WO2016155438A1 - 电子检测装置 - Google Patents
电子检测装置 Download PDFInfo
- Publication number
- WO2016155438A1 WO2016155438A1 PCT/CN2016/074680 CN2016074680W WO2016155438A1 WO 2016155438 A1 WO2016155438 A1 WO 2016155438A1 CN 2016074680 W CN2016074680 W CN 2016074680W WO 2016155438 A1 WO2016155438 A1 WO 2016155438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- test strip
- area
- partition
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
Definitions
- the present invention relates to the field of biochemical detection, and more particularly to an electronic detection device for reading a test strip for assay detection.
- the analytical reading device is used to read and analyze the test strips of the assay.
- the test strip has a test area and a blank area.
- the analytical reading device includes at least two light sources and at least one light detector. When there are only two light sources and one photodetector, the light source and the photodetector are disposed on the same side of the pallet, and the two light sources are juxtaposed and disposed opposite to the photodetector. The two light sources are separated from the photodetector by a T-shaped partition.
- the cross-plate of the T-shaped spacer at the T-head position is slightly lower than the vertical version of the T-shaped spacer, thereby forming a gap with the test strip.
- the two light sources are separately irradiated in the test area and the blank area of the test strip, and the two light sources emit light successively, and are reflected after being irradiated in the test area and the blank area, and the reflected light is lighted through the gap between the T-shaped partition and the test strip.
- the detector receives.
- T-shaped partition can prevent interference between different light sources to a certain extent.
- the light since there is a gap between the photodetector and the light source, and the test zone and the blank area of the test strip are relatively close, When one of the light sources illuminates the test strip, the light may be scattered outside the specific area, and may be scattered through the spacer gap to the test strip area outside the specific area. Therefore, the light that the photodetector receives the reflected light will not only be the light reflected from the specific area, but also the light reflected back from the area where the light source is scattered, which will result in inaccurate detection results.
- the light source illuminates the test area
- the detector should originally receive and detect the optical signal in the test area, which causes light interference and affects the accuracy of the detection.
- An electronic detecting device includes a bracket and a test strip and a photoelectric detecting system disposed on the bracket; the test strip is provided with a detecting area and a blank area; and the photoelectric detecting system comprises:
- At least two light sources corresponding to positions of the test area and the blank area, and emitted light corresponding to the test area and the blank area;
- At least one photodetector that receives reflected light from the test zone and the blank zone and converts it into an electrical signal
- a detection window is disposed on the bracket; the light source and the photodetector are disposed on the same side of the detection window, the test strip is located on the other side of the detection window; and the detection window is provided with a cross a first partition and a second partition; the first partition comprises:
- a light source partition corresponding to a position where the light source is located, seamlessly abutting a mounting plane of the light source on the bracket and a region between the detection area and the blank area of the test strip to Separating the two light sources and separating the detection zone from the blank zone;
- An anti-scattering spacer corresponding to a position of the photodetector, seamlessly abutting a region between the detection area and the blank area of the test strip to separate the detection area from the blank area Blocking light emitted by a specific area light source from scattering to an adjacent area, and a first light transmission gap is disposed between the anti-scattering spacer and the photodetector to ensure that the photodetector receives the optical signal normally;
- the light source partitioning member and the anti-scattering spacer are a rectangular parallelepiped strip structure, and the second partitioning member is a rectangular parallelepiped plate-like structure.
- the width of the light source partition is greater than the width of the anti-scatter spacer.
- one end of the light source partition and one end of the anti-scatter spacer Connecting; the second partition is perpendicularly connected to the light source partition; the other end of the light source partition, the other end of the anti-scattering spacer, and both ends of the second partition are respectively detected
- the inner walls of the window are connected to form a cross-shaped structure.
- the second spacer is vertically connected to the light source partition at a position close to an end of the anti-scatter spacer.
- the bracket includes a substrate and a bracket; the substrate is disposed on one side of the bracket, the test strip is located on the other side of the bracket; the light source, the light A detector and the processor are disposed on the substrate; the detection window is opened on the bracket.
- the first partition, the second partition, and the bracket are integrally formed.
- the back side of the test strip is provided with a visor tape.
- the electronic detecting device further includes a housing formed by a cooperation of an upper housing, a lower housing, and a front cover, the test strip, the photodetecting system, and the bracket being located within the housing.
- the end of the test strip is provided with a sample stick connected to the test strip
- the front cover is provided with a sample hole
- the sample stick is partially exposed in the sample hole Inside.
- the electronic detecting device is provided with an intersecting first partition and a second partition in the detection window, wherein the first partition includes a light source partition and an anti-scattering spacer, and the light source partition separates the plurality of light sources at a position of the light source.
- the anti-scattering spacer separates the detection area of the test strip from the blank area, thereby preventing the light reflected by the test strip from entering the other The area causes interference;
- the second partition separates the light source from the photodetector, preventing the light source from directly entering the photodetector, ensuring that the light of the light source is irradiated onto the test strip, and then reflected back to the photodetector by the test strip;
- the first light-transmissive gap is formed by non-contact between the partition and the photodetector, the first light-transmitting gap ensures that the light reflected by the test strip is received by the photodetector, and the anti-scattering spacer prevents the light emitted by the specific light source Scattering occurs, illuminating the adjacent area of the test strip, and the light is reflected back to the photodete
- the second spacer is non-contacted with the test strip to form a second light-transmissive gap, and light reflected from the detection area and the blank area can be detected through the second light-transmissive gap into the photodetector, so that the photoelectric detecting device can be effective Preventing light interference, the accuracy of the test results is significantly improved.
- the light-shielding tape can be used to seal the detection area and the test strip to prevent external light from interfering with the detection result, and the light-shielding tape and the bracket cooperate to sandwich the test strip in the middle, and can be fixed.
- the function of the test strip and the relevant components of the detection area further improves the precision and detection accuracy of the entire electronic detection device.
- FIG. 1 is an exploded perspective view of an electronic detecting device according to an embodiment
- FIG. 2 is a schematic structural view showing the mating connection of the bracket and the substrate in FIG. 1;
- Figure 3 is a bottom plan view of the bracket of Figure 1;
- Figure 4 is a schematic structural view of the first partitioning member and the second partitioning member of Figure 3;
- FIG. 5 is a structural schematic view showing the bracket of FIG. 1 mated with a test strip, a light shielding tape, and a sample suction rod.
- an electronic detecting device 10 of an embodiment includes a housing 100, a test strip 200, a photodetection system 300, and a holder 400.
- the test strip 200, the photodetection system 300 and the bracket 400 are disposed in the outer casing 100, and the test strip 200 and the photodetection system 300 are disposed on the bracket 400.
- the outer casing 100 includes an upper casing 110, a lower casing 120, and a front cover 130.
- Upper housing 110, The lower housing 120 and the front cover 130 cooperate to form a hollow outer casing 100.
- the upper casing 110 and the lower casing 120 are engaged by the buckle or the like and then inserted into the front cover 130, which is convenient to assemble and easy to disassemble and maintain.
- An observation window 112 is opened on the upper casing 110 for observing the detection result.
- the back side of the front cover 130 is provided with a sample hole (not shown) for adding a sample. It is to be understood that, in other embodiments, the structure of the outer casing 100 is not limited thereto, and the housing 110 and the lower casing 120 may be connected by screws or the like.
- the test strip 200 is a strip-shaped test strip structure having a detection zone 202 and a blank area 204 thereon.
- the test strip 200 is provided with a sample stick 210 at one end adjacent to the detection zone 202.
- the aspirating rod 210 may be a commonly used cross-flow test aspirating rod or the like, one end of which is connected to the test strip 200, and the other end is exposed in the sample-filling hole for sucking the added sample liquid.
- the test strip 200 is provided with a positioning hole 206 at an end close to the blank area 204.
- the test strip 200 can be fixedly mounted on the bracket 400 through the positioning hole 206, so that the detection error caused by the movement of the test strip can be prevented. In the process of detecting, the re-positioning of the test strip 200 can be avoided, and the operation is simplified.
- the back side of the test strip 200 is provided with a light-shielding tape 220.
- the light-shielding tape 220 may be fixed to the test strip 200 by means of bonding or the like.
- the visor tape 220 is disposed corresponding to the detection area 202 and the blank area 204 on the test strip 200.
- the width of the visor tape 220 is greater than the width of the test strip 200, so that the corresponding detection area can be sealed to prevent external light from interfering with the detection result.
- the visor tape 220 can cooperate with the lower casing 120 and the bracket 400 to effectively fix the test strip 200, thereby avoiding the problem that the test strip 220 is only fixed at the end and rotating, thereby improving the precision of the entire electronic detecting device 10 and Detection accuracy. It can be understood that in other embodiments, if the outer casing 100 has better sealing performance and/or the test strip 200 is fixedly stable, the electronic detecting device 10 may not contain the light shielding tape 220.
- the photodetection system 300 includes two light sources 310, a photodetector 320, and a processor (not shown).
- the two light sources 310 are arranged side by side, corresponding to the positions of the test area 202 and the blank area 204 on the test strip 200, respectively, and the emitted light corresponds to the test area 202 and the blank area 204.
- the two light sources 310 sequentially emit light, that is, the emitted light has a difference in time before and after, forming a luminous time difference.
- Both light sources 310 are light emitting diodes, such as green light emitting diodes.
- the wavelengths of the light emitted by the two light sources 310 are constant. It can be understood that in other embodiments, the number of the light sources 310 is not limited to two, and may be four or six. Etc. to increase the intensity of the emitted light and improve the accuracy of the test results.
- the photodetector 320 is disposed on the same mounting plane as the light source 310 and is disposed in the opposite middle of the light source 310.
- Photodetector 320 is preferably a photosensor.
- Light detector 320 receives the reflected light from test zone 202 and blank zone 204 and converts it into an electrical signal. Since the two light sources 310 emit time difference, it is sufficient that one photodetector 320 sequentially receives the reflected light of the test area 202 and the blank area 204. It can be understood that, in other embodiments, the number of the photodetectors 320 is not limited to one, and may be two or the like. The plurality of photodetectors 320 can receive more reflected signals, which is beneficial to improve the accuracy of the detection results. .
- the processor controls the two sets of light sources 310 to sequentially emit light, and can receive the electrical signals of the photodetector 320 and perform processing such as reading and analysis.
- the photodetection system 300 further includes a display 330 and a power supply device 340.
- the display 330 is disposed corresponding to the position of the viewing window 112 on the upper housing 110.
- the processor displays the processing results on display 330 for user convenience.
- Power supply unit 340 is used to power the entire photodetection system 300.
- the power supply device 340 can employ a compact power supply element such as a button battery.
- the bracket 400 is snapped into the outer casing 100.
- the bracket 400 of the present embodiment includes a base plate 410 and a bracket 420.
- the substrate 410 is disposed on one side of the bracket 420, and the test strip 200 is disposed on the other side of the bracket 420.
- the substrate 410 is a strip-shaped circuit board structure on which the wiring of the photodetection system 300 is provided.
- the photodetection system 300 is disposed on the substrate 410.
- the light source 310, the photodetector 320, the processor and the power supply device 340 are disposed on one side of the substrate 410, and the display 330 is disposed on the other side of the substrate 410.
- a detection window 422 is opened on the bracket 420.
- the light source 310 and the photodetector 320 are disposed on the same side of the detection window 422, and the test strip 200 is located on the other side of the detection window 422.
- the bracket 400 is provided with a first partition 430 and a second partition 440 that are cross-connected in the detection window 422.
- the first spacer 430 and the second spacer 440 separate the light source 310 from the photodetector 320 and cooperate with the mounting faces of the test strip 200 and the light source 310 to form a light-transmissive gap to reflect the detection region 202 and the blank region 204.
- Light is received by photodetector 320 through the light transmissive gap.
- the first spacer 430 includes a light source partition 432 and an anti-defense A scattering spacer 434.
- the light source partition 432 is disposed corresponding to the position where the light source 310 is located.
- the light source partition 432 seamlessly abuts the mounting plane of the light source 310 on the substrate 410 and the area between the detection area 202 of the test strip 200 and the blank area 204 to separate the two sets of light sources 310, and the detection area 202 and The blank areas 204 are separated.
- the anti-scatter spacer 434 is disposed corresponding to the position where the photodetector 320 is located.
- the anti-scatter spacer 434 seamlessly abuts the area between the detection zone 202 and the blank area 204 of the test strip 200 to separate the detection zone 202 from the blank zone 204.
- a gap is formed between the anti-scattering spacer 434 and the photodetector 320 to form a first light-transmissive gap.
- a gap is formed between the second spacer 440 and the test strip 200 to form a second light transmission gap.
- the second spacer 440 is in seamless contact with the mounting plane where the light source 310 is located, thereby separating the light source 310 from the photodetector 320, preventing the light emitted by the light source 310 from directly entering the photodetector 320.
- the light reflected by the detection area 202 and/or the blank area 204 sequentially enters the photodetector 320 through the second light transmission gap and the first light transmission gap.
- the light source partitioning member 432 and the anti-scattering partitioning member 434 are rectangular parallelepiped strip structures, and the second partitioning member 440 is a rectangular parallelepiped plate structure, and the structure is stable, and the bracket 420 can be improved. Structural stability.
- the width of the light source partition 432 is greater than the width of the anti-scatter spacer 434, so that the blocking of the reflected light can be reduced, so that the reflected light sufficiently enters the photodetector 320.
- the side of the anti-scatter spacer 434 near the photodetector 320 is a wedge-shaped structure, which further reduces the blocking of light and facilitates directing the reflected light to the photodetector 320.
- One end of the light source partition 432 is connected to one end of the anti-scatter spacer 434.
- the second spacer 440 is vertically connected to the light source partition 432, specifically, to the light source partition 432 at a position close to the end of the anti-scatter spacer 434.
- the other end of the light source partitioning member 432, the other end of the anti-scattering spacer 434, and both ends of the second partitioning member 440 are respectively connected to the inner wall of the detecting window 422 to form a cross-shaped structure.
- the first partitioning member 430, the second partitioning member 440, and the bracket 420 are integrally formed, and the structure is firm and convenient for processing.
- the light source partitioning member 432, the anti-scattering partitioning member 434, and the second partitioning member 440 can also be a rectangular parallelepiped plate structure, which are both a rectangular parallelepiped strip structure, a rectangular parallelepiped plate structure and a strip structure.
- the cross connection may be a vertical cross, a non-vertical cross or other crossover manner, such as
- the two partitions 440 are non-perpendicularly cross-connected with the light source partition 432 to form an X
- the second spacer 440 may also be directly cross-connected with the anti-scatter spacer 434 or the like, as long as the light source partition 432, the anti-scatter spacer 434 and the second spacer 440 can separate the light source 310 from the photodetector 320.
- the corresponding area of the test strip 200 such as the detection area 202 or the blank area 204, does not illuminate adjacent areas of the area, thereby ensuring accurate determination of the electronic detection device 10 and ensuring accuracy of the results.
- the electronic detecting device 10 is in a standby state with low power consumption when not in use.
- the electronic detecting device 10 can be activated from the standby state by the resistance change of the aspirating bar 210. Working status.
- the front cover 130 can be directly inserted into the sample liquid or the sample liquid can be added to the sample hole, the sample rod 210 absorbs the sample liquid, the device is activated, and the sample liquid enters the test along the sample stick 210.
- the processor controls the two sets of light sources 310 to sequentially illuminate the detection area 202 and the blank area 204 of the test strip 200.
- the reflected light of the detection area 202 and the blank area 204 sequentially enters the photodetector 320 for photoelectric operation.
- the detector 320 sequentially transmits the converted two sets of electrical signals to the processor for reading and analyzing processing, and the processor displays the processing result on the display 330, and the user can observe the detection result through the observation window 112.
- the above-mentioned electronic detecting device 10 is provided with an intersecting first partition 430 and a second partition 440 in the detecting window 422, wherein the first partition 430 includes a light source partition 432 and an anti-scattering spacer 434, and the light source partition 432 is at the light source
- the position of 310 separates the plurality of light sources 310 into two groups, and separates the detection area 202 of the test strip 200 from the blank area 204, thereby effectively preventing the two sets of light sources 310 from emitting light from each other; the anti-scattering spacer 434 will test the strip 200
- the detection area 202 is separated from the blank area 204 to prevent the light reflected by the test strip 200 from entering the other area to cause interference.
- the second partition 440 separates the light source 310 from the photodetector 320, thereby preventing the light source 310 from directly entering the photodetector 320.
- the light of the light source 310 is irradiated onto the test strip 200, it is reflected back to the photodetector 320 via the test strip 200; and the anti-scattering spacer 434 and the photodetector 320 are non-contacted to form a first light-transmissive gap.
- a light-transmissive gap ensures that the test strip reflected light is received by the photodetector 320, while the anti-scatter spacer 434 prevents the light emitted by the specific light source 310 from scattering, illuminating adjacent to the test strip 200.
- the second spacer 440 is non-contacted with the test strip 200 to form a second light-transmissive gap, and the light reflected from the detection area 202 and the blank area 204 can be detected by entering the photodetector 320 via the second light-transmissive gap, so that the above-mentioned photoelectric
- the detecting device 10 can effectively prevent light interference, and the accuracy of the detection result is remarkably improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Theoretical Computer Science (AREA)
- Microbiology (AREA)
- Mathematical Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种对化验检测的测试条(200)进行分析处理的电子检测装置(10),其包括交叉的第一分隔件(430)和第二分隔件(440)。第一分隔件(430)包括光源分隔件(432)和防散射分隔件(434),光源分隔件(432)在光源(310)的位置将多个光源(310)分开形成两组,并且将测试条(200)的检测区(202)与空白区(204)分开;防散射分隔件(434)将测试条(200)的检测区(202)与空白区(204)分开,防散射分隔件(434)与光检测器(320)之间非接触而形成第一透光间隙。第二分隔件(440)将光源(310)与光检测器(320)分开,第二分隔件(440)与测试条(200)之间非接触而形成第二透光间隙,从检测区(202)和空白区(204)反射的光线可依次经由该第二透光间隙和第一透光间隙进入光检测器(320)被检测,从而上述光电检测装置能够有效防止光干扰,检测结果准确度显著提高。
Description
本发明涉及生化检测领域,尤其是涉及一种用于对化验检测的测试条进行读数的电子检测装置。
目前已有一些针对生化检测试纸的电子检测装置,如申请号为ZL201120283208.0的专利公开的分析读数装置。该分析读数装置用于对化验检测的测试条进行读数和分析。该测试条上设有测试区和空白区。该分析读数装置包括至少两个光源和至少一个光检测器。当只有两个光源和一个光检测器时,光源与光检测器设在托板的同一侧,且两个光源并列设置并与光检测器相对设置。两个光源与光检测器之间通过一个T型隔板隔开。该T型隔板的在T头位置的横板比T型隔板的竖版略低,从而与测试条之间形成间隙。两个光源分别单独照射在测试条的测试区和空白区,两个光源先后发出光线,照射在测试区和空白区后反射,反射的光线通过T型隔板与测试条之间的间隙被光检测器接收。
这种T形隔板的设置,在一定程度上可防止不同光源间的干扰,然而,由于光检测器与光源之间的隔板存在空隙,并且测试条的测试区和空白区距离相当近,当其中一个光源发光照射在测试条上时,该光线除了照射在特定区域之外,还可能通过隔板空隙,散射到特定区域之外的测试条区域。因此,光检测器接收到反射回来的光线将不仅是特定区域反射回来的光,而是同时包括光源散射到的区域反射回来的光,这将导致检测结果不够准确。例如,当光源照亮测试区时,光线在照射测试区的同时散射到旁边的空白区,被照射到的测试区和空白区反射的光线同时通过隔板缝隙被光检测器接收到,而光检测器本来应该接收并检测的是测试区的光信号,由此导致光线干扰,影响检测的准确性。
发明内容
基于此,有必要提供一种能够防止光干扰,从而提高检测结果准确性的电子检测装置。
一种电子检测装置,包括支架及设在所述支架上的测试条和光电检测系统;所述测试条上设有检测区和空白区;所述光电检测系统包括:
至少两个光源,与所述测试区和所述空白区的位置对应,且发出的光与所述测试区和所述空白区相应;
至少一个光检测器,接收来自所述测试区和所述空白区的反射光线,并转换成电信号;及
处理器,接收所述电信号并进行处理;
所述支架上设有检测窗口;所述光源与所述光检测器设在所述检测窗口的同一侧,所述测试条位于所述检测窗口的另一侧;所述检测窗口中设有交叉连接的第一分隔件和第二分隔件;所述第一分隔件包括:
光源分隔件,对应所述光源所在的位置设置,与所述光源在所述支架上的安装平面以及所述测试条的检测区与空白区之间的区域无缝抵接,以将所述至少两个光源隔开,并将所述检测区与所述空白区隔开;及
防散射分隔件,对应所述光检测器所在的位置设置,与所述测试条的检测区及空白区之间的区域无缝抵接,以将所述检测区与所述空白区隔开,可阻挡特定区域光源发出的光散射到相邻区域,且所述防散射分隔件与所述光检测器之间设有第一透光间隙,以确保光检测器正常接收光信号;
所述第二分隔件与所述测试条之间设有第二透光间隙,并与所述安装平面无缝抵接将所述光源与所述光检测器隔开,防止所述光源发出的光线直接进入所述光检测器,确保光源发出的光线照射到测试条特定区域后经该第二透光间隙被光检测器接收到,从而实现检测。
在其中一个实施例中,所述光源分隔件及所述防散射分隔件为长方体条状结构,所述第二分隔件为长方体板状结构。
在其中一个实施例中,所述光源分隔件的宽度大于所述防散射分隔件的宽度。
在其中一个实施例中,所述光源分隔件的一端与所述防散射分隔件的一端
连接;所述第二分隔件与所述光源分隔件垂直连接;所述光源分隔件的另一端、所述防散射分隔件的另一端及所述第二分隔件的两端分别与所述检测窗口的内壁连接,形成十字形结构。
在其中一个实施例中,所述第二分隔件与所述光源分隔件在靠近所述防散射分隔件端部的位置垂直连接。
在其中一个实施例中,所述支架包括基板和托架;所述基板设在所述托架的一侧,所述测试条位于所述托架的另一侧;所述光源、所述光检测器及所述处理器设在所述基板上;所述检测窗口开设在所述托架上。
在其中一个实施例中,所述第一分隔件、所述第二分隔件及所述托架为一体成型结构。
在其中一个实施例中,所述测试条的背侧设有遮光胶布。
在其中一个实施例中,所述电子检测装置还包括由上壳体、下壳体和前盖配合构成的外壳,所述测试条、所述光电检测系统及所述支架位于所述外壳内。
在其中一个实施例中,所述测试条的端部设有与所述测试条连接的吸样棒,所述前盖设有加样孔,所述吸样棒部分露在所述加样孔内。
