WO2016152748A1 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
WO2016152748A1
WO2016152748A1 PCT/JP2016/058627 JP2016058627W WO2016152748A1 WO 2016152748 A1 WO2016152748 A1 WO 2016152748A1 JP 2016058627 W JP2016058627 W JP 2016058627W WO 2016152748 A1 WO2016152748 A1 WO 2016152748A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
reflective
projection
image display
display element
Prior art date
Application number
PCT/JP2016/058627
Other languages
English (en)
French (fr)
Inventor
佐野永悟
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016152748A1 publication Critical patent/WO2016152748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a projection apparatus for projecting an image, and particularly to a projection apparatus provided with a wide-angle projection optical system having a reflective optical element.
  • a projection apparatus for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system is desired to have a wide-angle projection optical system that can be projected on a large screen even at a short projection distance while being small and light. ing.
  • there is an increasing demand for higher performance in projection optical systems there is an increasing demand for higher performance in projection optical systems.
  • distortion is likely to occur in a wide-angle optical system, but the distortion of the projected image is known to the observer at a glance rather than the resolution, so it is important that the distortion is sufficiently small.
  • a projection optical system for example, a short focus type optical system composed of a refractive optical system having a plurality of lens groups and a reflective optical system having a negative shape and a negative power, such as Patent Documents 1 and 2.
  • a system has been proposed.
  • the projection optical system of Patent Document 1 (for example, see Example 1) cannot be said to have a sufficiently large projection image size (so-called slow ratio) with respect to the projection distance, and is capable of projecting a large screen at a sufficiently short distance. Is hard to say. Further, in Example 7, the distance from the reflective optical element to the screen surface is short, but the distance between the reflective optical element and the refractive optical system is greatly separated, so that the reflective optical element becomes large and small and light. It's hard to say.
  • the reflective optical element and the screen are short-distance, but since the invention assumes a rear projector, the power is reflected between the reflective optical element and the screen. In this case, the optical path is bent once with a reflective optical element having no power. If this optical path is not bent, it is difficult to say that the screen is sufficiently short and large.
  • the present invention has been made in view of the above problems of the background art, and is small and light, capable of projecting on a large screen, has a good optical performance over the entire screen, and has a low distortion projection optical system.
  • An object of the present invention is to provide a projection apparatus.
  • a projection apparatus includes an image display element, and a projection optical system that enlarges an image obtained from the image display element and projects the image onto a projection target.
  • the optical system includes, in order from the image display element side, a refractive optical system having a plurality of lens groups, and a reflective optical system that reflects the light emitted from the refractive optical system and guides it to the projection object, and includes the refractive optical system All lenses are composed of rotationally symmetric lenses having a common optical axis, the reflective optical system has one reflective optical element having power, and the reflective optical element exits the refractive optical system and becomes a reflective optical element.
  • the reflective surface of the reflective optical element is in a plane including the optical axis and the center point of the image display element.
  • the value SAGym is a value based on the point closest to the optical axis in the effective region where the light beam is incident in the plane including the optical axis and the center point of the image display element of the reflective surface of the reflective optical element. This is the maximum value of the sag amount, and the value YED is the length of the effective area on which the light beam is incident, in the plane including the optical axis and the center point of the image display element on the reflecting surface of the reflecting optical element.
  • the optical axis means an axis that passes through the center of the aperture stop and is perpendicular to the cross section of the aperture stop.
  • having a common optical axis means a state in which all the lenses are not substantially decentered (a state in which no shift or tilt is performed).
  • the inflection point means a point where the second-order differential value of the defining expression representing the shape of the surface, that is, the local curvature value becomes zero.
  • FIG. 1 is a diagram illustrating a schematic configuration of a projection apparatus incorporating a projection optical system according to an embodiment of the present invention. It is a figure explaining the projection state using the projection optical system shown in FIG. It is a figure explaining some parameters showing the characteristic of a projection optical system.
  • 1 is a cross-sectional view of a projection optical system of Example 1.
  • FIG. 5A and 5B are MTF characteristic diagrams showing the performance of the projection optical system of Example 1 on the screen. It is a figure explaining the MTF evaluation point on a screen.
  • 6 is a cross-sectional view of a projection optical system of Example 2.
  • FIG. 8A and 8B are MTF characteristic diagrams showing the performance of the projection optical system of Example 2 on the screen.
  • FIG. 6 is a cross-sectional view of the projection optical system of Example 3.
  • 10A and 10B are MTF characteristic diagrams showing the performance of the projection optical system of Example 3 on the screen.
  • FIG. 1 shows a projection apparatus according to an embodiment of the present invention
  • FIG. 2 shows a projection state by a projection optical system.
  • the projection apparatus 100 has a structure in which a projection optical system 10, an illumination optical system 20, a polarizing beam splitter 30, a reflective liquid crystal element 40, an element driving circuit 50, and a control circuit 70 are incorporated.
  • the projection optical system 10 enlarges and projects an image obtained from the reflective liquid crystal element 40, which is an image display element, onto a projection target.
  • the reflective liquid crystal element 40 is installed only on one side with respect to the optical axis OA of the projection optical system 10.
  • the reflective liquid crystal element (image display element) 40 is installed only below the optical axis OA ( ⁇ X direction).
  • the projection optical system 10 includes a refractive optical system Gr1 that is a first optical group and a reflective optical system Gr2 that is a second optical group.
  • the reflection optical system Gr2 is disposed on the screen (projection target) PS side of the refractive optical system Gr1, so that a display image on the reflective liquid crystal element (image display element) 40 is provided only on the refractive optical system Gr1. Therefore, it is possible to adopt a configuration suitable for large screen projection at a shorter distance.
  • the refractive optical system Gr1 close to the reflective liquid crystal element (image display element) 40 has a plurality of lenses, and the reflective optical system Gr2 on the screen PS side far from the reflective liquid crystal element 40 is a refractive optical system (first optical group). )
  • the light beam emitted from Gr1 is reflected and guided to the screen (projection target) PS.
  • the refractive optical system Gr1 is composed of 11 lenses L1 to L11 in the projection optical system 10 shown in FIG. Among these lenses L1 to L11, in particular, the lens L11 is arranged closest to the reflective optical system (second optical group) Gr2 and has negative power, and the reflective optical system near the optical axis OA of the refractive optical system Gr1.
  • the lens L11 disposed in the refractive optical system Gr1 closest to the reflective optical system Gr2 to a negative power, a refractive optical system suitable for a wider angle can be obtained.
  • the lens L11 is formed in a meniscus shape having a convex surface facing the reflective optical system Gr2 in the vicinity of the optical axis OA of the refractive optical system Gr1, so that the light is refracted on the lens surface with respect to the light emission angle from the refractive optical system Gr1. Since the angle can be reduced, coma and distortion can be reduced.
  • the lenses L1 to L11 constituting the refractive optical system Gr1 are made of glass or resin material.
  • the optical surfaces of the lenses L1 to L11 are spherical or aspherical and have a rotationally symmetric shape with respect to the optical axis OA that is a common optical axis of the lenses constituting the refractive optical system Gr1.
  • a lens close to the reflective optical system Gr2 is an aspheric lens. In this way, by configuring the refractive optical system Gr1 with only rotationally symmetric lenses, it is possible to reduce the manufacturing difficulty level and the assembly difficulty level.
  • a lens close to the reflective liquid crystal element (image display element) 40 has a circular outline when viewed from the optical axis OA direction, but is a lens far from the reflective liquid crystal element 40, for example, the lens L10, L11 may be cut out in a region not used in the optical path as shown.
  • the reflective optical system Gr2 is a free-form curved reflective optical element, and is composed of a single reflective optical element M1 that is convex on the side close to the optical axis OA.
  • the difficulty of assembling the projection optical system 10 can be reduced by using only one reflection optical element having the power constituting the reflection optical system Gr2.
  • the reflective optical element M1 that constitutes the reflective optical system Gr2 includes a light flux from the reflective liquid crystal element (image display element) 40 that exits the refractive optical system Gr1 and enters the reflective optical element M1.
  • the reflective optical element M1 has a positive power at a point farthest from the optical axis OA in the effective area of the reflecting surface on which the light beam is incident.
  • the reflective optical element M1 Since the reflective optical element M1 has a negative power with respect to the light beam closest to the optical axis OA of the refractive optical system Gr1, the light emitted from the refractive optical system Gr1 is further widened when reflected and guided by the screen PS. Therefore, large screen projection can be performed at a short distance.
  • the reflective optical element M1 if the reflective optical element M1 has a convex shape up to the peripheral portion, that is, has a diverging action up to the peripheral portion, the pincushion distortion generated in the refractive optical system Gr1 is further increased. Therefore, the reflective optical element Gr2 has an inflection point and is shaped so as to have positive power at the outermost periphery.
  • the reflective optical system Gr2 cannot have an expansion function, and at the same time It is necessary to be a wide-angle refractive optical system Gr1.
  • a wide-angle lens for imaging tends to generate barrel distortion, and the amount of distortion increases as the angle of view increases.
  • a pincushion-type distortion aberration occurs in the image after exiting the refractive optical system. become.
  • the reflective optical element in the reflective optical system arranged on the projection optical system side of the refractive optical system has a convex shape up to the peripheral part, that is, has a diverging action to the peripheral part, a pincushion type distortion aberration generated in the refractive optical system Will be further increased.
  • the reflective optical element has an inflection point and has a shape that has positive refractive power at the outermost periphery.
  • the reflective optical element M1 has power means that it has a function of converging or diverging light rays in the reflective surface region of interest. Further, the reflective optical element M1 may be cut out in a region not used in the optical path.
  • the illumination optical system 20 generates illumination light that illuminates the reflective liquid crystal element 40, and a detailed description thereof is omitted, but includes a light emission source, a condensing optical system, a polarization conversion element, and the like.
  • a light emission source for example, a light source incorporating three color LEDs or the like can be used, and the condensing optical system converts, for example, illumination light from the three color LEDs or the like into substantially parallel light.
  • the polarization conversion element converts the incident light into specific polarization without reducing the amount of incident light.
  • the polarization beam splitter 30 is obtained by bonding a pair of right-angle prisms, and a reflection surface that reflects linearly polarized light in a predetermined direction incident from the illumination optical system 20 on the inclined surface of one right-angle prism on the bonding surface. (Not shown) is formed. Thereby, the illumination light emitted from the illumination optical system 20 and linearly polarized in a predetermined direction can be reflected and incident on the reflective liquid crystal element 40.
  • the reflective liquid crystal element 40 is a display element (image display element) that forms image light, and can be said to be a light modulation element in that image light is formed from illumination light by changing the spatial transmittance.
  • the reflective liquid crystal element (image display element) 40 is an image display panel that is a plate-like electronic component.
  • the reflection type liquid crystal element 40 is a micro display also called LCOS (Liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. When a voltage corresponding to a drive signal is applied to a liquid crystal layer for each pixel, the reflective liquid crystal element 40 modulates illumination light by changing the arrangement of liquid crystal molecules and displays a desired image. .
  • the reflective liquid crystal element 40 receives each color image corresponding to the target image in synchronization with the switching of the illumination light of the red LED, the blue LED, and the green LED that are sequentially switched from the illumination optical system 20 in a short time. Are sequentially switched and reflected to form a color image on the screen PS. Therefore, the color balance can be arbitrarily changed by individually adjusting the light emission amount or the light emission time by changing the drive current and duty ratio of the red LED, blue LED, and green LED (see, for example, JP-A-2007-79402). ).
  • the element driving circuit 50 is a circuit portion that operates the reflective liquid crystal element 40 based on an image signal.
  • the element driving circuit 50 operates based on a control signal from a control circuit 70 described later, and outputs a driving signal corresponding to the image signal to the reflective liquid crystal element 40 to perform an image display operation.
  • the control circuit 70 can appropriately operate the illumination optical system 20, the element drive circuit 50, and the like based on a program incorporated therein or an instruction from an operation unit (not shown).
  • the control circuit 70 outputs a drive signal and an image signal to the illumination optical system 20 and the element drive circuit 50 based on a video signal and other signals input from the outside, and performs a display operation on the reflective liquid crystal element 40. Let it be done.
  • the projection optical system 10 satisfies the following conditional expression. 0.3 ⁇ SAGym / YED ⁇ 0.7 (1)
  • the value SAGym is the optical axis OA within the effective region where the light beam is incident, in the plane including the optical axis OA and the central point of the reflective liquid crystal element (image display element) 40 on the reflective surface of the reflective optical element M1.
  • the value YED is the value of the reflective optical element M1.
  • the length of the effective area (for example, from point P1 to point P2 in FIG. 3) in the plane of the reflecting surface including the optical axis OA and the center point of the reflective liquid crystal element (image display element) 40, on which the light beam is incident. In the direction perpendicular to the optical axis OA).
  • Conditional expression (1) is a conditional expression for appropriately setting the displacement amount (sag amount) of the reflecting surface of the reflective optical element M1.
  • the sag amount of the reflecting surface is appropriately increased, so that the wide angle at the time of projecting a large screen at a short distance is not burdened only by the refractive optical system, and the refractive optical system Gr1 Can suppress various aberrations such as distortion and curvature of field.
  • an increase in the size of the reflective optical element M1 accompanying the widening of the refractive optical system can be suppressed.
  • Conditional expression (1) is 0.35 ⁇ SAGym / YED ⁇ 0.65 (1) ' It is more preferable to satisfy
  • the projection optical system 10 satisfies the following conditional expression. 0.4 ⁇ INFr / YED ⁇ 0.95 (2)
  • the value INFr is the optical axis OA within the effective area where the light beam is incident, in the plane including the optical axis OA and the center point of the reflective liquid crystal element (image display element) 40 on the reflective surface of the reflective optical element M1.
  • the value YED is the reflection surface of the reflective optical element M1.
  • Conditional expression (2) is an expression for appropriately setting the position of the inflection point on the reflection surface of the reflective optical element M1. Since the inflection point can be appropriately separated from the optical axis of the refractive optical system Gr1 by exceeding the lower limit value of the conditional expression (2), the negative power for enlarging the image on the screen (projection plane) PS is maintained. It is possible to project a large screen at a short distance. On the other hand, when the value falls below the upper limit value of the conditional expression (2), it is possible to satisfactorily correct the peripheral distortion.
  • Conditional expression (2) is 0.45 ⁇ INFr / YED ⁇ 0.95 (2) ' It is more preferable to satisfy
  • the projection optical system 10 satisfies the following conditional expression. 0.9 ⁇ EFLD / OBJY ⁇ 1.2 (3)
  • the value EFLD is the focal length of the entire refractive optical system Gr1
  • the value OBJY is the diagonal length of the reflective liquid crystal element (image display element) 40.
  • Conditional expression (3) appropriately sets the focal length of the refractive optical system Gr1, and appropriately distributes the magnification effect of the display image of the reflective liquid crystal element (image display element) 40 between the refractive optical system Gr1 and the reflective optical system Gr2. It is an expression to do.
  • the refractive optical system Gr1 does not become a wide angle, and the distortion generated in the refractive optical system Gr1 is suppressed, and the size of the reflective optical system Gr2 is reduced. it can.
  • the power of the refractive optical system Gr1 is appropriately maintained, thereby reducing the load on the reflective optical system Gr2 and suppressing the aberration generated in the reflective optical system Gr2. be able to.
  • the projection optical system 10 satisfies the following conditional expression. -1.9 ⁇ (r1 + r2) / (r1-r2) ⁇ -1.0 (4)
  • the value r1 is the radius of curvature on the reflective liquid crystal element (image display element) 40 side of the lens arranged in the position closest to the reflective optical system Gr2 in the lens group constituting the refractive optical system Gr1
  • the value r2 Is the radius of curvature of the lens arranged at the closest position to the reflective optical system Gr2 in the lens group constituting the refractive optical system Gr1, on the reflective optical system Gr2 side.
