサ回転体の回転数を検出することができるとされている。 As an apparatus for detecting the rotational speed of such a compressor rotating body, for example, a pressure sensor that outputs a signal in response to pressure fluctuation caused by passage of a blade of the compressor rotating body in a compressor housing that houses the compressor rotating body. Have been proposed (for example, Patent Document 1). In particular, the apparatus described in Patent Document 1 analyzes the frequency of the signal from the pressure sensor, measures the fundamental frequency of the signal, and calculates the rotational speed of the compressor rotor based on this fundamental frequency. According to Patent Document 1, it is said that the rotation speed of the compressor rotating body can be detected by using the pressure sensor regardless of the thickness of the blade of the compressor rotating body.
 また、コンプレッサ回転体の回転数を検出する他の装置としては、コンプレッサ回転体を収容するコンプレッサハウジングに、コンプレッサ回転体のブレードに渦電流を発生させてブレードの通過を検出する回転数センサを用いたものが提案されている。特に、特許文献2に記載の回転数センサは、通電により磁界を発生するコイルと、このコイルの発生した磁界をブレードが通過する空間に放出するU字状のコアとを備えている。特許文献2によれば、斯かる回転数センサを用いることにより、検出対象がブレードのように薄くてもブレードの通過を検出することができるとされている。また、特許文献2の装置では、ブレードの通過検出回数が所定数に達する毎に1つのパルスを発生させ、このパルスに基づいて回転数を検出するようにしている。 Further, as another device for detecting the rotation speed of the compressor rotating body, a rotation speed sensor for detecting the passage of the blade by generating an eddy current in the blade of the compressor rotating body is used in the compressor housing that houses the compressor rotating body. What has been proposed. In particular, the rotation speed sensor described in Patent Document 2 includes a coil that generates a magnetic field when energized, and a U-shaped core that emits the magnetic field generated by the coil to a space through which the blade passes. According to Patent Document 2, by using such a rotational speed sensor, it is possible to detect the passage of the blade even if the detection target is as thin as the blade. In the apparatus of Patent Document 2, one pulse is generated every time the number of blade passage detections reaches a predetermined number, and the number of rotations is detected based on this pulse.
特開2003-240788号公報JP 2003-240788 A 特開2015-34780号公報JP 2015-34780 A
 しかしながら、上述した特許文献1及び特許文献2に記載の装置では、コンプレッサ回転体の平均的な回転数を検出することはできても、コンプレッサ回転体の瞬間的な角速度を正確に検出することはできなかった。すなわち、コンプレッサ回転体が一回転する間にコンプレッサ回転体の角速度が変化したとしても、これを正確に検出することはできなかった。 However, the devices described in Patent Document 1 and Patent Document 2 described above can detect the average rotational speed of the compressor rotor, but can accurately detect the instantaneous angular velocity of the compressor rotor. could not. That is, even if the angular velocity of the compressor rotor changes during one rotation of the compressor rotor, this cannot be accurately detected.
 そこで、上記課題に鑑みて、本発明の目的は、コンプレッサ回転体の瞬間的な角速度を正確に検出することができる角速度検出装置を提供することにある。 Therefore, in view of the above problems, an object of the present invention is to provide an angular velocity detection device that can accurately detect an instantaneous angular velocity of a compressor rotor.
 上記課題を解決するために、第1の発明では、複数のブレードを有するコンプレッサ回転体の角速度を推定する角速度検出装置であって、前記コンプレッサ回転体を収容するハウジング内の所定の角度位置を各ブレードが通過したことを検出する通過検出装置と、前記コンプレッサ回転体の角速度を算出する算出装置とを具備し、前記算出装置は、前記通過検出装置の出力に基づいて前記複数のブレードのうち少なくとも二つの特定の対のブレードが前記所定の角度位置を通過する間の時間間隔を算出し、該算出された時間間隔に基づいて前記コンプレッサ回転体の瞬間的な角速度を算出する角速度算出部を備える、角速度検出装置が提供される。 In order to solve the above-described problem, according to the first aspect of the present invention, there is provided an angular velocity detection device for estimating an angular velocity of a compressor rotating body having a plurality of blades, and each of predetermined angular positions in a housing that houses the compressor rotating body is determined. A passage detection device that detects that a blade has passed, and a calculation device that calculates an angular velocity of the compressor rotor, wherein the calculation device includes at least one of the plurality of blades based on an output of the passage detection device. An angular velocity calculation unit is provided that calculates a time interval between two specific pairs of blades passing through the predetermined angular position, and calculates an instantaneous angular velocity of the compressor rotor based on the calculated time interval. An angular velocity detection device is provided.
 第2の発明では、第1の発明において、前記対のブレードは隣り合う二つの前記ブレードである。 In the second invention, in the first invention, the pair of blades are two adjacent blades.
 第3の発明では、第1又は第2の発明において、前記算出装置は、前記角速度算出部によって算出された瞬間的な角速度を、前記コンプレッサ回転体のブレードの形状誤差に基づいて、前記コンプレッサ回転体を一定の角速度で回転させたときに複数の対のブレードが通過する間の時間間隔に基づいて算出される角速度が互いに一致するように補正したものを前記コンプレッサ回転体の瞬間的な角速度として算出する角速度補正部を更に具備する。 According to a third aspect, in the first or second aspect, the calculation device calculates the instantaneous angular velocity calculated by the angular velocity calculation unit based on a shape error of a blade of the compressor rotating body. When the body is rotated at a constant angular velocity, the angular velocity calculated based on the time interval between the passage of a plurality of pairs of blades is corrected so that they coincide with each other as the instantaneous angular velocity of the compressor rotor An angular velocity correction unit for calculating is further provided.
 第4の発明では、第1又は第2の発明において、前記算出装置は、前記角速度算出部によって算出された角速度に補正係数を乗算して瞬間的な角速度を算出する角速度補正部を更に具備し、前記補正係数は、前記コンプレッサ回転体を一定の角速度で回転させたときに、複数の対のブレードが通過する間の時間間隔に基づいて前記角速度算出部によって算出される瞬間的な角速度に、対応する補正係数を乗算して算出した瞬間的な角速度が互いに等しくなるように設定される。 According to a fourth aspect, in the first or second aspect, the calculation device further includes an angular velocity correction unit that calculates an instantaneous angular velocity by multiplying the angular velocity calculated by the angular velocity calculation unit by a correction coefficient. The correction coefficient is an instantaneous angular velocity calculated by the angular velocity calculation unit based on a time interval during which a plurality of pairs of blades pass when the compressor rotating body is rotated at a constant angular velocity. The instantaneous angular velocities calculated by multiplying the corresponding correction coefficients are set to be equal to each other.
 第5の発明では、第1~第4のいずれか一つの発明において、前記通過検出装置は渦電流センサ又は電磁ピックアップセンサである。 According to a fifth aspect, in any one of the first to fourth aspects, the passage detection device is an eddy current sensor or an electromagnetic pickup sensor.
 第6の発明では、第1~第5のいずれか一つの発明に係る角速度検出装置によって推定された角速度に基づいて前記コンプレッサ回転体を含む回転体の瞬間的な運動エネルギを算出する、エネルギ検出装置が提供される。 According to a sixth aspect of the invention, there is provided energy detection for calculating instantaneous kinetic energy of a rotating body including the compressor rotating body based on the angular velocity estimated by the angular velocity detecting device according to any one of the first to fifth inventions. An apparatus is provided.
 第7の発明では、排気ターボチャージャを具備すると共に複数の気筒を有する内燃機関において気筒間での燃焼に関するバラツキを推定する気筒間バラツキ推定装置であって、第1の発明に係るエネルギ検出装置と、前記エネルギ検出装置によって算出された前記瞬間的な運動エネルギに基づいて前記気筒間バラツキを推定するバラツキ推定部とを具備し、前記コンプレッサ回転体は前記排気ターボチャージャのコンプレッサ回転体である、内燃機関の気筒間バラツキ推定装置が提供される。 According to a seventh aspect of the present invention, there is provided an inter-cylinder variation estimation device for estimating variation related to combustion between cylinders in an internal combustion engine having an exhaust turbocharger and having a plurality of cylinders, the energy detection device according to the first aspect of the invention. An internal combustion engine comprising: a variation estimation unit that estimates variation between cylinders based on the instantaneous kinetic energy calculated by the energy detection device; and the compressor rotating body is a compressor rotating body of the exhaust turbocharger. An engine cylinder-to-cylinder variation estimation apparatus is provided.
 第8の発明では、第7の発明において、前記エネルギ検出装置によって算出される前記回転体の瞬間的な運動エネルギは前記内燃機関の1サイクルの間に該内燃機関の気筒数に応じて複数回上下に変動するように推移し、前記バラツキ推定部は、前記運動エネルギが1回上下に変動する間の運動エネルギの推移から把握される任意のパラメータの値同士を前記内燃機関の同一サイクル内で比較することによって前記気筒間バラツキを推定する。 According to an eighth aspect, in the seventh aspect, the instantaneous kinetic energy of the rotating body calculated by the energy detecting device is a plurality of times during one cycle of the internal combustion engine according to the number of cylinders of the internal combustion engine. The variation estimator calculates values of arbitrary parameters obtained from the transition of kinetic energy while the kinetic energy varies up and down once within the same cycle of the internal combustion engine. The inter-cylinder variation is estimated by comparison.
 本発明によれば、コンプレッサ回転体の瞬間的な角速度を正確に検出することができる角速度検出装置が提供される。 According to the present invention, there is provided an angular velocity detection device that can accurately detect an instantaneous angular velocity of a compressor rotor.
図1は、内燃機関の排気ターボチャージャのコンプレッサを概略的に示す断面図である。FIG. 1 is a sectional view schematically showing a compressor of an exhaust turbocharger of an internal combustion engine. 図2は、図1に示したコンプレッサで用いられるコンプレッサ回転体(インペラ)を概略的に示す平面図である。FIG. 2 is a plan view schematically showing a compressor rotor (impeller) used in the compressor shown in FIG. 図3は、渦電流センサによる検出原理を概略的に示す図である。FIG. 3 is a diagram schematically showing the detection principle by the eddy current sensor. 図4は、通過検出センサとして渦電流センサを用いた場合における出力の推移を示す図である。FIG. 4 is a diagram showing the transition of output when an eddy current sensor is used as the passage detection sensor. 図5は、通過検出センサとして渦電流センサを用いた場合における出力の推移を示す図である。FIG. 5 is a diagram showing transition of output when an eddy current sensor is used as the passage detection sensor. 図6は、コンプレッサ回転体が1回転する間に検出される角速度の推移を示す図である。FIG. 6 is a diagram showing the transition of the angular velocity detected while the compressor rotor rotates once. 図7は、コンプレッサ回転体を概略的に示す、図2と同様な平面図である。FIG. 7 is a plan view similar to FIG. 2, schematically showing the compressor rotor. 図8は、コンプレッサ回転体を一定の角速度で回転させた状態で、実際に計測を行った際の計測結果を示す。FIG. 8 shows a measurement result when the measurement is actually performed in a state where the compressor rotating body is rotated at a constant angular velocity. 図9は、上述した瞬間的な角速度の検出処理の制御ルーチンを示すフローチャートである。FIG. 9 is a flowchart showing a control routine of the instantaneous angular velocity detection process described above. 図10は、排気ターボチャージャを有する内燃機関の概略的な全体図である。FIG. 10 is a schematic overall view of an internal combustion engine having an exhaust turbocharger. 図11は、図10に示した内燃機関の1サイクルにおける排気ターボチャージャの回転体の角速度と運動エネルギとの推移を示す図である。FIG. 11 is a diagram showing the transition of the angular velocity and the kinetic energy of the rotating body of the exhaust turbocharger in one cycle of the internal combustion engine shown in FIG. 図12は、図10に示した内燃機関の1サイクルにおける排気ターボチャージャの回転体の角速度と運動エネルギとの推移を示す図である。FIG. 12 is a diagram showing the transition of the angular velocity and kinetic energy of the rotating body of the exhaust turbocharger in one cycle of the internal combustion engine shown in FIG.