上述电子检测装置在检测窗口中设置有交叉的第一分隔件和第二分隔件,其中第一分隔件包括光源分隔件和防散射分隔件,光源分隔件在光源的位置将多个光源分开形成两组,并且将测试条的检测区与空白区分开,从而可有效防止两组光源发光相互干扰;防散射分隔件将测试条的检测区与空白区分开,可防止测试条反射的光线进入其他区造成干扰;第二分隔件将光源与光检测器分开,可防止光源发光直接进入光检测器,确保光源的光照射到测试条上后,再经测试条反射回光检测器;而防散射分隔件与光检测器之间非接触而形成第一透光间隙,该第一透光间隙可确保试纸条反射光被光检测器接收,同时,防散射分隔件可防止特定光源发出的光发生散射,照射到测试条的相邻区域,而后光线反射回光检测器导致结果判断失误,确保读数准确。第二分隔件与测试条之间非接触而形成第二透光间隙,从检测区和空白区反射的光线可经由该第二透光间隙进入光检测器被检测,从而上述光电检测装置能够有效防止光干扰,检测结果准确度显著提高。
进一步,通过在测试条的背面设置遮光胶布,该遮光胶布可用来封住检测区域和测试条,防止外来光线干扰检测结果,并且遮光胶布与托架配合将测试条夹在中间,可以起到固定测试条和检测区域的相关元件的作用,从而进一步提高了整个电子检测装置的精密性和检测准确度。
图1为一实施方式的电子检测装置的分解示意图;
图2为图1中托架及基板配合连接的结构示意图;
图3为图1中托架的仰视图;
图4为图3中第一分隔件与第二分隔件的结构示意图;
图5为图1中托架与测试条、遮光胶布及吸样棒配合连接的结构示意图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一实施方式的电子检测装置10包括外壳100、测试条200、光电检测系统300和支架400。测试条200、光电检测系统300及支架400设在外壳100内,且测试条200与光电检测系统300设在支架400上。
请参图1,外壳100包括上壳体110、下壳体120和前盖130。上壳体110、
下壳体120和前盖130配合构成中空的外壳100。在本实施方式中,上壳体110与下壳体120通过卡扣等方式卡接后插入前盖130中,组装方便,且便于拆卸维护。上壳体110上开设观察窗112,用于观察检测结果。前盖130的背侧开设有加样孔(图未示),用于加样品。可理解,在其他实施方式中,外壳100的结构不限于此,如上壳体110与下壳体120之间还可以通过螺钉等方式连接等。
请结合图1和图5,测试条200为条状的试纸结构,其上设有检测区202和空白区204。在本实施方式中,测试条200在靠近检测区202的一端设有吸样棒210。吸样棒210可以为常用的横流测试吸样棒等,其一端与测试条200连接,另一端露在加样孔中,用于吸取加入的样品液。测试条200在靠近空白区204的一端设有定位孔206。测试条200可通过该定位孔206固定安装在支架400上,从而可以防止因测试条的移动造成检测误差,在检测的过程中,也可以避免需要对测试条200进行重新定位,简化操作。
进一步,在本实施方式中,测试条200的背侧设有遮光胶布220。遮光胶布220可采用粘接等方式固定在测试条200上。遮光胶布220对应测试条200上的检测区202和空白区204设置。遮光胶布220的宽度要大于测试条200的宽度,从而可以封住相应的检测区域,防止外来光线对检测结果造成干扰。同时,遮光胶布220可以与下壳体120及支架400配合,将测试条200有效固定,可以避免测试条220只有端部固定而发生转动的问题,从而可以提高整个电子检测装置10的精密性和检测准确度。可理解,在其他实施方式中,如外壳100密封性较好和/或测试条200固定稳定的场合,该电子检测装置10可以不含有该遮光胶布220。
请结合图1和图2,在本实施方式中,该光电检测系统300包括两个光源310、一个光检测器320和处理器(图未示)。
两个光源310并列设置,分别对应测试条200上的测试区202和空白区204的位置,且发出的光线与测试区202和空白区204相应。两个光源310依次发光,即发射光线有前后时间差异,形成发光时差。两个光源310均为发光二极管,如绿色发光二极管等。优选的,两个光源310发射的光线的波长一直。可理解,在其他实施方式中,光源310的数量不限于两个,如也可以为4个、6个
等,以增加发射的光线强度,提高检测结果的准确性。
光检测器320与光源310设在同一安装平面上,且设在光源310的对面中部。光检测器320优选为光电传感器。光检测器320接收来自测试区202和空白区204的反射光线,并转换成电信号。由于两个光源310发光存在时差,因而,可以只要一个光检测器320依次接收测试区202和空白区204的反射光线即可。可理解,在其他实施方式中,光检测器320的数量不限于1个,如也可以为2个等,多个光检测器320可以接收更多的反射信号,有利于提高检测结果的准确性。
处理器控制两组光源310依次发光,并可接收光检测器320的电信号并进行读数和分析等处理。
进一步,在本实施方式,该光电检测系统300还包括一显示器330和供电装置340。显示器330对应上壳体110上的观察窗112的位置设置。处理器将处理结果显示在显示器330上,以方便用户观察。供电装置340用于给整个光电检测系统300供电。供电装置340可以采用如纽扣电池等小巧的供电元件。
支架400卡设在外壳100内。请结合图3、图4和图5,本实施方式的支架400包括基板410和托架420。基板410设在托架420的一侧,测试条200设在托架420的另一侧。
基板410为长条状的电路板结构,其上设有光电检测系统300的布线。光电检测系统300设在基板410上,具体在本实施方式中,光源310、光检测器320、处理器及供电装置340设在基板410的一侧,显示器330设在基板410的另一侧。
托架420上开设有检测窗口422。光源310与光检测器320设在检测窗口422的同一侧,测试条200位于检测窗口422的另一侧。在本实施方式中,支架400在该检测窗口422中设有交叉连接的第一分隔件430和第二分隔件440。第一分隔件430与第二分隔件440将光源310与光检测器320隔开,并与测试条200及光源310的安装面配合形成透光间隙,以使检测区202和空白区204的反射光线通过该透光间隙被光检测器320接收。
如图4所示,在本实施方式中,第一分隔件430包括光源分隔件432和防
散射分隔件434。其中,光源分隔件432对应光源310所在的位置设置。光源分隔件432与光源310在基板410上的安装平面以及测试条200的检测区202与空白区204之间的区域无缝抵接,以将两组光源310隔开,并将检测区202与空白区204隔开。防散射分隔件434对应光检测器320所在的位置设置。防散射分隔件434与测试条200的检测区202及空白区204之间的区域无缝抵接,以将检测区202与空白区204隔开。防散射分隔件434与光检测器320之间设有间隙,形成第一透光间隙。
第二分隔件440与测试条200之间设有间隙,形成第二透光间隙。第二分隔件440与光源310所在的安装平面无缝抵接,从而将光源310与光检测器320隔开,防止光源310发出的光线直接进入光检测器320。经检测区202和/或空白区204反射的光线依次经该第二透光间隙及该第一透光间隙进入光检测器320。
请结合图3和图4,在本实施方式中,光源分隔件432、防散射分隔件434为长方体条状结构,第二分隔件440为长方体板状结构,结构稳固,可以提高托架420的结构稳定性。光源分隔件432的宽度大于防散射分隔件434的宽度,从而可以减少对反射光线的阻挡,使反射光线充分进入光检测器320。防散射分隔件434靠近光检测器320的一侧为楔形结构,可以进一步减少对光线的阻挡,并有利于将反射的光线引导至光检测器320。光源分隔件432的一端与防散射分隔件434的一端连接。第二分隔件440与光源分隔件432垂直连接,具体是在靠近防散射分隔件434端部的位置与光源分隔件432垂直连接。光源分隔件432的另一端、防散射分隔件434的另一端及第二分隔件440的两端分别与检测窗口422的内壁连接,形成十字形结构。进一步,在本实施方式中,第一分隔件430、第二分隔件440及托架420为一体成型结构,结构牢靠,且便于加工成型。
可理解,在其他实施方式中,该光源分隔件432、防散射分隔件434及第二分隔件440还可以都为长方体板状结构、都为长方体条状结构、长方体板状结构与条状结构的其他组合或其他形状的结构等,且第二分隔件440与第一分隔件430的连接方式也不限于上面所述,即交叉连接可以为垂直交叉、非垂直交叉或其他交叉方式,如第二分隔件440与光源分隔件432非垂直交叉连接形成X
形结构,第二分隔件440也可以与防散射分隔件434直接交叉连接等,只要光源分隔件432、防散射分隔件434及第二分隔件440能够将光源310与光检测器320隔开,并与测试条200及光源310的安装面配合形成透光间隙,以使检测区202和空白区204的反射光线通过该透光间隙被光检测器320接收,且确保相应光源的光线只照射到测试条200的相应区域,如检测区202或空白区204,而不会照射到该区域的相邻区域即可,由此确保该电子检测装置10的精确判断,保证结果的精确性。
该电子检测装置10在未使用时为处于低功耗的待机状态,当吸样棒210检测到有样品加入时,可通过吸样棒210的电阻改变将电子检测装置10从待机状态激活,进入工作状态。
该电子检测装置10在使用时,可直接将前盖130插入样品液中或者向加样孔中加入样品液,吸样棒210吸取样品液,设备激活,样品液沿着吸样棒210进入测试条200,等待预设时间后,处理器控制两组光源310依次发光照射在测试条200的检测区202和空白区204,检测区202与空白区204的反射光线依次进入光检测器320进行光电信号转换,检测器320将转换得到的两组电信号依次传送至处理器进行读数和分析处理,处理器将处理结果在显示器330上显示,用户可通过观察窗112观察检测结果。
上述电子检测装置10在检测窗口422中设置有交叉的第一分隔件430和第二分隔件440,其中第一分隔件430包括光源分隔件432和防散射分隔件434,光源分隔件432在光源310的位置将多个光源310分开形成两组,并且将测试条200的检测区202与空白区204分开,从而可有效防止两组光源310发光相互干扰;防散射分隔件434将测试条200的检测区202与空白区204分开,可防止测试条200反射的光线进入其他区造成干扰;第二分隔件440将光源310与光检测器320分开,可防止光源310发光直接进入光检测器320,确保光源310的光照射到测试条200上后,再经测试条200反射回光检测器320;而防散射分隔件434与光检测器320之间非接触而形成第一透光间隙,该第一透光间隙可确保试纸条反射光被光检测器320接收,同时,防散射分隔件434可防止特定光源310发出的光发生散射,照射到测试条200的相邻区域,而后光线反
射回光检测器320导致结果判断失误,确保读数准确。第二分隔件440与测试条200之间非接触而形成第二透光间隙,从检测区202和空白区204反射的光线可经由第二透光间隙进入光检测器320被检测,从而上述光电检测装置10能够有效防止光干扰,检测结果的准确度显著提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种电子检测装置,其特征在于,包括支架及设在所述支架上的测试条和光电检测系统;所述测试条上设有检测区和空白区;所述光电检测系统包括:至少两个光源,与所述测试区和所述空白区的位置对应,且发出的光与所述测试区和所述空白区相应;至少一个光检测器,接收来自所述测试区和所述空白区的反射光线,并转换成电信号;及处理器,接收所述电信号并进行处理;所述支架上设有检测窗口;所述光源与所述光检测器设在所述检测窗口的同一侧,所述测试条位于所述检测窗口的另一侧;所述检测窗口中设有交叉连接的第一分隔件和第二分隔件;所述第一分隔件包括:光源分隔件,对应所述光源所在的位置设置,与所述光源在所述支架上的安装平面以及所述测试条的检测区与空白区之间的区域无缝抵接,以将所述至少两个光源隔开,并将所述检测区与所述空白区隔开;及防散射分隔件,对应所述光检测器所在的位置设置,与所述测试条的检测区及空白区之间的区域无缝抵接,以将所述检测区与所述空白区隔开,且所述防散射分隔件与所述光检测器之间设有第一透光间隙;所述第二分隔件与所述测试条之间设有第二透光间隙,并与所述安装平面无缝抵接将所述光源与所述光检测器隔开。
- 如权利要求1所述的电子检测装置,其特征在于,所述光源分隔件及所述防散射分隔件为长方体条状结构,所述第二分隔件为长方体板状结构。
- 如权利要求2所述的电子检测装置,其特征在于,所述光源分隔件的宽度大于所述防散射分隔件的宽度。
- 如权利要求3所述的电子检测装置,其特征在于,所述光源分隔件的一端与所述防散射分隔件的一端连接;所述第二分隔件与所述光源分隔件垂直连接;所述光源分隔件的另一端、所述防散射分隔件的另一端及所述第二分隔件的两端分别与所述检测窗口的内壁连接,形成十字形结构。
- 如权利要求1所述的电子检测装置,其特征在于,所述第二分隔件与所述光源分隔件在靠近所述防散射分隔件端部的位置垂直连接。
- 如权利要求1~5中任一项所述的电子检测装置,其特征在于,所述支架包括基板和托架;所述基板设在所述托架的一侧,所述测试条位于所述托架的另一侧;所述光源、所述光检测器及所述处理器设在所述基板上;所述检测窗口开设在所述托架上。
- 如权利要求6所述的电子检测装置,其特征在于,所述第一分隔件、所述第二分隔件及所述托架为一体成型结构。
- 如权利要求6所述的电子检测装置,其特征在于,所述测试条的背侧设有遮光胶布。
- 如权利要求6所述的电子检测装置,其特征在于,还包括由上壳体、下壳体和前盖配合构成的外壳,所述测试条、所述光电检测系统及所述支架位于所述外壳内。
- 如权利要求9所述的电子检测装置,其特征在于,所述测试条的端部设有与所述测试条连接的吸样棒,所述前盖设有加样孔,所述吸样棒部分露在所述加样孔内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510141895.5A CN104730229B (zh) | 2015-03-27 | 2015-03-27 | 电子检测装置 |
CN201510141895.5 | 2015-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016155438A1 true WO2016155438A1 (zh) | 2016-10-06 |
Family
ID=53454327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/074680 WO2016155438A1 (zh) | 2015-03-27 | 2016-02-26 | 电子检测装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104730229B (zh) |
WO (1) | WO2016155438A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220065775A1 (en) * | 2020-08-28 | 2022-03-03 | Mireya C. Aronowitz | Tricorder reflectometer for lateral flow immunological tests |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104730229B (zh) * | 2015-03-27 | 2016-08-31 | 广州万孚生物技术股份有限公司 | 电子检测装置 |
CN105067382B (zh) * | 2015-08-27 | 2018-03-13 | 广州万孚生物技术股份有限公司 | 检测装置及其吸样棒固定机构和组装方法 |
AU2019206031A1 (en) * | 2019-01-10 | 2020-07-30 | Healgen Scientific Limited | Reading apparatus |
CN110057819A (zh) * | 2019-04-04 | 2019-07-26 | 浙江东方基因生物制品股份有限公司 | 一种电子读数装置 |
CN110736845A (zh) * | 2019-10-31 | 2020-01-31 | 深圳福能医疗科技有限公司 | 一种用于糖化血红蛋白的检测装置及其检测方法 |
CN111076140A (zh) * | 2019-12-31 | 2020-04-28 | 华域视觉科技(上海)有限公司 | 照明探测模组 |
CA3168406A1 (en) | 2021-08-27 | 2023-02-27 | Zhejiang Orient Gene Biotech Co., Ltd. | Test device for presence of an analyte |
CN114323263B (zh) * | 2021-12-30 | 2023-10-20 | 拓荆科技股份有限公司 | Uv光检测结构及uv处理设备 |
CN118501429A (zh) | 2023-02-15 | 2024-08-16 | 浙江东方基因生物制品股份有限公司 | 一种检测样本中被分析物质的装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201210144Y (zh) * | 2008-03-28 | 2009-03-18 | 艾博生物医药(杭州)有限公司 | 光学分析读数装置 |
CN101650298A (zh) * | 2003-06-04 | 2010-02-17 | 因韦尔尼斯医药瑞士股份有限公司 | 分析读数光学装置 |
CN202189015U (zh) * | 2011-08-05 | 2012-04-11 | 广州万孚生物技术有限公司 | 分析读数装置 |
CN202886379U (zh) * | 2012-10-25 | 2013-04-17 | 广州万孚生物技术股份有限公司 | 带湿度感应功能的分析检测装置 |
TW201418700A (zh) * | 2012-11-12 | 2014-05-16 | Taidoc Technology Corp | 電子式分析裝置、測試分析方法以及套組 |
US20140301898A1 (en) * | 2011-10-25 | 2014-10-09 | Alere Switzerland Gmbh | Reading of assays |
CN104730229A (zh) * | 2015-03-27 | 2015-06-24 | 广州万孚生物技术股份有限公司 | 电子检测装置 |
CN204514922U (zh) * | 2015-03-27 | 2015-07-29 | 广州万孚生物技术股份有限公司 | 电子检测装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837546A (en) * | 1993-08-24 | 1998-11-17 | Metrika, Inc. | Electronic assay device and method |
US8346337B2 (en) * | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
DE19849008A1 (de) * | 1998-10-23 | 2000-04-27 | Roche Diagnostics Gmbh | Spreitschichten, Netzmittel zu ihrer Herstellung und deren Verwendung in Teststreifen |
DE202004008808U1 (de) * | 2003-06-04 | 2004-09-09 | Inverness Medical Switzerland Gmbh | Flussabtasten zur Bestimmung von Assayergebnissen |
CN101487844B (zh) * | 2008-01-14 | 2013-03-27 | 开物科技股份有限公司 | 电子检验装置及检测方法 |
CN101545864A (zh) * | 2008-03-28 | 2009-09-30 | 艾博生物医药(杭州)有限公司 | 光学分析读数装置 |
US20110184651A1 (en) * | 2010-01-26 | 2011-07-28 | Shih-Yi Weng | Electronic assay apparatus and method thereof |
JP2012247231A (ja) * | 2011-05-25 | 2012-12-13 | Fujikura Kasei Co Ltd | 検査器具 |
CN102323215A (zh) * | 2011-08-05 | 2012-01-18 | 广州万孚生物技术有限公司 | 分析读数装置及分析读数方法 |
US9494569B2 (en) * | 2013-02-07 | 2016-11-15 | Roche Diabetes Care, Inc. | Test strip ejector for medical device |
CN203405462U (zh) * | 2013-07-22 | 2014-01-22 | 艾博生物医药(杭州)有限公司 | 一种被设置在免疫读取设备中的照明系统 |
-
2015
- 2015-03-27 CN CN201510141895.5A patent/CN104730229B/zh active Active
-
2016
- 2016-02-26 WO PCT/CN2016/074680 patent/WO2016155438A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101650298A (zh) * | 2003-06-04 | 2010-02-17 | 因韦尔尼斯医药瑞士股份有限公司 | 分析读数光学装置 |
CN201210144Y (zh) * | 2008-03-28 | 2009-03-18 | 艾博生物医药(杭州)有限公司 | 光学分析读数装置 |
CN202189015U (zh) * | 2011-08-05 | 2012-04-11 | 广州万孚生物技术有限公司 | 分析读数装置 |
US20140301898A1 (en) * | 2011-10-25 | 2014-10-09 | Alere Switzerland Gmbh | Reading of assays |
CN202886379U (zh) * | 2012-10-25 | 2013-04-17 | 广州万孚生物技术股份有限公司 | 带湿度感应功能的分析检测装置 |
TW201418700A (zh) * | 2012-11-12 | 2014-05-16 | Taidoc Technology Corp | 電子式分析裝置、測試分析方法以及套組 |
CN104730229A (zh) * | 2015-03-27 | 2015-06-24 | 广州万孚生物技术股份有限公司 | 电子检测装置 |
CN204514922U (zh) * | 2015-03-27 | 2015-07-29 | 广州万孚生物技术股份有限公司 | 电子检测装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220065775A1 (en) * | 2020-08-28 | 2022-03-03 | Mireya C. Aronowitz | Tricorder reflectometer for lateral flow immunological tests |
US12055479B2 (en) * | 2020-08-28 | 2024-08-06 | Mireya C. Aronowitz | Tricorder reflectometer for lateral flow immunological tests |
Also Published As
Publication number | Publication date |
---|---|
CN104730229A (zh) | 2015-06-24 |
CN104730229B (zh) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016155438A1 (zh) | 电子检测装置 | |
US20050036148A1 (en) | Optical arrangement for assay reading device | |
DE60208825D1 (de) | Reagenzloses vollblut-blutzuckermessgerät | |
JP2004361406A (ja) | 分析結果読み取りデバイス及び分析を実行する方法 | |
JPH0815016A (ja) | 光度計のマルチ検出器読取りヘッド | |
TWI481849B (zh) | Portable detection device | |
US7489403B1 (en) | Electronic testing apparatus and testing method thereof | |
CN101545864A (zh) | 光学分析读数装置 | |
JP2014021790A (ja) | 座標入力装置、座標検出方法、及び座標入力システム | |
US11112353B2 (en) | Residual toxicant detection device | |
CN102483375A (zh) | 具有变换器刚性元件的分析装置 | |
TW201604533A (zh) | 可攜式電子分析裝置、可攜式分析裝置以及套組 | |
CN201368878Y (zh) | 用于全自动生化分析仪的改良型光谱仪 | |
CN204514922U (zh) | 电子检测装置 | |
CN202486051U (zh) | 一种读取测试载体上化验结果的设备 | |
CN103115898B (zh) | 一种测试载体上化验结果的读取设备 | |
CN103115897A (zh) | 一种读取测试载体上测试结果的设备 | |
CN208902733U (zh) | 宽量程免疫层析检测装置 | |
CN109239338B (zh) | 宽量程免疫层析检测装置及方法 | |
CN103115899B (zh) | 一种读取测试载体上化验结果的设备 | |
CN211784994U (zh) | 一种遮光式粉尘检测装置 | |
CN202362245U (zh) | 一种测试载体上化验结果的读取设备 | |
CN214122006U (zh) | 一种试纸条检测装置 | |
CN219997097U (zh) | 一种检测试剂设备 | |
KR20150001676A (ko) | 장치를 위한 외부 부품 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16771193 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16771193 Country of ref document: EP Kind code of ref document: A1 |