  • Conditional expression (4) is for setting the optimum shape of the lens (specifically, the lens L11) arranged at the position closest to the reflective optical system Gr2 among the lens groups constituting the refractive optical system Gr1. It is a formula. By exceeding the lower limit of conditional expression (4), the curvature of the surface on the reflective liquid crystal element (image display element) 40 side does not become too large, and the moldability is not impaired. On the other hand, by falling below the upper limit value of conditional expression (4), it is possible to suppress the curvature of the surface on the reflective optical system Gr2 side from becoming small and the effective diameter of the lens from becoming large. As a result, the size of the projection optical system 10 can be reduced.
  • Conditional expression (4) is ⁇ 1.8 ⁇ (r1 + r2) / (r1 ⁇ r2) ⁇ 1.1 (4) ′ It is more preferable to satisfy
  • the projection optical system 10 satisfies the following conditional expression. -2.5 ⁇ fL / EFLD ⁇ -1.2 (5)
  • the value fL is the focal length of the lens arranged in the position closest to the reflective optical system Gr2 in the lens group constituting the refractive optical system Gr1
  • the value EFLD is the focal length of the entire refractive optical system Gr1. .
  • Conditional expression (5) is an expression for appropriately setting the focal length of the lens (specifically, the lens L11) disposed in the position closest to the reflective optical system Gr2 among the lens groups constituting the refractive optical system Gr1. It is. By falling below the upper limit value of conditional expression (5), the negative power of the lens disposed closest to the reflective optical system Gr2 does not become too strong, and the occurrence of distortion and coma can be suppressed. On the other hand, by exceeding the lower limit value of the conditional expression (5), it is possible to appropriately maintain the negative power, and it is possible to obtain an optical system capable of projecting a large screen at a wider angle and a shorter distance.
  • Conditional expression (5) is -2.3 ⁇ fL / EFLD ⁇ -1.3 (5) ' It is more preferable to satisfy
  • an optical element having substantially no power can be added to the refractive optical system Gr1 and the reflective optical system Gr2.
  • the surface described with “*” after each surface number is a surface having an aspherical shape, and the aspherical shape has the apex of the surface as the origin and the optical axis direction. Is expressed by the following “Equation 1” where the height in the direction perpendicular to the optical axis is h.
  • infinity is represented as “INF”
  • the display surface of the reflective liquid crystal element 40 is represented as “DD”
  • the aperture stop is represented as “ST”
  • the reflective surface of the reflective optical element M1 is represented as “MR”, and projected.
  • the surface is represented by “SC”.
  • Equation 1 Ai: i-th order aspherical coefficient R: radius of curvature K: conic constant
  • a surface described with “**” after each surface number (Surf.N) is a surface having a free-form surface, and a free-form surface
  • Equation 2 The shape is expressed by the following “Equation 2” where the vertex of the surface is the origin, the Z axis is taken in the optical axis direction, and the height in the direction parallel to the XY plane perpendicular to the optical axis is h.
  • Cj coefficient of X m Y n
  • R radius of curvature K: conic constant
  • Table 1 below shows data on lens surfaces and the like of the projection optical system of Example 1.
  • Table 2 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • Table 3 shows the free-form surface coefficients of the reflective optical elements included in the projection optical system of Example 1. [Table 3]
  • FIG. 4 is a cross-sectional view of the projection optical system 11 and the like of the first embodiment as already described.
  • the projection optical system 11 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • symbol Li denotes the i-th lens constituting the refractive optical system Gr1
  • symbol ST denotes an aperture stop.
  • the first, tenth, and eleventh lenses L1, L10, and L11 are aspheric lenses, and in particular, the tenth and eleventh lenses L10 and L11 have a shape that protrudes greatly toward the reflective optical system Gr2. ing.
  • the reflective optical system Gr2 includes a reflective optical element M1 having a convex free-form surface on the side close to the optical axis OA of the refractive optical system.
  • Reference numeral F denotes a parallel plate (in this embodiment, a polarization beam splitter 30) assuming a prism for combining RGB colors when the image display element is a reflective liquid crystal element 40, that is, LCOS.
  • the parallel plate F may not be necessary, but the parallel plate F does not have power, so the optical system after the parallel plate F is not changed, and the parallel plate F is excluded. You can also. In that case, it is only necessary to set the air gap between the reflective liquid crystal element 40, which is an image display element, and the first lens L1 to an optimal position.
  • a reflective optical element for bending the optical path may be inserted separately without power.
  • the second and third embodiments are the same in that a reflection optical element for bending the optical path can be inserted.
  • FIGS. 5A and 5B are MTF (Modulation Transfer Function) characteristic diagrams of the projection optical system 11 of Example 1 on the screen PS instead of the image display element (specifically, the reflective liquid crystal element 40) side.
  • FIG. 5A is an MTF characteristic diagram of points F1 to F3 in the projection plane SC (image forming area of the screen PS) shown in FIG. 6, and
  • FIG. 5B is a diagram of points F4 to F6 in the projection plane SC shown in FIG. It is a MTF characteristic figure.
  • the MTF evaluation points are the same as in the first embodiment in the following embodiments.
  • the wavelength weights for calculating the MTF are as follows, and the subsequent examples are the same as those in the first example. [Wavelength weight] Wavelength weight 656.3nm 34 587.6nm 63 546.1nm 100 486.1nm 83 435.8nm 26 404.7nm 8
  • Table 4 below shows data on lens surfaces and the like of the projection optical system of Example 2.
  • Table 5 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 2.
  • Table 6 shows the free-form surface coefficients of the reflective optical elements included in the projection optical system of Example 2. [Table 6]
  • FIG. 7 is a sectional view of the projection optical system 12 and the like of the second embodiment.
  • the projection optical system 12 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • symbol Li denotes the i-th lens constituting the refractive optical system Gr1
  • symbol ST denotes an aperture stop.
  • the first, tenth, and eleventh lenses L1, L10, and L11 are aspheric lenses, and in particular, the tenth and eleventh lenses L10 and L11 have a shape that protrudes greatly toward the reflective optical system Gr2. ing.
  • the reflective optical system Gr2 includes a reflective optical element M1 having a convex free-form surface on the side close to the optical axis OA of the refractive optical system.
  • a reflective optical element M1 having a convex free-form surface on the side close to the optical axis OA of the refractive optical system.
  • the parallel plate F it can also be set as the structure except this.
  • 8A and 8B are MTF characteristics diagrams of the projection optical system 12 of Example 2 on the screen PS instead of the image display element side.
  • 8A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6
  • FIG. 8B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
  • Example 3 The basic features of the projection optical system or projection apparatus of Embodiment 3 are as follows.
  • Table 8 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 3.
  • Table 9 shows the free-form surface coefficients of the reflective optical elements included in the projection optical system of Example 3. [Table 9]
  • FIG. 9 is a sectional view of the projection optical system 13 and the like of the third embodiment.
  • the projection optical system 13 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • symbol Li denotes the i-th lens constituting the refractive optical system Gr1
  • symbol ST denotes an aperture stop.
  • the first, fourth, eleventh, and twelfth lenses L1, L4, L11, and L12 are aspheric lenses, and in particular, the eleventh and twelfth lenses L11 and L12 are large on the reflective optical system Gr2 side. It has a protruding shape.
  • the reflective optical system Gr2 includes a reflective optical element M1 having a convex free-form surface on the side close to the optical axis OA of the refractive optical system.
  • a reflective optical element M1 having a convex free-form surface on the side close to the optical axis OA of the refractive optical system.
  • the parallel plate F it can also be set as the structure except this.
  • 10A and 10B are MTF characteristics diagrams of the projection optical system 13 of Example 3 on the screen PS instead of the image display element side.
  • 10A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6
  • FIG. 10B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
  • Table 10 summarizes the values of Examples 1 to 3 corresponding to the conditional expressions (1) to (5) for reference. [Table 10]
  • the image display element is not limited to the reflective liquid crystal element 40 such as LCOS, but a digital micromirror device including a micromirror, a transmissive LCD, or the like can be used.
  • the polarization beam splitter 30 is changed to an optical system suitable for each.
  • the reflective liquid crystal element 40 is not limited to being used alone, and an additional reflective liquid crystal element can be disposed facing another side surface of the polarization beam splitter 30.
  • the light source of the illumination optical system 20 is not limited to the LED, and a mercury lamp, a laser, or the like can be used, and these light sources can be used in the same type or different types.
  • the number of red, green, and blue light sources may be arbitrarily combined according to the output. Further, it is possible to increase the brightness by adding an optical system for multiplexing and arranging a plurality of light sources for white or a specific color.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

投影装置の投影光学系10において、回転対称レンズのみで構成した屈折光学系Gr1のスクリーンPS側に1つの反射光学素子M1を有する反射光学系Gr2を配置している。さらに、反射光学素子M1は、光軸OA付近の光線に対して負のパワーを有するともに光軸OAから最も離れた光線に対して正のパワーを有し、変曲点を持つような形状を有する。また、条件式(1)を満たすことにより、反射光学素子面の変位量(サグ量)を適切に設定することができる。

Description

投影装置
 本発明は、画像を投影するための投影装置に関するものであり、特に反射光学素子を有する広角の投影光学系を備えた投影装置に関する。
 近年、画像表示素子に表示された画像を、投影光学系によってスクリーン上に拡大投影する投影装置には、小型軽量でありながら、短い投影距離でも大画面に映し出せる広角な投影光学系が望まれている。また、画像表示素子の高解像度化に伴い、投影光学系にも高性能化への要求が高まってきている。また、広角な光学系では歪曲収差が発生しやすくなってしまうが、投影像の歪みは観察者にとって解像度よりも一目で分かってしまうため、十分小さく抑えられていることが重要となる。
 このような投影光学系としては、例えば特許文献1や2のような、複数のレンズ群を有する屈折光学系と、凸形状で負のパワーを有する反射光学系とで構成した短焦点型の光学系が提案されている。
 しかしながら、特許文献1の投影光学系(例えば実施例1参照)は投影距離に対する投影像の大きさ(いわゆるスローレシオ)が十分とは言えず、十分に短距離で大画面投影ができているとは言いがたい。また、実施例7は反射光学素子からスクリーン面までは短距離にできているが、反射光学素子と屈折光学系との距離が大きく離間しており、そのため反射光学素子が大型化し小型軽量であるとは言いがたい。
 また、特許文献2に記載の投影光学系では、反射光学素子とスクリーンとは短距離になっているが、リアプロジェクターを想定した発明であるため、パワーを持った反射光学素子とスクリーンとの間において、パワーを持たない反射光学素子で一度光路を折り曲げた構成としており、この光路折り曲げがないとすると、十分短距離で大画面であるとは言いがたい。
国際公開第01/006295号 特開2006-195433号公報
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、小型軽量で大画面投影可能であり、画面全域に亘って良好な光学性能を有し、低歪曲な投影光学系を備えた投影装置を提供することを目的とする。
 上記目的を達成するため、本発明に係る投影装置は、画像表示素子と、画像表示素子から得られる画像を拡大して被投影体に投影する投影光学系とを備えたものであって、投影光学系は、画像表示素子側から順に、複数のレンズ群を有する屈折光学系と、屈折光学系から出射された光線を反射させて被投影体まで導く反射光学系と、を備え、屈折光学系は全てのレンズが共通の光軸を有する回転対称レンズから構成され、反射光学系はパワーを有する反射光学素子を1枚有し、反射光学素子は、屈折光学系を出射して反射光学素子に入射する光線束のうち、屈折光学系の光軸に最も近い光線束に対して負のパワーを有し、反射光学素子の反射面は、光軸と画像表示素子の中心点とを含む平面内において変曲点を持つような形状を有するとともに、反射面に光線束が入射する有効領域のうち、光軸から最も離れた点では正のパワーを持ち、以下の条件式を満足する。
 0.3<SAGym/YED<0.7  …  (1)
ただし、値SAGymは反射光学素子の反射面の、光軸と画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域内で光軸に最も近い点を基準とした面のサグ量の最大値であり、値YEDは反射光学素子の反射面の、光軸と画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域の長さである。なお、光軸とは、開口絞りの中心を通り、開口絞りの断面に垂直な軸のことを意味する。また、共通の光軸を有するとは、全てのレンズが実質的に偏芯していない状態(シフトやチルトしていない状態)を意味する。また、変曲点とは、面の形状を表わす定義式の2階微分値、すなわち局所曲率の値が0となる点のことを言うものとする。
本発明の一実施形態を示すもので、投影光学系を組み込んだ投影装置の概略構成を説明する図である。 図1に示す投影光学系を用いた投影状態を説明する図である。 投影光学系の特徴を表すいくつかのパラメータを説明する図である。 実施例1の投影光学系の断面図である。 図5A及び5Bは、実施例1の投影光学系のスクリーン上における性能を示すMTF特性図である。 スクリーン上のMTF評価ポイントを説明する図である。 実施例2の投影光学系の断面図である。 図8A及び8Bは、実施例2の投影光学系のスクリーン上における性能を示すMTF特性図である。 実施例3の投影光学系の断面図である。 図10A及び10Bは、実施例3の投影光学系のスクリーン上における性能を示すMTF特性図である。
 以下、図面を参照しつつ、本発明の実施形態にかかる投影装置について説明する。
 図1に、本発明の実施形態に係る投影装置を示し、図2に、投影光学系による投影状態を示す。この投影装置100は、投影光学系10、照明光学系20、偏光ビームスプリッター30、反射型液晶素子40、素子駆動回路50、及び制御回路70を組み込んだ構造を有する。
 投影装置100において、投影光学系10は、画像表示素子である反射型液晶素子40から得られる画像を拡大して被投影体に投影する。反射型液晶素子40は、投影光学系10の光軸OAに対して片側にのみ設置されている。例えば、図1で反射型液晶素子(画像表示素子)40は光軸OAより下側(-X方向)にのみ設置されている。投影光学系10は、第1光学群である屈折光学系Gr1と、第2光学群である反射光学系Gr2とからなる。ここで、屈折光学系Gr1のスクリーン(被投影体)PS側に反射光学系Gr2を配置する構成とすることで、屈折光学系Gr1だけに反射型液晶素子(画像表示素子)40上の表示像の拡大作用を負担させることがなくなり、より短距離で大画面投影に向いた構成とすることができる。
 反射型液晶素子(画像表示素子)40に近い屈折光学系Gr1は、複数のレンズを有し、反射型液晶素子40から遠いスクリーンPS側の反射光学系Gr2は、屈折光学系(第1光学群)Gr1から出射された光線を反射させてスクリーン(被投影体)PSまで導く。屈折光学系Gr1は、図1に示す投影光学系10では11枚のレンズL1~L11で構成されている。これらのレンズL1~L11のうち、特にレンズL11は、最も反射光学系(第2光学群)Gr2側に配置されて負のパワーを有し、屈折光学系Gr1の光軸OA近傍で反射光学系Gr2側に凸面を向けたメニスカス形状を有する。このように、屈折光学系Gr1において反射光学系Gr2に最も近い位置に配置されるレンズL11を負のパワーとすることで、より広角に適した屈折光学系とすることができる。また、このレンズL11を屈折光学系Gr1の光軸OA近傍で反射光学系Gr2側に凸面を向けたメニスカス形状とすることで、屈折光学系Gr1からの光線出射角度に対してレンズ面での屈折角を小さくすることができるので、コマ収差や歪曲収差を小さく抑えることができる。屈折光学系Gr1を構成する各レンズL1~L11は、ガラスや樹脂材料で形成される。各レンズL1~L11の光学面は、球面又は非球面であり、屈折光学系Gr1を構成するレンズの共通の光軸である光軸OAに対し回転対称な形状を有する。特に反射光学系Gr2に近いレンズは、非球面レンズである。このように、屈折光学系Gr1を回転対称なレンズのみで構成することで、製造難易度や組み立て難易度を低減することができる。なお、レンズL1~L11のうち反射型液晶素子(画像表示素子)40に近いレンズは、光軸OA方向から見て円形の輪郭を有するが、反射型液晶素子40から遠いレンズ、例えばレンズL10,L11は、図示のように光路に使用されていない領域が切り欠かれていてもよい。
 反射光学系Gr2は、自由曲面型の反射光学素子であり、光軸OAに近い側で凸状である一枚の反射光学素子M1で構成されている。このように反射光学系Gr2を構成するパワーを有する反射光学素子を1枚のみとすることで、投影光学系10の組み立て難易度を低減することができる。また、形状自由度の高い自由曲面を使用することで、反射光学素子が1枚のみであっても、良好に各種収差が補正された画像を得ることができる。より詳細には、反射光学系Gr2を構成する反射光学素子M1は、屈折光学系Gr1を出射して反射光学素子M1に入射する反射型液晶素子(画像表示素子)40からの光線束のうち、屈折光学系Gr1の光軸OAに最も近い光線束に対して負のパワーを有し、反射光学系Gr2の反射面は、光軸OAと反射型液晶素子(画像表示素子)40の中心点とを含む平面(つまりXZ平面)内において変曲点を持つ形状を有する。反射光学素子M1は、光線束が入射する反射面の有効領域の光軸OAから最も離れた点において、正のパワーを有している。反射光学素子M1が屈折光学系Gr1の光軸OAに最も近い光線束に対して負のパワーを有することにより、屈折光学系Gr1から出射された光線を反射時にさらに広角にしてスクリーンPSで導くことができるため、短距離で大画面投影を行うことができる。その一方で、反射光学素子M1が周辺部まで凸形状、つまり周辺部まで発散作用を持っていると、屈折光学系Gr1で発生した糸巻き型の歪曲収差をより増大させることとなる。そこで、反射光学素子Gr2は変曲点を持ち、最周辺部では正のパワーを持つような形状としている。すなわち、短距離で大画面投影を行うためには、上述の通り反射光学素子M1で光線束を広角化する必要があるが、反射光学系Gr2にだけ拡大作用を持たせるわけにはいかず、同時に広角な屈折光学系Gr1である必要がある。しかし、一般的に撮像用の広角レンズでは樽型歪曲収差が発生しやすく、広角化に伴って歪曲収差量も大きくなってしまう。樽型歪曲収差が発生したレンズ系を、縮小側に画像表示素子を配置する投影レンズとして使用する場合には、屈折光学系出射後の像は逆に糸巻き型の歪曲収差が発生してしまうことになる。したがって、屈折光学系の被投影体側に配置した反射光学系中の反射光学素子が周辺部まで凸形状、つまり周辺部まで発散作用を持っていると、屈折光学系で発生した糸巻き型の歪曲収差をより増大させることとなる。このような事情から、反射光学素子は変曲点を持ち、最周辺部では正の屈折力パワーを持つような形状となっていることが望ましい。
 なお、反射光学素子M1がパワーを有するとは、着目する反射面領域に光線を集束又は発散させる機能を有することを意味する。また、反射光学素子M1は、光路に使用されていない領域が切り欠かれていてもよい。
 照明光学系20は、反射型液晶素子40を照明する照明光を発生するものであり、詳細な説明を省略するが、発光源、集光光学系、偏光変換素子等を備える。発光源としては、例えば3色のLED等を組み込んだものを用いることができ、集光光学系は、例えば3色のLED等からの照明光を略平行光に変換する。また偏光変換素子は、入射した光の光量を低下させずに特定の偏光に変換する。
 偏光ビームスプリッター30は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、照明光学系20から入射した所定方向の直線偏光光を反射させる反射面(不図示)が形成されている。これにより、照明光学系20から射出され所定方向に直線偏光した状態の照明光を反射させ、反射型液晶素子40に入射させることができる。
 反射型液晶素子40は、映像光を形成する表示素子(画像表示素子)であり、特に空間的な透過率を変化させることによって照明光から画像光を形成する点で光変調素子と言える。反射型液晶素子(画像表示素子)40は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子40は、LCOS(Liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子40は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光を変調し、所望の画像を表示するものである。なお、反射型液晶素子40は、照明光学系20から短時間で順次切り替えながら入射される赤色LED、青色LED及び緑色LEDの照明光に対し、この切り替えに同期して対象画像に対応した各色画像を順次切り替えて反射させることで、スクリーンPS上でカラー画像を形成するものである。よって、赤色LED、青色LED及び緑色LEDの駆動電流やデューティ比を変化させることで発光量又は発光時間を個々に調整すれば、色バランスを任意に変更できる(例えば特開2007-79402号公報参照)。
 素子駆動回路50は、画像信号に基づいて反射型液晶素子40を動作させる回路部分である。素子駆動回路50は、後述する制御回路70からの制御信号に基づいて動作し、反射型液晶素子40に画像信号に対応する駆動信号を出力し画像の表示動作を行わせる。
 制御回路70は、これに組み込まれたプログラムや不図示の操作部からの指示に基づいて、照明光学系20、素子駆動回路50等を適宜動作させることができる。また、制御回路70は、外部から入力されたビデオ信号その他の信号に基づいて照明光学系20及び素子駆動回路50に対して駆動信号や画像信号を出力し、反射型液晶素子40に表示動作を行わせる。
 以下、投影光学系10の詳細な特徴について説明する。投影光学系10は、以下の条件式を満足する。
 0.3<SAGym/YED<0.7  …  (1)
ただし、値SAGymは反射光学素子M1の反射面の、光軸OAと反射型液晶素子(画像表示素子)40の中心点とを含む平面内における、光線束が入射する有効領域内で光軸OAに最も近い点を基準とした面のサグ量の最大値(例えば図3中の点P1から点P2までの光軸OAに平行な方向の長さ)であり、値YEDは反射光学素子M1の反射面の、光軸OAと反射型液晶素子(画像表示素子)40の中心点とを含む平面内における、光線束が入射する有効領域の長さ(例えば図3中の点P1から点P2までの光軸OAに垂直な方向の長さ)である。
 条件式(1)は、反射光学素子M1の反射面の変位量(サグ量)を適切に設定するための条件式である。条件式(1)の下限値を上回ることで反射面のサグ量を適度に大きくし、短距離で大画面投影する際の広角化を屈折光学系にだけ負担させることがなくなり、屈折光学系Gr1で発生する歪曲収差や像面湾曲などの諸収差を抑制することができる。また、屈折光学系の広角化に伴う、反射光学素子M1の大型化を抑制することができる。一方、条件式(1)の上限値を下回ることで、反射面のサグ量が過度でなくなるので、反射面での光線屈折角が大きくなりすぎて反射面で発生する収差が大きくなってしまうことを抑制することができる。また、屈折光学系Gr1の光軸OAに沿った方向の大きさを低減することができる。
 なお、条件式(1)は、
 0.35<SAGym/YED<0.65  …  (1)'
を満たすと、より好ましい。
 また、投影光学系10は、以下の条件式を満足する。
 0.4<INFr/YED<0.95  …  (2)
ただし、値INFrは反射光学素子M1の反射面の、光軸OAと反射型液晶素子(画像表示素子)40の中心点とを含む平面内における、光線束が入射する有効領域内で光軸OAに最も近い点から測った変曲点の位置(例えば図3中の点P1から点P3までの光軸OAに垂直な方向の長さ)であり、値YEDは反射光学素子M1の反射面の、光軸OAと反射型液晶素子(画像表示素子)40の中心点とを含む平面内における、光線束が入射する有効領域の長さである。
 条件式(2)は、反射光学素子M1の反射面上の変曲点の位置を適切に設定するための式である。条件式(2)の下限値を上回ることで変曲点を屈折光学系Gr1の光軸から適度に離すことができるので、スクリーン(投影面)PSでの像を拡大させる負のパワーを維持することができ、短距離で大画面投影が可能となる。一方、条件式(2)の上限値を下回ることで、周辺部の歪曲収差を良好に補正することができる。
 なお、条件式(2)は、
 0.45<INFr/YED<0.95  …  (2)'
を満たすと、より好ましい。
 また、投影光学系10は、以下の条件式を満足する。
 0.9<EFLD/OBJY<1.2  …  (3)
ただし、値EFLDは屈折光学系Gr1全系の焦点距離であり、値OBJYは反射型液晶素子(画像表示素子)40の対角線長である。
 条件式(3)は屈折光学系Gr1の焦点距離を適切に設定し、反射型液晶素子(画像表示素子)40の表示像の拡大効果を屈折光学系Gr1と反射光学系Gr2とで適切に分担するための式である。条件式(3)の下限値を上回ることで、屈折光学系Gr1が広角になりすぎず、屈折光学系Gr1で発生する歪曲収差を抑制するとともに、反射光学系Gr2の大きさを小さく抑えることができる。一方、条件式(3)の上限値を下回ることで、屈折光学系Gr1のパワーを適度に維持することによって、反射光学系Gr2の負荷を低減し、反射光学系Gr2で発生する収差を小さく抑えることができる。
 また、投影光学系10は、以下の条件式を満足する。
 -1.9<(r1+r2)/(r1-r2)<-1.0  …  (4)
ただし、値r1は屈折光学系Gr1を構成するレンズ群のうち、反射光学系Gr2に最も近い位置に配置されたレンズの反射型液晶素子(画像表示素子)40側の曲率半径であり、値r2は屈折光学系Gr1を構成するレンズ群のうち、反射光学系Gr2に最も近い位置に配置されたレンズの反射光学系Gr2側の曲率半径である。
 条件式(4)は屈折光学系Gr1を構成するレンズ群のうち、反射光学系Gr2に最も近い位置に配置されたレンズ(具体的にはレンズL11)の形状を最適なものに設定するための式である。条件式(4)の下限値を上回ることで、反射型液晶素子(画像表示素子)40側の面の曲率が大きくなりすぎず、成形性を損なわない。一方、条件式(4)の上限値を下回ることで、反射光学系Gr2側の面の曲率が小さくなってレンズの有効径が大きくなることを抑制することができる。結果として、投影光学系10の大きさを小さくすることができる。
 なお、条件式(4)は、
 -1.8<(r1+r2)/(r1-r2)<-1.1  …  (4)'
を満たすと、より好ましい。
 また、投影光学系10は、以下の条件式を満足する。
 -2.5<fL/EFLD<-1.2  …  (5)
ただし、値fLは屈折光学系Gr1を構成するレンズ群のうち、反射光学系Gr2に最も近い位置に配置されたレンズの焦点距離であり、値EFLDは屈折光学系Gr1全系の焦点距離である。
 条件式(5)は屈折光学系Gr1を構成するレンズ群のうち、反射光学系Gr2に最も近い位置に配置されたレンズ(具体的にはレンズL11)の焦点距離を適切に設定するための式である。条件式(5)の上限値を下回ることで、反射光学系Gr2に最も近い位置に配置されたレンズの負のパワーが強くなりすぎず、歪曲収差やコマ収差の発生を抑制することができる。一方、条件式(5)の下限値を上回ることで、負のパワーを適度に維持することができ、より広角で短距離で大画面投影が可能な光学系を得ることができる。
 なお、条件式(5)は、
 -2.3<fL/EFLD<-1.3  …  (5)'
を満たすと、より好ましい。
 なお、上記投影光学系10において、屈折光学系Gr1や反射光学系Gr2は、実質的にパワーを持たない光学素子を追加することができる。
〔実施例〕
 以下、本発明の投影装置又は投影光学系の実施例を示す。各実施例に使用する記号は下記の通りである。
R   :近軸曲率半径
D   :軸上面間隔
Nd  :レンズ材料のd線に対する屈折率
νd  :レンズ材料のアッベ数
 各実施例において、各面番号(Surf.N)の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。その他、無限大を「INF」と表し、反射型液晶素子40の表示面を「DD」と表し、開口絞りを「ST」と表し、反射光学素子M1の反射面を「MR」と表し、投影面を「SC」で表している。
〔数1〕
Figure JPOXMLDOC01-appb-I000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
また、各面番号(Surf.N)の後に「**」が記載されている面が自由曲面形状を有する面であり、自由曲面形状は、非球面形状と同じく面の頂点を原点とし、光軸方向にZ軸をとり、光軸と垂直なXY平面に平行な方向の高さをhとして以下の「数2」で表す。
〔数2〕
Figure JPOXMLDOC01-appb-I000002
ただし、
Cj:Xの係数
R :曲率半径
K :円錐定数
 以下、本発明の投影光学系の具体的な実施例を説明する。
〔実施例1〕
 実施例1の投影光学系又は投影装置の基本的な特徴は以下のようなものである。
Fナンバー=F2.80
画像表示素子サイズ=13.5mm×7.6mm
 実施例1の投影光学系等のレンズ面等のデータを以下の表1に示す。
 〔表1〕
Surf.N     R[mm]       D[mm]      Nd         νd
DD                     1.710
 1         INF        16.000     1.5163     64.1
 2         INF         5.000
 3*      23.370        8.754     1.5305     56.0
 4*     -28.036        8.369
 5     -263.158        2.000     1.7015     41.2
 6       12.280        5.547     1.6228     57.0
 7     -180.863        2.183
 8     -218.642        2.000     1.6989     30.1
 9       27.792        2.831     1.5182     58.9
10      318.601        2.000
11       32.531        2.768     1.4875     70.2
12     -115.337        2.000
13 ST      INF        26.766
14       53.086        5.485     1.8044     39.5
15     -169.226        2.000
16       26.842        5.000     1.8467     23.7
17       23.237       10.710
18      -39.025        2.000     1.8467     23.7
19     -122.120       20.142
20*     -10.467        5.000     1.5305     56.0
21*      -7.672       11.712
22*      -7.891        5.966     1.5305     56.0
23*     -30.340       36.669
24** MR  21.867     -250.000
SC         INF
 実施例1の投影光学系に含まれる非球面の非球面係数を以下の表2に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。
〔表2〕
 第3面
K=0.0000E+00, A4=-1.4035E-05, A6=5.9090E-09, A8=-1.8185E-10, 
A10=1.1069E-12, A12=-1.3188E-15
 第4面
K=0.0000E+00, A4=3.0844E-05, A6=-7.6140E-08, A8=3.5387E-10, 
A10=-6.3470E-13, A12=8.7310E-16
 第20面
K=-7.0213E-01, A4=1.1421E-04, A6=-1.7025E-06, A8=1.0691E-08, 
A10=-3.2323E-11, A12=3.5616E-14
 第21面
K=-8.8938E-01, A4=1.7620E-04, A6=-1.3893E-06, A8=6.6652E-09, 
A10=-1.3551E-11, A12=1.0384E-14
 第22面
K=-4.1161E+00, A4=-4.0173E-04, A6=2.1930E-06, A8=-7.8280E-09, 
A10=1.5140E-11, A12=-1.1855E-14
 第23面
K=3.1641E-01, A4=-1.2403E-04, A6=4.1309E-07, A8=-9.1702E-10, 
A10=1.0986E-12, A12=-5.8193E-16
 実施例1の投影光学系に含まれる反射光学素子の自由曲面係数を以下の表3に示す。
〔表3〕
Figure JPOXMLDOC01-appb-I000003
 図4は、既に説明したが、実施例1の投影光学系11等の断面図である。投影光学系11は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ、符号STは開口絞りを示す。これらのうち、第1、第10、及び第11レンズL1,L10,L11は非球面レンズであり、特に第10及び第11レンズL10,L11は、反射光学系Gr2側に大きく突起した形状となっている。反射光学系Gr2は、屈折光学系の光軸OAに近い側では凸面状の自由曲面形状を持つ反射光学素子M1を有する。また、符号Fは、例えば画像表示素子を反射型液晶素子40すなわちLCOSとした場合のRGB各色を合成するためのプリズム等を想定した平行平板(本実施例では、偏光ビームスプリッター30)である。画像表示素子の方式によっては、平行平板Fは必要ない場合もあるが、平行平板Fはパワーを持たないため、平行平板F以降の光学系は変えずに平行平板Fを除いた構成とすることもできる。その場合には、画像表示素子である反射型液晶素子40と第1レンズL1との空気間隔を最適な位置に設定するだけでよい。
 また、図示はしていないが、パワーを有さず、光路を折り曲げるための反射光学素子が別途挿入されていてもよい。光路を折り曲げのための反射光学素子を挿入可能な点は、以下の実施例2,3も同様である。
 図5A及び5Bは、実施例1の投影光学系11の、画像表示素子(具体的には反射型液晶素子40)側ではなくスクリーンPS上でのMTF(Modulation Transfer Function)特性図である。図5Aは、図6に示す投影面SC(スクリーンPSの像形成領域)のうちポイントF1~F3のMTF特性図であり、図5Bは、図6に示す投影面SCのうちポイントF4~F6のMTF特性図である。図5A及び5B中のFi-X(i=1~6)は、Fiの位置での水平方向解像力を示し、Fi-Y(i=1~6)は、Fiの位置での垂直方向解像力を示す。MTF評価ポイントは、以降の実施例においてもこの実施例1と同様である。なお、MTFを計算する上での波長ウェイトは以下の通りであり、以降の実施例においても実施例1と同様である。
〔波長ウェイト〕
波長              重み
656.3nm           34
587.6nm           63
546.1nm          100
486.1nm           83
435.8nm           26
404.7nm            8
〔実施例2〕
 実施例2の投影光学系又は投影装置の基本的な特徴は以下のようなものである。
Fナンバー=F2.80
画像表示素子サイズ=13.5mm×7.6mm
 実施例2の投影光学系等のレンズ面等のデータを以下の表4に示す。
 〔表4〕
Surf.N     R[mm]       D[mm]      Nd         νd
DD                     1.710
 1         INF        16.000     1.5163     64.1
 2         INF         5.000
 3*      23.529        8.739     1.5305     56.0
 4*     -27.800        8.566
 5     -219.412        2.000     1.7015     41.2
 6       12.577        5.482     1.6228     57.0
 7     -135.815        2.000
 8     -255.344        2.000     1.6989     30.1
 9       26.642        2.803     1.5182     58.9
10      167.037        2.000
11       32.966        2.785     1.4875     70.2
12      -98.405        2.000
13 ST      INF        27.278
14       55.536        5.589     1.8044     39.5
15     -146.921        2.000
16       26.710        5.000     1.8467     23.7
17       23.303       10.599
18      -43.310        2.000     1.8467     23.7
19     -189.329       20.681
20*     -10.498        5.000     1.5305     56.0
21*      -7.722       12.323
22*      -7.825        5.531     1.5305     56.0
23*     -30.874       32.444
24** MR  20.960     -250.000
SC         INF
 実施例2の投影光学系に含まれる非球面の非球面係数を以下の表5に示す。
〔表5〕
 第3面
K=0.0000E+00, A4=-1.3756E-05, A6=1.5014E-09, A8=-1.8079E-10, 
A10=1.1155E-12, A12=-1.2522E-15
 第4面
K=0.0000E+00, A4=3.0985E-05, A6=-7.6970E-08, A8=3.3934E-10, 
A10=-5.9570E-13, A12=9.3034E-16
 第20面
K=-7.0791E-01, A4=1.1453E-04, A6=-1.6964E-06, A8=1.0517E-08, 
A10=-3.1434E-11, A12=3.4199E-14
 第21面
K=-8.8972E-01, A4=1.7509E-04, A6=-1.3608E-06, A8=6.4262E-09, 
A10=-1.2853E-11, A12=9.7040E-15
 第22面
K=-4.1850E+00, A4=-3.9879E-04, A6=2.1755E-06, A8=-7.7121E-09, 
A10=1.4664E-11, A12=-1.1206E-14
 第23面
K=3.9487E-01, A4=-1.3089E-04, A6=4.4412E-07, A8=-9.8863E-10, 
A10=1.1745E-12, A12=-6.0785E-16
 実施例2の投影光学系に含まれる反射光学素子の自由曲面係数を以下の表6に示す。
〔表6〕
Figure JPOXMLDOC01-appb-I000004
 図7は、実施例2の投影光学系12等の断面図である。投影光学系12は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ、符号STは開口絞りを示す。これらのうち、第1、第10、及び第11レンズL1,L10,L11は非球面レンズであり、特に第10及び第11レンズL10,L11は、反射光学系Gr2側に大きく突起した形状となっている。反射光学系Gr2は、屈折光学系の光軸OAに近い側では凸面状の自由曲面形状を持つ反射光学素子M1を有する。なお、平行平板Fについては、これを除いた構成とすることもできる。
 図8A及び8Bは、実施例2の投影光学系12の、画像表示素子側ではなくスクリーンPS上でのMTF特性図である。図8Aは、図6と同様のポイントF1~F3のMTF特性図であり、図8Bは、図6と同様のポイントF4~F6のMTF特性図である。
〔実施例3〕
 実施例3の投影光学系又は投影装置の基本的な特徴は以下のようなものである。
Fナンバー=F5.60
画像表示素子サイズ=13.5mm×7.6mm
 実施例3の投影光学系等のレンズ面等のデータを以下の表7に示す。
 〔表7〕
Surf.N     R[mm]       D[mm]      Nd         νd
DD                     1.710
 1         INF        16.000     1.5163     64.1
 2         INF         5.000
 3*      71.827        5.733     1.5305     56.0
 4*     -30.578       12.890
 5     -103.300        2.000     1.5952     38.2
 6       15.625        4.961     1.6503     55.2
 7     -414.025        4.423
 8*      44.318        2.203     1.5280     64.7
 9*      67.638        3.557
10   -12440.432        2.000     1.7931     35.6
11       32.181        2.852     1.4870     70.2
12      -99.749        6.814
13      181.782        2.496     1.4920     69.4
14      -39.673        2.000
15 ST      INF        42.240
16       44.542        5.724     1.7780     48.1
17     -214.286        7.860
18       46.591        5.000     1.4870     70.2
19       21.014       15.396
20      -15.767        2.000     1.8470     23.8
21      -25.154       13.404
22*     -13.304        9.301     1.5305     56.0
23*     -11.024        9.842
24*     -17.255        2.936     1.5305     56.0
25*    -187.821       45.593
26** MR  48.702     -400.000
SC         INF
 実施例3の投影光学系に含まれる非球面の非球面係数を以下の表8に示す。
〔表8〕
 第3面
K=0.0000E+00, A4=9.1135E-07, A6=2.4552E-08, A8=-2.2335E-11, 
A10=-4.1641E-13, A12=-2.8347E-15
 第4面
K=0.0000E+00, A4=1.6457E-05, A6=1.1187E-08, A8=-1.6206E-11, 
A10=-4.0869E-13, A12=-2.7829E-15
 第8面
K=-4.1961E+01, A4=3.8480E-06, A6=-6.2380E-07, A8=-2.1399E-09, 
A10=3.1181E-11, A12=-1.9174E-13
 第9面
K=3.0421E+00, A4=-5.1976E-05, A6=-3.9444E-08, A8=-8.6041E-09, 
A10=9.5589E-11, A12=-4.6542E-13
 第22面
K=-8.5382E-01, A4=-1.7315E-04, A6=1.3020E-06, A8=-4.8391E-09, 
A10=7.5625E-12, A12=-3.9040E-15
 第23面
K=-7.1773E-01, A4=-5.0352E-05, A6=2.1216E-07, A8=6.1845E-10, 
A10=-3.1545E-12, A12=3.5379E-15
 第24面
K=-8.2360E+00, A4=-2.4077E-04, A6=6.5076E-07, A8=-8.8211E-10, 
A10=4.7668E-13, A12=0.0000E+00
 第25面
K=4.0165E+01, A4=-1.2512E-04, A6=2.4106E-07, A8=-2.7483E-10, 
A10=1.3987E-13, A12=0.0000E+00
 実施例3の投影光学系に含まれる反射光学素子の自由曲面係数を以下の表9に示す。
〔表9〕
Figure JPOXMLDOC01-appb-I000005
 図9は、実施例3の投影光学系13等の断面図である。投影光学系13は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ、符号STは開口絞りを示す。これらのうち、第1、第4、第11、及び第12レンズL1,L4,L11,L12は非球面レンズであり、特に第11及び第12レンズL11,L12は、反射光学系Gr2側に大きく突起した形状となっている。反射光学系Gr2は、屈折光学系の光軸OAに近い側では凸面状の自由曲面形状を持つ反射光学素子M1を有する。なお、平行平板Fについては、これを除いた構成とすることもできる。
 図10A及び10Bは、実施例3の投影光学系13の、画像表示素子側ではなくスクリーンPS上でのMTF特性図である。図10Aは、図6と同様のポイントF1~F3のMTF特性図であり、図10Bは、図6と同様のポイントF4~F6のMTF特性図である。
 以下の表10は、参考のため、条件式(1)~(5)に対応する各実施例1~3の値をまとめたものである。
〔表10〕
Figure JPOXMLDOC01-appb-I000006
 以上、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、上記実施形態において、画像表示素子としては、LCOS等の反射型液晶素子40に限らず、マイクロミラーからなるデジタルマイクロミラーデバイス、透過型のLCD等を用いることができる。この場合、偏光ビームスプリッター30は、それぞれに適合する光学系に変更する。
 また、上記実施形態において、反射型液晶素子40は、単独で使用する場合に限らず、偏光ビームスプリッター30の別の側面に対向して追加の反射型液晶素子を配置することもできる。
 また、上記実施形態において、照明光学系20の光源としては、LEDに限らず、水銀ランプ、レーザー等を用いることができ、これらの光源を同種又は異種で組み合わせることもできる。特に、LEDやレーザーを光源とする場合、赤色・緑色・青色の光源数は出力に合わせ任意に組み合わせても良い。また、合波するための光学系を追加し、白色又は特定色に関して複数の光源を配置することで明るさを上げることもできる。

Claims (8)

  1.  画像表示素子と、
     前記画像表示素子から得られる画像を拡大して被投影体に投影する投影光学系とを備えた投影装置であって、
     前記投影光学系は、画像表示素子側から順に、
     複数のレンズ群を有する屈折光学系と、
     前記屈折光学系から出射された光線を反射させて前記被投影体まで導く反射光学系と、を備え、
     前記屈折光学系は全てのレンズが共通の光軸を有する回転対称レンズから構成され、
     前記反射光学系はパワーを有する反射光学素子を1枚有し、
     前記反射光学素子は、前記屈折光学系を出射して前記反射光学素子に入射する光線束のうち、前記屈折光学系の光軸に最も近い光線束に対して負のパワーを有し、
     前記反射光学素子の反射面は、前記光軸と前記画像表示素子の中心点とを含む平面内において変曲点を持つような形状を有するとともに、前記反射面に光線束が入射する有効領域のうち、光軸から最も離れた点では正のパワーを持ち、以下の条件式を満足する投影装置。
     0.3<SAGym/YED<0.7  …  (1)
    ただし、
     SAGym:前記反射光学素子の前記反射面の、前記光軸と前記画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域内で前記光軸に最も近い点を基準とした面のサグ量の最大値
     YED:前記反射光学素子の前記反射面の、前記光軸と前記画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域の長さ
  2.  以下の条件式を満足する、請求項1に記載の投影装置。
     0.4<INFr/YED<0.95  …  (2)
    ただし、
     INFr:前記反射光学素子の前記反射面の、前記光軸と前記画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域内で前記光軸に最も近い点から測った変曲点の位置
     YED:前記反射光学素子の前記反射面の、前記光軸と前記画像表示素子の中心点とを含む平面内における、光線束が入射する有効領域の長さ
  3.  以下の条件式を満足する、請求項1及び2のいずれか1項に記載の投影装置。
     0.9<EFLD/OBJY<1.2  …  (3)
    ただし、
     EFLD:前記屈折光学系全系の焦点距離
     OBJY:前記画像表示素子の対角線長
  4.  前記屈折光学系を構成するレンズ群のうち、前記反射光学系に最も近い位置に配置されるレンズは、負のパワーを有し、前記屈折光学系の前記光軸近傍で前記反射光学系側に凸面を向けたメニスカス形状を有する、請求項1~3のいずれか1項に記載の投影装置。
  5.  前記反射光学素子は、自由曲面形状を有する、請求項4に記載の投影装置。
  6.  以下の条件式を満足する、請求項1~5のいずれか1項に記載の投影装置。
     -1.9<(r1+r2)/(r1-r2)<-1.0  …  (4)
    ただし、
     r1:前記屈折光学系を構成するレンズ群のうち、前記反射光学系に最も近い位置に配置されたレンズの前記画像表示素子側の曲率半径
     r2:前記屈折光学系を構成するレンズ群のうち、前記反射光学系に最も近い位置に配置されたレンズの前記反射光学系側の曲率半径
  7.  以下の条件式を満足する、請求項1~6のいずれか1項に記載の投影装置。
     -2.5<fL/EFLD<-1.2  …  (5)
    ただし、
     fL:前記屈折光学系を構成するレンズ群のうち、前記反射光学系に最も近い位置に配置されたレンズの焦点距離
     EFLD:前記屈折光学系全系の焦点距離
  8.  前記画像表示素子を照明する照明光学系を有する、請求項1~7のいずれか1項に記載の投影装置。
PCT/JP2016/058627 2015-03-26 2016-03-18 投影装置 WO2016152748A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065169 2015-03-26
JP2015065169 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152748A1 true WO2016152748A1 (ja) 2016-09-29

Family

ID=56979205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058627 WO2016152748A1 (ja) 2015-03-26 2016-03-18 投影装置

Country Status (1)

Country Link
WO (1) WO2016152748A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146080A1 (ja) * 2018-01-26 2019-08-01 マクセル株式会社 投写型映像表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106560A1 (ja) * 2004-04-27 2005-11-10 Mitsubishi Denki Kabushiki Kaisha 画像投写装置
JP2006085019A (ja) * 2004-09-17 2006-03-30 Mitsubishi Electric Corp 画像表示装置
JP2008009223A (ja) * 2006-06-30 2008-01-17 Pentax Corp 投影光学系および投影装置
JP2010244017A (ja) * 2009-03-18 2010-10-28 Mitsubishi Electric Corp 投写光学系及び画像表示装置
US20150077723A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus
US20150077724A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus
US20150077722A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106560A1 (ja) * 2004-04-27 2005-11-10 Mitsubishi Denki Kabushiki Kaisha 画像投写装置
JP2006085019A (ja) * 2004-09-17 2006-03-30 Mitsubishi Electric Corp 画像表示装置
JP2008009223A (ja) * 2006-06-30 2008-01-17 Pentax Corp 投影光学系および投影装置
JP2010244017A (ja) * 2009-03-18 2010-10-28 Mitsubishi Electric Corp 投写光学系及び画像表示装置
US20150077723A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus
US20150077724A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus
US20150077722A1 (en) * 2013-09-19 2015-03-19 Fujifilm Corporation Projection optical system and projection-type display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146080A1 (ja) * 2018-01-26 2019-08-01 マクセル株式会社 投写型映像表示装置
JPWO2019146080A1 (ja) * 2018-01-26 2020-11-19 マクセル株式会社 投写型映像表示装置

Similar Documents

Publication Publication Date Title
US10908484B2 (en) Projection optical system and projector
US7289270B2 (en) Projection lens and projection display apparatus
US7529033B2 (en) Projection lens device and projection display apparatus using the same
JP5431077B2 (ja) 投写レンズおよび投写型表示装置
JP5480089B2 (ja) 投写用レンズおよび投写型表示装置
US8896929B2 (en) Projection zoom lens and projection type display device
US9541743B2 (en) Projection zoom lens and projection type display device
US9995917B2 (en) Projection zoom lens and projection type display device
US8270091B2 (en) Projection variable focusing lens and projection display device
JP2011221055A (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2012203139A (ja) 投射光学系および投射型画像表示装置
US9638902B2 (en) Projection zoom lens and projection type display device
JP2010122505A (ja) 投写レンズおよびこれを用いた投写型表示装置
US7880973B2 (en) Projection lens and projection display device using the same
JP5026929B2 (ja) 投射用レンズおよび投射型画像表示装置
US9405108B2 (en) Projection zoom lens and projection type display device
JP2011154318A (ja) レンズ系及びこれを搭載する光学機器
WO2016125681A1 (ja) 投影光学系及び投影装置
CN110927941B (zh) 投射光学系统及投射型图像显示装置
JP2008309991A (ja) 投写レンズおよびこれを用いた投写型表示装置
JP2015075627A (ja) 投射光学系及び投射型画像表示装置
JP2009025754A (ja) 投写用広角ズームレンズおよび投写型表示装置
CN204479832U (zh) 投影用变倍光学系统和投影型显示装置
WO2016152748A1 (ja) 投影装置
JP2015096887A (ja) 投射光学系および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP