WO2016155006A1 - 时分双工无线数据传输系统的数据传输方法、装置及系统 - Google Patents

时分双工无线数据传输系统的数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2016155006A1
WO2016155006A1 PCT/CN2015/075870 CN2015075870W WO2016155006A1 WO 2016155006 A1 WO2016155006 A1 WO 2016155006A1 CN 2015075870 W CN2015075870 W CN 2015075870W WO 2016155006 A1 WO2016155006 A1 WO 2016155006A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission device
interference
frequency point
detected
Prior art date
Application number
PCT/CN2015/075870
Other languages
English (en)
French (fr)
Inventor
李琼
许少锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580049606.7A priority Critical patent/CN106717064B/zh
Priority to PCT/CN2015/075870 priority patent/WO2016155006A1/zh
Priority to EP15886976.8A priority patent/EP3270631B1/en
Publication of WO2016155006A1 publication Critical patent/WO2016155006A1/zh
Priority to US15/722,124 priority patent/US20180027470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to communication technologies, and in particular, to a data transmission method, apparatus and system for a time division duplex wireless data transmission system.
  • the spectrum of the unlisence band is free, using this band for transmission can save communication operators a large amount of operation and maintenance costs.
  • the spectrum of the unlisence band is open, so there are a variety of complex interferences that affect the normal operation of the microwave transmission system. Therefore, how to avoid interference is especially important for microwave transmission systems.
  • the embodiment of the invention provides a data transmission method, device and system for a time division duplex wireless data transmission system, which are used to solve the problem that may cause service interruption in the data transmission process of the existing microwave transmission system.
  • a first aspect of the embodiments of the present invention provides a time division duplex wireless data transmission system, including: a first transmission device and a second transmission device, where the first transmission device is a data sender device, and the second transmission device is data Receiving device
  • the first transmission device is configured to send a service frame to the second transmission device, and the first After transmitting a preset number of service frames to the second transmission device, the transmission device sends an idle frame to the second transmission device;
  • the second transmission device is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquire interference detection result of the to-be-detected frequency point, and update Interference detection result of the frequency to be detected in the interference statistics of the available spectrum;
  • the second transmission device is configured to switch the working frequency point to a frequency point that meets a preset condition according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the second transmission device is configured to: in a time slot corresponding to the idle frame, a to-be-detected frequency corresponding to the idle frame in an available spectrum Performing the interference detection, where the second transmission device switches the current working frequency point to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and performs the frequency of the to-be-detected frequency point. Interference detection.
  • the second transmission device is configured to perform interference detection on the to-be-detected frequency point, specifically: The second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point to perform interference detection on the to-be-detected frequency point.
  • the second transmission device is configured to be received at a current operating frequency
  • the working frequency is switched to the frequency that meets the preset condition according to the interference statistics of the available spectrum.
  • the interference of the second transmission device at the current working frequency is greater than the pre-
  • the operating frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the second transmission device is configured to use an RSSI of each frequency point in the interference statistics according to the available spectrum Determining the priority of each frequency point in the available spectrum, wherein the frequency point with high priority is less affected by the frequency point with lower priority.
  • the second transmission device is configured to receive interference at a current working frequency point greater than a preset
  • the threshold value is used to switch the working frequency point to the frequency point that meets the preset condition according to the interference statistics of the available spectrum. Specifically, when the interference received at the current working frequency point is greater than a preset threshold, according to the available spectrum. The priority of each frequency point switches the working frequency point to the frequency point with the highest priority.
  • a second aspect of the embodiments of the present invention provides a data transmission method for a time division duplex wireless data transmission system, including:
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the Interference detection result of the frequency to be detected in the interference statistics of the available spectrum;
  • the second transmission device switches the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum
  • the first transmission device is a data sender device
  • the second transmission device is a data receiver device.
  • the second transmission device in the time slot corresponding to the idle frame, the to-be-detected frequency point corresponding to the idle frame in the available spectrum Perform interference detection, including:
  • the second transmission device switches the current working frequency point to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and performs interference detection on the to-be-detected frequency point.
  • the second transmitting device performs interference detection on the to-be-detected frequency point, including:
  • the second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point to perform interference detection on the to-be-detected frequency point.
  • the second transmission device is that the interference received at the current working frequency is greater than a preset threshold And switching the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum, including:
  • the second transmission device switches the working frequency to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point to After the interference detection is performed on the frequency to be detected, the method further includes:
  • the frequency of the high priority is less than the frequency of the lower priority.
  • the second transmission device when the interference received at the current working frequency point is greater than a preset threshold, according to the The interference spectrum of the available spectrum is used to switch the working frequency to the frequency that meets the preset conditions, including:
  • the second transmission device switches the working frequency to the frequency with the highest priority according to the priority of each frequency point in the available spectrum.
  • a third aspect of the embodiments of the present invention provides a data transmission method for a time division duplex wireless data transmission system, including:
  • the first transmission device sends a service frame to the second transmission device, and the first transmission device sends an idle frame to the second transmission device after sending a preset number of service frames to the second transmission device;
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the available spectrum. Interference detection result of the frequency to be detected in the interference statistics;
  • the second transmission device switches the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum
  • the first transmission device is a data sender device
  • the second transmission device is a data receiver device.
  • the second transmission device performs, in a time slot corresponding to the idle frame, a frequency to be detected corresponding to the idle frame in the available spectrum.
  • Interference detection including:
  • the second transmission device switches the current working frequency point to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and performs interference detection on the to-be-detected frequency point.
  • the second transmission device performs interference detection on the to-be-detected frequency point, including:
  • the second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point to perform interference detection on the to-be-detected frequency point.
  • the working frequency is switched to the frequency that meets the preset condition, including:
  • the second transmission device switches the working frequency to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point to After the interference detection is performed on the frequency to be detected, the method further includes:
  • the frequency of the high priority is less than the frequency of the lower priority.
  • the second transmission device when the interference received at the current working frequency point is greater than a preset threshold, according to the The interference spectrum of the available spectrum is used to switch the working frequency to the frequency that meets the preset conditions, including:
  • the second transmission device switches the working frequency to the frequency with the highest priority according to the priority of each frequency point in the available spectrum.
  • a fourth aspect of the embodiments of the present invention provides a data transmission apparatus for a time division duplex wireless data transmission system, including:
  • the receiving module is configured to receive a service frame sent by the first transmission device, and receive an idle frame sent by the first transmission device after sending a preset number of service frames;
  • a detecting module configured to perform interference detection on a to-be-detected frequency point corresponding to the idle frame in the available spectrum in a time slot corresponding to the idle frame, acquire an interference detection result of the to-be-detected frequency point, and update the available Interference detection result of the frequency to be detected in the interference statistics of the spectrum;
  • the switching module is configured to switch the working frequency point to a frequency point that meets a preset condition according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the detecting module is configured to switch a current working frequency point to a corresponding one of the idle frames in a time slot corresponding to the idle frame
  • the frequency to be detected is subjected to interference detection on the frequency to be detected.
  • the detecting module is configured to obtain an intensity indication information RSSI of the received signal of the to-be-detected frequency point. Performing interference detection on the frequency to be detected.
  • the switching module is specifically configured to be received at a current working frequency When the interference is greater than the preset threshold, the working frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the device further includes: a determining module
  • the determining module is configured to: after the detecting module acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point, after performing interference detection on the to-be-detected frequency point, according to each frequency point in the available spectrum
  • the RSSI determines the priority of each frequency point in the available spectrum; wherein the frequency point with a higher priority is less interfered by the frequency with a lower priority.
  • the switching module is configured to: when the interference received at the current working frequency point is greater than a preset threshold, The priority of each frequency point in the available spectrum switches the working frequency point to the frequency point with the highest priority.
  • a fifth aspect of the embodiments of the present invention provides a data transmission apparatus for a time division duplex wireless data transmission system, including: a receiver and a processor;
  • the receiver is configured to receive a service frame sent by the first transmission device, and receive an idle frame sent by the first transmission device after sending a preset number of service frames;
  • the processor is configured to perform interference detection on a to-be-detected frequency point corresponding to the idle frame in the available spectrum in a time slot corresponding to the idle frame, acquire an interference detection result of the to-be-detected frequency point, and update the The interference detection result of the to-be-detected frequency point in the interference statistics of the available spectrum; when the interference received at the current working frequency is greater than a preset threshold, the working frequency is switched to match according to the interference statistics of the available spectrum The frequency of the preset condition.
  • the processor Specifically, the current working frequency is switched to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and the interference detection is performed on the to-be-detected frequency point.
  • the processor is configured to obtain an intensity indication information RSSI of the received signal of the to-be-detected frequency point. Performing interference detection on the frequency to be detected.
  • the processor is specifically configured to be received at a current working frequency When the interference is greater than the preset threshold, the working frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the processor is further configured to obtain, according to the strength indication information of the received signal of the to-be-detected frequency point After performing interference detection on the to-be-detected frequency point, the RSSI determines a priority of each frequency point in the available spectrum according to an RSSI of each frequency point in the available spectrum; wherein, a frequency with a higher priority is less interfered A frequency with a lower priority.
  • the processor is configured to: when the interference received at the current working frequency is greater than a preset threshold, The priority of each frequency point in the available spectrum switches the working frequency point to the frequency point with the highest priority.
  • the data transmission method, device and system of the time division duplex wireless data transmission system provided by the embodiment of the present invention, after the first transmission device sends a preset number of service frames to the second transmission device, sends an idle frame to the second device.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result, and updates the interference statistics of the available spectrum, which is received at the current working frequency.
  • the interference is greater than the preset threshold
  • the working frequency is switched to the frequency that meets the preset condition according to the interference statistics of the available spectrum, so that the interference detection in the idle frame is implemented, the service interruption is avoided, and the information is interrupted at regular intervals.
  • Interference detection can update the interference of each frequency point in time to prevent the selected frequency point from being interfered and the handover fails.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a time division duplex wireless data transmission system according to the present invention
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a data transmission method of a time division duplex wireless data transmission system according to the present invention
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a data transmission method of a time division duplex wireless data transmission system according to the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 3 of a data transmission method of a time division duplex wireless data transmission system according to the present invention
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a data transmission apparatus of a time division duplex wireless data transmission system according to the present invention
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a data transmission apparatus of a time division duplex wireless data transmission system according to the present invention
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a data transmission apparatus of a time division duplex wireless data transmission system according to the present invention.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a time division duplex wireless data transmission system according to the present invention.
  • the system includes: a first transmission device 01 and a second transmission device 02, wherein the first transmission device 01 For the data sender device, the second transmission device 02 is a data receiver device.
  • the Time Division Duplexing (TDD) data transmission system may be a TDD microwave transmission system.
  • the second transmission device 02 can be captured by powering on A transmission device 01 frame synchronization information is synchronized with the first transmission device 01.
  • the TDD data transmission system is generally a half-duplex system, and the two devices are not fixed in the system as a sender or a receiver, but are determined according to the direction of the data flow, when the data stream flows from the first transmission device 01 to When the second transmission device 02 is used, the first transmission device 01 serves as the sender device, and the second transmission device 02 serves as the receiver device. Otherwise, the first transmission device 01 can also function as the receiver device, and the second transmission device 02 can also serve as the sender device. Party equipment.
  • the internal structure of the first transmission device 01 and the second transmission device 02 may be identical, and may include: a modem and a central processing unit (CPU).
  • the modem can be used to generate idle frames and perform interference detection.
  • the sender's modem is used to generate idle frames
  • the receiver's modem is used for interference detection.
  • the CPU is configured to determine the interference size based on the interference detection result and select a working frequency point.
  • the first transmission device 01 serves as the sender device
  • the second transmission device 02 serves as the receiver device
  • the first transmission device 01 is configured to send a service frame to the second transmission device, and the first transmission device 01 sends a preset number of service frames to the second transmission device 02, and sends an idle message to the second transmission device 02. frame. That is, the first transmission device 01 periodically transmits the service frame and the idle frame, and sends an idle frame every predetermined number of service frames.
  • the idle frame does not contain any service information.
  • the first transmission device 01 after the first transmission device 01 and the second transmission device 02 establish synchronization, the first transmission device 01 sends idle frame transmission period negotiation information to the second transmission device 02, and the second transmission device 02 can send according to the idle frame.
  • the period negotiation information learns the period in which the first transmission device 01 transmits the idle frame.
  • the second transmission device 02 is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquire the interference detection result of the to-be-detected frequency point, and update the available spectrum.
  • the interference detection result of the frequency to be detected in the interference statistical data is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame.
  • the interference statistical data records the interference detection results of all the frequency points in the available spectrum, and can be recorded in the form of a table. After the detection of the detected frequency points is completed, the corresponding data in the interference statistical data is updated.
  • the available frequency band can be divided into 4 frequency bands, 81G-81.25G; 81.25G-81.5G; 81.5 G ⁇ 81.75G; 81.75G ⁇ 82G; If the current operating frequency is 81.25 ⁇ 81.5G, only interference detection is performed on the other three bands during interference detection.
  • the frequency to be detected may be determined according to a certain preset sequence, and interference detection is performed on the frequency to be detected. For example, after receiving the first idle frame, in the time slot corresponding to the first idle frame, 81G to 81.25 G performs interference detection.
  • the second idle frame After receiving the second idle frame, it performs interference detection on 81.5G to 81.75G in the time slot corresponding to the second idle frame, and after receiving the third idle frame, in the third idle frame. Interference detection is performed on 81.75G to 82G in the corresponding time slot.
  • the second transmission device 02 is configured to switch the working frequency point to a frequency point that meets a preset condition according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the frequency point switching is triggered.
  • the second transmission device 02 selects the frequency point with less interference as the new working frequency point according to the current interference statistical data, and switches the service to the new working frequency point processing.
  • the system pre-configures the working frequency point to process all services. If the pre-configured working frequency is interfered, it reselects a working frequency point and switches all services to the new working frequency point for processing.
  • the second transmission device 02 collects the Mean Square Error (MES) signal of the working frequency point, and monitors whether the working frequency point is interfered when the quality of the MES signal is found to be reduced, and the interference received at the current working frequency is greater than
  • MES Mean Square Error
  • the frequency point switching is triggered, that is, the frequency point switching request is sent to the CPU of the second transmission device, and the CPU selects the frequency point that is currently the least interfered as the new working frequency point.
  • the first transmission device after the first transmission device sends a preset number of service frames to the second transmission device, the first transmission device sends an idle frame to the second device, where the second transmission device is in the available spectrum in the time slot corresponding to the idle frame.
  • Interference detection is performed on the frequency to be detected corresponding to the idle frame, and the interference detection result is obtained and the interference statistics of the available spectrum are updated.
  • the interference received at the current working frequency is greater than the preset threshold, the interference statistics according to the available spectrum will work.
  • the frequency point is switched to the frequency point that meets the preset condition, and the interference detection in the idle frame is implemented, thereby avoiding service interruption, and at intervals
  • the interference of each frequency point can be updated in time to prevent the selected frequency point from being interfered and the handover fails.
  • the second transmission device 02 is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, where the second transmission device 02 corresponds to the idle frame.
  • the current working frequency point is switched to the frequency to be detected corresponding to the idle frame in the time slot, and the interference detection is performed on the frequency to be detected.
  • the current working frequency is 81.25 to 81.5 G
  • interference detection is performed on 81G to 81.25G in the slot corresponding to the first idle frame, and the current operation is performed.
  • the frequency is switched from 81.25 to 81.5G to 81G to 81.25G, and interference detection is performed for 81G to 81.25G. After the detection is completed, switch back to the original working frequency point 81.25 ⁇ 81.5G.
  • the second transmission device 02 is configured to perform interference detection on the frequency to be detected. Specifically, the second transmission device 02 obtains the received signal strength information (Resived Signal Strength Indication, RSSI) of the received signal to detect the available spectrum. Interference detection to obtain interference detection results. However, it is not limited to this.
  • the interference detection is mainly to detect various interferences in the environment of the frequency to be detected.
  • the second transmission device 02 updates the interference statistics, and the RSSI of the frequency to be detected may be updated in the interference statistics table.
  • the second transmission device 02 may establish an interference statistics table to store interference related information of each frequency point in the available spectrum.
  • the interference statistics table may be as shown in Table 1.
  • the second transmission device 02 is configured to switch the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the point is specifically: when the interference received at the current working frequency is greater than the preset threshold, the working frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the RSSI of each frequency point can be used to analyze the size of the interference signal at each frequency point, and the frequency point with the least interference is selected as the new working frequency point.
  • the second transmission device 02 may further determine a priority of each frequency point in the available spectrum according to an RSSI of each frequency point in the interference statistics of the available spectrum, where the frequency of the high priority frequency is interfered. Less than the frequency of the lower priority.
  • a priority column may be added to the interference statistics table to identify priorities corresponding to the frequency points, and may be sorted according to the priority level, and the high priority frequency points are arranged in front of the interference statistics table.
  • the second transmission device 02 when the interference received by the current working frequency is greater than a preset threshold, the second transmission device 02 is configured to switch the working frequency to a frequency that meets the preset condition according to the interference statistics of the available spectrum. Specifically, when the interference received by the second transmission device 02 is greater than the preset threshold, the second transmission device 02 switches the working frequency to the frequency with the highest priority according to the priority of each frequency point in the available spectrum. That is, switch to the frequency point where the interference is the smallest.
  • FIG. 2 is a schematic flowchart of a first embodiment of a data transmission method of a time division duplex wireless data transmission system according to the present invention.
  • the first transmission device is used as an execution subject, and the method includes:
  • the first transmission device generates an idle frame.
  • the idle frame does not include any service information.
  • the first transmission device sends a service frame to the second transmission device, and the first transmission device sends an idle frame to the second transmission device after sending a preset number of service frames to the second transmission device.
  • the first transmission device is a data sender device
  • the second transmission device is a data receiver device.
  • the first transmission device generates an idle frame, and after sending a preset number of service frames to the second transmission device, sends an idle frame to the second transmission device, where the second transmission device is
  • the interference detection is performed on the available spectrum in the time slot corresponding to the idle frame, and the interference detection is obtained. Since the time slot corresponding to the idle frame does not need to perform the service, the service interruption is avoided, and the interference detection is performed every interval. Update the situation where each frequency point is disturbed.
  • FIG. 3 is a schematic flowchart of a second embodiment of a data transmission method of a time division duplex wireless data transmission system according to the present invention.
  • the second transmission device is used as an execution subject, and the method includes:
  • the second transmission device receives the service frame sent by the first transmission device, and receives an idle frame sent by the first transmission device after sending a preset number of service frames.
  • the idle frame does not include any service information. That is, the second transmission device does not need to perform any service in the time slot corresponding to the idle frame.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires an interference detection result of the to-be-detected frequency point, and updates the interference of the available spectrum.
  • the interference detection result of the frequency to be detected in the statistical data is the interference detection result of the frequency to be detected in the statistical data.
  • the second transmission device switches the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum.
  • the first transmission device is a data sender device
  • the second transmission device is a data receiver device.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the available The interference detection result of the frequency to be detected in the interference statistics of the spectrum, and when the interference received at the current working frequency is greater than a preset threshold, according to the interference statistics of the available spectrum, the working frequency is switched to meet the preset condition.
  • the interference detection in the idle frame is implemented, the service interruption is avoided, and the interference detection is performed at intervals, and the interference of each frequency point can be updated in time to prevent the selected frequency point from being interfered and the handover fails.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, which may be the second transmission device corresponding to the idle frame.
  • the current working frequency point is switched to the frequency to be detected corresponding to the idle frame in the time slot, and the interference detection is performed on the frequency to be detected.
  • interference detection can also be performed according to other parameters. For details, refer to the foregoing system embodiment, and Let me repeat.
  • the second transmission device performs interference detection on the to-be-detected frequency point. Specifically, the second transmission device acquires the RSSI of the to-be-detected frequency point to perform interference detection on the to-be-detected frequency point.
  • the second transmission device performs interference detection on the frequency to be detected in the time slot corresponding to the idle frame, and after acquiring the interference detection result, the second transmission device may be in the available spectrum.
  • the interference detection result of the frequency to be detected is updated in the interference statistics.
  • the interference statistics table can refer to Table 1 above, and details are not described herein again.
  • the second transmission device when the interference received by the second transmission device is greater than the preset threshold, the second transmission device may be switched to the frequency corresponding to the preset condition according to the interference statistics of the available spectrum.
  • the operating frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the second transmission device may further determine the RSSI of each frequency point in the available frequency spectrum.
  • the priority of each frequency point in the available spectrum specifically, the second transmission device may record the priority of each frequency point in the available spectrum in the interference statistics of the available spectrum. Among them, the frequency of the high priority is less than the frequency of the lower priority.
  • the second transmission device may be switched to the frequency corresponding to the preset condition according to the interference statistics of the available spectrum.
  • the working frequency is switched to the frequency with the highest priority according to the priority of each frequency point in the available spectrum.
  • FIG. 4 is a schematic flowchart of a third embodiment of a data transmission method for a time division duplex wireless data transmission system according to the present invention.
  • the time division duplex wireless data transmission system can refer to the embodiment shown in FIG.
  • the method performed by the system, specifically, the method includes:
  • the first transmission device sends a service frame to the second transmission device, and the first transmission device sends a preset number of service frames to the second transmission device, and sends an idle message to the second transmission device. frame.
  • the idle frame does not contain any service information.
  • the second transmission device is in the available frequency spectrum in the time slot corresponding to the idle frame. Performing interference detection on the frequency to be detected corresponding to the idle frame, acquiring the interference detection result of the frequency to be detected, and updating the interference detection result of the frequency to be detected in the interference statistical data of the available spectrum.
  • the interference statistical data records the interference detection results of all the frequency points in the available spectrum, and can be recorded in the form of a table. After the detection of the detected frequency points is completed, the corresponding data in the interference statistical data is updated.
  • the available frequency band can be divided into 4 frequency bands, 81G-81.25G; 81.25G-81.5G; 81.5 G ⁇ 81.75G; 81.75G ⁇ 82G; If the current operating frequency is 81.25 ⁇ 81.5G, only interference detection is performed on the other three bands during interference detection.
  • the frequency to be detected may be determined according to a certain preset sequence, and interference detection is performed on the frequency to be detected. For example, after receiving the first idle frame, in the time slot corresponding to the first idle frame, 81G to 81.25 G performs interference detection.
  • the second idle frame After receiving the second idle frame, it performs interference detection on 81.5G to 81.75G in the time slot corresponding to the second idle frame, and after receiving the third idle frame, in the third idle frame. Interference detection is performed on 81.75G to 82G in the corresponding time slot.
  • the second transmission device switches the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum.
  • the frequency point switching is triggered.
  • the second transmission device 02 selects the frequency point with less interference as the new working frequency point according to the current interference statistical data, and switches the service to the new working frequency point processing.
  • the system pre-configures the working frequency point to process all services. If the pre-configured working frequency is interfered, it reselects a working frequency point and switches all services to the new working frequency point for processing.
  • the second transmission device may use the MES signal to detect whether the working frequency is interfered when the quality of the MES signal is found to be reduced.
  • the frequency point switching is triggered, that is, to the second.
  • the CPU of the transmission device reports a frequency point switching request, and the CPU selects the frequency point that is currently the least interfered as the new working frequency point.
  • the first transmission device is a data sender device
  • the second transmission device is a data receiver device.
  • the first transmission device sends a service frame to the second transmission device, and the first transmission device sends a preset number of service frames to the second transmission device to the second transmission device.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the available
  • the interference detection result of the frequency to be detected in the interference statistics of the spectrum and when the interference received at the current working frequency is greater than a preset threshold, according to the interference statistics of the available spectrum, the working frequency is switched to meet the preset condition.
  • the interference detection in the idle frame is implemented, the service interruption is avoided, and the interference detection is performed at intervals, and the interference of each frequency point can be updated in time to prevent the selected frequency point from being interfered and the handover fails.
  • the second transmission device performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, where specifically, the second transmission device corresponds to the idle frame.
  • the current working frequency point is switched to the frequency to be detected corresponding to the idle frame in the time slot, and the interference detection is performed on the frequency to be detected.
  • the second transmission device performs interference detection on the to-be-detected frequency point, and may be the second transmission device acquires the strength indication information RSSI of the received signal of the to-be-detected frequency point. Performing interference detection on the frequency to be detected.
  • the second transmission device when the interference received by the second transmission device is greater than the preset threshold, switches the working frequency to the frequency that meets the preset condition according to the interference statistics of the available spectrum. If the interference received by the second transmission device at the current working frequency is greater than the preset threshold, the working frequency is switched to the frequency with the least interference according to the interference statistics of the available spectrum.
  • the second transmission device may use each frequency point in the available spectrum.
  • the RSSI determines the priority of each frequency point in the available spectrum, wherein the frequency point with higher priority is less interfered by the frequency with lower priority.
  • the working frequency is switched to meet the preset condition according to the interference statistics of the available spectrum.
  • the frequency point may be that when the interference received by the second transmission device at the current working frequency is greater than a preset threshold, the working frequency is switched to the frequency with the highest priority according to the priority of each frequency point in the available spectrum.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a data transmission apparatus of a time division duplex wireless data transmission system according to the present invention.
  • the apparatus may be integrated in the foregoing second transmission apparatus.
  • the apparatus includes: a receiving module 501. , a detection module 502 and a switching module 503, wherein:
  • the receiving module 501 is configured to receive a service frame sent by the first transmission device, and receive an idle frame sent by the first transmission device after sending a preset number of service frames.
  • the detecting module 502 is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquire the interference detection result of the to-be-detected frequency point, and update the The interference detection result of the frequency to be detected in the interference statistics of the available spectrum.
  • the switching module 503 is configured to switch the working frequency point to a frequency point that meets a preset condition according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the apparatus performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the available spectrum.
  • Interference detection result of the to-be-detected frequency point in the interference statistical data and when the interference received at the current working frequency point is greater than a preset threshold, according to the interference statistical data of the available spectrum, the working frequency point is switched to the frequency point meeting the preset condition
  • the interference detection in the idle frame is implemented, the service interruption is avoided, and the interference detection is performed at intervals, and the interference of each frequency point can be updated in time to prevent the selected frequency point from being interfered and the handover fails.
  • the detecting module 502 is configured to switch the current working frequency point to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and perform interference detection on the to-be-detected frequency point.
  • the detecting module 502 is specifically configured to acquire the strength indication information RSSI of the received signal of the to-be-detected frequency point to perform interference detection on the to-be-detected frequency point.
  • the switching module 503 is specifically configured to switch the working frequency point to the frequency point with the least interference according to the interference statistics of the available spectrum when the interference received by the current working frequency is greater than a preset threshold.
  • the structure diagram of the second embodiment, as shown in FIG. 6, further includes a determining module 504, configured to acquire, according to the detecting module, the strength indication information RSSI of the received signal of the to-be-detected frequency point. Determining the priority of each frequency point in the available spectrum according to the RSSI of each frequency point in the available spectrum, wherein the frequency of the high priority frequency is less than the priority lower Frequency.
  • the switching module 503 is specifically configured to switch the working frequency to the priority according to the priority of each frequency point in the available spectrum when the interference received by the current working frequency is greater than the preset threshold. The highest frequency.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a data transmission apparatus of a time division duplex wireless data transmission system according to the present invention.
  • the apparatus may be integrated in the foregoing second transmission apparatus.
  • the apparatus includes: a receiver 701. And processor 702, wherein:
  • the receiver 701 is configured to receive a service frame sent by the first transmission device, and receive an idle frame sent by the first transmission device after sending a preset number of service frames.
  • the processor 702 is configured to perform interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquire an interference detection result of the to-be-detected frequency point, and update the The interference detection result of the frequency to be detected in the interference statistics of the available spectrum; when the interference received at the current working frequency is greater than the preset threshold, according to the interference statistics of the available spectrum, the working frequency is switched to meet the pre-compensation Set the frequency of the condition.
  • the apparatus performs interference detection on the to-be-detected frequency point corresponding to the idle frame in the available spectrum in the time slot corresponding to the idle frame, acquires the interference detection result of the to-be-detected frequency point, and updates the available spectrum.
  • Interference detection result of the to-be-detected frequency point in the interference statistical data and when the interference received at the current working frequency point is greater than a preset threshold, according to the interference statistical data of the available spectrum, the working frequency point is switched to the frequency point meeting the preset condition
  • the interference detection in the idle frame is implemented, the service interruption is avoided, and the interference detection is performed at intervals, and the interference of each frequency point can be updated in time to prevent the selected frequency point from being interfered and the handover fails.
  • the processor 702 is specifically configured to switch the current working frequency point to the to-be-detected frequency point corresponding to the idle frame in the time slot corresponding to the idle frame, and perform interference detection on the to-be-detected frequency point.
  • the processor 702 can be configured to acquire a strong received signal of the to-be-detected frequency point.
  • the degree indication information RSSI is used to perform interference detection on the frequency to be detected.
  • the processor 702 is specifically configured to: when the interference received by the current working frequency is greater than a preset threshold, switch the working frequency point to the frequency point with the least interference according to the interference statistics of the available spectrum.
  • the processor 702 is further configured to: after acquiring the strength indication information RSSI of the received signal of the to-be-detected frequency point, performing interference detection on the to-be-detected frequency point, according to each frequency in the available spectrum
  • the RSSI of the point determines the priority of each frequency point in the available spectrum; wherein the frequency point with higher priority is less interfered by the frequency with lower priority.
  • the processor 702 is specifically configured to switch the working frequency to the highest priority frequency according to the priority of each frequency point in the available spectrum when the interference received by the current working frequency is greater than a preset threshold. point.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium, including
  • the dry instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种时分双工无线数据传输系统的数据传输方法、装置及系统,该方法包括传输设备在空闲帧对应的时隙内空闲帧对应的待检测频点进行干扰检测,获取干扰检测结果,并更新干扰统计数据,在当前工作频点受到的干扰大于预设阈值时,根据干扰统计数据,将工作频点切换到符合条件的频点,避免了干扰检测导致的业务中断。

Description

时分双工无线数据传输系统的数据传输方法、装置及系统 技术领域
本发明涉及通信技术,尤其涉及一种时分双工无线数据传输系统的数据传输方法、装置及系统。
背景技术
在微波传输系统中,由于免许可证(unlisence)频段的频谱免费,使用该频段进行传输可以给通信运营商节省大量运维成本。但是,unlisence频段的频谱开放,因此存在多种复杂的干扰,对微波传输系统的正常工作造成影响。因此,如何避免干扰对于微波传输系统尤为重要。
现有技术中,微波传输系统上电后进行一次初始扫频,将可用频段范围内的所有带宽都扫一遍,将所有扫频信息存储在频率配置表里,选取干扰最小的频点进行数据传输。如果频率配置表里的频点在使用过程中也被干扰,导致频点切换多次不成功,则重新触发扫频,实时获取可用频点,并切换到可用频点上,以规避干扰。
但是,采用现有技术,在unlisence频段上,初始扫描无干扰的频点,很容易在后续工作过程中被干扰,因此导致重新触发扫频的概率高,从而导致业务中断,特别是对于unlisence频段较宽的情况,完成一次扫频时间较长,也会使得业务中断时间较长。
发明内容
本发明实施例提供一种时分双工无线数据传输系统的数据传输方法、装置及系统,用于解决现有微波传输系统的数据传输过程中可能导致业务中断的问题。
本发明实施例第一方面提供一种时分双工无线数据传输系统,包括:第一传输设备和第二传输设备,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备;
所述第一传输设备用于向所述第二传输设备发送业务帧,且所述第一 传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧;
所述第二传输设备用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
所述第二传输设备用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
结合第一方面,在第一方面的第一种可能的实施方式中,所述第二传输设备用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,具体为:所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述第二传输设备,用于对所述待检测频点进行干扰检测,具体为:所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
结合第一方面至第一方面的第二种可能的实施方式中任一项,在第一方面的第三种可能的实施方式中,所述第二传输设备用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
结合第一方面的第二种可能的实施方式,在第一方面的第四种可能的实施方式中,所述第二传输设备用于根据所述可用频谱的干扰统计数据中各频点的RSSI确定所述可用频谱中各频点的优先级,其中,优先级高的频点受到的干扰小于优先级低的频点。
结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述第二传输设备用于在当前工作频点受到的干扰大于预设 阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
本发明实施例第二方面提供一种时分双工无线数据传输系统的数据传输方法,包括:
第二传输设备接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点;
其中,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备。
结合第二方面,在第二方面的第一种可能的实施方式中,所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中的所述空闲帧对应的待检测频点进行干扰检测,包括:
所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
结合第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述第二传输设备对所述待检测频点进行干扰检测,包括:
所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
结合第二方面至第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
结合第二方面的第二种可能的实施方式,在第二方面的第四种可能的实施方式中,所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,还包括:
所述第二传输设备根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;
其中,优先级高的频点受到的干扰小于优先级低的频点。
结合第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式中,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
本发明实施例第三方面提供一种时分双工无线数据传输系统的数据传输方法,包括:
第一传输设备向第二传输设备发送业务帧,且所述第一传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧;
第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点;
其中,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备。
结合第三方面,在第三方面的第一种可能的实施方式中,所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,包括:
所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
结合第三方面的第一种可能的实施方式,在第三方面的第二种可能的 实施方式中,所述第二传输设备对所述待检测频点进行干扰检测,包括:
所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
结合第三方面至第三方面的第二种可能的实施方式中任一项,在第三方面的第三种可能的实施方式中,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
结合第三方面的第二种可能的实施方式,在第三方面的第四种可能的实施方式中,所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,还包括:
所述第二传输设备根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;
其中,优先级高的频点受到的干扰小于优先级低的频点。
结合第三方面的第四种可能的实施方式,在第三方面的第五种可能的实施方式中,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
本发明实施例第四方面提供一种时分双工无线数据传输系统的数据传输装置,包括:
接收模块,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
检测模块,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
切换模块,用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
结合第四方面,在第四方面的第一种可能的实施方式中,所述检测模块,具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
结合第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述检测模块,具体用于获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
结合第四方面至第四方面的第二种可能的实施方式中任一项,在第四方面的第三种可能的实施方式中,所述切换模块,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
结合第四方面的第二种可能的实施方式,在第四方面的第四种可能的实施方式中,所述装置还包括:确定模块;
所述确定模块,用于在所述检测模块获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
结合第四方面的第四种可能的实施方式,在第四方面的第五种可能的实施方式中,所述切换模块,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
本发明实施例第五方面提供一种时分双工无线数据传输系统的数据传输装置,包括:接收器和处理器;
所述接收器,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
所述处理器,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
结合第五方面,在第五方面的第一种可能的实施方式中,所述处理器, 具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
结合第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述处理器,具体用于获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
结合第五方面至第五方面的第二种可能的实施方式中任一项,在第五方面的第三种可能的实施方式中,所述处理器,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
结合第五方面的第二种可能的实施方式,在第五方面的第四种可能的实施方式中,所述处理器,还用于在获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
结合第五方面的第四种可能的实施方式,在第五方面的第五种可能的实施方式中,所述处理器,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
本发明实施例提供的时分双工无线数据传输系统的数据传输方法、装置及系统,第一传输设备向第二传输设备每发送预设个数的业务帧后,向第二设备发送一个空闲帧,第二传输设备在空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取干扰检测结果并更新可用频谱的干扰统计数据,在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间就进行干扰检测,可以及时更新各频点受干扰的情况,防止选择的频点已经受到干扰而切换失败。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的时分双工无线数据传输系统实施例一的结构示意图;
图2为本发明提供的时分双工无线数据传输系统的数据传输方法实施例一的流程示意图;
图3为本发明提供的时分双工无线数据传输系统的数据传输方法实施例二的流程示意图;
图4为本发明提供的时分双工无线数据传输系统的数据传输方法实施例三的流程示意图;
图5为本发明提供的时分双工无线数据传输系统的数据传输装置实施例一的结构示意图;
图6为本发明提供的时分双工无线数据传输系统的数据传输装置实施例二的结构示意图;
图7为本发明提供的时分双工无线数据传输系统的数据传输装置实施例三的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明提供的时分双工无线数据传输系统实施例一的结构示意图,如图1所示,该系统包括:第一传输设备01和第二传输设备02,其中,第一传输设备01为数据发送方设备,第二传输设备02为数据接收方设备。该时分双工(Time Division Duplexing,简称TDD)数据传输系统可以是TDD微波传输系统。其中,第二传输设备02可以通过上电捕获第 一传输设备01帧同步信息与第一传输设备01建立同步。
需要说明的是,TDD数据传输系统一般是半双工系统,系统中并不固定这两个设备为发送方或接收方,而是根据数据流方向确定,当数据流从第一传输设备01流向第二传输设备02时,第一传输设备01作为发送方设备,第二传输设备02作为接收方设备,反之,第一传输设备01也可以作为接收方设备,第二传输设备02也可以作为发送方设备。
第一传输设备01与第二传输设备02的内部结构可以完全相同,可以包括:调制解调器(modem)和中央处理器(Central Processing Unit,简称CPU)。其中,调制解调器可以用于生成空闲帧和进行干扰检测,具体地,发送方的调制解调器用于生成空闲帧,接收方的调制解调器用于进行干扰检测。CPU用于根据干扰检测结果判断干扰大小并选择工作频点。
本实施例中,第一传输设备01作为发送方设备,第二传输设备02作为接收方设备,具体地:
第一传输设备01用于向第二传输设备发送业务帧,且第一传输设备01向第二传输设备02每发送预设个数的业务帧后,向所述第二传输设备02发送一个空闲帧。即第一传输设备01周期性地发送业务帧和空闲帧,每间隔预设个数的业务帧就发送一个空闲帧。该空闲帧内不包含任何业务信息。
具体实现过程中,在第一传输设备01和第二传输设备02建立同步之后,第一传输设备01向第二传输设备02发送空闲帧发送周期协商信息,第二传输设备02可以根据空闲帧发送周期协商信息获知第一传输设备01发送空闲帧的周期。
第二传输设备02用于在该空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取上述待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果。
可用频谱中除当前工作频点外的其它频点都可以作为待检测频点。
该干扰统计数据中记录可用频谱中所有频点的干扰检测结果,可以以表格的形式来进行记录,对待检测频点检测完毕后,更新干扰统计数据中对应的数据。
举例说明,假设当前总的可用频段为81~82G,传输设备的带宽设定为250M,就可以把可用频段划为4个频点(band),81G~81.25G;81.25G~81.5G;81.5G~81.75G;81.75G~82G;如果当前工作频点为81.25~81.5G,在干扰检测时就只对其他三个band进行干扰检测。具体地,可以按照一定的预设顺序确定待检测频点,对待检测频点进行干扰检测,例如,收到第1个空闲帧后,在第1个空闲帧对应的时隙中对81G~81.25G进行干扰检测,收到第2个空闲帧后,在第2个空闲帧对应的时隙中对81.5G~81.75G进行干扰检测,收到第3个空闲帧后,在第3个空闲帧对应的时隙中对81.75G~82G进行干扰检测。
第二传输设备02用于在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
具体地,第二传输设备02监测到当前工作频点受到的干扰大于预设阈值时,会触发频点切换。第二传输设备02根据当前的干扰统计数据,选择受到干扰小的频点作为新的工作频点,并将业务都切换到新的工作频点处理。
一般地,系统会预先配置工作频点来处理所有的业务,如果预先配置的工作频点受到干扰,则重新选择一个工作频点,将所有业务都切换到新的工作频点进行处理。
第二传输设备02会统计工作频点的均方差(Mean Square Error,简称MES)信号,在发现MES信号质量下降时,监测工作频点是否受到干扰,在监测到当前工作频点受到的干扰大于预设阈值时,会触发频点切换,即向第二传输设备的CPU上报频点切换请求,CPU选择目前受到干扰最小的频点作为新的工作频点。
本实施例中,第一传输设备向第二传输设备每发送预设个数的业务帧后,向第二设备发送一个空闲帧,第二传输设备在空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取干扰检测结果并更新可用频谱的干扰统计数据,在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间 就进行干扰检测,可以及时更新各频点受干扰的情况,防止选择的频点已经受到干扰而切换失败。
进一步地,上述第二传输设备02用于在空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,具体可以为:第二传输设备02在上述空闲帧对应的时隙内将当前工作频点切换到该空闲帧对应的待检测频点,对该待检测频点进行干扰检测。
以前述示例举例说明,如果当前工作频点为81.25~81.5G,收到第1个空闲帧后,在第1个空闲帧对应的时隙中对81G~81.25G进行干扰检测,则将当前工作频点从81.25~81.5G切换到81G~81.25G,对81G~81.25G进行干扰检测。检测完毕后,再切换回原工作频点81.25~81.5G。
第二传输设备02用于对待检测频点进行干扰检测,具体为:第二传输设备02获取上述待检测频点的接收信号的强度指示信息(Received Signal Strength Indication,简称RSSI)对上述可用频谱进行干扰检测,获取干扰检测结果。但并不以此为限,干扰检测主要是检测待检测频点环境中受到的各种干扰。
进一步地,第二传输设备02更新干扰统计数据,可以在干扰统计数据表中更新待检测频点的RSSI。具体地,第二传输设备02可以建立一个干扰统计数据表,存储可用频谱中各频点的干扰相关信息,例如,干扰统计数据表可以如表1所示,
表1
Figure PCTCN2015075870-appb-000001
Figure PCTCN2015075870-appb-000002
在上述实施例的基础上,第二传输设备02用于在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。具体实现过程中,可以根据各频点的RSSI分析各频点受到干扰信号的大小,选择受到干扰最小的频点作为新的工作频点。
另一实施例中,第二传输设备02还可以根据上述可用频谱的干扰统计数据中各频点的RSSI确定上述可用频谱中各频点的优先级,其中,优先级高的频点受到的干扰小于优先级低的频点。
具体地,可以在干扰统计数据表中增加一列优先级,分别标识出各频点对应的优先级,并可以按照优先级高低进行排序,将高优先级的频点排在干扰统计数表的前面。
具体实施过程中,第二传输设备02用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:第二传输设备02在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。即切换到受到干扰最小的频点。
图2为本发明提供的时分双工无线数据传输系统的数据传输方法实施例一的流程示意图,在前述实施例的基础上,以第一传输设备为执行主体,该方法包括:
S201、第一传输设备生成空闲帧。该空闲帧不包括任何业务信息。
S202、第一传输设备向第二传输设备发送业务帧,且第一传输设备向第二传输设备每发送预设个数的业务帧后,向第二传输设备发送一个空闲帧。
其中,上述第一传输设备为数据发送方设备,第二传输设备为数据接收方设备。
本实施例中,第一传输设备生成空闲帧,并在向第二传输设备每发送预设个数的业务帧后,向第二传输设备发送一个空闲帧,第二传输设备在 空闲帧对应的时隙内对可用频谱进行干扰检测,获取干扰检测,由于空闲帧对应的时隙中本来就无需执行业务,避免了业务中断,且每间隔一段时间就进行一次干扰检测,可以及时更新各频点受到干扰的情况。
图3为本发明提供的时分双工无线数据传输系统的数据传输方法实施例二的流程示意图,在前述实施例的基础上,以第二传输设备为执行主体,该方法包括:
S301、第二传输设备接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧。
其中,空闲帧不包括任何业务信息。即第二传输设备在空闲帧对应的时隙内本来就无需执行任何业务。
S302、第二传输设备在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取该待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果。
S303、第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
其中,上述第一传输设备为数据发送方设备,第二传输设备为数据接收方设备。
本实施例中,第二传输设备在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取该待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果,并在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间就进行干扰检测,可以及时更新各频点受干扰的情况,避免选择的频点已经受到干扰而切换失败。
在上述实施例的基础上,上述第二传输设备在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,可以是第二传输设备在空闲帧对应的时隙内将当前工作频点切换到上述空闲帧对应的待检测频点,对该待检测频点进行干扰检测。当然,并不以此为限,也可以根据其他参数来进行干扰检测。具体可以参照前述系统实施例,在此不 再赘述。
另一实施例中,第二传输设备对该待检测频点进行干扰检测,具体可以是第二传输设备获取上述待检测频点的RSSI以对该待检测频点进行干扰检测。
在上述实施例的基础上,另一实施例中,上述第二传输设备在上述空闲帧对应的时隙内对待检测频点进行干扰检测,获取干扰检测结果之后,第二传输设备可以在可用频谱的干扰统计数据中更新待检测频点的干扰检测结果。具体地,干扰统计数据表可参照前述表1,在此不再赘述。
相应地,第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,可以是第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
进一步地,另一实施例中,上述第二传输设备获取上述待检测频点的RSSI以对该待检测频点进行干扰检测之后,第二传输设备还可以根据可用频谱中各频点的RSSI确定上述可用频谱中各频点的优先级,具体地,第二传输设备可以将上述可用频谱中各频点的优先级记录在上述可用频谱的干扰统计数据中。其中,优先级高的频点受到的干扰小于优先级低的频点。
相应地,第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据上述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,可以是第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
图4为本发明提供的时分双工无线数据传输系统的数据传输方法实施例三的流程示意图,其中,时分双工无线数据传输系统可以参照图1所示的实施例,该方法为图1所示系统所执行的方法,具体地,该方法包括:
S401、第一传输设备向第二传输设备发送业务帧,且所述第一传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧。
该空闲帧内不包含任何业务信息。
S402、第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空 闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果。
可用频谱中除当前工作频点外的其它频点都可以作为待检测频点。
该干扰统计数据中记录可用频谱中所有频点的干扰检测结果,可以以表格的形式来进行记录,对待检测频点检测完毕后,更新干扰统计数据中对应的数据。
举例说明,假设当前总的可用频段为81~82G,传输设备的带宽设定为250M,就可以把可用频段划为4个频点(band),81G~81.25G;81.25G~81.5G;81.5G~81.75G;81.75G~82G;如果当前工作频点为81.25~81.5G,在干扰检测时就只对其他三个band进行干扰检测。具体地,可以按照一定的预设顺序确定待检测频点,对待检测频点进行干扰检测,例如,收到第1个空闲帧后,在第1个空闲帧对应的时隙中对81G~81.25G进行干扰检测,收到第2个空闲帧后,在第2个空闲帧对应的时隙中对81.5G~81.75G进行干扰检测,收到第3个空闲帧后,在第3个空闲帧对应的时隙中对81.75G~82G进行干扰检测。
S403、第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
具体地,第二传输设备02监测到当前工作频点受到的干扰大于预设阈值时,会触发频点切换。第二传输设备02根据当前的干扰统计数据,选择受到干扰小的频点作为新的工作频点,并将业务都切换到新的工作频点处理。
一般地,系统会预先配置工作频点来处理所有的业务,如果预先配置的工作频点受到干扰,则重新选择一个工作频点,将所有业务都切换到新的工作频点进行处理。
第二传输设备会MES信号,在发现MES信号质量下降时,监测工作频点是否受到干扰,在监测到当前工作频点受到的干扰大于预设阈值时,会触发频点切换,即向第二传输设备的CPU上报频点切换请求,CPU选择目前受到干扰最小的频点作为新的工作频点。
其中,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备。
本实施例中,第一传输设备向第二传输设备发送业务帧,且所述第一传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧,第二传输设备在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取该待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果,并在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间就进行干扰检测,可以及时更新各频点受干扰的情况,避免选择的频点已经受到干扰而切换失败。
进一步地,上述第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,具体为:第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
在上述实施例的基础上,另一实施例中,第二传输设备对所述待检测频点进行干扰检测,可以是第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
另一实施例中,第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体可以是,第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
具体实现过程中,在第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,第二传输设备可以根据可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级,其中,优先级高的频点受到的干扰小于优先级低的频点。
在此基础上,第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件 的频点,可以是第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
图5为本发明提供的时分双工无线数据传输系统的数据传输装置实施例一的结构示意图,该装置可以集成在前述第二传输设备中,如图5所示,该装置包括:接收模块501、检测模块502和切换模块503,其中:
接收模块501,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧。
检测模块502,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果。
切换模块503,用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
本实施例中,该装置在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取该待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果,并在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间就进行干扰检测,可以及时更新各频点受干扰的情况,避免选择的频点已经受到干扰而切换失败。
检测模块502,具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
检测模块502,具体用于获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
切换模块503,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
图6为本发明提供的时分双工无线数据传输系统的数据传输装置实施 例二的结构示意图,如图6所示,在图5的基础上,还包括确定模块504,用于在所述检测模块获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
在此基础上,相应的,切换模块503,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
上述装置用于之前图3所示的方法实施例,其实现原理和技术效果类似,在此不再赘述。
图7为本发明提供的时分双工无线数据传输系统的数据传输装置实施例三的结构示意图,该装置可以集成在前述第二传输设备中,如图7所示,该装置包括:接收器701和处理器702,其中:
接收器701,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧。
处理器702,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
本实施例中,该装置在上述空闲帧对应的时隙内对可用频谱中该空闲帧对应的待检测频点进行干扰检测,获取该待检测频点的干扰检测结果,并更新上述可用频谱的干扰统计数据中该待检测频点的干扰检测结果,并在当前工作频点受到的干扰大于预设阈值时,根据可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,实现了在空闲帧进行干扰检测,避免了业务中断,且每隔一段时间就进行干扰检测,可以及时更新各频点受干扰的情况,避免选择的频点已经受到干扰而切换失败。
处理器702,具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
具体地,处理器702,可以用于获取所述待检测频点的接收信号的强 度指示信息RSSI以对所述待检测频点进行干扰检测。
处理器702,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
另一实施例中,处理器702,还用于在获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
在此基础上,处理器702,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
上述装置用于之前图3所示的方法实施例,其实现原理和技术效果类似,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若 干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种时分双工无线数据传输系统,其特征在于,包括:第一传输设备和第二传输设备,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备;
    所述第一传输设备用于向所述第二传输设备发送业务帧,且所述第一传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧;
    所述第二传输设备用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
    所述第二传输设备用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
  2. 根据权利要求1所述的系统,其特征在于,所述第二传输设备用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,具体为:所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
  3. 根据权利要求2所述的系统,其特征在于,所述第二传输设备,用于对所述待检测频点进行干扰检测,具体为:所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
  4. 根据权利要求1-3任一项所述的系统,其特征在于,所述第二传输设备用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
  5. 根据权利要求3所述的系统,其特征在于,所述第二传输设备用于根据所述可用频谱的干扰统计数据中各频点的RSSI确定所述可用频谱 中各频点的优先级,其中,优先级高的频点受到的干扰小于优先级低的频点。
  6. 根据权利要求5所述的系统,其特征在于,所述第二传输设备用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,具体为:在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
  7. 一种时分双工无线数据传输系统的数据传输方法,其特征在于,包括:
    第二传输设备接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
    所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
    所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点;
    其中,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备。
  8. 根据权利要求7所述的方法,其特征在于,所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中的所述空闲帧对应的待检测频点进行干扰检测,包括:
    所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
  9. 根据权利要求8所述的方法,其特征在于,所述第二传输设备对所述待检测频点进行干扰检测,包括:
    所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的 干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
    所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
  11. 根据权利要求9所述的方法,其特征在于,所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,还包括:
    所述第二传输设备根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;
    其中,优先级高的频点受到的干扰小于优先级低的频点。
  12. 根据权利要求11所述的方法,其特征在于,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
    所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
  13. 一种时分双工无线数据传输系统的数据传输方法,其特征在于,包括:
    第一传输设备向第二传输设备发送业务帧,且所述第一传输设备向所述第二传输设备每发送预设个数的业务帧后,向所述第二传输设备发送一个空闲帧;
    第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
    第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点;
    其中,所述第一传输设备为数据发送方设备,所述第二传输设备为数据接收方设备。
  14. 根据权利要求13所述的方法,其特征在于,所述第二传输设备在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,包括:
    所述第二传输设备在所述空闲帧对应的时隙内将当前工作频点切换 到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
  15. 根据权利要求14所述的方法,其特征在于,所述第二传输设备对所述待检测频点进行干扰检测,包括:
    所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
    所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
  17. 根据权利要求15所述的方法,其特征在于,所述第二传输设备获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,还包括:
    所述第二传输设备根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;
    其中,优先级高的频点受到的干扰小于优先级低的频点。
  18. 根据权利要求17所述的方法,其特征在于,所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点,包括:
    所述第二传输设备在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
  19. 一种时分双工无线数据传输系统的数据传输装置,其特征在于,包括:
    接收模块,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
    检测模块,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;
    切换模块,用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
  20. 根据权利要求19所述的装置,其特征在于,所述检测模块,具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
  21. 根据权利要求20所述的装置,其特征在于,所述检测模块,具体用于获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述切换模块,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
  23. 根据权利要求21所述的装置,其特征在于,还包括:确定模块;
    所述确定模块,用于在所述检测模块获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
  24. 根据权利要求23所述的装置,其特征在于,所述切换模块,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
  25. 一种时分双工无线数据传输系统的数据传输装置,其特征在于,包括:接收器和处理器;
    所述接收器,用于接收第一传输设备发送的业务帧,并接收所述第一传输设备每发送预设个数的业务帧后发送的一个空闲帧;
    所述处理器,用于在所述空闲帧对应的时隙内对可用频谱中所述空闲帧对应的待检测频点进行干扰检测,获取所述待检测频点的干扰检测结果,并更新所述可用频谱的干扰统计数据中所述待检测频点的干扰检测结果;在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到符合预设条件的频点。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器,具体用于在所述空闲帧对应的时隙内将当前工作频点切换到所述空闲帧对应的待检测频点,对所述待检测频点进行干扰检测。
  27. 根据权利要求26所述的装置,其特征在于,所述处理器,具体 用于获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测。
  28. 根据权利要求25-27任一项所述的装置,其特征在于,所述处理器,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱的干扰统计数据,将工作频点切换到受干扰最小的频点。
  29. 根据权利要求27所述的装置,其特征在于,所述处理器,还用于在获取所述待检测频点的接收信号的强度指示信息RSSI以对所述待检测频点进行干扰检测之后,根据所述可用频谱中各频点的RSSI确定所述可用频谱中各频点的优先级;其中,优先级高的频点受到的干扰小于优先级低的频点。
  30. 根据权利要求29所述的装置,其特征在于,所述处理器,具体用于在当前工作频点受到的干扰大于预设阈值时,根据所述可用频谱中各频点的优先级,将工作频点切换到优先级最高的频点。
PCT/CN2015/075870 2015-04-03 2015-04-03 时分双工无线数据传输系统的数据传输方法、装置及系统 WO2016155006A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580049606.7A CN106717064B (zh) 2015-04-03 2015-04-03 时分双工无线数据传输系统的数据传输方法、装置及系统
PCT/CN2015/075870 WO2016155006A1 (zh) 2015-04-03 2015-04-03 时分双工无线数据传输系统的数据传输方法、装置及系统
EP15886976.8A EP3270631B1 (en) 2015-04-03 2015-04-03 Data transmission method, device and system of time division duplex wireless data transmission system
US15/722,124 US20180027470A1 (en) 2015-04-03 2017-10-02 Data transmission method and apparatus in time division duplex wireless data transmission system, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075870 WO2016155006A1 (zh) 2015-04-03 2015-04-03 时分双工无线数据传输系统的数据传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,124 Continuation US20180027470A1 (en) 2015-04-03 2017-10-02 Data transmission method and apparatus in time division duplex wireless data transmission system, and system

Publications (1)

Publication Number Publication Date
WO2016155006A1 true WO2016155006A1 (zh) 2016-10-06

Family

ID=57003883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075870 WO2016155006A1 (zh) 2015-04-03 2015-04-03 时分双工无线数据传输系统的数据传输方法、装置及系统

Country Status (4)

Country Link
US (1) US20180027470A1 (zh)
EP (1) EP3270631B1 (zh)
CN (1) CN106717064B (zh)
WO (1) WO2016155006A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050382A (zh) * 2018-10-12 2020-04-21 北京松果电子有限公司 点对点通信方法与装置
CN115333655A (zh) * 2022-10-10 2022-11-11 华安中云股份有限公司 自动检测干扰的方法、装置、背包基站及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495132B (zh) * 2018-11-19 2021-05-25 珠海市杰理科技股份有限公司 频点选择方法、装置、通信设备、存储介质及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367956A (zh) * 1999-04-16 2002-09-04 艾利森电话股份有限公司 采用非连续传送的码分多址系统中的功率设置
CN1399478A (zh) * 2001-07-20 2003-02-26 华为技术有限公司 全球移动通讯系统中采用上行频点扫描测量干扰的装置和方法
CN102326354A (zh) * 2009-02-24 2012-01-18 高通股份有限公司 灵活的数据和控制复用
CN103200589A (zh) * 2012-01-05 2013-07-10 中兴通讯股份有限公司 上行信道干扰监测方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522247B2 (ja) * 2001-09-26 2004-04-26 日本電気株式会社 多重転送システム及び装置
CN101005653B (zh) * 2006-01-16 2012-06-27 华为技术有限公司 基站自动进行资源选择、分配的方法和系统
US7680459B2 (en) * 2006-12-13 2010-03-16 Sony Ericsson Mobile Communications Ab FM transmission system and method
CN101431363B (zh) * 2007-11-09 2012-06-27 电信科学技术研究院 一种时分双工系统及其数据传输方法
CN101494886B (zh) * 2008-01-21 2010-09-29 联芯科技有限公司 Gsm/gprs连接模式下实现系统间频点排序的方法和装置
EP2134123A1 (en) * 2008-06-09 2009-12-16 Telefonaktiebolaget LM Ericsson (PUBL) Method and system and device for IF/IRAT measurement allocation
KR101688963B1 (ko) * 2009-12-18 2016-12-22 삼성전자주식회사 멀티밴드 무선 통신 장치 및 이의 채널 할당 방법
US9426714B2 (en) * 2012-03-30 2016-08-23 Qualcomm Incorporated Wireless communication in view of time varying interference
CN103369631A (zh) * 2012-03-31 2013-10-23 联芯科技有限公司 移动通信终端的频点排序方法和装置
CN103841579B (zh) * 2012-11-27 2017-10-31 上海贝尔股份有限公司 通信系统中用于频谱检测方法和装置
CN103269499B (zh) * 2013-05-15 2016-08-03 京信通信系统(广州)有限公司 一种检测干扰的方法及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367956A (zh) * 1999-04-16 2002-09-04 艾利森电话股份有限公司 采用非连续传送的码分多址系统中的功率设置
CN1399478A (zh) * 2001-07-20 2003-02-26 华为技术有限公司 全球移动通讯系统中采用上行频点扫描测量干扰的装置和方法
CN102326354A (zh) * 2009-02-24 2012-01-18 高通股份有限公司 灵活的数据和控制复用
CN103200589A (zh) * 2012-01-05 2013-07-10 中兴通讯股份有限公司 上行信道干扰监测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3270631A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050382A (zh) * 2018-10-12 2020-04-21 北京松果电子有限公司 点对点通信方法与装置
CN111050382B (zh) * 2018-10-12 2022-04-15 北京小米松果电子有限公司 点对点通信方法与装置
CN115333655A (zh) * 2022-10-10 2022-11-11 华安中云股份有限公司 自动检测干扰的方法、装置、背包基站及存储介质
CN115333655B (zh) * 2022-10-10 2024-03-26 华安中云股份有限公司 自动检测干扰的方法、装置、背包基站及存储介质

Also Published As

Publication number Publication date
EP3270631A4 (en) 2018-01-24
CN106717064A (zh) 2017-05-24
EP3270631B1 (en) 2019-06-19
EP3270631A1 (en) 2018-01-17
US20180027470A1 (en) 2018-01-25
CN106717064B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
US11770314B2 (en) Methods and apparatus for capturing and/or using packets to facilitate fault detection
US20200236021A1 (en) Measurements and radio link monitoring in a wireless communications system
US11095406B2 (en) Methods, systems, and media for managing network connections
JP7349444B2 (ja) ビーム障害処理方法、端末及びネットワーク機器
EP2962426B1 (en) Method and apparatus for monitoring internet connection status in wireless communication system
US10412687B2 (en) Systems and methods for cable and WLAN coexistence
CN110972171A (zh) 波束失败恢复请求传输方法、终端设备及网络设备
JP2021519030A (ja) ビーム失敗検出方法、情報配置方法、端末及びネットワーク機器
CN110708714B (zh) 波束失败检测方法、终端和网络设备
CN105191390A (zh) 多连接系统中的测量
CN109561398B (zh) Ap邻居表建立方法
WO2016155006A1 (zh) 时分双工无线数据传输系统的数据传输方法、装置及系统
US9107219B2 (en) Method and system to configure network access points
JP6016219B2 (ja) 時刻非同期を判定するための方法および装置
WO2023046161A1 (zh) 波束失败检测的方法、装置及终端
WO2014047795A1 (zh) 移动状态估计的方法和装置以及测量报告的方法和装置
CN113453266B (zh) 无线链路监测方法、终端及网络侧设备
WO2016184003A1 (zh) 一种网络模式切换方法、装置、系统及存储介质
WO2023020383A1 (zh) 信息处理方法、装置及终端
WO2023020384A1 (zh) 信息处理方法、装置及终端
WO2023108333A1 (zh) 一种失步基站确定方法和服务器
TW202318892A (zh) 波束故障檢測方法、系統及電子設備
CN105379338A (zh) Pci混淆检测的网络设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE