WO2015085856A1 - 一种基于共享小区的导频配置方法、相关装置及系统 - Google Patents

一种基于共享小区的导频配置方法、相关装置及系统 Download PDF

Info

Publication number
WO2015085856A1
WO2015085856A1 PCT/CN2014/092043 CN2014092043W WO2015085856A1 WO 2015085856 A1 WO2015085856 A1 WO 2015085856A1 CN 2014092043 W CN2014092043 W CN 2014092043W WO 2015085856 A1 WO2015085856 A1 WO 2015085856A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase reference
channel
scch
identifier
shared
Prior art date
Application number
PCT/CN2014/092043
Other languages
English (en)
French (fr)
Inventor
杨毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015085856A1 publication Critical patent/WO2015085856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0014Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications, and in particular, to a shared cell-based pilot configuration method, related apparatus, and system.
  • the macro station or the micro-station is an independent cell, with its own independent synchronization and broadcast channel and system information; and in the shared cell or bundled cell combined cell networking mode
  • the micro-station is regarded as a part of the macro cell, rather than a separate cell in a logical sense, that is, the micro-station deployed under the coverage of the macro station has the same cell ID as the macro station, that is, has the same primary scrambling code.
  • the micro station is regarded as the transmitting/receiving point of the macro cell.
  • the UE uses the Node Selection with Spatial Reuse (SR) as the transmission mode in the shared cell
  • the UE uses the probe pilots respectively sent by the respective transmission points.
  • Probing pilot feedback channel quality indicator (CQI) the central scheduler of the cell determines which transmitting point sends data to the UE according to the CQI, for example, selecting a low power node (LPN) to send data to the UE, and central scheduling
  • the other resources are also scheduled from other transmission points using the same resource (the same code channel on the same Transmission Time Interval (TTI)).
  • TTI Transmission Time Interval
  • the LPN transmits a Demodulation Pilot Demodulation CPICH (D-CPICH).
  • D-CPICH Demodulation Pilot Demodulation CPICH
  • the UE When receiving, the UE first detects the D-CPICH of the transmitting point, and uses the channel estimation obtained on the D-CPICH to perform a Shared Control Channel for HS-DCCH (HS-SCCH) detection, if the HS-SCCH is detected. And using the channel estimation to demodulate and decode the High Speed Physical Downlink Shared Channel (HS-PDSCH) channel indicated by the HS-SCCH control information. Since the UE in the prior art defaults that the phase reference of the HS-PDSCH is the same as the HS-SCCH, the phase reference indication information is notified to the UE by an implicit method. The phase reference is the pilot, and the device can perform channel estimation based on the pilot, which is used for data demodulation.
  • HS-SCCH Shared Control Channel for HS-DCCH
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • the UE needs to perform search and channel estimation on multiple D-CPICHs at the same time, and the operation complexity is high.
  • the technical problem to be solved by the embodiments of the present invention is to provide a pilot configuration method, a related device, and a system based on a shared cell, which can send data to a UE from a real-time selected transmission point, thereby implementing flexible scheduling of the UE.
  • an embodiment of the present invention provides a pilot configuration method based on a shared cell, including:
  • the phase reference indication includes a transmission point identifier or a pilot channel identifier
  • the transmission point identifier corresponds to a transmission point for transmitting a common pilot; the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • the shared control channel HS-SCCH is encoded to generate a shared control channel carrying a phase reference indication HS-SCCH includes:
  • the shared control channel HS-SCCH coding is performed according to the combined identification.
  • the performing the shared control channel coding according to the combined identifier includes:
  • the user equipment sharing the control channel HS-SCCH is masked according to the combined identifier.
  • an embodiment of the present invention provides a pilot configuration method based on a shared cell, including:
  • phase reference indication Determining, by the phase reference indication, a phase reference of the high speed physical downlink shared channel HS-PDSCH, and indicating a high speed physical downlink shared channel HS indicated by the control information of the shared control channel HS-SCCH based on the phase reference - PDSCH for reception.
  • determining, by the phase reference indication, a phase reference of the high speed physical downlink shared channel HS-PDSCH includes: determining, according to the transmitting point identifier, a common pilot sent by the transmitting point as a phase reference of the high speed physical downlink shared channel HS-PDSCH; or
  • the determining, by the phase reference indication, the phase reference of the high speed physical downlink shared channel HS-PDSCH includes: determining a shared cell corresponding to the pilot channel identifier The pilot channel serves as a phase reference for the high speed physical downlink shared channel HS-PDSCH.
  • the determining, by the phase reference indication, the phase reference of the high speed physical downlink shared channel HS-PDSCH includes:
  • the phase reference used by the shared control channel HS-SCCH is used as the phase reference of the high-speed physical downlink shared channel HS-PDSCH.
  • determining, according to the transmission point identifier, a common guide sent by the transmission point The frequency reference as the phase reference of the high speed physical downlink shared channel HS-PDSCH includes:
  • the phase reference used by the shared control channel HS-SCCH or the common pilot transmitted by the transmission point is used as the phase reference of the high-speed physical downlink shared channel HS-PDSCH.
  • phase reference indication is a pilot channel identifier
  • determining the shared cell corresponding to the pilot channel identifier includes:
  • the phase reference used by the shared control channel HS-SCCH or the pilot channel of the shared cell is used as the phase reference of the high-speed physical downlink shared channel HS-PDSCH.
  • an embodiment of the present invention provides a pilot configuration apparatus based on a shared cell, including:
  • a coding generating module configured to encode the shared control channel HS-SCCH, and generate a shared control channel HS-SCCH carrying a phase reference indication
  • a pilot configuration sending module configured to send pilot configuration information to the user equipment by using the generated shared control channel HS-SCCH, where the phase reference indication is used by the user equipment to determine a high speed physical downlink shared channel HS-PDSCH Phase reference.
  • the phase reference indication includes a transmission point identifier or a pilot channel identifier
  • the transmission point identifier corresponds to a transmission point for transmitting a common pilot; the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • the code generating module includes:
  • An obtaining unit configured to acquire a phase reference indication and a user equipment identifier
  • a combination coding unit configured to perform combined coding on the phase reference indication and the user equipment identifier to generate a combined identifier
  • a channel coding unit configured to perform shared control channel HS-SCCH coding according to the combined identifier.
  • the channel coding unit includes:
  • An adding unit configured to perform a cyclic redundancy check CRC addition of the shared control channel HS-SCCH according to the combined identifier
  • a masking unit configured to perform masking on the user equipment sharing the control channel HS-SCCH according to the combined identifier.
  • the embodiment of the present invention provides a pilot configuration device based on a shared cell, including:
  • a detecting module configured to detect a shared control channel HS-SCCH carrying a phase reference indication
  • the determining receiving module includes: a first determining unit, configured to determine a transmission point according to the transmission point identifier
  • the transmitted common pilot is used as the phase reference of the high speed physical downlink shared channel HS-PDSCH; or
  • the determining the receiving module includes: a second determining unit, configured to determine a pilot channel of the shared cell corresponding to the pilot channel identifier as a high-speed physical downlink shared channel HS- Phase reference of the PDSCH.
  • the determining the receiving module includes:
  • a first detecting unit configured to detect whether a phase reference used by the shared control channel HS-SCCH corresponds to the phase reference indication
  • the first detection processing unit is configured to use a phase reference used by the shared control channel HS-SCCH as a phase reference of the high-speed physical downlink shared channel HS-PDSCH when the detection result of the first detection unit is YES.
  • the first determining unit includes:
  • a second detecting unit configured to detect whether a phase reference used by the shared control channel HS-SCCH is consistent with a common pilot sent by the transmitting point
  • a second detection processing unit configured to: when the detection result of the second detection unit is YES, use a phase reference used by the shared control channel HS-SCCH or a common pilot sent by the transmission point as a high-speed physics Phase reference of the downlink shared channel HS-PDSCH.
  • the second determining unit includes:
  • a third detecting unit configured to detect whether a phase reference used by the shared control channel HS-SCCH is consistent with a pilot channel of a shared cell corresponding to the pilot channel identifier
  • a third detection processing unit configured to: when the detection result of the third detection unit is yes, use a phase reference used by the shared control channel HS-SCCH or a pilot channel of the shared cell Phase reference for the high speed physical downlink shared channel HS-PDSCH.
  • an embodiment of the present invention provides a network device, including: an input device, an output device, a memory, and a processor;
  • the processor performs the following steps:
  • the phase reference indication includes a transmission point identifier or a pilot channel identifier
  • the transmission point identifier corresponds to a transmission point for transmitting a common pilot; the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • the processor encodes the shared control channel HS-SCCH, and generates a share that carries the phase reference indication
  • the control channel HS-SCCH includes:
  • the performing, by the processor, the shared control channel coding according to the combined identifier includes:
  • the user equipment sharing the control channel HS-SCCH is masked according to the combined identifier.
  • an embodiment of the present invention provides a user equipment, including: an input device, an output device, a memory, and a processor;
  • the processor performs the following steps:
  • phase reference indication Determining, by the phase reference indication, a phase reference of the high speed physical downlink shared channel HS-PDSCH, based on the phase reference pair, the detected control signal of the shared control channel HS-SCCH
  • the high-speed physical downlink shared channel HS-PDSCH indicated by the information is received.
  • the processor determines, by using the phase reference indication, the high speed physical downlink shared channel HS-PDSCH
  • the phase reference includes: determining, according to the transmission point identifier, a common pilot sent by the transmission point as a phase reference of the high speed physical downlink shared channel HS-PDSCH; or
  • the determining, by the processor, the phase reference of the high speed physical downlink shared channel HS-PDSCH by using the phase reference indication comprises: determining a sharing corresponding to the pilot channel identifier
  • the pilot channel of the cell serves as a phase reference for the high speed physical downlink shared channel HS-PDSCH.
  • the determining, by the processor, the phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication includes:
  • the processor determines, according to the transmission point identifier, that the transmission point is sent.
  • the phase reference of the common pilot as the high-speed physical downlink shared channel HS-PDSCH includes:
  • the processor determines a sharing corresponding to the pilot channel identifier
  • the phase reference of the pilot channel of the cell as the high-speed physical downlink shared channel HS-PDSCH includes:
  • phase reference used by the shared control channel HS-SCCH is consistent with the pilot channel of the shared cell corresponding to the pilot channel identifier; when the detection result is yes, the shared control channel HS-SCCH
  • the phase reference used or the pilot channel of the shared cell is used as the phase reference of the high speed physical downlink shared channel HS-PDSCH.
  • an embodiment of the present invention provides a shared cell-based pilot configuration system, including a network device and a user equipment, where
  • the network device includes the fifth aspect, or the first possible implementation manner of the fifth aspect, or the second possible implementation manner of the fifth aspect, or the network in the third possible implementation manner of the fifth aspect device.
  • the user equipment includes the sixth aspect, or the first possible implementation manner of the sixth aspect, or the second possible implementation manner of the sixth aspect, or the third possible implementation manner of the sixth aspect, or the User equipment in a fourth possible implementation of the six aspects;
  • the shared control channel HS-SCCH carrying the phase reference indication is generated, and the pilot configuration information is sent to the user equipment by using the generated shared control channel HS-SCCH, where the phase reference indication is used by the user
  • the device is used to determine the phase reference of the high-speed physical downlink shared channel HS-PDSCH, which can further verify the correctness of the phase reference indication information, avoid the misdetection of the phase reference indication information appearing in the prior art, and realize the transmission from the real-time selection.
  • the point transmits data to the UE, thereby implementing flexible scheduling of the UE.
  • FIG. 1 is a schematic flowchart of a shared cell-based pilot configuration method according to a first embodiment of the present invention
  • FIG. 2 is a schematic flowchart of encoding an HS-SCCH according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a shared cell-based pilot configuration method according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a shared cell-based pilot configuration apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a code generation module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a channel coding unit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a shared cell-based pilot configuration apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a first embodiment of determining a receiving module according to the present invention.
  • FIG. 9 is a schematic structural diagram of a second embodiment of determining a receiving module according to the present invention.
  • FIG. 10 is a schematic structural diagram of a first confirmation unit according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a second confirmation unit according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a shared cell-based pilot configuration system according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a shared cell-based pilot configuration method according to a first embodiment of the present invention, where the method includes:
  • Step S100 encoding information carried on the shared control channel HS-SCCH, and generating a shared control channel HS-SCCH carrying a phase reference indication;
  • the network side may design an HS-SCCH channel, and encode the information carried on the shared control channel HS-SCCH to generate a shared control channel HS-SCCH carrying a phase reference indication;
  • the phase reference indication may include a transmission point identifier Or pilot channel identification.
  • the transmission point identifier corresponds to a transmission point that sends the common pilot;
  • the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • the shared control channel HS-SCCH carrying the phase reference indication also carries the phase reference indication through information transmitted on the HS-SCCH channel. Encoding the information carried on the shared control channel HS-SCCH may be considered to encode the shared control channel HS-SCCH.
  • a common pilot channel is separately transmitted at one LPN transmission point, that is, one common pilot channel corresponds to one transmission point.
  • the same common guide can be transmitted on two or more LPN transmission points whose coverages do not overlap each other (ie, are not adjacent). Frequency channel; at this time, the UE can be distinguished when receiving Which transmitting point the common pilot channel comes from, only need to distinguish the pilot channel identifier.
  • Step S102 Send pilot configuration information to the user equipment by using the generated shared control channel HS-SCCH, where the phase reference indication is used by the user equipment to determine a phase reference of the high speed physical downlink shared channel HS-PDSCH.
  • the user equipment may determine, according to the transmission point identifier, a common pilot sent by the transmission point as a phase reference of the high speed physical downlink shared channel HS-PDSCH;
  • the user equipment may determine a pilot channel of the shared cell corresponding to the pilot channel identifier as a phase reference of the high speed physical downlink shared channel HS-PDSCH.
  • the common pilot channel in the embodiment of the present invention includes, but is not limited to, a demodulation pilot D-CPICH.
  • FIG. 2 a schematic flowchart of encoding an HS-SCCH according to an embodiment of the present invention, as shown in FIG. 2, includes:
  • Step S200 Obtain a phase reference indication and a user equipment identifier.
  • Step S202 Combine the phase reference indication and the user equipment identifier to generate a combined identifier.
  • Step S204 Perform shared control channel HS-SCCH coding according to the combined identifier.
  • the embodiment of the present invention may perform cyclic redundancy check CRC addition of the shared control channel HS-SCCH according to the combined identifier, or perform masking of the user equipment UE sharing the control channel HS-SCCH according to the combined identifier.
  • the following uses the phase reference indication as the transmission point identifier as an example, and the above two cases are described in detail:
  • control information bits x 1,1 , x 1,2 , . . . , x 1,8 on the first time slot are input, and the control information bits x 2,1 , x 2,2 on the second and third time slots are input. ,...,x 2,13 , through the following 6-step algorithm:
  • x tx,1 , x tx,2 ,...x tx,n are n-bit transmit point identifiers.
  • the n-bit transmission point identifier may be XORed with the last n bits of the UE identifier, and the first 16-n bits of the UE identifier are kept unchanged, thereby obtaining a combined identifier, and then the combined identifier is used for CRC addition.
  • the embodiment of the present invention is not limited to performing the operation of calculating the transmission point identifier and the UE identifier by using the foregoing algorithm, and obtaining the combined identifier, and performing the operation according to other design requirements to obtain the combined identifier of the transmission point identifier and the UE identifier.
  • the network side needs to ensure the uniqueness of the combined identifier in the combined cell, thereby avoiding confusion.
  • the encoded bits r 1,1 , r 1,2 ... r 1,40 of the control information on the first time slot are input, and the following five-step algorithm is adopted:
  • b) b i , i 1, 2, ..., 48, b 1 , b 2 , b 4 , b 8 , b 42 , b 45 , b 47 , b 48 , get c 1 , c 2 ,... c 40 .
  • x ue,1 ,x ue,2 ,...,x ue,16 is a 16-bit UE identifier, x tx,1 , x tx,2 , . . . x tx, where n is a transmission point identifier of n bits.
  • the transmission point identifier may be XORed with the last n bits after the UE identifier is encoded, and the first 40-n bits after the UE identifier coding are kept unchanged, that is, the combined coding of the transmission point identifier and the UE identifier is completed. Obtaining a combined identifier, and then masking the coded bits of the HS-SCCH;
  • the UE can also be masked by the following 5-step algorithm:
  • the n-bit transmission point identifier is XORed with the last n bits of the UE identifier, and the first 16-n bits of the UE identifier are kept unchanged, thereby obtaining a combined identifier, and then the coded bits of the HS-SCCH are masked.
  • the embodiment of the present invention is not limited to performing the operation of calculating the transmission point identifier and the UE identifier by using the foregoing algorithm, and obtaining the combined identifier, and performing the operation according to other design requirements to obtain the combined identifier of the transmission point identifier and the UE identifier.
  • the shared control channel HS-SCCH carrying the phase reference indication is generated, and the pilot configuration information is sent to the user equipment by using the generated shared control channel HS-SCCH, so that the user equipment is configured according to the
  • the phase reference indication determines the common pilot transmitted by the transmitting point as the phase reference of the high-speed physical downlink shared channel HS-PDSCH, and can further verify the correctness of the phase reference indication information, thereby avoiding the false detection of the phase reference indication information appearing in the prior art.
  • the data is transmitted from the transmitting point selected in real time to the UE, thereby implementing flexible scheduling of the UE.
  • FIG. 3 is a schematic flowchart of a shared cell-based pilot configuration method according to a second embodiment of the present invention, including:
  • Step S300 detecting a shared control channel HS-SCCH carrying a phase reference indication
  • Step S302 determining a phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication, and performing high-speed physical downlink indicated by the control information of the shared control channel HS-SCCH detected based on the phase reference.
  • the shared channel HS-PDSCH is received.
  • the phase reference indication may include a transmission point identifier or a pilot channel identifier.
  • the transmission point identifier corresponds to a transmission point that sends the common pilot; the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • a common pilot channel is transmitted separately at an LPN transmission point, that is, a common pilot channel corresponds to a transmission point.
  • the same common guide can be transmitted on two or more LPN transmission points whose coverages do not overlap each other (ie, are not adjacent).
  • the common pilot channel in the embodiment of the present invention includes, but is not limited to, a demodulation pilot D-CPICH.
  • determining the phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication may include:
  • phase reference used by the shared control channel HS-SCCH corresponds to the phase reference indication; when the detection result is YES, using a phase reference used by the shared control channel HS-SCCH as a high-speed physical downlink
  • the phase reference of the shared channel HS-PDSCH is then demodulated and received based on the HS-PDSCH indicated by the detected control information of the HS-SCCH based on the phase reference, and when the detection result is no, the pilot configuration is terminated.
  • the step of determining the phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication may be specifically: determining, according to the transmission point identifier, transmitting point transmission
  • the common pilot is used as the phase reference of the high-speed physical downlink shared channel HS-PDSCH; the details may include:
  • the step of determining the phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication may be specifically: determining that the pilot channel identifier corresponds to The pilot channel of the shared cell is used as a phase reference of the high-speed physical downlink shared channel HS-PDSCH, and the details may include:
  • phase reference used by the shared control channel HS-SCCH is consistent with the pilot channel of the shared cell corresponding to the pilot channel identifier; when the detection result is yes, the shared control channel HS-SCCH
  • the phase reference used or the pilot channel of the shared cell is used as a phase reference of the high speed physical downlink shared channel HS-PDSCH, and then the HS-PDSCH indicated by the detected control information of the HS-SCCH is demodulated based on the phase reference.
  • the detection result is no, the pilot configuration is terminated.
  • Generating a shared control channel carrying a phase reference indication by implementing an embodiment of the present invention And transmitting, by the HS-SCCH, the pilot configuration information to the user equipment by using the generated shared control channel HS-SCCH, so that the user equipment determines, according to the phase reference indication, a common pilot sent by the transmission point as a high-speed physical downlink shared channel.
  • the phase reference of the HS-PDSCH can further verify the correctness of the phase reference indication information, avoid the misdetection of the phase reference indication information appearing in the prior art, and realize the transmission of data from the real-time selected transmission point to the UE, thereby realizing flexibility. Scheduling UE.
  • the foregoing describes a method for configuring a pilot based on a shared cell in the embodiment of the present invention.
  • a related device for implementing the foregoing solution is provided.
  • FIG. 4 is a schematic structural diagram of a shared cell-based pilot configuration apparatus according to an embodiment of the present invention, where the shared cell-based pilot configuration apparatus 40 includes a code generation module 400 and a pilot configuration transmission module 402, where
  • the code generation module 400 is configured to encode the shared control channel HS-SCCH, and generate a shared control channel HS-SCCH carrying a phase reference indication;
  • the code generation module 400 may design an HS-SCCH channel, and generate a shared control channel HS-SCCH carrying a phase reference indication by encoding the shared control channel HS-SCCH;
  • the phase reference indication may include a transmission point identifier or a guide Frequency channel identification.
  • the transmission point identifier corresponds to a transmission point that sends the common pilot;
  • the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • a common pilot channel is separately transmitted at one LPN transmission point, that is, one common pilot channel corresponds to one transmission point.
  • the same common guide can be transmitted on two or more LPN transmission points whose coverages do not overlap each other (ie, are not adjacent). The frequency channel; at this time, the UE does not need to distinguish which transmitting point the common pilot channel comes from when receiving, and only needs to distinguish the pilot channel identifier.
  • the pilot configuration sending module 402 is configured to send pilot configuration data to the user equipment by using the generated shared control channel HS-SCCH, where the phase reference indication is used by the user equipment to determine a high speed physical downlink shared channel HS-PDSCH Phase reference.
  • the common pilot channel in the embodiment of the present invention includes, but is not limited to, a demodulation pilot D-CPICH.
  • the generating module 400 includes an obtaining unit 4000, a combined encoding unit 4002, and a channel encoding unit 4004, wherein
  • the obtaining unit 4000 is configured to acquire a phase reference indication and a user equipment identifier
  • the combination coding unit 4002 is configured to perform combined coding on the phase reference indication and the user equipment identifier to generate a combined identifier.
  • the channel coding unit 4004 is configured to perform shared control channel HS-SCCH coding according to the combined identifier.
  • the channel coding unit 4004 includes an adding unit 40040 and/or a masking unit 40042.
  • the adding unit 40040 and the masking unit are included.
  • the unit 40042 is described as an example.
  • the adding unit 40040 is configured to perform cyclic redundancy check CRC addition of the shared control channel HS-SCCH according to the combined identifier;
  • the masking unit 40042 is configured to perform masking of the user equipment sharing the control channel HS-SCCH according to the combined identifier.
  • the embodiment of the present invention further discloses a pilot configuration device based on a shared cell, and a structure diagram of a shared cell-based pilot configuration device according to an embodiment of the present invention, as shown in FIG.
  • the configuration device 70 includes a detection module 700 and a determination receiving module 702, wherein
  • the detecting module 700 is configured to detect a shared control channel HS-SCCH carrying a phase reference indication
  • the phase reference of the high-speed physical downlink shared channel HS-PDSCH by using the phase reference indication, indicating, according to the phase reference, the detected control information of the shared control channel HS-SCCH
  • the high speed physical downlink shared channel HS-PDSCH is received.
  • the present invention determines a structural schematic diagram of the first embodiment of the receiving module, and the determining receiving module 702 can include a first detecting unit 7020 and a first detecting processing unit 7022, wherein
  • the first detecting unit 7020 is configured to detect whether a phase reference used by the shared control channel HS-SCCH corresponds to the phase reference indication;
  • the first detection processing unit 7022 is configured to use, when the detection result of the first detection unit 7020 is YES, the phase reference used by the shared control channel HS-SCCH as the phase reference of the high-speed physical downlink shared channel HS-PDSCH.
  • the present invention determines a structural schematic diagram of the second embodiment of the receiving module.
  • the determining receiving module 702 may include a first determining unit 7024 and/or a second determining unit 7026, which are all included in this embodiment.
  • the first determining unit 7024 and the second determining unit 7026 are described, wherein
  • the first determining unit 7024 is configured to determine, according to the transmission point identifier, a common pilot sent by the transmission point as a phase reference of the high speed physical downlink shared channel HS-PDSCH;
  • the second determining unit 7026 is configured to determine a pilot channel of the shared cell corresponding to the pilot channel identifier as a phase reference of the high speed physical downlink shared channel HS-PDSCH.
  • the first determining unit 7024 may further include a second detecting unit 70240 and a second detecting processing unit.
  • the first determining unit 7024 may further include a second detecting unit 70240 and a second detecting processing unit.
  • the first determining unit 7024 may further include a structure of the first confirming unit according to the embodiment of the present invention. 70242, where
  • the second detecting unit 70240 is configured to detect whether a phase reference used by the shared control channel HS-SCCH is consistent with a common pilot sent by the transmitting point;
  • the second detection processing unit 700242 is configured to use the phase reference used by the shared control channel HS-SCCH or the common pilot sent by the transmission point as a high-speed physical downlink when the detection result of the second detection unit 70240 is YES. Phase reference of the shared channel HS-PDSCH.
  • the structure of the second acknowledgment unit of the embodiment of the present invention as shown in FIG. 11 is further described to further describe the structure of the receiving module.
  • the second determining unit 7026 may include a third detecting unit 70260 and a third detecting processing unit. 70262, where
  • the third detecting unit 70260 is configured to detect whether the phase reference used by the shared control channel HS-SCCH is consistent with a pilot channel of the shared cell corresponding to the pilot channel identifier;
  • the third detection processing unit 70262 is configured to when the detection result of the third detection unit 70260 is YES, Then, the phase reference used by the shared control channel HS-SCCH or the pilot channel of the shared cell is used as the phase reference of the high-speed physical downlink shared channel HS-PDSCH.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention, the network device 12 includes an input device 120, an output device 122, a memory 124, and a processor 126;
  • the input device 120, the output device 122, the memory 124, and the processor 126 (the number of the processors 126 in the network device may be one or more, and one processor in FIG. 12 is taken as an example).
  • the input device 121, the output device 122, the memory 124, and the processor 126 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 126 performs the following steps:
  • phase reference indication includes a transmission point identifier or a pilot channel identifier
  • the transmission point identifier corresponds to a transmission point that sends the common pilot; the pilot channel identifier corresponds to a pilot channel of the shared cell.
  • the processor 126 shares the control channel HS-SCCH for encoding, and generating the shared control channel HS-SCCH carrying the phase reference indication includes:
  • processor 126 performs shared control channel coding according to the combined identifier, including:
  • the network device 12 in the embodiment of the present invention may be, for example, a base station, or a hardware structure in a base station, or other network device.
  • FIG. 13 is a schematic structural diagram of a user equipment according to an embodiment of the present invention, where the user equipment 13 includes an input device 130, an output device 132, a memory 134, and a processor 136;
  • the input device 130, the output device 132, the memory 134, and the processor 136 (the number of the processors 136 in the network device may be one or more, and one processor in FIG. 13 is taken as an example).
  • the input device 131, the output device 132, the memory 134, and the processor 136 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 136 performs the following steps:
  • Detecting a shared control channel HS-SCCH carrying a phase reference indication determining a phase reference of the high speed physical downlink shared channel HS-PDSCH with the phase reference indication, and detecting the shared control channel based on the phase reference pair
  • the high-speed physical downlink shared channel HS-PDSCH indicated by the HS-SCCH control information is received.
  • phase reference indication is a transmission point identifier
  • determining, by the processor 136, the phase reference of the high speed physical downlink shared channel HS-PDSCH by using the phase reference indication comprises: determining a transmission point according to the transmission point identifier The transmitted common pilot is used as the phase reference of the high speed physical downlink shared channel HS-PDSCH; or
  • the determining, by the processor 136, the phase reference of the high speed physical downlink shared channel HS-PDSCH by using the phase reference indication comprises: determining a shared cell corresponding to the pilot channel identifier Pilot channel as a high-speed physical downlink shared channel Phase reference for HS-PDSCH.
  • determining, by the processor 136, the phase reference of the high speed physical downlink shared channel HS-PDSCH by using the phase reference indication includes:
  • the processor 136 determines, according to the transmission point identifier, that the common pilot sent by the transmission point is a phase reference of the high-speed physical downlink shared channel HS-PDSCH, including:
  • the processor 136 determines that the pilot channel of the shared cell corresponding to the pilot channel identifier is used as a phase reference of the high speed physical downlink shared channel HS-PDSCH, including:
  • phase reference used by the shared control channel HS-SCCH is consistent with the pilot channel of the shared cell corresponding to the pilot channel identifier; when the detection result is yes, the shared control channel HS-SCCH
  • the phase reference used or the pilot channel of the shared cell is used as the phase reference of the high speed physical downlink shared channel HS-PDSCH.
  • the user equipment 13 of the embodiment of the present invention may be, for example, a mobile communication terminal, a tablet computer or a personal digital assistant or the like, or other user equipment.
  • the embodiment of the present invention further discloses a shared cell-based pilot configuration system.
  • the shared cell-based pilot configuration system of the present invention includes the network device 12 and the diagram in the embodiment of FIG. User equipment 13 in the 13 embodiment;
  • the embodiment of the present invention generates a shared control channel HS-SCCH carrying a transmission point identifier, and transmits pilot configuration data to the user equipment through the generated shared control channel HS-SCCH, so that the The user equipment determines, according to the indication of the transmission point, that the common pilot sent by the transmission point is a phase reference, which can further verify the correctness of the identifier of the transmission point, avoiding the false detection of the transmission point information appearing in the prior art, and realizing the selection from the real-time.
  • the transmitting point transmits data to the UE, thereby implementing flexible scheduling of the UE.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基于共享小区的导频配置方法,包括:对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。采用本发明,可进一步验证相位参考指示信息的正确性,避免了现有技术中出现的相位参考指示信息的误检,实现了从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。

Description

一种基于共享小区的导频配置方法、相关装置及系统 技术领域
本发明涉及通信领域,尤其涉及一种基于共享小区的导频配置方法、相关装置及系统。
背景技术
在传统的异构网络Hetnet同频组网方式下,宏站或微站都是独立的小区,有自己独立的同步和广播信道以及系统信息;而在共享小区或者捆绑小区combined cell组网方式下,微站被看作为宏小区的一部分,而不是一个逻辑意义上的独立小区,即在宏站覆盖范围下部署的微站,跟宏站有相同的小区ID,也就是有相同的主扰码,微站看作是宏小区的发射/接收点。
在共享小区combined cell下,用户设备(User Equipment,UE)以空间复用模式(Node Selection with Spatial Reuse,SR)为传输模式时,现有技术中UE基于各个发射点各自发送的探针导频Probing pilot反馈信道质量指示(Channel Quality Indicator,CQI),小区的中心调度器根据CQI决定哪个发射点给UE发送数据,例如选择某微站(Low Power Node,LPN)向UE发送数据,同时中心调度器还会使用相同资源(相同传输时间间隔(Transmission Time Interval,TTI)上的相同码道)从其他发射点调度其他UE。当该LPN向UE调度数据时,该LPN会发射解调导频Demodulation CPICH(D-CPICH)。UE在接收时,首先检测该发射点的D-CPICH,使用D-CPICH上得到的信道估计进行高速共享控制信道(Shared Control Channel for HS-DSCH,HS-SCCH)检测,如果检测到HS-SCCH,则使用该信道估计对HS-SCCH控制信息指示的高速物理下行共享信道(High Speed Physical Downlink Shared Channel,HS-PDSCH)信道进行解调译码。由于现有技术中UE默认认为HS-PDSCH的相位参考跟HS-SCCH是相同的,相位参考指示信息是通过隐式的方法告知UE的。相位参考(phase reference)即导频,设备可以根据导频进行信道估计,该信道估计用于数据解调。
然而,如果在某个HS-SCCH发送时刻,两个发射点到UE的信道的相位 一致或者差别不大,可能造成相位参考指示信息的误检;另外,UE需要同时对多个D-CPICH进行搜索和信道估计,运算复杂度高。
发明内容
本发明实施例所要解决的技术问题在于,提供一种基于共享小区的导频配置方法、相关装置及系统,能够从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。
第一方面,本发明实施例提供了一种基于共享小区的导频配置方法,包括:
对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
结合第一方面,在第一种可能的实现方式中,所述相位参考指示包括发射点标识或者导频信道标识;
所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
结合第一方面,或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH包括:
获取相位参考指示以及用户设备标识;
对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
根据所述组合标识进行共享控制信道HS-SCCH编码。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述根据所述组合标识进行共享控制信道编码包括:
根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者
根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
第二方面,本发明实施例提供了一种基于共享小区的导频配置方法,包括:
检测携带有相位参考指示的共享控制信道HS-SCCH;
以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
结合第二方面,在第一种可能的实现方式中,当所述相位参考指示为发射点标识时,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
当所述相位参考指示为导频信道标识时,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第二方面,在第二种可能的实现方式中,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;
当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第二方面的第一种可能的实现方式,在第三种可能的实现方式中,当所述相位参考指示为发射点标识时,所述根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;
当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中,当所述相位参考指示为导频信道标识时,所述确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;
当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
第三方面,本发明实施例提供了一种基于共享小区的导频配置装置,包括:
编码生成模块,用于对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
导频配置发送模块,用于通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
结合第三方面,在第一种可能的实现方式中,所述相位参考指示包括发射点标识或者导频信道标识;
所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
结合第三方面,或者第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述编码生成模块包括:
获取单元,用于获取相位参考指示以及用户设备标识;
组合编码单元,用于对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
信道编码单元,用于根据所述组合标识进行共享控制信道HS-SCCH编码。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述信道编码单元包括:
添加单元,用于根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;和/或
加掩单元,用于根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
第四方面,本发明实施例提供了一种基于共享小区的导频配置设备,包括:
检测模块,用于检测携带有相位参考指示的共享控制信道HS-SCCH;
确定接收模块,用于以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
结合第四方面,在第一种可能的实现方式中,当所述相位参考指示为发射点标识时,所述确定接收模块包括:第一确定单元,用于根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
当所述相位参考指示为导频信道标识时,所述确定接收模块包括:第二确定单元,用于确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第四方面,在第二种可能的实现方式中,所述确定接收模块包括:
第一检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;
第一检测处理单元,用于当所述第一检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第四方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一确定单元包括:
第二检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;
第二检测处理单元,用于当所述第二检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第四方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第二确定单元包括:
第三检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;
第三检测处理单元,用于当所述第三检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作 为高速物理下行共享信道HS-PDSCH的相位参考。
第五方面,本发明实施例提供了一种网络设备,包括:输入装置、输出装置、存储器和处理器;
其中,所述处理器执行如下步骤:
对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
结合第五方面,在第一种可能的实现方式中,所述相位参考指示包括发射点标识或者导频信道标识;
所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
结合第五方面,或者第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH包括:
获取相位参考指示以及用户设备标识;对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;根据所述组合标识进行共享控制信道HS-SCCH编码。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理器根据所述组合标识进行共享控制信道编码包括:
根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者
根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
第六方面,本发明实施例提供了一种用户设备,包括:输入装置、输出装置、存储器和处理器;
其中,所述处理器执行如下步骤:
检测携带有相位参考指示的共享控制信道HS-SCCH;
以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信 息指示的高速物理下行共享信道HS-PDSCH进行接收。
结合第六方面,在第一种可能的实现方式中,当所述相位参考指示为发射点标识时,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
当所述相位参考指示为导频信道标识时,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第六方面,在第二种可能的实现方式中,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第六方面的第一种可能的实现方式,在第三种可能的实现方式中,当所述相位参考指示为发射点标识时,所述处理器根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
结合第六方面的第一种可能的实现方式,在第四种可能的实现方式中,当所述相位参考指示为导频信道标识时,所述处理器确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
第七方面,本发明实施例提供了一种基于共享小区的导频配置系统,包括网络设备和用户设备,其中
所述网络设备包括第五方面、或者第五方面的第一种可能的实现方式,或者第五方面的第二种可能的实现方式,或者第五方面的第三种可能的实现方式中的网络设备。
所述用户设备包括第六方面、或者第六方面的第一种可能的实现方式、或者第六方面的第二种可能的实现方式、或者第六方面的第三种可能的实现方式、或者第六方面的第四种可能的实现方式中的用户设备;
通过实施本发明实施例,生成携带有相位参考指示的共享控制信道HS-SCCH,通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考,可进一步验证相位参考指示信息的正确性,避免了现有技术中出现的相位参考指示信息的误检,实现了从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的第一实施例的基于共享小区的导频配置方法的流程示意图;
图2是本发明实施例对HS-SCCH进行编码的流程示意图;
图3是本发明提供的第二实施例的基于共享小区的导频配置方法的流程示意图;
图4是本发明实施例的基于共享小区的导频配置装置的结构示意图;
图5是本发明实施例的编码生成模块的结构示意图;
图6是本发明实施例的信道编码单元的结构示意图;
图7是本发明实施例的基于共享小区的导频配置设备的结构示意图;
图8是本发明确定接收模块的第一实施例的结构示意图;
图9是本发明确定接收模块的第二实施例的结构示意图;
图10是本发明实施例的第一确认单元的结构示意图;
图11是本发明实施例的第二确认单元的结构示意图;
图12是本发明实施例的网络设备的结构示意图;
图13是本发明实施例的用户设备的结构示意图;
图14是本发明实施例的基于共享小区的导频配置系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明提供的第一实施例的基于共享小区的导频配置方法的流程示意图,该方法包括:
步骤S100:对共享控制信道HS-SCCH上承载的信息进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
具体地,网络侧可以设计HS-SCCH信道,通过对共享控制信道HS-SCCH上承载的信息进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;该相位参考指示可以包括发射点标识或者导频信道标识。所述发射点标识对应发送所述公共导频的发射点;所述导频信道标识对应共享小区的导频信道。本实施例中,携带有相位参考指示的共享控制信道HS-SCCH也就是通过该HS-SCCH信道上传输的信息来携带所述相位参考指示。对共享控制信道HS-SCCH上承载的信息进行编码可以被认为是对共享控制信道HS-SCCH进行编码。
再具体地,一个LPN发射点上会单独发射一个公共导频信道,即一个公共导频信道就跟一个发射点相对应。但是为了尽量减小公共导频信道的个数,减小码道占用个数,可以在覆盖范围相互不重叠(即不相邻)的两个或者两个以上LPN发射点上发送相同的公共导频信道;这时UE在接收时可以不用区分 该公共导频信道来自哪个发射点,只需要区分导频信道标识即可。
步骤S102:通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
具体地,当所述相位参考指示为发射点标识时,所述用户设备可以根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;
当所述相位参考指示为导频信道标识时,所述用户设备可以确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
需要说明的是,本发明实施例中的公共导频信道包括但不限于解调导频D-CPICH。
具体地,如图2示出的本发明实施例对HS-SCCH进行编码的流程示意图,包括:
步骤S200:获取相位参考指示以及用户设备标识;
步骤S202:对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
步骤S204:根据所述组合标识进行共享控制信道HS-SCCH编码。
具体地,本发明实施例可以根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者根据所述组合标识进行共享控制信道HS-SCCH的用户设备UE加掩。下面以相位参考指示为发射点标识为例,分上述两种情况进行详细说明:
A、进行CRC添加:
具体地,输入第一时隙上的控制信息比特x1,1,x1,2,…,x1,8,第二、三时隙上的控制信息比特x2,1,x2,2,…,x2,13,通过如下6步算法:
1)由x1,1,x1,2,…,x1,8,x2,1,x2,2,…,x2,13得到CRC校验比特pim1,pim2,…,pim16
2)[c1 c2 …c16]=[pim16 pim15 … pim1]
3)[y1 … y13]=[x2,1 … x2,13]
4)xue,tx,k=xue,k for k=1,2,…16-n
5)xue,tx,k=(xue,k+xtx,k-16+n)mod 2 for k=17-n,…15,16
6)yk=(xue,tx,k-13+ck-13)mod 2 for k=14,15…29
其中xtx,1,xtx,2,…xtx,n为n比特的发射点标识。本发明实施例可以将n比特发射点标识跟UE标识的最后n个比特进行异或操作,保持UE标识的前16-n个比特不变,从而获得组合标识,再使用组合标识进行CRC添加。
可以理解的,本发明实施例不限于通过上述算法,将发射点标识与UE标识进行运算,得出组合标识,可以按照其它设计需求进行运算得出发射点标识与UE标识的组合标识。
需要说明的是,由于UE标识以及发射点标识都是网络侧配置的,因此网侧需要保证combined cell小区内组合标识的唯一性,从而避免混淆。
B、进行UE加掩:
具体地,输入第一个时隙上的控制信息的编码后比特r1,1,r1,2…r1,40,通过如下5步算法:
a)xue,1,xue,2,…,xue,16经过1/2卷积码,得到bi,i=1,2…,48。
b)bi,i=1,2…,48打掉b1,b2,b4,b8,b42,b45,b47,b48,得到c1,c2,....c40
c)ctx,k=ck for k=1,2,…40-n
d)ctx,k=(ck+xtx,k-40+n)mod 2 for k=41-n,…39,40
e)s1,k=(r1,k+ctx,k)mod 2 for k=1,2…40
其中xue,1,xue,2,…,xue,16为16比特的UE标识,xtx,1,xtx,2,…xtx,n为n比特的发射点标识。本发明实施例可以将发射点标识跟UE标识编码后的最后n个比特进行异或操作,保持UE标识编码后的前40-n个比特不变,即完成发射点标识跟UE标识的组合编码,得到组合标识,再对HS-SCCH的编码比特进行加掩;
可理解地,还可以通过下面5步算法进行UE加掩:
a)xue,tx,k=xue,k for k=1,2,…16-n
b)xue,tx,k=(xue,k+xtx,k-16+n)mod 2 for k=17-n,…15,16
c)xue,tx,1,xue,tx,2,…,xue,tx,16经过1/2卷积码,得到bi,i=1,2…,48
d)bi,i=1,2…,48打掉b1,b2,b4,b8,b42,b45,b47,b48,得到c1,c2,….c40
e)s1,k=(r1,k+ctx,k)mod 2 for k=1,2…40
将n比特发射点标识跟UE标识的最后n个比特进行异或操作,保持UE标识的前16-n个比特不变,从而获得组合标识,再对HS-SCCH的编码比特进行加掩。
可以理解的,本发明实施例不限于通过上述算法,将发射点标识与UE标识进行运算,得出组合标识,可以按照其它设计需求进行运算得出发射点标识与UE标识的组合标识。
通过实施本发明实施例,生成携带有相位参考指示的共享控制信道HS-SCCH,通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,以使所述用户设备根据所述相位参考指示确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考,可进一步验证相位参考指示信息的正确性,避免了现有技术中出现的相位参考指示信息的误检,实现了从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。
上述详细阐述了本发明实施例的网络侧的基于共享小区的导频配置方法,下面为了便于更好地实施本发明实施例的上述方案,相应地,下面还提供用户设备侧的一种基于共享小区的导频配置方法;
如图3示出的本发明提供的第二实施例的基于共享小区的导频配置方法的流程示意图,包括:
步骤S300:检测携带有相位参考指示的共享控制信道HS-SCCH;
步骤S302:以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
具体地,该相位参考指示可以包括发射点标识或者导频信道标识。所述发射点标识对应发送所述公共导频的发射点;所述导频信道标识对应共享小区的导频信道。一般情况下,一个LPN发射点上会单独发射一个公共导频信道,即一个公共导频信道就跟一个发射点相对应。但是为了尽量减小公共导频信道的个数,减小码道占用个数,可以在覆盖范围相互不重叠(即不相邻)的两个或者两个以上LPN发射点上发送相同的公共导频信道;这时UE在接收时可以不用区分该公共导频信道来自哪个发射点,只需要区分导频信道标识即可。
需要说明的是,本发明实施例中的公共导频信道包括但不限于解调导频D-CPICH。
进一步地,步骤S302中,以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考可以包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考,然后基于该相位参考对检测到的HS-SCCH的控制信息指示的HS-PDSCH进行解调接收,当检测结果为否时,则终止导频配置。具体地:
当所述相位参考指示为发射点标识时,那么以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考的步骤可以具体为:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;详细可以包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考,然后基于该相位参考对检测到的HS-SCCH的控制信息指示的HS-PDSCH进行解调接收,当检测结果为否时,则终止导频配置。
当所述相位参考指示为导频信道标识时,那么以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考的步骤可以具体为:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考,详细可以包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考,然后基于该相位参考对检测到的HS-SCCH的控制信息指示的HS-PDSCH进行解调接收,当检测结果为否时,则终止导频配置。
通过实施本发明实施例,生成携带有相位参考指示的共享控制信道 HS-SCCH,通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,以使所述用户设备根据所述相位参考指示确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考,可进一步验证相位参考指示信息的正确性,避免了现有技术中出现的相位参考指示信息的误检,实现了从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。
上述详细阐述了本发明实施例的基于共享小区的导频配置方法,下面为了便于更好地实施本发明实施例的上述方案,相应地,下面还提供用于配合实施上述方案的相关装置。
如图4示出的本发明实施例的基于共享小区的导频配置装置的结构示意图,基于共享小区的导频配置装置40包括编码生成模块400和导频配置发送模块402,其中
编码生成模块400用于对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
具体地,编码生成模块400可以设计HS-SCCH信道,通过对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;该相位参考指示可以包括发射点标识或者导频信道标识。所述发射点标识对应发送所述公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
再具体地,一个LPN发射点上会单独发射一个公共导频信道,即一个公共导频信道就跟一个发射点相对应。但是为了尽量减小公共导频信道的个数,减小码道占用个数,可以在覆盖范围相互不重叠(即不相邻)的两个或者两个以上LPN发射点上发送相同的公共导频信道;这时UE在接收时可以不用区分该公共导频信道来自哪个发射点,只需要区分导频信道标识即可。
导频配置发送模块402用于通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置数据,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
需要说明的是,本发明实施例中的公共导频信道包括但不限于解调导频D-CPICH。
具体地,如图5示出的本发明实施例的编码生成模块的结构示意图,编码 生成模块400包括获取单元4000、组合编码单元4002和信道编码单元4004,其中
获取单元4000用于获取相位参考指示以及用户设备标识;
组合编码单元4002用于对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
信道编码单元4004用于根据所述组合标识进行共享控制信道HS-SCCH编码。
进一步地,如图6示出的本发明实施例的信道编码单元的结构示意图,信道编码单元4004包括添加单元40040和/或加掩单元40042,本实施例中以都包括添加单元40040和加掩单元40042为例进行说明,
添加单元40040用于根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;和/或
加掩单元40042用于根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
可以理解的是,本实施例的基于共享小区的导频配置装置40的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
相应地,本发明实施例还公开了一种基于共享小区的导频配置设备,如图7示出的本发明实施例的基于共享小区的导频配置设备的结构示意图,基于共享小区的导频配置设备70包括检测模块700和确定接收模块702,其中
检测模块700用于检测携带有相位参考指示的共享控制信道HS-SCCH;
确定接收模块702用于以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
具体地,如图8示出的本发明确定接收模块的第一实施例的结构示意图,确定接收模块702可以包括第一检测单元7020和第一检测处理单元7022,其中
第一检测单元7020用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;
第一检测处理单元7022用于当第一检测单元7020的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
进一步地,如图9示出的本发明确定接收模块的第二实施例的结构示意图,确定接收模块702可以包括第一确定单元7024和/或第二确定单元7026,本实施例中以都包含第一确定单元7024和第二确定单元7026来进行说明,其中
当所述相位参考指示为发射点标识时,第一确定单元7024用于根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;
当所述相位参考指示为导频信道标识时,第二确定单元7026用于确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
结合如图10示出的本发明实施例的第一确认单元的结构示意图,进一步说明本发明实施例确定接收模块的结构,第一确定单元7024可以包括第二检测单元70240和第二检测处理单元70242,其中
第二检测单元70240用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;
第二检测处理单元700242用于当第二检测单元70240的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
结合如图11示出的本发明实施例的第二确认单元的结构示意图,进一步说明本发明实施例确定接收模块的结构,第二确定单元7026可以包括第三检测单元70260和第三检测处理单元70262,其中
第三检测单元70260用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;
第三检测处理单元70262用于当第三检测单元70260的检测结果为是时, 则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
可以理解的是,本实施例的基于共享小区的导频配置设备70的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
上述详细阐述了本发明实施例的基于共享小区的导频配置装置,下面为了便于更好地实施本发明实施例的上述方案,相应地,下面还提供一种网络设备;
如图12示出的本发明实施例的网络设备的结构示意图,网络设备12包括输入装置120、输出装置122、存储器124和处理器126;
输入装置120、输出装置122、存储器124和处理器126(网络设备中的处理器126的数量可以一个或多个,图12中以一个处理器为例)。在本发明的一些实施例中,输入装置121、输出装置122、存储器124和处理器126可通过总线或者其它方式连接,其中,图12中以通过总线连接为例。
其中,处理器126执行如下步骤:
对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
进一步地,所述相位参考指示包括发射点标识或者导频信道标识;
所述发射点标识对应发送所述公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
进一步地,处理器126共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH包括:
获取相位参考指示以及用户设备标识;对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;根据所述组合标识进行共享控制信道HS-SCCH编码。
进一步地,处理器126根据所述组合标识进行共享控制信道编码包括:
根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
可理解的,本发明实施例的网络设备12例如可以是基站,或者是基站中的某一个硬件结构,或其它网络设备。
可以理解的是,本实施例的网络设备12的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
上述详细阐述了本发明实施例的基于共享小区的导频配置设备,下面为了便于更好地实施本发明实施例的上述方案,相应地,下面还提供一种用户设备;
如图13示出的本发明实施例的用户设备的结构示意图,用户设备13包括输入装置130、输出装置132、存储器134和处理器136;
输入装置130、输出装置132、存储器134和处理器136(网络设备中的处理器136的数量可以一个或多个,图13中以一个处理器为例)。在本发明的一些实施例中,输入装置131、输出装置132、存储器134和处理器136可通过总线或者其它方式连接,其中,图13中以通过总线连接为例。
其中,处理器136执行如下步骤:
检测携带有相位参考指示的共享控制信道HS-SCCH;以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
进一步地,当所述相位参考指示为发射点标识时,处理器136以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
当所述相位参考指示为导频信道标识时,处理器136以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道 HS-PDSCH的相位参考。
进一步地,处理器136以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
进一步地,当所述相位参考指示为发射点标识时,处理器136根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
进一步地,当所述相位参考指示为导频信道标识时,处理器136确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考包括:
检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
可理解的,本发明实施例的用户设备13例如可以是移动通信终端,平板电脑或者是个人数码助理等,或其它用户设备。
可以理解的是,本实施例的用户设备13的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
相应地,本发明实施例还公开了一种基于共享小区的导频配置系统,如图14所示,本发明的基于共享小区的导频配置系统包括图12实施例中的网络设备12和图13实施例中的用户设备13;
可以理解的是,本实施例的调度用户设备的系统的各功能模块的功能可根 据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
综上所述,通过实施本发明实施例,生成携带有发射点标识的共享控制信道HS-SCCH,通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置数据,以使所述用户设备根据所述发射点标识确定发射点发送的公共导频为相位参考,可进一步验证发射点标识的正确性,避免了现有技术中出现的发射点信息的误检,实现了从实时选择的发射点向UE发送数据,从而实现灵活的调度UE。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (28)

  1. 一种基于共享小区的导频配置方法,其特征在于,包括:
    对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
    通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
  2. 如权利要求1所述的方法,其特征在于,所述相位参考指示包括发射点标识或者导频信道标识;
    所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
  3. 如权利要求1或2所述的方法,其特征在于,所述对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH包括:
    获取相位参考指示以及用户设备标识;
    对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
    根据所述组合标识进行共享控制信道HS-SCCH编码。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述组合标识进行共享控制信道编码包括:
    根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者
    根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
  5. 一种基于共享小区的导频配置方法,其特征在于,包括:
    检测携带有相位参考指示的共享控制信道HS-SCCH;
    以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
  6. 如权利要求5所述的方法,其特征在于,当所述相位参考指示为发射点标识时,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
    当所述相位参考指示为导频信道标识时,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  7. 如权利要求5所述的方法,其特征在于,所述以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;
    当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
  8. 如权利要求6所述的方法,其特征在于,当所述相位参考指示为发射点标识时,所述根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;
    当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
  9. 如权利要求6所述的方法,其特征在于,当所述相位参考指示为导频信道标识时,所述确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;
    当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  10. 一种基于共享小区的导频配置装置,其特征在于,包括:
    编码生成模块,用于对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;
    导频配置发送模块,用于通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
  11. 如权利要求10所述的装置,其特征在于,所述相位参考指示包括发射点标识或者导频信道标识;
    所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
  12. 如权利要求10或11所述的装置,其特征在于,所述编码生成模块包括:
    获取单元,用于获取相位参考指示以及用户设备标识;
    组合编码单元,用于对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;
    信道编码单元,用于根据所述组合标识进行共享控制信道HS-SCCH编码。
  13. 如权利要求12所述的装置,其特征在于,所述信道编码单元包括:
    添加单元,用于根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;和/或
    加掩单元,用于根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
  14. 一种基于共享小区的导频配置设备,其特征在于,包括:
    检测模块,用于检测携带有相位参考指示的共享控制信道HS-SCCH;
    确定接收模块,用于以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
  15. 如权利要求14所述的设备,其特征在于,当所述相位参考指示为发射点标识时,所述确定接收模块包括:第一确定单元,用于根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
    当所述相位参考指示为导频信道标识时,所述确定接收模块包括:第二确定单元,用于确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  16. 如权利要求14所述的设备,其特征在于,所述确定接收模块包括:
    第一检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;
    第一检测处理单元,用于当所述第一检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
  17. 如权利要求15所述的设备,其特征在于,所述第一确定单元包括:
    第二检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;
    第二检测处理单元,用于当所述第二检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
  18. 如权利要求15所述的设备,其特征在于,所述第二确定单元包括:
    第三检测单元,用于检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;
    第三检测处理单元,用于当所述第三检测单元的检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  19. 一种网络设备,其特征在于,包括:输入装置、输出装置、存储器和处理器;
    其中,所述处理器执行如下步骤:
    对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH;通过所述生成的共享控制信道HS-SCCH向用户设备发送导频配置信息,所述相位参考指示被所述用户设备用来确定高速物理下行共享信道HS-PDSCH的相位参考。
  20. 如权利要求19所述的网络设备,其特征在于,所述相位参考指示包括发射点标识或者导频信道标识;
    所述发射点标识对应发送公共导频的发射点;所述导频信道标识对应共享小区的导频信道。
  21. 如权利要求19或20所述的网络设备,其特征在于,所述处理器对共享控制信道HS-SCCH进行编码,生成携带有相位参考指示的共享控制信道HS-SCCH包括:
    获取相位参考指示以及用户设备标识;对所述相位参考指示和所述用户设备标识进行组合编码,生成组合标识;根据所述组合标识进行共享控制信道 HS-SCCH编码。
  22. 如权利要求21所述的网络设备,其特征在于,所述处理器根据所述组合标识进行共享控制信道编码包括:
    根据所述组合标识进行共享控制信道HS-SCCH的循环冗余校验CRC添加;或者
    根据所述组合标识进行共享控制信道HS-SCCH的用户设备加掩。
  23. 一种用户设备,其特征在于,包括:输入装置、输出装置、存储器和处理器;
    其中,所述处理器执行如下步骤:
    检测携带有相位参考指示的共享控制信道HS-SCCH;
    以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考,基于所述相位参考对检测到的所述共享控制信道HS-SCCH的控制信息指示的高速物理下行共享信道HS-PDSCH进行接收。
  24. 如权利要求23所述的用户设备,其特征在于,当所述相位参考指示为发射点标识时,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考;或
    当所述相位参考指示为导频信道标识时,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  25. 如权利要求23所述的用户设备,其特征在于,所述处理器以所述相位参考指示来确定所述高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述相位参考指示相对应;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的 相位参考作为高速物理下行共享信道HS-PDSCH的相位参考。
  26. 如权利要求24所述的用户设备,其特征在于,当所述相位参考指示为发射点标识时,所述处理器根据所述发射点标识确定发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述发射点发送的公共导频相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述发射点发送的公共导频作为高速物理下行共享信道HS-PDSCH的相位参考。
  27. 如权利要求24所述的用户设备,其特征在于,当所述相位参考指示为导频信道标识时,所述处理器确定所述导频信道标识对应的共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考包括:
    检测所述共享控制信道HS-SCCH所使用的相位参考是否与所述导频信道标识对应的共享小区的导频信道相一致;当检测结果为是时,则以所述共享控制信道HS-SCCH所使用的相位参考或者所述共享小区的导频信道作为高速物理下行共享信道HS-PDSCH的相位参考。
  28. 一种基于共享小区的导频配置系统,其特征在于,包括网络设备和用户设备,其中
    所述网络设备如权利要求19-22任一项所述的网络设备;
    所述用户设备如权利要求23-27任一项所述的用户设备。
PCT/CN2014/092043 2013-12-11 2014-11-24 一种基于共享小区的导频配置方法、相关装置及系统 WO2015085856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310676360.9A CN104717749A (zh) 2013-12-11 2013-12-11 一种基于共享小区的导频配置方法、相关装置及系统
CN201310676360.9 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015085856A1 true WO2015085856A1 (zh) 2015-06-18

Family

ID=53370606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092043 WO2015085856A1 (zh) 2013-12-11 2014-11-24 一种基于共享小区的导频配置方法、相关装置及系统

Country Status (2)

Country Link
CN (1) CN104717749A (zh)
WO (1) WO2015085856A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733828B (zh) * 2016-08-12 2020-10-09 电信科学技术研究院 一种确定基带参数的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002591A2 (ko) * 2011-06-28 2013-01-03 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
WO2013066935A1 (en) * 2011-11-02 2013-05-10 Qualcomm Incorporated Blindly decoding interfering cell pdcch to acquire interfering cell pdsch transmission information
CN103312401A (zh) * 2012-03-16 2013-09-18 中国移动通信集团公司 一种增强物理下行控制信道的预编码方法及装置
CN103378885A (zh) * 2012-04-17 2013-10-30 华为技术有限公司 下行数据的发送、接收方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929590B2 (ja) * 2004-12-17 2012-05-09 富士通株式会社 移動局および移動局の通信方法
CN100466488C (zh) * 2005-09-28 2009-03-04 华为技术有限公司 一种自适应调整高速共享控制信道功率的方法
CN101594689B (zh) * 2009-06-29 2011-08-10 中兴通讯股份有限公司 用户数据调度的方法和装置
TW201318371A (zh) * 2011-08-12 2013-05-01 Interdigital Patent Holdings 遠端無線電前端(rrh)部署及多天線下鏈mimo頻道評估及導頻接收方法
CN103209048B (zh) * 2012-01-13 2017-04-12 华为技术有限公司 专用导频的解码方法和用户设备
US8885590B2 (en) * 2012-05-18 2014-11-11 Futurewei Technologies, Inc. Systems and methods for scheduling multiple-input and multiple-output (MIMO) high-speed downlink packet access (HSDPA) pilot channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002591A2 (ko) * 2011-06-28 2013-01-03 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
WO2013066935A1 (en) * 2011-11-02 2013-05-10 Qualcomm Incorporated Blindly decoding interfering cell pdcch to acquire interfering cell pdsch transmission information
CN103312401A (zh) * 2012-03-16 2013-09-18 中国移动通信集团公司 一种增强物理下行控制信道的预编码方法及装置
CN103378885A (zh) * 2012-04-17 2013-10-30 华为技术有限公司 下行数据的发送、接收方法和装置

Also Published As

Publication number Publication date
CN104717749A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
US11184132B2 (en) Transmission configuration indication (TCI)—state indication for non-coherent joint transmission (NCJT) channel state information (CSI) reporting
CN107342852B (zh) 信令发送、接收方法及装置、网络侧设备、终端
US11870551B2 (en) Multi-codeword transmission method and apparatus
WO2018001113A1 (zh) 通信方法、装置和系统
CN111527718A (zh) 一种数据传输方法及装置、计算机存储介质
JP2018505614A (ja) 非直交多元接続送信方法、基地局、及びue
WO2016154809A1 (zh) 获取波束标识的方法、装置、设备和系统
TW201526571A (zh) 一種發送和接收資料的方法、系統及設備
US11558852B2 (en) Data transmission method and apparatus, and computer storage medium
WO2022028584A1 (zh) 配置方法、通信节点及存储介质
CN110661594B (zh) 信道状态信息与混合式自动重传请求确认复用方法及设备
KR20210055731A (ko) 복수의 송수신 포인트 (trp) 데이터의 처리를 위한 방법, 기지국, 단말 및 저장 매체
CN106209300A (zh) 一种控制信息发送方法和接收方法及发射机、接收机
WO2015196998A1 (zh) 一种信号发送和检测的方法及装置
WO2015085856A1 (zh) 一种基于共享小区的导频配置方法、相关装置及系统
EP4102761A1 (en) Information determining method, device, and computer storage medium
CN111436129A (zh) 数据传输方法和通信装置
WO2021035440A1 (zh) 收发控制信息的方法、装置和系统
WO2012106993A1 (zh) 一种数据共享和发送方法、装置及系统
TWI820369B (zh) 資訊發送、接收方法、終端及處理器可讀存儲介質
CN113810998B (zh) 信号传输方法、终端和网络侧设备
WO2012106994A1 (zh) 协作控制信息发送、数据发送方法、装置及系统
US9143188B2 (en) Spreading sequence selection
WO2020001584A1 (zh) 信道状态信息与混合式自动重传请求确认复用方法及设备
EP3823231A1 (en) Information transmission method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869093

Country of ref document: EP

Kind code of ref document: A1