WO2016152621A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2016152621A1
WO2016152621A1 PCT/JP2016/057962 JP2016057962W WO2016152621A1 WO 2016152621 A1 WO2016152621 A1 WO 2016152621A1 JP 2016057962 W JP2016057962 W JP 2016057962W WO 2016152621 A1 WO2016152621 A1 WO 2016152621A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
contact
sealed
seal
distal end
Prior art date
Application number
PCT/JP2016/057962
Other languages
French (fr)
Japanese (ja)
Inventor
直人 小澤
欣二 宝平
山田 弘一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015207350A external-priority patent/JP6641877B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680017572.8A priority Critical patent/CN107407654B/en
Publication of WO2016152621A1 publication Critical patent/WO2016152621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells

Definitions

  • the present invention relates to a gas sensor.
  • a gas sensor that measures the concentration of a predetermined gas component such as oxygen or nitrogen oxide in exhaust gas.
  • the gas sensor includes a sensor element that detects the concentration of a predetermined gas component in the exhaust gas (gas to be measured), and a housing that holds the sensor element inside.
  • a screw is formed on the outer peripheral side surface of the housing, and the gas sensor is fixed to the attached portion by screwing the screw into the screw hole of the attached portion.
  • a seal mechanism is formed between the gas sensor and the mounted portion for suppressing leakage of the gas to be measured.
  • Patent Document 1 discloses a gas sensor having a bolt for fixing the gas sensor to a mounted portion (boss), and a seal member disposed between the mounted portion and the bolt.
  • the present invention has been made in view of the above problems, and intends to provide a gas sensor capable of improving productivity and improving electrical conductivity and sealing performance between a housing and a mounted portion. It is.
  • One embodiment of the present invention includes a sensor element that detects a concentration of a predetermined gas component in a gas to be measured, an insulator that holds a metal terminal electrically connected to the positive electrode of the sensor element, and the sensor element.
  • a gas sensor having a housing that is inserted and held inside and electrically connected to the negative electrode of the sensor element, The housing is arranged so as to face a screw portion that can be screwed into a screw hole formed in a mounting portion to which the gas sensor is fixed, and a sealed portion that is formed so as to surround the periphery of the opening edge of the screw hole.
  • the seal portion is a gas sensor that has a contact portion that contacts a part of the sealed portion in a radial direction of the sealed portion and contacts the entire circumference of the sealed portion in an annular shape.
  • the contact portion In the gas sensor, by forming the contact portion, the productivity of the gas sensor is improved, and the sealing performance and electrical conductivity between the gas sensor and the attached portion are improved.
  • the contact portion is provided to the sealed portion when the screw of the housing is screwed into the screw hole of the attached portion.
  • the seal part approaches while rotating.
  • an axial force generated by screwing between the screw and the screw hole is applied between the contact portion and the sealed portion.
  • the contact portion rotates with respect to the sealed portion, so that the contact portion and the sealed portion rub against each other. Therefore, the oxide film and foreign matter existing between the contact portion and the sealed portion are removed. Thereby, the process of removing an oxide film and a foreign substance becomes unnecessary, and the productivity of a gas sensor improves.
  • the axial force can be concentrated on the contact portion by locally contacting the contact portion and the sealed portion. Therefore, one or both of the contact portion and the sealed portion is deformed so that the shape of the contact portion and the shape of the sealed portion are along each other, and the contact portion and the sealed portion are They can be in close contact with each other. Thereby, the electrical conductivity and sealing performance between the shape of the contact portion and the sealed portion can be improved. Even if the processing accuracy of the contact surfaces of the contact portion and the sealed portion is low, reliable contact can be obtained over the entire circumference of the contact portion and the sealed portion.
  • FIG. 3 is an explanatory diagram showing a gas sensor seal structure according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing a gas sensor in the first embodiment.
  • Sectional drawing of the housing in Example 1 (equivalent to the III-III arrow section of FIG. 1). Explanatory drawing which shows the seal structure of the gas sensor in Example 2.
  • FIG. Sectional drawing of the housing in Example 2 (equivalent to the VV arrow cross section of FIG. 4).
  • FIG. Sectional drawing of the housing in Example 3 (equivalent to the VII-VII arrow cross section in FIG. 6).
  • FIG. 9 is an explanatory diagram showing a gas sensor seal structure in a fifth embodiment. Explanatory drawing which shows the seal structure of the gas sensor in Example 6. FIG. Explanatory drawing which shows the seal structure of the gas sensor in Example 7. FIG. Explanatory drawing which shows the seal structure of the gas sensor in Example 8. FIG.
  • the seal portion of the gas sensor is formed as a tapered surface having a diameter that decreases toward the distal end side in the axial direction of the gas sensor, and the contact portion contacts the opening edge of the screw hole. It is preferable that it is formed as a part of. In this case, the contact area between the contact portion and the sealed portion can be reduced, and the electrical conductivity and sealing performance can be improved. Moreover, the said contact part can be easily formed by making the said housing into a simple shape. Thereby, the productivity of the housing can be improved, and as a result, the productivity of the gas sensor can be improved.
  • the abutting portion is composed of a seal protrusion protruding from the seal portion toward the sealed portion.
  • the seal protrusion by forming the seal protrusion, the contact area between the seal portion and the sealed portion can be reduced, and the electrical conductivity and the sealing performance can be improved.
  • the gas sensor 1 includes an insulator that holds a sensor element 2 that detects the concentration of a predetermined gas component in the gas to be measured and a metal terminal 23 that is electrically connected to the positive electrode of the sensor element 2. 25 and a housing 3 that holds the sensor element 2 inside and is electrically connected to the negative electrode of the sensor element 2.
  • the housing 3 surrounds the screw hole 51 formed in the attached portion 5 to which the gas sensor 1 is fixed and a screw 332 that can be screwed together, and the periphery of the opening edge of the screw hole 51.
  • a seal portion 333 disposed opposite to the sealed portion 53 formed on the surface.
  • the seal portion 333 has an abutting portion 334 that abuts locally on a part of the sealed portion 53 and annularly abuts on the entire circumference of the sealed portion 53 in the radial direction of the sealed portion 53.
  • the gas sensor 1 is an oxygen sensor for detecting the concentration of oxygen contained in the exhaust gas discharged from the internal combustion engine, and is fixed to an exhaust pipe extending from the internal combustion engine.
  • the exhaust pipe has a to-be-attached portion 5 and a boss having a screw hole formed therein, and the boss forms a sealed portion 53 that surrounds the periphery of the opening edge of the screw hole.
  • the sealed portion 53 is formed as an end surface of the boss portion.
  • the gas sensor 1 includes a sensor element 2 for detecting oxygen.
  • the sensor element 2 includes a bottomed cylindrical solid electrolyte body 21, and a positive electrode and a negative electrode provided on an inner surface and an outer surface of the solid electrolyte body 21. And a pair of electrodes 22.
  • a metal terminal 23 electrically connected to the positive electrodes of the pair of electrodes 22 is provided.
  • the negative electrodes of the pair of electrodes 22 are electrically connected to the housing 3.
  • the sensor element 2 is inserted and fixed in the housing 3 and hermetically sealed between the two.
  • a measured gas side cover 41 having a double structure is caulked on the front end side of the housing 3 so as to cover the sensor element 2.
  • the measured gas side cover 41 includes an inner cover 411 positioned near the sensor element 2 and an outer cover 412 positioned outside the inner cover 411.
  • the measured gas is introduced into the inner cover 411 and the outer cover 412.
  • Conductive holes 413 are provided respectively.
  • An atmosphere side cover 42 is disposed on the base end side of the housing 3, and an insulator 25 is provided inside the atmosphere side cover 42.
  • a metal terminal 23 electrically connected to the positive electrode of the sensor element 2 is provided inside the insulator 25, and a lead wire 24 is connected to the metal terminal 23.
  • An elastic insulating member 27 that seals the base end portion of the atmosphere side cover 42 while the lead wire 24 is inserted is provided at a position on the base end side of the insulator 25 inside the atmosphere side cover 42.
  • the housing 3 is made of a substantially cylindrical member made of metal having electrical conductivity.
  • the housing 3 includes an engagement portion 31 formed substantially at the center in the axial direction L of the gas sensor 1, a distal end cylindrical portion 33 protruding from the engagement portion 31 toward the distal end side, and an end surface on the proximal end side of the engagement portion 31.
  • a proximal end cylindrical portion 32 projecting toward the proximal end side of the gas sensor 1.
  • the engaging portion 31, the proximal end cylindrical portion 32, and the distal end cylindrical portion 33 are formed integrally with each other to constitute the housing 3 made of one component.
  • a screw 332 is formed on the outer peripheral surface of the distal end cylindrical portion 33, and the end surface on the distal end side of the engaging portion 31 is a seal portion 333.
  • the engaging portion 31 is formed with a diameter larger than the outer diameter of the screw 332. Accordingly, the screw 332 and the seal portion 333 are integrally configured.
  • the integral structure of the screw 332 and the seal portion 333 is not limited to a structure in which the screw 332 and the seal portion 333 are formed in one component as in this example. For example, in a state before the gas sensor 1 is fixed to the attached portion 5, the component in which the screw 332 is formed and the component in which the seal portion 333 is formed may be assembled with each other.
  • the sensor element 2 is inserted and fixed inside the housing 3.
  • the proximal end cylinder part 32 is fixed inside the atmosphere side cover 42.
  • a screw 332 that can be screwed into the screw hole 51 of the attached portion 5 is formed on the outer peripheral side surface of the distal end tubular portion 33, and the measured gas side cover 41 is caulked on the distal end side surface of the distal end tubular portion 33.
  • a caulking groove 331 for fixing is formed.
  • the engaging portion 31 is formed in a regular hexagon when viewed from the axial direction L of the gas sensor 1, and is formed to be engageable with a tool for fixing the gas sensor 1.
  • the outer shape of the engaging portion 31 is formed larger than the outer shapes of the proximal end cylindrical portion 32 and the distal end cylindrical portion 33.
  • a portion of the housing 3 between the proximal end cylindrical portion 32 and the distal end cylindrical portion 33 and the engaging portion 31 is formed in a step shape.
  • the end surface on the distal end side of the engaging portion 31 forms a seal portion 333 that faces the sealed portion 53 of the attached portion 5.
  • the seal portion 333 has a substantially truncated cone shape whose outer diameter is reduced toward the distal end side in the axial direction L of the gas sensor 1, and is formed as a tapered surface 335.
  • the outer diameter of the tapered surface 335 on the distal end side is formed smaller than the inner diameter of the screw hole 51 in the mounted portion 5, and when the gas sensor 1 is fixed to the mounted portion 5, The part is disposed inside the screw hole 51.
  • the contact portion 334 is formed as a part of the tapered surface 335 so as to contact the opening edge 52 of the screw hole 51.
  • the attachment structure for attaching the gas sensor 1 to the attachment portion 5 is as follows. Specifically, the screw 332 of the gas sensor 1 is screwed into the screw hole 51 of the attached portion 5. When the gas sensor 1 is rotated and the screw 332 is screwed into the screw hole 51, the abutting portion 334 of the seal portion 333 rotates together with the gas sensor 1 with respect to the sealed portion 53, while partially in the radial direction. It locally contacts the sealed portion 53. In this way, the attachment structure of the gas sensor 1 in which the entire circumference of the contact portion 334 is in close contact with the sealed portion 53 is formed with a change in the circumferential direction between the contact portion 334 and the sealed portion 53.
  • the function and effect of this example will be described.
  • the productivity of the gas sensor 1 is improved, and the sealing performance and the electrical conductivity between the gas sensor 1 and the attached portion 5 are improved.
  • the contact portion 334 provided on the seal portion 333 of the housing 3 approaches the sealed portion 53 of the attached portion 5 while rotating.
  • an axial force generated by screwing between the screw 332 and the screw hole 51 is applied between the contact portion 334 and the sealed portion 53.
  • the contact portion 334 rotates relative to the sealed portion 53, and the contact portion 334 and the sealed portion 53 rub against each other. Therefore, an oxide film and foreign matter existing between the contact portion 334 and the sealed portion 53 can be removed. Thereby, the process of removing an oxide film and a foreign material becomes unnecessary, and the productivity of the gas sensor 1 is improved.
  • the axial force concentrates on the contact portion 334 by bringing the contact portion 334 and the sealed portion 53 into contact with each other locally. Therefore, one or both of the contact part 334 and the sealed part 53 are deformed so as to conform to the other shape and are in close contact with each other. Thereby, the electrical conductivity and sealing performance between the shape of the contact part 334 and the sealed part 53 are improved. Even if the processing accuracy of the contact surfaces of the contact part 334 and the sealed part 53 is low, the contact part 334 and the sealed part 53 are reliably in contact with each other on the entire circumference.
  • the seal portion 333 is formed as a tapered surface 335 whose diameter decreases in the axial direction L of the gas sensor 1 toward the tip side of the gas sensor 1.
  • the contact portion 334 is formed as a part of the tapered surface 335 so as to contact the opening edge 52 of the screw hole 51. Therefore, the contact area between the abutting portion 334 and the sealed portion 53 is reduced, and the electrical conductivity and sealing performance are further improved.
  • the housing 3 has a simple shape, and the contact portion 334 can be easily formed.
  • the productivity of the gas sensor 1 of this example is improved, and the electrical conductivity and the sealing performance with the attached portion 5 are improved.
  • the seal portion 333 of the gas sensor 1 of the present example includes a seal surface 336 extending in a direction orthogonal to the axial direction L, and a seal protrusion 337 as a contact portion 334 protruding from the seal surface 336 toward the sealed portion 53. have.
  • the seal protrusion 337 has an annular shape centered on the central axis of the gas sensor 1 and has a substantially semicircular cross section.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment can be obtained.
  • the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
  • the gas sensor 1 of this example includes a seal protrusion 337 having a shape different from that of the second embodiment. That is, the seal portion 333 of the gas sensor 1 has a plurality of seal protrusions 337.
  • the seal projection 337 protrudes toward the sealed portion 53 and abuts the entire circumference of the sealed portion 53 to form a plurality of abutting portions 334.
  • the seal protrusion 337 is formed by coaxially forming a plurality of grooves on the seal surface 336.
  • the seal protrusions 337 are annular and are arranged concentrically around the central axis of the gas sensor 1.
  • the longitudinal direction of the seal protrusion 337 in the axial direction of the gas sensor 1 is substantially rectangular.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
  • Example 4 As shown in FIG. 8, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 1 in a part thereof.
  • the sealed portion 53 formed as the end face of the boss portion of the exhaust pipe is formed in a tapered shape that is reduced in diameter toward the distal end side in the axial direction L of the gas sensor 1.
  • the contact portion 334 in the gas sensor 1 contacts the tapered sealed portion 53.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
  • the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 4 in a part thereof.
  • the seal portion 333 of the gas sensor 1 is loosened as compared with the outer peripheral side taper surface 338 and the outer peripheral side taper surface 338 whose outer diameter is reduced toward the front end side of the gas sensor 1.
  • An inner peripheral tapered surface 339 having a reduced diameter is formed.
  • the inner peripheral taper surface 339 is formed adjacent to the inner peripheral side of the outer peripheral taper surface 338.
  • the contact portion 334 includes a convex portion formed at the boundary between the outer peripheral taper surface 338 and the inner peripheral taper surface 339.
  • the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment.
  • Other configurations are the same as those of the first embodiment. Also in this example, it is possible to obtain the same effect as that of the first embodiment.
  • the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 5 in a part thereof.
  • the seal portion 333 of the gas sensor 1 is a seal as a contact portion 334 formed at the boundary between the outer peripheral side taper surface 338, the inner peripheral side taper surface 339, and the outer peripheral side taper surface 338 and the inner peripheral side taper surface 339.
  • a protrusion 337 is formed so as to protrude from the seal portion 333 toward the sealed portion 53.
  • the seal protrusion 337 has an annular shape centered on the central axis of the gas sensor 1 and has a substantially semicircular cross section.
  • the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
  • the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 4 in a part thereof.
  • the abutting portion 334 of the gas sensor 1 is formed as a corner portion on the outer side of the distal end of the engaging portion 31.
  • the sealed portion 53 is also formed in a tapered shape as in the fourth embodiment.
  • the contact portion 334 of this example contacts the tapered sealed portion 53.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
  • the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 7 in a part thereof.
  • the engaging portion 31 of the gas sensor 1 has a distal end portion 311 having a circular outer shape and a proximal end portion 312 having a hexagonal outer shape and a smaller outer shape than the distal end portion 311.
  • the contact portion 334 is formed as a corner portion of the tip portion 311 close to the tip of the gas sensor 1.
  • the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment.
  • the contact portion 334 of this example contacts the tapered sealed portion 53.
  • Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

This gas sensor includes: a sensor element which detects the concentration of a prescribed gas component in gas being measured; an insulator which holds on the inside thereof a metal terminal which is electrically connected to a positive electrode of the sensor element; and a housing which holds, by insertion, the sensor element on the inside thereof, and which is electrically connected to a negative electrode of the sensor element. The housing includes: a screw thread capable of being screwed into a threaded hole formed in an attachment part to which the gas sensor is to be secured; and a sealing part disposed facing a sealed part formed in such a way as to surround an opening edge of the threaded hole. The sealing part includes an annular contacting part which is in localized contact with a section, in the radial direction, of the sealed part, and which is in contact with the sealed part around the entire circumference thereof. By this means, productivity can be improved while improving the electrical conductivity and the sealing properties between the sealing part and the attachment part.

Description

ガスセンサGas sensor
 本発明は、ガスセンサに関する。 The present invention relates to a gas sensor.
 自動車等の内燃機関には、排ガス中における酸素や窒素酸化物等の所定ガス成分の濃度を測定するガスセンサが用いられている。ガスセンサは、排ガス(被測定ガス)中の所定ガス成分の濃度を検出するセンサ素子と、センサ素子を内側に保持するハウジングとを有している。ハウジングの外周側面にはネジが形成されており、ネジを被取付部のネジ孔に螺合することにより、ガスセンサを被取付部に固定している。ガスセンサと被取付部との間には、被測定ガスの漏出を抑制するためのシール機構が形成されている。 In an internal combustion engine such as an automobile, a gas sensor that measures the concentration of a predetermined gas component such as oxygen or nitrogen oxide in exhaust gas is used. The gas sensor includes a sensor element that detects the concentration of a predetermined gas component in the exhaust gas (gas to be measured), and a housing that holds the sensor element inside. A screw is formed on the outer peripheral side surface of the housing, and the gas sensor is fixed to the attached portion by screwing the screw into the screw hole of the attached portion. A seal mechanism is formed between the gas sensor and the mounted portion for suppressing leakage of the gas to be measured.
 例えば、ガスセンサと被取付部との間に、金属製のガスケットを挟持したシール機構が知られている。
 また、特許文献1には、被取付部(ボス)にガスセンサを固定するためのボルトと、被取付部とボルトとの間に配設されるシール部材とを有するガスセンサが示されている。
For example, a sealing mechanism is known in which a metal gasket is sandwiched between a gas sensor and a mounted portion.
Patent Document 1 discloses a gas sensor having a bolt for fixing the gas sensor to a mounted portion (boss), and a seal member disposed between the mounted portion and the bolt.
特許第4726261号公報Japanese Patent No. 4726261
 しかしながら、特許文献1のガスセンサにおいては、シール部材と被取付部(ボス)との間に、酸化被膜や異物などが存在すると、両者の間の電気導電性及びシール性を確保することが困難となるおそれがある。そこで、その不具合をなくすために、ガスセンサを被取付部に取り付ける前に、シール部材と被取付部との接触部における酸化被膜や異物を除去する工程を入れると、ガスセンサの生産性が低下してしまう。 However, in the gas sensor disclosed in Patent Document 1, if there is an oxide film or foreign matter between the seal member and the attached portion (boss), it is difficult to ensure electrical conductivity and sealability between the two. There is a risk. Therefore, in order to eliminate the inconvenience, before the gas sensor is attached to the attachment portion, if a step of removing an oxide film or a foreign substance at the contact portion between the seal member and the attachment portion is included, the productivity of the gas sensor decreases. End up.
 本発明は、上記問題に鑑みてなされたものであり、生産性を向上させると共に、ハウジングと被取付部との間における電気導電性及びシール性を向上させることができるガスセンサを提供しようとするものである。 The present invention has been made in view of the above problems, and intends to provide a gas sensor capable of improving productivity and improving electrical conductivity and sealing performance between a housing and a mounted portion. It is.
 本発明の一態様は、被測定ガス中の所定ガス成分の濃度を検出するセンサ素子と、該センサ素子の正極と電気的に接続された金属端子を内側に保持する絶縁碍子と、上記センサ素子を内側に挿通保持すると共に上記センサ素子の負極と電気的に接続されたハウジングとを有するガスセンサであって、
 上記ハウジングは、上記ガスセンサが固定される被取付部に形成されたネジ孔と螺合可能なネジと、上記ネジ孔の開口縁の周囲を囲むように形成された被シール部と対向して配設されるシール部とを有しており、
 前記シール部は、上記被シール部の径方向において、被シール部の一部に当接すると共に該被シール部の全周に環状に当接する当接部を有している、ガスセンサである。
One embodiment of the present invention includes a sensor element that detects a concentration of a predetermined gas component in a gas to be measured, an insulator that holds a metal terminal electrically connected to the positive electrode of the sensor element, and the sensor element. A gas sensor having a housing that is inserted and held inside and electrically connected to the negative electrode of the sensor element,
The housing is arranged so as to face a screw portion that can be screwed into a screw hole formed in a mounting portion to which the gas sensor is fixed, and a sealed portion that is formed so as to surround the periphery of the opening edge of the screw hole. And a seal portion to be installed,
The seal portion is a gas sensor that has a contact portion that contacts a part of the sealed portion in a radial direction of the sealed portion and contacts the entire circumference of the sealed portion in an annular shape.
 上記ガスセンサにおいては、上記当接部を形成することにより、上記ガスセンサの生産性を向上させると共に、上記ガスセンサと上記被取付部との間におけるシール性及び電気導電性を向上させる。
 具体的には、上記ガスセンサを上記被取付部に固定するため、上記ハウジングのネジを上記被取付部のネジ孔に螺合させる際に、上記被シール部に対して上記当接部を備えたシール部が回転しながら接近する。そして、上記当接部と上記被シール部とが接触すると、上記ネジと上記ネジ孔との螺合で生じる軸力が、上記当接部と上記被シール部との間に加わる。この軸力が加わった状態で、上記当接部が上記被シール部に対して回転することにより、上記当接部と上記被シール部とが互いに擦れ合う。そのため、上記当接部と上記被シール部との間に存在する酸化被膜や異物が除去される。これにより、酸化被膜や異物を除去する工程が不要となり、ガスセンサの生産性が向上する。
In the gas sensor, by forming the contact portion, the productivity of the gas sensor is improved, and the sealing performance and electrical conductivity between the gas sensor and the attached portion are improved.
Specifically, in order to fix the gas sensor to the attached portion, the contact portion is provided to the sealed portion when the screw of the housing is screwed into the screw hole of the attached portion. The seal part approaches while rotating. When the contact portion and the sealed portion come into contact with each other, an axial force generated by screwing between the screw and the screw hole is applied between the contact portion and the sealed portion. When the axial force is applied, the contact portion rotates with respect to the sealed portion, so that the contact portion and the sealed portion rub against each other. Therefore, the oxide film and foreign matter existing between the contact portion and the sealed portion are removed. Thereby, the process of removing an oxide film and a foreign substance becomes unnecessary, and the productivity of a gas sensor improves.
 また、上記当接部と上記被シール部とを局部的に接触させることにより、上記当接部に軸力を集中させることができる。そのため、上記当接部及び上記被シール部の一方又は両方を、上記当接部の形状と上記被シール部の形状とが互いに沿うように変形させ、上記当接部と上記被シール部とを互いに密着させることができる。これにより、上記当接部の形状と上記被シール部との間の電気導電性及びシール性を向上させることができる。仮に、上記当接部及び上記被シール部の接触面の加工精度が低い場合でも、上記当接部と上記被シール部とを全周において確実な接触が得られる。 Further, the axial force can be concentrated on the contact portion by locally contacting the contact portion and the sealed portion. Therefore, one or both of the contact portion and the sealed portion is deformed so that the shape of the contact portion and the shape of the sealed portion are along each other, and the contact portion and the sealed portion are They can be in close contact with each other. Thereby, the electrical conductivity and sealing performance between the shape of the contact portion and the sealed portion can be improved. Even if the processing accuracy of the contact surfaces of the contact portion and the sealed portion is low, reliable contact can be obtained over the entire circumference of the contact portion and the sealed portion.
 以上のごとく、本発明によれば、生産性を向上させると共に、被取付部との間の電気導電性及びシール性を向上させることができるガスセンサを提供することができる。 As described above, according to the present invention, it is possible to provide a gas sensor capable of improving productivity and improving electrical conductivity and sealing performance with a mounted portion.
実施例1における、ガスセンサのシール構造を示す説明図。FIG. 3 is an explanatory diagram showing a gas sensor seal structure according to the first embodiment. 実施例1における、ガスセンサを示す説明図。FIG. 3 is an explanatory diagram showing a gas sensor in the first embodiment. 実施例1における、ハウジングの断面図(図1のIII-III矢視断面相当)。Sectional drawing of the housing in Example 1 (equivalent to the III-III arrow section of FIG. 1). 実施例2における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 2. FIG. 実施例2における、ハウジングの断面図(図4のV-V矢視断面相当)。Sectional drawing of the housing in Example 2 (equivalent to the VV arrow cross section of FIG. 4). 実施例3における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 3. FIG. 実施例3における、ハウジングの断面図(図6における、VII-VII矢視断面相当)。Sectional drawing of the housing in Example 3 (equivalent to the VII-VII arrow cross section in FIG. 6). 実施例4における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 4. FIG. 実施例5における、ガスセンサのシール構造を示す説明図。FIG. 9 is an explanatory diagram showing a gas sensor seal structure in a fifth embodiment. 実施例6における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 6. FIG. 実施例7における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 7. FIG. 実施例8における、ガスセンサのシール構造を示す説明図。Explanatory drawing which shows the seal structure of the gas sensor in Example 8. FIG.
 上記ガスセンサの上記シール部は、上記ガスセンサの軸方向における先端側に向かうにつれて縮径するテーパ面として形成されており、上記当接部は、上記ネジ孔の開口縁と当接するよう、上記テーパ面の一部として形成されていることが好ましい。この場合には、上記当接部と上記被シール部との接触面積を低減し、電気導電性及びシール性を向上させることができる。また、上記ハウジングを単純な形状とすることにより、上記当接部を容易に形成することができる。これにより、上記ハウジングの生産性を向上させ、ひいては上記ガスセンサの生産性を向上させることができる。 The seal portion of the gas sensor is formed as a tapered surface having a diameter that decreases toward the distal end side in the axial direction of the gas sensor, and the contact portion contacts the opening edge of the screw hole. It is preferable that it is formed as a part of. In this case, the contact area between the contact portion and the sealed portion can be reduced, and the electrical conductivity and sealing performance can be improved. Moreover, the said contact part can be easily formed by making the said housing into a simple shape. Thereby, the productivity of the housing can be improved, and as a result, the productivity of the gas sensor can be improved.
 また、上記当接部は、上記シール部から上記被シール部に向かって突出するシール突部からなることが好ましい。この場合には、上記シール突部を形成することにより、上記シール部と上記被シール部との接触面積を低減し、電気導電性及びシール性を向上させることができる。 Further, it is preferable that the abutting portion is composed of a seal protrusion protruding from the seal portion toward the sealed portion. In this case, by forming the seal protrusion, the contact area between the seal portion and the sealed portion can be reduced, and the electrical conductivity and the sealing performance can be improved.
(実施例1)
 実施例1にかかるガスセンサ1を、図1~図3を参照して説明する。
 図2に示すごとく、ガスセンサ1は、被測定ガス中の所定ガス成分の濃度を検出するセンサ素子2と、センサ素子2の正極と電気的に接続された金属端子23を内側に保持する絶縁碍子25と、センサ素子2を内側に保持すると共にセンサ素子2の負極と電気的に接続されたハウジング3とを有している。
(Example 1)
A gas sensor 1 according to a first embodiment will be described with reference to FIGS.
As shown in FIG. 2, the gas sensor 1 includes an insulator that holds a sensor element 2 that detects the concentration of a predetermined gas component in the gas to be measured and a metal terminal 23 that is electrically connected to the positive electrode of the sensor element 2. 25 and a housing 3 that holds the sensor element 2 inside and is electrically connected to the negative electrode of the sensor element 2.
 図1及び図2に示すごとく、ハウジング3は、ガスセンサ1が固定される被取付部5に形成されたネジ孔51と螺合可能なネジ332と、ネジ孔51の開口縁の周囲を囲むように形成された被シール部53と対向して配設されるシール部333とを有する。シール部333は、被シール部53における径方向において、被シール部53の一部に局部的に当接すると共に被シール部53の全周に環状に当接する当接部334を有している。 As shown in FIGS. 1 and 2, the housing 3 surrounds the screw hole 51 formed in the attached portion 5 to which the gas sensor 1 is fixed and a screw 332 that can be screwed together, and the periphery of the opening edge of the screw hole 51. And a seal portion 333 disposed opposite to the sealed portion 53 formed on the surface. The seal portion 333 has an abutting portion 334 that abuts locally on a part of the sealed portion 53 and annularly abuts on the entire circumference of the sealed portion 53 in the radial direction of the sealed portion 53.
 図1及び図2に示すごとく、ガスセンサ1は、内燃機関から排出された排ガスに含まれる酸素の濃度を検出するための酸素センサであり、内燃機関から伸びる排気管に固定されている。排気管は、被取付部5を有し、また、ネジ穴が形成されたボスを有しており、ボスは、ネジ穴の開口縁の周囲を囲む被シール部53を形成している。被シール部53は、ボス部の端面として形成されている。 1 and 2, the gas sensor 1 is an oxygen sensor for detecting the concentration of oxygen contained in the exhaust gas discharged from the internal combustion engine, and is fixed to an exhaust pipe extending from the internal combustion engine. The exhaust pipe has a to-be-attached portion 5 and a boss having a screw hole formed therein, and the boss forms a sealed portion 53 that surrounds the periphery of the opening edge of the screw hole. The sealed portion 53 is formed as an end surface of the boss portion.
 ガスセンサ1は、酸素を検出するためのセンサ素子2を有し、センサ素子2は、有底円筒形状の固体電解質体21と、固体電解質体21の内面および外面に設けられた、正極と負極からなる一対の電極22とからなる。センサ素子2の基端側には、一対の電極22の正極と電気的に接続された金属端子23が設けてある。また、一対の電極22の負極はハウジング3と導通している。センサ素子2はハウジング3に挿通固定され、両者の間は密閉封止されている。 The gas sensor 1 includes a sensor element 2 for detecting oxygen. The sensor element 2 includes a bottomed cylindrical solid electrolyte body 21, and a positive electrode and a negative electrode provided on an inner surface and an outer surface of the solid electrolyte body 21. And a pair of electrodes 22. On the base end side of the sensor element 2, a metal terminal 23 electrically connected to the positive electrodes of the pair of electrodes 22 is provided. Further, the negative electrodes of the pair of electrodes 22 are electrically connected to the housing 3. The sensor element 2 is inserted and fixed in the housing 3 and hermetically sealed between the two.
 図2に示すごとく、ハウジング3の先端側には、センサ素子2を覆うように、二重構造の被測定ガス側カバー41がかしめられている。被測定ガス側カバー41はセンサ素子2の近くに位置する内カバー411と、内カバー411の外側に位置する外カバー412とからなり、内カバー411および外カバー412には被測定ガスを導入するための導通孔413がそれぞれ設けられている。 As shown in FIG. 2, a measured gas side cover 41 having a double structure is caulked on the front end side of the housing 3 so as to cover the sensor element 2. The measured gas side cover 41 includes an inner cover 411 positioned near the sensor element 2 and an outer cover 412 positioned outside the inner cover 411. The measured gas is introduced into the inner cover 411 and the outer cover 412. Conductive holes 413 are provided respectively.
 ハウジング3の基端側には、大気側カバー42が配設されており、大気側カバー42の内側には絶縁碍子25が設けてある。絶縁碍子25の内側には、センサ素子2の正極と電気的に接続された金属端子23が設けてあり、金属端子23には、リード線24が接続されている。また、大気側カバー42の内側における絶縁碍子25より基端側の位置には、リード線24を挿通しつつ、大気側カバー42の基端部を密封する弾性絶縁部材27が設けてある。 An atmosphere side cover 42 is disposed on the base end side of the housing 3, and an insulator 25 is provided inside the atmosphere side cover 42. A metal terminal 23 electrically connected to the positive electrode of the sensor element 2 is provided inside the insulator 25, and a lead wire 24 is connected to the metal terminal 23. An elastic insulating member 27 that seals the base end portion of the atmosphere side cover 42 while the lead wire 24 is inserted is provided at a position on the base end side of the insulator 25 inside the atmosphere side cover 42.
 図1及び図2に示すごとく、ハウジング3は、電気導電性を有する金属製の略筒状部材からなる。ハウジング3は、ガスセンサ1の軸方向Lにおける略中央に形成された係合部31と、係合部31から先端側に突出した先端筒部33と、係合部31の基端側の端面からガスセンサ1の基端側に突出した基端筒部32とを有している。係合部31と基端筒部32と先端筒部33とは互いに一体的に形成されて、一部品からなるハウジング3を構成している。そして、先端筒部33の外周面にネジ332が形成され、係合部31の先端側の端面がシール部333となっている。係合部31はネジ332の外径よりも拡径して形成されている。これにより、ネジ332とシール部333とは一体的に構成されている。ここで、ネジ332とシール部333との一体的構造としては、本例のように一部品の中にネジ332とシール部333とが形成されているような構造に限られない。例えば、ガスセンサ1を被取付部5に固定する前の状態において、ネジ332が形成された部品とシール部333が形成された部品とが互いに組み付けられいてもよい。 As shown in FIGS. 1 and 2, the housing 3 is made of a substantially cylindrical member made of metal having electrical conductivity. The housing 3 includes an engagement portion 31 formed substantially at the center in the axial direction L of the gas sensor 1, a distal end cylindrical portion 33 protruding from the engagement portion 31 toward the distal end side, and an end surface on the proximal end side of the engagement portion 31. A proximal end cylindrical portion 32 projecting toward the proximal end side of the gas sensor 1. The engaging portion 31, the proximal end cylindrical portion 32, and the distal end cylindrical portion 33 are formed integrally with each other to constitute the housing 3 made of one component. A screw 332 is formed on the outer peripheral surface of the distal end cylindrical portion 33, and the end surface on the distal end side of the engaging portion 31 is a seal portion 333. The engaging portion 31 is formed with a diameter larger than the outer diameter of the screw 332. Accordingly, the screw 332 and the seal portion 333 are integrally configured. Here, the integral structure of the screw 332 and the seal portion 333 is not limited to a structure in which the screw 332 and the seal portion 333 are formed in one component as in this example. For example, in a state before the gas sensor 1 is fixed to the attached portion 5, the component in which the screw 332 is formed and the component in which the seal portion 333 is formed may be assembled with each other.
 ハウジング3の内側には、センサ素子2が挿通して固定されている。
 基端筒部32は、大気側カバー42の内側に固定されている。
 先端筒部33の外周側面には、被取付部5のネジ孔51と螺合可能なネジ332が形成されており、先端筒部33の先端側端面には、被測定ガス側カバー41をかしめによって固定するためのかしめ溝331が形成されている。
The sensor element 2 is inserted and fixed inside the housing 3.
The proximal end cylinder part 32 is fixed inside the atmosphere side cover 42.
A screw 332 that can be screwed into the screw hole 51 of the attached portion 5 is formed on the outer peripheral side surface of the distal end tubular portion 33, and the measured gas side cover 41 is caulked on the distal end side surface of the distal end tubular portion 33. A caulking groove 331 for fixing is formed.
 図3に示すごとく、係合部31は、ガスセンサ1の軸方向Lから見たとき正六角形に形成されており、ガスセンサ1を固定するための工具と係合可能に形成されている。係合部31の外形は、基端筒部32及び先端筒部33の外形よりも大きく形成されている。ハウジング3の、基端筒部32及び先端筒部33と係合部31との間の部分は段状に形成されている。 As shown in FIG. 3, the engaging portion 31 is formed in a regular hexagon when viewed from the axial direction L of the gas sensor 1, and is formed to be engageable with a tool for fixing the gas sensor 1. The outer shape of the engaging portion 31 is formed larger than the outer shapes of the proximal end cylindrical portion 32 and the distal end cylindrical portion 33. A portion of the housing 3 between the proximal end cylindrical portion 32 and the distal end cylindrical portion 33 and the engaging portion 31 is formed in a step shape.
 また、係合部31における先端側の端面は、被取付部5の被シール部53と対向するシール部333をなしている。本例において、シール部333は、ガスセンサ1の軸方向Lの先端側に向かうにつれて外径が縮径する略円錐台形状をなしており、テーパ面335として形成されている。テーパ面335の先端側における外径は、被取付部5におけるネジ孔51の内径よりも小さく形成されており、ガスセンサ1を被取付部5に固定した際に、テーパ面335の先端側の一部はネジ孔51の内側に配置される。当接部334は、ネジ孔51の開口縁52と当接するよう、テーパ面335の一部として形成されている。 Further, the end surface on the distal end side of the engaging portion 31 forms a seal portion 333 that faces the sealed portion 53 of the attached portion 5. In this example, the seal portion 333 has a substantially truncated cone shape whose outer diameter is reduced toward the distal end side in the axial direction L of the gas sensor 1, and is formed as a tapered surface 335. The outer diameter of the tapered surface 335 on the distal end side is formed smaller than the inner diameter of the screw hole 51 in the mounted portion 5, and when the gas sensor 1 is fixed to the mounted portion 5, The part is disposed inside the screw hole 51. The contact portion 334 is formed as a part of the tapered surface 335 so as to contact the opening edge 52 of the screw hole 51.
 ガスセンサ1を被取付部5に取り付ける取付構造は、以下のようになっている。
 具体的には、ガスセンサ1のネジ332が被取付部5のネジ孔51に螺合されている。ガスセンサ1を回転させてネジ332をネジ孔51に螺合する際には、シール部333の当接部334が、ガスセンサ1と共に被シール部53に対して回転しながら、径方向の一部において局部的に被シール部53に当接する。こうして、当接部334と被シール部53との周方向への変化を伴って、当接部334の全周が被シール部53に密着したガスセンサ1の取付構造が形成される。
The attachment structure for attaching the gas sensor 1 to the attachment portion 5 is as follows.
Specifically, the screw 332 of the gas sensor 1 is screwed into the screw hole 51 of the attached portion 5. When the gas sensor 1 is rotated and the screw 332 is screwed into the screw hole 51, the abutting portion 334 of the seal portion 333 rotates together with the gas sensor 1 with respect to the sealed portion 53, while partially in the radial direction. It locally contacts the sealed portion 53. In this way, the attachment structure of the gas sensor 1 in which the entire circumference of the contact portion 334 is in close contact with the sealed portion 53 is formed with a change in the circumferential direction between the contact portion 334 and the sealed portion 53.
 以下、本例の作用効果について説明する。
 ガスセンサ1においては、当接部334を有することにより、ガスセンサ1の生産性を向上させると共に、ガスセンサ1と被取付部5との間におけるシール性及び電気導電性を向上させる。
Hereinafter, the function and effect of this example will be described.
In the gas sensor 1, by having the contact portion 334, the productivity of the gas sensor 1 is improved, and the sealing performance and the electrical conductivity between the gas sensor 1 and the attached portion 5 are improved.
 具体的には、ガスセンサ1を被取付部5に固定する際には、ハウジング3のネジ332を被取付部5のネジ孔51に螺合させる。このとき、被取付部5に対して、ガスセンサ1の全体を回転させることとなり、被取付部5に対してハウジング3が回転することとなる。したがって、被取付部5の被シール部53に対して、ハウジング3のシール部333に設けられた当接部334が、回転しながら接近する。そして、当接部334と被シール部53とが接触すると、ネジ332とネジ孔51との螺合で生じる軸力が、当接部334と被シール部53との間に加わる。この軸力が加わった状態で、当接部334が被シール部53に対して回転することにより、当接部334と被シール部53とが互いに擦れ合う。そのため、当接部334と被シール部53との間に存在する酸化被膜や異物を除去することができる。これにより、酸化被膜や異物を除去する工程が不要となり、ガスセンサ1の生産性が向上する。 Specifically, when the gas sensor 1 is fixed to the attached portion 5, the screw 332 of the housing 3 is screwed into the screw hole 51 of the attached portion 5. At this time, the entire gas sensor 1 is rotated with respect to the attached portion 5, and the housing 3 is rotated with respect to the attached portion 5. Therefore, the contact portion 334 provided on the seal portion 333 of the housing 3 approaches the sealed portion 53 of the attached portion 5 while rotating. When the contact portion 334 and the sealed portion 53 come into contact with each other, an axial force generated by screwing between the screw 332 and the screw hole 51 is applied between the contact portion 334 and the sealed portion 53. With the axial force applied, the contact portion 334 rotates relative to the sealed portion 53, and the contact portion 334 and the sealed portion 53 rub against each other. Therefore, an oxide film and foreign matter existing between the contact portion 334 and the sealed portion 53 can be removed. Thereby, the process of removing an oxide film and a foreign material becomes unnecessary, and the productivity of the gas sensor 1 is improved.
 また、当接部334と被シール部53とを局部的に接触させることにより、当接部334に軸力が集中する。そのため、当接部334及び被シール部53の一方又は両方が、他方の形状に沿うように変形し、互いに密着する。これにより、当接部334の形状と被シール部53との間の電気導電性及びシール性が向上する。仮に、当接部334及び被シール部53の接触面の加工精度が低い場合でも、当接部334と被シール部53とはその全周において確実に接触する。 Also, the axial force concentrates on the contact portion 334 by bringing the contact portion 334 and the sealed portion 53 into contact with each other locally. Therefore, one or both of the contact part 334 and the sealed part 53 are deformed so as to conform to the other shape and are in close contact with each other. Thereby, the electrical conductivity and sealing performance between the shape of the contact part 334 and the sealed part 53 are improved. Even if the processing accuracy of the contact surfaces of the contact part 334 and the sealed part 53 is low, the contact part 334 and the sealed part 53 are reliably in contact with each other on the entire circumference.
 また、シール部333は、ガスセンサ1の軸方向Lにおいて、ガスセンサ1の先端側に向かうにつれて縮径するテーパ面335として形成されている。当接部334は、ネジ孔51の開口縁52と当接するよう、テーパ面335の一部として形成されている。そのため、当接部334と被シール部53との接触面積が低減され、電気導電性及びシール性がさらに向上する。また、ハウジング3は単純な形状を有しており、当接部334の形成が容易となっている。 Further, the seal portion 333 is formed as a tapered surface 335 whose diameter decreases in the axial direction L of the gas sensor 1 toward the tip side of the gas sensor 1. The contact portion 334 is formed as a part of the tapered surface 335 so as to contact the opening edge 52 of the screw hole 51. Therefore, the contact area between the abutting portion 334 and the sealed portion 53 is reduced, and the electrical conductivity and sealing performance are further improved. Further, the housing 3 has a simple shape, and the contact portion 334 can be easily formed.
 以上のごとく、本例のガスセンサ1は、その生産性が向上されると共に、被取付部5との間の電気導電性及びシール性が向上される。 As described above, the productivity of the gas sensor 1 of this example is improved, and the electrical conductivity and the sealing performance with the attached portion 5 are improved.
(実施例2)
 本例のガスセンサ1は、図4及び図5に示すごとく、実施例1のガスセンサ1と一部の形状において異なる。
 本例のガスセンサ1のシール部333は、軸方向Lと直交する方向に延びるシール面336と、シール面336から被シール部53の方に突出した、当接部334としてのシール突部337とを有している。シール突部337は、ガスセンサ1の中心軸線を中心とする円環状をなしており、その断面形状は、略半円形状をなしている。
 その他の構成は実施例1と同様である。また、本例においても実施例1と同様の作用効果を得ることができる。以下の各実施形態及び各実施例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
(Example 2)
As shown in FIGS. 4 and 5, the gas sensor 1 of this example differs from the gas sensor 1 of Example 1 in a part of the shape.
The seal portion 333 of the gas sensor 1 of the present example includes a seal surface 336 extending in a direction orthogonal to the axial direction L, and a seal protrusion 337 as a contact portion 334 protruding from the seal surface 336 toward the sealed portion 53. have. The seal protrusion 337 has an annular shape centered on the central axis of the gas sensor 1 and has a substantially semicircular cross section.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment can be obtained. Of the reference numerals used in the drawings relating to the following embodiments and examples, the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
(実施例3)
 本例のガスセンサ1は、図6及び図7に示すごとく、実施例2のそれとは異なる形状のシール突部337を有する。
 すなわち、ガスセンサ1のシール部333は、複数のシール突部337を有している。シール突部337は被シール部53に向けて突出しており、被シール部53の全周に当接し、複数の当接部334を形成する。シール突部337は、図7に示すように、シール面336に複数の溝を同軸的に形成することにより構成される。言い換えれば、シール突部337は、円環状となっており、ガスセンサ1の中心軸線を中心とする同心円状に配置されている。シール突部337は、ガスセンサ1の軸方向における縦断面形状は、略長方形状をなしている。
 その他の構成は実施例1と同様である。また、本例においても実施例1と同様の作用効果を奏する。
(Example 3)
As shown in FIGS. 6 and 7, the gas sensor 1 of this example includes a seal protrusion 337 having a shape different from that of the second embodiment.
That is, the seal portion 333 of the gas sensor 1 has a plurality of seal protrusions 337. The seal projection 337 protrudes toward the sealed portion 53 and abuts the entire circumference of the sealed portion 53 to form a plurality of abutting portions 334. As shown in FIG. 7, the seal protrusion 337 is formed by coaxially forming a plurality of grooves on the seal surface 336. In other words, the seal protrusions 337 are annular and are arranged concentrically around the central axis of the gas sensor 1. The longitudinal direction of the seal protrusion 337 in the axial direction of the gas sensor 1 is substantially rectangular.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
(実施例4)
 本例のガスセンサ1は、図8に示すごとく、その一部において実施例1のガスセンサ1と異なる形状をしている。
 排気管のボス部の端面として形成された被シール部53は、ガスセンサ1の軸方向Lにおける先端側に向かうにつれて縮径するテーパ形状に形成されている。ガスセンサ1における当接部334は、テーパ形状の被シール部53に当接する。
 その他の構成は実施例1と同様である。また、本例においても実施例1と同様の作用効果を奏する。
Example 4
As shown in FIG. 8, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 1 in a part thereof.
The sealed portion 53 formed as the end face of the boss portion of the exhaust pipe is formed in a tapered shape that is reduced in diameter toward the distal end side in the axial direction L of the gas sensor 1. The contact portion 334 in the gas sensor 1 contacts the tapered sealed portion 53.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
(実施例5)
 本例のガスセンサ1は、図9に示すごとく、その一部において実施例4のガスセンサ1と異なる形状をしている。
 ガスセンサ1のシール部333には、ガスセンサ1の軸方向Lにおいて、ガスセンサ1の先端側に向かうにつれて外径が縮径する外周側テーパ面338と、外周側テーパ面338と比較して緩やかに外径が縮径する内周側テーパ面339とが形成されている。内周側テーパ面339は、外周側テーパ面338の内周側に隣接して形成されている。当接部334は、外周側テーパ面338と内周側テーパ面339との境界に形成された凸部からなる。また、本例の被シール部53も、実施例4と同様に、テーパ形状に形成されている。
 その他の構成は実施例1と同様である。本例においても実施例1と同様の作用効果を得ることができる。
(Example 5)
As shown in FIG. 9, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 4 in a part thereof.
In the axial direction L of the gas sensor 1, the seal portion 333 of the gas sensor 1 is loosened as compared with the outer peripheral side taper surface 338 and the outer peripheral side taper surface 338 whose outer diameter is reduced toward the front end side of the gas sensor 1. An inner peripheral tapered surface 339 having a reduced diameter is formed. The inner peripheral taper surface 339 is formed adjacent to the inner peripheral side of the outer peripheral taper surface 338. The contact portion 334 includes a convex portion formed at the boundary between the outer peripheral taper surface 338 and the inner peripheral taper surface 339. Further, the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment.
Other configurations are the same as those of the first embodiment. Also in this example, it is possible to obtain the same effect as that of the first embodiment.
(実施例6)
 本例のガスセンサ1は、図10に示すごとく、その一部において実施例5のガスセンサ1と異なる形状をしている。
 ガスセンサ1のシール部333は、外周側テーパ面338と、内周側テーパ面339と、外周側テーパ面338と内周側テーパ面339との境界に形成された、当接部334としてのシール突部337とを有している。シール突部337は、シール部333から被シール部53に向けて突出して形成されている。シール突部337は、ガスセンサ1の中心軸線を中心とする円環状をなしており、その断面形状は、略半円形状をなしている。また、本例の被シール部53も、実施例4と同様に、テーパ形状に形成されている。
 その他の構成は実施例1と同様である。本例においても実施例1と同様の作用効果を奏する。
(Example 6)
As shown in FIG. 10, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 5 in a part thereof.
The seal portion 333 of the gas sensor 1 is a seal as a contact portion 334 formed at the boundary between the outer peripheral side taper surface 338, the inner peripheral side taper surface 339, and the outer peripheral side taper surface 338 and the inner peripheral side taper surface 339. And a protrusion 337. The seal protrusion 337 is formed so as to protrude from the seal portion 333 toward the sealed portion 53. The seal protrusion 337 has an annular shape centered on the central axis of the gas sensor 1 and has a substantially semicircular cross section. Further, the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
(実施例7)
 本例のガスセンサ1は、図11に示すごとく、その一部において実施例4のガスセンサ1と異なる形状をしている。
 ガスセンサ1の当接部334は、係合部31の先端外側の角部として形成されている。また、被シール部53も、実施例4と同様に、テーパ形状に形成されている。そして、本例の当接部334はテーパ形状の被シール部53に当接する。
 その他の構成は実施例1と同様である。また、本例においても実施例1と同様の作用効果を奏する。
(Example 7)
As shown in FIG. 11, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 4 in a part thereof.
The abutting portion 334 of the gas sensor 1 is formed as a corner portion on the outer side of the distal end of the engaging portion 31. Further, the sealed portion 53 is also formed in a tapered shape as in the fourth embodiment. The contact portion 334 of this example contacts the tapered sealed portion 53.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
(実施例8)
 本例のガスセンサ1は、図12に示すごとく、その一部において実施例7のガスセンサ1と異なる形状をしている。
 ガスセンサ1の係合部31は、円形状の外形を有する先端部311と、六角形状の外形を有し先端部311よりも外形が小さい基端部312とを有している。当接部334は、先端部311のガスセンサ1の先端に近い角部として形成されている。また、本例の被シール部53も、実施例4と同様に、テーパ形状に形成されている。そして、本例の当接部334はテーパ形状の被シール部53に当接する。
 その他の構成は実施例1と同様である。本例においても実施例1と同様の作用効果を奏する。
(Example 8)
As shown in FIG. 12, the gas sensor 1 of this example has a shape different from that of the gas sensor 1 of Example 7 in a part thereof.
The engaging portion 31 of the gas sensor 1 has a distal end portion 311 having a circular outer shape and a proximal end portion 312 having a hexagonal outer shape and a smaller outer shape than the distal end portion 311. The contact portion 334 is formed as a corner portion of the tip portion 311 close to the tip of the gas sensor 1. Further, the sealed portion 53 of the present example is also formed in a tapered shape as in the fourth embodiment. The contact portion 334 of this example contacts the tapered sealed portion 53.
Other configurations are the same as those of the first embodiment. Also in this example, the same effects as those of the first embodiment are obtained.
 本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present invention is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the invention.

Claims (8)

  1.  被測定ガス中の所定ガス成分の濃度を検出するセンサ素子(2)と、該センサ素子の正極と電気的に接続された金属端子(23)を内側に保持する絶縁碍子(25)と、上記センサ素子を内側に保持すると共に上記センサ素子の負極と電気的に接続されたハウジング(3)とを有するガスセンサ(1)であって、
     上記ハウジングは、上記ガスセンサが固定される被取付部(5)に形成されたネジ孔(51)と螺合可能なネジ(332)と、上記ネジ孔の開口縁の周囲を囲むように形成された被シール部(53)と対向して配設されるシール部(333)とを有しており、
     前記シール部(333)は、上記被シール部(53)の径方向において、被シール部(53)の一部に当接すると共に該被シール部(53)の全周に環状に当接する当接部(334)を有している、ガスセンサ。
    A sensor element (2) for detecting a concentration of a predetermined gas component in the gas to be measured; an insulator (25) for holding a metal terminal (23) electrically connected to the positive electrode of the sensor element; A gas sensor (1) having a housing (3) that holds the sensor element inside and is electrically connected to the negative electrode of the sensor element,
    The housing is formed so as to surround a screw hole (51) formed in a mounting portion (5) to which the gas sensor is fixed and a screw (332) that can be screwed together, and an opening edge of the screw hole. A seal part (333) disposed opposite to the sealed part (53),
    The seal portion (333) is in contact with a part of the sealed portion (53) in the radial direction of the sealed portion (53) and in contact with the entire circumference of the sealed portion (53) in an annular shape. A gas sensor having a portion (334).
  2.  上記シール部は、上記ガスセンサの軸方向(L)における先端側に向かうにつれて縮径するテーパ面として形成されており、
     上記当接部は、上記ネジ孔の開口縁(52)と当接するよう、上記テーパ面の一部として形成されている、請求項1に記載のガスセンサ。
    The seal portion is formed as a tapered surface that is reduced in diameter toward the distal end side in the axial direction (L) of the gas sensor,
    The gas sensor according to claim 1, wherein the contact portion is formed as a part of the tapered surface so as to contact the opening edge (52) of the screw hole.
  3.  上記当接部は、上記シール部から上記被シール部に向かって突出するシール突部(337)からなる、請求項1に記載のガスセンサ。 The gas sensor according to claim 1, wherein the contact portion includes a seal protrusion (337) protruding from the seal portion toward the sealed portion.
  4.  上記シール突部(337)は、同心円状に複数形成されている、請求項3に記載のガスセンサ。 The gas sensor according to claim 3, wherein a plurality of the seal protrusions (337) are concentrically formed.
  5.  上記当接部は、上記ガスセンサの軸方向における先端側に向かうにつれて縮径する上記被シール部に当接する、請求項1~4のいずれか一項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 4, wherein the abutting portion abuts on the sealed portion whose diameter is reduced toward a distal end side in the axial direction of the gas sensor.
  6.  上記シール部は、上記ネジの外径よりも拡径した係合部(31)の先端側の端面として形成されており、
     上記当接部は、上記係合部の先端外側の角部として形成されており、かつ、上記ガスセンサの軸方向における先端側に向かうにつれて縮径する上記被シール部に当接する、請求項1に記載のガスセンサ。
    The seal portion is formed as an end surface on the distal end side of the engaging portion (31) whose diameter is larger than the outer diameter of the screw,
    2. The contact portion according to claim 1, wherein the contact portion is formed as a corner portion on the outer side of the distal end of the engagement portion, and abuts on the sealed portion whose diameter is reduced toward the distal end side in the axial direction of the gas sensor. The gas sensor described.
  7.  上記係合部は、円形状の外形を有する先端側部分と、六角形状の外形を有し上記先端側部分よりも外形が小さい基端側部分とを有しており、
     上記当接部は、上記先端側部分の先端外側の角部として形成されている、請求項6に記載のガスセンサ。
    The engaging portion has a distal end portion having a circular outer shape, and a proximal end portion having a hexagonal outer shape and having a smaller outer shape than the distal end portion,
    The gas sensor according to claim 6, wherein the abutting portion is formed as a corner portion outside the distal end of the distal end side portion.
  8.  上記ガスセンサの上記ネジが上記被取付部の上記ネジ孔に螺合される際に、上記シール部の上記当接部が上記ガスセンサと共に回転して上記被シール部に当接するよう構成されている、請求項1~7のいずれか一項に記載のガスセンサ。 When the screw of the gas sensor is screwed into the screw hole of the attached portion, the contact portion of the seal portion rotates with the gas sensor and comes into contact with the sealed portion. The gas sensor according to any one of claims 1 to 7.
PCT/JP2016/057962 2015-03-24 2016-03-14 Gas sensor WO2016152621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680017572.8A CN107407654B (en) 2015-03-24 2016-03-14 Gas sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-061091 2015-03-24
JP2015061091 2015-03-24
JP2015-207350 2015-10-21
JP2015207350A JP6641877B2 (en) 2015-03-24 2015-10-21 Gas sensor and exhaust pipe to which gas sensor is attached

Publications (1)

Publication Number Publication Date
WO2016152621A1 true WO2016152621A1 (en) 2016-09-29

Family

ID=56977405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057962 WO2016152621A1 (en) 2015-03-24 2016-03-14 Gas sensor

Country Status (1)

Country Link
WO (1) WO2016152621A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106691A (en) * 1973-11-21 1975-08-22
JPH0399349U (en) * 1990-01-30 1991-10-17
WO2014139802A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Special seal geometry for exhaust gas sensors for producing high leak tightness with respect to the measurement chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106691A (en) * 1973-11-21 1975-08-22
JPH0399349U (en) * 1990-01-30 1991-10-17
WO2014139802A1 (en) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Special seal geometry for exhaust gas sensors for producing high leak tightness with respect to the measurement chamber

Similar Documents

Publication Publication Date Title
US9354142B2 (en) Gas sensor
JP5682637B2 (en) Gas sensor
US10120015B2 (en) Method for inspecting insulator for spark plug
JP2012233788A (en) Gas sensor
US11359995B2 (en) Gas sensor
US9857343B2 (en) Gas sensor with a ribbed protective cover
US9581503B2 (en) Sensor and sensor mounting structure
JP2010223750A (en) Gas sensor and method of manufacturing the same
WO2019244391A1 (en) Gas sensor
JP2008286731A (en) Sensor
CN107407654B (en) Gas sensor
WO2019049430A1 (en) Fluid property detection device
JP2015108511A (en) Gas sensor
JP2008298535A (en) Sensor
WO2016152621A1 (en) Gas sensor
US10393715B2 (en) Gas sensor having a tubular body tightly fitted to a tapered portion of a metallic shell
US10775342B2 (en) Gas sensor
JP6886880B2 (en) Gas sensor
JP2006059588A (en) Spark plug and internal combustion engine equipped with it
JP6916894B2 (en) Spark plug with improved airtightness
JP5099786B2 (en) Gas sensor
JP5154847B2 (en) Oil check sensor
JP6563845B2 (en) Sensor
WO2023067855A1 (en) Gas sensor
JP7126900B2 (en) gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768524

Country of ref document: EP

Kind code of ref document: A1