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components.
<コンプレッサの構成>
 まず、図1及び図2を参照して、第一実施形態に係る角速度検出装置が用いられるコンプレッサについて説明する。図1は、内燃機関の排気ターボチャージャのコンプレッサを概略的に示す断面図であり、このコンプレッサにコンプレッサ回転体の角速度を検出する本発明の角速度検出装置が用いられる。また、図2は、図1に示したコンプレッサで用いられるコンプレッサ回転体(インペラ)を概略的に示す平面図である。
<Compressor configuration>
First, with reference to FIG.1 and FIG.2, the compressor in which the angular velocity detection apparatus which concerns on 1st embodiment is used is demonstrated. FIG. 1 is a cross-sectional view schematically showing a compressor of an exhaust turbocharger of an internal combustion engine, and the angular velocity detection device of the present invention for detecting the angular velocity of a compressor rotating body is used for this compressor. FIG. 2 is a plan view schematically showing a compressor rotating body (impeller) used in the compressor shown in FIG.
 図1に示したように、コンプレッサ1は、気体の圧縮を行うコンプレッサ回転体2と、コンプレッサ回転体2を収容するハウジング3とを具備する。 As shown in FIG. 1, the compressor 1 includes a compressor rotating body 2 that compresses gas and a housing 3 that houses the compressor rotating body 2.
 コンプレッサ回転体2は、排気ターボチャージャのタービン(図示せず)にシャフト4を介して連結される中央本体21と、中央本体21の表面上からコンプレッサ回転体2の径方向に又は軸線方向に延びる複数のブレード22とを具備する。中央本体21は、その軸線Lがシャフト4の軸線と同軸になるように、シャフト4に固定される。 The compressor rotor 2 is connected to a turbine (not shown) of an exhaust turbocharger via a shaft 4 and extends from the surface of the center body 21 in the radial direction or the axial direction of the compressor rotor 2. A plurality of blades 22. The central body 21 is fixed to the shaft 4 so that the axis L thereof is coaxial with the axis of the shaft 4.
 また、図2からわかるように、本実施形態のコンプレッサ回転体2は等間隔に配置された同一形状の12枚のブレード22を有する。図2には、本明細書における説明を分かりやすくするために、ブレードに番号を付してある(B1~B12)。なお、ブレード22の枚数は12枚に限定されるものではなく、12枚より多くても12枚より少なくてもよい。また、本実施形態のコンプレッサ回転体2では、複数のブレード22は、コンプレッサ回転体2の径方向又は軸線方向に延びるように構成されている。しかしながら、複数のブレード22は、コンプレッサ1に流入した流体を圧縮することができれば、湾曲した形状等、如何なる形状を有していてもよい。また、ブレード22は、必ずしも等間隔に配置されていなくてもよく、またブレード22の一部又は全てが他のブレードと異なる形状を有するように構成されてもよい。 Further, as can be seen from FIG. 2, the compressor rotor 2 of the present embodiment has twelve blades 22 having the same shape and arranged at equal intervals. In FIG. 2, blades are numbered (B1 to B12) for easy understanding of the description in this specification. The number of blades 22 is not limited to 12 and may be more than 12 or less than 12. Further, in the compressor rotating body 2 of the present embodiment, the plurality of blades 22 are configured to extend in the radial direction or the axial direction of the compressor rotating body 2. However, the plurality of blades 22 may have any shape such as a curved shape as long as the fluid flowing into the compressor 1 can be compressed. Further, the blades 22 are not necessarily arranged at equal intervals, and a part or all of the blades 22 may be configured to have a shape different from that of the other blades.
 図1を参照すると、ハウジング3は、ハウジング3の中央を通って延びる中央通路31と、中央通路31の周囲に延びる環状通路32とを有する。中央通路31の一方の端部は開いており、流体が流入する入口33を構成する。また、中央通路31の他方の端部の周りに環状通路32が配置され、この環状通路32の内側において中央通路31内にコンプレッサ回転体2が配置される。したがって、入口33から流入した流体は中央通路31を通ってコンプレッサ回転体2を介して環状通路32に流出する。 Referring to FIG. 1, the housing 3 has a central passage 31 that extends through the center of the housing 3 and an annular passage 32 that extends around the central passage 31. One end of the central passage 31 is open and constitutes an inlet 33 through which fluid flows. An annular passage 32 is disposed around the other end of the central passage 31, and the compressor rotor 2 is disposed in the central passage 31 inside the annular passage 32. Therefore, the fluid flowing in from the inlet 33 flows out through the central passage 31 and into the annular passage 32 via the compressor rotor 2.
 コンプレッサ回転体2は、ハウジング3内においてその軸線L周りで回転可能である。また、コンプレッサ回転体2は、回転すると、ブレード22の径方向端部がハウジング3の内周面と僅かな隙間を開けた状態でこの内周面に沿って周方向に移動するように構成される。 The compressor rotating body 2 can rotate around its axis L in the housing 3. Further, the compressor rotor 2 is configured such that, when rotated, the radial end of the blade 22 moves in the circumferential direction along the inner peripheral surface with a slight gap from the inner peripheral surface of the housing 3. The
<通過検出センサ>
 また、本実施形態では、ハウジング3内の所定の角度位置をブレード22が通過したことを検出する通過検出センサ5がハウジング3に設けられる。すなわち、通過検出センサ5は、通過検出センサ5の検知部の前をブレード22が通過したことを検出する。本実施形態では、通過検出センサ5は、コンプレッサ回転体2のブレード22の径方向端面22aに対面するように且つブレード22の径方向端面22aの法線方向に延びるように配置される。また、通過検出センサ5は、コンプレッサ回転体2の入口側においてハウジング3に配置される。図1に示した例では、通過検出センサ5は、コンプレッサ回転体2のブレード22の入口側端面22bに隣接してハウジング3に配置される。また、通過検出センサ5は、コンプレッサ回転体の角速度を算出する算出装置としても機能する電子制御ユニット(ECU)6に接続され、通過検出センサ5の出力信号はECU6に入力される。
<Passage detection sensor>
In the present embodiment, the housing 3 is provided with a passage detection sensor 5 that detects that the blade 22 has passed through a predetermined angular position in the housing 3. That is, the passage detection sensor 5 detects that the blade 22 has passed in front of the detection unit of the passage detection sensor 5. In the present embodiment, the passage detection sensor 5 is disposed so as to face the radial end surface 22a of the blade 22 of the compressor rotor 2 and to extend in the normal direction of the radial end surface 22a of the blade 22. The passage detection sensor 5 is disposed in the housing 3 on the inlet side of the compressor rotator 2. In the example shown in FIG. 1, the passage detection sensor 5 is disposed in the housing 3 adjacent to the inlet side end face 22 b of the blade 22 of the compressor rotor 2. The passage detection sensor 5 is connected to an electronic control unit (ECU) 6 that also functions as a calculation device for calculating the angular velocity of the compressor rotor, and an output signal of the passage detection sensor 5 is input to the ECU 6.
 ここで、コンプレッサ回転体2のブレード22は、入口側から出口側に向かって徐々に温度が高くなる。これは、コンプレッサ回転体2を介して流れる流体が入口側から出口側に向かって加圧されるためである。本実施形態では、通過検出センサ5はコンプレッサ回転体2の入口側においてハウジング3に配置されるため、比較的低温の領域に配置される。このため、通過検出センサ5への熱の影響を低減することができる。 Here, the blade 22 of the compressor rotor 2 gradually increases in temperature from the inlet side toward the outlet side. This is because the fluid flowing through the compressor rotor 2 is pressurized from the inlet side toward the outlet side. In the present embodiment, the passage detection sensor 5 is disposed in the housing 3 on the inlet side of the compressor rotator 2, and thus is disposed in a relatively low temperature region. For this reason, the influence of heat on the passage detection sensor 5 can be reduced.
 また、本実施形態では、通過検出センサ5として渦電流センサが用いられる。渦電流センサは、センサ検知部と計測対象の金属物質との間の距離に応じた出力を発生させるセンサである。以下、図3を参照して、渦電流センサの検出原理について簡単に説明する。 In the present embodiment, an eddy current sensor is used as the passage detection sensor 5. The eddy current sensor is a sensor that generates an output corresponding to the distance between the sensor detection unit and the metal material to be measured. The detection principle of the eddy current sensor will be briefly described below with reference to FIG.
 渦電流センサ5は、その検知部に、交流励磁電流により磁界を発生させるコイル25を有する。コイル25が発生させる磁界Xをブレード22が通過すると、コイル25の発生させる磁界を打ち消すようにブレード22に渦電流Yが発生する。ブレード22に発生する渦電流により磁界Xの強さが変化し、この結果、コイル25に流れる電流値が変化することになる。したがって、渦電流センサ5では、ブレード22が磁界を通過することによりコイル25に流れる電流値が変化することから、コイル25に流れる電流値(出力値)を検出することによってブレード22の通過を検出するようにしている。具体的には、渦電流センサ5の出力がピークになったときを、ブレード22が渦電流センサ5の検知部の前を(すなわち、所定の角度位置を)通過したときであると判定するようにしている。 The eddy current sensor 5 has a coil 25 that generates a magnetic field by an alternating excitation current at its detection part. When the blade 22 passes through the magnetic field X generated by the coil 25, an eddy current Y is generated in the blade 22 so as to cancel the magnetic field generated by the coil 25. The strength of the magnetic field X changes due to the eddy current generated in the blade 22, and as a result, the value of the current flowing through the coil 25 changes. Therefore, in the eddy current sensor 5, since the current value flowing through the coil 25 changes when the blade 22 passes through the magnetic field, the passage of the blade 22 is detected by detecting the current value (output value) flowing through the coil 25. Like to do. Specifically, it is determined that the time when the output of the eddy current sensor 5 reaches a peak is the time when the blade 22 passes in front of the detection unit of the eddy current sensor 5 (that is, a predetermined angular position). I have to.
 なお、ブレード22の通過を検出する通過検出センサとしては、ブレード22の通過を検出することができれば、如何なるセンサを用いてもよい。このようなセンサとしては、例えば、電磁ピックアップ(MPU)センサが挙げられる。MPUセンサは、その検知部内にマグネットと検出コイルとを有するセンサである。斯かるMPUセンサでは、磁性体であるブレードがMPUセンサに近づいたり離れたりすると、検出コイルを貫通する磁束が変化し、これに伴って検出コイルの誘導起電力が変化する。これにより、MPUセンサの検知部の前におけるブレード22の通過を検出することができる。なお、以下の説明では、通過検出センサとして渦電流センサを用いた場合について説明する。 Note that any sensor may be used as a passage detection sensor for detecting the passage of the blade 22 as long as the passage of the blade 22 can be detected. An example of such a sensor is an electromagnetic pickup (MPU) sensor. The MPU sensor is a sensor having a magnet and a detection coil in its detection unit. In such an MPU sensor, when a blade, which is a magnetic body, approaches or separates from the MPU sensor, the magnetic flux penetrating the detection coil changes, and the induced electromotive force of the detection coil changes accordingly. Thereby, the passage of the blade 22 in front of the detection unit of the MPU sensor can be detected. In the following description, a case where an eddy current sensor is used as the passage detection sensor will be described.
 図4は、通過検出センサ5として渦電流センサを用いた場合における出力の推移を示す図である。図4(A)は、コンプレッサ回転体2の回転速度が比較的遅い場合における推移を、図4(B)は、コンプレッサ回転体2の回転速度が比較的遅い場合における推移をそれぞれ示している。 FIG. 4 is a diagram showing the transition of output when an eddy current sensor is used as the passage detection sensor 5. 4A shows a transition when the rotation speed of the compressor rotor 2 is relatively slow, and FIG. 4B shows a transition when the rotation speed of the compressor rotor 2 is relatively slow.
 上述したように、渦電流センサ5では、渦電流センサ5の検知部とその前を通過する物体(例えば、ブレード22)との間の距離が短くなるほど出力値が大きくなる。したがって、渦電流センサ5の検知部の前をブレード22が通過すると、渦電流センサ5の出力が急激に増大する。よって、図4における凸状に変化した出力はブレード22が通過したことを意味している。なお、図4中の番号は、通過検出センサ5の検知部の前を通過したブレード22の番号(B1~B12)を示している。 As described above, in the eddy current sensor 5, the output value increases as the distance between the detection unit of the eddy current sensor 5 and the object (for example, the blade 22) passing therethrough becomes shorter. Therefore, when the blade 22 passes in front of the detection unit of the eddy current sensor 5, the output of the eddy current sensor 5 increases rapidly. Therefore, the output changed into a convex shape in FIG. 4 means that the blade 22 has passed. The numbers in FIG. 4 indicate the numbers (B1 to B12) of the blades 22 that have passed in front of the detection unit of the passage detection sensor 5.
 図4(A)に示したように、コンプレッサ回転体2の回転速度が比較的遅い場合には、ブレード22の通過に伴って渦電流センサ5の出力値が急激に上昇及び下降すると共に、二つの隣り合うブレード22が通過する間の期間は低い値で一定に維持される。 As shown in FIG. 4A, when the rotational speed of the compressor rotor 2 is relatively slow, the output value of the eddy current sensor 5 suddenly rises and falls as the blade 22 passes, The period during which two adjacent blades 22 pass is kept constant at a low value.
 一方、図4(B)に示したように、コンプレッサ回転体2の回転速度が比較的速い場合には、一つのブレード22の通過に伴って上昇した渦電流センサ5の出力値が下がりきる前に、次のブレード22の通過に伴って出力値が上昇し始める。したがって、図4(B)に示したように、二つの隣り合うブレード22が通過する間の期間においても渦電流センサ5の出力値は一定に維持されない。しかしながら、この場合であっても、渦電流センサ5の出力値が最大になった時期がブレード22の通過を示していることから、渦電流センサ5の検知部の前をブレード22が通過したことを正確に検出することができる。 On the other hand, as shown in FIG. 4B, when the rotational speed of the compressor rotor 2 is relatively high, before the output value of the eddy current sensor 5 that has risen with the passage of one blade 22 has fallen completely. In addition, the output value starts to rise as the next blade 22 passes. Therefore, as shown in FIG. 4B, the output value of the eddy current sensor 5 is not maintained constant even during the period during which two adjacent blades 22 pass. However, even in this case, since the time when the output value of the eddy current sensor 5 becomes maximum indicates the passage of the blade 22, the blade 22 has passed in front of the detection unit of the eddy current sensor 5. Can be accurately detected.
<瞬間的な角速度の検出>
 ところで、コンプレッサ回転体2の瞬間的な角速度は、コンプレッサ回転体2が1回転する間にも変化する。このように、1回転の間においても変化する瞬間的な角速度を検出することができると、これに基づいて例えばコンプレッサ回転体2の瞬間的な運動エネルギを算出することができる。そして、コンプレッサ回転体2の瞬間的な運動エネルギを算出することができると、後述するように、これに基づいて例えば内燃機関の気筒間における燃焼バラツキ等を推定することができる。すなわち、本願の発明者らは、コンプレッサ回転体2の瞬間的な角速度を検出することにより、そのコンプレッサ自体やそのコンプレッサを用いた機関の運転状態を判断するのに用いられる様々なパラメータ(例えば、上述した気筒間の燃焼バラツキ)の値を算出しうることを見出した。
<Instantaneous angular velocity detection>
Incidentally, the instantaneous angular velocity of the compressor rotator 2 also changes while the compressor rotator 2 makes one revolution. Thus, when the instantaneous angular velocity that changes even during one rotation can be detected, the instantaneous kinetic energy of the compressor rotor 2 can be calculated based on this. When the instantaneous kinetic energy of the compressor rotor 2 can be calculated, for example, combustion variations between cylinders of the internal combustion engine can be estimated based on this, as will be described later. That is, the inventors of the present application detect various instantaneous parameters (for example, for example, determining the operating state of the compressor itself and the engine using the compressor by detecting the instantaneous angular velocity of the compressor rotor 2. It has been found that the above-mentioned value of combustion variation between cylinders can be calculated.
 そこで、本実施形態では、ECU6の角速度算出部により、渦電流センサ5の出力に基づいて、コンプレッサ回転体2の瞬間的な角速度を算出するようにしている。以下では、図4を用いて、コンプレッサ回転体2の瞬間的な角速度の算出方法について説明する。図4に示した例では、第1ブレードB1が渦電流センサ5の前を通過することによって渦電流センサ5の出力がピークを示すときを時刻t1とする。同様に、第2ブレードB2、第3ブレードB3、第4ブレードB4が渦電流センサ5の前を通過することによって渦電流センサ5の出力がピークを示すときをそれぞれ時刻t2、t3、t4とする。 Therefore, in this embodiment, the angular velocity calculation unit of the ECU 6 calculates the instantaneous angular velocity of the compressor rotor 2 based on the output of the eddy current sensor 5. Below, the calculation method of the instantaneous angular velocity of the compressor rotary body 2 is demonstrated using FIG. In the example shown in FIG. 4, the time t1 is the time when the output of the eddy current sensor 5 shows a peak as the first blade B1 passes in front of the eddy current sensor 5. Similarly, when the second blade B2, the third blade B3, and the fourth blade B4 pass in front of the eddy current sensor 5 and the output of the eddy current sensor 5 shows a peak, they are time t2, t3, and t4, respectively. .
 この場合、渦電流センサ5の前を第1ブレードB1が通過してから第2ブレードB2が通過するまでの時間間隔Δt1は、t2-t1として表せる。一方、本実施形態では、12枚のブレードが等間隔に設けられているため、第1ブレードB1と第2ブレードB2との間の角度間隔は基本的に2π/12(rad)となっている。したがって、渦電流センサ5の前を第1ブレードB1が通過してから第2ブレードB2が通過するまでのコンプレッサ回転体2の瞬間的な角速度(以下、「第1ブレード通過後の瞬間的な角速度」という)ω1は、2π/(12×Δt1)として算出される。 In this case, the time interval Δt1 from when the first blade B1 passes in front of the eddy current sensor 5 to when the second blade B2 passes can be expressed as t2-t1. On the other hand, in this embodiment, since 12 blades are provided at equal intervals, the angular interval between the first blade B1 and the second blade B2 is basically 2π / 12 (rad). . Therefore, the instantaneous angular velocity of the compressor rotating body 2 from when the first blade B1 passes through the second blade B2 before the eddy current sensor 5 (hereinafter referred to as “instantaneous angular velocity after passing through the first blade”). ) 1 is calculated as 2π / (12 × Δt1).
 同様に、第2ブレードB2と第3ブレードB3との時間間隔Δt2はt2-t3として表すことができ、第3ブレードB3と第4ブレードB4との時間間隔Δt3はt3-t4として表すことができる。したがって、渦電流センサ5の前を第2ブレードB2が通過してから第3ブレードB3が通過するまでのコンプレッサ回転体2の瞬間的な角速度ω2、すなわち第2ブレードB2通過後の瞬間的な角速度ω2は、2π/(12×Δt2)として算出される。同様に、渦電流センサ5の前を第3ブレードB3が通過してから第4ブレードB4が通過するまでのコンプレッサ回転体2の瞬間的な角速度ω3、すなわち第3ブレードB3通過後の瞬間的な角速度ω3は、2π/(12×Δt3)として算出される。 Similarly, the time interval Δt2 between the second blade B2 and the third blade B3 can be expressed as t2-t3, and the time interval Δt3 between the third blade B3 and the fourth blade B4 can be expressed as t3-t4. . Therefore, the instantaneous angular velocity ω2 of the compressor rotating body 2 from the passage of the second blade B2 to the passage of the third blade B3 in front of the eddy current sensor 5, that is, the instantaneous angular velocity after passing through the second blade B2. ω2 is calculated as 2π / (12 × Δt2). Similarly, the instantaneous angular velocity ω3 of the compressor rotating body 2 from the passage of the third blade B3 to the passage of the fourth blade B4 in front of the eddy current sensor 5, that is, the instantaneous moment after the passage of the third blade B3. The angular velocity ω3 is calculated as 2π / (12 × Δt3).
 したがって、本実施形態によれば、ブレード22の番号をiで表すと、渦電流センサ5の出力に基づいて隣り合う対のブレード(すなわち、第iブレードBiと第(i+1)ブレードB(i+1))が渦電流センサ5の前を通過する間の時間間隔Δtiが算出される。そして、このように算出された時間間隔Δtiと、隣り合う対のブレード間の角度間隔とに基づいて、第iブレードBi通過後の瞬間的な角速度ωi、すなわちコンプレッサ回転体2の瞬間的な角速度ωiが算出される。具体的には、下記式(1)のように隣り合う対のブレード(第iブレードBiと第(i+1)ブレードB(i+1))間の角度間隔αiを、算出されたこれらブレード間の時間間隔Δtiで除算することによって第iブレード通過後の瞬間的な角速度ωiが算出される。また、n枚のブレードが周方向に等間隔に設けられたコンプレッサ回転体2では、瞬間的な角速度ωiは下記式(2)により算出される。
 ωi=αi/Δti   …(1)
 ωi=2π/(n×Δti)   …(2)
Therefore, according to the present embodiment, when the number of the blade 22 is represented by i, a pair of adjacent blades (that is, the i-th blade Bi and the (i + 1) th blade B (i + 1)) based on the output of the eddy current sensor 5. ) During the passage in front of the eddy current sensor 5 is calculated. Based on the time interval Δti calculated in this way and the angular interval between adjacent pairs of blades, the instantaneous angular velocity ωi after passing through the i-th blade Bi, that is, the instantaneous angular velocity of the compressor rotor 2. ωi is calculated. Specifically, the angular interval αi between adjacent pairs of blades (i-th blade Bi and (i + 1) -th blade B (i + 1)) as expressed by the following formula (1) is calculated as a time interval between these blades. By dividing by Δti, the instantaneous angular velocity ωi after passing through the i-th blade is calculated. In the compressor rotor 2 in which n blades are provided at equal intervals in the circumferential direction, the instantaneous angular velocity ωi is calculated by the following equation (2).
ωi = αi / Δti (1)
ωi = 2π / (n × Δti) (2)
 なお、上記実施形態では、瞬間的な角速度ωは、隣り合う1対の二つのブレード22がハウジング3内の所定の角度位置(渦電流センサ5の検知部の前)を通過する時間間隔に基づいて、両ブレードが所定の角度位置を通過する間の瞬間的な角速度として算出される。しかしながら、瞬間的な角速度ωを算出するための1対のブレードは、必ずしも隣り合う二つのブレード22でなくてもよい。例えば、図5に示したように、第1ブレードB1が通過してから第3ブレードB3が通過するまでの時間間隔Δt1や、第1ブレードB1が通過してから第4ブレードB4が通過するまでの時間間隔Δt1’等、周方向に2つ以上離れたブレード間の時間間隔に基づいて瞬間的な角速度を算出してもよい。 In the above-described embodiment, the instantaneous angular velocity ω is based on the time interval at which a pair of adjacent two blades 22 pass a predetermined angular position in the housing 3 (before the detection unit of the eddy current sensor 5). Thus, it is calculated as an instantaneous angular velocity while both blades pass through a predetermined angular position. However, the pair of blades for calculating the instantaneous angular velocity ω may not necessarily be the two adjacent blades 22. For example, as shown in FIG. 5, the time interval Δt1 from the passage of the first blade B1 to the passage of the third blade B3, or the passage of the first blade B1 to the passage of the fourth blade B4. The instantaneous angular velocity may be calculated based on the time interval between two or more blades separated in the circumferential direction, such as the time interval Δt1 ′.
 また、上記実施形態では、全ての隣り合う対のブレード間の時間間隔に基づいて瞬間的な角速度が算出されている。しかしながら、例えば、第2ブレードと第3ブレードとの間の時間間隔に基づく角速度は算出しない等、必ずしも全ての隣り合う対のブレード間の時間間隔に基づいて角速度を算出しなくてもよい。ただし、その場合であっても、コンプレッサ回転体2が1回転する間に、少なくとも2回、瞬間的な角速度の算出することが必要である(例えば、図5に示した例において、第1ブレードB1から第4ブレードB4までの時間間隔Δt1’に基づく瞬間的な角速度と、第7ブレードB7から第10ブレードBs10までの時間間隔Δt2’に基づく瞬間的な角速度)。このようにコンプレッサ回転体2が1回転する間に少なくとも2回瞬間的な角速度を算出することにより、コンプレッサ回転体2が1回転する間の角速度の変化を検出することができるようになる。 In the above embodiment, the instantaneous angular velocity is calculated based on the time interval between all adjacent pairs of blades. However, for example, the angular velocity need not be calculated based on the time intervals between all adjacent pairs of blades, such as not calculating the angular velocity based on the time interval between the second blade and the third blade. However, even in that case, it is necessary to calculate the instantaneous angular velocity at least twice during one rotation of the compressor rotor 2 (for example, in the example shown in FIG. 5, the first blade Instantaneous angular velocity based on the time interval Δt1 ′ from B1 to the fourth blade B4, and instantaneous angular velocity based on the time interval Δt2 ′ from the seventh blade B7 to the tenth blade Bs10). Thus, by calculating the instantaneous angular velocity at least twice during one rotation of the compressor rotator 2, a change in the angular velocity during one rotation of the compressor rotator 2 can be detected.
 また、瞬間的な角速度ωを算出するにあたっては、上述したように、1対のブレードにおけるブレード間の角度間隔がパラメータとして必要になる。コンプレッサ回転体2に複数のブレードを設けるときには、これらブレードは必ずしも等角度間隔に配置されなくてもよい。加えて、コンプレッサ回転体2が複数のブレードが等角度間隔に配置されるように設計されたとしても、後述するように形状誤差により複数のブレードは必ずしも等角度間隔に配置されない。したがって、瞬間的な角速度を算出するに当たっては、任意の対のブレード間の時間間隔に基づいて瞬間的な角速度の算出を行うのではなく、間の角度間隔が分かっている特定の対のブレード間の時間間隔に基づいて瞬間的な角速度の算出を行うことが必要である。 Also, in calculating the instantaneous angular velocity ω, as described above, the angular interval between the blades in a pair of blades is required as a parameter. When a plurality of blades are provided on the compressor rotor 2, these blades do not necessarily have to be arranged at equiangular intervals. In addition, even if the compressor rotor 2 is designed such that a plurality of blades are arranged at equal angular intervals, the plurality of blades are not necessarily arranged at equal angular intervals due to shape errors, as will be described later. Therefore, when calculating the instantaneous angular velocity, the instantaneous angular velocity is not calculated based on the time interval between any pair of blades, but between a specific pair of blades with known angular intervals. It is necessary to calculate the instantaneous angular velocity based on the time interval.
 以上をまめると、本実施形態に係る角速度検出装置は、コンプレッサ回転体2の瞬間的な角速度ωを算出する算出装置を具備し、この算出装置は、通過検出センサ5の出力に基づいて複数のブレード22のうち少なくとも二つの特定の対のブレード22が所定の角度位置を通過する間の時間間隔Δtを算出し、算出された時間間隔Δtに基づいてコンプレッサ回転体2の瞬間的な角速度を算出する角速度算出部を備える。 In summary, the angular velocity detection device according to the present embodiment includes a calculation device that calculates the instantaneous angular velocity ω of the compressor rotor 2, and a plurality of calculation devices are provided based on the output of the passage detection sensor 5. The time interval Δt during which at least two specific pairs of blades 22 of the blades 22 pass through a predetermined angular position is calculated, and the instantaneous angular velocity of the compressor rotor 2 is calculated based on the calculated time interval Δt. An angular velocity calculation unit for calculating is provided.
 なお、上記実施形態では、角速度検出装置は、内燃機関の排気ターボチャージャのコンプレッサについてコンプレッサ回転体の瞬間的な角速度を検出している。しかしながら、角速度検出装置は、複数のブレードを有するコンプレッサ回転体を有するコンプレッサであれば、如何なるコンプレッサにも適用可能である。したがって、例えば、軸流式圧縮機等にも適用可能である。 In the above-described embodiment, the angular velocity detection device detects the instantaneous angular velocity of the compressor rotor for the compressor of the exhaust turbocharger of the internal combustion engine. However, the angular velocity detection device can be applied to any compressor as long as the compressor has a compressor rotating body having a plurality of blades. Therefore, for example, it is applicable also to an axial flow type compressor etc.
<コンプレッサ回転体の形状誤差>
 ここで、コンプレッサ回転体2を一定の角速度で回転させた状態で、上述したように構成された角速度算出部によってコンプレッサ回転体2の瞬間的な角速度を算出した場合の例を図6に示す。図6は、横軸がブレードの番号であり、縦軸は、対応するブレード番号のブレード通過後の瞬間的な角速度を表している。
<Compressor rotor shape error>
Here, FIG. 6 shows an example in which the instantaneous angular velocity of the compressor rotator 2 is calculated by the angular velocity calculator configured as described above in a state where the compressor rotator 2 is rotated at a constant angular velocity. In FIG. 6, the horizontal axis represents the blade number, and the vertical axis represents the instantaneous angular velocity after passing through the blade of the corresponding blade number.
 図6に示した例では、コンプレッサ回転体2は一定の角速度で回転させられている。したがって、このとき、算出される瞬間的な角速度ωは一定の値になるはずである。しかしながら、実際には、図6に示したように、算出される瞬間的な角速度ωは必ずしも各ブレード22通過後において一定にならない。例えば、図6に示した例では、1番ブレード通過後の瞬間的な角速度に対して2番ブレード通過後の瞬間的な角速度は遅くなっている。 In the example shown in FIG. 6, the compressor rotor 2 is rotated at a constant angular velocity. Therefore, at this time, the calculated instantaneous angular velocity ω should be a constant value. However, actually, as shown in FIG. 6, the calculated instantaneous angular velocity ω is not necessarily constant after passing through each blade 22. For example, in the example shown in FIG. 6, the instantaneous angular velocity after passing through the second blade is slower than the instantaneous angular velocity after passing through the first blade.
 これについて、本願の発明者らが鋭意研究を行ったところ、算出される瞬間的な角速度ωが一定の値にならない理由は、コンプレッサ回転体2のブレード22の形状誤差(形状公差範囲内での誤差)に主な原因があることを突き止めた。すなわち、コンプレッサ回転体2には各固体毎に形状誤差が存在し、この形状誤差によって、角速度算出部によって算出される瞬間的な角速度に誤差が生じることを突き止めた。以下、図7を参照して、算出される瞬間的な角速度ωとブレード22の形状誤差との関係について説明する。 In this regard, the inventors of the present application conducted extensive research and found that the calculated instantaneous angular velocity ω does not have a constant value because the shape error of the blade 22 of the compressor rotor 2 (within the shape tolerance range). We found out that there was a main cause of error. In other words, it has been found that there is a shape error for each solid in the compressor rotor 2, and this shape error causes an error in the instantaneous angular velocity calculated by the angular velocity calculator. Hereinafter, the relationship between the calculated instantaneous angular velocity ω and the shape error of the blade 22 will be described with reference to FIG.
 図7は、コンプレッサ回転体を概略的に示す、図2と同様な平面図である。図7内の破線は、コンプレッサ回転体2のブレード22が設計通りに形成されていた場合のブレード22の形状を示している。図7に示した例では、複数のブレード22は等間隔に互いに同一形状となるように設計されている。また、図7に示した例では、第2ブレードB2と第10ブレードB10は、設計上のブレード形状に対して形状誤差を有していることがわかる。具体的には、第2ブレードB2が、その設計上の形状に対して周方向において第1ブレード側にシフトした形状になっている。また、第10ブレードB10が、その設計上の形状に対して径方向外側にシフトした形状になっている。 FIG. 7 is a plan view similar to FIG. 2, schematically showing the compressor rotor. 7 indicates the shape of the blade 22 when the blade 22 of the compressor rotor 2 is formed as designed. In the example shown in FIG. 7, the plurality of blades 22 are designed to have the same shape at regular intervals. In the example shown in FIG. 7, it can be seen that the second blade B2 and the tenth blade B10 have a shape error with respect to the designed blade shape. Specifically, the second blade B2 has a shape shifted to the first blade side in the circumferential direction with respect to the design shape. Further, the tenth blade B10 has a shape shifted radially outward from the design shape.
 このようにブレード形状に誤差が生じると、ブレード間の角度間隔αが変化する。図7に示した例では、第2ブレードB2の形状が設計上の形状に対して周方向にシフトした形状となっている。この結果、渦電流センサ5と対面する領域において、第1ブレードB1と第2ブレードB2との間の実際の角度間隔が設計値β1よりも小さいα1となっている。逆に、第2ブレードB2と第3ブレードB3との間の実際の角度間隔が設計値β2よりも大きいα2となっている。したがって、第1ブレードB1と第2ブレードB2との間の実際の角度間隔α1は、第2ブレードB2と第3ブレードB3との間の実際の角度間隔α2よりも小さい。一方、角速度を算出するにあたっては、ブレード間の実際の角度間隔ではなく、設計値が用いられる。このため、コンプレッサ回転体2が一定の回転角度で回転していても、第1ブレードB1から第2ブレードB2までの時間間隔Δt1に基づく瞬間的な角速度ω1は、第2ブレードB2から第3ブレードB3までの時間間隔Δt2に基づく瞬間的な角速度ω2よりも速いものとして算出される。この結果、図6に示したように、第1ブレードB1通過後の瞬間的な角速度が第2ブレードB2通過後の瞬間的な角速度よりも速いものとして算出される。 ¡If there is an error in the blade shape, the angle interval α between the blades changes. In the example shown in FIG. 7, the shape of the second blade B2 is a shape that is shifted in the circumferential direction with respect to the designed shape. As a result, in the region facing the eddy current sensor 5, the actual angular interval between the first blade B1 and the second blade B2 is α1, which is smaller than the design value β1. Conversely, the actual angular interval between the second blade B2 and the third blade B3 is α2, which is larger than the design value β2. Accordingly, the actual angular interval α1 between the first blade B1 and the second blade B2 is smaller than the actual angular interval α2 between the second blade B2 and the third blade B3. On the other hand, in calculating the angular velocity, a design value is used instead of the actual angular interval between the blades. Therefore, even if the compressor rotor 2 rotates at a constant rotation angle, the instantaneous angular velocity ω1 based on the time interval Δt1 from the first blade B1 to the second blade B2 is the second blade B2 to the third blade. It is calculated as being faster than the instantaneous angular velocity ω2 based on the time interval Δt2 up to B3. As a result, as shown in FIG. 6, the instantaneous angular velocity after passing through the first blade B1 is calculated to be faster than the instantaneous angular velocity after passing through the second blade B2.
 また、図7に示した例では、第10ブレードB10が設計上の形状に対して周方向外側にシフトした形状となっている。この結果、第9ブレードB9と第10ブレードB10との間の実際の角度間隔が設計値β9よりも小さいα9となっている。また、第10ブレードB10と第11ブレードB11との間の実際の角度間隔が設計値β10よりも大きいα10となっている。この結果、コンプレッサ回転体2が一定の回転角度で回転していても、第9ブレードB9通過後の瞬間的な角速度が第10ブレードB10通過後の瞬間的な角速度よりも速いものとして算出される。 Further, in the example shown in FIG. 7, the tenth blade B10 has a shape that is shifted outward in the circumferential direction with respect to the design shape. As a result, the actual angular interval between the ninth blade B9 and the tenth blade B10 is α9 which is smaller than the design value β9. In addition, the actual angular interval between the tenth blade B10 and the eleventh blade B11 is α10 which is larger than the design value β10. As a result, even if the compressor rotor 2 rotates at a constant rotation angle, the instantaneous angular velocity after passing through the ninth blade B9 is calculated to be faster than the instantaneous angular velocity after passing through the tenth blade B10. .
 なお、図7には、ブレードの形状が周方向又は径方向に全体的にシフトした形状誤差の例を示した。しかしながら、ブレードにおける形状誤差には、コンプレッサ回転体2の軸線方向における誤差や、ブレードの湾曲形状における誤差等、上記の形状誤差以外にも様々な誤差が含まれる。そして、このような形状誤差がブレードに生じると、ブレード間の角速度を適切に検出することができなくなる。 FIG. 7 shows an example of a shape error in which the shape of the blade is totally shifted in the circumferential direction or the radial direction. However, the shape error in the blade includes various errors in addition to the above-described shape error, such as an error in the axial direction of the compressor rotor 2 and an error in the curved shape of the blade. When such a shape error occurs in the blades, the angular velocity between the blades cannot be properly detected.
<ブレードの形状誤差に基づく補正>
 そこで、本発明の実施形態では、ECU6の角速度補正部により、コンプレッサ回転体2のブレードの形状誤差に基づいて、コンプレッサ回転体2を一定の角速度で回転させたときに複数の対のブレード22が通過する間の時間間隔に基づいて算出される瞬間的な角速度が互いに一致するように、角速度算出部によって算出された瞬間的な角速度を補正したものをコンプレッサ回転体2の瞬間的な角速度として算出するようにしている。
<Correction based on blade shape error>
Therefore, in the embodiment of the present invention, the angular velocity correction unit of the ECU 6 causes a plurality of pairs of blades 22 when the compressor rotor 2 is rotated at a constant angular velocity based on the shape error of the blades of the compressor rotor 2. A value obtained by correcting the instantaneous angular velocity calculated by the angular velocity calculating unit so that the instantaneous angular velocities calculated based on the time interval between the passages coincide with each other is calculated as the instantaneous angular velocity of the compressor rotor 2. Like to do.
 具体的には、渦電流センサ5の検知部と対面する領域におけるブレード間の角度間隔に基づいて、角速度算出部によって算出された瞬間的な角速度を補正するようにしている。特に、ブレード22のうち渦電流センサ5によってブレード22が通過したと判定される部分同士の間の角度間隔に基づいて、角速度算出部によって算出された瞬間的な角速度を補正するようにしている。ブレード22間の角度間隔が設計値よりも小さい領域については、角速度算出部によって算出された瞬間的な角速度が小さくなるように補正する。逆に、ブレード22間の角度間隔が設計値よりも大きい領域については、角速度算出部によって算出された瞬間的な角速度が大きくなるように補正する。 Specifically, the instantaneous angular velocity calculated by the angular velocity calculator is corrected based on the angular interval between the blades in the region facing the detector of the eddy current sensor 5. In particular, the instantaneous angular velocity calculated by the angular velocity calculator is corrected based on the angular interval between the portions of the blade 22 that are determined to have passed by the eddy current sensor 5. In the region where the angular interval between the blades 22 is smaller than the design value, correction is performed so that the instantaneous angular velocity calculated by the angular velocity calculating unit is reduced. On the contrary, in the region where the angular interval between the blades 22 is larger than the design value, the instantaneous angular velocity calculated by the angular velocity calculating unit is corrected so as to increase.
 例えば、図7に示した例では、第1ブレードB1と第2ブレードB2との間の実際の角度間隔α1は設計値β1よりも小さいため、角速度算出部によって算出された第1ブレードB1通過後の瞬間的な角速度は、角速度補正部において小さくなるように補正される。一方、第2ブレードB2と第3ブレードB3との間の実際の角度間隔α2は設計値β2よりも大きいため、角速度算出部によって算出された第2ブレードB2通過後の瞬間的な角速度は、角度補正部において大きくなるように補正される。 For example, in the example shown in FIG. 7, the actual angular interval α1 between the first blade B1 and the second blade B2 is smaller than the design value β1, so that after passing through the first blade B1 calculated by the angular velocity calculation unit. The instantaneous angular velocity is corrected so as to be reduced by the angular velocity correction unit. On the other hand, since the actual angular interval α2 between the second blade B2 and the third blade B3 is larger than the design value β2, the instantaneous angular velocity after passing through the second blade B2 calculated by the angular velocity calculator is Correction is performed in the correction unit so as to increase.
 特に、ブレード22間の実際の角度間隔と設計値との比は、角速度算出部によって算出された角速度と実際の角速度との比に等しい。そこで、本実施形態では、コンプレッサ回転体2のブレード22の形状の測定を行うと共に、測定された各ブレード22の形状に基づいて対のブレード22間の実際の角度間隔αiと設計値βiとの比を補正係数kiとして算出する(ki=αi/βi)。ここで、iはブレード22の対の番号であり、第iブレードとのその次のブレードとの対を表す。このようにして算出された補正係数kiを、角速度算出部によって算出された各瞬間的な角速度ωiに乗算することによって下記式(3)により補正後の瞬間的な角速度ωmiが算出される。
 ωmi=ki×ωi   …(3)
このように算出された補正後の瞬間的な角速度ωmiは、ブレード22の形状誤差の影響を除去して算出されたものであるため、コンプレッサ回転体2の実際の角速度に近い値となる。
In particular, the ratio between the actual angular interval between the blades 22 and the design value is equal to the ratio between the angular velocity calculated by the angular velocity calculating unit and the actual angular velocity. Therefore, in the present embodiment, the shape of the blade 22 of the compressor rotating body 2 is measured, and the actual angular interval αi between the pair of blades 22 and the design value βi based on the measured shape of each blade 22. The ratio is calculated as a correction coefficient ki (ki = αi / βi). Here, i is the pair number of the blade 22 and represents the pair of the i-th blade and the next blade. The corrected instantaneous angular velocity ωmi is calculated by the following equation (3) by multiplying each instantaneous angular velocity ωi calculated by the angular velocity calculating unit by the correction coefficient ki calculated in this way.
ωmi = ki × ωi (3)
The instantaneous angular velocity ωmi after correction calculated in this way is calculated by removing the influence of the shape error of the blade 22, and thus has a value close to the actual angular velocity of the compressor rotor 2.
 図8は、コンプレッサ回転体2を一定の角速度で回転させた状態で、実際に計測を行った際の計測結果を示す。図8(A)は、上述したような角速度補正部による補正を行っていない場合に、コンプレッサ回転体2が1回転する間に算出される角速度の推移を示したものである。一方、図8(B)は、上述したような角速度補正部による角速度の補正を行った場合に、コンプレッサ回転体2が1回転する間に算出される角速度の推移を示したものである。図8からわかるように、角速度の補正前にはコンプレッサ回転体2が1回転する間に算出された角速度は大きく変動しているのに対して、角速度の補正後にはコンプレッサ回転体2が1回転する間、算出された角速度はほぼ一定のまま推移している。したがって、本実施形態によれば、角速度算出部によって算出された角速度を上述したように角速度補正部により補正することで、コンプレッサ回転体2の角速度を正確に算出することができる。 FIG. 8 shows a measurement result when the measurement is actually performed in a state where the compressor rotating body 2 is rotated at a constant angular velocity. FIG. 8A shows the transition of the angular velocity calculated during one rotation of the compressor rotor 2 when the correction by the angular velocity correction unit as described above is not performed. On the other hand, FIG. 8B shows the transition of the angular velocity calculated during one rotation of the compressor rotor 2 when the angular velocity is corrected by the angular velocity correcting unit as described above. As can be seen from FIG. 8, the angular velocity calculated during one rotation of the compressor rotator 2 before the angular velocity correction varies greatly, whereas the compressor rotator 2 rotates once after the angular velocity correction. In the meantime, the calculated angular velocity remains substantially constant. Therefore, according to this embodiment, the angular velocity of the compressor rotating body 2 can be accurately calculated by correcting the angular velocity calculated by the angular velocity calculating unit with the angular velocity correcting unit as described above.
 なお、上記実施形態では、コンプレッサ回転体2のブレード22の形状を三次元的に測定し、その測定結果に基づいて補正係数を算出している。しかしながら、補正係数の算出は他の方法に基づいて行ってもよい。例えば、コンプレッサ回転体2に連結された排気ターボチャージャのタービンに定常流を流入させること等によってコンプレッサ回転体2を一定の角速度で回転させる。この状態で、上述した角速度算出部によってコンプレッサ回転体2の角速度を検出すると共に、検出した角速度に基づいて補正係数を算出してもよい。 In the above embodiment, the shape of the blade 22 of the compressor rotor 2 is measured three-dimensionally, and the correction coefficient is calculated based on the measurement result. However, the correction coefficient may be calculated based on other methods. For example, the compressor rotator 2 is rotated at a constant angular velocity by flowing a steady flow into a turbine of an exhaust turbocharger connected to the compressor rotator 2. In this state, the angular velocity calculation unit described above may detect the angular velocity of the compressor rotor 2 and calculate a correction coefficient based on the detected angular velocity.
 この場合、第1ブレードB1が渦電流センサ5の検知部の前を通過してから次に第1ブレードB1が渦電流センサ5の検知部の前を通過するまでの時間間隔に基づいてコンプレッサ回転体2の実際の角速度ωrが算出される。加えて、角速度算出部によって第iブレード22の通過後における角速度ωiが算出される。そして、このように算出された実際の角速度ωrを第iブレード22の通過後における角速度ωiで除算することによって、第iブレード通過後の角速度に対する補正係数kiが算出される(ki=ωr/ωi)。そして、このようにして算出された補正係数kiを角速度算出部によって算出された各瞬間的な角速度ωiに乗算することによって算出された瞬間的な角速度は、コンプレッサ回転体2を一定の角速度で回転させていると、互いに等しくなる。 In this case, the compressor rotates based on the time interval from when the first blade B1 passes in front of the detection unit of the eddy current sensor 5 until the first blade B1 passes in front of the detection unit of the eddy current sensor 5. The actual angular velocity ωr of the body 2 is calculated. In addition, the angular velocity ωi after passing through the i-th blade 22 is calculated by the angular velocity calculator. The correction coefficient ki for the angular velocity after passing through the i-th blade 22 is calculated by dividing the actual angular velocity ωr calculated in this way by the angular velocity ωi after passing through the i-th blade 22 (ki = ωr / ωi). ). The instantaneous angular velocity calculated by multiplying each instantaneous angular velocity ωi calculated by the angular velocity calculating unit by the correction coefficient ki calculated in this way rotates the compressor rotor 2 at a constant angular velocity. If they are, they will be equal to each other.
 したがって、この場合、補正係数は、コンプレッサ回転体2を一定の角速度で回転させたときに、複数の対のブレードが通過する間の時間間隔に基づいて角速度算出部によって算出される瞬間的な角速度に、対応する補正係数を乗算して算出した瞬間的な角速度が互いに等しくなるように設定されるといえる。 Therefore, in this case, the correction coefficient is the instantaneous angular velocity calculated by the angular velocity calculator based on the time interval between the passage of the plurality of pairs of blades when the compressor rotor 2 is rotated at a constant angular velocity. Furthermore, it can be said that the instantaneous angular velocities calculated by multiplying the corresponding correction coefficients are set to be equal to each other.
 このようにして補正係数kiを算出することにより、コンプレッサ回転体2の三次元的な測定が不要になる。加えて、コンプレッサの使用に伴ってブレード22の形状が経時的に変化した場合であっても、コンプレッサを分解することなく内燃機関に搭載したままで補正係数kiを算出することができる。 By calculating the correction coefficient ki in this way, three-dimensional measurement of the compressor rotor 2 is not necessary. In addition, even when the shape of the blade 22 changes over time as the compressor is used, the correction coefficient ki can be calculated while the compressor 22 is mounted on the internal combustion engine without being disassembled.
<瞬間的な角速度の検出処理のフローチャート>
 図9は、上述した瞬間的な角速度の検出処理の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
<Flowchart of instantaneous angular velocity detection process>
FIG. 9 is a flowchart showing a control routine of the instantaneous angular velocity detection process described above. The illustrated control routine is performed by interruption at regular time intervals.
 まず、ステップS11では、渦電流センサ5によりブレード22の通過が検出されたか否かが判定される。渦電流センサ5によりブレード22の通過が検出されていないと判定された場合には制御ルーチンが終了せしめられる。 First, in step S11, it is determined whether or not the passage of the blade 22 is detected by the eddy current sensor 5. If it is determined by the eddy current sensor 5 that the passage of the blade 22 has not been detected, the control routine is terminated.
 一方、ステップS11において、渦電流センサ5によってブレード22の通過が検出されたと判定された場合には、ステップS12へと進む。ステップS12では、ブレード番号iに1が加算されたものが新たなブレード番号iとされる。したがって、ブレード番号iは、実質的に、ステップS11において渦電流センサ5の検知部の前を通過したブレード22の番号を示す。次いで、ステップS13では、前回、ステップS11においてブレード22の通過が検出されてから今回ステップS11においてブレード22の通過が検出されるまでの時間間隔Δtiが算出される。 On the other hand, if it is determined in step S11 that the passage of the blade 22 is detected by the eddy current sensor 5, the process proceeds to step S12. In step S12, a new blade number i is obtained by adding 1 to the blade number i. Therefore, the blade number i substantially indicates the number of the blade 22 that has passed in front of the detection unit of the eddy current sensor 5 in step S11. Next, in step S13, a time interval Δti from the previous detection of the passage of the blade 22 in step S11 to the detection of the passage of the blade 22 in step S11 is calculated.
 次いで、ステップS14では、ステップS13で算出された時間間隔Δtiに基づいて上述した式(1)又は式(2)を用いて角速度ωiが算出される。次いで、ステップS15では、ECU6に保存されていたi番ブレードに対応する補正係数kiが取得される。その後、ステップS16では、ステップS14で算出された角速度ωiに、ステップS15で取得された補正係数kiを乗算することにより、上記式(3)によって修正角速度ωmiが算出される。 Next, in step S14, the angular velocity ωi is calculated using the above-described equation (1) or equation (2) based on the time interval Δti calculated in step S13. Next, in step S15, a correction coefficient ki corresponding to the i-th blade stored in the ECU 6 is acquired. Thereafter, in step S16, the corrected angular velocity ωmi is calculated by the above equation (3) by multiplying the angular velocity ωi calculated in step S14 by the correction coefficient ki acquired in step S15.
 次いで、ステップS17では、ブレード番号iがコンプレッサ回転体2のブレード総数nと同一であるか否かが判定される。ブレード番号iがブレード総数nよりも少ないと判定された場合には制御ルーチンが終了せしめられる。一方、ステップS17においてブレード番号iがブレード総数nと同一であると判定された場合には、ステップS18へと進む。ステップS18では、ブレード番号iが0にセットされ、制御ルーチンが終了せしめられる。なお、ブレード番号iが0にセットされた後の制御ルーチンでは、ステップS11で渦電流センサ5によりブレード22の通過が検出されるとステップS12へと進み、ブレード番号iが1にセットされることになる。 Next, in step S17, it is determined whether or not the blade number i is the same as the total blade number n of the compressor rotor 2. When it is determined that the blade number i is less than the total number n of blades, the control routine is terminated. On the other hand, if it is determined in step S17 that the blade number i is the same as the total number n of blades, the process proceeds to step S18. In step S18, the blade number i is set to 0, and the control routine is terminated. In the control routine after the blade number i is set to 0, when the passage of the blade 22 is detected by the eddy current sensor 5 in step S11, the process proceeds to step S12, and the blade number i is set to 1. become.
<瞬間的な角速度の利用>
 このようにして算出された瞬間的な角速度は、様々な用途に利用することができる。以下では、内燃機関の排気ターボチャージャの回転体の角速度を検出した場合における利用例について説明する。
<Use of instantaneous angular velocity>
The instantaneous angular velocity calculated in this way can be used for various purposes. Hereinafter, an example of use in the case where the angular velocity of the rotating body of the exhaust turbocharger of the internal combustion engine is detected will be described.
 図10は、排気ターボチャージャを有する内燃機関の概略的な全体図である。図10を参照すると、41は機関本体、42は各気筒の燃焼室、43は各燃焼室42内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、44は吸気マニホルド、45は排気マニホルドをそれぞれ示す。吸気マニホルド44は吸気ダクト46を介して排気ターボチャージャ47のコンプレッサ1の出口に連結され、コンプレッサ1の入口はエアフロメータ48を介してエアクリーナ49に連結される。吸気ダクト46内には電気制御式スロットル弁50が配置され、さらに吸気ダクト46周りには吸気ダクト46内を流れる吸入空気を冷却するための冷却装置51が配置される。一方、排気マニホルド45は排気ターボチャージャ47の排気タービン10の入口に連結され、排気タービン10の出口は三元触媒等を備えた排気浄化装置60に連結される。なお、図10からわかるように、機関本体41は4つの気筒を有しているが、気筒数が複数個あれば気筒の数は4つでなくてもよい。 FIG. 10 is a schematic overall view of an internal combustion engine having an exhaust turbocharger. Referring to FIG. 10, 41 is an engine body, 42 is a combustion chamber of each cylinder, 43 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 42, 44 is an intake manifold, 45 is an exhaust manifold. Respectively. The intake manifold 44 is connected to the outlet of the compressor 1 of the exhaust turbocharger 47 via an intake duct 46, and the inlet of the compressor 1 is connected to an air cleaner 49 via an air flow meter 48. An electrically controlled throttle valve 50 is arranged in the intake duct 46, and a cooling device 51 for cooling intake air flowing in the intake duct 46 is arranged around the intake duct 46. On the other hand, the exhaust manifold 45 is connected to the inlet of the exhaust turbine 10 of the exhaust turbocharger 47, and the outlet of the exhaust turbine 10 is connected to an exhaust purification device 60 equipped with a three-way catalyst or the like. As can be seen from FIG. 10, the engine body 41 has four cylinders, but the number of cylinders may not be four as long as there are a plurality of cylinders.
 排気マニホルド45と吸気マニホルド44とは排気再循環(以下、「EGR」という)通路52を介して互いに連結され、EGR通路52内には電気制御式EGR制御弁53が配置される。また、EGR通路52周りにはEGR通路52内を流れるEGRガスを冷却するための冷却装置54が配置される。一方、各燃料噴射弁43は燃料供給管55を介して燃料タンク56に連結される。燃料タンク56内の燃料は燃料ポンプ57によって各燃料供給管55を介して燃料噴射弁43に供給される。 The exhaust manifold 45 and the intake manifold 44 are connected to each other via an exhaust recirculation (hereinafter referred to as “EGR”) passage 52, and an electrically controlled EGR control valve 53 is disposed in the EGR passage 52. A cooling device 54 for cooling the EGR gas flowing in the EGR passage 52 is disposed around the EGR passage 52. On the other hand, each fuel injection valve 43 is connected to a fuel tank 56 via a fuel supply pipe 55. The fuel in the fuel tank 56 is supplied to the fuel injection valve 43 by the fuel pump 57 via the fuel supply pipes 55.
 エアフロメータ8は吸入空気量に比例した出力電圧を発生し、この出力電圧はECU6に入力される。また、上述したように、コンプレッサ1のハウジング3に取り付けられた渦電流センサ5はECU6に接続され、渦電流センサ5の出力電圧はECUに入力される。一方、ECU6は、燃料噴射弁43、スロットル弁50駆動装置、EGR制御弁53、燃料ポンプ57に接続され、これらの駆動を制御する。 The air flow meter 8 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the ECU 6. Further, as described above, the eddy current sensor 5 attached to the housing 3 of the compressor 1 is connected to the ECU 6, and the output voltage of the eddy current sensor 5 is input to the ECU. On the other hand, the ECU 6 is connected to the fuel injection valve 43, the throttle valve 50 driving device, the EGR control valve 53, and the fuel pump 57, and controls the driving thereof.
<排気ターボチャージャの回転体の運動エネルギの算出>
 ところで、排気ターボチャージャ47内で回転する構成要素としては、上述したコンプレッサ回転体2に加えて、排気タービン10のタービンホイール(図示せず)及びこれらコンプレッサ回転体2とタービンホイールとを連結するシャフト4が挙げられる。したがって、コンプレッサ回転体2、タービンホイール及びシャフト4は、排気ターボチャージャ47の回転体を構成する。
<Calculation of kinetic energy of rotating body of exhaust turbocharger>
By the way, as components that rotate in the exhaust turbocharger 47, in addition to the compressor rotator 2 described above, a turbine wheel (not shown) of the exhaust turbine 10 and a shaft that connects the compressor rotator 2 and the turbine wheel. 4 is mentioned. Therefore, the compressor rotor 2, the turbine wheel, and the shaft 4 constitute a rotor of the exhaust turbocharger 47.
 排気ターボチャージャ47の回転体の瞬間的な運動エネルギKEは、下記式(4)に基づいて算出される。
 KE=I×ω2/2   …(4)
 式(4)において、Iは排気ターボチャージャ47の回転体の慣性モーメントであり、ωは回転体の瞬間的な角速度である。排気ターボチャージャ47の回転体の角速度は、コンプレッサ回転体2の角速度に等しいことから、上述したように算出されたコンプレッサ回転体2の角速度を求めることにより回転体の瞬間的な運動エネルギを算出することができる。
The instantaneous kinetic energy KE of the rotating body of the exhaust turbocharger 47 is calculated based on the following formula (4).
KE = I × ω 2/2 ... (4)
In Equation (4), I is the moment of inertia of the rotating body of the exhaust turbocharger 47, and ω is the instantaneous angular velocity of the rotating body. Since the angular speed of the rotating body of the exhaust turbocharger 47 is equal to the angular speed of the compressor rotating body 2, the instantaneous kinetic energy of the rotating body is calculated by obtaining the angular speed of the compressor rotating body 2 calculated as described above. be able to.
 そこで、本実施形態では、予め排気ターボチャージャ47の回転体の慣性モーメントが求められる。具体的には、回転体の形状及び材質から計算によって求められる。その後、排気ターボチャージャ47の使用中に、上述したようにコンプレッサ回転体2の瞬間的な角速度ωが算出されると共に、算出された角速度ωに基づいて上記式(4)により排気ターボチャージャ47の回転体の運動エネルギが算出される。本実施形態では上述したように角速度補正部により補正を行うことでコンプレッサ回転体2の瞬間的な角速度を正確に算出することができることから、排気ターボチャージャ47の回転体の瞬間的な運動エネルギを正確に算出することができる。 Therefore, in this embodiment, the moment of inertia of the rotating body of the exhaust turbocharger 47 is obtained in advance. Specifically, it is obtained by calculation from the shape and material of the rotating body. Thereafter, during use of the exhaust turbocharger 47, the instantaneous angular velocity ω of the compressor rotor 2 is calculated as described above, and the exhaust turbocharger 47 of the exhaust turbocharger 47 is calculated by the above equation (4) based on the calculated angular velocity ω. The kinetic energy of the rotating body is calculated. In the present embodiment, as described above, the instantaneous angular velocity of the compressor rotor 2 can be accurately calculated by performing the correction by the angular velocity correction unit, so the instantaneous kinetic energy of the rotor of the exhaust turbocharger 47 can be calculated. It can be calculated accurately.
<気筒間バラツキの算出>
 このように、排気ターボチャージャ47の回転体の瞬間的な運動エネルギを正確に算出することができると、算出された瞬間的な運動エネルギに基づいて内燃機関の気筒間のトルク差等、燃焼に関する気筒間バラツキを算出することができる。以下では、瞬間的な運動エネルギと気筒間トルク差との関係について説明する。
<Calculation of variation between cylinders>
As described above, when the instantaneous kinetic energy of the rotating body of the exhaust turbocharger 47 can be accurately calculated, the torque difference between the cylinders of the internal combustion engine is related to combustion based on the calculated instantaneous kinetic energy. Inter-cylinder variation can be calculated. Below, the relationship between instantaneous kinetic energy and the torque difference between cylinders is demonstrated.
 図11は、図10に示した内燃機関の1サイクルにおける排気ターボチャージャ47の回転体の角速度と運動エネルギとの推移を示す図である。図中の横軸は内燃機関のクランク角を示している。図11中の実線は排気ターボチャージャ47の回転体の運動エネルギを、破線は回転体の角速度をそれぞれ示している。 FIG. 11 is a graph showing the transition of the angular velocity and kinetic energy of the rotating body of the exhaust turbocharger 47 in one cycle of the internal combustion engine shown in FIG. The horizontal axis in the figure indicates the crank angle of the internal combustion engine. The solid line in FIG. 11 indicates the kinetic energy of the rotating body of the exhaust turbocharger 47, and the broken line indicates the angular velocity of the rotating body.
 図11に示したように、排気ターボチャージャ47の回転体の角速度は内燃機関のクランク角に合わせて変化する。図11に示した例ではまず1番気筒の排気弁が開いて燃焼室42からの排気ガスの流出が開始されると、排気ターボチャージャ47の排気タービン10に流入する排気ガスが増大する。このため、排気タービン10の角速度が増大せしめられ、これに伴ってコンプレッサ回転体2の角速度も増大せしめられる。また、これに伴って排気ターボチャージャ47の回転体の運動エネルギも増大せしめられる。 As shown in FIG. 11, the angular velocity of the rotating body of the exhaust turbocharger 47 changes in accordance with the crank angle of the internal combustion engine. In the example shown in FIG. 11, when the exhaust valve of the first cylinder is opened and the exhaust gas starts to flow out of the combustion chamber 42, the exhaust gas flowing into the exhaust turbine 10 of the exhaust turbocharger 47 increases. For this reason, the angular velocity of the exhaust turbine 10 is increased, and accordingly, the angular velocity of the compressor rotor 2 is also increased. Along with this, the kinetic energy of the rotating body of the exhaust turbocharger 47 is also increased.
 その後、1番気筒の排気行程の終盤では、燃焼室42から流出する排気ガスの流量が減少せしめられる。この結果、排気タービン10の角速度が減少せしめられ、これに伴ってコンプレッサ回転体2の角速度も減少せしめられる。また、これに伴って排気ターボチャージャ47の回転体の運動エネルギが減少せしめられる。 Thereafter, at the end of the exhaust stroke of the first cylinder, the flow rate of the exhaust gas flowing out from the combustion chamber 42 is decreased. As a result, the angular velocity of the exhaust turbine 10 is reduced, and accordingly, the angular velocity of the compressor rotor 2 is also reduced. Along with this, the kinetic energy of the rotor of the exhaust turbocharger 47 is reduced.
 したがって、図11からわかるように、1番気筒の排気行程の間、コンプレッサ回転体2の角速度は上昇してから下降し、これに伴って排気ターボチャージャ47の回転体の運動エネルギも増大してから減少する。また、このような角速度や運動エネルギは、他の気筒の排気行程においても同様に推移する。したがって、図11からわかるように、4気筒の内燃機関では、角速度及び運動エネルギは、内燃機関の1サイクルあたり、大きく4回上下に変動する。したがって、角速度及び運動エネルギは、内燃機関の1サイクルの間に、内燃機関の気筒数に応じて複数回上下に大きく変動する。 Therefore, as can be seen from FIG. 11, during the exhaust stroke of the first cylinder, the angular speed of the compressor rotor 2 increases and then decreases, and accordingly, the kinetic energy of the rotor of the exhaust turbocharger 47 also increases. Decrease from. Further, such angular velocity and kinetic energy similarly change in the exhaust strokes of the other cylinders. Therefore, as can be seen from FIG. 11, in the four-cylinder internal combustion engine, the angular velocity and the kinetic energy fluctuate up and down largely four times per cycle of the internal combustion engine. Therefore, the angular velocity and kinetic energy greatly fluctuate up and down a plurality of times in accordance with the number of cylinders of the internal combustion engine during one cycle of the internal combustion engine.
 ここで、4番気筒を例にとって考えると、4番気筒の排気行程中における排気ターボチャージャ47の回転体の運動エネルギの上昇量(図11中のΔKE)は、4番気筒の燃焼室42から排出される排気ガスのもつ排気エネルギに比例する。同様に、1番気筒、3番気筒及び2番気筒の排気行程中における排気ターボチャージャ47の運動エネルギの上昇量は、それぞれ1番気筒、3番気筒及び2番気筒の燃焼室42から排出される排気ガスのもつ排気エネルギに比例する。ここで、各気筒から排出される排気ガスの排気エネルギは、基本的に各気筒の燃焼室7における燃焼によって生じたエネルギ、すなわち各気筒の燃焼室7内における燃焼によって生じるトルクに比例する。 Considering the fourth cylinder as an example, the amount of increase in the kinetic energy of the rotor of the exhaust turbocharger 47 during the exhaust stroke of the fourth cylinder (ΔKE in FIG. 11) is from the combustion chamber 42 of the fourth cylinder. It is proportional to the exhaust energy of the exhaust gas discharged. Similarly, the increase in the kinetic energy of the exhaust turbocharger 47 during the exhaust strokes of the first cylinder, the third cylinder, and the second cylinder is discharged from the combustion chambers 42 of the first cylinder, the third cylinder, and the second cylinder, respectively. It is proportional to the exhaust energy of the exhaust gas. Here, the exhaust energy of the exhaust gas discharged from each cylinder is basically proportional to the energy generated by the combustion in the combustion chamber 7 of each cylinder, that is, the torque generated by the combustion in the combustion chamber 7 of each cylinder.
 したがって、各気筒の排気行程中における排気ターボチャージャ47の回転体の運動エネルギの上昇量を気筒間で比較することによって、気筒間における燃焼トルクの差を検出することができる。具体的には、各気筒の排気行程開始時における回転体の運動エネルギの最小値と、その気筒の排気行程中における回転体の運動エネルギの最大値との間の差(ΔKE)に基づいて気筒間における燃焼トルクの差を検出することができる。これら最小値と最大値との差が大きい気筒は燃焼トルクの大きい気筒であると判定され、これら最小値と最大との差が小さい気筒は燃焼トルクの小さい気筒であると判定される。これにより、燃焼トルクの気筒間差を最小限に抑制することができるようになる。 Therefore, the difference in combustion torque between the cylinders can be detected by comparing the amount of increase in the kinetic energy of the rotor of the exhaust turbocharger 47 during the exhaust stroke of each cylinder between the cylinders. Specifically, the cylinder based on the difference (ΔKE) between the minimum value of the kinetic energy of the rotating body at the start of the exhaust stroke of each cylinder and the maximum value of the kinetic energy of the rotating body during the exhaust stroke of the cylinder. The difference in combustion torque between the two can be detected. A cylinder having a large difference between the minimum value and the maximum value is determined to be a cylinder having a large combustion torque, and a cylinder having a small difference between the minimum value and the maximum value is determined to be a cylinder having a small combustion torque. As a result, the difference in combustion torque between cylinders can be minimized.
 また、4番気筒を例にとって考えると、4番気筒の前に排気行程が行われる3番気筒の排気行程開始時における運動エネルギの最小値と、4番気筒の排気行程開始時における運動エネルギの最小値との差(図12のΔE参照)は、これら気筒間における排気エネルギの差を示している。したがって、各気筒の排気行程開始時における運動エネルギの最小値に基づいて燃焼トルクの気筒間差を検出することができる。具体的には、或る気筒の排気行程開始時における運動エネルギの最小値が大きいときには、その気筒における排気エネルギは大きく、よって燃焼トルクが大きいものとして判定される。一方、或る気筒の排気行程開始時における運動エネルギの最小値が小さいときには、その気筒における排気エネルギは小さく、よって燃焼トルクが小さいものだったとして判定される。これにより、燃焼トルクの気筒間差を最小限に抑制することができるようになる。 Considering the fourth cylinder as an example, the minimum value of the kinetic energy at the start of the exhaust stroke of the third cylinder where the exhaust stroke is performed before the fourth cylinder, and the kinetic energy at the start of the exhaust stroke of the fourth cylinder. The difference from the minimum value (see ΔE in FIG. 12) indicates the difference in exhaust energy between these cylinders. Therefore, it is possible to detect the difference in combustion torque between the cylinders based on the minimum value of the kinetic energy at the start of the exhaust stroke of each cylinder. Specifically, when the minimum value of the kinetic energy at the start of the exhaust stroke of a certain cylinder is large, it is determined that the exhaust energy in that cylinder is large and therefore the combustion torque is large. On the other hand, when the minimum value of the kinetic energy at the start of the exhaust stroke of a certain cylinder is small, it is determined that the exhaust energy in that cylinder is small and therefore the combustion torque is small. As a result, the difference in combustion torque between cylinders can be minimized.
 なお、上記実施形態では、各気筒の排気行程開始時における回転体の運動エネルギの最小値とその気筒の排気行程中における回転体の運動エネルギの最大値との間の差、又は連続する二つの排気行程の開始時における回転体の運動エネルギの最小値の差に基づいて燃焼トルクの気筒間差を検出している。しかしながら、燃焼トルクの気筒間差の算出は、各気筒の排気行程中に運動エネルギが1回上下に変動する間の上記パラメータとは異なる任意のパラメータ(例えば、最大値と最小値との間の中間値等)に基づいて行ってもよい。 In the above embodiment, the difference between the minimum value of the kinetic energy of the rotating body at the start of the exhaust stroke of each cylinder and the maximum value of the kinetic energy of the rotating body during the exhaust stroke of the cylinder, or two consecutive The difference in combustion torque between cylinders is detected based on the difference in the minimum value of the kinetic energy of the rotating body at the start of the exhaust stroke. However, the calculation of the inter-cylinder difference in combustion torque can be performed by using an arbitrary parameter (for example, between a maximum value and a minimum value) that is different from the above parameter while the kinetic energy fluctuates up and down once during the exhaust stroke of each cylinder. You may carry out based on an intermediate value etc.).
 したがって、これらをまとめると、本実施形態では、運動エネルギが1回上下に変動する間の運動エネルギの推移から把握される任意のパラメータの値同士を、内燃機関の同一サイクル内で比較することによって気筒間バラツキを推定するようにしているといえる。 Therefore, in summary, in this embodiment, by comparing the values of arbitrary parameters obtained from the transition of the kinetic energy while the kinetic energy fluctuates up and down once in the same cycle of the internal combustion engine. It can be said that the variation between cylinders is estimated.
 1  コンプレッサ
 2  コンプレッサ回転体
 3  ハウジング
 4  シャフト
 5  渦電流センサ(通過検出センサ)
 6  ECU
 21  中央本体
 22  ブレード
 25  コイル
 31  中央通路
 32  環状通路
 33  入口
DESCRIPTION OF SYMBOLS 1 Compressor 2 Compressor rotating body 3 Housing 4 Shaft 5 Eddy current sensor (passage detection sensor)
6 ECU
21 Central body 22 Blade 25 Coil 31 Central passage 32 Annular passage 33 Inlet

Claims (8)

  1.  複数のブレードを有するコンプレッサ回転体の角速度を推定する角速度検出装置であって、
     前記コンプレッサ回転体を収容するハウジング内の所定の角度位置を各ブレードが通過したことを検出する通過検出装置と、
     前記コンプレッサ回転体の角速度を算出する算出装置とを具備し、
     前記算出装置は、前記通過検出装置の出力に基づいて前記複数のブレードのうち少なくとも二つの特定の対のブレードが前記所定の角度位置を通過する間の時間間隔を算出し、該算出された時間間隔に基づいて前記コンプレッサ回転体の瞬間的な角速度を算出する角速度算出部を備える、角速度検出装置。
    An angular velocity detection device for estimating an angular velocity of a compressor rotor having a plurality of blades,
    A passage detection device that detects that each blade has passed through a predetermined angular position in a housing that houses the compressor rotor;
    A calculation device for calculating the angular velocity of the compressor rotor,
    The calculation device calculates a time interval during which at least two specific pairs of blades of the plurality of blades pass through the predetermined angular position based on an output of the passage detection device, and the calculated time An angular velocity detection device comprising an angular velocity calculation unit that calculates an instantaneous angular velocity of the compressor rotor based on the interval.
  2.  前記対のブレードは隣り合う二つの前記ブレードである、請求項1に記載の角速度検出装置。 The angular velocity detection device according to claim 1, wherein the pair of blades are two blades adjacent to each other.
  3.  前記算出装置は、前記角速度算出部によって算出された瞬間的な角速度を、前記コンプレッサ回転体のブレードの形状誤差に基づいて、前記コンプレッサ回転体を一定の角速度で回転させたときに複数の対のブレードが通過する間の時間間隔に基づいて算出される角速度が互いに一致するように補正したものを前記コンプレッサ回転体の瞬間的な角速度として算出する角速度補正部を更に具備する、請求項1又は2に記載の角速度検出装置。 The calculating device calculates the instantaneous angular velocity calculated by the angular velocity calculating unit based on a shape error of the blade of the compressor rotating body when rotating the compressor rotating body at a constant angular speed. The apparatus further comprises an angular velocity correcting unit that calculates an instantaneous angular velocity of the compressor rotating body, which is corrected so that the angular velocities calculated based on a time interval during the passage of the blades coincide with each other. An angular velocity detection device described in 1.
  4.  前記算出装置は、前記角速度算出部によって算出された角速度に補正係数を乗算して瞬間的な角速度を算出する角速度補正部を更に具備し、
     前記補正係数は、前記コンプレッサ回転体を一定の角速度で回転させたときに、複数の対のブレードが通過する間の時間間隔に基づいて前記角速度算出部によって算出される瞬間的な角速度に、対応する補正係数を乗算して算出した瞬間的な角速度が互いに等しくなるように設定される、請求項1又は2に記載の角速度検出装置。
    The calculation device further includes an angular velocity correction unit that calculates an instantaneous angular velocity by multiplying the angular velocity calculated by the angular velocity calculation unit by a correction coefficient,
    The correction coefficient corresponds to an instantaneous angular velocity calculated by the angular velocity calculating unit based on a time interval between the passage of a plurality of pairs of blades when the compressor rotating body is rotated at a constant angular velocity. The angular velocity detection device according to claim 1, wherein the instantaneous angular velocities calculated by multiplying the correction coefficients are set to be equal to each other.
  5.  前記通過検出装置は渦電流センサ又は電磁ピックアップセンサである、請求項1~4のいずれか1項の角速度検出装置。 The angular velocity detection device according to any one of claims 1 to 4, wherein the passage detection device is an eddy current sensor or an electromagnetic pickup sensor.
  6.  請求項1~5のいずれか1項に記載された角速度検出装置によって推定された角速度に基づいて前記コンプレッサ回転体を含む回転体の瞬間的な運動エネルギを算出する、エネルギ検出装置。 An energy detection device that calculates instantaneous kinetic energy of a rotating body including the compressor rotating body based on the angular velocity estimated by the angular velocity detecting apparatus according to any one of claims 1 to 5.
  7.  排気ターボチャージャを具備すると共に複数の気筒を有する内燃機関において気筒間での燃焼に関するバラツキを推定する気筒間バラツキ推定装置であって、
     前記請求項6に記載されたエネルギ検出装置と、
     前記エネルギ検出装置によって算出された前記瞬間的な運動エネルギに基づいて前記気筒間バラツキを推定するバラツキ推定部とを具備し、
     前記コンプレッサ回転体は前記排気ターボチャージャのコンプレッサ回転体である、内燃機関の気筒間バラツキ推定装置。
    An inter-cylinder variation estimation device for estimating variation related to combustion between cylinders in an internal combustion engine having an exhaust turbocharger and having a plurality of cylinders,
    An energy detection device according to claim 6;
    A variation estimation unit that estimates the variation between the cylinders based on the instantaneous kinetic energy calculated by the energy detection device;
    The inter-cylinder variation estimating apparatus for an internal combustion engine, wherein the compressor rotator is a compressor rotator of the exhaust turbocharger.
  8.  前記エネルギ検出装置によって算出される前記回転体の瞬間的な運動エネルギは前記内燃機関の1サイクルの間に該内燃機関の気筒数に応じて複数回上下に変動するように推移し、
     前記バラツキ推定部は、前記運動エネルギが1回上下に変動する間の運動エネルギの推移から把握される任意のパラメータの値同士を前記内燃機関の同一サイクル内で比較することによって前記気筒間バラツキを推定する、請求項7に記載の内燃機関の気筒間バラツキ推定装置。
    The instantaneous kinetic energy of the rotating body calculated by the energy detection device changes so as to fluctuate up and down a plurality of times according to the number of cylinders of the internal combustion engine during one cycle of the internal combustion engine,
    The variation estimation unit compares the values of arbitrary parameters obtained from the transition of the kinetic energy while the kinetic energy fluctuates up and down once in the same cycle of the internal combustion engine, thereby calculating the variation between the cylinders. The inter-cylinder variation estimation apparatus for an internal combustion engine according to claim 7, wherein the estimation is performed.
PCT/JP2015/060228 2015-03-31 2015-03-31 Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders WO2016157442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060228 WO2016157442A1 (en) 2015-03-31 2015-03-31 Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060228 WO2016157442A1 (en) 2015-03-31 2015-03-31 Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders

Publications (1)

Publication Number Publication Date
WO2016157442A1 true WO2016157442A1 (en) 2016-10-06

Family

ID=57005471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060228 WO2016157442A1 (en) 2015-03-31 2015-03-31 Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders

Country Status (1)

Country Link
WO (1) WO2016157442A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133680A (en) * 1990-09-20 1992-05-07 Fujitsu Ltd Rotational speed detector
JP2005227287A (en) * 2004-02-12 2005-08-25 Weston Aerospace Ltd Signal processing method and device
JP2014231830A (en) * 2013-05-02 2014-12-11 株式会社電子応用 Engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133680A (en) * 1990-09-20 1992-05-07 Fujitsu Ltd Rotational speed detector
JP2005227287A (en) * 2004-02-12 2005-08-25 Weston Aerospace Ltd Signal processing method and device
JP2014231830A (en) * 2013-05-02 2014-12-11 株式会社電子応用 Engine control device

Similar Documents

Publication Publication Date Title
JP6122237B2 (en) Transverse, angular and torsional vibration monitoring of rotor dynamic systems
RU2013101569A (en) FREE TURBINE SPEED DETECTION BY MEASUREMENT BY TORQUE
JP6525744B2 (en) Method of adapting detection threshold of crankshaft sensor for motor vehicle
JP5602665B2 (en) Air-fuel ratio estimation detection device
CN102449283A (en) Electric supercharger
JP2012127331A (en) Engine control unit
JP2013015115A (en) Abnormality determining system for engine
WO2016157442A1 (en) Device for estimating angular speed, device for estimating energy, and device for estimating variation between cylinders
JP6385585B2 (en) Rotational speed estimation device, multi-cylinder internal combustion engine, and control device for multi-cylinder internal combustion engine
JP5586562B2 (en) Centrifugal electric blower
CN106092538A (en) A kind of for axial rotation hole discharge coefficient measure device and do not rotate method
JP6490240B2 (en) Internal combustion engine
CN115347742B (en) Direct current motor
CN109350787B (en) Particle image speed measurement system and method for internal flow field of axial-flow artificial heart
JP6406091B2 (en) Variable valve system
JP4367345B2 (en) Rotational speed detection device for internal combustion engine
JP6490239B2 (en) Combustion state estimation device
JP2016061218A (en) Turbocharger rotation speed detection device
JP5970745B2 (en) EGR control method for internal combustion engine and internal combustion engine
JP2016089708A (en) engine
RU2527850C1 (en) Method of control over gas turbine engine compressor actuators
JP4297278B2 (en) Rotating body position correction control device
JP5939668B2 (en) Impeller flow meter self-diagnosis device
WO2019130584A1 (en) Internal combustion engine, supercharger, and sensor equipped with surging determination function
RU2021121506A (en) SYSTEM AND METHOD FOR ROTATION CONTROL OF AIRCRAFT GAS TURBINE ENGINE WITH FAILURE CONTROL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887594

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP