WO2016154871A1 - Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery - Google Patents

Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery Download PDF

Info

Publication number
WO2016154871A1
WO2016154871A1 PCT/CN2015/075439 CN2015075439W WO2016154871A1 WO 2016154871 A1 WO2016154871 A1 WO 2016154871A1 CN 2015075439 W CN2015075439 W CN 2015075439W WO 2016154871 A1 WO2016154871 A1 WO 2016154871A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
mixture
oxide
hydroxide
lithium
Prior art date
Application number
PCT/CN2015/075439
Other languages
French (fr)
Inventor
Peng Wu
Ann-Christin GENTSCHEV
Claudia LINTZ
Sung-Jin Kim
Ning Zhang
Kamelia Detig-Karlou
Fang LIAN
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to EP15886857.0A priority Critical patent/EP3278386A4/en
Priority to PCT/CN2015/075439 priority patent/WO2016154871A1/en
Publication of WO2016154871A1 publication Critical patent/WO2016154871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method of making mixed lithium oxides comprising at least one transition metal, preferably at least one of Ni, Mn, or Co.
  • Said mixed li-thium oxides may be used as active material for a cathode of a lithium ion battery.
  • the invention further relates to precursors from which said mixed lithium oxides may be made.
  • mixed lithium oxides comprising at least one transition metal such as Ni, Mn, or Co, or a mixture of two or more thereof, as active material for a positive electrode, the cathode, of a lithium ion battery.
  • Known processes for the manufacture of such mixed oxides include the preparation of suitable precursors such as oxides of Ni, Mn, or Co, or a mixture of two or more thereof. Said precursors are subsequently subjected to a lithiation reaction in order to obtain the respective mixed lithium oxides.
  • aqueous solutions of Ni, Mn, and/or Co salts such as the sul-fates may be reacted with hydroxide or carbonate ions to result in the respective hy-droxides or carbonates, which, after sintering to the respective oxides, may be further reacted with suitable lithium compounds such as lithium hydroxide to said mixed li-thium oxides.
  • suitable lithium compounds such as lithium hydroxide to said mixed li-thium oxides.
  • such processes include a mixing step of said Ni, Mn, and/or Co salts such as the sulfates, nitrates, halogenides, or oxalates, with a suitable base such as a hydroxide or carbonate. This mixing step is followed by a precipitating step in which a precursor of said mixed lithium oxide is isolated. Mixing of the sintered precursor with suitable lithium compounds and sintering at high temperature results in the mixed lithium oxide.
  • the precursor is typically prepared in the presence of ammonia or organic amines, preferably ammonia.
  • This ammonia or amines may also be generated under basic conditions from respective ammonium salts.
  • Suitable forms of ammonia or amine are ammonia or amine in water, or salts such as ammonium sulfate, ammo-nium chloride, and ammonium carbonate.
  • Urea may also be used. It is believed that such nitrogen-containing compounds act as chelating agents for M, which promote the formation of uniform and spherical particles.
  • Said chelating agents are also present in the formed precursors prior to sinter-ing. Environmental concerns arise during the sintering step due to decomposition reactions of said nitrogen-containing compounds by forming noxious compounds.
  • the known processes may be carried out in the absence of said nitrogen-containing compounds without negatively affecting the properties of the resulting precursors, respectively the mixed lithium oxides prepared therefrom.
  • the omission of said nitrogen-containing compounds results in a stoichiometry of the precursor and the mixed lithium oxide made therefrom closer to the theoretic stoichiometry compared to oxides prepared according to the known processes discussed in the Background section above.
  • This is advantageous in the application of said oxides as active material for a cathode of a lithium ion battery.
  • Such oxides may also be applied in materials having a gradient structure or having a core shell structure.
  • the invention relates to a method of making a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is selected from at least one transition metal, comprising at least steps (S1) to (S3) , optionally step (S4) , and steps (T1) to (T2) :
  • step (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
  • step (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
  • step (S4) sintering the compound isolated in step (S3) ;
  • step (T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hy-drogen carbonate, or a mixture of two or more thereof, with a product ob-tained in step (S3) or (S4) ;
  • step (T2) sintering the mixture obtained in step (T1) ;
  • any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.
  • M represents two different transition metals or three dif-ferent transition metals or four different transition metals.
  • M is selected from Ni, Mn, or Co, or two or more thereof.
  • any one of steps (S1) to (S4) or (T1) to (T2) is carried out in the presence of a compound selected from one or more of Al, Si, Mg, and B com-pounds.
  • the method comprises:
  • step (S2) precipitating a carbonate of M from the mixture obtained in step (S1) ;
  • step (S4) sintering the carbonate isolated in step (S3) .
  • the carbonate obtained in step (S3) has a tap density ⁇ 1.60 g/cm 3 measured according to DIN 53 194.
  • said compound containing a NH-moiety comprises am-monia or is ammonia.
  • the invention further relates to a carbonate of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is selected from at least one transition metal, having a tap density ⁇ 1.60 g/cm 3 measured according to DIN 53 194.
  • the invention further relates to the use of an oxide, hydroxide, hydrogen car-bonate, or carbonate, of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is at least one transition metal, wherein said oxide, hydroxide, hydrogen carbonate, or carbonate is obtained by a method comprising at least steps (S1) to (S3) , and optionally (S4) :
  • step (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
  • step (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
  • step (S4) sintering the compound isolated in step (S3) ;
  • any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety
  • a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B.
  • Fig. 1 the residual transition metal concentration (Ni, Mn, Co) (y-axis) in solution as a function of pH (x-axis) in reaction medium in the absence of ammonia;
  • Fig. 2 the residual transition metal concentration (Ni, Mn, Co) (y-axis) in solution as a function of pH (x-axis) in reaction medium in the presence of 0.2 mol/L ammonia;
  • Fig. 3 the residual transition metal concentration (Ni) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
  • Fig. 4 the residual transition metal concentration (Mn) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
  • Fig. 5 the residual transition metal concentration (Co) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
  • Fig. 6 the particle size distribution of a (Ni 0.25 Mn 0.75 ) CO 3 precursor at various con-centrations of ammonia (y-axis: area in %; x-axis: particle size diameter in ⁇ m) .
  • the invention relates to a method of making an oxide of M, wherein M is at least one transition metal, comprising at least step (S0) :
  • step (S0) is carried out in the absence of a compound containing a NH-moiety.
  • oxide of M, wherein M is at least one transition metal encompasses oxides of one or more transition metals.
  • transition metal as used in this disclosure encompasses the transi-tion metals having atomic numbers of from 21 to 30, 39 to 48, and 71 to 80, as de-fined in the Periodic Table.
  • the transition metal is selected from transition metals having atom-ic numbers of from 21 to 30, further preferably from one or more of the following tran-sition metals: Sc, V, Cr, Mn, Fe, Co, Ni or Cu.
  • the transition metal is selected from one or more of the fol-lowing transition metals: Mn, Fe, Co, Ni or Cu.
  • transition metals are selected from Mn, Co, and Ni.
  • said term “oxide of M, wherein M is at least one transition metal” encompasses oxides of the individual elements Ni, Mn, or Co.
  • the mixed oxide is an oxide of Ni with Mn, or Ni with Co, or Mn with Co.
  • the mixed oxide is an oxide of Ni with Mn and Co.
  • M represents two different transition metals or three dif-ferent transition metals M 1 and M 2 or M 1 , M 2 and M 3 .
  • the oxide of M may be doped with one or more of Al, Si, Mg, or B, preferably in the form of oxides.
  • compound containing a NH-moiety as used in this disclosure en-compasses any compound containing a NH-moiety. Accordingly, said NH-moiety may be bound to any other element of the Periodic Table. Representative com-pounds are those defined in the Background section, preferably compounds such as ammonia, or protonated ammonia.
  • protonated ammonia as used in this disclosure encompasses salts such as ammonium sulfate, ammonium chloride, and ammonium carbonate.
  • said compound containing a NH-moiety comprises ammonia or is ammonia.
  • compound containing a NH-moiety as used in this disclosure en-compasses a “compound containing a C-NH-moiety” .
  • compound contain-ing a C-NH-moiety as used in this disclosure encompasses any compound contain-ing at least one carbon atom to which a NH-group is bound.
  • Representative com-pounds are amines or urea, or protonated amines or protonated urea in the form of salts.
  • the term “compound containing a NH-moiety” comprises a compound R 1 R 2 R 3 N, wherein R 1 , R 2 , and R 3 are independently selected from H, C 1 -C 20 alkyl, and phenyl, optionally substituted with C 1 -C 20 alkyl.
  • the term “compound containing a NH-moiety” com-prises a compound R 1 R 2 R 3 R 4 N + X - , wherein R 1 , R 2 , R 3 , and R 4 and are independently selected from H, C 1 -C 20 alkyl, and phenyl, optionally substituted with C 1 -C 20 alkyl.
  • X - may be selected from OH - , Cl - , Br - , AcO - , HCO3 - , CO 3 2- , or other anions.
  • said step (S0) comprises at least steps (S1) and (S2) :
  • step (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) .
  • a composition comprising water and at least one ca-tion of at least one M is mixed with a composition comprising water and at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and car-bonate, or a mixture of two or more thereof.
  • composition comprising water and at least one cation of at least one M encompasses a water-soluble salt of said at least one M.
  • water-soluble salt of M encompasses any salt of said at least one M having a solubility of at least 1 g per 100 g water.
  • Preferred salts are inorganic salts such as halogenides, nitrates, sulfates, or organic salts such as formiates or acetates or oxalates.
  • composition comprising at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and carbonate
  • composition comprising at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and carbonate” as used in this disclo-sure encompasses aqueous bases of said hydroxides, hydrogen carbonates and carbonates, or mixtures of two or more thereof.
  • Suitable cations are preferably se-lected from alkali metal such as sodium and potassium.
  • the mixing in step (S1) is carried out at a temperature of from 10 °C to 30 °C.
  • step (S2) if in step (S2) the temperature is raised above 30 °C, a water-insoluble compound starts precipitating.
  • said compound is an oxide, a hydroxide, a hydrogen carbonate or a carbonate, or a mixture of two or more thereof, of said at least one M.
  • the temperature of step (S2) is in the range of from 35 to 80 °C, more preferred of from 40 to 70 °C.
  • the method further comprises step (S3) :
  • step (S3) isolating said compound precipitated in step (S2) .
  • Said isolation according to step (S3) may be carried out according to methods which are well known in the art.
  • said isolation may be performed by filtra-tion or centrifugation.
  • step (S3) may be subjected to a drying step.
  • drying may be carried out at a temperature in the range of from 40 to 80 °C.
  • said method further comprises step (S4) :
  • step (S4) sintering the compound isolated in step (S3) .
  • Step (S4) removes water and, if carbonates and/or hydrogen carbonates are present in the product formed in step (S3) , carbon dioxide.
  • Suitable sintering temperatures are ⁇ 100 °C, preferably in the range of from 200 to 900 °C, more preferred from 300 to 800 °C, still more preferred from 400 to 700 °C.
  • said sintering may be carried out in a suitable device such as a muffle furnace.
  • sintering is performed for a period of time in the range of from 4 to 10 h such as 6 h.
  • sintering may be carried out in air or oxygen. This further supports the formation of oxides.
  • step (S0) comprises:
  • Step (S0) of this specific embodiment further comprises at least steps (S1) to (S3) and optionally step (S4) :
  • step (S2) precipitating a carbonate of M from the mixture obtained in step (S1) .
  • step (S4) sintering the carbonate isolated in step (S3) .
  • the oxide obtained in step (S4) according to the invention has a composition which is very close to the desired theoretical stoi-chiometry such as LiMO 2 or Li (M 1 M 2 ) O 2 or Li (M 1 M 2 M 3 ) O 2 , wherein the sum of M 1 and M 2 or M 1 and M 2 and M 3 equals to one metal equivalent, respectively.
  • Compounds such as LiM 2 O 4 may also be prepared.
  • the compounds may be doped with one or more of Al, Si, Mg, or B.
  • Fig. 1 shows the residual transition metal concentration in the solution of step (S2) of the specific embodiment after isolation of the carbonate of M according to step (S3) as a function of pH in reaction medium in the absence of ammonia.
  • Fig. 2 shows the residual transition metal concentration in the solution of step (S2) as a function of pH in reaction medium in the presence of 0.2 mol/L ammonia. It is evident that for a pH above about 7 the amount of precipitated carbonate increases when ammonia decreases.
  • Fig. 3 to 5 show that the residual transition metal concentration in the solution increases when ammonia concentration increases.
  • the yield of carbonate pre-cursor isolated in step (S3) may be increased under ammonia-free conditions com-pared to ammonia-containing conditions.
  • the dried carbonate precursor synthesized under ammonia-free conditions shows larger particle sizes in terms of D90, D50 and D10 measured with laser diffraction, and a higher tap density measured according to DIN 53 194 com-pared to ammonia-containing conditions. This is advantageous in energy applications since a high electrode density can be achieved.
  • Such an application is e.g. the appli-cation as active material for the positive electrode in lithium ion batteries.
  • the carbonate obtained in step (S3) has a tap density ⁇ 1.60 g/cm 3 measured according to DIN 53 194.
  • the carbo-nate is a carbonate of Mn, Co, or Ni, or a mixed carbonate of Mn, Co and Ni.
  • the invention relates to a carbonate of M hav-ing a tap density ⁇ 1.60 g/cm 3 measured according to DIN 53 194.
  • the carbonate is a carbonate of Mn, Co, or Ni, or a mixed carbonate of Mn, Co and Ni.
  • the product obtained according to step (S3) or (S4) as defined in the first aspect or the carbonate defined in the second aspect is mixed with suitable lithium compounds. Subsequently to the mixing, the generated composition is sub-jected to a sintering step.
  • Suitable lithium compounds are preferably selected from lithium oxide, lithium hydroxide, lithium carbonate, or lithium hydrogen carbonate, or a mixture of two or more thereof.
  • Lithium hydroxide may be employed in hydrated form such as LiOH*H 2 O.
  • the invention relates to a method of making a mixed oxide comprising at least Li and at least one M, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, from the oxide obtained according to the method defined in the first aspect or the carbonate defined in the second aspect, comprising:
  • step (T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hy-drogen carbonate, or a mixture of two or more thereof, with a product ob-tained in step (S3) or (S4) obtained according to the method as defined in the first aspect; or the carbonate defined in the second aspect;
  • step (T2) sintering the mixture obtained in step (T1) .
  • sintering according to step (T2) is carried out at a tem-perature ⁇ 500 °C, preferably of from 500 to 1, 500 °C, more preferred of from 600 to 1,400 °C, and still more preferred of from 700 to 1, 100 °C.
  • sin-tering is performed at a temperature of 900 °C. If desired, sintering may be carried out in air or oxygen. This further supports the formation of the mixed oxides.
  • suitable compounds based on compounds se-lected from Al, Si, Mg, and B compounds may be present in any one of steps (S0) , (S1) , (S2) , (S3) , (S4) , (T1) or (T2) .
  • Suitable compounds are e.g. oxides or haloge-nides.
  • any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.
  • the invention relates to a method of making a mixed oxide comprising at least Li and at least one M, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, wherein the oxide employed in step (T1) is obtained by a process comprising:
  • step (S2) precipitating a carbonate of M from the mixture obtained in step (S1) .
  • step (S4) sintering the carbonate isolated in step (S3) .
  • the mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, obtained according to the method as defined in the third aspect, may be processed as an active material for a cathode of a lithium battery.
  • active material encompasses the materi-al which reversibly may absorb or may release lithium ions.
  • cathode as used in this disclosure encompasses the electrode which may absorb electrons upon discharging the battery.
  • lithium battery encompasses terms such as “lithium ion battery” , “secondary lithium ion battery” , or “lithium ion accumulator” , i.e. a rechargeable lithium ion battery.
  • the invention relates to the use of an oxide, hy-droxide, hydrogen carbonate, or carbonate, of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is at least one transition metal, wherein said oxide, hy-droxide, hydrogen carbonate, or carbonate is obtained by a method comprising at least steps (S1) to (S3) , and optionally (S4) :
  • step (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
  • step (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
  • step (S4) sintering the compound isolated in step (S3) ;
  • any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety
  • a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Method of making a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is selected from at least one transition metal, comprising at least steps (S1) to (S3), and optionally step (S4), and steps (T1) to (T2): (S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof; (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1); (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2); (S4) optionally, sintering the compound isolated in step (S3); (T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hydrogen carbonate, or a mixture of two or more thereof, with a product obtained in step (S3) or (S4); (T2) sintering the mixture obtained in step (T1); with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.

Description

METHOD OF MAKING MIXED LITHIUM OXIDES SUITABLE AS ACTIVE MATERIAL FOR A POSITIVE ELECTRODE IN A LITHIUM ION BATTERY FIELD OF THE INVENTION
The invention relates to a method of making mixed lithium oxides comprising at least one transition metal, preferably at least one of Ni, Mn, or Co. Said mixed li-thium oxides may be used as active material for a cathode of a lithium ion battery. The invention further relates to precursors from which said mixed lithium oxides may be made.
BACKGROUND OF THE INVENTION
It is known to use mixed lithium oxides comprising at least one transition metal such as Ni, Mn, or Co, or a mixture of two or more thereof, as active material for a positive electrode, the cathode, of a lithium ion battery. Known processes for the manufacture of such mixed oxides include the preparation of suitable precursors such as oxides of Ni, Mn, or Co, or a mixture of two or more thereof. Said precursors are subsequently subjected to a lithiation reaction in order to obtain the respective mixed lithium oxides.
For instance, aqueous solutions of Ni, Mn, and/or Co salts such as the sul-fates may be reacted with hydroxide or carbonate ions to result in the respective hy-droxides or carbonates, which, after sintering to the respective oxides, may be further reacted with suitable lithium compounds such as lithium hydroxide to said mixed li-thium oxides. Typically, such processes include a mixing step of said Ni, Mn, and/or Co salts such as the sulfates, nitrates, halogenides, or oxalates, with a suitable base such as a hydroxide or carbonate. This mixing step is followed by a precipitating step in which a precursor of said mixed lithium oxide is isolated. Mixing of the sintered precursor with suitable lithium compounds and sintering at high temperature results in the mixed lithium oxide.
The precursor is typically prepared in the presence of ammonia or organic amines, preferably ammonia. This ammonia or amines may also be generated under basic conditions from respective ammonium salts. Suitable forms of ammonia or amine are ammonia or amine in water, or salts such as ammonium sulfate, ammo-nium chloride, and ammonium carbonate. Urea may also be used. It is believed that such nitrogen-containing compounds act as chelating agents for M, which promote the formation of uniform and spherical particles.
Said chelating agents are also present in the formed precursors prior to sinter-ing. Environmental concerns arise during the sintering step due to decomposition reactions of said nitrogen-containing compounds by forming noxious compounds.
OBJECTS OF THE INVENTION
It is the object of the present invention to develop a process which is at least more environ-friendly than the hitherto known processes.
SUMMARY OF THE INVENTION
It has been discovered that the known processes may be carried out in the absence of said nitrogen-containing compounds without negatively affecting the properties of the resulting precursors, respectively the mixed lithium oxides prepared therefrom. Surprisingly, the omission of said nitrogen-containing compounds results in a stoichiometry of the precursor and the mixed lithium oxide made therefrom closer to the theoretic stoichiometry compared to oxides prepared according to the known processes discussed in the Background section above. This is advantageous in the application of said oxides as active material for a cathode of a lithium ion battery. Such oxides may also be applied in materials having a gradient structure or having a core shell structure.
The invention relates to a method of making a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is selected from  at least one transition metal, comprising at least steps (S1) to (S3) , optionally step (S4) , and steps (T1) to (T2) :
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se-lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
(S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
(S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
(S4) sintering the compound isolated in step (S3) ;
(T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hy-drogen carbonate, or a mixture of two or more thereof, with a product ob-tained in step (S3) or (S4) ;
(T2) sintering the mixture obtained in step (T1) ;
with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.
In one embodiment, M represents two different transition metals or three dif-ferent transition metals or four different transition metals.
In one embodiment, M is selected from Ni, Mn, or Co, or two or more thereof.
In one embodiment, any one of steps (S1) to (S4) or (T1) to (T2) is carried out in the presence of a compound selected from one or more of Al, Si, Mg, and B com-pounds.
In a more specific embodiment, the method comprises:
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and a carbonate;
(S2) precipitating a carbonate of M from the mixture obtained in step (S1) ;
(S3) isolating the carbonate of M precipitated in step (S2) ;
(S4) sintering the carbonate isolated in step (S3) .
In one embodiment, the carbonate obtained in step (S3) has a tap density ≥ 1.60 g/cm3 measured according to DIN 53 194.
In one embodiment, said compound containing a NH-moiety comprises am-monia or is ammonia.
The invention further relates to a carbonate of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is selected from at least one transition metal, having a tap density ≥ 1.60 g/cm3 measured according to DIN 53 194.
The invention further relates to the use of an oxide, hydroxide, hydrogen car-bonate, or carbonate, of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is at least one transition metal, wherein said oxide, hydroxide, hydrogen carbonate, or carbonate is obtained by a method comprising at least steps (S1) to (S3) , and optionally (S4) :
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se-lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
(S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
(S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
(S4) sintering the compound isolated in step (S3) ;
with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety,
for the manufacture of a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B.
BRIEF DESCRIPTION OF THE FIGURES
In the figures show
Fig. 1 the residual transition metal concentration (Ni, Mn, Co) (y-axis) in solution as a function of pH (x-axis) in reaction medium in the absence of ammonia;
Fig. 2 the residual transition metal concentration (Ni, Mn, Co) (y-axis) in solution as a function of pH (x-axis) in reaction medium in the presence of 0.2 mol/L ammonia;
Fig. 3 the residual transition metal concentration (Ni) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
Fig. 4 the residual transition metal concentration (Mn) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
Fig. 5 the residual transition metal concentration (Co) (y-axis) in solution as a func-tion of pH (x-axis) in reaction medium in the presence of ammonia in different concentrations;
Fig. 6 the particle size distribution of a (Ni0.25Mn0.75) CO3 precursor at various con-centrations of ammonia (y-axis: area in %; x-axis: particle size diameter in μm) .
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect, the invention relates to a method of making an oxide of M, wherein M is at least one transition metal, comprising at least step (S0) :
(S0) reacting a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion  selected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
with the proviso that step (S0) is carried out in the absence of a compound containing a NH-moiety.
The term “oxide of M, wherein M is at least one transition metal” as used in this disclosure encompasses oxides of one or more transition metals.
The term “transition metal” as used in this disclosure encompasses the transi-tion metals having atomic numbers of from 21 to 30, 39 to 48, and 71 to 80, as de-fined in the Periodic Table.
Preferably, the transition metal is selected from transition metals having atom-ic numbers of from 21 to 30, further preferably from one or more of the following tran-sition metals: Sc, V, Cr, Mn, Fe, Co, Ni or Cu.
Further preferably, the transition metal is selected from one or more of the fol-lowing transition metals: Mn, Fe, Co, Ni or Cu.
Still more preferred transition metals are selected from Mn, Co, and Ni.
In one embodiment, said term “oxide of M, wherein M is at least one transition metal” encompasses oxides of the individual elements Ni, Mn, or Co.
In another embodiment, the mixed oxide is an oxide of Ni with Mn, or Ni with Co, or Mn with Co.
In still another embodiment, the mixed oxide is an oxide of Ni with Mn and Co.
In one embodiment, M represents two different transition metals or three dif-ferent transition metals M1 and M2 or M1, M2 and M3.
The oxide of M may be doped with one or more of Al, Si, Mg, or B, preferably in the form of oxides.
The term “compound containing a NH-moiety” as used in this disclosure en-compasses any compound containing a NH-moiety. Accordingly, said NH-moiety may be bound to any other element of the Periodic Table. Representative com-pounds are those defined in the Background section, preferably compounds such as ammonia, or protonated ammonia. The term “protonated ammonia” as used in this disclosure encompasses salts such as ammonium sulfate, ammonium chloride, and ammonium carbonate. In one embodiment, said compound containing a NH-moiety comprises ammonia or is ammonia.
The term “compound containing a NH-moiety” as used in this disclosure en-compasses a “compound containing a C-NH-moiety” . The term “compound contain-ing a C-NH-moiety” as used in this disclosure encompasses any compound contain-ing at least one carbon atom to which a NH-group is bound. Representative com-pounds are amines or urea, or protonated amines or protonated urea in the form of salts.
In one embodiment, the term “compound containing a NH-moiety” comprises a compound R1R2R3N, wherein R1, R2, and R3 are independently selected from H, C1-C20 alkyl, and phenyl, optionally substituted with C1-C20 alkyl.
In another embodiment, the term “compound containing a NH-moiety” com-prises a compound R1R2R3R4N+X-, wherein R1, R2, R3, and R4 and are independently selected from H, C1-C20 alkyl, and phenyl, optionally substituted with C1-C20 alkyl. X-may be selected from OH-, Cl-, Br-, AcO-, HCO3-, CO3 2-, or other anions.
In one embodiment, said step (S0) comprises at least steps (S1) and (S2) :
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se- lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
(S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) .
According to step (S1) , a composition comprising water and at least one ca-tion of at least one M is mixed with a composition comprising water and at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and car-bonate, or a mixture of two or more thereof.
The term “composition comprising water and at least one cation of at least one M”as used in this disclosure encompasses a water-soluble salt of said at least one M.
The term “water-soluble salt of M” as used in this disclosure encompasses any salt of said at least one M having a solubility of at least 1 g per 100 g water.
Preferred salts are inorganic salts such as halogenides, nitrates, sulfates, or organic salts such as formiates or acetates or oxalates.
The term “composition comprising at least one anion selected from the group consisting of hydroxide, hydrogen carbonate, and carbonate” as used in this disclo-sure encompasses aqueous bases of said hydroxides, hydrogen carbonates and carbonates, or mixtures of two or more thereof. Suitable cations are preferably se-lected from alkali metal such as sodium and potassium.
In one embodiment, the mixing in step (S1) is carried out at a temperature of from 10 ℃ to 30 ℃.
Typically, if in step (S2) the temperature is raised above 30 ℃, a water-insoluble compound starts precipitating. Preferably, said compound is an oxide, a  hydroxide, a hydrogen carbonate or a carbonate, or a mixture of two or more thereof, of said at least one M.
In one embodiment, the temperature of step (S2) is in the range of from 35 to 80 ℃, more preferred of from 40 to 70 ℃.
In one embodiment, the method further comprises step (S3) :
(S3) isolating said compound precipitated in step (S2) .
Said isolation according to step (S3) may be carried out according to methods which are well known in the art. Preferably, said isolation may be performed by filtra-tion or centrifugation.
If desired, the product obtained in step (S3) may be subjected to a drying step. In one embodiment, drying may be carried out at a temperature in the range of from 40 to 80 ℃.
In one embodiment, said method further comprises step (S4) :
(S4) sintering the compound isolated in step (S3) .
Step (S4) removes water and, if carbonates and/or hydrogen carbonates are present in the product formed in step (S3) , carbon dioxide.
Suitable sintering temperatures are ≥ 100 ℃, preferably in the range of from 200 to 900 ℃, more preferred from 300 to 800 ℃, still more preferred from 400 to 700 ℃. In one embodiment, said sintering may be carried out in a suitable device such as a muffle furnace.
In one embodiment, sintering is performed for a period of time in the range of from 4 to 10 h such as 6 h.
If desired, sintering may be carried out in air or oxygen. This further supports the formation of oxides.
In a specific embodiment, step (S0) comprises:
(S0) reacting a composition comprising water and at least one cation of at least one M with a composition comprising water and a carbonate.
Step (S0) of this specific embodiment further comprises at least steps (S1) to (S3) and optionally step (S4) :
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and a carbonate;
(S2) precipitating a carbonate of M from the mixture obtained in step (S1) .
(S3) isolating the carbonate of M precipitated in step (S2) .
(S4) sintering the carbonate isolated in step (S3) .
Using appropriate ratios of M and Li, the oxide obtained in step (S4) according to the invention has a composition which is very close to the desired theoretical stoi-chiometry such as LiMO2 or Li (M1M2) O2 or Li (M1M2M3) O2, wherein the sum of M1 and M2 or M1 and M2 and M3 equals to one metal equivalent, respectively. Compounds such as LiM2O4 may also be prepared. In one embodiment, the compounds may be doped with one or more of Al, Si, Mg, or B.
Fig. 1 shows the residual transition metal concentration in the solution of step (S2) of the specific embodiment after isolation of the carbonate of M according to step (S3) as a function of pH in reaction medium in the absence of ammonia. Fig. 2 shows the residual transition metal concentration in the solution of step (S2) as a function of pH in reaction medium in the presence of 0.2 mol/L ammonia. It is evident that for a pH above about 7 the amount of precipitated carbonate increases when ammonia decreases.
Fig. 3 to 5 show that the residual transition metal concentration in the solution increases when ammonia concentration increases. Thus, the yield of carbonate pre-cursor isolated in step (S3) may be increased under ammonia-free conditions com-pared to ammonia-containing conditions.
Furthermore, the dried carbonate precursor synthesized under ammonia-free conditions shows larger particle sizes in terms of D90, D50 and D10 measured with laser diffraction, and a higher tap density measured according to DIN 53 194 com-pared to ammonia-containing conditions. This is advantageous in energy applications since a high electrode density can be achieved. Such an application is e.g. the appli-cation as active material for the positive electrode in lithium ion batteries. The results are summarized in the following table:
Figure PCTCN2015075439-appb-000001
Accordingly, in one embodiment, the carbonate obtained in step (S3) has a tap density ≥ 1.60 g/cm3 measured according to DIN 53 194. Preferably, the carbo-nate is a carbonate of Mn, Co, or Ni, or a mixed carbonate of Mn, Co and Ni.
According to a second aspect, the invention relates to a carbonate of M hav-ing a tap density ≥ 1.60 g/cm3 measured according to DIN 53 194. Preferably, the carbonate is a carbonate of Mn, Co, or Ni, or a mixed carbonate of Mn, Co and Ni.
In order to obtain a mixed oxide comprising at least Li and M, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, the product obtained according to step (S3) or (S4) as defined in the first aspect or the carbonate defined in the second aspect is mixed with suitable  lithium compounds. Subsequently to the mixing, the generated composition is sub-jected to a sintering step.
Suitable lithium compounds are preferably selected from lithium oxide, lithium hydroxide, lithium carbonate, or lithium hydrogen carbonate, or a mixture of two or more thereof. Lithium hydroxide may be employed in hydrated form such as LiOH*H2O.
Thus, according to a third aspect, the invention relates to a method of making a mixed oxide comprising at least Li and at least one M, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, from the oxide obtained according to the method defined in the first aspect or the carbonate defined in the second aspect, comprising:
(T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hy-drogen carbonate, or a mixture of two or more thereof, with a product ob-tained in step (S3) or (S4) obtained according to the method as defined in the first aspect; or the carbonate defined in the second aspect;
(T2) sintering the mixture obtained in step (T1) .
In one embodiment, sintering according to step (T2) is carried out at a tem-perature ≥ 500 ℃, preferably of from 500 to 1, 500 ℃, more preferred of from 600 to 1,400 ℃, and still more preferred of from 700 to 1, 100 ℃. In one embodiment, sin-tering is performed at a temperature of 900 ℃. If desired, sintering may be carried out in air or oxygen. This further supports the formation of the mixed oxides.
In one embodiment, further suitable compounds based on compounds se-lected from Al, Si, Mg, and B compounds may be present in any one of steps (S0) , (S1) , (S2) , (S3) , (S4) , (T1) or (T2) . Suitable compounds are e.g. oxides or haloge-nides.
In a further embodiment, any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.
In one embodiment, the invention relates to a method of making a mixed oxide comprising at least Li and at least one M, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, wherein the oxide employed in step (T1) is obtained by a process comprising:
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and a carbonate;
(S2) precipitating a carbonate of M from the mixture obtained in step (S1) .
(S3) isolating the carbonate of M precipitated in step (S2) .
(S4) sintering the carbonate isolated in step (S3) .
The mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is at least one transition metal, preferably selected from Ni, Mn, or Co, or a mixture of two or more thereof, obtained according to the method as defined in the third aspect, may be processed as an active material for a cathode of a lithium battery.
The term “active material” as used in this disclosure encompasses the materi-al which reversibly may absorb or may release lithium ions.
The term “cathode” as used in this disclosure encompasses the electrode which may absorb electrons upon discharging the battery.
The term “lithium battery” as used in this disclosure encompasses terms such as “lithium ion battery” , “secondary lithium ion battery” , or “lithium ion accumulator” , i.e. a rechargeable lithium ion battery.
According to a fourth aspect, the invention relates to the use of an oxide, hy-droxide, hydrogen carbonate, or carbonate, of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is at least one transition metal, wherein said oxide, hy-droxide, hydrogen carbonate, or carbonate is obtained by a method comprising at least steps (S1) to (S3) , and optionally (S4) :
(S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se-lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
(S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
(S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
(S4) sintering the compound isolated in step (S3) ;
with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety,
for the manufacture of a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B.

Claims (9)

  1. Method of making a mixed oxide comprising at least Li and M, and optionally one or more of Al, Si, Mg, and B, wherein M is selected from at least one transi-tion metal, comprising at least steps (S1) to (S3) , and optionally step (S4) , and steps (T1) to (T2) :
    (S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se-lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
    (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
    (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
    (S4) sintering the compound isolated in step (S3) ;
    (T1) mixing a lithium oxide, lithium hydroxide, lithium carbonate or lithium hy-drogen carbonate, or a mixture of two or more thereof, with a product ob-tained in step (S3) or (S4) ;
    (T2) sintering the mixture obtained in step (T1) .
    with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety.
  2. Method of claim 1, wherein M represents two different transition metals or three different transition metals or four different transition metals.
  3. Method of claim 1 or 2, wherein M is selected from Ni, Mn, or Co, or two or more thereof.
  4. Method of any one of the preceding claims, wherein any one of steps (S1) to (S4) or (T1) to (T2) is carried out in the presence of a compound selected from one or more of Al, Si, Mg, and B compounds.
  5. Method of any one of the preceding claims, comprising:
    (S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and a carbonate;
    (S2) precipitating a carbonate of M from the mixture obtained in step (S1) ;
    (S3) isolating the carbonate of M precipitated in step (S2) ;
    (S4) sintering the carbonate isolated in step (S3) .
  6. Method of claim 5, wherein the carbonate obtained in step (S3) has a tap densi-ty ≥ 1.60 J/cm3 measured according to DIN 53 194.
  7. Method of any one of the preceding claims, wherein said compound containing a NH-moiety comprises ammonia or is ammonia.
  8. Carbonate of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is selected from at least one transition metal, having a tap density ≥ 1.60 g/cm3 measured according to DIN 53 194.
  9. Use of an oxide, hydroxide, hydrogen carbonate, or carbonate, of M, optionally containing one or more of Al, Si, Mg, or B, wherein M is at least one transition metal, wherein said oxide, hydroxide, hydrogen carbonate, or carbonate is ob-tained by a method comprising at least steps (S1) to (S3) , and optionally step (S4) :
    (S1) mixing a composition comprising water and at least one cation of at least one M with a composition comprising water and at least one anion se-lected from the group consisting of hydroxide, hydrogen carbonate, and carbonate, or a mixture of two or more thereof;
    (S2) precipitating an oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M from the mixture obtained in step (S1) ;
    (S3) isolating said oxide or hydroxide or hydrogen carbonate or carbonate, or a mixture of two or more thereof, of M precipitated in step (S2) ;
    (S4) sintering the compound isolated in step (S3) ;
    with the proviso that any one of steps (S1) to (S4) is carried out in the absence of a compound containing a NH-moiety,
    for the manufacture of a mixed oxide comprising at least Li and M, and optional-ly one or more of Al, Si, Mg, and B.
PCT/CN2015/075439 2015-03-31 2015-03-31 Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery WO2016154871A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15886857.0A EP3278386A4 (en) 2015-03-31 2015-03-31 Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery
PCT/CN2015/075439 WO2016154871A1 (en) 2015-03-31 2015-03-31 Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075439 WO2016154871A1 (en) 2015-03-31 2015-03-31 Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery

Publications (1)

Publication Number Publication Date
WO2016154871A1 true WO2016154871A1 (en) 2016-10-06

Family

ID=57005380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075439 WO2016154871A1 (en) 2015-03-31 2015-03-31 Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery

Country Status (2)

Country Link
EP (1) EP3278386A4 (en)
WO (1) WO2016154871A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707251A (en) * 2008-11-28 2010-05-12 松下电器产业株式会社 Method for manufacturing lithium-contained composite oxide and nonaqueous secondary cell
US7939202B2 (en) * 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495774C (en) * 2003-11-17 2009-06-03 松下电器产业株式会社 Non-aqueous electrolyte secondary cell
CN103298746B (en) * 2011-01-10 2016-11-02 巴斯夫欧洲公司 The method preparing transition metal carbonate
JP5732638B2 (en) * 2011-05-23 2015-06-10 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Method for producing positive electrode material for lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939202B2 (en) * 2008-02-04 2011-05-10 Panasonic Corporation Method for producing lithium-containing transition metal oxide
CN101707251A (en) * 2008-11-28 2010-05-12 松下电器产业株式会社 Method for manufacturing lithium-contained composite oxide and nonaqueous secondary cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278386A4 *

Also Published As

Publication number Publication date
EP3278386A4 (en) 2018-09-12
EP3278386A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP7194185B2 (en) Processes for the preparation of various metal hydroxides and oxides and their derivatives
TWI591883B (en) Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
KR102322728B1 (en) Precursor for cathode material with improved secondary battery performance and method for preparing the precursor
KR102136961B1 (en) Nitrate process for manufacturing transition metal hydroxide precursors
WO2016103975A1 (en) Nickel cobalt manganese composite hydroxide and method for producing same
CN112331840B (en) Nickel-cobalt-rich high-entropy ceramic cathode material for lithium ion battery and preparation method thereof
KR20170119691A (en) High capacity nickel-cobalt based lithium ion cathode material and its manufacturing method
JP5083668B2 (en) Spherical manganese carbonate precipitation method and product produced thereby
JP2009536437A (en) Method for preparing high performance lithium secondary battery material
JP2020511757A5 (en)
JP7507758B2 (en) Method for producing nickel composite hydroxide
WO2017058650A9 (en) Cathode-active materials, their precursors, and methods of preparation
JP3830586B2 (en) Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
CN112054182A (en) Nickel cobalt lithium manganate ternary precursor and preparation method thereof, and nickel cobalt lithium manganate positive electrode material
CN107074586B (en) Nickel-lithium metal composite oxide, and production method and application thereof
WO2016154871A1 (en) Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery
KR101957706B1 (en) Recovering method of lithium from lithium-manganese oxide
CN114728808A (en) Method for producing cathode material for rechargeable lithium battery
KR101879324B1 (en) Positive active material precursor for rechargeable lithium battery and manufacturing method thereof
JP4177760B2 (en) Manufacturing process of cathode material for lithium battery
KR20190084617A (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia
JP2013230966A (en) Metal-substituted trimanganese tetraoxide and method for producing the same, and method for producing lithium manganese complex oxide using the same
KR20200031361A (en) Preparation method for nickel oxide nanoparticles
WO2016154872A1 (en) Method of making mixed lithium oxides suitable as active material for a positive electrode in a lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886857

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015886857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE