WO2016154809A1 - 获取波束标识的方法、装置、设备和系统 - Google Patents

获取波束标识的方法、装置、设备和系统 Download PDF

Info

Publication number
WO2016154809A1
WO2016154809A1 PCT/CN2015/075249 CN2015075249W WO2016154809A1 WO 2016154809 A1 WO2016154809 A1 WO 2016154809A1 CN 2015075249 W CN2015075249 W CN 2015075249W WO 2016154809 A1 WO2016154809 A1 WO 2016154809A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
identifier
base station
frequency resource
time
Prior art date
Application number
PCT/CN2015/075249
Other languages
English (en)
French (fr)
Inventor
王婷
李元杰
张健
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201811077217.7A priority Critical patent/CN108964732B/zh
Priority to EP15886796.0A priority patent/EP3264626B1/en
Priority to CN201911035995.4A priority patent/CN110971274B/zh
Priority to CN201580071839.7A priority patent/CN107113031B/zh
Priority to PCT/CN2015/075249 priority patent/WO2016154809A1/zh
Publication of WO2016154809A1 publication Critical patent/WO2016154809A1/zh
Priority to US15/716,851 priority patent/US10750511B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, a device, and a system for acquiring a beam identifier.
  • the beam refers to the shape formed by the electromagnetic wave emitted by the antenna on the surface of the earth.
  • the width of the beam is determined by the antenna gain. The larger the antenna gain, the smaller the beam width, that is, the narrower the beam.
  • the signal emitted by the base station antenna is easily absorbed and scattered by obstacles such as rain, fog, and building during propagation, resulting in large path loss.
  • the base station can use a MIMO (Multiple Input Multiple Output) technology to transmit signals using multiple antennas to form a high antenna gain.
  • MIMO Multiple Input Multiple Output
  • the base station forms a very narrow beam while forming a very high antenna gain, so that the coverage of a single beam is small.
  • the base station needs to transmit signals through multiple beams. Even if the synchronization signal, the broadcast signal or the control signal needs to be transmitted by using a beam, the user equipment needs to determine the beam it is currently in, and thus communicate better with the base station. However, for any user equipment in the coverage of the signal, even if the user equipment detects the signal sent by the base station, it cannot determine which beam the current beam is, and the user equipment cannot inform the base station of the beam, the base station. Nor can it communicate further with the user equipment. Therefore, how to determine the current beam of the user equipment according to the signal sent by the base station becomes a problem to be solved.
  • the embodiment of the invention provides a method, device, device and system for acquiring a beam identifier.
  • the technical solution is as follows:
  • a method for obtaining a beam identification comprising:
  • the base station determines a signal corresponding to the beam identifier
  • the base station sends the signal by using the beam to identify the corresponding beam, so that the user equipment that detects the signal acquires the beam identifier according to the signal;
  • the base station receives the beam identifier that is fed back by the user equipment, the beam is identified by the beam to communicate with the user equipment.
  • the determining, by the base station, the signal corresponding to the beam identifier includes:
  • the base station scrambles the first signal according to the beam identifier to obtain a second signal.
  • the base station scrambles the first signal to obtain a second signal, including:
  • the base station When the first signal is a secondary synchronization signal, the base station generates a scrambling sequence according to the beam identifier; or the base station generates a scrambling sequence according to the beam identifier and the total number of beams;
  • the base station scrambles the first signal according to the generated scrambling sequence to obtain the second signal.
  • the performing, by the base station, the scrambling sequence according to the beam identifier includes:
  • the base station generates a scrambling sequence according to the beam identifier by applying the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station performs scrambling on the first signal according to the generated scrambling sequence to obtain the second signal.
  • the base station performs scrambling on the first signal according to the generated scrambling sequence by applying the following formula. Obtaining the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the auxiliary The subframe in which the synchronization signal is located
  • the base station in a fifth possible implementation manner of the first aspect, generates a scrambling sequence according to the beam identifier and the total number of beams, including:
  • the base station generates a scrambling sequence by applying the following formula according to the beam identifier and the total number of the beams:
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station performs scrambling on the first signal according to the generated scrambling sequence to obtain the second signal.
  • the base station performs scrambling on the first signal according to the generated scrambling sequence by using the following formula to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent a sequence of the second signal, subframe m and sub Frame n represents a subframe in which the secondary synchronization signal is located;
  • the determining, by the base station, the signal corresponding to the beam identifier includes:
  • the base station calculates an initialization value according to the beam identifier, or calculates an initialization value according to the beam identifier and the cell identifier;
  • a reference signal is generated based on the calculated initialization value.
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • the base station calculates an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents a slot number
  • l represents an orthogonal frequency division multiplexing OFDM symbol sequence.
  • N CP represents a cyclic prefix CP length identifier.
  • the determining, by the base station, the initial value according to the beam identifier and the cell identifier including:
  • the base station calculates the initialization value according to the specified identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents a slot number
  • l represents an orthogonal frequency division multiplexing OFDM symbol sequence.
  • N CP represents a cyclic prefix CP length identifier.
  • the determining, by the base station, the signal corresponding to the beam identifier includes:
  • the method further includes:
  • the base station sends the beam signal at the time-frequency resource location of the beam signal by using the beam, and the user equipment that detects the beam signal acquires the beam identifier included in the beam signal.
  • the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal determined by the base station There is a preset interval between them.
  • the method further includes:
  • the base station sends the beam signal at the preset time-frequency resource location by using the beam to identify the corresponding beam, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the The beam identification included in the beam signal.
  • the method further includes:
  • the base station sends the time-frequency resource information to the user equipment, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, so that the user equipment is configured according to the time-frequency resource location identifier.
  • the beam signal is detected at a frequency resource location.
  • the determining, by the base station, the signal corresponding to the beam identifier includes:
  • the base station allocates the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, when the user equipment that detects the signal is according to the signal,
  • the frequency resource location identifier and the corresponding relationship acquire the beam identifier.
  • the corresponding beam identifier of each time-frequency resource location identifier passes the corresponding time-frequency
  • the resource location identifier and the total number of beams are obtained by modulo operation
  • the base station allocates the time-frequency resource indicated by the time-frequency resource location identifier to the signal
  • the user equipment that detects the signal identifies the time-frequency resource location of the signal
  • the total number of beams is subjected to a modulo operation to obtain the beam identification.
  • the base station by using the beam to identify a corresponding beam, to communicate with the user equipment, including:
  • the base station selects one beam identifier from the multiple beam identifiers according to the signal strength corresponding to the multiple beam identifiers;
  • the base station communicates with the user equipment by using the selected beam to identify a corresponding beam.
  • a method for obtaining a beam identification comprising:
  • the user equipment detects a signal transmitted by the base station through the beam, where the signal corresponds to a beam identifier of the beam;
  • the user equipment acquires the beam identifier according to the signal
  • the user equipment sends the beam identifier to the base station, so that the base station communicates with the user equipment by using a beam corresponding to the beam identifier.
  • the acquiring, by the user equipment, the beam identifier according to the signal includes:
  • the user equipment descrambles the signal to obtain a scrambling sequence of the signal, and obtains the beam identifier according to the scrambling sequence, where the signal is scrambled by the base station according to the beam identifier; or,
  • the user equipment parses the signal to obtain an initialization value of the signal, and obtains the beam identifier according to the initialization value, where the initialization value is calculated by the base station according to the beam identifier;
  • the beam identifier corresponding to the time-frequency resource location identifier of the signal Determining, by the user equipment, the beam identifier corresponding to the time-frequency resource location identifier of the signal according to a preset correspondence between the preset time-frequency resource location identifier and the beam identifier, and the time-frequency resource location of the signal Determining according to the beam identifier and the corresponding relationship; or
  • the user equipment acquires a time-frequency resource location identifier of the signal, and performs a modulo operation on the time-frequency resource location identifier and the total number of beams to obtain the beam identifier.
  • the detecting, by the user equipment, the signal sent by the base station by using a beam includes:
  • the user equipment detects a beam signal sent by the base station through the beam, and the beam signal includes the beam identifier.
  • the user equipment by using the beam signal that is sent by the user equipment by using the beam, includes:
  • the user equipment detects the beam signal at a preset interval of a time-frequency resource location of the third signal, where the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal have the Set the interval.
  • the user equipment by using the beam signal that is sent by the user equipment by using the beam, includes:
  • the user equipment detects the beam signal at a preset time-frequency resource location.
  • the method before the user equipment detects the beam signal that is sent by the base station by using the beam, the method further includes:
  • time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal;
  • the user equipment detects the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • the method further includes:
  • the user equipment sequentially sends a beam identifier corresponding to each signal to the base station according to the sequence of the signal strength of each signal, so that the base station obtains the One of the beam identifiers is selected, and the selected beam identifies the corresponding beam to communicate with the user equipment; or
  • the user equipment selects a beam identifier according to the signal strength of the corresponding signal of each beam identifier, and sends the selected beam identifier to the base station, so that the base station identifies the corresponding beam by using the beam, and the user equipment Communicate.
  • an apparatus for obtaining a beam identification comprising:
  • a processing module configured to determine a signal corresponding to the beam identifier
  • a sending module configured to send the signal by using a beam corresponding to the beam, so that the user equipment that detects the signal acquires the beam identifier according to the signal;
  • a receiving module configured to receive the beam identifier fed back by the user equipment
  • the processing module is further configured to communicate with the user equipment by using the beam to identify a corresponding beam.
  • the processing module is further configured to perform scrambling on the first signal according to the beam identifier to obtain a second signal.
  • the processing module is further configured to generate, according to the beam identifier, when the first signal is a secondary synchronization signal And scrambling the sequence; or generating a scrambling sequence according to the beam identifier and the total number of beams; scrambling the first signal according to the generated scrambling sequence to obtain the second signal.
  • the processing module is further configured to generate a scrambling sequence according to the beam identifier by applying the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the processing module is further configured to apply the following formula to perform the first signal according to the generated scrambling sequence Scrambling to obtain the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the auxiliary The subframe in which the synchronization signal is located
  • the processing module is further configured to apply the following formula to generate an add according to the beam identifier and the total number of the beams. Scrambling sequence:
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the processing module is further configured to apply the following formula to perform the first signal according to the generated scrambling sequence Scrambling to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent a sequence of the second signal, subframe m and sub Frame n represents a subframe in which the secondary synchronization signal is located;
  • the processing module is further configured to calculate an initialization value according to the beam identifier, or calculate an initialization value according to the beam identifier and the cell identifier; Initialization value, generating a reference signal.
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • the processing module is further configured to calculate an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents a slot number
  • l represents an orthogonal frequency division multiplexing OFDM symbol sequence.
  • N CP represents a cyclic prefix CP length identifier.
  • the processing module is further configured to generate a specified identifier according to the beam identifier and the cell identifier; Specify the ID and apply the following formula to calculate the initialization value:
  • c init represents the initialization value
  • n s represents a slot number
  • l represents an orthogonal frequency division multiplexing OFDM symbol sequence.
  • N CP represents a cyclic prefix CP length identifier.
  • the processing module is configured to generate a beam signal corresponding to the beam identifier, where the beam signal includes the beam identifier;
  • the processing module is configured to determine a time-frequency resource location of the beam signal
  • the sending module is further configured to: send the beam signal at a time-frequency resource location of the beam signal by using a beam corresponding to the beam, so that the user equipment that detects the beam signal acquires the beam signal includes Beam identification.
  • the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal determined by the base station There is a preset interval between them.
  • the processing module is further configured to determine that the time-frequency resource location of the beam signal is a preset time-frequency Resource location
  • the sending module is further configured to: send the beam signal at the preset time-frequency resource location by using the beam to identify the beam, so that the user equipment detects the beam at the preset time-frequency resource location And obtaining a beam identification included in the beam signal.
  • the sending module is further configured to send time-frequency resource information to the user equipment, where the time-frequency is The resource information includes a time-frequency resource location identifier of the beam signal, such that the user equipment detects the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • the processing module is further configured to determine, according to a preset correspondence between a preset time-frequency resource location identifier and a beam identifier, a time-frequency resource location identifier; the time-frequency resource indicated by the time-frequency resource location identifier is configured to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, the user equipment that detects the signal is configured according to the The time-frequency resource location identifier of the signal and the corresponding relationship are obtained, and the beam identifier is obtained.
  • the corresponding beam identifier of each time-frequency resource location identifier passes the corresponding time-frequency The resource location identifier and the total number of beams are obtained by modulo operation;
  • the processing module configures the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that the user equipment that detects the signal identifies the time-frequency resource location of the signal and the The total number of beams is subjected to a modulo operation to obtain the beam identification.
  • the sending module is further configured to acquire a signal strength corresponding to each beam identifier if the multiple beam identifiers fed back by the user equipment are received And selecting, according to the signal strength corresponding to the multiple beam identifiers, one beam identifier from the multiple beam identifiers; and identifying, by using the selected beam, a corresponding beam, and the user equipment Line communication.
  • an apparatus for obtaining a beam identification comprising:
  • a detecting module configured to detect a signal that is sent by the base station by using a beam, where the signal corresponds to a beam identifier corresponding to the beam;
  • a processing module configured to acquire the beam identifier according to the signal
  • a sending module configured to send the beam identifier to the base station, so that the base station communicates with the local end by using the beam corresponding to the beam identifier.
  • the processing module is further configured to perform descrambling on the signal to obtain a scrambling sequence of the signal, and acquire the location according to the scrambling sequence a beam identifier, wherein the signal is scrambled by the base station according to the beam identifier;
  • the processing module is further configured to determine, according to a preset correspondence between the preset time-frequency resource location identifier and the beam identifier, a beam identifier corresponding to the time-frequency resource location identifier of the signal, where the time-frequency resource location of the signal is determined according to the location Determining the beam identification and the corresponding relationship; or
  • the processing module is further configured to parse the signal to obtain an initialization value of the signal, and obtain the beam identifier according to the initialization value, where the initialization value is calculated by the base station according to the beam identifier; or ,
  • the processing module is further configured to acquire a time-frequency resource location identifier of the signal, and perform a modulo operation on the time-frequency resource location identifier and the total number of beams to obtain the beam identifier.
  • the detecting module is further configured to detect a beam signal that is sent by the base station by using the beam, where the beam signal includes the beam identifier.
  • the detecting module is further configured to detect the beam at a preset interval of a time-frequency resource location of the third signal And a signal having a predetermined interval between a time-frequency resource location of the beam signal and a time-frequency resource location of the third signal.
  • the detecting module is further configured to detect the beam signal at a preset time-frequency resource location.
  • the device further includes:
  • a receiving module configured to receive time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal;
  • the detecting module is configured to detect the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • the device further includes:
  • the processing module is further configured to: when detecting a plurality of signals sent by the base station, acquire signal strength of each of the plurality of signals;
  • the sending module is further configured to send, to the base station, a signal strength of each signal and a corresponding beam identifier, so that the base station is configured from the multiple beam identifiers according to the received signal strengths of the multiple beam identifiers. Selecting a beam identifier, and identifying the corresponding beam by using the selected beam to communicate with the local end; or
  • the sending module is further configured to sequentially send, to the base station, a beam identifier corresponding to each signal according to an order of the signal strength of each signal, so that the base station is in accordance with the sequence of receiving each beam identifier. Selecting a beam identifier from the plurality of beam identifiers, and identifying, by using the selected beam, a communication with the local end; or
  • the processing module is further configured to: select, according to a signal strength of each beam identifier, a beam identifier, where the sending module is further configured to send the selected beam identifier to the base station, so that the base station passes the The beam corresponding to the beam identifies the local communication.
  • a base station comprising: a receiver, a transmitter, a memory, and a processor, wherein the receiver, the transmitter, and the memory are respectively connected to the processor, the memory Stored with program code, the processor is used to call the program code, and performs the following operations:
  • a user equipment comprising: a receiver, a transmitter, a memory, and a processor, wherein the receiver, the transmitter, and the memory are respectively connected to the processor, where The memory stores program code, and the processor is configured to invoke the program code to perform the following operations:
  • a system comprising: a base station and a user equipment;
  • the base station is configured to determine a signal corresponding to the beam identifier
  • the base station is further configured to send the signal by using a beam corresponding to the beam identifier
  • the user equipment is configured to detect the signal sent by the base station, and obtain the beam identifier according to the signal;
  • the user equipment is further configured to send the beam identifier to the base station;
  • the base station is further configured to receive the beam identifier that is fed back by the user equipment, and communicate with the user equipment by using a beam corresponding to the beam identifier.
  • the signal corresponding to the beam identifier is determined by the base station, and the corresponding beam is identified by the beam, and the signal is sent, and the user equipment that detects the signal can obtain the beam identifier and feed back to the base station, where the base station can determine the current beam of the user equipment. Further communication with the user equipment through the beam.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention
  • FIG. 5A is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention
  • FIG. 5B is a flowchart of another method for acquiring a beam identifier according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • FIG. 6B is a flowchart of another method for acquiring a beam identifier according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a time-frequency resource location according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for acquiring a beam identifier according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an apparatus for acquiring a beam identifier according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the communication system includes a base station and a user equipment, and the user equipment is located in a coverage area of the base station.
  • a beam can be formed, that is, the base station transmits the signal through the beam. And in order to improve the coverage of the signal, the base station can transmit the signal through multiple beams.
  • the user equipment is located within the coverage of any of the base stations of the base station, signals transmitted through the beam can be detected, thereby implementing communication with the base station.
  • the base station may be a base station that provides a low-band carrier.
  • the embodiment of the present invention is applied to a scenario in which a low-band carrier is used as an independent carrier, and the base station may also be a base station that provides a millimeter-wave carrier.
  • the millimeter wave carrier is used as the independent carrier, this embodiment of the present invention does not limit this.
  • the lower frequency band carrier and the millimeter wave carrier can be aggregated to provide a larger bandwidth and a higher capacity for the user, and the lower frequency band carrier is used as the primary carrier, and the millimeter wave frequency band is used as the secondary carrier.
  • the primary carrier and the secondary carrier may be co-sited or non-common sites (FIG.
  • the base station providing the primary carrier and the base station providing the secondary carrier are connected by optical fiber or wireless for backhaul communication, and the wireless backhaul can use the microwave or millimeter wave band, which can be the same as or different from the frequency band in which the secondary carrier is located.
  • FIG. 2 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • an execution entity of the embodiment of the present invention is a base station, and the method includes:
  • the base station determines a signal corresponding to the beam identifier.
  • the base station identifies the corresponding beam by using the beam, and sends the signal, so that the user equipment that detects the signal acquires the beam identifier according to the signal.
  • the base station receives the beam identifier fed back by the user equipment, the beam is identified by the beam to communicate with the user equipment.
  • the signal corresponding to the beam identifier is determined by the base station, and the corresponding beam is identified by the beam, and the signal is sent, and the user equipment that detects the signal can obtain the beam identifier and feed back to the base station.
  • the beam in which the user equipment is currently located can be determined, and further communication with the user equipment is performed through the beam.
  • the base station determines a signal corresponding to the beam identifier, including:
  • the base station scrambles the first signal according to the beam identifier to obtain a second signal.
  • the base station scrambles the first signal according to the beam identifier to obtain a second signal, including:
  • the base station When the first signal is a secondary synchronization signal, the base station generates a scrambling sequence according to the beam identifier; or generates a scrambling sequence according to the beam identifier and the total number of beams;
  • the base station scrambles the first signal according to the generated scrambling sequence to obtain the second signal.
  • the base station generates a scrambling sequence according to the beam identifier, including:
  • the base station generates a scrambling sequence according to the beam identifier by applying the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station scrambles the first signal according to the generated scrambling sequence to obtain the second signal, including:
  • the base station scrambles the first signal according to the generated scrambling sequence by using the following formula to obtain the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the secondary synchronization signal
  • the base station generates a scrambling sequence according to the beam identifier and the total number of beams, including:
  • the base station generates a scrambling sequence according to the beam identifier and the total number of the beams, using the following formula:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, Indicates the beam identification, and N sumbeam indicates the total number of beams. 0 ⁇ i ⁇ 30,
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station scrambles the first signal according to the generated scrambling sequence to obtain the second signal, including:
  • the base station scrambles the first signal according to the generated scrambling sequence by using the following formula to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent the sequence of the second signal, subframe m and subframe n Indicates a subframe in which the secondary synchronization signal is located;
  • the base station determines a signal corresponding to the beam identifier, including:
  • the base station calculates an initialization value according to the beam identifier, or calculates an initialization value according to the beam identifier and the cell identifier;
  • a reference signal is generated based on the calculated initialization value.
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • the base station calculates an initialization value according to the beam identifier, including:
  • the base station calculates an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the base station calculates an initialization value according to the beam identifier and the cell identifier, including:
  • the base station generates a designated identifier according to the beam identifier and the cell identifier;
  • the base station calculates the initialization value according to the specified identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the base station determines a signal corresponding to the beam identifier, including:
  • the base station generates a beam signal corresponding to the beam identifier, where the beam signal includes the beam identifier;
  • the method further comprises:
  • the base station determines a time-frequency resource location of the beam signal
  • the base station identifies the corresponding beam through the beam, and transmits the beam signal at the time-frequency resource location of the beam signal, so that the user equipment that detects the beam signal acquires the beam identifier included in the beam signal.
  • the time-frequency resource location of the beam signal determined by the base station and the time-frequency resource location of the third signal have a preset interval.
  • the method further includes:
  • the base station determines that the time-frequency resource location of the beam signal is a preset time-frequency resource location
  • the base station identifies the corresponding beam by using the beam, and sends the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam identifier included in the beam signal. .
  • the method further includes:
  • the base station sends time-frequency resource information to the user equipment, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, so that the user equipment according to the time-frequency resource location identifier The beam signal is detected at the source location.
  • the base station determines a signal corresponding to the beam identifier, including:
  • the base station allocates the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, the user equipment that detects the signal according to the time-frequency resource location identifier of the signal and the Corresponding relationship, the beam identifier is obtained.
  • the beam identifier corresponding to each time-frequency resource location identifier is obtained by performing a modulo operation on the corresponding time-frequency resource location identifier and the total number of beams;
  • the base station allocates the time-frequency resource indicated by the time-frequency resource location identifier to the signal
  • the user equipment that detects the signal performs a modulo operation on the time-frequency resource location identifier of the signal and the total number of the beam. , get the beam identification.
  • the base station identifies, by using the beam, a corresponding beam, and communicates with the user equipment, including:
  • the base station receives multiple beam identifiers fed back by the user equipment, acquiring a signal strength corresponding to each beam identifier
  • the base station selects one beam identifier from the multiple beam identifiers according to the signal strength corresponding to the multiple beam identifiers;
  • the base station communicates with the user equipment by using the selected beam to identify a corresponding beam.
  • FIG. 3 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • an execution body of the embodiment of the present invention is a user equipment, and the method includes:
  • the user equipment detects a signal sent by the base station by using a beam, where the signal corresponds to a beam identifier of the beam.
  • the user equipment acquires the beam identifier according to the signal.
  • the user equipment sends the beam identifier to the base station, so that the base station identifies the corresponding beam by using the beam to communicate with the user equipment.
  • the base station sends a signal corresponding to the beam identifier through the beam, and the user equipment can obtain the beam identifier when detecting the signal, and send a beam identifier to the base station, and the base station can determine the user equipment according to the beam identifier.
  • the current beam is used to further communicate with the user equipment through the beam.
  • the user equipment detects a signal that is sent by the base station by using a beam, where the signal corresponds to a beam identifier corresponding to the beam;
  • the user equipment acquires the beam identifier according to the signal
  • the user equipment sends the beam identifier to the base station, so that the base station identifies the corresponding beam through the beam to communicate with the local end.
  • the user equipment acquires the beam identifier according to the signal, including:
  • the user equipment descrambles the signal to obtain a scrambling sequence of the signal, and obtains the beam identifier according to the scrambling sequence, where the signal is scrambled by the base station according to the beam identifier;
  • the user equipment parses the signal to obtain an initialization value of the signal, and obtains the beam identifier according to the initialization value, where the initialization value is calculated by the base station according to the beam identifier;
  • the user equipment determines, according to a preset correspondence between the preset time-frequency resource location identifier and the beam identifier, a beam identifier corresponding to the time-frequency resource location identifier of the signal, where the time-frequency resource location of the signal is based on the beam identifier and the corresponding relationship Determine; or,
  • the user equipment acquires a time-frequency resource location identifier of the signal, and performs a modulo operation on the time-frequency resource location identifier and the total number of beams to obtain the beam identifier.
  • the user equipment detects a signal sent by the base station by using a beam, including:
  • the user equipment detects a beam signal sent by the base station through the beam, and the beam signal includes the beam identifier.
  • the user equipment detects a beam signal sent by the base station by using the beam, including:
  • the user equipment detects the beam signal at a preset interval of the time-frequency resource location of the third signal, and the preset time interval between the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal.
  • the user equipment detects a beam signal sent by the base station by using the beam, including:
  • the user equipment detects the beam signal at a preset time-frequency resource location.
  • the method before the user equipment detects the beam signal sent by the base station by using the beam, the method further includes:
  • time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal;
  • the user equipment detects the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • the method further includes:
  • the user equipment sends the signal strength of each signal to the base station and the corresponding beam identifier, so that the base station selects one beam identifier from the multiple beam identifiers according to the received signal strengths of the multiple beam identifiers, and selects The beam identifies the corresponding beam and communicates with the local end; or,
  • the user equipment sequentially sends a beam identifier corresponding to each signal to the base station according to the signal strength of each signal, so that the base station selects, according to the sequence of receiving each beam identifier, the multiple beam identifiers. Selecting a beam identifier, and identifying the corresponding beam through the selected beam to communicate with the local end; or
  • the user equipment selects a beam identifier according to the signal strength of the corresponding signal of each beam identifier, and sends the selected beam identifier to the base station, so that the base station identifies the corresponding beam through the beam to communicate with the local end.
  • the method for obtaining the beam identifier provided by the embodiment of the present invention is described by taking the signal corresponding to the beam identifier as a secondary synchronization signal as an example, and for the sake of convenience, before the embodiment of the present invention is described in detail,
  • the secondary synchronization signal is introduced as follows:
  • the synchronization signal is composed of a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the base station transmits a specific sequence of PSS and SSS to the user equipment to indicate the physical layer cell identity to the user equipment.
  • the PSS in the FDD (Frequency Division Duplexing) mode, the PSS is located on the last OFDM (Orthogonal Frequency Division Multiplexing) symbol of the 1st and 11th time slots, and the SSS is directly Located before the PSS.
  • the PSS In the TDD (Time Division Duplexing) mode, the PSS is located on the 3rd symbol of the 3rd and 13th time slots, and the SSS is 3 symbols earlier than the PSS, that is, the SSS is located in the 2nd and 12th. On the last symbol of the time slot.
  • one radio frame includes 10 subframes, the subframe number is 0-9, and one subframe includes two slots. Then, the slot number in one radio frame is 0-19. Under CP (Cyclic Prefix), 1 slot includes 7 symbols, and under extended CP, 1 slot includes 6 symbols.
  • CP Cyclic Prefix
  • the third time slot is located in the subframe 1
  • the 11th time slot and the 12th time is located on the subframe 5
  • the 13th slot is located on the subframe 6.
  • the PSS and the SSS are located on the subframe 0 and the subframe 5
  • the PSS is located in the subframe 1 and the subframe 6.
  • the SSS is located on subframe 0 and subframe 5.
  • the SSS sequence is composed of two M-sequences of length 31, the two M-sequences SSC1 and SSC2 is generated by different cyclic shifts of the same M sequence of length 31.
  • the SSS sequence is scrambled by the code associated with the PSS.
  • m 0 and m 1 may be based on the cell group identifier
  • the mapping relationship with m 0 , m 1 is obtained.
  • Two scrambling sequences c 0 (n) and c 1 (n) are generated according to the primary synchronization signal, which is an M sequence
  • Two different cyclic shifts are generated as follows:
  • FIG. 4 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • the interaction entity in the embodiment of the present invention is a base station and a user equipment, and the embodiment of the present invention uses the base station according to the beam identifier to The signal is scrambled to obtain a second signal, and then the second signal is not sent but the second signal corresponding to the beam identifier is sent as an example, and the first signal is a secondary synchronization signal.
  • the method includes:
  • the base station performs scrambling on the first signal according to the beam identifier to obtain a second signal.
  • the base station may determine a beam identifier of each beam in advance, and one beam corresponds to one beam identifier, and the beam identifier may be an index or a number of the corresponding beam or other identifier that can uniquely determine the corresponding beam. This example does not limit this.
  • the process of transmitting the secondary synchronization signal is taken as an example.
  • the base station determines the beam identifier corresponding to the beam of the secondary synchronization signal, and performs the secondary synchronization signal according to the beam identifier.
  • the scrambling information of the secondary synchronization signal includes not only the cell identifier but also the beam identifier, so that the beam identification is also included in the scrambled secondary synchronization signal.
  • the step 401 can include the following steps: the base station generates a scrambling sequence according to the beam identifier and the total number of beams, and scrambles the first signal according to the scrambling sequence to obtain the second signal.
  • the base station generates a scrambling sequence by applying the following formula according to the beam identifier and the total number of the beams:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, Indicates the beam identification, and N sumbeam indicates the total number of beams. 0 ⁇ i ⁇ 30,
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station performs scrambling on the first signal according to the scrambling sequence by using the following formula to obtain the second signal:
  • subframe m and subframe n are subframes in which the secondary synchronization signal is located, and n is greater than m.
  • b 0 (n) and b 1 (n) denote the scrambling sequence, 0 ⁇ n ⁇ 30.
  • the base station may further apply the first signal according to the scrambling sequence by applying the following formula. Disturb, get the second signal:
  • the step 401 may further include the following steps: the base station generates a scrambling sequence according to the beam identifier, and scrambles the first signal according to the scrambling sequence to obtain the second signal.
  • the base station generates a scrambling sequence according to the beam identifier by applying the following formula:
  • the first signal is scrambled by using the following formula to obtain a second signal:
  • the base station may also use other methods to perform scrambling on the secondary synchronization signal according to the beam identifier, so that the signal obtained by the scrambling includes the beam identifier, which is not limited in this embodiment of the present invention.
  • the embodiment of the present invention designs the secondary synchronization signal scrambled by the cell identifier and the beam identifier, so that the sent secondary synchronization signal includes both the cell identifier and the beam identifier, and the detected
  • the user equipment of the second signal may acquire the beam identifier according to the second signal.
  • the base station identifies the corresponding beam by using the beam, and sends the second signal.
  • the base station identifies the corresponding beam by the beam, and sends the second signal. If the user equipment is located in the signal coverage of the beam, the user equipment detects the second signal and descrambles the second signal. Obtaining a scrambling sequence of the second signal, and acquiring the beam identifier according to the scrambling sequence. Thereby determining the beam in which the user equipment is currently located.
  • the user equipment sends the beam identifier to the base station.
  • the base station receives the beam identifier, and identifies a corresponding beam by using the beam to communicate with the user equipment.
  • the user equipment can send the beam identifier to the base station, and the base station can determine the current beam of the user equipment according to the beam identifier. In the subsequent process, the base station can identify the corresponding beam by using the beam identifier.
  • the beam communicates with the user equipment. If the base station has a signal to send the user equipment, it only needs to transmit through the current beam of the user equipment, and does not need to transmit through multiple beams, thereby increasing the throughput. Increased resource utilization.
  • the second device when the user equipment detects the second signal, the second device may also detect the second The signal strength of the signal, the user equipment may also send the signal strength to the base station, and the base station may determine the signal strength of the signal detected by the user equipment.
  • the user equipment detects the plurality of second signals sent by the base station, the signal strength of each second signal is obtained, and the user equipment may use the signal strength of each second signal from large to small.
  • the beam identifier corresponding to each second signal is sequentially sent to the base station, and the base station can determine the signal strength corresponding to each beam according to the sequence of receiving each beam identifier, where the base station can be identified from the multiple beam identifiers.
  • a beam identifier is selected, and the selected beam is identified by the selected beam to communicate with the user equipment.
  • the base station may select the received first beam identifier, that is, the corresponding beam identifier with the highest signal strength, and communicate with the user equipment by using the beam corresponding to the beam with the strongest signal strength.
  • the user equipment may further select a beam identifier according to the signal strength of the second signal corresponding to each beam identifier, and send the selected beam identifier to the base station, where the base station identifies the corresponding beam by using the beam, and the user The device communicates.
  • the user equipment selects a beam identifier corresponding to the second signal with the highest signal strength, and sends the selected beam identifier to the base station, so that the base station communicates with the user equipment according to the beam corresponding to the selected beam identifier.
  • the user equipment may further send a signal strength of each second signal and a corresponding beam identifier to the base station, so that the base station selects one beam from multiple beam identifiers according to the received signal strengths of the multiple beam identifiers.
  • the identifier communicates with the user equipment by using the selected beam to identify a corresponding beam.
  • the base station selects, according to the received signal strengths of the multiple beam identifiers, a beam identifier corresponding to the largest signal strength from the plurality of beam identifiers, and the corresponding beam of the beam with the highest signal strength, and the user The device communicates.
  • the beam with the highest signal strength detected by the user equipment is used as the optimal beam, and the base station communicates with the user equipment by using the determined optimal beam, so that the beam can be switched in time to ensure the coverage of the signal.
  • the resource utilization and throughput are improved.
  • the beam where the user equipment is located may change, and the base station and the user equipment may perform the foregoing steps again to obtain the user equipment.
  • the base station can continue to communicate with the user equipment through the updated beam.
  • the first signal is scrambled by the base station according to the beam identifier, and the second signal is obtained, so that the second signal includes the beam identifier, and the second signal is sent by using the beam corresponding to the beam identifier.
  • the user equipment that detects the second signal can obtain the beam identifier and feed back to the base station, and the base station can determine the current beam of the user equipment according to the beam identifier, and the current user equipment is located in the beam and the user equipment. Communication is performed without having to communicate with the user equipment through multiple beams, which increases throughput and improves resource utilization.
  • the method for obtaining the beam identifier provided by the embodiment of the present invention is described by taking the CRS (Cell-specific Reference Signal) as an example for the purpose of the description.
  • CRS Cell-specific Reference Signal
  • the CRS is used by the user equipment to demodulate the control channel and data, and can be used for user equipment to perform CSI feedback.
  • CRS reference signal sequence The definition is as follows:
  • n s is the slot label of a radio frame
  • l is the OFDM symbol label in the slot
  • c(i) is a pseudo-random sequence.
  • the pseudo-random sequence c(n) is defined by a Gold sequence of length 31.
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod2;
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod2
  • N C 1600
  • the initialization value of the second M sequence is:
  • FIG. 5A is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • the interaction entity in the embodiment of the present invention is a base station and a user equipment, and the method includes:
  • the base station calculates an initialization value according to the beam identifier, and generates a CRS according to the calculated initialization value.
  • the embodiment of the present invention takes the process of transmitting a CRS as an example.
  • the base station determines a beam identifier corresponding to a beam to be sent by the CRS, and calculates an initialization value of the CRS according to the beam identifier, and generates an initialization value according to the initialization value.
  • the sequence of the CRS is not limited to a beam identifier corresponding to a beam to be sent by the CRS.
  • the one beam corresponds to one beam identifier
  • the beam identifier may be a sequence number of the corresponding beam or other identifier that can uniquely determine the corresponding beam, which is not limited in this embodiment of the present invention.
  • the base station calculates an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP indicates the CP length identifier.
  • the initialization value of the first M sequence of the scrambling sequence of the CRS is fixed, and the initialization value c init of the second M sequence directly affects the generated scrambling sequence.
  • the base station after the base station calculates the initialization value, the base station generates a sequence of CRSs according to the initialization value.
  • the beam identifier is included in the sequence of the CRS, and the beam identifier can be obtained according to the sequence of the CRS.
  • the step 501 may further include the following steps: the base station calculates an initialization value according to the beam identifier and the cell identifier, and generates a CRS according to the calculated initialization value.
  • the base station generates a new designated identifier according to the beam identifier and the cell identifier, where the specified identifier uniquely corresponds to one beam identifier and one cell identifier, and the corresponding beam identifier and the cell identifier are obtained according to the specified identifier. .
  • the specified identifier Beam identification And the cell identity The correspondence between them can be as shown in Table 1 below.
  • N sumbeam represents the total number of beams
  • N sumcell represents the total number of cells.
  • the base station may generate a new designated identifier for the beam identifier and the cell identifier according to the corresponding relationship, and the user equipment may determine the beam identifier corresponding to the specified identifier according to the corresponding relationship.
  • the base station calculates the initialization value according to the specified identifier by applying the following formula:
  • n s represents the slot number
  • l represents the OFDM symbol sequence number.
  • N CP indicates a CP (Cyclic Prefix) length identifier.
  • the initialization value of the first M sequence of the scrambling sequence of the CRS is fixed, and the initialization value c init of the second M sequence directly affects the generated scrambling sequence.
  • the base station after the base station calculates the initialization value, the base station generates a sequence of CRSs according to the initialization value.
  • the specified identifier is included in the sequence of the CRS, and the designated identifier is obtained according to the sequence of the CRS, thereby obtaining the beam identifier.
  • the initialization value in the embodiment of the present invention is based on the beam identifier. Determine or according to the specified identifier It is determined that the user equipment can obtain the beam identifier according to the received CRS.
  • the base station identifies the corresponding beam by using the beam, and sends the CRS.
  • the user equipment When receiving the CRS, the user equipment acquires the beam identifier according to the CRS.
  • the user equipment receives the CRS, parses the CRS, obtains an initialization value of the CRS, and acquires the beam identifier according to the initialization value. Specifically, if the initialization value is determined only according to the beam identifier, the user equipment may obtain the beam identifier according to the initialization value. If the initialization value is determined according to the specified identifier generated by the beam identifier and the cell identifier, the user equipment may obtain the specified identifier according to the CRS, and obtain a beam identifier corresponding to the specified identifier.
  • the user equipment sends the beam identifier to the base station.
  • the base station receives the beam identifier, and identifies a corresponding beam by using the beam to communicate with the user equipment.
  • steps 502-505 are similar to the steps 402-405, and are not described herein again.
  • the base station can determine the current beam of the user equipment according to the beam identifier fed back by the user equipment, and send the control information data information to the user equipment in time through the beam.
  • the initialization value of the CRS calculated by the base station according to the beam identifier or the specified identifier is used as an example.
  • the step is performed. 501 can also be replaced by the following step 5011:
  • the base station pre-sets the correspondence between the time-frequency resource location identifier and the beam identifier, and determines the time-frequency resource location identifier corresponding to the beam identifier according to the corresponding relationship, where the beam identifier corresponds to the time-frequency resource location identifier.
  • the time-frequency resource is configured to the CRS.
  • the time-frequency resource location identifier is used to indicate the location of the time-frequency resource, and may be a sequence number or other identifier of the time-frequency resource, which is not limited in this embodiment of the present invention.
  • One of the beam identifiers in the corresponding relationship may correspond to one time-frequency resource location identifier, and may also correspond to multiple time-frequency resource location identifiers, which is not limited in this embodiment of the present invention.
  • the base station identifies the corresponding beam by using the beam, and sends the CRS. 503 can be replaced by the following step 5031:
  • the time-frequency resource location identifier of the CRS is obtained, and the corresponding relationship between the time-frequency resource location identifier and the beam identifier is determined, and the time-frequency resource location identifier of the CRS is determined. Beam identification.
  • the user equipment sends the beam identifier to the base station, and the base station receives the beam identifier, and identifies a corresponding beam through the beam to communicate with the user equipment.
  • the beam identifier corresponding to each time-frequency resource location identifier may be obtained by performing a modulo operation on the corresponding time-frequency resource location identifier and the total number of beams.
  • the time-frequency resource location identifier corresponding to the beam identifier may be determined by calculating a quotient between the beam identifier and the total number of beams. When the total number of beams is greater than 1, in the corresponding relationship, one beam identifier corresponds to multiple time-frequency resource location identifiers.
  • the total number of beams is 4, the beam identifiers are 0-3, the number of time-frequency resource locations is 16, and the time-frequency resource location identifier is 0-15.
  • the correspondence between the time-frequency resource location identifier and the beam identifier can be as follows: Table 2 shows.
  • the time-frequency resource location identifiers 0-15 are divided into four groups according to the total number of beams 4, and each group includes four time-frequency resource location identifiers. Taking the beam identifier 5 as an example, the quotient between the beam identifier 5 and the total number of beams 4 is 1, and the beam identifier 5 corresponds to the second group of time-frequency resource location identifiers 4-7.
  • the base station determines the beam identifier
  • the plurality of time-frequency resource location identifiers corresponding to the beam identifiers are obtained according to the corresponding relationship, and one of the plurality of time-frequency resources indicated by the plurality of time-frequency resource location identifiers is selected.
  • the time-frequency resource is configured to be sent to the CRS, and the corresponding beam is identified by the beam, and the CRS is sent at the selected time-frequency resource location, so that the user equipment that detects the CRS acquires the time-frequency resource location identifier of the CRS, and the time-frequency is
  • the resource location identifier and the total number of beams are subjected to a modulo operation to obtain the beam identifier.
  • the user equipment determines the beam identifier of the CRS according to the time-frequency resource location identifier and the total number of beams of the CRS by using the following formula:
  • CRSconfigureID indicates the time-frequency resource location identifier of the CRS
  • N sumbeam indicates the total number of beams.
  • the user equipment that detects the CRS acquires the time-frequency resource location identifier of the CRS, and the time-frequency resource location identifier and the time-frequency resource location identifier are The total number of beams is subjected to a modulo operation, and the beam identification can be obtained.
  • Binding the time-frequency resource location identifier of the CRS to the beam identifier by using a modulo operation so that the user equipment that detects the CRS can obtain the beam identifier according to the time-frequency resource location of the CRS, thereby determining the current beam of the user equipment.
  • the base station may perform any one of steps 501 and 5011, and which step may be determined in advance by the base station and the user equipment. Further, the base station may further perform steps 501 and 5011, and the user equipment may obtain a beam identifier by performing descrambling on the detected CRS, or may obtain a beam label according to the detected time-frequency resource location identifier of the CRS. It is to be understood that the steps of steps 501 and 5011 are not limited to the base station in the embodiment of the present invention.
  • step 5011 can also be applied to the scenario of the secondary synchronization signal in the previous embodiment, and the specific implementation process is similar to the implementation process of the CRS signal, and details are not described herein again.
  • the base station calculates the CRS initialization value according to the beam identifier, and obtains the CRS corresponding to the beam identifier, and sends the CRS through the beam corresponding to the beam identifier, and the user equipment that receives the CRS is
  • the beam identifier may be obtained and fed back to the base station, or the base station determines the time-frequency resource location identifier corresponding to the beam identifier according to the preset correspondence between the preset time-frequency resource location identifier and the beam identifier, and the time corresponding to the beam identifier is determined.
  • the time-frequency resource indicated by the frequency resource location identifier is configured to the CRS, and the user equipment that detects the CRS may determine the beam identifier according to the time-frequency resource location identifier of the CRS, and feed back to the base station.
  • the base station can determine the current beam of the user equipment according to the beam identifier, and communicate with the user equipment through the current beam of the user equipment, without communicating with the user equipment through multiple beams, thereby increasing throughput and improving Resource utilization.
  • CSI-RS Channel-State Information Reference Signal
  • the CSI-RS in the existing communication system is used to help the user equipment acquire channel state information.
  • n s is the slot label of a radio frame and l is the OFDM symbol label in the slot.
  • c(i) is a pseudo-random sequence, and the initial value of c(i) is:
  • FIG. 6A is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • the interaction entity in the embodiment of the present invention is a base station and a user equipment, and the method includes:
  • the base station calculates an initialization value according to the beam identifier, and generates a CSI-RS according to the calculated initialization value.
  • This step 601 is similar to the foregoing step 501, and details are not described herein again.
  • the base station identifies the corresponding beam by using the beam, and sends the CSI-RS.
  • the user equipment When receiving the CSI-RS, the user equipment acquires the beam identifier according to the CSI-RS.
  • the user equipment sends the beam identifier to the base station.
  • the base station receives the beam identifier, and identifies a corresponding beam by using the beam to communicate with the user equipment.
  • step 601 can also be replaced by the following step 6011:
  • the base station presets a correspondence between a time-frequency resource location identifier and a beam identifier, and determines a time-frequency resource location identifier corresponding to the beam identifier according to the correspondence, and indicates, by the beam identifier, a time-frequency resource location identifier.
  • the time-frequency resource is configured to the CSI-RS.
  • One of the beam identifiers in the corresponding relationship may correspond to one time-frequency resource location identifier, and may also correspond to multiple time-frequency resource location identifiers, which is not limited in this embodiment of the present invention.
  • the base station sends the CSI-RS by using the beam to identify the corresponding beam, and the step 603 can be replaced by the following step 6031:
  • the time-frequency resource location identifier of the CSI-RS is obtained, and the CSI-RS is determined according to the correspondence between the preset time-frequency resource location identifier and the beam identifier.
  • the frequency resource location identifies the corresponding beam identifier.
  • the user equipment sends the beam identifier to the base station, and the base station receives the beam identifier, and identifies a corresponding beam through the beam to communicate with the user equipment.
  • the beam identifier corresponding to each time-frequency resource location identifier may pass the corresponding time-frequency resource location identifier and the total number of beams.
  • the modulo operation is performed.
  • the time-frequency resource location identifier corresponding to the beam identifier may be determined by calculating a quotient between the beam identifier and the total number of beams. When the total number of beams is greater than 1, in the corresponding relationship, one beam identifier corresponds to multiple time-frequency resource location identifiers.
  • the base station After determining the beam identifier, acquires multiple time-frequency resource location identifiers corresponding to the beam identifiers according to the corresponding relationship, and selects an idle time-frequency from the plurality of time-frequency resources indicated by the multiple time-frequency resource location identifiers.
  • the resource is configured to be sent to the CSI-RS, and the corresponding beam is identified by the beam, and the CSI-RS is sent at the selected time-frequency resource location, so that the user equipment that detects the CSI-RS acquires the time-frequency resource location identifier of the CSI-RS.
  • the user equipment determines the beam identifier of the CSI-RS according to the total number of beams and the time-frequency resource location identifier of the CSI-RS by using the following formula:
  • CSI-RSconfigureID indicates the time-frequency resource location identifier of the CSI-RS
  • N sumbeam indicates the total number of beams.
  • the base station sends a CSI-RS by using the beam to identify the corresponding beam, so that the user equipment that detects the CSI-RS acquires the time-frequency resource location identifier of the CSI-RS, and the time-frequency resource location identifier and the total number of beams.
  • the modulo operation is performed to obtain the beam identification.
  • the base station calculates an initial value of the CSI-RS according to the beam identifier, and obtains a CSI-RS corresponding to the beam identifier, and sends the CSI-RS by using the beam corresponding to the beam identifier, and then receives the CSI-RS.
  • the user equipment of the CSI-RS can obtain the beam identifier and feed back to the base station, or the base station determines the time-frequency resource location identifier corresponding to the beam identifier according to the correspondence between the preset time-frequency resource location identifier and the beam identifier.
  • the time-frequency resource indicated by the time-frequency resource location identifier corresponding to the beam identifier is configured to the CSI-RS, and the user equipment that detects the CSI-RS can determine the beam identifier according to the time-frequency resource location identifier of the CSI-RS, and feedback To the base station.
  • the base station can determine the current beam of the user equipment according to the beam identifier, and communicate with the user equipment through the current beam of the user equipment, without communicating with the user equipment through multiple beams, thereby increasing throughput and improving Resource utilization.
  • FIG. 7 is a flowchart of a method for acquiring a beam identifier according to an embodiment of the present invention.
  • the interaction entity in the embodiment of the present invention is a base station and a user equipment, and the method includes:
  • the base station generates a beam signal corresponding to the beam identifier, where the beam signal includes the beam identifier, and determines a time-frequency resource location of the beam signal.
  • the base station identifies the corresponding beam by using the beam, and sends the beam signal at a time-frequency resource location of the beam signal.
  • the user equipment detects the beam signal at a time-frequency resource location of the beam signal, and acquires the beam identifier according to the beam signal.
  • the base station may determine the time-frequency resource location of the beam signal in different manners, and the user equipment detects the beam signal in different manners.
  • steps 701-703 may include the following step (1):
  • the base station determines a time-frequency resource location of the beam signal, the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal have a preset interval, and the base station identifies the corresponding beam by the beam, Transmitting the beam signal at the time-frequency resource location of the beam signal, and when the user equipment acquires the time-frequency resource location of the third signal, detecting the beam at a preset interval of the time-frequency resource location of the third signal. The beam identifies the corresponding beam signal.
  • the third signal may be a signal that the base station sends to the user equipment, and may be a secondary synchronization signal, a CRS, a CSI-RS, or other signals, which is not limited in this embodiment of the present invention.
  • the preset interval may be determined in advance by the base station, and may be notified to each user equipment, or may be determined by the base station in cooperation with each user equipment, which is not limited by the embodiment of the present invention.
  • the base station determines a time-frequency resource location of the third signal, and allocates a time-frequency resource location at a preset interval of the time-frequency resource location of the third signal to the beam signal, so as to subsequently provide the beam signal in the configuration.
  • the beam signal is transmitted at the time-frequency resource location, and the user equipment obtains the time-frequency resource location of the third signal, and may be at a preset interval of the time-frequency resource location of the third signal, that is, the time of the beam signal.
  • the beam signal is detected at a frequency resource location, and a beam identifier included in the beam signal is obtained.
  • the preset interval is used to indicate a relative positional relationship between a time-frequency resource location of the third signal and a time-frequency resource location of the beam signal, where the preset interval may be an interval of one unit on the left side, and the beam signal is The time-frequency resource location is located to the left of the time-frequency resource location of the third signal.
  • the preset interval may also be an interval of two units on the right side, etc., which is not limited in this embodiment of the present invention.
  • the preset interval may be an interval of one unit on the left side, and the time-frequency resource position of the beam signal is located to the left of the time-frequency resource position of the secondary synchronization signal.
  • the base station may also use the first position on the right side of the time-frequency resource location of the primary synchronization signal as the candidate time-frequency resource location of the beam signal, and also transmit the beam signal at the candidate time-frequency resource location, and then, in the subsequent process, when the user
  • the device may perform detection at the candidate time-frequency resource location.
  • steps 701-703 may further include the following step (2):
  • the base station determines that the time-frequency resource location of the beam signal is a preset time-frequency resource location, and the corresponding beam is identified by the beam, and the beam signal is sent at the preset time-frequency resource location, where the user equipment is in the The beam signal is detected at the location of the time-frequency resource.
  • the base station predetermines the preset time-frequency resource location, and determines that the time-frequency resource location of the beam signal is a preset time-frequency resource location, that is, the time-frequency resource indicated by the preset time-frequency resource location is configured to the beam signal. And the base station sends the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam included in the beam signal.
  • the preset time-frequency resource location may be determined by the base station and the user equipment, which is not limited by the embodiment of the present invention.
  • the method may further include the step (3):
  • the base station determines a time-frequency resource location identifier of the beam signal, and sends time-frequency resource information to the user equipment, where the time-frequency resource information includes the time-frequency resource location identifier, and the user equipment receives the time-frequency resource information, according to the The time-frequency resource location identifier included in the time-frequency resource information is passed at the base station
  • the beam signal is detected at a time-frequency resource location in the signal transmitted by the beam.
  • the time-frequency resource information is used to notify the user equipment of the time-frequency resource location of the beam signal.
  • the base station After transmitting the beam signal, the base station sends special time-frequency resource information to the user equipment to notify the user equipment, where the user equipment is
  • the beam signal may be detected at the time-frequency resource location indicated by the time-frequency resource location identifier according to the time-frequency resource location identifier included in the time-frequency resource information.
  • the base station may determine that the time-frequency resource location of the beam signal is a preset time-frequency resource location, and for different user equipments, the beam signals received by each user equipment are located in the received signal.
  • the base station may send the time-frequency resource information including the preset time-frequency resource location identifier to each user equipment, and the user equipment acquires the time-frequency resource when receiving the time-frequency resource information for any user equipment.
  • the information includes a preset time-frequency resource location identifier, and the beam signal is detected at a preset time-frequency resource location in a signal sent by the base station to the user equipment by using the preset time-frequency resource location identifier.
  • the base station may use any one or more of the foregoing three manners to notify the user equipment of the time-frequency resource location of the beam signal, and the method for the base station is not used in the embodiment of the present invention. limited.
  • the user equipment sends the beam identifier to the base station.
  • the base station receives the beam identifier, and identifies a corresponding beam by using the beam to communicate with the user equipment.
  • steps 704-705 are similar to the steps 404-405, and are not described herein again.
  • a beam signal corresponding to a beam identifier is generated by a base station, and a time-frequency resource position of the beam signal is determined, and the corresponding beam is identified by the beam, and the beam is transmitted at a time-frequency resource location of the beam signal.
  • the signal, the user equipment can detect the beam signal at the time-frequency resource location of the beam signal, and obtain the beam identifier according to the beam signal, and feed back to the base station, and the base station can determine the current beam of the user equipment according to the beam identifier.
  • the user equipment is currently in communication with the user equipment, and does not need to communicate with the user equipment through multiple beams, thereby increasing throughput and improving resource utilization.
  • FIG. 9 is a schematic structural diagram of an apparatus for acquiring a beam identifier according to an embodiment of the present invention.
  • the apparatus includes:
  • the processing module 901 is configured to determine a signal corresponding to the beam identifier
  • the sending module 902 is configured to send the signal by using the beam to identify the corresponding beam, so that the user equipment that detects the signal acquires the beam identifier according to the signal;
  • the receiving module 903 is configured to receive the beam identifier fed back by the user equipment.
  • the processing module 901 is further configured to identify, by using the beam, a corresponding beam to communicate with the user equipment.
  • the device provided by the embodiment of the present invention can determine the signal corresponding to the beam identifier, and the corresponding beam is identified by the beam, and the signal is sent, and the user equipment that detects the signal can obtain the beam identifier, and the device can determine the user equipment.
  • the current beam is used to further communicate with the user equipment through the beam.
  • the processing module 901 is further configured to perform scrambling on the first signal according to the beam identifier to obtain a second signal.
  • the processing module 901 is further configured to: when the first signal is a secondary synchronization signal, generate a scrambling sequence according to the beam identifier; or generate a scrambling sequence according to the beam identifier and the total number of beams; The scrambling sequence scrambles the first signal to obtain the second signal.
  • the processing module 901 is further configured to generate a scrambling sequence according to the beam identifier by applying the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • processing module 901 is further configured to: according to the generated scrambling sequence, apply the following formula to scramble the first signal to obtain the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the secondary synchronization signal
  • the processing module 901 is further configured to generate a scrambling sequence by applying the following formula according to the beam identifier and the total number of the beams:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, Indicates the beam identification, and N sumbeam indicates the total number of beams. 0 ⁇ i ⁇ 30,
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • processing module 901 is further configured to: according to the generated scrambling sequence, apply the following formula to scramble the first signal to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent the sequence of the second signal, subframe m and subframe n Indicates a subframe in which the secondary synchronization signal is located;
  • the processing module 901 is further configured to calculate an initialization value according to the beam identifier, or calculate an initialization value according to the beam identifier and the cell identifier, and generate a reference signal according to the calculated initialization value.
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • the processing module 901 is further configured to calculate an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the processing module 901 is further configured to generate a designation according to the beam identifier and the cell identifier. Identification; according to the specified identifier, the initialization value is calculated by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the processing module 901 is further configured to generate a specified identifier according to the beam identifier and the cell identifier; and according to the specified identifier, apply the following formula to calculate the initialization value:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the processing module 901 is configured to generate a beam signal corresponding to the beam identifier, where the beam signal includes the beam identifier;
  • the processing module 901 is configured to determine a time-frequency resource location of the beam signal.
  • the sending module 902 is further configured to: use the beam to identify a corresponding beam, and send the beam signal at a time-frequency resource location of the beam signal, so that the user equipment that detects the beam signal acquires a beam identifier included in the beam signal.
  • the time-frequency resource location of the beam signal determined by the base station and the time-frequency resource location of the third signal have a preset interval.
  • the processing module 901 is further configured to determine that the time-frequency resource location of the beam signal is a preset time-frequency resource location;
  • the sending module 902 is further configured to: use the beam to identify the corresponding beam, and send the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam signal.
  • the beam identification included in the beam signal is further configured to: use the beam to identify the corresponding beam, and send the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam signal.
  • the sending module 902 is further configured to send time-frequency resource information to the user equipment, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, so that the user equipment is configured according to the time-frequency resource location identifier.
  • the beam signal is detected at the location of the time-frequency resource.
  • the processing module 901 is further configured to use the preset time-frequency resource location identifier and the beam identifier. Configuring a time-frequency resource location identifier corresponding to the beam identifier, and configuring the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, the signal is detected.
  • the user equipment of the signal acquires the beam identifier according to the time-frequency resource location identifier of the signal and the corresponding relationship.
  • the beam identifier corresponding to each time-frequency resource location identifier is obtained by performing a modulo operation on the corresponding time-frequency resource location identifier and the total number of beams;
  • the processing module 901 configures the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that the user equipment that detects the signal takes the time-frequency resource location identifier of the signal and the total number of the beam.
  • the modulo operation obtains the beam identification.
  • the processing module 901 is further configured to: if the multiple beam identifiers fed back by the user equipment are received, obtain a signal strength corresponding to each beam identifier; and according to the signal strength corresponding to the multiple beam identifiers, from the multiple A beam identifier is selected in the beam identifier, and the corresponding beam is identified by the selected beam to communicate with the user equipment.
  • FIG. 10 is a schematic structural diagram of an apparatus for acquiring a beam identifier according to an embodiment of the present invention.
  • the apparatus includes:
  • the detecting module 1001 is configured to detect a signal that is sent by the base station by using a beam, where the signal corresponds to a beam identifier of the beam;
  • the processing module 1002 is configured to acquire the beam identifier according to the signal.
  • the sending module 1003 is configured to send the beam identifier to the base station, so that the base station identifies the corresponding beam by using the beam to communicate with the local end.
  • the base station sends a signal corresponding to the beam identifier by using a beam, and the device can obtain the beam identifier when detecting the signal, and send a beam identifier to the base station, where the base station can determine the device according to the beam identifier.
  • the processing module 1002 is further configured to perform descrambling on the signal to obtain a scrambling sequence of the signal, and obtain the beam identifier according to the scrambling sequence, where the signal is scrambled by the base station according to the beam identifier; or,
  • the processing module 1002 is further configured to parse the signal to obtain an initialization value of the signal, and obtain the beam identifier according to the initialization value, where the initialization value is calculated by the base station according to the beam identifier; or ,
  • the processing module 1002 is further configured to determine, according to a preset correspondence between the preset time-frequency resource location identifier and the beam identifier, a beam identifier corresponding to the time-frequency resource location identifier of the signal, where the time-frequency resource location of the signal is determined according to the beam identifier. And the correspondence is determined; or,
  • the processing module 1002 is further configured to obtain a time-frequency resource location identifier of the signal, perform a modulo operation on the time-frequency resource location identifier and the total number of beams, to obtain the beam identifier.
  • the detecting module 1001 is further configured to detect a beam signal sent by the base station by using the beam, where the beam signal includes the beam identifier.
  • the detecting module 1001 is further configured to detect, at a preset interval of a time-frequency resource location of the third signal, between a time-frequency resource location of the beam signal and a time-frequency resource location of the third signal. With this preset interval.
  • the detecting module 1001 is further configured to detect the beam signal at a preset time-frequency resource location.
  • the device further includes:
  • a receiving module configured to receive time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal;
  • the detecting module 1001 is further configured to detect the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • the processing module 1002 is further configured to: when detecting multiple signals sent by the base station, acquire signal strength of each of the multiple signals;
  • the sending module 1003 is further configured to send, to the base station, a signal strength of each signal and a corresponding wave.
  • the bundle identifier is configured to select a beam identifier from the plurality of beam identifiers according to the received signal strengths of the plurality of beam identifiers, and communicate with the local end by using the selected beam identifiers; or
  • the sending module 1003 is further configured to sequentially send a beam identifier corresponding to each signal to the base station according to the order of the signal strength of each signal, so that the base station obtains the sequence of each beam identifier from the Selecting one of the plurality of beam identifiers, and selecting a corresponding beam to communicate with the local end; or
  • the processing module 1002 is further configured to: select a beam identifier according to the signal strength of the corresponding signal of each beam identifier, and the sending module 1003 is further configured to send the selected beam identifier to the base station, so that the base station identifies the corresponding Beam, communicate with the local end.
  • the apparatus in the embodiments of the present invention may be used to perform the corresponding steps in the method embodiments provided by the present invention, and the present invention will not be repeated herein.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • a receiver 1101, a transmitter 1102, a memory 1103, and a processor 1104 are provided.
  • the receiver 1101, the transmitter 1102, and the memory 1103 are included.
  • the memory 1103 stores program code
  • the processor 1104 is configured to call the program code to perform the following operations:
  • the corresponding beam is identified by the beam to communicate with the user equipment.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the first signal is scrambled according to the generated scrambling sequence to obtain the second signal.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • a scrambling sequence is generated using the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the first signal is scrambled by using the following formula to obtain the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the secondary synchronization signal
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, Indicates the beam identification, and N sumbeam indicates the total number of beams. 0 ⁇ i ⁇ 30,
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the first signal is scrambled by using the following formula to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent the sequence of the second signal, subframe m and subframe n Indicates a subframe in which the secondary synchronization signal is located;
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the initialization value is calculated by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the initialization value is calculated by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • processor 1104 is further configured to invoke the program code to perform the following operations:
  • the signal is such that the user equipment that detects the beam signal acquires a beam identifier included in the beam signal.
  • the determined time-frequency resource location of the beam signal and the time-frequency resource location of the third signal have a preset interval.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the beam is identified by the beam, and the beam signal is sent at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires a beam identifier included in the beam signal.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the time-frequency resource information is sent to the user equipment, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, so that the user equipment detects the beam signal at the time-frequency resource location according to the time-frequency resource location identifier.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the time-frequency resource indicated by the time-frequency resource location identifier is configured to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, the user equipment that detects the signal according to the time-frequency resource location identifier of the signal and the corresponding relationship , get the beam identification.
  • the beam identifier corresponding to each time-frequency resource location identifier is obtained by performing a modulo operation on the corresponding time-frequency resource location identifier and the total number of beams;
  • the user equipment that detects the signal performs a modulo operation on the time-frequency resource location identifier of the signal and the total number of the beam, The beam identification.
  • processor 1104 is further configured to invoke the program code, and perform the following operations:
  • the selected beam is identified by the selected beam to communicate with the user equipment.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • a receiver 1201, a transmitter 1202, a memory 1203, and a processor 1204 are included.
  • the receiver 1201, the transmitter 1202, and the memory 1203 are respectively connected to the processor 1204.
  • the memory 1203 stores program codes.
  • the processor 1204 is configured to call the program code and perform the following operations:
  • the beam identifier is sent to the base station, so that the base station identifies the corresponding beam through the beam to communicate with the local end.
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • the signal is descrambled to obtain a scrambling sequence of the signal, and the beam identifier is obtained according to the scrambling sequence, and the signal is scrambled by the base station according to the beam identifier;
  • the signal is parsed to obtain an initialization value of the signal, and the beam identifier is obtained according to the initialization value, and the initialization value is calculated by the base station according to the beam identifier; or
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • a beam signal transmitted by the base station through the beam is detected, and the beam signal includes the beam identifier.
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • the beam signal is detected at a preset interval of the time-frequency resource position of the third signal, and the preset time interval is between the time-frequency resource position of the beam signal and the time-frequency resource position of the third signal.
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • the beam signal is detected at a preset time-frequency resource location.
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal;
  • the beam signal is detected at the time-frequency resource location according to the time-frequency resource location identifier.
  • processor 1204 is further configured to invoke the program code to perform the following operations:
  • the beam identifier corresponding to each signal is sequentially transmitted to the base station, so that the base station selects one beam from the multiple beam identifiers according to the order of receiving each beam identifier. Identifying, by using the selected beam identifier, to communicate with the local end; or
  • FIG. 13 is a schematic structural diagram of a system according to an embodiment of the present invention. See Figure 13, including: Base station 1301 and user equipment 1302;
  • the base station 1301 is configured to determine a signal corresponding to the beam identifier
  • the base station 1301 is further configured to identify the corresponding beam by using the beam, and send the signal;
  • the user equipment 1302 is configured to detect the signal sent by the base station 1301, and obtain the beam identifier according to the signal;
  • the user equipment 1302 is further configured to send the beam identifier to the base station 1301.
  • the base station 1301 is further configured to receive the beam identifier fed back by the user equipment 1302, and then identify the corresponding beam by using the beam to communicate with the user equipment 1302.
  • the base station 1301 is further configured to perform scrambling on the first signal according to the beam identifier to obtain a second signal.
  • the base station 1301 is further configured to generate a scrambling sequence according to the beam identifier; or the base station 1301 is further configured to generate a scrambling sequence according to the beam identifier and the total number of beams. ;
  • the base station 1301 is further configured to scramble the first signal according to the generated scrambling sequence to obtain the second signal.
  • the base station 1301 is further configured to generate a scrambling sequence according to the beam identifier by applying the following formula:
  • b 0 (n) represents the scrambling sequence
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station 1301 is further configured to: according to the generated scrambling sequence, apply the following formula to scramble the first signal to obtain the second signal:
  • b 0 (n) represents the scrambling sequence
  • d(2n) and d(2n+1) represent a sequence of the second signal
  • subframe m and subframe n represent the secondary synchronization signal
  • the base station 1301 is further configured to generate a scrambling sequence by applying the following formula according to the beam identifier and the total number of the beams:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, Indicates the beam identification, and N sumbeam indicates the total number of beams. 0 ⁇ i ⁇ 30,
  • Each of a, b, c, d, and e has a value of 0 or 1.
  • the base station 1301 is further configured to: according to the generated scrambling sequence, apply the following formula to scramble the first signal to obtain the second signal:
  • b 0 (n) and b 1 (n) represent the scrambling sequence, 0 ⁇ n ⁇ 30, d(2n) and d(2n+1) represent the sequence of the second signal, subframe m and subframe n Indicates a subframe in which the secondary synchronization signal is located;
  • the base station 1301 is further configured to calculate an initialization value according to the beam identifier, or calculate an initialization value according to the beam identifier and the cell identifier, and generate a reference signal according to the calculated initialization value.
  • the reference signal is a cell-specific reference signal CRS or a channel state information reference signal CSI-RS.
  • the base station 1301 is further configured to calculate an initialization value according to the beam identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the base station 1301 is further configured to generate a designated label according to the beam identifier and the cell identifier. knowledge;
  • the base station 1301 is further configured to calculate the initialization value according to the specified identifier by applying the following formula:
  • c init represents the initialization value
  • n s represents the slot number
  • l represents the orthogonal frequency division multiplexing OFDM symbol sequence number.
  • N CP represents the cyclic prefix CP length identifier.
  • the base station 1301 is further configured to generate a beam signal corresponding to the beam identifier, where the beam signal includes the beam identifier;
  • the method further comprises:
  • the base station 1301 is further configured to determine a time-frequency resource location of the beam signal
  • the base station 1301 is further configured to identify the corresponding beam by using the beam, and send the beam signal at a time-frequency resource location of the beam signal, so that the user equipment that detects the beam signal acquires a beam identifier included in the beam signal.
  • the base station 1301 determines a time interval between the time-frequency resource location of the beam signal and the time-frequency resource location of the third signal.
  • the base station 1301 is further configured to determine that the time-frequency resource location of the beam signal is a preset time-frequency resource location;
  • the base station 1301 is further configured to identify the corresponding beam by using the beam, and send the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam signal.
  • the included beam identification is further configured to identify the corresponding beam by using the beam, and send the beam signal at the preset time-frequency resource location, so that the user equipment detects the beam signal at the preset time-frequency resource location, and acquires the beam signal.
  • the base station 1301 is further configured to send time-frequency resource information to the user equipment, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, so that the user equipment is configured according to the time-frequency resource location identifier.
  • the beam signal is detected at a time-frequency resource location.
  • the base station 1301 is further configured to determine, according to a preset correspondence between a preset time-frequency resource location identifier and a beam identifier, a time-frequency resource location identifier corresponding to the beam identifier.
  • the base station 1301 is further configured to configure the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that when the signal is sent by the beam corresponding to the beam identifier, the user equipment that detects the signal is configured according to the The time-frequency resource location identifier of the signal and the corresponding relationship acquire the beam identifier.
  • the beam identifier corresponding to each time-frequency resource location identifier is obtained by performing a modulo operation on the corresponding time-frequency resource location identifier and the total number of beams;
  • the base station 1301 configures the time-frequency resource indicated by the time-frequency resource location identifier to the signal, so that the user equipment that detects the signal modulates the time-frequency resource location identifier of the signal and the total number of the beam. The operation is performed to obtain the beam identification.
  • the base station 1301 is further configured to receive multiple beam identifiers that are fed back by the user equipment, obtain a signal strength corresponding to each beam identifier;
  • the base station 1301 is further configured to select one beam identifier from the multiple beam identifiers according to the signal strength corresponding to the multiple beam identifiers;
  • the base station 1301 is further configured to communicate with the user equipment by using the selected beam to identify a corresponding beam.
  • the user equipment 1302 is further configured to perform descrambling on the signal, obtain a scrambling sequence of the signal, and obtain the beam identifier according to the scrambling sequence, where the signal is scrambled by the base station according to the beam identifier; Or, the signal is parsed to obtain an initial value of the signal, and the beam identifier is obtained according to the initialization value, where the initialization value is calculated by the base station according to the beam identifier; or, according to a preset time-frequency resource location identifier and beam Corresponding relationship between the identifiers, determining a beam identifier corresponding to the time-frequency resource location identifier of the signal, the time-frequency resource location of the signal is determined according to the beam identifier and the corresponding relationship; or acquiring a time-frequency resource location identifier of the signal, The time-frequency resource location identifier and the total number of beams are subjected to a modulo operation to obtain the beam identifier.
  • the user equipment 1302 is further configured to detect a beam signal that is sent by the base station by using the beam, where the beam signal includes the beam identifier.
  • the user equipment 1302 is further configured to detect, at a preset interval of a time-frequency resource location of the third signal, between a time-frequency resource location of the beam signal and a time-frequency resource location of the third signal. With this preset interval.
  • the user equipment 1302 is further configured to detect the beam signal at a preset time-frequency resource location.
  • the user equipment 1302 is further configured to receive time-frequency resource information sent by the base station, where the time-frequency resource information includes a time-frequency resource location identifier of the beam signal, and the time-frequency resource is used according to the time-frequency resource location identifier.
  • the beam signal is detected at the location.
  • the user equipment 1302 is further configured to: when detecting a plurality of signals sent by the base station, acquire signal strength of each of the multiple signals; and send, to the base station, a signal strength of each signal and a corresponding beam. Identifying, by the base station, selecting a beam identifier from the plurality of beam identifiers according to the received signal strengths of the plurality of beam identifiers, and communicating with the local end by using the selected beam identifiers; or The signal strengths of the signals are sequentially transmitted from the base station to the base station, and the beam identifier corresponding to each signal is sequentially sent to the base station, so that the base station selects one beam identifier from the multiple beam identifiers according to the order in which each beam identifier is received.
  • the selected beam is identified by the selected beam to communicate with the local end; or, according to the signal strength of each beam identification corresponding signal, a beam identifier is selected, and the selected beam identifier is sent to the base station, so that the base station passes the beam. Identify the corresponding beam and communicate with the local end.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种获取波束标识的方法、装置、设备和系统,涉及通信技术领域,所述方法包括:基站确定与波束标识对应的信号;所述基站通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;当所述基站接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。本发明通过基站确定与波束标识对应的信号,通过该波束标识对应的波束,发送该信号,检测到该信号的用户设备即可获取到该波束标识,反馈给基站,基站能够确定用户设备当前所在的波束,通过该波束与用户设备进行进一步的通信。

Description

获取波束标识的方法、装置、设备和系统 技术领域
本发明涉及通信技术领域,特别涉及一种获取波束标识的方法、装置、设备和系统。
背景技术
波束是指由天线发射出来的电磁波在地球表面上形成的形状,波束的宽度由天线增益确定,天线增益越大,波束的宽度越小,即波束越窄。
基站天线所发出的信号在传播过程中很容易受到雨、雾、建筑等障碍物的吸收和散射,从而导致较大的路径损耗。而为了弥补传播过程中的路径损耗,基站可以采用大规模MIMO(Multiple Input Multiple Output,多输入多输出)技术,使用多根天线来发送信号,从而形成很高的天线增益。
基站在形成很高的天线增益的同时,所形成的波束很窄,使得单个波束的覆盖范围很小。为了提高信号覆盖范围,基站需要通过多个波束来发送信号。即使是同步信号,广播信号或者控制信号等都需要采用波束的方式进行发送,因此用户设备需要确定其当前所在的波束,进而与基站进行更好的通信。但对于该信号覆盖范围内的任一用户设备来说,即使该用户设备检测到基站发送的信号,也无法确定当前所在的波束是哪一个波束,进而用户设备无法告知基站其所在的波束,基站也不能与用户设备进行进一步的通信。因此如何根据基站发送的信号确定用户设备当前所在的波束成为一个需要解决的问题。
发明内容
为了确定用户设备当前所在的波束,本发明实施例提供了一种获取波束标识的方法、装置、设备和系统。所述技术方案如下:
第一方面,提供了一种获取波束标识的方法,所述方法包括:
基站确定与波束标识对应的信号;
所述基站通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
当所述基站接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
结合第一方面,在第一方面的第一种可能实现方式中,所述基站确定与波束标识对应的信号,包括:
所述基站根据所述波束标识,对第一信号进行加扰,得到第二信号。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述基站根据所述波束标识,对第一信号进行加扰,得到第二信号,包括:
当所述第一信号为辅同步信号时,所述基站根据所述波束标识生成加扰序列;或者,所述基站根据所述波束标识和波束总数目生成加扰序列;
所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,所述基站根据所述波束标识生成加扰序列,包括:
所述基站根据所述波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000001
其中,b0(n)表示所述加扰序列,
Figure PCTCN2015075249-appb-000002
表示所述波束标识,
Figure PCTCN2015075249-appb-000003
0≤i≤30,且
Figure PCTCN2015075249-appb-000004
a、b、c、d、e中每一个的取值为0或1。
结合第一方面的第二种可能实现方式,在第一方面的第四种可能实现方式中,所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号,包括:
所述基站根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰, 得到所述第二信号:
Figure PCTCN2015075249-appb-000005
其中,b0(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000006
Figure PCTCN2015075249-appb-000007
Figure PCTCN2015075249-appb-000008
0≤j≤30,
Figure PCTCN2015075249-appb-000009
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000010
Figure PCTCN2015075249-appb-000011
表示小区标识,
Figure PCTCN2015075249-appb-000012
Figure PCTCN2015075249-appb-000013
0≤k≤30,
Figure PCTCN2015075249-appb-000014
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000015
Figure PCTCN2015075249-appb-000016
0≤r≤30,
Figure PCTCN2015075249-appb-000017
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
结合第一方面的第二种可能实现方式,在第一方面的第五种可能实现方式中,所述基站根据所述波束标识和波束总数目生成加扰序列,包括:
所述基站根据所述波束标识和所述波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000018
其中,b0(n)和b1(n)表示所述加扰序列,
Figure PCTCN2015075249-appb-000019
表示所述波束标识,Nsumbeam表示所述波束总数目,
Figure PCTCN2015075249-appb-000020
Figure PCTCN2015075249-appb-000021
0≤i≤30,
Figure PCTCN2015075249-appb-000022
a、b、c、 d、e中每一个的取值为0或1。
结合第一方面的第二种可能实现方式,在第一方面的第六种可能实现方式中,所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号,包括:
所述基站根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
Figure PCTCN2015075249-appb-000023
其中,b0(n)和b1(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000024
Figure PCTCN2015075249-appb-000025
Figure PCTCN2015075249-appb-000026
0≤j≤30,
Figure PCTCN2015075249-appb-000027
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000028
Figure PCTCN2015075249-appb-000029
表示小区标识,
Figure PCTCN2015075249-appb-000030
Figure PCTCN2015075249-appb-000031
0≤k≤30,
Figure PCTCN2015075249-appb-000032
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000033
Figure PCTCN2015075249-appb-000034
0≤r≤30,
Figure PCTCN2015075249-appb-000035
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
结合第一方面,在第一方面的第七种可能实现方式中,所述基站确定与波束标识对应的信号,包括:
所述基站根据所述波束标识计算初始化值,或者根据所述波束标识和小区标识计算初始化值;
根据计算出的初始化值,生成参考信号。
结合第一方面的第七种可能实现方式,在第一方面的第八种可能实现方式中,所述参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
结合第一方面的第七种可能实现方式,在第一方面的第九种可能实现方式中,所述基站根据所述波束标识计算初始化值,包括:
所述基站根据所述波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000036
其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000037
表示所述波束标识,NCP表示循环前缀CP长度标识。
结合第一方面的第七种可能实现方式,在第一方面的第十种可能实现方式中,所述基站根据所述波束标识和小区标识计算初始化值,包括:
所述基站根据所述波束标识和所述小区标识,生成指定标识;
所述基站根据所述指定标识,应用以下公式,计算所述初始化值:
Figure PCTCN2015075249-appb-000038
其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000039
表示所述指定标识,NCP表示循环前缀CP长度标识。
结合第一方面,在第一方面的第十一种可能实现方式中,所述基站确定与波束标识对应的信号,包括:
所述基站生成与波束标识对应的波束信号,所述波束信号包括所述波束标识;
相应的,所述方法还包括:
所述基站确定所述波束信号的时频资源位置;
所述基站通过所述波束标识对应的波束,在所述波束信号的时频资源位置处发送所述波束信号,使得检测到所述波束信号的用户设备获取所述波束信号包括的波束标识。
结合第一方面的第十一种可能实现方式,在第一方面的第十二种可能实现方式中,所述基站确定的所述波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
结合第一方面的第十一种可能实现方式,在第一方面的第十三种可能实现方式中,所述方法还包括:
所述基站确定所述波束信号的时频资源位置为预设时频资源位置;
所述基站通过所述波束标识对应的波束,在所述预设时频资源位置处发送所述波束信号,使得用户设备在所述预设时频资源位置处检测所述波束信号,并获取所述波束信号包括的波束标识。
结合第一方面的第十一种可能实现方式,在第一方面的第十四种可能实现方式中,所述方法还包括:
所述基站向所述用户设备发送时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识,使得所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
结合第一方面,在第一方面的第十五种可能实现方式中,所述基站确定与波束标识对应的信号,包括:
所述基站根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述波束标识对应的时频资源位置标识;
所述基站将时频资源位置标识所指示的时频资源配置给所述信号,使得通过所述波束标识对应的波束发送所述信号时,检测到所述信号的用户设备根据所述信号的时频资源位置标识以及所述对应关系,获取所述波束标识。
结合第一方面的第十五种可能实现方式,在第一方面的第十六种可能实现方式中,所述对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,所述基站将所述时频资源位置标识所指示的时频资源配置给所述信号时,使得检测到所述信号的用户设备对所述信号的时频资源位置标识与所 述波束总数目进行取模运算,得到所述波束标识。
结合第一方面,在第一方面的第十七种可能实现方式中,所述基站通过所述波束标识对应的波束,与所述用户设备进行通信,包括:
如果所述基站接收到所述用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;
所述基站根据所述多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识;
所述基站通过所述选取的波束标识对应的波束,与所述用户设备进行通信。
第二方面,提供了一种获取波束标识的方法,所述方法包括:
用户设备检测基站通过波束发送的信号,所述信号与所述波束的波束标识对应;
所述用户设备根据所述信号,获取所述波束标识;
所述用户设备向所述基站发送所述波束标识,使得所述基站通过所述波束标识对应的波束,与所述用户设备进行通信。
结合第二方面,在第二方面的第一种可能实现方式中,所述用户设备根据所述信号,获取所述波束标识,包括:
所述用户设备对所述信号进行解扰,得到所述信号的加扰序列,根据所述加扰序列获取所述波束标识,所述信号由所述基站根据所述波束标识进行加扰得到;或者,
所述用户设备对所述信号进行解析,得到所述信号的初始化值,根据所述初始化值获取所述波束标识,所述初始化值由所述基站根据所述波束标识计算得到;或者,
所述用户设备根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述信号的时频资源位置标识对应的波束标识,所述信号的时频资源位置 根据所述波束标识以及所述对应关系确定;或者,
所述用户设备获取所述信号的时频资源位置标识,对所述时频资源位置标识与波束总数目进行取模运算,得到所述波束标识。
结合第二方面,在第二方面的第二种可能实现方式中,所述用户设备检测基站通过波束发送的信号,包括:
所述用户设备检测所述基站通过所述波束发送的波束信号,所述波束信号包括所述波束标识。
结合第二方面的第二种可能实现方式,在第二方面的第三种可能实现方式中,所述用户设备检测所述基站通过所述波束发送的波束信号,包括:
所述用户设备在第三信号的时频资源位置的预设间隔处检测所述波束信号,所述波束信号的时频资源位置与所述第三信号的时频资源位置之间具有所述预设间隔。
结合第二方面的第二种可能实现方式,在第二方面的第四种可能实现方式中,所述用户设备检测所述基站通过所述波束发送的波束信号,包括:
所述用户设备在预设时频资源位置处检测所述波束信号。
结合第二方面的第二种可能实现方式,在第二方面的第五种可能实现方式中,所述用户设备检测所述基站通过所述波束发送的波束信号之前,所述方法还包括:
所述用户设备接收所述基站发送的时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识;
所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
结合第二方面,在第二方面的第六种可能实现方式中,所述方法还包括:
当所述用户设备检测到所述基站发送的多个信号时,获取所述多个信号中每个信号的信号强度;
所述用户设备向所述基站发送每个信号的信号强度以及对应的波束标识, 使得所述基站根据接收到的多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与所述用户设备进行通信;或者,
所述用户设备按照每个信号的信号强度从大到小的顺序,向所述基站依次发送每个信号对应的波束标识,使得所述基站根据接收到每个波束标识的顺序,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与所述用户设备进行通信;或者,
所述用户设备根据每个波束标识对应信号的信号强度,选取一个波束标识,向所述基站发送所述选取的波束标识,使得所述基站通过所述波束标识对应的波束,与所述用户设备进行通信。
第三方面,提供了一种获取波束标识的装置,所述装置包括:
处理模块,用于确定与波束标识对应的信号;
发送模块,用于通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
接收模块,用于接收所述用户设备反馈的所述波束标识;
所述处理模块还用于通过所述波束标识对应的波束,与所述用户设备进行通信。
结合第三方面,在第三方面的第一种可能实现方式中,所述处理模块还用于根据所述波束标识,对第一信号进行加扰,得到第二信号。
结合第三方面的第一种可能实现方式,在第三方面的第二种可能实现方式中,所述处理模块还用于当所述第一信号为辅同步信号时,根据所述波束标识生成加扰序列;或者,根据所述波束标识和波束总数目生成加扰序列;根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号。
结合第三方面的第二种可能实现方式,在第三方面的第三种可能实现方式中,所述处理模块还用于根据所述波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000040
其中,b0(n)表示所述加扰序列,
Figure PCTCN2015075249-appb-000041
表示所述波束标识,
Figure PCTCN2015075249-appb-000042
0≤i≤30,且
Figure PCTCN2015075249-appb-000043
a、b、c、d、e中每一个的取值为0或1。
结合第三方面的第二种可能实现方式,在第三方面的第四种可能实现方式中,所述处理模块还用于根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
Figure PCTCN2015075249-appb-000044
其中,b0(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000045
Figure PCTCN2015075249-appb-000046
Figure PCTCN2015075249-appb-000047
0≤j≤30,
Figure PCTCN2015075249-appb-000048
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000049
Figure PCTCN2015075249-appb-000050
表示小区标识,
Figure PCTCN2015075249-appb-000051
Figure PCTCN2015075249-appb-000052
0≤k≤30,
Figure PCTCN2015075249-appb-000053
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000054
Figure PCTCN2015075249-appb-000055
0≤r≤30,
Figure PCTCN2015075249-appb-000056
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
结合第三方面的第二种可能实现方式,在第三方面的第五种可能实现方式中,所述处理模块还用于根据所述波束标识和所述波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000057
其中,b0(n)和b1(n)表示所述加扰序列,
Figure PCTCN2015075249-appb-000058
表示所述波束标识,Nsumbeam表示所述波束总数目,
Figure PCTCN2015075249-appb-000059
Figure PCTCN2015075249-appb-000060
0≤i≤30,
Figure PCTCN2015075249-appb-000061
a、b、c、d、e中每一个的取值为0或1。
结合第三方面的第二种可能实现方式,在第三方面的第六种可能实现方式中,所述处理模块还用于根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
Figure PCTCN2015075249-appb-000062
其中,b0(n)和b1(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000063
Figure PCTCN2015075249-appb-000064
Figure PCTCN2015075249-appb-000065
0≤j≤30,
Figure PCTCN2015075249-appb-000066
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000067
Figure PCTCN2015075249-appb-000068
表示小区标识,
Figure PCTCN2015075249-appb-000069
Figure PCTCN2015075249-appb-000070
0≤k≤30,
Figure PCTCN2015075249-appb-000071
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000072
Figure PCTCN2015075249-appb-000073
0≤r≤30,
Figure PCTCN2015075249-appb-000074
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
结合第三方面,在第三方面的第七种可能实现方式中,所述处理模块还用于根据所述波束标识计算初始化值,或者根据所述波束标识和小区标识计算初始化值;根据计算出的初始化值,生成参考信号。
结合第三方面的第七种可能实现方式,在第三方面的第八种可能实现方式中,所述参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
结合第三方面的第七种可能实现方式,在第三方面的第九种可能实现方式中,所述处理模块还用于根据所述波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000075
其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000076
表示所述波束标识,NCP表示循环前缀CP长度标识。
结合第三方面的第七种可能实现方式,在第三方面的第十种可能实现方式中,所述处理模块还用于根据所述波束标识和所述小区标识,生成指定标识;根据所述指定标识,应用以下公式,计算所述初始化值:
Figure PCTCN2015075249-appb-000077
其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000078
表示所述指定标识,NCP表示循环前缀CP长度标识。
结合第三方面,在第三方面的第十一种可能实现方式中,所述处理模块用于生成与波束标识对应的波束信号,所述波束信号包括所述波束标识;
所述处理模块,用于确定所述波束信号的时频资源位置;
所述发送模块,还用于通过所述波束标识对应的波束,在所述波束信号的时频资源位置处发送所述波束信号,使得检测到所述波束信号的用户设备获取所述波束信号包括的波束标识。
结合第三方面的第十一种可能实现方式,在第三方面的第十二种可能实现方式中,所述基站确定的所述波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
结合第三方面的第十一种可能实现方式,在第三方面的第十三种可能实现方式中,所述处理模块,还用于确定所述波束信号的时频资源位置为预设时频资源位置;
所述发送模块,还用于通过所述波束标识对应的波束,在所述预设时频资源位置处发送所述波束信号,使得用户设备在所述预设时频资源位置处检测所述波束信号,并获取所述波束信号包括的波束标识。
结合第三方面的第十一种可能实现方式,在第三方面的第十四种可能实现方式中,所述发送模块,还用于向所述用户设备发送时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识,使得所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
结合第三方面,在第三方面的第十五种可能实现方式中,所述处理模块还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述波束标识对应的时频资源位置标识;将时频资源位置标识所指示的时频资源配置给所述信号,使得通过所述波束标识对应的波束发送所述信号时,检测到所述信号的用户设备根据所述信号的时频资源位置标识以及所述对应关系,获取所述波束标识。
结合第三方面的第十五种可能实现方式,在第三方面的第十六种可能实现方式中,所述对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,所述处理模块将所述时频资源位置标识所指示的时频资源配置给所述信号时,使得检测到所述信号的用户设备对所述信号的时频资源位置标识与所述波束总数目进行取模运算,得到所述波束标识。
结合第三方面,在第三方面的第十七种可能实现方式中,所述发送模块还用于如果接收到所述用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;根据所述多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识;通过所述选取的波束标识对应的波束,与所述用户设备进 行通信。
第四方面,提供了一种获取波束标识的装置,所述装置包括:
检测模块,用于检测基站通过波束发送的信号,所述信号与所述波束对应的波束标识对应;
处理模块,用于根据所述信号,获取所述波束标识;
发送模块,用于向所述基站发送所述波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
结合第四方面,在第四方面的第一种可能实现方式中,所述处理模块还用于对所述信号进行解扰,得到所述信号的加扰序列,根据所述加扰序列获取所述波束标识,所述信号由所述基站根据所述波束标识进行加扰得到;或者,
所述处理模块还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述信号的时频资源位置标识对应的波束标识,所述信号的时频资源位置根据所述波束标识以及所述对应关系确定;或者,
所述处理模块还用于对所述信号进行解析,得到所述信号的初始化值,根据所述初始化值获取所述波束标识,所述初始化值由所述基站根据所述波束标识计算得到;或者,
所述处理模块还用于获取所述信号的时频资源位置标识,对所述时频资源位置标识与波束总数目进行取模运算,得到所述波束标识。
结合第四方面,在第四方面的第二种可能实现方式中,所述检测模块还用于检测所述基站通过所述波束发送的波束信号,所述波束信号包括所述波束标识。
结合第四方面的第二种可能实现方式,在第四方面的第三种可能实现方式中,所述检测模块还用于在第三信号的时频资源位置的预设间隔处检测所述波束信号,所述波束信号的时频资源位置与所述第三信号的时频资源位置之间具有所述预设间隔。
结合第四方面的第二种可能实现方式,在第四方面的第四种可能实现方式中,所述检测模块还用于在预设时频资源位置处检测所述波束信号。
结合第四方面的第二种可能实现方式,在第四方面的第五种可能实现方式中,所述装置还包括:
接收模块,用于接收所述基站发送的时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识;
所述检测模块,用于根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
结合第四方面,在第四方面的第六种可能实现方式中,所述装置还包括:
所述处理模块,还用于当检测到所述基站发送的多个信号时,获取所述多个信号中每个信号的信号强度;
所述发送模块,还用于向所述基站发送每个信号的信号强度以及对应的波束标识,使得所述基站根据接收到的多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与本端进行通信;或者,
所述发送模块,还用于按照每个信号的信号强度从大到小的顺序,向所述基站依次发送每个信号对应的波束标识,使得所述基站根据接收到每个波束标识的顺序,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与本端进行通信;或者,
所述处理模块,还用于根据每个波束标识对应信号的信号强度,选取一个波束标识,所述发送模块还用于向所述基站发送所述选取的波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
第五方面,提供了一种基站,所述基站包括:接收器、发射器、存储器和处理器,所述接收器、所述发射器和所述存储器分别与所述处理器连接,所述存储器存储有程序代码,所述处理器用于调用所述程序代码,执行以下操作:
确定与波束标识对应的信号;
通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
当接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
第六方面,提供了一种用户设备,所述用户设备包括:接收器、发射器、存储器和处理器,所述接收器、所述发射器和所述存储器分别与所述处理器连接,所述存储器存储有程序代码,所述处理器用于调用所述程序代码,执行以下操作:
检测基站通过波束发送的信号,所述信号与所述波束对应的波束标识对应;
根据所述信号,获取所述波束标识;
向所述基站发送所述波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
第七方面,提供了一种系统,所述系统包括:基站和用户设备;
所述基站用于确定与波束标识对应的信号;
所述基站还用于通过所述波束标识对应的波束,发送所述信号;
所述用户设备用于检测所述基站发送的所述信号,根据所述信号,获取所述波束标识;
所述用户设备还用于向所述基站发送所述波束标识;
所述基站还用于接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
本发明实施例提供的技术方案的有益效果是:
通过基站确定与波束标识对应的信号,通过该波束标识对应的波束,发送该信号,检测到该信号的用户设备即可获取到该波束标识,反馈给基站,基站能够确定用户设备当前所在的波束,通过该波束与用户设备进行进一步的通信。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的通信系统的结构示意图;
图2是本发明实施例提供的一种获取波束标识的方法流程图;
图3是本发明实施例提供的一种获取波束标识的方法流程图;
图4是本发明实施例提供的一种获取波束标识的方法流程图;
图5A是本发明实施例提供的一种获取波束标识的方法流程图;
图5B是本发明实施例提供的另一种获取波束标识的方法流程图;
图6A是本发明实施例提供的一种获取波束标识的方法流程图;
图6B是本发明实施例提供的另一种获取波束标识的方法流程图;
图7是本发明实施例提供的一种获取波束标识的方法流程图;
图8是本发明实施例提供的时频资源位置的示意图;
图9是本发明实施例提供的一种获取波束标识的装置的结构示意图;
图10是本发明实施例提供的一种获取波束标识的装置的结构示意图;
图11是本发明实施例提供的一种基站的结构示意图;
图12是本发明实施例提供的一种用户设备的结构示意图;
图13是本发明实施例提供的一种系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的通信系统的结构示意图,参见图1,该通信系统包括基站和用户设备,该用户设备位于该基站的覆盖范围内。
该基站的天线发送信号时,可以形成波束,也即是该基站通过该波束发送该信号。且为了提高信号的覆盖范围,该基站可以通过多个波束发送该信号。当该用户设备位于该基站任一波束的覆盖范围内时,可以检测到通过该波束发送的信号,从而实现与该基站之间的通信。
其中,该基站可以为提供低频段载波的基站,则本发明实施例应用于将低频段载波作为独立载波的场景下,该基站也可以为提供毫米波载波的基站,则本发明实施例应用于将毫米波载波作为独立载波的场景下,本发明实施例对此不做限定。进一步地,本发明实施例可以将较低频段载波与毫米波载波进行聚合,为用户提供更大的带宽和更高的容量,则将较低频段载波作为主载波,将毫米波频段作为辅载波,主载波和辅载波可以共站址,也可以非共站址(图1仅以共站址为例)。在非共站址的情况下,提供主载波的基站与提供辅载波的基站以光纤或者无线相连进行回程通信,无线回程可以使用微波或者毫米波波段,可以与辅载波所在的波段相同或不同。
图2是本发明实施例提供的一种获取波束标识的方法流程图,参见图2,本发明实施例的执行主体为基站,该方法包括:
201、基站确定与波束标识对应的信号。
202、该基站通过该波束标识对应的波束,发送该信号,使得检测到该信号的用户设备根据该信号,获取该波束标识。
203、当该基站接收到该用户设备反馈的该波束标识,则通过该波束标识对应的波束,与该用户设备进行通信。
本发明实施例提供的方法,通过基站确定与波束标识对应的信号,通过该波束标识对应的波束,发送该信号,检测到该信号的用户设备即可获取到该波束标识,反馈给基站,基站能够确定用户设备当前所在的波束,通过该波束与用户设备进行进一步的通信。
可选地,该基站确定与波束标识对应的信号,包括:
基站根据该波束标识,对第一信号进行加扰,得到第二信号。
可选地,该基站根据该波束标识,对第一信号进行加扰,得到第二信号,包括:
当该第一信号为辅同步信号时,该基站根据该波束标识生成加扰序列;或者,根据该波束标识和波束总数目生成加扰序列;
该基站根据生成的加扰序列对该第一信号进行加扰,得到该第二信号。
可选地,该基站根据该波束标识生成加扰序列,包括:
该基站根据该波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000079
其中,b0(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000080
表示该波束标识,
Figure PCTCN2015075249-appb-000081
0≤i≤30,且
Figure PCTCN2015075249-appb-000082
a、b、c、d、e中每一个的取值为0或1。
可选地,该基站根据生成的加扰序列对该第一信号进行加扰,得到该第二信号,包括:
该基站根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000083
其中,b0(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的 序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000084
Figure PCTCN2015075249-appb-000085
Figure PCTCN2015075249-appb-000086
0≤j≤30,
Figure PCTCN2015075249-appb-000087
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000088
Figure PCTCN2015075249-appb-000089
表示小区标识,
Figure PCTCN2015075249-appb-000090
Figure PCTCN2015075249-appb-000091
0≤k≤30,
Figure PCTCN2015075249-appb-000092
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000093
Figure PCTCN2015075249-appb-000094
0≤r≤30,
Figure PCTCN2015075249-appb-000095
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该基站根据该波束标识和波束总数目生成加扰序列,包括:
该基站根据该波束标识和该波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000096
其中,b0(n)和b1(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000097
表示该波束标识,Nsumbeam表示该波束总数目,
Figure PCTCN2015075249-appb-000098
Figure PCTCN2015075249-appb-000099
0≤i≤30,
Figure PCTCN2015075249-appb-000100
a、b、c、d、e中每一个的取值为0或1。
可选地,该基站根据生成的加扰序列对该第一信号进行加扰,得到该第二信号,包括:
该基站根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000101
其中,b0(n)和b1(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000102
Figure PCTCN2015075249-appb-000103
Figure PCTCN2015075249-appb-000104
0≤j≤30,
Figure PCTCN2015075249-appb-000105
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000106
Figure PCTCN2015075249-appb-000107
表示小区标识,
Figure PCTCN2015075249-appb-000108
Figure PCTCN2015075249-appb-000109
0≤k≤30,
Figure PCTCN2015075249-appb-000110
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000111
Figure PCTCN2015075249-appb-000112
0≤r≤30,
Figure PCTCN2015075249-appb-000113
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该基站确定与波束标识对应的信号,包括:
该基站根据该波束标识计算初始化值,或者根据该波束标识和小区标识计算初始化值;
根据计算出的初始化值,生成参考信号。
可选地,该参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
可选地,该基站根据该波束标识计算初始化值,包括:
该基站根据该波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000114
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000115
表示该波束标识,NCP表示循环前缀CP长度标识。
可选地,该基站根据该波束标识和小区标识计算初始化值,包括:
该基站根据该波束标识和该小区标识,生成指定标识;
该基站根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000116
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000117
表示该指定标识,NCP表示循环前缀CP长度标识。
可选地,该基站确定与波束标识对应的信号,包括:
该基站生成与波束标识对应的波束信号,该波束信号包括该波束标识;
相应的,该方法还包括:
该基站确定该波束信号的时频资源位置;
该基站通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号,使得检测到该波束信号的用户设备获取该波束信号包括的波束标识。
可选地,该基站确定的该波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
可选地,该方法还包括:
该基站确定该波束信号的时频资源位置为预设时频资源位置;
该基站通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,使得用户设备在该预设时频资源位置处检测该波束信号,并获取该波束信号包括的波束标识。
可选地,该基站通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号之后,该方法还包括:
该基站向该用户设备发送时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识,使得该用户设备根据该时频资源位置标识,在该时频资 源位置处检测该波束信号。
可选地,该基站确定与波束标识对应的信号,包括:
该基站根据预设的时频资源位置标识与波束标识之间的对应关系,确定该波束标识对应的时频资源位置标识;
该基站将时频资源位置标识所指示的时频资源配置给该信号,使得通过该波束标识对应的波束发送该信号时,检测到该信号的用户设备根据该信号的时频资源位置标识以及该对应关系,获取该波束标识。
可选地,该对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,该基站将该时频资源位置标识所指示的时频资源配置给该信号时,使得检测到该信号的用户设备对该信号的时频资源位置标识与该波束总数目进行取模运算,得到该波束标识。
可选地,该基站通过该波束标识对应的波束,与该用户设备进行通信,包括:
如果该基站接收到该用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;
该基站根据该多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识;
该基站通过该选取的波束标识对应的波束,与该用户设备进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图3是本发明实施例提供的一种获取波束标识的方法流程图,参见图3,本发明实施例的执行主体为用户设备,该方法包括:
301、用户设备检测基站通过波束发送的信号,该信号与该波束的波束标识对应。
302、该用户设备根据该信号,获取该波束标识。
303、该用户设备向该基站发送该波束标识,使得该基站通过该波束标识对应的波束,与该用户设备进行通信。
本发明实施例提供的方法,基站通过波束发送与波束标识对应的信号,则用户设备检测到该信号时即可获取到该波束标识,向基站发送波束标识,基站能够根据该波束标识确定用户设备当前所在的波束,通过该波束与用户设备进行进一步的通信。
可选地,该用户设备检测基站通过波束发送的信号,该信号与该波束对应的波束标识对应;
该用户设备根据该信号,获取该波束标识;
该用户设备向该基站发送该波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
可选地,该用户设备根据该信号,获取该波束标识,包括:
该用户设备对该信号进行解扰,得到该信号的加扰序列,根据该加扰序列获取该波束标识,该信号由该基站根据该波束标识进行加扰得到;或者,
该用户设备对该信号进行解析,得到该信号的初始化值,根据该初始化值获取该波束标识,该初始化值由该基站根据该波束标识计算得到;或者,
该用户设备根据预设的时频资源位置标识与波束标识之间的对应关系,确定该信号的时频资源位置标识对应的波束标识,该信号的时频资源位置根据该波束标识以及该对应关系确定;或者,
该用户设备获取该信号的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。
可选地,该用户设备检测基站通过波束发送的信号,包括:
该用户设备检测该基站通过该波束发送的波束信号,该波束信号包括该波束标识。
可选地,该用户设备检测该基站通过该波束发送的波束信号,包括:
该用户设备在第三信号的时频资源位置的预设间隔处检测该波束信号,该波束信号的时频资源位置与该第三信号的时频资源位置之间具有该预设间隔。
可选地,该用户设备检测该基站通过该波束发送的波束信号,包括:
该用户设备在预设时频资源位置处检测该波束信号。
可选地,该用户设备检测该基站通过该波束发送的波束信号之前,该方法还包括:
该用户设备接收该基站发送的时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识;
该用户设备根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该方法还包括:
当该用户设备检测到该基站发送的多个信号时,获取该多个信号中每个信号的信号强度;
该用户设备向该基站发送每个信号的信号强度以及对应的波束标识,使得该基站根据接收到的多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
该用户设备按照每个信号的信号强度从大到小的顺序,向该基站依次发送每个信号对应的波束标识,使得该基站根据接收到每个波束标识的顺序,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
该用户设备根据每个波束标识对应信号的信号强度,选取一个波束标识,向该基站发送该选取的波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
下一实施例中将以该与波束标识对应的信号为辅同步信号为例,对本发明实施例提供的获取波束标识的方法进行说明,而为了便于说明,在详述本发明实施例之前,先对辅同步信号进行如下介绍:
在现有的LTE(Long Term Evolution,长期演进)系统中,同步信号是由PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)构成的。在给定的小区,基站向用户设备传输PSS和SSS的特定序列,以给用户设备指明物理层小区标识。LTE中有504个不同的物理层小区标识,它们被分为168组,每组3个标识。3个PSS序列用来表示组内的小区标识
Figure PCTCN2015075249-appb-000118
,168个SSS序列用来表示组标识
Figure PCTCN2015075249-appb-000119
,且
Figure PCTCN2015075249-appb-000120
其中,在FDD(Frequency Division Duplexing,频分双工)方式下,PSS位于第1个和第11个时隙的最后一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号上,SSS直接位于PSS之前。在TDD(Time Division Duplexing,时分双工)方式下,PSS位于第3个和第13个时隙的第3个符号上,SSS比PSS早3个符号,即SSS位于第2个和第12个时隙的最后一个符号上。
本领域的技术人员可以获知,1个无线帧包括10个子帧,子帧标号为0-9,1个子帧包括2个时隙,则1个无线帧中的时隙标号为0-19,常规CP(Cyclic Prefix,循环前缀)下,1个时隙包括7个符号,而扩展CP下,1个时隙包括6个符号。
则无论是在常规CP下还是扩展CP下,第1个时隙和第2个时隙位于子帧0上,第3个时隙位于子帧1上,第11个时隙和第12个时隙位于子帧5上,第13个时隙位于子帧6上,即FDD方式下,PSS和SSS均位于子帧0和子帧5上,而在TDD方式下,PSS位于子帧1和子帧6上,SSS位于子帧0和子帧5上。
SSS序列是由两个长度为31的M序列交错组成,这两个M序列SSC1和 SSC2是同一个长度为31的M序列的不同循环移位产生。SSS序列由与PSS有关的码加扰。
Figure PCTCN2015075249-appb-000121
其中,0≤n≤30,m0和m1可以根据小区组标识
Figure PCTCN2015075249-appb-000122
和m0,m1的映射关系得到。
两个序列
Figure PCTCN2015075249-appb-000123
Figure PCTCN2015075249-appb-000124
是M序列
Figure PCTCN2015075249-appb-000125
的两个不同循环移位,按照如下公式生成:
Figure PCTCN2015075249-appb-000126
其中,
Figure PCTCN2015075249-appb-000127
0≤i≤30,如下定义:
Figure PCTCN2015075249-appb-000128
初始条件为x(0)=0,x(1)=0,x(2)=0,x(3)=0,x(4)=1。
两个加扰序列c0(n)和c1(n)依据主同步信号生成,是M序列
Figure PCTCN2015075249-appb-000129
的两个不同循环移位,按照如下公式生成:
Figure PCTCN2015075249-appb-000130
其中
Figure PCTCN2015075249-appb-000131
是物理层小区组标识
Figure PCTCN2015075249-appb-000132
并且
Figure PCTCN2015075249-appb-000133
0≤i≤30,定义如下:
Figure PCTCN2015075249-appb-000134
初始条件为:x(0)=0,x(1)=0,x(2)=0,x(3)=0,x(4)=1。
加扰序列
Figure PCTCN2015075249-appb-000135
Figure PCTCN2015075249-appb-000136
是M序列
Figure PCTCN2015075249-appb-000137
进行循环移位得到,具体公式如下:
Figure PCTCN2015075249-appb-000138
Figure PCTCN2015075249-appb-000139
其中,
Figure PCTCN2015075249-appb-000140
0≤i≤30,定义如下:
Figure PCTCN2015075249-appb-000141
初始条件为:x(0)=0,x(1)=0,x(2)=0,x(3)=0,x(4)=1。
图4是本发明实施例提供的一种获取波束标识的方法流程图,参见图4,本发明实施例的交互主体为基站和用户设备,且本发明实施例以该基站根据波束标识对第一信号进行加扰,得到第二信号,则后续不再发送第一信号而是发送与波束标识对应的第二信号为例,且该第一信号为辅同步信号。该方法包括:
401、基站根据波束标识,对第一信号进行加扰,得到第二信号。
在本发明实施例中,该基站可以预先确定每个波束的波束标识,一个波束对应一个波束标识,该波束标识可以为对应波束的索引或者编号或者其他可以唯一确定对应波束的标识,本发明实施例对此不做限定。
本发明实施例以发送辅同步信号的过程为例,该基站在发送辅同步信号之前,先确定要发送该辅同步信号的波束所对应的波束标识,根据该波束标识,对该辅同步信号进行加扰,则辅同步信号的加扰信息中不仅包括小区标识,还包括波束标识,使得加扰得到的辅同步信号中也包括该波束标识。
该步骤401可以包括以下步骤:该基站根据该波束标识和波束总数目生成加扰序列,根据该加扰序列对该第一信号进行加扰,得到该第二信号。
具体地,该基站根据该波束标识和该波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000142
其中,b0(n)和b1(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000143
表示该波束标识,Nsumbeam表示该波束总数目,
Figure PCTCN2015075249-appb-000144
Figure PCTCN2015075249-appb-000145
0≤i≤30,
Figure PCTCN2015075249-appb-000146
a、b、c、d、e中每一个的取值为0或1。
则该基站根据该加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000147
其中,d(2n)和d(2n+1)表示该辅同步信号的序列;子帧m和子帧n为该辅同步信号所在的子帧,且n大于m。
Figure PCTCN2015075249-appb-000148
Figure PCTCN2015075249-appb-000149
Figure PCTCN2015075249-appb-000150
0≤j≤30,
Figure PCTCN2015075249-appb-000151
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000152
Figure PCTCN2015075249-appb-000153
表示小区标识,
Figure PCTCN2015075249-appb-000154
Figure PCTCN2015075249-appb-000155
0≤k≤30,
Figure PCTCN2015075249-appb-000156
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000157
Figure PCTCN2015075249-appb-000158
0≤r≤30,
Figure PCTCN2015075249-appb-000159
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1;
b0(n)和b1(n)表示该加扰序列,0≤n≤30。
或者,对第一信号进行加扰时,b0(n)和b1(n)的位置可以互换,即该基站还可以根据该加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000160
另外,该步骤401还可以包括以下步骤:该基站根据该波束标识生成加扰序列,根据该加扰序列对该第一信号进行加扰,得到该第二信号。
具体地,该基站根据该波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000161
根据该加扰序列,应用以下公式,对该第一信号进行加扰,得到第二信号:
Figure PCTCN2015075249-appb-000162
需要说明的是,该基站还可以采用其他的方式,根据该波束标识对该辅同步信号进行加扰,使得加扰得到的信号中包括该波束标识,本发明实施例对此不做限定。
与现有的相关技术相比,本发明实施例通过设计由小区标识和波束标识加扰的辅同步信号,使得发送的辅同步信号中既包括该小区标识,也包括该波束标识,检测到该第二信号的用户设备可以根据该第二信号获取该波束标识。
402、该基站通过该波束标识对应的波束,发送该第二信号。
403、用户设备检测到该第二信号时,根据该第二信号获取该波束标识。
该基站通过该波束标识对应的波束,发送该第二信号,如果该用户设备位于该波束的信号覆盖范围内,则该用户设备会检测到该第二信号,对该第二信号进行解扰,得到该第二信号的加扰序列,根据该加扰序列获取该波束标识。从而确定该用户设备当前所在的波束。
404、该用户设备向该基站发送该波束标识。
405、该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
该用户设备获取到一个波束标识后,可以向该基站发送该波束标识,则该基站能够根据该波束标识,确定该用户设备当前所在的波束,后续过程中,该基站可以通过该波束标识对应的波束,与该用户设备进行通信,如该基站有信号要发送该用户设备时,只需通过该用户设备当前所在的波束进行发送,而无需再通过多个波束进行发送,增大了吞吐量,提高了资源利用率。
在本发明实施例中,该用户设备检测到该第二信号时,还可以检测该第二 信号的信号强度,则该用户设备还可以向该基站发送该信号强度,该基站可以确定该用户设备检测到信号的信号强度。
进一步地,当该用户设备检测到该基站发送的多个第二信号时,获取每个第二信号的信号强度,此时该用户设备可以按照每个第二信号的信号强度从大到小的顺序,向该基站依次发送每个第二信号对应的波束标识,该基站根据接收到每个波束标识的顺序,可以确定每个波束对应的信号强度大小,该基站可以从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与该用户设备进行通信。可选地,该基站可以选取接收到的第一个波束标识,也即是对应的信号强度最大的波束标识,通过该信号强度最大的波束标识对应的波束,与该用户设备进行通信。
另外,该用户设备还可以根据每个波束标识对应的第二信号的信号强度,选取一个波束标识,向该基站发送该选取的波束标识,则该基站通过该波束标识对应的波束,与该用户设备进行通信。可选地,该用户设备选取信号强度最大的第二信号所对应的波束标识,向该基站发送该选取的波束标识,以便该基站根据该选取的波束标识对应的波束,与该用户设备进行通信。
或者,该用户设备还可以向该基站发送每个第二信号的信号强度以及对应的波束标识,使得该基站根据接收到的多个波束标识对应的信号强度,从多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与该用户设备进行通信。可选地,该基站根据接收到的多个波束标识对应的信号强度,从多个波束标识中选取对应的信号强度最大的波束标识,通过该信号强度最大的波束标识对应的波束,与该用户设备进行通信。
本发明实施例将该用户设备检测到的信号强度最大的波束作为最优波束,该基站通过确定的最优波束与该用户设备进行通信,能够及时地切换波束,在保证了信号覆盖范围的情况下,提高了资源利用率和吞吐量。
另外,在后续该基站与用户设备的通信过程中,该用户设备所在的波束可能会发生变化,则该基站和该用户设备可以重新执行上述步骤,获取该用户设 备更新后的波束标识,该基站即可通过该更新的波束,与该用户设备继续进行通信。
本发明实施例提供的方法,通过基站根据波束标识,对第一信号进行加扰,得到第二信号,使得该第二信号包括该波束标识,并通过该波束标识对应的波束发送该第二信号,则检测到该第二信号的用户设备即可获取到该波束标识,反馈给基站,基站能够根据该波束标识确定该用户设备当前所在的波束,通过该用户设备当前所在的波束与该用户设备进行通信,而无需通过多个波束与该用户设备进行通信,增大了吞吐量,提高了资源利用率。
下一实施例中将以该与波束标识对应的信号为CRS(Cell-specific Reference Signal,小区专用参考信号)为例,对本发明实施例提供的获取波束标识的方法进行说明,而为了便于说明,在详述本发明实施例之前,先对CRS进行如下介绍:
现有LTE系统中,CRS用于用户设备解调控制信道和数据,并且可用于用户设备进行CSI反馈。CRS的参考信号序列
Figure PCTCN2015075249-appb-000163
定义如下:
Figure PCTCN2015075249-appb-000164
其中,ns是一个无线帧的时隙标号,l是时隙中的OFDM符号标号,c(i)为伪随机序列。
伪随机序列c(n)是通过一个长度为31的Gold序列定义的。长度为MPN,n=0,1,...,MPN-1,定义如下:
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2;
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2
其中NC=1600,第一个M序列x(n)初始化为x1(0)=1,x1(n)=0,n=1,2,...,30,其初始化值是固定的,第二个M序列的初始化值为:
Figure PCTCN2015075249-appb-000165
其中
Figure PCTCN2015075249-appb-000166
为小区标识,
Figure PCTCN2015075249-appb-000167
图5A是本发明实施例提供的一种获取波束标识的方法流程图,参见图5A,本发明实施例的交互主体为基站和用户设备,该方法包括:
501、基站根据波束标识计算初始化值,根据计算出的初始化值生成CRS。
本发明实施例以发送CRS的过程为例,该基站在发送CRS之前,先确定要发送该CRS的波束所对应的波束标识,根据该波束标识,计算该CRS的初始化值,根据该初始化值生成CRS的序列。
其中,一个波束对应一个波束标识,该波束标识可以为对应波束的序号或者其他可以唯一确定对应波束的标识,本发明实施例对此不做限定。
具体地,该基站根据该波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000168
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000169
表示该波束标识,NCP表示CP长度标识。
本领域的技术人员可以获知,CRS的加扰序列的第一个M序列的初始化值是固定的,第二个M序列的初始化值cinit直接影响着生成的加扰序列。而在本发明实施例中,该基站计算出该初始化值后,根据该初始化值生成CRS的序列。CRS的序列中包括该波束标识,根据该CRS的序列可以得到该波束标识。
在本发明实施例中,该步骤501还可以包括以下步骤:该基站根据该波束标识和小区标识计算初始化值,根据计算出的初始化值生成CRS。
具体地,该基站根据该波束标识和该小区标识,生成一个新的指定标识,该指定标识唯一对应一个波束标识和一个小区标识,则根据该指定标识可以得到对应的该波束标识和该小区标识。
例如,该指定标识
Figure PCTCN2015075249-appb-000170
该波束标识
Figure PCTCN2015075249-appb-000171
和该小区标识
Figure PCTCN2015075249-appb-000172
之间的对应关系可以如下表1所示。Nsumbeam表示波束总数目,Nsumcell表示小区总数目。该基站 可以根据该对应关系,为该波束标识和该小区标识生成新的指定标识,后续该用户设备也可以根据该对应关系,确定该指定标识对应的波束标识。
表1
Figure PCTCN2015075249-appb-000173
该基站根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000174
其中,cinit表示该初始化值,ns表示时隙序号,l表示OFDM符号序号,
Figure PCTCN2015075249-appb-000175
表示该指定标识,NCP表示CP(Cyclic Prefix,循环前缀)长度标识。
本领域的技术人员可以获知,CRS的加扰序列的第一个M序列的初始化值是固定的,第二个M序列的初始化值cinit直接影响着生成的加扰序列。而在本发明实施例中,该基站计算出该初始化值后,根据该初始化值生成CRS的序列。CRS的序列中包括该指定标识,根据CRS的序列可以得到该指定标识,从而得到该波束标识。
与现有的初始化值
Figure PCTCN2015075249-appb-000176
相比,本发明实施例中的初始化值根据该波束标识
Figure PCTCN2015075249-appb-000177
确定或者根据该指定标识
Figure PCTCN2015075249-appb-000178
确定,使得该用户设备根据接收到的CRS可以得到该波束标识。
502、该基站通过该波束标识对应的波束,发送该CRS。
503、用户设备接收到该CRS时,根据该CRS获取该波束标识。
在本发明实施例中,该用户设备接收到该CRS,对该CRS进行解析,得到CRS的初始化值,根据该初始化值获取该波束标识。具体地,如果该初始化值仅根据该波束标识确定,则该用户设备根据该初始化值可以获取到该波束标识。如果该初始化值根据由该波束标识和该小区标识所生成的指定标识确定,则该用户设备根据该CRS可以获取该指定标识,获取该指定标识对应的波束标识。
504、该用户设备向该基站发送该波束标识。
505、该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
上述步骤502-505与步骤402-405类似,在此不再赘述。
在本发明实施例中,该基站根据该用户设备反馈的波束标识,可以确定该用户设备当前所在的波束,通过该波束,向该用户设备及时地发送控制信息数据信息。
需要说明的是,本发明实施例以该基站根据该波束标识或者该指定标识计算CRS的初始化值为例进行说明,而在本发明实施例提供的另一实施例中,参见图5B,该步骤501还可以由以下步骤5011代替:
5011、该基站预先设定时频资源位置标识与波束标识之间的对应关系,根据该对应关系确定波束标识对应的时频资源位置标识,将该波束标识对应的时频资源位置标识所指示的时频资源配置给CRS。
其中,该时频资源位置标识用于指示时频资源的位置,可以为该时频资源的序列号或者其他标识等,本发明实施例对此不做限定。该对应关系中一个波束标识可以对应一个时频资源位置标识,也可以对应多个时频资源位置标识,本发明实施例对此不做限定。
后续过程中,该基站通过该波束标识对应的波束,发送该CRS,则该步骤 503可以由以下步骤5031代替:
5031、该用户设备检测到该CRS时,获取该CRS的时频资源位置标识,根据预设的时频资源位置标识与波束标识之间的对应关系,确定该CRS的时频资源位置标识对应的波束标识。
后续过程中,该用户设备将该波束标识发送给该基站,该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
进一步地,时频资源位置标识与波束标识之间的对应关系中,每个时频资源位置标识对应的波束标识可以通过对相应的时频资源位置标识与波束总数目进行取模运算得到。基站在确定波束标识后,该波束标识对应的时频资源位置标识可以通过计算该波束标识与波束总数目之间的商确定。波束总数目大于1时,在该对应关系中,一个波束标识对应多个时频资源位置标识。
例如,波束总数目为4,波束标识分别为0-3,时频资源位置的数目为16,时频资源位置标识为0-15,时频资源位置标识与波束标识之间的对应关系可以如下表2所示。按照波束总数目4将时频资源位置标识0-15划分为4组,每组包括4个时频资源位置标识。以波束标识5为例,波束标识5与波束总数目4之间的商为1,则波束标识5对应第2组时频资源位置标识4-7。
表2
Figure PCTCN2015075249-appb-000179
Figure PCTCN2015075249-appb-000180
相应的,该基站确定波束标识后,根据该对应关系获取该波束标识对应的多个时频资源位置标识,从该多个时频资源位置标识所指示的多个时频资源中,选取一个空闲的时频资源,配置给CRS,通过该波束标识对应的波束,在该选取的时频资源位置处发送CRS,使得检测到该CRS的用户设备获取CRS的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。具体地,该用户设备根据CRS的时频资源位置标识和波束总数目,采用如下公式,确定该CRS的波束标识:
Figure PCTCN2015075249-appb-000181
其中,
Figure PCTCN2015075249-appb-000182
表示该波束标识,CRSconfigureID表示CRS的时频资源位置标识,Nsumbeam表示波束总数目。
对于不同的CRS来说,由于CRS的时频资源配置位置不同,其所对应的波束标识也不同,检测到该CRS的用户设备获取CRS的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,能够得到该波束标识。
通过取模运算将CRS的时频资源位置标识与该波束标识进行绑定,使得检测到CRS的用户设备能够根据该CRS的时频资源位置获取该波束标识,从而确定该用户设备当前所在的波束。
需要说明的是,该基站可以执行步骤501和5011中的任一个步骤,具体哪一步骤可以由该基站与该用户设备预先协商确定。进一步地,该基站还可以执行步骤501和5011,则该用户设备既可以通过对检测到的CRS进行解扰,得到波束标识,也可以根据检测到的CRS的时频资源位置标识,得到波束标 识,本发明实施例对该基站执行步骤501和5011中的哪几个步骤不做限定。
另外,上述步骤5011也可以应用于上一实施例中的辅同步信号的场景下,具体实现过程与CRS信号的实现过程类似,在此不再赘述。
本发明实施例提供的方法,通过基站根据波束标识计算CRS的初始化值,从而得到与该波束标识对应的CRS,并通过该波束标识对应的波束发送该CRS,则接收到该CRS的用户设备即可获取到该波束标识,反馈给基站,或者该基站根据预设的时频资源位置标识与波束标识之间的对应关系,确定波束标识对应的时频资源位置标识,将该波束标识对应的时频资源位置标识所指示的时频资源配置给CRS,则检测到该CRS的用户设备可以根据CRS的时频资源位置标识确定波束标识,反馈给基站。基站能够根据该波束标识确定该用户设备当前所在的波束,通过该用户设备当前所在的波束与该用户设备进行通信,而无需通过多个波束与该用户设备进行通信,增大了吞吐量,提高了资源利用率。
下一实施例中将以与波束标识对应的信号为CSI-RS(Channel-State Information Reference Signal,信道状态信息参考信号)为例,对本发明实施例提供的获取波束标识的方法进行说明,而为了便于说明,在详述本发明实施例之前,先对CSI-RS进行如下介绍:
现有通信系统中CSI-RS用于帮助用户设备获取信道状态信息。
CSI-RS的序列
Figure PCTCN2015075249-appb-000183
定义如下:
Figure PCTCN2015075249-appb-000184
其中ns是一个无线帧的时隙标号,l是时隙中的OFDM符号标号。c(i)为伪随机序列,c(i)的初始化值为:
Figure PCTCN2015075249-appb-000185
其中
Figure PCTCN2015075249-appb-000186
Figure PCTCN2015075249-appb-000187
等于
Figure PCTCN2015075249-appb-000188
图6A是本发明实施例提供的一种获取波束标识的方法流程图,参见图6A,本发明实施例的交互主体为基站和用户设备,该方法包括:
601、基站根据波束标识计算初始化值,根据计算出的初始化值生成CSI-RS。
该步骤601与上述步骤501类似,在此不再赘述。
602、该基站通过该波束标识对应的波束,发送该CSI-RS。
603、用户设备接收到该CSI-RS时,根据该CSI-RS获取该波束标识。
604、该用户设备向该基站发送该波束标识。
605、该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
在本发明实施例提供的另一实施例中,参见图6B,该步骤601还可以由以下步骤6011代替:
6011、该基站预先设定时频资源位置标识与波束标识之间的对应关系,根据该对应关系确定波束标识对应的时频资源位置标识,将该波束标识对应的时频资源位置标识所指示的时频资源配置给CSI-RS。
其中,该对应关系中一个波束标识可以对应一个时频资源位置标识,也可以对应多个时频资源位置标识,本发明实施例对此不做限定。
后续过程中,该基站通过该波束标识对应的波束,发送该CSI-RS,则该步骤603可以由以下步骤6031代替:
6031、该用户设备检测到该CSI-RS时,获取该CSI-RS的时频资源位置标识,根据预设的时频资源位置标识与波束标识之间的对应关系,确定该CSI-RS的时频资源位置标识对应的波束标识。
后续过程中,该用户设备将该波束标识发送给该基站,该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
进一步地,时频资源位置标识与波束标识之间的对应关系中,每个时频资源位置标识对应的波束标识可以通过对相应的时频资源位置标识与波束总数 目进行取模运算得到。基站在确定波束标识后,该波束标识对应的时频资源位置标识可以通过计算该波束标识与波束总数目之间的商确定。波束总数目大于1时,在该对应关系中,一个波束标识对应多个时频资源位置标识。
该基站确定波束标识后,根据该对应关系获取该波束标识对应的多个时频资源位置标识,从该多个时频资源位置标识所指示的多个时频资源中,选取一个空闲的时频资源,配置给CSI-RS,通过该波束标识对应的波束,在该选取的时频资源位置处发送CSI-RS,使得检测到该CSI-RS的用户设备获取CSI-RS的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。具体地,该用户设备根据波束总数目和CSI-RS的时频资源位置标识,采用如下公式,确定该CSI-RS的波束标识:
Figure PCTCN2015075249-appb-000189
其中,
Figure PCTCN2015075249-appb-000190
表示该波束标识,CSI-RSconfigureID表示CSI-RS的时频资源位置标识,Nsumbeam表示波束总数目。
后续过程中,该基站通过该波束标识对应的波束,发送CSI-RS,使得检测到该CSI-RS的用户设备获取CSI-RS的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。
本发明实施例提供的方法,通过基站根据波束标识计算CSI-RS的初始化值,从而得到与该波束标识对应的CSI-RS,并通过该波束标识对应的波束发送该CSI-RS,则接收到该CSI-RS的用户设备即可获取到该波束标识,反馈给基站,或者该基站根据预设的时频资源位置标识与波束标识之间的对应关系,确定波束标识对应的时频资源位置标识,将该波束标识对应的时频资源位置标识所指示的时频资源配置给CSI-RS,则检测到该CSI-RS的用户设备可以根据CSI-RS的时频资源位置标识确定波束标识,反馈给基站。基站能够根据该波束标识确定该用户设备当前所在的波束,通过该用户设备当前所在的波束与该用户设备进行通信,而无需通过多个波束与该用户设备进行通信,增大了吞吐量,提高了资源利用率。
图7是本发明实施例提供的一种获取波束标识的方法流程图,参见图7,本发明实施例的交互主体为基站和用户设备,该方法包括:
701、基站生成与波束标识对应的波束信号,该波束信号包括该波束标识,并确定该波束信号的时频资源位置。
702、该基站通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号。
703、用户设备在该波束信号的时频资源位置处检测该波束信号,根据该波束信号获取该波束标识。
在本发明实施例中,该基站可以采用不同的方式确定该波束信号的时频资源位置,则该用户设备采用不同的方式检测该波束信号。
具体地,上述步骤701-703可以包括以下步骤(1):
(1)该基站确定该波束信号的时频资源位置,该波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔,该基站通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号,该用户设备获取到该第三信号的时频资源位置时,在该第三信号的时频资源位置的预设间隔处,检测与该波束的波束标识对应的波束信号。
其中,该第三信号可以为该基站要发送给用户设备的信号,可以为辅同步信号、CRS、CSI-RS或者其他信号,本发明实施例对此不做限定。该预设间隔可以由该基站预先确定,并通知每个用户设备,也可以由该基站与每个用户设备协商确定,本发明实施例对此不做限定。
该基站确定该第三信号的时频资源位置,将位于该第三信号的时频资源位置的预设间隔处的时频资源位置配置给该波束信号,以便后续在该配置给该波束信号的时频资源位置处发送该波束信号,用户设备获取到该第三信号的时频资源位置后,可以在该第三信号的时频资源位置的预设间隔处,也即是该波束信号的时频资源位置处检测到该波束信号,并获取该波束信号包括的波束标识。
其中,该预设间隔用于表示第三信号的时频资源位置与该波束信号的时频资源位置之间的相对位置关系,该预设间隔可以为左边一个单位的间隔,则该该波束信号的时频资源位置位于该第三信号的时频资源位置的左边。该预设间隔还可以为右边两个单位的间隔等等,本发明实施例对此不做限定。
参见图8,以辅同步信号为例,该预设间隔可以为左边一个单位的间隔,该波束信号的时频资源位置位于该辅同步信号的时频资源位置的左边。该基站还可以将主同步信号的时频资源位置的右边第一个位置作为波束信号的候选时频资源位置,在该候选时频资源位置处也发送该波束信号,则后续过程中,当用户设备在该辅同步信号的时频资源位置的左边未检测到波束信号时,可以在该候选时频资源位置处进行检测。
另外,上述步骤701-703还可以包括以下步骤(2):
(2)该基站确定该波束信号的时频资源位置为预设时频资源位置,通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,该用户设备在该预设时频资源位置处检测该波束信号。
基站预先确定该预设时频资源位置,确定该波束信号的时频资源位置为预设时频资源位置,也即是将该预设时频资源位置所指示的时频资源配置给该波束信号,则基站通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,使得用户设备在该预设时频资源位置处检测该波束信号,并获取该波束信号包括的波束标识。
其中,该预设时频资源位置可以由该基站与该用户设备协商确定,本发明实施例对此不做限定。
另外,为了便于用户设备检测该波束信号,在步骤702之后,该方法还可以包括步骤(3):
(3)该基站确定该波束信号的时频资源位置标识,向该用户设备发送时频资源信息,该时频资源信息包括该时频资源位置标识,该用户设备接收该时频资源信息,根据该时频资源信息中包括的时频资源位置标识,在该基站通过 该波束发送的信号中的时频资源位置处检测该波束信号。
该时频资源信息用于通知该用户设备该波束信号的时频资源位置,该基站在发送该波束信号后,向该用户设备发送专门的时频资源信息,通知该用户设备,该用户设备即可根据该时频资源信息中包括的时频资源位置标识,在该时频资源位置标识所指示的时频资源位置处检测该波束信号。
进一步地,该基站可以确定该波束信号的时频资源位置为预设时频资源位置,则对于不同的用户设备来说,每个用户设备所接收到的波束信号均位于其所接收到的信号中的预设时频资源位置。该基站可以向每个用户设备发送包括该预设时频资源位置标识的时频资源信息,则对于任一用户设备来说,该用户设备接收到该时频资源信息时,获取该时频资源信息包括的预设时频资源位置标识,根据该预设时频资源位置标识,在该基站通过该波束发送给该用户设备的信号中的预设时频资源位置处检测该波束信号。
需要说明的是,该基站可以采用上述三种方式中的任一种或者多种来通知该用户设备该波束信号的时频资源位置,本发明实施例对该基站具体采用哪几种方式不做限定。
704、该用户设备向该基站发送该波束标识。
705、该基站接收到该波束标识,通过该波束标识对应的波束,与该用户设备进行通信。
上述步骤704-705与步骤404-405类似,在此不再赘述。
本发明实施例提供的方法,通过基站生成与波束标识对应的波束信号,并确定波束信号的时频资源位置,通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号,用户设备即可在该波束信号的时频资源位置处检测该波束信号,并根据该波束信号获取该波束标识,反馈给基站,基站能够根据该波束标识确定该用户设备当前所在的波束,通过该用户设备当前所在的波束与该用户设备进行通信,而无需通过多个波束与该用户设备进行通信,增大了吞吐量,提高了资源利用率。
图9是本发明实施例提供的一种获取波束标识的装置的结构示意图,参见图9,该装置包括:
处理模块901,用于确定与波束标识对应的信号;
发送模块902,用于通过该波束标识对应的波束,发送该信号,使得检测到该信号的用户设备根据该信号,获取该波束标识;
接收模块903,用于接收该用户设备反馈的该波束标识;
该处理模块901还用于通过该波束标识对应的波束,与该用户设备进行通信。
本发明实施例提供的装置,通过确定与波束标识对应的信号,通过该波束标识对应的波束,发送该信号,检测到该信号的用户设备即可获取到该波束标识,该装置能够确定用户设备当前所在的波束,通过该波束与用户设备进行进一步的通信。
可选地,该处理模块901还用于根据该波束标识,对第一信号进行加扰,得到第二信号。
可选地,该处理模块901还用于当该第一信号为辅同步信号时,根据该波束标识生成加扰序列;或者,根据该波束标识和波束总数目生成加扰序列;根据生成的加扰序列对该第一信号进行加扰,得到该第二信号。
可选地,该处理模块901还用于根据该波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000191
其中,b0(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000192
表示该波束标识,
Figure PCTCN2015075249-appb-000193
0≤i≤30,且
Figure PCTCN2015075249-appb-000194
a、b、c、d、e中每一个的取值为0或1。
可选地,该处理模块901还用于根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000195
其中,b0(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000196
Figure PCTCN2015075249-appb-000197
Figure PCTCN2015075249-appb-000198
0≤j≤30,
Figure PCTCN2015075249-appb-000199
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000200
Figure PCTCN2015075249-appb-000201
表示小区标识,
Figure PCTCN2015075249-appb-000202
Figure PCTCN2015075249-appb-000203
0≤k≤30,
Figure PCTCN2015075249-appb-000204
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000205
Figure PCTCN2015075249-appb-000206
0≤r≤30,
Figure PCTCN2015075249-appb-000207
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该处理模块901还用于根据该波束标识和该波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000208
其中,b0(n)和b1(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000209
表示该波束标识,Nsumbeam表示该波束总数目,
Figure PCTCN2015075249-appb-000210
Figure PCTCN2015075249-appb-000211
0≤i≤30,
Figure PCTCN2015075249-appb-000212
a、b、c、d、e中每一个的取值为0或1。
可选地,该处理模块901还用于根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000213
其中,b0(n)和b1(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000214
Figure PCTCN2015075249-appb-000215
Figure PCTCN2015075249-appb-000216
0≤j≤30,
Figure PCTCN2015075249-appb-000217
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000218
Figure PCTCN2015075249-appb-000219
表示小区标识,
Figure PCTCN2015075249-appb-000220
Figure PCTCN2015075249-appb-000221
0≤k≤30,
Figure PCTCN2015075249-appb-000222
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000223
Figure PCTCN2015075249-appb-000224
0≤r≤30,
Figure PCTCN2015075249-appb-000225
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该处理模块901还用于根据该波束标识计算初始化值,或者根据该波束标识和小区标识计算初始化值;根据计算出的初始化值,生成参考信号。
可选地,该参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
可选地,该处理模块901还用于根据该波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000226
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000227
表示该波束标识,NCP表示循环前缀CP长度标识。
可选地,该处理模块901还用于根据该波束标识和该小区标识,生成指定 标识;根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000228
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000229
表示该指定标识,NCP表示循环前缀CP长度标识。
可选地,该处理模块901还用于根据该波束标识和该小区标识,生成指定标识;根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000230
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000231
表示该指定标识,NCP表示循环前缀CP长度标识。
可选地,该处理模块901用于生成与波束标识对应的波束信号,该波束信号包括该波束标识;
该处理模块901,用于确定该波束信号的时频资源位置;
该发送模块902,还用于通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号,使得检测到该波束信号的用户设备获取该波束信号包括的波束标识。
可选地,该基站确定的该波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
可选地,该处理模块901,还用于确定该波束信号的时频资源位置为预设时频资源位置;
该发送模块902,还用于通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,使得用户设备在该预设时频资源位置处检测该波束信号,并获取该波束信号包括的波束标识。
可选地,该发送模块902,还用于向该用户设备发送时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识,使得该用户设备根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该处理模块901还用于根据预设的时频资源位置标识与波束标识 之间的对应关系,确定该波束标识对应的时频资源位置标识;将时频资源位置标识所指示的时频资源配置给该信号,使得通过该波束标识对应的波束发送该信号时,检测到该信号的用户设备根据该信号的时频资源位置标识以及该对应关系,获取该波束标识。
可选地,该对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,该处理模块901将该时频资源位置标识所指示的时频资源配置给该信号时,使得检测到该信号的用户设备对该信号的时频资源位置标识与该波束总数目进行取模运算,得到该波束标识。
可选地,该处理模块901还用于如果接收到该用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;根据该多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识;通过该选取的波束标识对应的波束,与该用户设备进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图10是本发明实施例提供的一种获取波束标识的装置的结构示意图,参见图10,该装置包括:
检测模块1001,用于检测基站通过波束发送的信号,该信号与该波束的波束标识对应;
处理模块1002,用于根据该信号,获取该波束标识;
发送模块1003,用于向该基站发送该波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
本发明实施例提供的装置,基站通过波束发送与波束标识对应的信号,则该装置检测到该信号时即可获取到该波束标识,向基站发送波束标识,基站能够根据该波束标识确定该装置当前所在的波束,通过该波束与该装置进行进一 步的通信。
可选地,该处理模块1002还用于对该信号进行解扰,得到该信号的加扰序列,根据该加扰序列获取该波束标识,该信号由该基站根据该波束标识进行加扰得到;或者,
该处理模块1002还用于对所述信号进行解析,得到所述信号的初始化值,根据所述初始化值获取所述波束标识,所述初始化值由所述基站根据所述波束标识计算得到;或者,
该处理模块1002还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定该信号的时频资源位置标识对应的波束标识,该信号的时频资源位置根据该波束标识以及该对应关系确定;或者,
该处理模块1002还用于获取该信号的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。
可选地,该检测模块1001还用于检测该基站通过该波束发送的波束信号,该波束信号包括该波束标识。
可选地,该检测模块1001还用于在第三信号的时频资源位置的预设间隔处检测该波束信号,该波束信号的时频资源位置与该第三信号的时频资源位置之间具有该预设间隔。
可选地,该检测模块1001还用于在预设时频资源位置处检测该波束信号。
可选地,该装置还包括:
接收模块,用于接收该基站发送的时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识;
该检测模块1001,还用于根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该处理模块1002,还用于当检测到该基站发送的多个信号时,获取该多个信号中每个信号的信号强度;
该发送模块1003,还用于向该基站发送每个信号的信号强度以及对应的波 束标识,使得该基站根据接收到的多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
该发送模块1003,还用于按照每个信号的信号强度从大到小的顺序,向该基站依次发送每个信号对应的波束标识,使得该基站根据接收到每个波束标识的顺序,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
该处理模块1002,还用于根据每个波束标识对应信号的信号强度,选取一个波束标识,该发送模块1003还用于向该基站发送该选取的波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
本发明实施例中的装置可以用于执行本发明提供的方法实施例中的相应步骤,本发明在此不再一一赘述。
图11是本发明实施例提供的一种基站的结构示意图,参见图11,包括:接收器1101、发射器1102、存储器1103和处理器1104,该接收器1101、该发射器1102和该存储器1103分别与该处理器1104连接,该存储器1103存储有程序代码,该处理器1104用于调用该程序代码,执行以下操作:
确定与波束标识对应的信号;
通过该波束标识对应的波束,发送该信号,使得检测到该信号的用户设备根据该信号,获取该波束标识;
当接收到该用户设备反馈的该波束标识,则通过该波束标识对应的波束,与该用户设备进行通信。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识,对第一信号进行加扰,得到第二信号。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
当该第一信号为辅同步信号时,根据该波束标识生成加扰序列;或者,根据该波束标识和波束总数目生成加扰序列;
根据生成的加扰序列对该第一信号进行加扰,得到该第二信号。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000232
其中,b0(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000233
表示该波束标识,
Figure PCTCN2015075249-appb-000234
0≤i≤30,且
Figure PCTCN2015075249-appb-000235
a、b、c、d、e中每一个的取值为0或1。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000236
其中,b0(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000237
Figure PCTCN2015075249-appb-000238
Figure PCTCN2015075249-appb-000239
0≤j≤30,
Figure PCTCN2015075249-appb-000240
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000241
Figure PCTCN2015075249-appb-000242
表示小区标识,
Figure PCTCN2015075249-appb-000243
Figure PCTCN2015075249-appb-000244
0≤k≤30,
Figure PCTCN2015075249-appb-000245
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000246
Figure PCTCN2015075249-appb-000247
0≤r≤30,
Figure PCTCN2015075249-appb-000248
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识和该波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000249
其中,b0(n)和b1(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000250
表示该波束标识,Nsumbeam表示该波束总数目,
Figure PCTCN2015075249-appb-000251
Figure PCTCN2015075249-appb-000252
0≤i≤30,
Figure PCTCN2015075249-appb-000253
a、b、c、d、e中每一个的取值为0或1。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000254
其中,b0(n)和b1(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000255
Figure PCTCN2015075249-appb-000256
Figure PCTCN2015075249-appb-000257
0≤j≤30,
Figure PCTCN2015075249-appb-000258
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000259
表示小区标识,
Figure PCTCN2015075249-appb-000261
Figure PCTCN2015075249-appb-000262
0≤k≤30,
Figure PCTCN2015075249-appb-000263
且x3(0)=0,x3(1)=0, x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000264
Figure PCTCN2015075249-appb-000265
0≤r≤30,
Figure PCTCN2015075249-appb-000266
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识计算初始化值,或者根据该波束标识和小区标识计算初始化值;根据计算出的初始化值,生成参考信号。
可选地,该参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000267
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000268
表示该波束标识,NCP表示循环前缀CP长度标识。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据该波束标识和该小区标识,生成指定标识;
根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000269
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000270
表示该指定标识,NCP表示循环前缀CP长度标识。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
生成与波束标识对应的波束信号,该波束信号包括该波束标识;
相应的,该处理器1104还用于调用该程序代码,执行以下操作:
确定该波束信号的时频资源位置;
通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束 信号,使得检测到该波束信号的用户设备获取该波束信号包括的波束标识。
可选地,确定的该波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
确定该波束信号的时频资源位置为预设时频资源位置;
通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,使得用户设备在该预设时频资源位置处检测该波束信号,并获取该波束信号包括的波束标识。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
向该用户设备发送时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识,使得该用户设备根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
根据预设的时频资源位置标识与波束标识之间的对应关系,确定该波束标识对应的时频资源位置标识;
将时频资源位置标识所指示的时频资源配置给该信号,使得通过该波束标识对应的波束发送该信号时,检测到该信号的用户设备根据该信号的时频资源位置标识以及该对应关系,获取该波束标识。
可选地,该对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,将该时频资源位置标识所指示的时频资源配置给该信号时,使得检测到该信号的用户设备对该信号的时频资源位置标识与该波束总数目进行取模运算,得到该波束标识。
可选地,该处理器1104还用于调用该程序代码,执行以下操作:
如果接收到该用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;
根据该多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识;
通过该选取的波束标识对应的波束,与该用户设备进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图12是本发明实施例提供的一种用户设备的结构示意图。参见图12,包括:接收器1201、发射器1202、存储器1203和处理器1204,该接收器1201、该发射器1202和该存储器1203分别与该处理器1204连接,该存储器1203存储有程序代码,该处理器1204用于调用该程序代码,执行以下操作:
检测基站通过波束发送的信号,该信号与该波束的波束标识对应;
根据该信号,获取该波束标识;
向该基站发送该波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
对该信号进行解扰,得到该信号的加扰序列,根据该加扰序列获取该波束标识,该信号由该基站根据该波束标识进行加扰得到;或者,
对该信号进行解析,得到该信号的初始化值,根据该初始化值获取该波束标识,该初始化值由该基站根据该波束标识计算得到;或者,
根据预设的时频资源位置标识与波束标识之间的对应关系,确定该信号的时频资源位置标识对应的波束标识,该信号的时频资源位置根据该波束标识以及该对应关系确定;或者,
获取该信号的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
检测该基站通过该波束发送的波束信号,该波束信号包括该波束标识。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
在第三信号的时频资源位置的预设间隔处检测该波束信号,该波束信号的时频资源位置与该第三信号的时频资源位置之间具有该预设间隔。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
在预设时频资源位置处检测该波束信号。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
接收该基站发送的时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识;
根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该处理器1204还用于调用该程序代码,执行以下操作:
当检测到该基站发送的多个信号时,获取该多个信号中每个信号的信号强度;
向该基站发送每个信号的信号强度以及对应的波束标识,使得该基站根据接收到的多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
按照每个信号的信号强度从大到小的顺序,向该基站依次发送每个信号对应的波束标识,使得该基站根据接收到每个波束标识的顺序,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,
根据每个波束标识对应信号的信号强度,选取一个波束标识,向该基站发送该选取的波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
图13是本发明实施例提供的一种系统的结构示意图。参见图13,包括: 基站1301和用户设备1302;
该基站1301用于确定与波束标识对应的信号;
该基站1301还用于通过该波束标识对应的波束,发送该信号;
该用户设备1302用于检测该基站1301发送的该信号,根据该信号,获取该波束标识;
该用户设备1302还用于向该基站1301发送该波束标识;
该基站1301还用于接收到该用户设备1302反馈的该波束标识,则通过该波束标识对应的波束,与该用户设备1302进行通信。
可选地,该基站1301还用于根据该波束标识,对第一信号进行加扰,得到第二信号。
可选地,当该第一信号为辅同步信号时,该基站1301还用于根据该波束标识生成加扰序列;或者,该基站1301还用于根据该波束标识和波束总数目生成加扰序列;
该基站1301还用于根据生成的加扰序列对该第一信号进行加扰,得到该第二信号。
可选地,该基站1301还用于根据该波束标识,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000271
其中,b0(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000272
表示该波束标识,
Figure PCTCN2015075249-appb-000273
0≤i≤30,且
Figure PCTCN2015075249-appb-000274
a、b、c、d、e中每一个的取值为0或1。
可选地,该基站1301还用于根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000275
其中,b0(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000276
Figure PCTCN2015075249-appb-000277
Figure PCTCN2015075249-appb-000278
0≤j≤30,
Figure PCTCN2015075249-appb-000279
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000280
Figure PCTCN2015075249-appb-000281
表示小区标识,
Figure PCTCN2015075249-appb-000282
Figure PCTCN2015075249-appb-000283
0≤k≤30,
Figure PCTCN2015075249-appb-000284
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000285
Figure PCTCN2015075249-appb-000286
0≤r≤30,
Figure PCTCN2015075249-appb-000287
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该基站1301还用于根据该波束标识和该波束总数目,应用以下公式,生成加扰序列:
Figure PCTCN2015075249-appb-000288
其中,b0(n)和b1(n)表示该加扰序列,
Figure PCTCN2015075249-appb-000289
表示该波束标识,Nsumbeam表示该波束总数目,
Figure PCTCN2015075249-appb-000290
Figure PCTCN2015075249-appb-000291
0≤i≤30,
Figure PCTCN2015075249-appb-000292
a、b、c、d、e中每一个的取值为0或1。
可选地,该基站1301还用于根据生成的加扰序列,应用以下公式,对该第一信号进行加扰,得到该第二信号:
Figure PCTCN2015075249-appb-000293
其中,b0(n)和b1(n)表示该加扰序列,0≤n≤30,d(2n)和d(2n+1)表示该第二信号的序列,子帧m和子帧n表示该辅同步信号所在的子帧;
Figure PCTCN2015075249-appb-000294
Figure PCTCN2015075249-appb-000295
Figure PCTCN2015075249-appb-000296
0≤j≤30,
Figure PCTCN2015075249-appb-000297
且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
Figure PCTCN2015075249-appb-000298
Figure PCTCN2015075249-appb-000299
表示小区标识,
Figure PCTCN2015075249-appb-000300
Figure PCTCN2015075249-appb-000301
0≤k≤30,
Figure PCTCN2015075249-appb-000302
且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
Figure PCTCN2015075249-appb-000303
Figure PCTCN2015075249-appb-000304
0≤r≤30,
Figure PCTCN2015075249-appb-000305
且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
可选地,该基站1301还用于根据该波束标识计算初始化值,或者根据该波束标识和小区标识计算初始化值;根据计算出的初始化值,生成参考信号。
可选地,该参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
可选地,该基站1301还用于根据该波束标识,应用以下公式,计算初始化值:
Figure PCTCN2015075249-appb-000306
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000307
表示该波束标识,NCP表示循环前缀CP长度标识。
可选地,该基站1301还用于根据该波束标识和该小区标识,生成指定标 识;
该基站1301还用于根据该指定标识,应用以下公式,计算该初始化值:
Figure PCTCN2015075249-appb-000308
其中,cinit表示该初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
Figure PCTCN2015075249-appb-000309
表示该指定标识,NCP表示循环前缀CP长度标识。
可选地,该基站1301还用于生成与波束标识对应的波束信号,该波束信号包括该波束标识;
相应的,该方法还包括:
该基站1301还用于确定该波束信号的时频资源位置;
该基站1301还用于通过该波束标识对应的波束,在该波束信号的时频资源位置处发送该波束信号,使得检测到该波束信号的用户设备获取该波束信号包括的波束标识。
可选地,该基站1301确定的该波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
可选地,该基站1301还用于确定该波束信号的时频资源位置为预设时频资源位置;
该基站1301还用于通过该波束标识对应的波束,在该预设时频资源位置处发送该波束信号,使得用户设备在该预设时频资源位置处检测该波束信号,并获取该波束信号包括的波束标识。
可选地,该基站1301还用于向该用户设备发送时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识,使得该用户设备根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该基站1301还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定该波束标识对应的时频资源位置标识;
该基站1301还用于将时频资源位置标识所指示的时频资源配置给该信号,使得通过该波束标识对应的波束发送该信号时,检测到该信号的用户设备根据 该信号的时频资源位置标识以及该对应关系,获取该波束标识。
可选地,该对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
相应的,该基站1301将该时频资源位置标识所指示的时频资源配置给该信号时,使得检测到该信号的用户设备对该信号的时频资源位置标识与该波束总数目进行取模运算,得到该波束标识。
可选地,如果该基站1301还用于接收到该用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;
该基站1301还用于根据该多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识;
该基站1301还用于通过该选取的波束标识对应的波束,与该用户设备进行通信。
可选地,该用户设备1302还用于对该信号进行解扰,得到该信号的加扰序列,根据该加扰序列获取该波束标识,该信号由该基站根据该波束标识进行加扰得到;或者,对该信号进行解析,得到该信号的初始化值,根据该初始化值获取该波束标识,该初始化值由该基站根据该波束标识计算得到;或者,根据预设的时频资源位置标识与波束标识之间的对应关系,确定该信号的时频资源位置标识对应的波束标识,该信号的时频资源位置根据该波束标识以及该对应关系确定;或者,获取该信号的时频资源位置标识,对该时频资源位置标识与波束总数目进行取模运算,得到该波束标识。
可选地,该用户设备1302还用于检测该基站通过该波束发送的波束信号,该波束信号包括该波束标识。
可选地,该用户设备1302还用于在第三信号的时频资源位置的预设间隔处检测该波束信号,该波束信号的时频资源位置与该第三信号的时频资源位置之间具有该预设间隔。
可选地,该用户设备1302还用于在预设时频资源位置处检测该波束信号。
可选地,该用户设备1302还用于接收该基站发送的时频资源信息,该时频资源信息包括该波束信号的时频资源位置标识;根据该时频资源位置标识,在该时频资源位置处检测该波束信号。
可选地,该用户设备1302还用于当检测到该基站发送的多个信号时,获取该多个信号中每个信号的信号强度;向该基站发送每个信号的信号强度以及对应的波束标识,使得该基站根据接收到的多个波束标识对应的信号强度,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,按照每个信号的信号强度从大到小的顺序,向该基站依次发送每个信号对应的波束标识,使得该基站根据接收到每个波束标识的顺序,从该多个波束标识中选取一个波束标识,通过该选取的波束标识对应的波束,与本端进行通信;或者,根据每个波束标识对应信号的信号强度,选取一个波束标识,向该基站发送该选取的波束标识,使得该基站通过该波束标识对应的波束,与本端进行通信。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (53)

  1. 一种获取波束标识的方法,其特征在于,所述方法包括:
    基站确定与波束标识对应的信号;
    所述基站通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
    当所述基站接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述基站确定与波束标识对应的信号,包括:
    所述基站根据所述波束标识,对第一信号进行加扰,得到第二信号。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据所述波束标识,对第一信号进行加扰,得到第二信号,包括:
    当所述第一信号为辅同步信号时,所述基站根据所述波束标识生成加扰序列;或者,所述基站根据所述波束标识和波束总数目生成加扰序列;
    所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号。
  4. 根据权利要求3所述的方法,其特征在于,所述基站根据所述波束标识生成加扰序列,包括:
    所述基站根据所述波束标识,应用以下公式,生成加扰序列:
    Figure PCTCN2015075249-appb-100001
    其中,b0(n)表示所述加扰序列,
    Figure PCTCN2015075249-appb-100002
    表示所述波束标识,
    Figure PCTCN2015075249-appb-100003
    0≤i≤30,且
    Figure PCTCN2015075249-appb-100004
    Figure PCTCN2015075249-appb-100005
    a、 b、c、d、e中每一个的取值为0或1。
  5. 根据权利要求3所述的方法,其特征在于,所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号,包括:
    所述基站根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
    Figure PCTCN2015075249-appb-100006
    其中,b0(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
    Figure PCTCN2015075249-appb-100007
    Figure PCTCN2015075249-appb-100008
    Figure PCTCN2015075249-appb-100009
    0≤j≤30,
    Figure PCTCN2015075249-appb-100010
    且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
    Figure PCTCN2015075249-appb-100011
    Figure PCTCN2015075249-appb-100012
    表示小区标识,
    Figure PCTCN2015075249-appb-100013
    Figure PCTCN2015075249-appb-100014
    0≤k≤30,
    Figure PCTCN2015075249-appb-100015
    Figure PCTCN2015075249-appb-100016
    且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
    Figure PCTCN2015075249-appb-100017
    Figure PCTCN2015075249-appb-100018
    0≤r≤30,
    Figure PCTCN2015075249-appb-100019
    Figure PCTCN2015075249-appb-100020
    且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
  6. 根据权利要求3所述的方法,其特征在于,所述基站根据所述波束标识和波束总数目生成加扰序列,包括:
    所述基站根据所述波束标识和所述波束总数目,应用以下公式,生成加扰 序列:
    Figure PCTCN2015075249-appb-100021
    其中,b0(n)和b1(n)表示所述加扰序列,
    Figure PCTCN2015075249-appb-100022
    表示所述波束标识,Nsumbeam表示所述波束总数目,
    Figure PCTCN2015075249-appb-100023
    Figure PCTCN2015075249-appb-100024
    0≤i≤30,
    Figure PCTCN2015075249-appb-100025
    a、b、c、d、e中每一个的取值为0或1。
  7. 根据权利要求3所述的方法,其特征在于,所述基站根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号,包括:
    所述基站根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
    Figure PCTCN2015075249-appb-100027
    其中,b0(n)和b1(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
    Figure PCTCN2015075249-appb-100028
    Figure PCTCN2015075249-appb-100029
    Figure PCTCN2015075249-appb-100030
    0≤j≤30,
    Figure PCTCN2015075249-appb-100031
    且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
    Figure PCTCN2015075249-appb-100032
    Figure PCTCN2015075249-appb-100033
    表示小区标识,
    Figure PCTCN2015075249-appb-100034
    Figure PCTCN2015075249-appb-100035
    0≤k≤30,
    Figure PCTCN2015075249-appb-100036
    Figure PCTCN2015075249-appb-100037
    且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
    Figure PCTCN2015075249-appb-100038
    Figure PCTCN2015075249-appb-100039
    0≤r≤30,
    Figure PCTCN2015075249-appb-100040
    Figure PCTCN2015075249-appb-100041
    且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
  8. 根据权利要求1所述的方法,其特征在于,所述基站确定与波束标识对应的信号,包括:
    所述基站根据所述波束标识计算初始化值,或者根据所述波束标识和小区标识计算初始化值;
    根据计算出的初始化值,生成参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
  10. 根据权利要求8所述的方法,其特征在于,所述基站根据所述波束标识计算初始化值,包括:
    所述基站根据所述波束标识,应用以下公式,计算初始化值:
    Figure PCTCN2015075249-appb-100042
    其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
    Figure PCTCN2015075249-appb-100043
    表示所述波束标识,NCP表示循环前缀CP长度标识。
  11. 根据权利要求8所述的方法,其特征在于,所述基站根据所述波束标识和小区标识计算初始化值,包括:
    所述基站根据所述波束标识和所述小区标识,生成指定标识;
    所述基站根据所述指定标识,应用以下公式,计算所述初始化值:
    Figure PCTCN2015075249-appb-100044
    其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
    Figure PCTCN2015075249-appb-100045
    表示所述指定标识,NCP表示循环前缀CP长度标识。
  12. 根据权利要求1所述的方法,其特征在于,所述基站确定与波束标识对应的信号,包括:
    所述基站生成与波束标识对应的波束信号,所述波束信号包括所述波束标识;
    相应的,所述方法还包括:
    所述基站确定所述波束信号的时频资源位置;
    所述基站通过所述波束标识对应的波束,在所述波束信号的时频资源位置处发送所述波束信号,使得检测到所述波束信号的用户设备获取所述波束信号包括的波束标识。
  13. 根据权利要求12所述的方法,其特征在于,所述基站确定的所述波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述基站确定所述波束信号的时频资源位置为预设时频资源位置;
    所述基站通过所述波束标识对应的波束,在所述预设时频资源位置处发送所述波束信号,使得用户设备在所述预设时频资源位置处检测所述波束信号,并获取所述波束信号包括的波束标识。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述基站向所述用户设备发送时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识,使得所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
  16. 根据权利要求1所述的方法,其特征在于,所述基站确定与波束标识对应的信号,包括:
    所述基站根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述波束标识对应的时频资源位置标识;
    所述基站将时频资源位置标识所指示的时频资源配置给所述信号,使得通过所述波束标识对应的波束发送所述信号时,检测到所述信号的用户设备根据所述信号的时频资源位置标识以及所述对应关系,获取所述波束标识。
  17. 根据权利要求16所述的方法,其特征在于,所述对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
    相应的,所述基站将所述时频资源位置标识所指示的时频资源配置给所述信号时,使得检测到所述信号的用户设备对所述信号的时频资源位置标识与所述波束总数目进行取模运算,得到所述波束标识。
  18. 根据权利要求1所述的方法,其特征在于,所述基站通过所述波束标识对应的波束,与所述用户设备进行通信,包括:
    如果所述基站接收到所述用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;
    所述基站根据所述多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识;
    所述基站通过所述选取的波束标识对应的波束,与所述用户设备进行通信。
  19. 一种获取波束标识的方法,其特征在于,所述方法包括:
    用户设备检测基站通过波束发送的信号,所述信号与所述波束的波束标识对应;
    所述用户设备根据所述信号,获取所述波束标识;
    所述用户设备向所述基站发送所述波束标识,使得所述基站通过所述波束 标识对应的波束,与所述用户设备进行通信。
  20. 根据权利要求19所述的方法,其特征在于,所述用户设备根据所述信号,获取所述波束标识,包括:
    所述用户设备对所述信号进行解扰,得到所述信号的加扰序列,根据所述加扰序列获取所述波束标识,所述信号由所述基站根据所述波束标识进行加扰得到;或者,
    所述用户设备对所述信号进行解析,得到所述信号的初始化值,根据所述初始化值获取所述波束标识,所述初始化值由所述基站根据所述波束标识计算得到;或者,
    所述用户设备根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述信号的时频资源位置标识对应的波束标识,所述信号的时频资源位置根据所述波束标识以及所述对应关系确定;或者,
    所述用户设备获取所述信号的时频资源位置标识,对所述时频资源位置标识与波束总数目进行取模运算,得到所述波束标识。
  21. 根据权利要求19所述的方法,其特征在于,所述用户设备检测基站通过波束发送的信号,包括:
    所述用户设备检测所述基站通过所述波束发送的波束信号,所述波束信号包括所述波束标识。
  22. 根据权利要求21所述的方法,其特征在于,所述用户设备检测所述基站通过所述波束发送的波束信号,包括:
    所述用户设备在第三信号的时频资源位置的预设间隔处检测所述波束信号,所述波束信号的时频资源位置与所述第三信号的时频资源位置之间具有所述预设间隔。
  23. 根据权利要求21所述的方法,其特征在于,所述用户设备检测所述基站通过所述波束发送的波束信号,包括:
    所述用户设备在预设时频资源位置处检测所述波束信号。
  24. 根据权利要求21所述的方法,其特征在于,所述用户设备检测所述基站通过所述波束发送的波束信号之前,所述方法还包括:
    所述用户设备接收所述基站发送的时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识;
    所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
  25. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    当所述用户设备检测到所述基站发送的多个信号时,获取所述多个信号中每个信号的信号强度;
    所述用户设备向所述基站发送每个信号的信号强度以及对应的波束标识,使得所述基站根据接收到的多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与所述用户设备进行通信;或者,
    所述用户设备按照每个信号的信号强度从大到小的顺序,向所述基站依次发送每个信号对应的波束标识,使得所述基站根据接收到每个波束标识的顺序,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与所述用户设备进行通信;或者,
    所述用户设备根据每个波束标识对应信号的信号强度,选取一个波束标识,向所述基站发送所述选取的波束标识,使得所述基站通过所述波束标识对应的波束,与所述用户设备进行通信。
  26. 一种获取波束标识的装置,其特征在于,所述装置包括:
    处理模块,用于确定与波束标识对应的信号;
    发送模块,用于通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
    接收模块,用于接收所述用户设备反馈的所述波束标识;
    所述处理模块还用于通过所述波束标识对应的波束,与所述用户设备进行通信。
  27. 根据权利要求26所述的装置,其特征在于,所述处理模块还用于根据所述波束标识,对第一信号进行加扰,得到第二信号。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块还用于当所述第一信号为辅同步信号时,根据所述波束标识生成加扰序列;或者,根据所述波束标识和波束总数目生成加扰序列;根据生成的加扰序列对所述第一信号进行加扰,得到所述第二信号。
  29. 根据权利要求28所述的装置,其特征在于,所述处理模块还用于根据所述波束标识,应用以下公式,生成加扰序列:
    Figure PCTCN2015075249-appb-100046
    其中,b0(n)表示所述加扰序列,
    Figure PCTCN2015075249-appb-100047
    表示所述波束标识,
    Figure PCTCN2015075249-appb-100048
    0≤i≤30,且
    Figure PCTCN2015075249-appb-100049
    Figure PCTCN2015075249-appb-100050
    a、b、c、d、e中每一个的取值为0或1。
  30. 根据权利要求28所述的装置,其特征在于,所述处理模块还用于根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
    Figure PCTCN2015075249-appb-100051
    其中,b0(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
    Figure PCTCN2015075249-appb-100052
    Figure PCTCN2015075249-appb-100053
    Figure PCTCN2015075249-appb-100054
    0≤j≤30,
    Figure PCTCN2015075249-appb-100055
    且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
    Figure PCTCN2015075249-appb-100056
    Figure PCTCN2015075249-appb-100057
    表示小区标识,
    Figure PCTCN2015075249-appb-100058
    Figure PCTCN2015075249-appb-100059
    0≤k≤30,
    Figure PCTCN2015075249-appb-100060
    Figure PCTCN2015075249-appb-100061
    且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
    Figure PCTCN2015075249-appb-100062
    Figure PCTCN2015075249-appb-100063
    0≤r≤30,
    Figure PCTCN2015075249-appb-100064
    Figure PCTCN2015075249-appb-100065
    且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
  31. 根据权利要求28所述的装置,其特征在于,所述处理模块还用于根据所述波束标识和所述波束总数目,应用以下公式,生成加扰序列:
    Figure PCTCN2015075249-appb-100066
    其中,b0(n)和b1(n)表示所述加扰序列,
    Figure PCTCN2015075249-appb-100067
    表示所述波束标识,Nsumbeam表示所述波束总数目,
    Figure PCTCN2015075249-appb-100068
    Figure PCTCN2015075249-appb-100069
    0≤i≤30,
    Figure PCTCN2015075249-appb-100070
    Figure PCTCN2015075249-appb-100071
    a、b、c、d、e中每一个的取值为0或1。
  32. 根据权利要求28所述的装置,其特征在于,所述处理模块还用于根据生成的加扰序列,应用以下公式,对所述第一信号进行加扰,得到所述第二信号:
    Figure PCTCN2015075249-appb-100072
    其中,b0(n)和b1(n)表示所述加扰序列,0≤n≤30,d(2n)和d(2n+1)表示所述第二信号的序列,子帧m和子帧n表示所述辅同步信号所在的子帧;
    Figure PCTCN2015075249-appb-100073
    Figure PCTCN2015075249-appb-100074
    Figure PCTCN2015075249-appb-100075
    0≤j≤30,
    Figure PCTCN2015075249-appb-100076
    且x2(0)=0,x2(1)=0,x2(2)=0,x2(3)=0,x2(4)=1;
    Figure PCTCN2015075249-appb-100077
    Figure PCTCN2015075249-appb-100078
    表示小区标识,
    Figure PCTCN2015075249-appb-100079
    Figure PCTCN2015075249-appb-100080
    0≤k≤30,
    Figure PCTCN2015075249-appb-100081
    Figure PCTCN2015075249-appb-100082
    且x3(0)=0,x3(1)=0,x3(2)=0,x3(3)=0,x3(4)=1;
    Figure PCTCN2015075249-appb-100083
    Figure PCTCN2015075249-appb-100084
    0≤r≤30,
    Figure PCTCN2015075249-appb-100085
    Figure PCTCN2015075249-appb-100086
    且x4(0)=0,x4(1)=0,x4(2)=0,x4(3)=0,x4(4)=1。
  33. 根据权利要求26所述的装置,其特征在于,所述处理模块还用于根据所述波束标识计算初始化值,或者根据所述波束标识和小区标识计算初始化值;根据计算出的初始化值,生成参考信号。
  34. 根据权利要求33所述的装置,其特征在于,所述参考信号为小区专用参考信号CRS或者信道状态信息参考信号CSI-RS。
  35. 根据权利要求33所述的装置,其特征在于,所述处理模块还用于根据所述波束标识,应用以下公式,计算初始化值:
    Figure PCTCN2015075249-appb-100087
    其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
    Figure PCTCN2015075249-appb-100088
    表示所述波束标识,NCP表示循环前缀CP长度标识。
  36. 根据权利要求33所述的装置,其特征在于,所述处理模块还用于根据所述波束标识和所述小区标识,生成指定标识;根据所述指定标识,应用以下公式,计算所述初始化值:
    Figure PCTCN2015075249-appb-100089
    其中,cinit表示所述初始化值,ns表示时隙序号,l表示正交频分复用OFDM符号序号,
    Figure PCTCN2015075249-appb-100090
    表示所述指定标识,NCP表示循环前缀CP长度标识。
  37. 根据权利要求26所述的装置,其特征在于,所述处理模块用于生成与波束标识对应的波束信号,所述波束信号包括所述波束标识;
    所述处理模块,用于确定所述波束信号的时频资源位置;
    所述发送模块,还用于通过所述波束标识对应的波束,在所述波束信号的时频资源位置处发送所述波束信号,使得检测到所述波束信号的用户设备获取所述波束信号包括的波束标识。
  38. 根据权利要求37所述的装置,其特征在于,所述基站确定的所述波束信号的时频资源位置与第三信号的时频资源位置之间具有预设间隔。
  39. 根据权利要求37所述的装置,其特征在于,
    所述处理模块,还用于确定所述波束信号的时频资源位置为预设时频资源 位置;
    所述发送模块,还用于通过所述波束标识对应的波束,在所述预设时频资源位置处发送所述波束信号,使得用户设备在所述预设时频资源位置处检测所述波束信号,并获取所述波束信号包括的波束标识。
  40. 根据权利要求37所述的装置,其特征在于,
    所述发送模块,还用于向所述用户设备发送时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识,使得所述用户设备根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
  41. 根据权利要求26所述的装置,其特征在于,所述处理模块还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述波束标识对应的时频资源位置标识;将时频资源位置标识所指示的时频资源配置给所述信号,使得通过所述波束标识对应的波束发送所述信号时,检测到所述信号的用户设备根据所述信号的时频资源位置标识以及所述对应关系,获取所述波束标识。
  42. 根据权利要求41所述的装置,其特征在于,所述对应关系中,每个时频资源位置标识对应的波束标识通过对相应的时频资源位置标识与波束总数目进行取模运算得到;
    相应的,所述处理模块将所述时频资源位置标识所指示的时频资源配置给所述信号时,使得检测到所述信号的用户设备对所述信号的时频资源位置标识与所述波束总数目进行取模运算,得到所述波束标识。
  43. 根据权利要求26所述的装置,其特征在于,所述处理模块还用于如果接收到所述用户设备反馈的多个波束标识,则获取每个波束标识对应的信号强度;根据所述多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识;通过所述选取的波束标识对应的波束,与所述用户设备进行通信。
  44. 一种获取波束标识的装置,其特征在于,所述装置包括:
    检测模块,用于检测基站通过波束发送的信号,所述信号与所述波束的波束标识对应;
    处理模块,用于根据所述信号,获取所述波束标识;
    发送模块,用于向所述基站发送所述波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
  45. 根据权利要求44所述的装置,其特征在于,所述处理模块还用于对所述信号进行解扰,得到所述信号的加扰序列,根据所述加扰序列获取所述波束标识,所述信号由所述基站根据所述波束标识进行加扰得到;或者,
    所述处理模块还用于根据预设的时频资源位置标识与波束标识之间的对应关系,确定所述信号的时频资源位置标识对应的波束标识,所述信号的时频资源位置根据所述波束标识以及所述对应关系确定;或者,
    所述处理模块还用于对所述信号进行解析,得到所述信号的初始化值,根据所述初始化值获取所述波束标识,所述初始化值由所述基站根据所述波束标识计算得到;或者,
    所述处理模块还用于获取所述信号的时频资源位置标识,对所述时频资源位置标识与波束总数目进行取模运算,得到所述波束标识。
  46. 根据权利要求44所述的装置,其特征在于,所述检测模块还用于检测所述基站通过所述波束发送的波束信号,所述波束信号包括所述波束标识。
  47. 根据权利要求46所述的装置,其特征在于,所述检测模块还用于在第三信号的时频资源位置的预设间隔处检测所述波束信号,所述波束信号的时频资源位置与所述第三信号的时频资源位置之间具有所述预设间隔。
  48. 根据权利要求46所述的装置,其特征在于,所述检测模块还用于在预设时频资源位置处检测所述波束信号。
  49. 根据权利要求46所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述基站发送的时频资源信息,所述时频资源信息包括所述波束信号的时频资源位置标识;
    所述检测模块,还用于根据所述时频资源位置标识,在所述时频资源位置处检测所述波束信号。
  50. 根据权利要求44所述的装置,其特征在于,
    所述处理模块,还用于当检测到所述基站发送的多个信号时,获取所述多个信号中每个信号的信号强度;
    所述发送模块,还用于向所述基站发送每个信号的信号强度以及对应的波束标识,使得所述基站根据接收到的多个波束标识对应的信号强度,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与本端进行通信;或者,
    所述发送模块,还用于按照每个信号的信号强度从大到小的顺序,向所述基站依次发送每个信号对应的波束标识,使得所述基站根据接收到每个波束标识的顺序,从所述多个波束标识中选取一个波束标识,通过所述选取的波束标识对应的波束,与本端进行通信;或者,
    所述处理模块,还用于根据每个波束标识对应信号的信号强度,选取一个波束标识,所述发送模块还用于向所述基站发送所述选取的波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
  51. 一种基站,其特征在于,所述基站包括:接收器、发射器、存储器和处理器,所述接收器、所述发射器和所述存储器分别与所述处理器连接,所述 存储器存储有程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    确定与波束标识对应的信号;
    通过所述波束标识对应的波束,发送所述信号,使得检测到所述信号的用户设备根据所述信号,获取所述波束标识;
    当接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
  52. 一种用户设备,其特征在于,所述用户设备包括:接收器、发射器、存储器和处理器,所述接收器、所述发射器和所述存储器分别与所述处理器连接,所述存储器存储有程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    检测基站通过波束发送的信号,所述信号与所述波束的波束标识对应;
    根据所述信号,获取所述波束标识;
    向所述基站发送所述波束标识,使得所述基站通过所述波束标识对应的波束,与本端进行通信。
  53. 一种系统,其特征在于,所述系统包括:基站和用户设备;
    所述基站用于确定与波束标识对应的信号;
    所述基站还用于通过所述波束标识对应的波束,发送所述信号;
    所述用户设备用于检测所述基站发送的所述信号,根据所述信号,获取所述波束标识;
    所述用户设备还用于向所述基站发送所述波束标识;
    所述基站还用于接收到所述用户设备反馈的所述波束标识,则通过所述波束标识对应的波束,与所述用户设备进行通信。
PCT/CN2015/075249 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统 WO2016154809A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201811077217.7A CN108964732B (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置和存储介质
EP15886796.0A EP3264626B1 (en) 2015-03-27 2015-03-27 Method, apparatus, device and system for acquiring beam identifier
CN201911035995.4A CN110971274B (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统
CN201580071839.7A CN107113031B (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统
PCT/CN2015/075249 WO2016154809A1 (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统
US15/716,851 US10750511B2 (en) 2015-03-27 2017-09-27 Beam identifier obtaining method and apparatus, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075249 WO2016154809A1 (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/716,851 Continuation US10750511B2 (en) 2015-03-27 2017-09-27 Beam identifier obtaining method and apparatus, device, and system

Publications (1)

Publication Number Publication Date
WO2016154809A1 true WO2016154809A1 (zh) 2016-10-06

Family

ID=57003888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075249 WO2016154809A1 (zh) 2015-03-27 2015-03-27 获取波束标识的方法、装置、设备和系统

Country Status (4)

Country Link
US (1) US10750511B2 (zh)
EP (1) EP3264626B1 (zh)
CN (3) CN108964732B (zh)
WO (1) WO2016154809A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632841A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种信息传输方法和装置
WO2019178790A1 (zh) * 2018-03-21 2019-09-26 Oppo广东移动通信有限公司 用于信号传输的方法和设备
US10779281B2 (en) 2015-12-03 2020-09-15 Huawei Technologies Co., Ltd. Data transmission method, base station, and user equipment
US11057892B2 (en) 2018-01-19 2021-07-06 Huawei Technologies Co., Ltd. Beam configuration method and apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101969787B1 (ko) * 2014-11-13 2019-04-17 후아웨이 테크놀러지 컴퍼니 리미티드 고주파 통신을 위한 신호 동기화 방법 및 장치
WO2017152931A1 (en) * 2016-03-07 2017-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and access node for supporting ue as well as a ue and corresponding method carried out by the ue in a wireless communication system
JP6938546B2 (ja) * 2016-05-26 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 基準信号の伝送方法、ネットワーク設備及び端末設備
CN109565314A (zh) * 2016-09-26 2019-04-02 瑞典爱立信有限公司 在无线通信系统中利用与标识结合的接收时间
US10728900B2 (en) * 2016-09-29 2020-07-28 Nec Corporation Radio terminal, base station, and method therefor
WO2018058433A1 (zh) * 2016-09-29 2018-04-05 富士通株式会社 参考信号的传输装置、方法以及通信系统
US10736082B2 (en) * 2016-10-31 2020-08-04 Qualcomm Incorporated Transmission of a common control in a beamforming system
KR20190119917A (ko) * 2018-04-13 2019-10-23 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치
CN114928886A (zh) 2019-01-10 2022-08-19 中兴通讯股份有限公司 在无线系统中用信号发送准同址信息

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881829A (zh) * 1998-07-21 2006-12-20 高通股份有限公司 用于减少多波束通信系统中呼叫丢失率的系统和方法
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
US8948208B2 (en) * 2008-11-07 2015-02-03 Qualcomm Incorporated Conveying information through phase offset on PSS relative to DL-RS
US8396035B2 (en) * 2009-04-24 2013-03-12 Futurewei Technologies, Inc. System and method for communications using time-frequency space enabled coordinated beam switching
US8982796B2 (en) * 2010-06-22 2015-03-17 Lg Electronics Inc. Method and device for determining precoding information for uplink multi-antenna transmission
US8964866B2 (en) * 2010-07-02 2015-02-24 Lg Electronics Inc. Method and apparatus for transmitting signals using codebooks in a wireless communication system that supports multiple antennas
KR20130028397A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 무선 통신 시스템에서 동기 및 시스템 정보 획득을 위한 장치 및 방법
JP5959830B2 (ja) * 2011-11-10 2016-08-02 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US9237475B2 (en) * 2012-03-09 2016-01-12 Samsung Electronics Co., Ltd. Channel quality information and beam index reporting
CN108111196B (zh) * 2012-06-04 2021-06-18 交互数字专利控股公司 传递多个传输点的信道状态信息(csi)
EP2888825B1 (en) * 2012-08-21 2015-11-18 Telefonaktiebolaget LM Ericsson (Publ) Beamforming
WO2014052806A1 (en) * 2012-09-28 2014-04-03 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
US9306646B2 (en) * 2013-01-02 2016-04-05 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
US9503171B2 (en) * 2013-01-04 2016-11-22 Electronics And Telecommunications Research Institute Method for transmitting signal using multiple antennas
KR101998856B1 (ko) * 2013-01-28 2019-07-11 삼성전자주식회사 무선통신시스템에서의 송/수신 장치 및 방법
US9461723B2 (en) * 2013-03-29 2016-10-04 Intel IP Corporation Orthologonal beamforming for multiple user multiple-input and multiple-output (MU-MIMO)
CN105210306B (zh) * 2013-05-10 2018-11-30 三星电子株式会社 无线通信系统中用于选择发送和接收波束的设备和方法
CN105393467B (zh) * 2013-06-28 2019-04-02 财团法人中央大学校产学协力团 波束训练装置
KR102100748B1 (ko) * 2013-08-05 2020-04-14 삼성전자주식회사 무선 통신 시스템에서 빔 그룹핑을 통한 레퍼런스 신호 송수신 방법 및 장치
US10090986B2 (en) * 2013-09-05 2018-10-02 Lg Electronics Inc. Method and apparatus for transmitting reference signal in multiple antenna supporting wireless communication system
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
CN104734759B (zh) * 2013-12-20 2019-12-03 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
US10512008B2 (en) * 2014-01-17 2019-12-17 Idac Holdings, Inc. 3GPP MMW access link system architecture
CN104219757A (zh) * 2014-05-13 2014-12-17 中兴通讯股份有限公司 同步信号发送时间确定方法、终端、基站及通信系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881829A (zh) * 1998-07-21 2006-12-20 高通股份有限公司 用于减少多波束通信系统中呼叫丢失率的系统和方法
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264626A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779281B2 (en) 2015-12-03 2020-09-15 Huawei Technologies Co., Ltd. Data transmission method, base station, and user equipment
US11019628B2 (en) 2015-12-03 2021-05-25 Huawei Technologies Co., Ltd. Data transmission method, base station, and user equipment
CN108632841A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种信息传输方法和装置
CN108632841B (zh) * 2017-03-24 2021-12-03 华为技术有限公司 一种信息传输方法和装置
US11057892B2 (en) 2018-01-19 2021-07-06 Huawei Technologies Co., Ltd. Beam configuration method and apparatus
WO2019178790A1 (zh) * 2018-03-21 2019-09-26 Oppo广东移动通信有限公司 用于信号传输的方法和设备
US11792831B2 (en) 2018-03-21 2023-10-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for signal transmission

Also Published As

Publication number Publication date
EP3264626A1 (en) 2018-01-03
CN110971274B (zh) 2022-04-12
US10750511B2 (en) 2020-08-18
CN108964732B (zh) 2019-11-19
US20180063828A1 (en) 2018-03-01
CN107113031B (zh) 2023-06-30
EP3264626B1 (en) 2020-07-29
CN107113031A (zh) 2017-08-29
CN110971274A (zh) 2020-04-07
EP3264626A4 (en) 2018-04-18
CN108964732A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2016154809A1 (zh) 获取波束标识的方法、装置、设备和系统
US11063723B2 (en) Communication method, network device, terminal device, and system
US11910391B2 (en) Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions
US10756802B2 (en) Communication method and terminal device
US8855658B2 (en) Interference avoidance on common channels in uncoordinated network deployments with flexible spectrum use
US20210119836A1 (en) Data scrambling method and related device
US11895044B2 (en) Transmission device, communication system, and transmission method
WO2013107259A1 (zh) 一种传输带宽信息的方法及装置
US20230118141A1 (en) Communication method and apparatus
CA2952097A1 (en) Method and apparatus for transmission pattern configuration and signal detection
US20110275392A1 (en) Method for Channel Estimation, Base Station and Mobile Node
WO2017075839A1 (zh) 一种测量和反馈信道状态信息csi的方法及装置
US11057094B2 (en) Channel state information obtaining method and device
CN111294945A (zh) 上行信息传输方法及用户终端、计算机可读存储介质
CN107079489A (zh) 信号传输方法和网络设备
CN112514517B (zh) 用于noma异步传输中的上行链路控制信道的方法和装置
KR20110132405A (ko) 무선 송신 장치, 무선 수신 장치 및 프리앰블 시퀀스 생성 방법
WO2015085856A1 (zh) 一种基于共享小区的导频配置方法、相关装置及系统
WO2018014669A1 (zh) 一种数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015886796

Country of ref document: EP