WO2016152480A1 - Motor core and axial gap-type motor - Google Patents

Motor core and axial gap-type motor Download PDF

Info

Publication number
WO2016152480A1
WO2016152480A1 PCT/JP2016/056953 JP2016056953W WO2016152480A1 WO 2016152480 A1 WO2016152480 A1 WO 2016152480A1 JP 2016056953 W JP2016056953 W JP 2016056953W WO 2016152480 A1 WO2016152480 A1 WO 2016152480A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic steel
sheet
motor
rotor
steel plate
Prior art date
Application number
PCT/JP2016/056953
Other languages
French (fr)
Japanese (ja)
Inventor
道生 河本
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2016152480A1 publication Critical patent/WO2016152480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors

Definitions

  • This invention relates to a motor core and an axial gap type motor.
  • Japanese Patent Laid-Open No. 63-310355 discloses an induction motor rotor for the purpose of facilitating manufacture (Patent Document 1).
  • the rotor of the induction motor disclosed in Patent Document 1 has a cylindrical shape, and two pairs of stators are disposed on both sides in the axial direction with a gap therebetween.
  • a rotor of an induction motor is formed by winding a thin copper-coated steel strip around a copper ring in a flat-wise manner and laminating them together.
  • Japanese Patent Laid-Open No. 2012-210106 discloses a wound iron core for the purpose of reducing iron loss and cost (Patent Document 2).
  • the wound iron core disclosed in Patent Document 2 is used for a stator of an axial gap motor.
  • the wound iron core is composed of a spiral magnetic thin plate, and notches are formed at a plurality of positions from the start to the end of winding of the magnetic thin plate.
  • Patent Document 2 as a method of reducing eddy current loss generated in the stator, a technique of forming notches at a plurality of portions of a spiral magnetic thin plate is disclosed.
  • the technique disclosed in Patent Literature 2 since the winding start and the winding end exist in the spiral magnetic thin plate, the roundness of the wound iron core is deteriorated. This impairs the magnetic balance of the wound core in the circumferential direction.
  • the rigidity of the wound iron core is reduced due to the formation of the notch. For this reason, when providing a notch part in a magnetic thin plate, it is necessary to fully consider ensuring the rigidity of a wound iron core.
  • an object of the present invention is to solve the above-described problem, and to provide a motor core having a good magnetic balance and high rigidity, and an axial gap motor having such a motor core. is there.
  • a motor core according to the present invention includes a sheet-like conductor that is wound in an annular shape and has a dividing portion that is divided in the circumferential direction thereof, and a joining member that joins the sheet-like conductor at the dividing portion.
  • a plurality of sheet-like conductors are stacked in the radial direction.
  • the dividing portion is provided so as to be aligned on a line intersecting the radial direction between the sheet-like conductor disposed on the inner peripheral side and the sheet-shaped conductor disposed on the outer peripheral side.
  • An axial gap motor includes a rotor that is rotatably supported around a winding center axis of a sheet-like conductor, and an axial direction of the winding center axis of the sheet-like conductor with respect to the rotor. And a stator arranged with a gap. At least one of the rotor and the stator has the motor core.
  • FIG. 2 is a perspective view showing an appearance of a stator core in the axial gap type motor in FIG. 1. It is a top view which shows the stator core in FIG.
  • FIG. 4 is a plan view of a stator core showing a range surrounded by a two-dot chain line IV in FIG. 3.
  • FIG. 5 is an enlarged plan view of a stator core showing a range surrounded by a two-dot chain line V in FIG. 4. It is a top view which shows the 1st modification of the stator core in FIG. It is a top view which shows the 2nd modification of the stator core in FIG. It is a top view which shows the 3rd modification of the stator core in FIG.
  • (Embodiment 1) 1 is a cross-sectional view showing an axial gap type motor including a stator core according to Embodiment 1 of the present invention.
  • the axial gap type motor 110 includes a rotor 10 and a stator 30 as main components.
  • the rotor 10 is supported so as to be rotatable about a virtual center axis 101 shown in the figure.
  • the rotor 10 rotates with the central axis 101 as the rotation central axis in accordance with the driving of the motor.
  • the stator 30 is provided to face the rotor 10 with a gap (gap) provided in the rotation axis direction of the rotor 10.
  • the rotor 10 and the stator 30 are provided side by side in the rotation axis direction of the rotor 10.
  • FIG. 2 is a perspective view showing the appearance of the stator core in the axial gap type motor shown in FIG.
  • stator 30 is configured by combining stator core 32, bobbin 68, coil 66, and cooling flange 64.
  • the stator core 32 as a whole has a cylindrical shape in which a hole penetrating along the rotation axis of the rotor 10 is formed.
  • the stator core 32 has a yoke part 34 and a plurality of teeth parts 33 as its constituent parts.
  • the yoke portion 34 has a disk shape that goes around the rotation center axis of the rotor 10.
  • the plurality of teeth portions 33 are provided side by side in the circumferential direction around the rotation center axis of the rotor 10.
  • the plurality of tooth portions 33 are provided at equal intervals around the rotation center axis of the rotor 10.
  • Each tooth portion 33 is provided so as to protrude from the yoke portion 34 toward the rotor 10.
  • a coil 66 is wound around the plurality of teeth portions 33 via bobbins 68. The coil 66 is appropriately connected between the plurality of tooth portions 33 by a crossover 60.
  • the stator core 32 has a plurality of electromagnetic steel plates 41.
  • the electromagnetic steel plate 41 has a sheet shape.
  • the electromagnetic steel sheet 41 has any thickness of 0.15 mm, 0.20 mm, 0.35 mm, and 0.50 mm.
  • the electromagnetic steel plate 41 is wound in an annular shape.
  • the electromagnetic steel sheet 41 is provided such that its winding center axis coincides with the rotation center axis (center axis 101) of the rotor 10.
  • the plurality of electromagnetic steel plates 41 are stacked in the radial direction with respect to the winding center axis of each electromagnetic steel plate 41 (in other words, in the radial direction with respect to the rotation center axis of the rotor 10).
  • the rotor 10 is configured by combining a rotor core 12 and a plurality of magnets 14.
  • the rotor core 12 as a whole has a cylindrical shape in which a hole penetrating along the rotation center axis of the rotor 10 is formed.
  • the rotor core 12 has a plurality of electromagnetic steel plates 21. Since the shape of the electromagnetic steel plate 21 and the form in which the electromagnetic steel plate 21 is provided are the same as the electromagnetic steel plate 41 in the stator core 32, description thereof will not be repeated.
  • the magnetic flux formed in the stator core 32 (rotor core 12) when the motor is driven does not intersect with the boundary between the electromagnetic steel plates 41 (electromagnetic steel plates 21) adjacent in the radial direction, and each of the electromagnetic steel plates 41. It flows in the plate of (each electromagnetic steel plate 21). Thereby, it is suppressed that a loss arises in the magnetic flux flow in stator core 32 (rotor core 12).
  • the magnet 14 is provided so as to cover the surface of the rotor core 12 facing the stator core 32.
  • the magnet 14 faces the stator core 32 through a gap.
  • the plurality of magnets 14 are provided side by side in the circumferential direction about the rotation center axis of the rotor 10.
  • the cooling flange 64 is fixed to the stator core 32 from the opposite side to the rotor 10 in the axial direction of the rotation center axis of the rotor 10.
  • the cooling flange 64 is formed with a refrigerant path through which the refrigerant can flow.
  • the stator 30 that has generated heat as the motor is driven is cooled by circulating the coolant through the cooling flange 64.
  • the axial gap type motor 110 having such a structure has a shorter overall length of the motor in the direction of the rotor 10 and makes the space on the inner diameter side of the rotor 10 more effective when compared with a general radial gap type motor. It has the feature that it can be used. As an example, the axial gap type motor 110 is suitably used as the power of the main shaft of a lathe.
  • stator core 32 provided in the axial gap motor 110 in FIG. 1 will be described in detail.
  • FIG. 3 is a plan view showing the stator core in FIG. In the figure, a laminated body of the electromagnetic steel plates 41 before the teeth portion 33 is formed is shown.
  • FIG. 4 is a plan view of the stator core showing a range surrounded by a two-dot chain line IV in FIG. 3.
  • FIG. 5 is an enlarged plan view of the stator core showing a range surrounded by a two-dot chain line V in FIG.
  • the stator core 32 is configured by laminating a plurality of electromagnetic steel plates 41 in the radial direction with respect to the winding center axis of each electromagnetic steel plate 41.
  • Each electromagnetic steel plate 41 is provided so as to have substantially the same diameter around the rotation center axis (center axis 101) of the rotor 10.
  • a dividing portion 46 is formed in the electromagnetic steel plate 41.
  • the division part 46 is provided so that the electromagnetic steel plate 41 may be divided in the circumferential direction.
  • the dividing surface 47 and the dividing surface 48 are end surfaces formed on the electromagnetic steel plate 41 by the dividing part 46 and face each other with the dividing part 46 interposed therebetween.
  • the dividing portion 46 is arranged between the electromagnetic steel plate 41 arranged on the inner peripheral side and the electromagnetic steel plate 41 arranged on the outer peripheral side, on a line intersecting the radial direction with respect to the winding center axis of the electromagnetic steel plate 41. Is provided.
  • the virtual straight line 116 is a straight line extending in a direction oblique to the radial direction.
  • the dividing surface 47 and the dividing surface 48 are abutted in the circumferential direction with respect to the winding central axis of the electromagnetic steel plate 41 through a minute gap in which a joining member 51 described later is inserted.
  • the stator core 32 further includes a joining member 51.
  • the joining member 51 is provided so as to join the electromagnetic steel plate 41 at the dividing portion 46.
  • the joining member 51 is provided so as to fill a minute gap between the dividing surface 47 and the dividing surface 48 that are abutted in the circumferential direction.
  • the joining member 51 for example, an impregnating adhesive that joins the electromagnetic steel sheet 41 by dipping into a minute gap between the dividing surface 47 and the dividing surface 48 in the dividing portion 46 is used.
  • the joining member 51 is further provided so as to join the electromagnetic steel plates 41 adjacent in the radial direction.
  • the electromagnetic steel plate 41 is formed with a plurality of divided portions 46.
  • the plurality of dividing portions 46 are provided at intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41.
  • the plurality of dividing portions 46 are provided at equal intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41.
  • Each electromagnetic steel plate 41 is divided at equal intervals in the circumferential direction with respect to the winding central axis of the electromagnetic steel plate 41 by a plurality of dividing portions 46.
  • each electromagnetic steel plate 41 is formed with divided portions 46A, 46B, 46C, 46D, 46E, 46F, 46G, 46H, 46I, 46J, 46K, and 46L.
  • the dividing portions 46A to 46L are provided at 30 ° intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41.
  • the angle formed between the imaginary straight line 116 in which the divided portions 46 of the divided portions 46A to 46L are arranged and the radial direction (direction indicated by the arrow 102) with respect to the winding central axis of the electromagnetic steel sheet 41 is the same between the divided portions 46A to 46L. It is.
  • An electrical steel sheet having a phase range between a one-dot chain line 111 extending in the radial direction and a one-dot chain line 112 extending in the radial direction and forming an angle of ⁇ 30 °.
  • the dividing portions 46A to 46L are provided so that the dividing portion 46 exists uniformly in the circumferential direction with respect to the winding center axis of the electromagnetic steel sheet 41.
  • the present invention includes a stator core in which such a slight shift occurs.
  • stator core 32 and the axial gap motor 110 in the present embodiment will be described.
  • the flow of eddy current is interrupted by providing the electromagnetic steel sheet 41 with a dividing portion 46 for dividing the electromagnetic steel sheet 41 in the circumferential direction.
  • the stator core is configured by spirally winding the belt-shaped electromagnetic steel plate
  • the roundness of the stator core with respect to the central shaft 101 is caused by imbalance due to the start and end of winding of the electromagnetic steel plate. Becomes worse. As a result, the magnetic balance of the stator core around the central axis 101 may be impaired.
  • the electromagnetic steel plate 41 since the plurality of electromagnetic steel plates 41 wound in an annular shape around the central axis 101 are laminated in the radial direction, the electromagnetic steel plate 41 is unbalanced due to the start and end of winding. It does not occur. Furthermore, since the plurality of dividing portions 46 are arranged at equal intervals in the circumferential direction, the electromagnetic steel plates 41 can be arranged more evenly around the axis of the central axis 101. As a result, the magnetic balance of the stator core 32 can be improved.
  • the parting part 46 is provided so that it may line up on the virtual straight line 116 between the electromagnetic steel plates 41 arrange
  • the teeth portion 33 in FIG. 2 is formed by machining a laminate of the electromagnetic steel plates 41.
  • the structure of the stator core 32 in the present embodiment is more preferably applied because the laminated body of the electromagnetic steel sheets 41 needs to have rigidity that can withstand the load during machining.
  • the stator core 32 as the motor core in the present embodiment is wound in an annular shape and divided in the circumferential direction.
  • An electromagnetic steel plate 41 as a sheet-like conductor having 46 and a joining member 51 for joining the electromagnetic steel plate 41 at the dividing portion 46 are provided.
  • a plurality of electromagnetic steel plates 41 are stacked in the radial direction.
  • the dividing portion 46 is provided between the electromagnetic steel plate 41 arranged on the inner peripheral side and the electromagnetic steel plate 41 arranged on the outer peripheral side so as to be arranged on a virtual straight line 116 as a line intersecting with the radial direction.
  • the stator core 32 and the axial gap type motor 110 configured as described above, the stator core 32 having a good magnetic balance and high rigidity can be realized. Further, by using such a stator core 32, it is possible to realize the axial gap type motor 110 having excellent magnetic characteristics and high reliability with respect to rigidity. Further, by using the stator core 32 having excellent roundness, the center of the motor can be easily set, so that the workability at the time of assembling the axial gap type motor 110 can be improved.
  • stator core 32 electromagnetically steel plate 41
  • rotor core 12 electromagnetically steel plate 21
  • the vibration performance and noise performance of the axial gap type motor 110 can be improved.
  • FIG. 6 is a plan view showing a first modification of the stator core in FIG.
  • each electromagnetic steel plate 41 is formed with divided portions 46 ⁇ / b> A, 46 ⁇ / b> B, 46 ⁇ / b> C, 46 ⁇ / b> D, 46 ⁇ / b> E, 46 ⁇ / b> F.
  • the dividing portions 46A to 46F are provided at intervals of 60 ° in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41.
  • the dividing portions 46A to 46F are provided at equal intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41, but the dividing portions 46 in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41 are provided. Are not provided to exist uniformly.
  • FIG. 7 is a plan view showing a second modification of the stator core in FIG.
  • FIG. 8 is a plan view showing a third modification of the stator core in FIG.
  • stator core 32 and the axial gap type motor 110 according to the second embodiment of the present invention configured as described above, the effects described in the first embodiment can be similarly obtained.
  • a motor core according to the present invention includes a sheet-like conductor that is wound in an annular shape and has a dividing portion that is divided in the circumferential direction thereof, and a joining member that joins the sheet-like conductor at the dividing portion.
  • a plurality of sheet-like conductors are stacked in the radial direction.
  • the dividing portion is provided so as to be aligned on a line intersecting the radial direction between the sheet-like conductor disposed on the inner peripheral side and the sheet-shaped conductor disposed on the outer peripheral side.
  • the roundness of the motor core can be improved by laminating a plurality of sheet-like conductors wound in an annular shape in the radial direction.
  • the magnetic balance of a motor core can be made favorable.
  • the dividing portion is provided so as to be arranged on a line intersecting the radial direction between the sheet-like conductors on the inner peripheral side and the outer peripheral side, compared with a case where the dividing portion is provided so as to be arranged on a line extending in the radial direction.
  • the bonding area of the sheet-like conductor by the bonding member can be increased.
  • the rigidity of a motor core is securable.
  • each of the plurality of sheet-like conductors has a plurality of divided portions arranged at equal intervals in the circumferential direction.
  • the magnetic balance of the motor core can be further improved.
  • the dividing portion is provided so as to be arranged on a curve intersecting with the radial direction between the sheet-like conductor arranged on the inner peripheral side and the sheet-like conductor arranged on the outer peripheral side.
  • the joining area of the sheet-like conductor by the joining member can be further increased as compared with the case where the dividing portions are provided so as to be arranged on a straight line intersecting the radial direction. .
  • An axial gap motor includes a rotor that is rotatably supported around a winding center axis of a sheet-like conductor, and an axial direction of the winding center axis of the sheet-like conductor with respect to the rotor. And a stator arranged with a gap. At least one of the rotor and the stator has the motor core described in any of the above.
  • an axial gap type motor having an excellent magnetic balance and having a highly rigid motor core can be realized.
  • the present invention is applied to, for example, a stator core and / or a stator core of an axial gap type motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)

Abstract

A stator core (32) is provided with: electrical steel sheets (41) which are annularly wound and have dividing parts (46) formed in the circumferential direction of the sheet; and joining members that join the electrical steel sheets (41) together at the dividing parts (46). Multiple electrical steel sheets (41) are laminated in the radial direction. The dividing parts (46) are disposed so as to be aligned with each other on a virtual line (116) that intersects the radial direction and between the electrical steel sheet (41) disposed on the inner peripheral side and the electrical steel sheet (41) disposed on the outer peripheral side. Due to this configuration, the motor core exhibits good magnetic balance and high rigidity.

Description

モータコアおよびアキシャルギャップ型モータMotor core and axial gap type motor
 この発明は、モータコアおよびアキシャルギャップ型モータに関する。 This invention relates to a motor core and an axial gap type motor.
 従来のモータコアに関して、たとえば、特開昭63-310355号公報には、製作を容易にすることを目的とした、誘導電動機の回転子が開示されている(特許文献1)。特許文献1に開示された誘導電動機の回転子は、円筒形状を有し、その軸方向の両側には、ギャップを隔てて二対の固定子が配置されている。誘導電動機の回転子は、銅リングの周囲に、薄い銅被膜鋼帯をフラットワイズに巻き回して積層し、一体に固めて形成されている。 Regarding a conventional motor core, for example, Japanese Patent Laid-Open No. 63-310355 discloses an induction motor rotor for the purpose of facilitating manufacture (Patent Document 1). The rotor of the induction motor disclosed in Patent Document 1 has a cylindrical shape, and two pairs of stators are disposed on both sides in the axial direction with a gap therebetween. A rotor of an induction motor is formed by winding a thin copper-coated steel strip around a copper ring in a flat-wise manner and laminating them together.
 また、特開2012-210106号公報には、低鉄損および低コストとすることを目的とした、巻鉄心が開示されている(特許文献2)。特許文献2に開示された巻鉄心は、アキシャルギャップモータのステータに用いられている。巻鉄芯は、渦巻き状の磁性薄板から構成され、その磁性薄板の巻き始まりから巻き終わりのまでの複数個所には、切り欠き部が形成されている。 Japanese Patent Laid-Open No. 2012-210106 discloses a wound iron core for the purpose of reducing iron loss and cost (Patent Document 2). The wound iron core disclosed in Patent Document 2 is used for a stator of an axial gap motor. The wound iron core is composed of a spiral magnetic thin plate, and notches are formed at a plurality of positions from the start to the end of winding of the magnetic thin plate.
特開昭63-310355号公報JP-A-63-310355 特開2012-210106号公報JP 2012-210106 A
 上述の特許文献1に開示されるように、回転子(ロータ)と固定子(ステータ)とがモータの回転軸方向にギャップを設けて配置されるアキシャルギャップ型のモータにおいて、薄い銅被膜鋼帯を巻き回して回転子を形成する技術が知られている。しかしながら、このような回転子の構造では、複数枚の銅被膜鋼帯が積層されることにより、モータ駆動時において生じる渦電流損が大きくなるという問題がある。 As disclosed in the above-mentioned Patent Document 1, in an axial gap type motor in which a rotor (rotor) and a stator (stator) are arranged with a gap in the direction of the rotation axis of the motor, a thin copper-coated steel strip A technique for forming a rotor by winding a coil is known. However, in such a rotor structure, there is a problem that an eddy current loss generated when the motor is driven increases due to the lamination of a plurality of copper-coated steel strips.
 一方、上述の特許文献2では、ステータで発生する渦電流損を低減する方法として、渦巻き状の磁性薄板の複数個所に切り欠き部を形成する技術が開示されている。しかしながら、特許文献2に開示された技術では、渦巻き状の磁性薄板に巻き始めと巻き終わりとが存在するため、巻鉄心の真円度が悪くなる。これにより、周方向における巻鉄心の磁気的なバランスが損なわれる。また、特許文献2に開示された技術では、切り欠き部の形成に起因して巻鉄心の剛性が低下してしまう。このため、磁性薄板に切り欠き部を設けるに際しては、巻鉄心の剛性を確保することを十分に考慮する必要がある。 On the other hand, in Patent Document 2 described above, as a method of reducing eddy current loss generated in the stator, a technique of forming notches at a plurality of portions of a spiral magnetic thin plate is disclosed. However, in the technique disclosed in Patent Literature 2, since the winding start and the winding end exist in the spiral magnetic thin plate, the roundness of the wound iron core is deteriorated. This impairs the magnetic balance of the wound core in the circumferential direction. Moreover, in the technique disclosed in Patent Document 2, the rigidity of the wound iron core is reduced due to the formation of the notch. For this reason, when providing a notch part in a magnetic thin plate, it is necessary to fully consider ensuring the rigidity of a wound iron core.
 そこでこの発明の目的は、上記の課題を解決することであり、磁気的なバランスが良好であるとともに、高い剛性を備えるモータコア、および、そのようなモータコアを有するアキシャルギャップ型モータを提供することである。 Accordingly, an object of the present invention is to solve the above-described problem, and to provide a motor core having a good magnetic balance and high rigidity, and an axial gap motor having such a motor core. is there.
 この発明に従ったモータコアは、環状に巻回され、その周方向において分断された分断部を有するシート状導電体と、分断部においてシート状導電体を接合する接合部材とを備える。複数のシート状導電体が、半径方向に積層される。分断部は、内周側に配置されたシート状導電体と、外周側に配置されたシート状導電体との間で、半径方向と交差する線上に並ぶように設けられる。 A motor core according to the present invention includes a sheet-like conductor that is wound in an annular shape and has a dividing portion that is divided in the circumferential direction thereof, and a joining member that joins the sheet-like conductor at the dividing portion. A plurality of sheet-like conductors are stacked in the radial direction. The dividing portion is provided so as to be aligned on a line intersecting the radial direction between the sheet-like conductor disposed on the inner peripheral side and the sheet-shaped conductor disposed on the outer peripheral side.
 この発明に従ったアキシャルギャップ型モータは、シート状導電体の巻回中心軸を中心に回転可能に支持されるロータと、ロータに対して、シート状導電体の巻回中心軸の軸方向に隙間を設けて配置されるステータとを備える。ロータおよびステータの少なくともいずれか一方が、上記のモータコアを有する。 An axial gap motor according to the present invention includes a rotor that is rotatably supported around a winding center axis of a sheet-like conductor, and an axial direction of the winding center axis of the sheet-like conductor with respect to the rotor. And a stator arranged with a gap. At least one of the rotor and the stator has the motor core.
 この発明に従えば、磁気的なバランスが良好であるとともに、高い剛性を備えるモータコア、および、そのようなモータコアを有するアキシャルギャップ型モータを提供することができる。 According to the present invention, it is possible to provide a motor core having a good magnetic balance and high rigidity, and an axial gap motor having such a motor core.
この発明の実施の形態1におけるステータコアを備えるアキシャルギャップ型モータを示す断面図である。It is sectional drawing which shows an axial gap type motor provided with the stator core in Embodiment 1 of this invention. 図1中のアキシャルギャップ型モータにおいて、ステータコアの外観を示す斜視図である。FIG. 2 is a perspective view showing an appearance of a stator core in the axial gap type motor in FIG. 1. 図1中のステータコアを示す平面図である。It is a top view which shows the stator core in FIG. 図3中の二点鎖線IVで囲まれた範囲を示すステータコアの平面図である。FIG. 4 is a plan view of a stator core showing a range surrounded by a two-dot chain line IV in FIG. 3. 図4中の二点鎖線Vで囲まれた範囲を拡大して示すステータコアの平面図である。FIG. 5 is an enlarged plan view of a stator core showing a range surrounded by a two-dot chain line V in FIG. 4. 図3中のステータコアの第1変形例を示す平面図である。It is a top view which shows the 1st modification of the stator core in FIG. 図3中のステータコアの第2変形例を示す平面図である。It is a top view which shows the 2nd modification of the stator core in FIG. 図3中のステータコアの第3変形例を示す平面図である。It is a top view which shows the 3rd modification of the stator core in FIG.
 この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 Embodiments of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are denoted by the same reference numerals.
 (実施の形態1)
 図1は、この発明の実施の形態1におけるステータコアを備えるアキシャルギャップ型モータを示す断面図である。
(Embodiment 1)
1 is a cross-sectional view showing an axial gap type motor including a stator core according to Embodiment 1 of the present invention.
 図1を参照して、アキシャルギャップ型モータ110は、その主要な構成として、ロータ10およびステータ30を有する。 Referring to FIG. 1, the axial gap type motor 110 includes a rotor 10 and a stator 30 as main components.
 ロータ10は、図中に示す仮想上の中心軸101を中心に回転可能なように支持されている。ロータ10は、モータの駆動に伴って中心軸101を回転中心軸として回転する。ステータ30は、ロータ10の回転軸方向に隙間(ギャップ)を設けてロータ10と対向して設けられている。ロータ10とステータ30とは、ロータ10の回転軸方向に並んで設けられている。 The rotor 10 is supported so as to be rotatable about a virtual center axis 101 shown in the figure. The rotor 10 rotates with the central axis 101 as the rotation central axis in accordance with the driving of the motor. The stator 30 is provided to face the rotor 10 with a gap (gap) provided in the rotation axis direction of the rotor 10. The rotor 10 and the stator 30 are provided side by side in the rotation axis direction of the rotor 10.
 図2は、図1中のアキシャルギャップ型モータにおいて、ステータコアの外観を示す斜視図である。図1および図2を参照して、ステータ30は、ステータコア32と、ボビン68と、コイル66と、冷却フランジ64とが組み合わさって構成されている。 FIG. 2 is a perspective view showing the appearance of the stator core in the axial gap type motor shown in FIG. Referring to FIGS. 1 and 2, stator 30 is configured by combining stator core 32, bobbin 68, coil 66, and cooling flange 64.
 ステータコア32は、全体として、ロータ10の回転軸に沿って貫通する孔が形成された円筒形状を有する。 The stator core 32 as a whole has a cylindrical shape in which a hole penetrating along the rotation axis of the rotor 10 is formed.
 より具体的には、ステータコア32は、その構成部位として、ヨーク部34と、複数のティース部33とを有する。ヨーク部34は、ロータ10の回転中心軸を中心に周回する円盤形状を有する。複数のティース部33は、ロータ10の回転中心軸を中心にその周方向に並んで設けられている。複数のティース部33は、ロータ10の回転中心軸を中心に等間隔に設けられている。各ティース部33は、ヨーク部34からロータ10に向けて突出して設けられている。複数のティース部33には、ボビン68を介してコイル66が巻回されている。コイル66は、渡り線60によって、複数のティース部33の間で適当に接続されている。 More specifically, the stator core 32 has a yoke part 34 and a plurality of teeth parts 33 as its constituent parts. The yoke portion 34 has a disk shape that goes around the rotation center axis of the rotor 10. The plurality of teeth portions 33 are provided side by side in the circumferential direction around the rotation center axis of the rotor 10. The plurality of tooth portions 33 are provided at equal intervals around the rotation center axis of the rotor 10. Each tooth portion 33 is provided so as to protrude from the yoke portion 34 toward the rotor 10. A coil 66 is wound around the plurality of teeth portions 33 via bobbins 68. The coil 66 is appropriately connected between the plurality of tooth portions 33 by a crossover 60.
 ステータコア32は、複数の電磁鋼板41を有する。電磁鋼板41は、シート形状を有する。一例を挙げれば、電磁鋼板41は、0.15mm、0.20mm、0.35mmおよび0.50mmのいずれかの厚みを有する。 The stator core 32 has a plurality of electromagnetic steel plates 41. The electromagnetic steel plate 41 has a sheet shape. For example, the electromagnetic steel sheet 41 has any thickness of 0.15 mm, 0.20 mm, 0.35 mm, and 0.50 mm.
 電磁鋼板41は、環状に巻回されている。電磁鋼板41は、その巻回中心軸がロータ10の回転中心軸(中心軸101)と一致するように設けられている。複数の電磁鋼板41は、各電磁鋼板41の巻回中心軸に対する半径方向(言い換えれば、ロータ10の回転中心軸に対する半径方向)に積層されている。 The electromagnetic steel plate 41 is wound in an annular shape. The electromagnetic steel sheet 41 is provided such that its winding center axis coincides with the rotation center axis (center axis 101) of the rotor 10. The plurality of electromagnetic steel plates 41 are stacked in the radial direction with respect to the winding center axis of each electromagnetic steel plate 41 (in other words, in the radial direction with respect to the rotation center axis of the rotor 10).
 ロータ10は、ロータコア12と、複数の磁石14とが組み合わさって構成されている。 The rotor 10 is configured by combining a rotor core 12 and a plurality of magnets 14.
 ロータコア12は、全体として、ロータ10の回転中心軸に沿って貫通する孔が形成された円筒形状を有する。ロータコア12は、複数の電磁鋼板21を有する。電磁鋼板21の形状および電磁鋼板21が設けられる形態は、ステータコア32における電磁鋼板41と同様であるため、説明を繰り返さない。 The rotor core 12 as a whole has a cylindrical shape in which a hole penetrating along the rotation center axis of the rotor 10 is formed. The rotor core 12 has a plurality of electromagnetic steel plates 21. Since the shape of the electromagnetic steel plate 21 and the form in which the electromagnetic steel plate 21 is provided are the same as the electromagnetic steel plate 41 in the stator core 32, description thereof will not be repeated.
 本実施の形態では、モータの駆動時にステータコア32(ロータコア12)内に形成される磁束流れが、半径方向に隣り合う電磁鋼板41(電磁鋼板21)間の境界と交わることなく、各電磁鋼板41(各電磁鋼板21)の板内を流れることになる。これにより、ステータコア32(ロータコア12)内の磁束流れに損失が生じることを抑制する。 In the present embodiment, the magnetic flux formed in the stator core 32 (rotor core 12) when the motor is driven does not intersect with the boundary between the electromagnetic steel plates 41 (electromagnetic steel plates 21) adjacent in the radial direction, and each of the electromagnetic steel plates 41. It flows in the plate of (each electromagnetic steel plate 21). Thereby, it is suppressed that a loss arises in the magnetic flux flow in stator core 32 (rotor core 12).
 磁石14は、ステータコア32と対向するロータコア12の表面を覆うように設けられている。磁石14は、ギャップを介してステータコア32と対向している。複数の磁石14は、ロータ10の回転中心軸を中心にその周方向に並んで設けられている。 The magnet 14 is provided so as to cover the surface of the rotor core 12 facing the stator core 32. The magnet 14 faces the stator core 32 through a gap. The plurality of magnets 14 are provided side by side in the circumferential direction about the rotation center axis of the rotor 10.
 冷却フランジ64は、ロータ10の回転中心軸の軸方向において、ロータ10とは反対側からステータコア32に固定されている。冷却フランジ64には、冷媒が流通可能な冷媒路が形成されている。モータの駆動に伴って発熱したステータ30が、冷却フランジ64に冷媒が循環されることによって冷却される。 The cooling flange 64 is fixed to the stator core 32 from the opposite side to the rotor 10 in the axial direction of the rotation center axis of the rotor 10. The cooling flange 64 is formed with a refrigerant path through which the refrigerant can flow. The stator 30 that has generated heat as the motor is driven is cooled by circulating the coolant through the cooling flange 64.
 このような構造を有するアキシャルギャップ型モータ110は、一般的なラジアルギャップ型のモータと比較した場合に、ロータ10の方向におけるモータの全長が短く、また、ロータ10の内径側の空間を有効に利用できるという特徴を有する。一例として、アキシャルギャップ型モータ110は、旋盤の主軸の動力として好適に用いられる。 The axial gap type motor 110 having such a structure has a shorter overall length of the motor in the direction of the rotor 10 and makes the space on the inner diameter side of the rotor 10 more effective when compared with a general radial gap type motor. It has the feature that it can be used. As an example, the axial gap type motor 110 is suitably used as the power of the main shaft of a lathe.
 続いて、図1中のアキシャルギャップ型モータ110が備えるステータコア32の構造について詳細に説明する。 Subsequently, the structure of the stator core 32 provided in the axial gap motor 110 in FIG. 1 will be described in detail.
 図3は、図1中のステータコアを示す平面図である。図中には、ティース部33が成形される前の電磁鋼板41の積層体が示されている。図4は、図3中の二点鎖線IVで囲まれた範囲を示すステータコアの平面図である。図5は、図4中の二点鎖線Vで囲まれた範囲を拡大して示すステータコアの平面図である。 FIG. 3 is a plan view showing the stator core in FIG. In the figure, a laminated body of the electromagnetic steel plates 41 before the teeth portion 33 is formed is shown. FIG. 4 is a plan view of the stator core showing a range surrounded by a two-dot chain line IV in FIG. 3. FIG. 5 is an enlarged plan view of the stator core showing a range surrounded by a two-dot chain line V in FIG.
 図3から図5を参照して、ステータコア32は、複数の電磁鋼板41が、各電磁鋼板41の巻回中心軸に対する半径方向に積層されて構成されている。 3 to 5, the stator core 32 is configured by laminating a plurality of electromagnetic steel plates 41 in the radial direction with respect to the winding center axis of each electromagnetic steel plate 41.
 本実施の形態では、ステータコア32が、電磁鋼板41(n=1~15)を有し、これら電磁鋼板41(n=1~15)が、各電磁鋼板41の巻回中心軸(中心軸101)に対する半径方向(矢印102に示す方向)に積層されている。電磁鋼板41(n=1~15)は、nの値が小さいものから大きいものの順に、内周側から外周側に重ね合わされて設けられている。電磁鋼板41(n=1)が最も内周側に配置され、電磁鋼板(n=15)が最も外周側に配置されている。 In the present embodiment, the stator core 32 includes electromagnetic steel plates 41 (n = 1 to 15), and these electromagnetic steel plates 41 (n = 1 to 15) are wound around the central axis (center shaft 101) of each electromagnetic steel plate 41. ) In the radial direction (the direction indicated by the arrow 102). The electromagnetic steel plates 41 (n = 1 to 15) are provided so as to be overlapped from the inner peripheral side to the outer peripheral side in order from the smallest n value. The electromagnetic steel plate 41 (n = 1) is arranged on the innermost side, and the electromagnetic steel plate (n = 15) is arranged on the outermost side.
 電磁鋼板41(n=1~15)の各電磁鋼板41は、その電磁鋼板41内に、半径方向において重なり合う部分が生じないように設けられている。各電磁鋼板41は、ロータ10の回転中心軸(中心軸101)を中心に略同一の直径を有するように設けられている。電磁鋼板41(n=1~15)は、ロータ10の回転軸を中心に互いに異なる直径を有するように設けられている。 The electromagnetic steel plates 41 (n = 1 to 15) of the electromagnetic steel plates 41 are provided in the electromagnetic steel plates 41 so as not to overlap in the radial direction. Each electromagnetic steel plate 41 is provided so as to have substantially the same diameter around the rotation center axis (center axis 101) of the rotor 10. The electromagnetic steel plates 41 (n = 1 to 15) are provided so as to have different diameters around the rotation axis of the rotor 10.
 電磁鋼板41には、分断部46が形成されている。分断部46は、周方向において電磁鋼板41を分断するように設けられている。 In the electromagnetic steel plate 41, a dividing portion 46 is formed. The division part 46 is provided so that the electromagnetic steel plate 41 may be divided in the circumferential direction.
 本実施の形態では、電磁鋼板41(n=1~15)に、それぞれ、分断部46(n=1~15)が形成されている。電磁鋼板41(n=1~15)の各電磁鋼板41は、分断面47および分断面48を有する(図5を参照のこと)。分断面47および分断面48は、分断部46により電磁鋼板41に形成された端面であり、分断部46を挟んで互いに対向している。 In this embodiment, the electromagnetic steel sheet 41 (n = 1 to 15) is formed with the dividing portions 46 (n = 1 to 15), respectively. Each electromagnetic steel plate 41 of the electromagnetic steel plate 41 (n = 1 to 15) has a dividing surface 47 and a dividing surface 48 (see FIG. 5). The dividing surface 47 and the dividing surface 48 are end surfaces formed on the electromagnetic steel plate 41 by the dividing part 46 and face each other with the dividing part 46 interposed therebetween.
 分断部46は、内周側に配置された電磁鋼板41と、外周側に配置された電磁鋼板41との間で、電磁鋼板41の巻回中心軸に対する半径方向と交差する線上に並ぶように設けられている。 The dividing portion 46 is arranged between the electromagnetic steel plate 41 arranged on the inner peripheral side and the electromagnetic steel plate 41 arranged on the outer peripheral side, on a line intersecting the radial direction with respect to the winding center axis of the electromagnetic steel plate 41. Is provided.
 本実施の形態では、分断部46(n=1~15)が、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で、電磁鋼板41の巻回中心軸に対する半径方向(矢印102に示す方向)と交差する仮想直線116上に並ぶように設けられている。仮想直線116は、半径方向に対して斜めの方向に延びる直線である。 In the present embodiment, the dividing portion 46 (n = 1 to 15) has a radius with respect to the winding center axis of the electromagnetic steel plate 41 between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15). They are arranged so as to line up on a virtual straight line 116 that intersects the direction (the direction indicated by the arrow 102). The virtual straight line 116 is a straight line extending in a direction oblique to the radial direction.
 分断面47および分断面48は、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で、仮想直線116に沿って延在する。分断面47および分断面48は、後述する接合部材51が介挿される微小隙間を介して、電磁鋼板41の巻回中心軸に対する周方向において突き合わされている。 The dividing surface 47 and the dividing surface 48 extend along an imaginary straight line 116 between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15). The dividing surface 47 and the dividing surface 48 are abutted in the circumferential direction with respect to the winding central axis of the electromagnetic steel plate 41 through a minute gap in which a joining member 51 described later is inserted.
 ステータコア32は、接合部材51をさらに有する。接合部材51は、分断部46において電磁鋼板41を接合するように設けられている。 The stator core 32 further includes a joining member 51. The joining member 51 is provided so as to join the electromagnetic steel plate 41 at the dividing portion 46.
 本実施の形態では、接合部材51が、周方向に突き合わされた分断面47および分断面48の間の微小隙間を充填するように設けられている。接合部材51としては、たとえば、分断部46における分断面47および分断面48間の微小隙間に浸み込んで電磁鋼板41を接合する含浸接着剤が用いられる。接合部材51は、さらに、半径方向に隣り合う電磁鋼板41同士を接合するように設けられている。 In the present embodiment, the joining member 51 is provided so as to fill a minute gap between the dividing surface 47 and the dividing surface 48 that are abutted in the circumferential direction. As the joining member 51, for example, an impregnating adhesive that joins the electromagnetic steel sheet 41 by dipping into a minute gap between the dividing surface 47 and the dividing surface 48 in the dividing portion 46 is used. The joining member 51 is further provided so as to join the electromagnetic steel plates 41 adjacent in the radial direction.
 電磁鋼板41には、複数の分断部46が形成されている。複数の分断部46は、電磁鋼板41の巻回中心軸に対する周方向において、互いに間隔を隔てて設けられている。複数の分断部46は、電磁鋼板41の巻回中心軸に対する周方向において等間隔に設けられている。各電磁鋼板41は、複数の分断部46により、電磁鋼板41の巻回中心軸に対する周方向において等間隔に分割されている。 The electromagnetic steel plate 41 is formed with a plurality of divided portions 46. The plurality of dividing portions 46 are provided at intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41. The plurality of dividing portions 46 are provided at equal intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41. Each electromagnetic steel plate 41 is divided at equal intervals in the circumferential direction with respect to the winding central axis of the electromagnetic steel plate 41 by a plurality of dividing portions 46.
 本実施の形態では、各電磁鋼板41に、分断部46A,46B,46C,46D,46E,46F,46G,46H,46I,46J,46K,46Lが形成されている。分断部46A~46Lは、電磁鋼板41の巻回中心軸に対する周方向において、30°間隔で設けられている。分断部46A~46Lの各分断部46が、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で、仮想直線116上に並ぶように設けられている。 In this embodiment, each electromagnetic steel plate 41 is formed with divided portions 46A, 46B, 46C, 46D, 46E, 46F, 46G, 46H, 46I, 46J, 46K, and 46L. The dividing portions 46A to 46L are provided at 30 ° intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41. Each of the divided portions 46A to 46L is provided on the virtual straight line 116 between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15).
 分断部46A~46Lの各分断部46が並ぶ仮想直線116と、電磁鋼板41の巻回中心軸に対する半径方向(矢印102に示す方向)とがなす角度は、分断部46A~46Lの間で同じである。 The angle formed between the imaginary straight line 116 in which the divided portions 46 of the divided portions 46A to 46L are arranged and the radial direction (direction indicated by the arrow 102) with respect to the winding central axis of the electromagnetic steel sheet 41 is the same between the divided portions 46A to 46L. It is.
 図4に示す範囲に注目して説明すると、半径方向に延びる一点鎖線111と、半径方向に延び、一点鎖線111とθ=30°の角度をなす一点鎖線112との間の位相範囲の電磁鋼板41(n=1~15)に、それぞれ、分断部46A(n=1~15)が形成されている。一点鎖線112と、半径方向に延び、一点鎖線112とθ=30°の角度をなす一点鎖線113との間の位相範囲の電磁鋼板41(n=1~15)に、それぞれ、分断部46B(n=1~15)が形成されている。 Description will be made by paying attention to the range shown in FIG. 4. An electrical steel sheet having a phase range between a one-dot chain line 111 extending in the radial direction and a one-dot chain line 112 extending in the radial direction and forming an angle of θ = 30 °. 41 (n = 1 to 15) are formed with dividing portions 46A (n = 1 to 15), respectively. In the magnetic steel sheet 41 (n = 1 to 15) in the phase range between the dashed-dotted line 112 and the dashed-dotted line 113 extending in the radial direction and forming an angle of θ = 30 ° with the dashed-dotted line 112, the dividing portions 46B ( n = 1 to 15) are formed.
 分断部46A(n=1~15)および分断部46B(n=1~15)は、電磁鋼板41の巻回中心軸に対する周方向において、互いに重なり合う部分が生じないように設けられている。分断部46A(n=1~15)および分断部46B(n=1~15)は、電磁鋼板41の巻回中心軸に対する周方向において連続するように設けられている。言い換えれば、分断部46A~46Lが、電磁鋼板41の巻回中心軸に対する周方向において分断部46が一様に存在するように設けられている。 The dividing portion 46A (n = 1 to 15) and the dividing portion 46B (n = 1 to 15) are provided so as not to overlap each other in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41. The dividing portion 46A (n = 1 to 15) and the dividing portion 46B (n = 1 to 15) are provided so as to be continuous in the circumferential direction with respect to the winding central axis of the electromagnetic steel sheet 41. In other words, the dividing portions 46A to 46L are provided so that the dividing portion 46 exists uniformly in the circumferential direction with respect to the winding center axis of the electromagnetic steel sheet 41.
 なお、ステータコア32の製造工程上の理由から、仮想直線116上に並ぶ複数の分断部46の一部が周方向において微小にずれたり、分断部46A~46Lの周方向における間隔が微小にずれたりする場合があるが、本発明は、そのような微小なずれが生じたステータコアを含むものである。 For reasons of the manufacturing process of the stator core 32, some of the plurality of divided portions 46 arranged on the virtual straight line 116 are slightly displaced in the circumferential direction, and the intervals in the circumferential direction of the divided portions 46A to 46L are slightly displaced. However, the present invention includes a stator core in which such a slight shift occurs.
 続いて、本実施の形態におけるステータコア32およびアキシャルギャップ型モータ110により奏される作用効果について説明する。 Subsequently, functions and effects achieved by the stator core 32 and the axial gap motor 110 in the present embodiment will be described.
 本実施の形態では、電磁鋼板41に、電磁鋼板41を周方向において分断する分断部46が設けられることにより、渦電流の流れが遮断される。これにより、モータの駆動に伴って発生する渦電流損を低減させることができる。 In this embodiment, the flow of eddy current is interrupted by providing the electromagnetic steel sheet 41 with a dividing portion 46 for dividing the electromagnetic steel sheet 41 in the circumferential direction. Thereby, the eddy current loss which generate | occur | produces with the drive of a motor can be reduced.
 この際、帯状の電磁鋼板が螺旋状に巻回されてステータコアが構成される場合を想定すると、この場合、電磁鋼板の巻き始めおよび巻き終わりによるアンバランスによって、中心軸101に対するステータコアの真円度が悪くなる。これにより、中心軸101の軸周りにおけるステータコアの磁気的なバランスが損なわれるおそれがある。 At this time, assuming that the stator core is configured by spirally winding the belt-shaped electromagnetic steel plate, in this case, the roundness of the stator core with respect to the central shaft 101 is caused by imbalance due to the start and end of winding of the electromagnetic steel plate. Becomes worse. As a result, the magnetic balance of the stator core around the central axis 101 may be impaired.
 これに対して、本実施の形態では、中心軸101を中心に環状に巻回された複数の電磁鋼板41が半径方向に積層されるため、電磁鋼板41に巻き始めおよび巻き終わりによるアンバランスが生じることがない。さらに、複数の分断部46が周方向において等間隔に配置されるため、中心軸101の軸周りに電磁鋼板41をより均等に配置することができる。結果、ステータコア32の磁気的なバランスを良好にすることができる。 On the other hand, in the present embodiment, since the plurality of electromagnetic steel plates 41 wound in an annular shape around the central axis 101 are laminated in the radial direction, the electromagnetic steel plate 41 is unbalanced due to the start and end of winding. It does not occur. Furthermore, since the plurality of dividing portions 46 are arranged at equal intervals in the circumferential direction, the electromagnetic steel plates 41 can be arranged more evenly around the axis of the central axis 101. As a result, the magnetic balance of the stator core 32 can be improved.
 また、本実施の形態では、分断部46が、内周側および外周側に配置された電磁鋼板41の間で仮想直線116上に並ぶように設けられるため、半径方向に延びる線上に並ぶ場合(分断部46が中心軸101を中心に放射状に設けられる場合)と比較して、接合部材51による電磁鋼板41の接合面積を増大させることができる。これにより、ステータコア32の剛性を向上させることができる。 Moreover, in this Embodiment, since the parting part 46 is provided so that it may line up on the virtual straight line 116 between the electromagnetic steel plates 41 arrange | positioned at an inner peripheral side and an outer peripheral side, when arranging on the line extended in a radial direction ( Compared with the case where the dividing part 46 is provided radially around the central axis 101), the joining area of the electromagnetic steel plate 41 by the joining member 51 can be increased. Thereby, the rigidity of the stator core 32 can be improved.
 特に本実施の形態では、電磁鋼板41の積層体を機械加工することによって図2中のティース部33が成形される。この場合、機械加工時の負荷に耐え得る剛性が電磁鋼板41の積層体に必要となるため、本実施の形態におけるステータコア32の構造がより好適に適用される。 Particularly in the present embodiment, the teeth portion 33 in FIG. 2 is formed by machining a laminate of the electromagnetic steel plates 41. In this case, the structure of the stator core 32 in the present embodiment is more preferably applied because the laminated body of the electromagnetic steel sheets 41 needs to have rigidity that can withstand the load during machining.
 以上に説明した、この発明の実施の形態1におけるステータコア32の構造についてまとめて説明すると、本実施の形態におけるモータコアとしてのステータコア32は、環状に巻回され、その周方向において分断された分断部46を有するシート状導電体としての電磁鋼板41と、分断部46において電磁鋼板41を接合する接合部材51とを備える。複数の電磁鋼板41が、半径方向に積層される。分断部46は、内周側に配置された電磁鋼板41と、外周側に配置された電磁鋼板41との間で、半径方向と交差する線としての仮想直線116上に並ぶように設けられる。 The structure of the stator core 32 according to the first embodiment of the present invention described above will be described together. The stator core 32 as the motor core in the present embodiment is wound in an annular shape and divided in the circumferential direction. An electromagnetic steel plate 41 as a sheet-like conductor having 46 and a joining member 51 for joining the electromagnetic steel plate 41 at the dividing portion 46 are provided. A plurality of electromagnetic steel plates 41 are stacked in the radial direction. The dividing portion 46 is provided between the electromagnetic steel plate 41 arranged on the inner peripheral side and the electromagnetic steel plate 41 arranged on the outer peripheral side so as to be arranged on a virtual straight line 116 as a line intersecting with the radial direction.
 このように構成された、この発明の実施の形態におけるステータコア32およびアキシャルギャップ型モータ110によれば、磁気的なバランスが良好であり、かつ、高剛性を備えるステータコア32を実現することができる。また、そのようなステータコア32を用いることにより、磁気的特性に優れるとともに、剛性に対する信頼性が高いアキシャルギャップ型モータ110を実現することができる。また、真円度に優れたステータコア32を用いることにより、モータの中心を出し易くなるため、アキシャルギャップ型モータ110の組み立て時の作業性を向上させることができる。 According to the stator core 32 and the axial gap type motor 110 according to the embodiment of the present invention configured as described above, the stator core 32 having a good magnetic balance and high rigidity can be realized. Further, by using such a stator core 32, it is possible to realize the axial gap type motor 110 having excellent magnetic characteristics and high reliability with respect to rigidity. Further, by using the stator core 32 having excellent roundness, the center of the motor can be easily set, so that the workability at the time of assembling the axial gap type motor 110 can be improved.
 なお、本実施の形態におけるステータコア32(電磁鋼板41)の構造を、ロータコア12(電磁鋼板21)に適用してもよい。この場合、複数の分断部46を周方向において等間隔に配置することによって、ロータコア12の磁気的なバランスだけでなく、重量バランスも良好となる。これにより、アキシャルギャップ型モータ110の振動性能や騒音性能を向上させることができる。 Note that the structure of the stator core 32 (electromagnetic steel plate 41) in the present embodiment may be applied to the rotor core 12 (electromagnetic steel plate 21). In this case, by arranging the plurality of dividing portions 46 at equal intervals in the circumferential direction, not only the magnetic balance of the rotor core 12 but also the weight balance is improved. Thereby, the vibration performance and noise performance of the axial gap type motor 110 can be improved.
 (実施の形態2)
 本実施の形態では、実施の形態1におけるステータコア32の構造の各種変形例について説明する。
(Embodiment 2)
In the present embodiment, various modifications of the structure of the stator core 32 in the first embodiment will be described.
 図6は、図3中のステータコアの第1変形例を示す平面図である。図6を参照して、本変形例では、各電磁鋼板41に、分断部46A,46B,46C,46D,46E,46Fが形成されている。分断部46A~46Fは、電磁鋼板41の巻回中心軸に対する周方向において、60°間隔で設けられている。 FIG. 6 is a plan view showing a first modification of the stator core in FIG. Referring to FIG. 6, in this modification, each electromagnetic steel plate 41 is formed with divided portions 46 </ b> A, 46 </ b> B, 46 </ b> C, 46 </ b> D, 46 </ b> E, 46 </ b> F. The dividing portions 46A to 46F are provided at intervals of 60 ° in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41.
 実施の形態1と同様に、図4に示す範囲に対応して説明すると、半径方向に延びる一点鎖線111と、半径方向に延び、一点鎖線111とθ=30°の角度をなす一点鎖線112との間の位相範囲の電磁鋼板41(n=1~15)に、それぞれ、分断部46A(n=1~15)が形成されている。一点鎖線112と、半径方向に延び、一点鎖線112とθ=30°の角度をなす一点鎖線113との間の位相範囲には、分断部46が形成されていない。一点鎖線113と、一点鎖線113とθ=30°の角度をなす一点鎖線114との間の位相範囲の電磁鋼板41(n=1~15)に、それぞれ、分断部46B(n=1~15)が形成されている。 As in the first embodiment, the description will be made in correspondence with the range shown in FIG. 4. The dashed-dotted line 111 extending in the radial direction, and the dashed-dotted line 112 extending in the radial direction and forming an angle θ = 30 ° with the dashed-dotted line 111. Divided portions 46A (n = 1 to 15) are respectively formed on the electromagnetic steel plates 41 (n = 1 to 15) in the phase range between. The dividing portion 46 is not formed in the phase range between the alternate long and short dash line 112 and the alternate long and short dash line 113 that extends in the radial direction and forms an angle of θ = 30 °. Divided portions 46B (n = 1 to 15) are respectively formed on the electromagnetic steel sheet 41 (n = 1 to 15) in the phase range between the one-dot chain line 113 and the one-dot chain line 114 that forms an angle of θ = 30 ° with the one-dot chain line 113. ) Is formed.
 すなわち、本変形例では、分断部46A~46Fが、電磁鋼板41の巻回中心軸に対する周方向において等間隔に設けられているものの、電磁鋼板41の巻回中心軸に対する周方向において分断部46が一様に存在するようには設けられていない。 That is, in this modification, the dividing portions 46A to 46F are provided at equal intervals in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41, but the dividing portions 46 in the circumferential direction with respect to the winding center axis of the electromagnetic steel plate 41 are provided. Are not provided to exist uniformly.
 図7は、図3中のステータコアの第2変形例を示す平面図である。図7を参照して、本変形例では、分断部46(n=1~15)が、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で、電磁鋼板41の巻回中心軸に対する半径方向と交差する仮想曲線118上に並ぶように設けられている。仮想曲線118は、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で湾曲しながら延び、外周側に向けて凸となる曲線である。 FIG. 7 is a plan view showing a second modification of the stator core in FIG. Referring to FIG. 7, in this modification, the dividing portion 46 (n = 1 to 15) is provided between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15). It is provided so as to be arranged on an imaginary curve 118 that intersects the radial direction with respect to the winding center axis. The virtual curve 118 is a curve that extends while curving between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15) and is convex toward the outer peripheral side.
 図8は、図3中のステータコアの第3変形例を示す平面図である。図8を参照して、本変形例では、分断部46(n=1~15)が、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で、電磁鋼板41の巻回中心軸に対する半径方向と交差する仮想曲線119上に並ぶように設けられている。仮想曲線119は、電磁鋼板41(n=1)と電磁鋼板41(n=15)との間で湾曲しながら延び、内周側に向けて凸となる曲線である。 FIG. 8 is a plan view showing a third modification of the stator core in FIG. Referring to FIG. 8, in this modification, the dividing portion 46 (n = 1 to 15) is provided between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15). They are arranged so as to line up on a virtual curve 119 that intersects the radial direction with respect to the winding center axis. The virtual curve 119 is a curve that extends while curving between the electromagnetic steel plate 41 (n = 1) and the electromagnetic steel plate 41 (n = 15) and is convex toward the inner peripheral side.
 このように構成された、この発明の実施の形態2におけるステータコア32およびアキシャルギャップ型モータ110によれば、実施の形態1に記載の効果を同様に奏することができる。 According to the stator core 32 and the axial gap type motor 110 according to the second embodiment of the present invention configured as described above, the effects described in the first embodiment can be similarly obtained.
 この発明に従ったモータコアは、環状に巻回され、その周方向において分断された分断部を有するシート状導電体と、分断部においてシート状導電体を接合する接合部材とを備える。複数のシート状導電体が、半径方向に積層される。分断部は、内周側に配置されたシート状導電体と、外周側に配置されたシート状導電体との間で、半径方向と交差する線上に並ぶように設けられる。 A motor core according to the present invention includes a sheet-like conductor that is wound in an annular shape and has a dividing portion that is divided in the circumferential direction thereof, and a joining member that joins the sheet-like conductor at the dividing portion. A plurality of sheet-like conductors are stacked in the radial direction. The dividing portion is provided so as to be aligned on a line intersecting the radial direction between the sheet-like conductor disposed on the inner peripheral side and the sheet-shaped conductor disposed on the outer peripheral side.
 このように構成されたモータコアによれば、環状に巻回されたシート状導電体を複数、半径方向に積層することによって、モータコアの真円度を向上させることができる。これにより、モータコアの磁気的なバランスを良好にできる。この際、分断部が、内周側および外周側のシート状導電体の間で半径方向と交差する線上に並ぶように設けられるため、半径方向に延びる線上に並ぶように設けられる場合と比較して、接合部材によるシート状導電体の接合面積を増大させることができる。これにより、モータコアの剛性を確保することができる。 According to the motor core thus configured, the roundness of the motor core can be improved by laminating a plurality of sheet-like conductors wound in an annular shape in the radial direction. Thereby, the magnetic balance of a motor core can be made favorable. At this time, since the dividing portion is provided so as to be arranged on a line intersecting the radial direction between the sheet-like conductors on the inner peripheral side and the outer peripheral side, compared with a case where the dividing portion is provided so as to be arranged on a line extending in the radial direction. Thus, the bonding area of the sheet-like conductor by the bonding member can be increased. Thereby, the rigidity of a motor core is securable.
 また好ましくは、複数のシート状導電体の各々は、周方向において等間隔に配置される複数の分断部を有する。 Further preferably, each of the plurality of sheet-like conductors has a plurality of divided portions arranged at equal intervals in the circumferential direction.
 このように構成されたモータコアによれば、モータコアの磁気的なバランスをさらに良好にできる。 According to the motor core configured as described above, the magnetic balance of the motor core can be further improved.
 また好ましくは、分断部は、内周側に配置されたシート状導電体と、外周側に配置されたシート状導電体との間で、半径方向と交差する曲線上に並ぶように設けられる。 Further preferably, the dividing portion is provided so as to be arranged on a curve intersecting with the radial direction between the sheet-like conductor arranged on the inner peripheral side and the sheet-like conductor arranged on the outer peripheral side.
 このように構成されたモータコアによれば、分断部が半径方向と交差する直線上に並ぶように設けられる場合と比較して、接合部材によるシート状導電体の接合面積をさらに増大させることができる。 According to the motor core configured as described above, the joining area of the sheet-like conductor by the joining member can be further increased as compared with the case where the dividing portions are provided so as to be arranged on a straight line intersecting the radial direction. .
 この発明に従ったアキシャルギャップ型モータは、シート状導電体の巻回中心軸を中心に回転可能に支持されるロータと、ロータに対して、シート状導電体の巻回中心軸の軸方向に隙間を設けて配置されるステータとを備える。ロータおよびステータの少なくともいずれか一方が、上述のいずれかに記載のモータコアを有する。 An axial gap motor according to the present invention includes a rotor that is rotatably supported around a winding center axis of a sheet-like conductor, and an axial direction of the winding center axis of the sheet-like conductor with respect to the rotor. And a stator arranged with a gap. At least one of the rotor and the stator has the motor core described in any of the above.
 このように構成されたアキシャルギャップ型モータによれば、磁気的なバランスに優れるとともに、高剛性のモータコアを有するアキシャルギャップ型モータを実現することができる。 According to the axial gap type motor configured as described above, an axial gap type motor having an excellent magnetic balance and having a highly rigid motor core can be realized.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、たとえば、アキシャルギャップ型モータのステータコアおよび/またはステータコアに適用される。 The present invention is applied to, for example, a stator core and / or a stator core of an axial gap type motor.
 10 ロータ、12 ロータコア、14 磁石、21,41 電磁鋼板、30 ステータ、32 ステータコア、33 ティース部、34 ヨーク部、46,46A,46B,46C,46D,46E,46F,46G,46H,46I,46J,46K,46L 分断部、47,48 分断面、51 接合部材、60 渡り線、64 冷却フランジ、66 コイル、68 ボビン、101 中心軸、110 アキシャルギャップ型モータ、116 仮想直線、118,119 仮想曲線。 10 rotor, 12 rotor core, 14 magnets, 21, 41 electromagnetic steel plate, 30 stator, 32 stator core, 33 teeth portion, 34 yoke portion, 46, 46A, 46B, 46C, 46D, 46E, 46F, 46G, 46H, 46I, 46J , 46K, 46L cut section, 47, 48 cross section, 51 joint member, 60 crossover wire, 64 cooling flange, 66 coil, 68 bobbin, 101 central axis, 110 axial gap motor, 116 virtual straight line, 118, 119 virtual curve .

Claims (4)

  1.  環状に巻回され、その周方向において分断された分断部を有するシート状導電体と、
     前記分断部において前記シート状導電体を接合する接合部材とを備え、
     複数の前記シート状導電体が、半径方向に積層され、
     前記分断部は、内周側に配置された前記シート状導電体と、外周側に配置された前記シート状導電体との間で、前記半径方向と交差する線上に並ぶように設けられる、モータコア。
    A sheet-like conductor wound in a ring and having a divided portion divided in the circumferential direction;
    A joining member that joins the sheet-like conductor at the dividing portion;
    A plurality of the sheet-like conductors are laminated in the radial direction,
    The dividing portion is provided between the sheet-like conductor arranged on the inner peripheral side and the sheet-like conductor arranged on the outer peripheral side so as to be arranged on a line intersecting the radial direction. .
  2.  複数の前記シート状導電体の各々は、周方向において等間隔に配置される複数の前記分断部を有する、請求項1に記載のモータコア。 2. The motor core according to claim 1, wherein each of the plurality of sheet-like conductors includes a plurality of the divided portions arranged at equal intervals in the circumferential direction.
  3.  前記分断部は、内周側に配置された前記シート状導電体と、外周側に配置された前記シート状導電体との間で、前記半径方向と交差する曲線上に並ぶように設けられる、請求項1または2に記載のモータコア。 The dividing portion is provided so as to be arranged on a curve intersecting the radial direction between the sheet-like conductor disposed on the inner peripheral side and the sheet-shaped conductor disposed on the outer peripheral side. The motor core according to claim 1.
  4.  前記シート状導電体の巻回中心軸を中心に回転可能に支持されるロータと、
     前記ロータに対して、前記シート状導電体の巻回中心軸の軸方向に隙間を設けて配置されるステータとを備え、
     前記ロータおよび前記ステータの少なくともいずれか一方が、請求項1から3のいずれか1項に記載のモータコアを有する、アキシャルギャップ型モータ。
    A rotor supported rotatably about a winding center axis of the sheet-like conductor;
    A stator disposed with a gap in the axial direction of the winding center axis of the sheet-like conductor with respect to the rotor,
    An axial gap type motor in which at least one of the rotor and the stator has the motor core according to any one of claims 1 to 3.
PCT/JP2016/056953 2015-03-26 2016-03-07 Motor core and axial gap-type motor WO2016152480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064521A JP6438815B2 (en) 2015-03-26 2015-03-26 Motor core and axial gap type motor
JP2015-064521 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152480A1 true WO2016152480A1 (en) 2016-09-29

Family

ID=56978445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056953 WO2016152480A1 (en) 2015-03-26 2016-03-07 Motor core and axial gap-type motor

Country Status (2)

Country Link
JP (1) JP6438815B2 (en)
WO (1) WO2016152480A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185075A (en) * 2003-12-24 2005-07-07 Fujitsu General Ltd Axial gap electric motor
JP2009284578A (en) * 2008-05-20 2009-12-03 Hitachi Metals Ltd Axial gap motor and fan apparatus using the same
JP2011091933A (en) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd Axial gap motor, compressor, motor system, and generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185075A (en) * 2003-12-24 2005-07-07 Fujitsu General Ltd Axial gap electric motor
JP2009284578A (en) * 2008-05-20 2009-12-03 Hitachi Metals Ltd Axial gap motor and fan apparatus using the same
JP2011091933A (en) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd Axial gap motor, compressor, motor system, and generator

Also Published As

Publication number Publication date
JP2016185033A (en) 2016-10-20
JP6438815B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP5885890B1 (en) Stator core for rotating electric machine, rotating electric machine, and method of manufacturing rotating electric machine
JP5904416B2 (en) Rotating electric machine
JP6044382B2 (en) Multi-gap rotating electric machine
JP5365074B2 (en) Axial gap type rotating electrical machine
JP6552713B2 (en) Stator of rotating electric machine and rotating electric machine
JP3207654U (en) Single phase permanent magnet motor
JP2015033173A (en) Motor
JP3724446B2 (en) Motor armature structure
JP4984347B2 (en) Electric motor
JP2019126102A (en) Rotor and rotary electric machine
WO2015174145A1 (en) Embedded-permanent-magnet dynamoelectric device
JP2011135733A (en) Rotating electric machine
JP6640910B2 (en) Rotating electric machine
JP2009136090A (en) Rotor plate
JP2006254561A (en) Rotary electric machine
JP5502533B2 (en) Permanent magnet type motor
JP5309674B2 (en) Stator coil manufacturing method
JP7417236B2 (en) Stator parts, stator and motor
JP2010004635A (en) Field magneton, manufacturing method therefor, and rotating electrical machine
JP2014222958A (en) Laminate iron core for rotary electric machine
JP2017163675A (en) Stator core, stator and rotary electric machine
JP6438815B2 (en) Motor core and axial gap type motor
JP6078448B2 (en) Rotor, axial gap type motor, and method of manufacturing rotor
US11689073B2 (en) Rotor core design
JP6745212B2 (en) Rotor and reluctance rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768383

Country of ref document: EP

Kind code of ref document: A1