WO2016152451A1 - Molding die and molding method - Google Patents

Molding die and molding method Download PDF

Info

Publication number
WO2016152451A1
WO2016152451A1 PCT/JP2016/056725 JP2016056725W WO2016152451A1 WO 2016152451 A1 WO2016152451 A1 WO 2016152451A1 JP 2016056725 W JP2016056725 W JP 2016056725W WO 2016152451 A1 WO2016152451 A1 WO 2016152451A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mpa
mold
modulus
thickness
Prior art date
Application number
PCT/JP2016/056725
Other languages
French (fr)
Japanese (ja)
Inventor
清水 直紀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017508160A priority Critical patent/JPWO2016152451A1/en
Publication of WO2016152451A1 publication Critical patent/WO2016152451A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/20Opening, closing or clamping
    • B29C33/26Opening, closing or clamping by pivotal movement
    • B29C33/28Opening, closing or clamping by pivotal movement using hydraulic or pneumatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing

Definitions

  • the present invention relates to a molding die and a molding method suitable for molding a molded product such as an optical element or a microchip.
  • one type of optical element or microchip includes a product obtained by attaching a molded photocurable resin on a plate-like substrate, for example.
  • a product can also be obtained by laminating a separately molded resin and a base material. For example, a photocurable resin is dropped on the base material, and then a mold is applied to supply UV light or the like from the outside.
  • a product in which the resin molded by the mold is attached to the base material can be easily obtained.
  • the mold has a one-layer or two-layer structure, the first layer or the second layer is warped in an unloaded state, and the first layer is made of metal or hard resin.
  • a stamper made of a material having a self-restoring force is disclosed. In the molding process using such a stamper, when the mold is released after the resin is cured, peeling is started from both ends by the self-restoring force of the stamper, thereby reducing the mold release resistance and preventing the stamper from being damaged.
  • the present invention has been made in view of the above-described problems, and a molding die and a molding method capable of molding a molded article having a high-precision surface microstructure without giving warpage to the mold in advance, while avoiding damage.
  • the purpose is to provide.
  • a mold reflecting one aspect of the present invention is formed by transferring and molding a surface microstructure having a maximum step of 50 ⁇ m or less onto a photo-curable resin attached to a substrate.
  • a mold for The mold has a two-layer structure of at least a first layer and a second layer;
  • the first layer forms a transfer surface of said surface microstructure, the Young's modulus of the first layer and E 1, the thickness of the first layer is taken as t 1, (1), (2 ) E 1 ⁇ t 1 3 ⁇ 15 [MPa ⁇ mm 3 ] (1) 300 ⁇ E 1 ⁇ 5,000 [MPa] (2)
  • the expressions (3) and (4) are satisfied, E 2 / t 2 ⁇ 15 [MPa / mm] (3) 5 ⁇ E 2 ⁇ 100 (4) Further, the expression (5) is satisfied. 0.03 ⁇ ⁇ (E 1 ⁇
  • a molding method reflecting one aspect of the present invention is: A first layer on which a transfer surface having a surface microstructure with a maximum step of 50 ⁇ m or less is formed, and a mold having at least a second layer different from the first layer; A base material is provided so as to face the first layer, Applying a photocurable resin to the first layer, bringing the substrate and the photocurable resin close to each other, In a state where the photocurable resin is stuck to the base material, a molded product is manufactured by releasing from the mold.
  • the mold Satisfies the following formula.
  • the present invention it is possible to provide a molding die and a molding method capable of molding a molded product having a highly accurate surface fine structure while avoiding damage without giving the mold a warp in advance.
  • FIG. 1 is a diagram illustrating a master type MM used in Example 1.
  • FIG. It is a schematic diagram which shows the process of carrying out transfer formation of the 1st layer L1 of a shaping
  • FIG. It is a schematic diagram which shows the manufacturing process of the shaping
  • FIG. 1 shows the process of shape
  • FIG. 6 is a diagram illustrating a master type MM used in Example 2.
  • FIG. It is a schematic diagram which shows the process of carrying out transfer formation of the 1st layer L1 of a shaping
  • FIG. 6 is a diagram showing a master type MM used in Example 3. It is a schematic diagram which shows the process of carrying out the transfer formation of the 1st layer L1 of a shaping
  • FIG. It is a figure which shows the process of shape
  • FIG. It is a figure which shows the process of shape
  • FIG. It is a schematic diagram which shows the manufacturing process of the shaping
  • the molded product molded in the present invention includes an optical element and a microchip.
  • the substrate is preferably a part of the molded product after molding.
  • the “optical element” include a diffraction grating and a moth-eye element having a concavo-convex structure having a wavelength of visible light or less.
  • “Maximum step 50 ⁇ m or less” means that the height or depth of the step in the direction perpendicular to the surface of the molded product is 50 ⁇ m or less.
  • FIG. 1 is an enlarged cross-sectional view schematically showing a mold according to the present embodiment.
  • the mold MD is formed by laminating a first layer L1, a second layer L2, and a third layer L3 on which a transfer surface MS having a surface microstructure is formed.
  • a first adhesive layer B1 is formed between the first layer L1 and the second layer L2
  • a second adhesive layer B2 is formed between the second layer L2 and the third layer L3. It may be formed.
  • the present inventor thought that a mold having less damage to the molded product at the time of mold release could be obtained by adjusting the physical property values of the first layer L1 and the second layer L2.
  • the Young's modulus of the first layer L1 is E 1 and the thickness of the first layer L2 is t 1 , the expressions (1) and (2) are satisfied.
  • the load state of the first layer L1 at the time of mold release can be regarded as bending of the cantilever beam. More specifically, as shown in FIG. 2, it is considered that when the first layer L1 is released from the mold, the same bending as that of a cantilever beam having the center O of the first layer L1 as a fixed end occurs.
  • the load at the free end is W
  • the distance from the center of the first layer L1 to the outer edge is L
  • the width of the first layer L1 is b
  • the deflection amount ⁇ of the free end can be expressed by the following equation.
  • the amount of deflection of the outer edge of the first layer L1 is a function that is inversely proportional to E 1 ⁇ t 1 3 .
  • E 1 ⁇ t 1 3 is set to 15 [MPa ⁇ mm 3 ] or less, and E 1 is formed of the material corresponding to the formula (2), thereby forming the first layer L1. It was found that the structure can be bent appropriately.
  • the lower limit value of E 1 ⁇ t 1 3 in equation (1) is preferably as small as possible, and is not particularly specified.
  • t is 20 nm and the Young's modulus of the first layer L1 is 300 MPa
  • Equation (3) The lower limit value of E 2 / t 2 ⁇ 15 in equation (3) is better as it is smaller, so it is not particularly specified, but when (5) equation lower limit value 0.03 and E 1 ⁇ t 1 3 are set to the minimum value of 0.006 Furthermore, since E 2 / t 2 ⁇ 0.15, the lower limit value of the expression (3) is 0.15.
  • the molding die MD forms the first layer L1 having the transfer surface MS of the surface fine structure from a material that easily bends and the second layer L2 from a material that easily shrinks.
  • the molding die MD is intensively deformed at a portion where the stress of the release resistance is concentrated (particularly at the end of the molded product), so that the molded product and the molding die MD start to peel from that portion. Can be.
  • the stress of the mold release resistance can be dispersed to prevent damage to the surface microstructure of the molded product and the mold MD.
  • the deformation of the mold MD at the time of mold release does not become excessively large, and the shape of the surface fine structure is hardly changed and a highly accurate transfer shape can be obtained.
  • the value of the formula (5) is equal to or less than the upper limit value, the deformation of the mold MD at the time of mold release does not become too small, and easy peeling can be realized at the time of mold release. That is, by satisfying the formula (5), both maintenance of the surface fine structure and releasability can be achieved. In particular, when the step of the surface fine structure is 1 ⁇ m or less, the structure becomes small and easily damaged, and therefore the effect of the present invention is expected.
  • the Young's modulus of the third layer L3 and E 3, the thickness of the third layer L3 is taken as t 3, (6), when to satisfy the equation (7), at the time of release, the second layer L2 first Deformation is suppressed on the side of the third layer L3, and deformation is likely to occur on the side of the first layer L1 of the second layer L2. Therefore, the bending of the first layer L1 is promoted, the mold release resistance is reduced, and the mold is deliberately The same effect as that obtained when bending is obtained.
  • a first adhesive layer B1 may be provided between the first layer L1 and the second layer L2.
  • the total Young's modulus combining the first layer L1 and the first adhesive layer B1 is regarded as E 1
  • the total thickness including the first layer L1 and the first adhesive layer B1 is regarded as t 1 (1 ) And (2) are calculated.
  • a second adhesive layer B2 may be provided between the second layer L2 and the third layer L3.
  • the total Young's modulus combining the third layer L3 and the second adhesive layer B2 is regarded as E 3
  • the total thickness including the third layer L3 and the second adhesive layer B2 is regarded as t 3 (6 ) And (7) are calculated.
  • the thickness of the first adhesive layer B1 and the second adhesive layer B2 is preferably 50 ⁇ m or less.
  • the base material is formed from a material that is easily bent, there is a possibility that it will be difficult to release the mold because it follows the deformation of the mold MD.
  • the base material is difficult to bend, the mold does not follow the mold MD and can be easily released.
  • E 4 the Young's modulus of the molded product composed of the photocurable resin and the base material whose surface microstructure is transferred and molded by the molding die MD
  • E 4 the total of the transferred photocurable resin and the base material
  • the material of the first layer L1 is preferably the one shown in Table 1.
  • the Young's modulus E 1 in Table 1 is an arbitrary value and varies depending on the manufacturer and product number.
  • the material of the first layer L1 needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. May not be present.
  • the material of the second layer L2 is preferably the one shown in Table 2, for example.
  • the Young's modulus E 2 in Table 2 is an arbitrary value and varies depending on the manufacturer and the product number.
  • the material of the second layer L2 also needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. Does not have to.
  • the materials of the third layer L3 are preferably those shown in Table 3.
  • the Young's modulus E 3 in Table 3 is an arbitrary value and varies depending on the manufacturer and product number.
  • the material of the third layer L3 also needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. Does not have to.
  • the base material of the molded product is preferably one shown in Table 4.
  • the Young's modulus E 4 in Table 4 is an arbitrary value and varies depending on the manufacturer and product number.
  • the base material does not need to have UV light transmittance.
  • sufficient UV transmittance is provided. It is necessary to have.
  • Examples of the surface microstructure of the molded product include, for example, a groove having a depth of 50 nm and a width of 50 nm, a ⁇ 100 nm pillar array, a ⁇ 100 nm hole, a depth of 20 ⁇ m and a width of 200 ⁇ m, a ⁇ 20 ⁇ m pillar array, and a ⁇ 20 ⁇ m hole.
  • FIG. 4A is a front view of the master type MM used in Example 1, and FIG. 4B is an enlarged cross-sectional view of the central portion of the master type MM.
  • the master type MM shown in FIG. 4 is made of silicon and has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and a line-and-space structure LS is formed in a central 4 mm square region.
  • the line-and-space structure LS is formed by extending a plurality of ridges having a rectangular cross section with a height of 20 nm and a width of 200 nm in a direction perpendicular to the paper surface at intervals of 200 nm.
  • Such a fine line-and-space structure LS of the master type MM can be formed by, for example, a nanoimprint method described in JP-A-2009-206519.
  • FIG. 5 is a schematic view showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 4, but the line and space structure LS is exaggerated.
  • the master mold MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master mold MM.
  • PMP product name RT18 manufactured by Mitsui Chemicals, Inc.
  • PMP product name RT18 manufactured by Mitsui Chemicals, Inc.
  • the upper die HIU is heated to 220 ° C.
  • the lower die HID is kept constant at 30 ° C.
  • the upper die HIU and the lower die HID are brought close to each other as shown in FIG.
  • the upper mold HIU was cooled to 30 ° C.
  • the upper mold HIU and the lower mold HID are separated from each other, and a planar first layer L1 on which a transfer surface MS having a surface fine structure corresponding to the line and space structure LS is transferred and molded. was taken out.
  • FIG. 6 is a schematic diagram showing the manufacturing process of the mold using the first layer obtained in the process of FIG. 5, but the transfer surface MS of the surface microstructure is exaggerated.
  • the second layer L2 has a diameter of 20 mm and a thickness of 3 mm.
  • Place silicone rubber product name X-32-3212 manufactured by Shin-Etsu Chemical Co., Ltd.
  • 0.02 ml of epoxy UV curable resin PL manufactured by Daicel Co., Ltd. to form the second adhesive layer B2 therebetween. Applied.
  • the first layer L1 obtained in the step of FIG. 5 is placed, and in order to form the first adhesive layer B1 therebetween, an epoxy UV curing property manufactured by Daicel Corporation. 0.02 ml of resin PL was applied.
  • UV light with a wavelength of 365 nm was irradiated for 60 seconds with an intensity of 300 mW / cm 2 from below the third layer L3 to form adhesive layers B1 and B2.
  • FIG.6 (c) the shaping
  • FIG. 7 is a diagram showing a process of forming a molded product using a mold.
  • the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery.
  • the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. .
  • the material PL is attached to the base material ST and is removed from the first layer L1.
  • each of the first layer and the second layer is positively deformed and the molded product is not deformed, so that a gap is formed at the interface between the first layer and the molded product, and the adhesion can be reduced. . Due to the deformation of the first layer and the second layer, the effect of reducing the adhesion is great.
  • FIG. 8A is a front view of the master type MM used in the second embodiment
  • FIG. 8B is an enlarged cross-sectional view of a central portion of the master type MM.
  • the master type MM shown in FIG. 8 is made of silicon, has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and has a plurality of circular holes HL arranged in a matrix in a central 4 mm square region.
  • circular holes HL having a depth of 200 nm and a diameter of 200 nm are arranged vertically and horizontally at a pitch of 400 nm, which corresponds to the shape of the molded product.
  • Such a fine circular hole HL of the master type MM can also be formed by the nanoimprint method described in, for example, Japanese Patent Application Laid-Open No. 2009-206519.
  • FIG. 9 is a schematic diagram showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 8, but the circular hole HL is exaggerated.
  • the master type MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master type MM.
  • PP product name P-B134 manufactured by Sekisui Molding Co., Ltd.
  • PP product name P-B134 manufactured by Sekisui Molding Co., Ltd.
  • the upper die HIU is heated to 160 ° C.
  • the lower die HID is kept constant at 30 ° C.
  • the upper die HIU and the lower die HID are brought close to each other as shown in FIG.
  • the upper mold HIU was cooled to 30 ° C.
  • the upper die HIU and the lower die HID are separated from each other, and a transfer surface MS having a surface microstructure composed of convex portions corresponding to the plurality of circular holes HL is transferred and molded. L1 was removed.
  • FIG. 10 is a schematic view showing the manufacturing process of the mold using the first layer obtained in the process of FIG. 9, but the transfer surface MS having the surface fine structure is exaggerated.
  • the second layer L2 has a diameter of 20 mm and a thickness of 1. mm.
  • a 5 mm silicone rubber was placed.
  • the mold MD in which the first layer L1, the second layer L2, and the third layer L3 are stacked by placing the first layer L1 obtained in the process of FIG. 9 on the second layer L2. was obtained (FIG. 10B).
  • no adhesive layer is provided between the first layer L1 and the second layer L2 and between the second layer L2 and the third layer L3. This is because the used silicone rubber inherently has adhesive retention properties that replace the adhesive layer.
  • FIG. 11 is a diagram showing a process of forming a molded product using a mold.
  • the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery.
  • the base material ST of PC board product name Demigrass K manufactured by Asahi Kasei Technoplus Co., Ltd.
  • PC board product name Demigrass K manufactured by Asahi Kasei Technoplus Co., Ltd.
  • the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. .
  • the material PL is attached to the base material ST and is removed from the first layer L1.
  • FIG. 12A is a front view of the master type MM used in Example 3, and FIG. 12B is an enlarged cross-sectional view of the central portion of the master type MM.
  • the master type MM shown in FIG. 12 is made of silicon, has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and forms a plurality of cylindrical portions CY arranged in a matrix in a central 4 mm square region. .
  • protruding cylindrical portions CY having a height of 4 ⁇ m and a diameter of 2 ⁇ m are arranged vertically and horizontally at a pitch of 4 ⁇ m, which corresponds to the shape of the molded product.
  • Such a fine cylindrical portion CY of the master type MM can also be formed by the nanoimprint method described in, for example, JP-A-2009-206519.
  • FIG. 13 is a schematic view showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 12, but the cylindrical portion CY is exaggerated.
  • the master type MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master type MM.
  • the material MT1 here, PET having a diameter of 20 mm and a thickness of 0.15 mm was used.
  • the upper die HIU is heated to 150 ° C.
  • the lower die HID is kept constant at 30 ° C.
  • the upper die HIU and the lower die HID are brought close to each other as shown in FIG.
  • the upper mold HIU was cooled to 30 ° C.
  • the upper die HIU and the lower die HID were separated from each other, and the first layer L1 on which the transfer surface MS having the surface fine structure corresponding to the cylindrical portion CY was transferred and taken out was taken out.
  • the second layer L2 has a diameter of 20 mm and a thickness. 3 mm silicone rubber was placed, and in order to form the second adhesive layer B2, 0.02 ml of an epoxy UV curable resin PL manufactured by Daicel Corporation was applied.
  • the first layer L1 obtained in the step of FIG. 13 is placed, and in order to form the first adhesive layer B1 therebetween, an epoxy UV curable product manufactured by Daicel Corporation. 0.02 ml of resin PL was applied.
  • UV light having a wavelength of 365 nm was irradiated from below the third layer L3 at an intensity of 300 mW / cm 2 for 60 seconds to form adhesive layers B1 and B2.
  • a mold MD was obtained in which the first layer L1, the second layer L2, and the third layer L3 were laminated by the adhesive layers B1 and B2 having a thickness of 50 nm.
  • a SiO 2 film having a thickness of 7 nm was formed by plasma CVD, and a release agent OPTOOL (manufactured by Daikin Corporation) was formed by immersion. Thereby, mold release property increases.
  • FIG. 14 is a diagram showing a process of forming a molded product using a mold.
  • the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery.
  • the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. .
  • the material PL is attached to the base material ST and is removed from the first layer L1.
  • thickness t 0.05 [mm]
  • Example 4 was made as follows. Specifically, the first layer L1 was formed from the master mold MM shown in FIG. 4 by the process shown in FIG. Next, the first layer L1 having a transfer surface with a surface fine structure was formed through the process shown in FIG. However, PMT (product name MX002 made by Mitsui Chemicals, Inc.) having a diameter of 20 mm and a thickness of 0.05 mm was used as the material MT1 here. Furthermore, the mold MD was formed through the process shown in FIG. The first layer L1, the second layer L2, and the third layer L3 were adhered to each other by the adhesive layers B1 and B2 having a thickness of 10 ⁇ m.
  • PMT product name MX002 made by Mitsui Chemicals, Inc.
  • FIG. 15 is a diagram showing a process of forming a molded product using a mold.
  • the third layer L3 of the mold MD is fixed to the frame FR, and is further opposed to the first layer L1 of the mold MD, so that the cylindrical support frame SP.
  • UV light having a wavelength of 365 nm is irradiated at an intensity of 300 mW / cm 2 for 60 seconds from above the glass plate GL and the base material ST, and the material PL is applied. Cured.
  • FIG. 15 (c) when the base material ST supported by the support frame SP is separated from the first layer L1, the material PL is attached to the base material ST and is removed from the first layer L1. By peeling off and further removing the substrate ST from the support frame SP, a molded product having the surface microstructure MS ′ could be obtained.
  • the first layer L1 was formed from the master mold MM shown in FIG. 4 by the process shown in FIG.
  • the first layer and the third layer are directly laminated without using the second layer.
  • FIG. 16 is a schematic view showing a manufacturing process of a comparative example using the obtained first layer, but the transfer surface MS of the surface fine structure is exaggerated.
  • the first layer L1 is placed on a rectangular plate-like quartz glass (manufactured by MISUMI Corporation) having a length and width of 40 mm and a thickness of 10 mm as the third layer L3.
  • MISUMI Corporation manufactured by MISUMI Corporation
  • UV light having a wavelength of 365 nm was irradiated for 60 seconds with an intensity of 300 mW / cm 2 from below the third layer L3 to form an adhesive layer B1.
  • FIG. 16C a mold MD ′ in which the first layer L1 and the third layer L3 were laminated by the adhesive layer B1 having a thickness of 50 ⁇ m was obtained.
  • the physical property values of each member of the comparative example are as follows.
  • FIG. 17 is a diagram illustrating a process of molding a molded product using the mold of the comparative example.
  • the third layer L3 of the mold MD ′ is fixed to the frame FR, and further, the periphery of the lower surface is supported by the support frame SP so as to face the first layer L1.
  • a base material ST of a PC plate product name PC1600 manufactured by Takiron Co., Ltd.
  • a PC plate product name PC1600 manufactured by Takiron Co., Ltd.
  • the material PL was cured by irradiating UV light with a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. .
  • FIG. 17C when the base material ST supported by the support frame SP is separated from the first layer L1, most of the material PL is attached to the base material ST and becomes the first layer. Although peeled off from L1, a part of the material PL remained on the first layer L1 side.
  • Example 1 and the comparative example will be considered.
  • the inventor measured the maximum adhesion force during molding (the maximum value of the force when releasing the photocurable resin) for 30 samples of Example 1 and Comparative Example. The result is shown in FIG. Referring to FIG. 18, all the samples in Example 1 had a stable and low adhesion, whereas in the comparative example, the adhesion was particularly high and difficult to peel off at the initial stage of mold release.

Abstract

Provided are a molding die and a molding method with which a molding having a high precision surface microstructure can be molded while avoiding damage without applying a warp to the die beforehand. The molding die, which is for forming a molding obtained by affixing on a substrate a photocurable resin on which a surface microstructure with a maximum level difference of 50 µm or less has been transfer-molded, has at least a two layer structure of a first layer and a second layer. The first layer forms the transfer surface for said surface microstructure. When the Young's modulus of the first layer is E1, the thickness of the first layer is t1, the Young's modulus of the second layer is E2, and the thickness of the second layer is t2, expressions (1)-(5) are satisfied. E1 × t1 3 ≤ 15 [MPa∙mm3] (1) 300 ≤ E1 ≤ 5,000 [MPa] (2) E2/t2 ≤ 15 [MPa/mm] (3) 5 ≤ E2 ≤ 100 (4) 0.03 ≤ √( E1 × t1 3 × E2/t2) [MPa∙mm] ≤ 10 (5)

Description

成形型及び成形方法Mold and molding method
 本発明は、光学素子やマイクロチップなどの成形品を成形するのに適した成形型及び成形方法に関する。 The present invention relates to a molding die and a molding method suitable for molding a molded product such as an optical element or a microchip.
 近年、光学素子やマイクロチップなどの成形品を成形するために、光硬化性樹脂を用いる試みがある。光硬化性樹脂は、UV光等を付与することにより短時間で硬化する特性を有するため、これを用いることで高精度な成形品を安価に量産できると期待されている。例えば光学素子やマイクロチップの一タイプには、例えば板状の基材上に、成形した光硬化性樹脂を付着させて製品としたものがある。かかる製品は、別々に成形した樹脂と基材を貼り合わせることでも得ることができるが、例えば基材上に光硬化性樹脂を滴下した上で型をかぶせ、外部からUV光等を供給することで、型により成形された樹脂を基材に付着させた製品を容易に得ることができる。 In recent years, there have been attempts to use a photocurable resin in order to mold a molded product such as an optical element or a microchip. Since the photocurable resin has a property of being cured in a short time by applying UV light or the like, it is expected that a highly accurate molded product can be mass-produced at low cost by using this. For example, one type of optical element or microchip includes a product obtained by attaching a molded photocurable resin on a plate-like substrate, for example. Such a product can also be obtained by laminating a separately molded resin and a base material. For example, a photocurable resin is dropped on the base material, and then a mold is applied to supply UV light or the like from the outside. Thus, a product in which the resin molded by the mold is attached to the base material can be easily obtained.
 ところで、光学素子やマイクロチップにおいて所望の性能を発揮するためには、型により例えば50μm以下の段差を持つ表面微細構造を形成する必要がある。ところが、硬化した光硬化性樹脂を型から離型する際に表面微細構造が損傷する場合があり、これが問題となっている。 By the way, in order to exhibit desired performance in an optical element or a microchip, it is necessary to form a surface fine structure having a step of, for example, 50 μm or less by a mold. However, when the cured photocurable resin is released from the mold, the surface microstructure may be damaged, which is a problem.
 これに対し、特許文献1には、型が1層又は2層構造になっており、1層目又は2層目が無荷重状態で反りを有し、また1層目は金属や硬質樹脂からなり、自己復元力を有する材料で構成されたスタンパが開示されている。かかるスタンパを用いた成形工程において、樹脂硬化後の離型時には、スタンパの自己復元力により両端部から剥離が開始されることにより、離型抵抗を下げ、スタンパの損傷を防いでいる。 On the other hand, in Patent Document 1, the mold has a one-layer or two-layer structure, the first layer or the second layer is warped in an unloaded state, and the first layer is made of metal or hard resin. Thus, a stamper made of a material having a self-restoring force is disclosed. In the molding process using such a stamper, when the mold is released after the resin is cured, peeling is started from both ends by the self-restoring force of the stamper, thereby reducing the mold release resistance and preventing the stamper from being damaged.
特開2012-230272号公報JP 2012-230272 A
 しかしながら、特許文献1のスタンパは反りを有しているため、面内に圧力分布が発生することにより、樹脂硬化時の膜厚均一性や平面性が悪くなるから、高い精度が要求される成形品には適用できないという問題がある。 However, since the stamper of Patent Document 1 has a warp, pressure distribution is generated in the surface, resulting in poor film thickness uniformity and flatness during resin curing. There is a problem that it cannot be applied to products.
 本発明は、上述した課題に鑑みてなされたものであり、型に予め反りを持たせることなく、高精度な表面微細構造を持つ成形品を、損傷を回避しつつ成形できる成形型及び成形方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and a molding die and a molding method capable of molding a molded article having a high-precision surface microstructure without giving warpage to the mold in advance, while avoiding damage. The purpose is to provide.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した成形型は、基材に付着させた光硬化性樹脂に、最大段差50μm以下の表面微細構造を転写成形するための成形型であって、
 前記成形型が少なくとも第1層と第2層の2層構造を有しており、
 前記第1層が前記表面微細構造の転写面を形成しており、前記第1層のヤング率をE1とし、前記第1層の厚みをt1としたときに、(1)、(2)式を満たし、
 E1×t1 3≦15[MPa・mm3]   (1)
 300≦E1≦5,000[MPa]   (2)
 前記第2層のヤング率をE2とし、前記第2層の厚みをt2としたときに、(3)、(4)式を満たし、
 E2/t2≦15[MPa/mm]   (3)
 5≦E2≦100   (4)
 更に、(5)式を満たすものである。
 0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
In order to realize at least one of the above-described objects, a mold reflecting one aspect of the present invention is formed by transferring and molding a surface microstructure having a maximum step of 50 μm or less onto a photo-curable resin attached to a substrate. A mold for
The mold has a two-layer structure of at least a first layer and a second layer;
The first layer forms a transfer surface of said surface microstructure, the Young's modulus of the first layer and E 1, the thickness of the first layer is taken as t 1, (1), (2 )
E 1 × t 1 3 ≦ 15 [MPa · mm 3 ] (1)
300 ≦ E 1 ≦ 5,000 [MPa] (2)
When the Young's modulus of the second layer is E 2 and the thickness of the second layer is t 2 , the expressions (3) and (4) are satisfied,
E 2 / t 2 ≦ 15 [MPa / mm] (3)
5 ≦ E 2 ≦ 100 (4)
Further, the expression (5) is satisfied.
0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した成形方法は、
 最大段差50μm以下の表面微細構造の転写面が形成された第1層と、前記第1層と異なる第2層を少なくとも有する成形型と、
 前記第1層に対向するように基材を設け、
 前記第1層に光硬化性樹脂を塗布し、前記基材と前記光硬化性樹脂を接近させ、
 前記基材に前記光硬化性樹脂が張り付いた状態で、前記成形型から離型することで成形品を製造する。
 ただし、前記第1層のヤング率をE1、前記第1層の厚みをt1、前記第2層のヤング率をE2、前記第2層の厚みをt2としたとき、前記成形型は下記式を満たす。
 E1×t1 3≦15[MPa・mm3]    (1)
 300≦E1≦5,000[MPa]   (2)
 E2/t2≦15[MPa/mm]     (3)
 5≦E2≦100            (4)
 0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
In order to achieve at least one of the above objects, a molding method reflecting one aspect of the present invention is:
A first layer on which a transfer surface having a surface microstructure with a maximum step of 50 μm or less is formed, and a mold having at least a second layer different from the first layer;
A base material is provided so as to face the first layer,
Applying a photocurable resin to the first layer, bringing the substrate and the photocurable resin close to each other,
In a state where the photocurable resin is stuck to the base material, a molded product is manufactured by releasing from the mold.
However, when the Young's modulus of the first layer is E 1 , the thickness of the first layer is t 1 , the Young's modulus of the second layer is E 2 , and the thickness of the second layer is t 2 , the mold Satisfies the following formula.
E 1 × t 1 3 ≦ 15 [MPa · mm 3 ] (1)
300 ≦ E 1 ≦ 5,000 [MPa] (2)
E 2 / t 2 ≦ 15 [MPa / mm] (3)
5 ≦ E 2 ≦ 100 (4)
0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
 本発明によれば、型に予め反りを持たせることなく、高精度な表面微細構造を持つ成形品を、損傷を回避しつつ成形できる成形型及び成形方法を提供することができる。 According to the present invention, it is possible to provide a molding die and a molding method capable of molding a molded product having a highly accurate surface fine structure while avoiding damage without giving the mold a warp in advance.
本実施形態による成形型を模式的に示す拡大断面図である。It is an expanded sectional view which shows typically the shaping | molding die by this embodiment. 片持ち梁の撓み状態を示すモデル図である。It is a model figure which shows the bending state of a cantilever beam. 第1層、第2層、第3層を接着した成形型の断面図である。It is sectional drawing of the shaping | molding die which adhere | attached the 1st layer, the 2nd layer, and the 3rd layer. 実施例1で用いたマスター型MMを示す図である。1 is a diagram illustrating a master type MM used in Example 1. FIG. 図4のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図である。It is a schematic diagram which shows the process of carrying out transfer formation of the 1st layer L1 of a shaping | molding die using the master type | mold MM of FIG. 図5の工程で得られた第1層を用いた成形型の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the shaping | molding die using the 1st layer obtained at the process of FIG. 実施例1の成形型を用いて成形品を成形する工程を示す図である。It is a figure which shows the process of shape | molding a molded article using the shaping | molding die of Example 1. FIG. 実施例2で用いたマスター型MMを示す図である。6 is a diagram illustrating a master type MM used in Example 2. FIG. 図8のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図である。It is a schematic diagram which shows the process of carrying out transfer formation of the 1st layer L1 of a shaping | molding die using the master type | mold MM of FIG. 図9の工程で得られた第1層を用いた成形型の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the shaping | molding die using the 1st layer obtained at the process of FIG. 実施例2の成形型を用いて成形品を成形する工程を示す図である。It is a figure which shows the process of shape | molding a molded article using the shaping | molding die of Example 2. FIG. 実施例3で用いたマスター型MMを示す図である。FIG. 6 is a diagram showing a master type MM used in Example 3. 図12のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図である。It is a schematic diagram which shows the process of carrying out the transfer formation of the 1st layer L1 of a shaping | molding die using the master type | mold MM of FIG. 実施例3の成形型を用いて成形品を成形する工程を示す図である。It is a figure which shows the process of shape | molding a molded article using the shaping | molding die of Example 3. FIG. 実施例4の成形型を用いて成形品を成形する工程を示す図である。It is a figure which shows the process of shape | molding a molded article using the shaping | molding die of Example 4. FIG. 比較例の成形型の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the shaping | molding die of a comparative example. 比較例の成形型を用いて成形品を成形する工程を示す図である。It is a figure which shows the process of shape | molding a molded article using the shaping | molding die of a comparative example. 実施例1と比較例のサンプル品の最大密着力を示す図である。It is a figure which shows the maximum contact | adhesion power of the sample goods of Example 1 and a comparative example. 横軸に時間、縦軸に密着力をとって、実施例1と比較例の離型時の経時変化を示すグラフである。It is a graph which shows a time-dependent change at the time of mold release of Example 1 and a comparative example by taking time on the horizontal axis and taking adhesion force on the vertical axis.
 本発明において成形される成形品には、光学素子やマイクロチップなどがある。基材は、成形後に成形品の一部となると好ましい。「光学素子」としては、例えば回折格子や,可視光の波長以下の凹凸構造を持つモスアイ素子などがある。「最大段差50μm以下」とは、成形品の表面に対して垂直方向における段差の高さ又は深さが50μm以下であることをいう。 The molded product molded in the present invention includes an optical element and a microchip. The substrate is preferably a part of the molded product after molding. Examples of the “optical element” include a diffraction grating and a moth-eye element having a concavo-convex structure having a wavelength of visible light or less. “Maximum step 50 μm or less” means that the height or depth of the step in the direction perpendicular to the surface of the molded product is 50 μm or less.
 以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。 Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
 図1は、本実施形態による成形型を模式的に示す拡大断面図である。成形型MDは、表面微細構造の転写面MSを形成した第1層L1と、第2層L2と、第3層L3とを積層して形成されている。尚、図3に示すように、第1層L1と第2層L2との間に第1接着層B1が形成され、第2層L2と第3層L3との間に第2接着層B2が形成されていてもよい。ここで本発明者は、第1層L1と第2層L2の物性値を調整することで、離型時における成形品の損傷が少ない成形型を得られるのではないかと考えた。 FIG. 1 is an enlarged cross-sectional view schematically showing a mold according to the present embodiment. The mold MD is formed by laminating a first layer L1, a second layer L2, and a third layer L3 on which a transfer surface MS having a surface microstructure is formed. As shown in FIG. 3, a first adhesive layer B1 is formed between the first layer L1 and the second layer L2, and a second adhesive layer B2 is formed between the second layer L2 and the third layer L3. It may be formed. Here, the present inventor thought that a mold having less damage to the molded product at the time of mold release could be obtained by adjusting the physical property values of the first layer L1 and the second layer L2.
 第1層L1の表面微細構造の転写面MSは、最大段差H=50μm以下の凹凸形状を有している。第1層L1のヤング率をE1とし、第1層L2の厚みをt1としたときに、(1)、(2)式を満たす。
 E1×t1 3≦15[MPa・mm3]   (1)
 300≦E1≦5,000[MPa]   (2)
The transfer surface MS of the surface microstructure of the first layer L1 has an uneven shape with a maximum step H = 50 μm or less. When the Young's modulus of the first layer L1 is E 1 and the thickness of the first layer L2 is t 1 , the expressions (1) and (2) are satisfied.
E 1 × t 1 3 ≦ 15 [MPa · mm 3 ] (1)
300 ≦ E 1 ≦ 5,000 [MPa] (2)
 更に、第2層L2のヤング率をE2とし、第2層L2の厚みをt2としたときに、(3)~(5)式を満たす。
 E2/t2≦15[MPa/mm]   (3)
 5≦E2≦100   (4)
 0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
Further, when the Young's modulus of the second layer L2 is E 2 and the thickness of the second layer L2 is t 2 , the expressions (3) to (5) are satisfied.
E 2 / t 2 ≦ 15 [MPa / mm] (3)
5 ≦ E 2 ≦ 100 (4)
0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
 ここで、式の意義について説明する。第1層L1と第2層L2を積層した場合において、離型時における第1層L1の負荷状態は、片持ち梁の撓みとみなすことができる。より具体的には、図2に示すように、第1層L1離型時には、第1層L1の中心Oを固定端とする片持ち梁と同様な撓みが発生すると考えられる。ここで、自由端の荷重をWとし、第1層L1の中心から外縁までの距離をLとし、第1層L1の幅をbとすると、自由端の撓み量Δは以下の式で表せる。
 Δ=WL3/(3E1I)
  =WL3/(3E1(bt1 3/12))
  =4WL3/(bE11 3)   (15)
つまり、第1層L1の外縁の撓み量は、E1×t1 3に反比例する関数となる。本発明者の研究結果によれば、E1×t1 3を15[MPa・mm3]以下とし、且つE1が(2)式に該当する素材で第1層L1を形成することで、適切に撓む構造とできることがわかった。
Here, the significance of the formula will be described. In the case where the first layer L1 and the second layer L2 are stacked, the load state of the first layer L1 at the time of mold release can be regarded as bending of the cantilever beam. More specifically, as shown in FIG. 2, it is considered that when the first layer L1 is released from the mold, the same bending as that of a cantilever beam having the center O of the first layer L1 as a fixed end occurs. Here, if the load at the free end is W, the distance from the center of the first layer L1 to the outer edge is L, and the width of the first layer L1 is b, the deflection amount Δ of the free end can be expressed by the following equation.
Δ = WL 3 / (3E 1 I)
= WL 3 / (3E 1 ( bt 1 3/12))
= 4WL 3 / (bE 1 t 1 3 ) (15)
That is, the amount of deflection of the outer edge of the first layer L1 is a function that is inversely proportional to E 1 × t 1 3 . According to the research results of the present inventors, E 1 × t 1 3 is set to 15 [MPa · mm 3 ] or less, and E 1 is formed of the material corresponding to the formula (2), thereby forming the first layer L1. It was found that the structure can be bent appropriately.
 (1)式のE1×t1 3の下限値は小さいほどよいので、特に規定していないが、第1層L1の最大段差Hの値が、実績のある値のH=20nmの凹凸形状を有していると仮定し、tを20nm、第1層L1のヤング率を300MPaとした場合の、20nm×300=0.006が(1)式の下限値となる。(3)式のE2/t2≦15の下限値は小さいほどよいので、特に規定していないが、(5)式下限値0.03とE1×t1 3を最小値の0.006としたときに、E2/t2≧0.15となるので(3)式の下限値は0.15となる。 The lower limit value of E 1 × t 1 3 in equation (1) is preferably as small as possible, and is not particularly specified. However, the value of the maximum step H of the first layer L1 is an uneven shape with a proven value of H = 20 nm. When t is 20 nm and the Young's modulus of the first layer L1 is 300 MPa, 20 nm × 300 = 0.006 is the lower limit of the expression (1). The lower limit value of E 2 / t 2 ≦ 15 in equation (3) is better as it is smaller, so it is not particularly specified, but when (5) equation lower limit value 0.03 and E 1 × t 1 3 are set to the minimum value of 0.006 Furthermore, since E 2 / t 2 ≧ 0.15, the lower limit value of the expression (3) is 0.15.
 一方、離型時における第2層L2の負荷状態は、フックの法則が適用される。より具体的には、弾性係数kである第2層L2全体に、荷重Fを付与したときの厚さ方向の変形量をxとすると、以下の式が成立する。
 F=kx   (16)
On the other hand, Hooke's law is applied to the load state of the second layer L2 at the time of mold release. More specifically, when the deformation amount in the thickness direction when the load F is applied to the entire second layer L2 having the elastic coefficient k is x, the following equation is established.
F = kx (16)
 ここで、第2層L2に作用する応力をσ、歪みをεとすると、ε=x/t2となるので、フックの法則は縦弾性係数すなわちヤング率を用いて、以下の式で表せる。
 σ=E2ε
  =E2x/t2   (17)
これを変形して、
 x=σt2/E2   (18)
つまり、第2層L2の変形量xは、t2/E2に正比例する関数である。本発明者の研究結果によれば、E2/t2を15[MPa/mm]以下とし、且つE2が(3)式に該当する素材で第2層L2を形成することで、適度に縮みやすい構造とできることがわかった。
Here, assuming that the stress acting on the second layer L2 is σ and the strain is ε, ε = x / t 2, and Hooke's law can be expressed by the following equation using the longitudinal elastic modulus, that is, Young's modulus.
σ = E 2 ε
= E 2 x / t 2 (17)
Transform this,
x = σt 2 / E 2 (18)
That is, the deformation amount x of the second layer L2 is a function that is directly proportional to t 2 / E 2 . According to the research result of the present inventor, when E 2 / t 2 is set to 15 [MPa / mm] or less and the second layer L2 is formed of a material corresponding to E 2 (3), It was found that the structure can be easily shrunk.
 一方、上述の条件を満たすのみでは、適切な成形を行えない。本発明者の研究結果によれば、第1層L1と第2層L2が共に柔らかすぎる場合には、成形品の形状が不安定になり、第1層L1と第2層L2が共に固すぎる場合には、殆ど変形が生じないことから離型時に表面微細構造の損傷が生じやすいことを見出した。かかる知見から、更に(5)式を満たす材料から第1層L1,第2層L2を形成することで、適切な成形を行える成形型を実現したのである。
 0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
On the other hand, appropriate molding cannot be performed only by satisfying the above conditions. According to the research results of the present inventor, when both the first layer L1 and the second layer L2 are too soft, the shape of the molded product becomes unstable, and both the first layer L1 and the second layer L2 are too hard. In some cases, it was found that since the deformation hardly occurs, the surface fine structure is easily damaged at the time of releasing. From this knowledge, by forming the first layer L1 and the second layer L2 from a material satisfying the formula (5), a molding die capable of appropriate molding was realized.
0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
 以上を整理すると、成形型MDが、表面微細構造の転写面MSを有する第1層L1をたわみ易い材料から形成し、第2層L2を縮み易い材料から形成しているので、成形品の離型時には、離型抵抗の応力が集中する部分(特に成形品の端)において成形型MDが集中的に変形することにより、その部分を起点に成形品と成形型MDとが剥離を開始するようにできる。その結果、離型抵抗の応力を分散し成形品と成形型MDの表面微細構造の損傷を防ぐことができるのである。特に、(5)式の値が下限値以上であれば、離型時の成形型MDの変形が大きくなりすぎず、表面微細構造の形状が変わりにくく高精度な転写形状を得ることができる。一方、(5)式の値が上限値以下であれば、離型時の成形型MDの変形が小さくなりすぎず、離型時に容易な剥離を実現できる。つまり、(5)式を満たすことで、表面微細構造の維持と離型性とを両立できる。特に、表面微細構造の段差が1μm以下であると、構造が小さくなり損傷しやすくなるため、本発明の効果が期待される。 To summarize the above, since the molding die MD forms the first layer L1 having the transfer surface MS of the surface fine structure from a material that easily bends and the second layer L2 from a material that easily shrinks, At the time of molding, the molding die MD is intensively deformed at a portion where the stress of the release resistance is concentrated (particularly at the end of the molded product), so that the molded product and the molding die MD start to peel from that portion. Can be. As a result, the stress of the mold release resistance can be dispersed to prevent damage to the surface microstructure of the molded product and the mold MD. In particular, if the value of the expression (5) is equal to or greater than the lower limit value, the deformation of the mold MD at the time of mold release does not become excessively large, and the shape of the surface fine structure is hardly changed and a highly accurate transfer shape can be obtained. On the other hand, if the value of the formula (5) is equal to or less than the upper limit value, the deformation of the mold MD at the time of mold release does not become too small, and easy peeling can be realized at the time of mold release. That is, by satisfying the formula (5), both maintenance of the surface fine structure and releasability can be achieved. In particular, when the step of the surface fine structure is 1 μm or less, the structure becomes small and easily damaged, and therefore the effect of the present invention is expected.
 更に、第3層L3に求められる,より好ましい条件について説明する。第3層L3のヤング率をE3とし、第3層L3の厚みをt3としたときに、(6)、(7)式を満たすようにすると、離型時に、第2層L2の第3層L3側では変形が抑制され、第2層L2の第1層L1側では変形しやすくなるので、第1層L1の撓みを促進することとなり、離型抵抗が軽減され、成形型を故意に撓ませた場合と同等の効果が得られる。
 E3×t3 3≧50,000[MPa・mm3]   (6)
 50,000≦E3[MPa]   (7)
Furthermore, more preferable conditions required for the third layer L3 will be described. The Young's modulus of the third layer L3 and E 3, the thickness of the third layer L3 is taken as t 3, (6), when to satisfy the equation (7), at the time of release, the second layer L2 first Deformation is suppressed on the side of the third layer L3, and deformation is likely to occur on the side of the first layer L1 of the second layer L2. Therefore, the bending of the first layer L1 is promoted, the mold release resistance is reduced, and the mold is deliberately The same effect as that obtained when bending is obtained.
E 3 × t 3 3 ≧ 50,000 [MPa · mm 3 ] (6)
50,000 ≦ E 3 [MPa] (7)
 尚、図3に示すように、第1層L1と第2層L2との間には第1接着層B1が設けてもよい。かかる場合、第1層L1と第1接着層B1とを総合した総合ヤング率をE1とみなし、第1層L1と第1接着層B1とを総合した総合厚みをt1とみなして(1)、(2)式を計算する。更に、第2層L2と第3層L3との間に第2接着層B2を設けてもよい。かかる場合、第3層L3と第2接着層B2とを総合した総合ヤング率をE3とみなし、第3層L3と第2接着層B2とを総合した総合厚みをt3とみなして(6)、(7)式を計算する。但し、第1接着層B1と第2接着層B2の厚みは、50μm以下であると好ましい。 As shown in FIG. 3, a first adhesive layer B1 may be provided between the first layer L1 and the second layer L2. In such a case, the total Young's modulus combining the first layer L1 and the first adhesive layer B1 is regarded as E 1, and the total thickness including the first layer L1 and the first adhesive layer B1 is regarded as t 1 (1 ) And (2) are calculated. Furthermore, a second adhesive layer B2 may be provided between the second layer L2 and the third layer L3. In such a case, the total Young's modulus combining the third layer L3 and the second adhesive layer B2 is regarded as E 3, and the total thickness including the third layer L3 and the second adhesive layer B2 is regarded as t 3 (6 ) And (7) are calculated. However, the thickness of the first adhesive layer B1 and the second adhesive layer B2 is preferably 50 μm or less.
 ここで、成形品と基材に求められる,より好ましい条件について説明する。例えば基材が撓みやすい材料から形成されていた場合、成形型MDの変形に追従してしまい離型が困難となる恐れがある。これに対し、基材が撓みにくければ、成形型MDに追従せず離型が容易になる。このため、成形型MDにより表面微細構造を転写成形された光硬化性樹脂と基材からなる成形品の、転写された光硬化性樹脂と基材とを総合したヤング率をE4とみなし、転写された光硬化性樹脂と基材とを総合した成形品の厚みをt4とみなしたときに、(8)、(9)式を満たすようにすることが望ましい。
 E4×t4 3≧500[MPa・mm3]   (8)
 500≦E4   [MPa]   (9)
Here, more preferable conditions required for the molded product and the base material will be described. For example, when the base material is formed from a material that is easily bent, there is a possibility that it will be difficult to release the mold because it follows the deformation of the mold MD. On the other hand, if the base material is difficult to bend, the mold does not follow the mold MD and can be easily released. For this reason, the Young's modulus of the molded product composed of the photocurable resin and the base material whose surface microstructure is transferred and molded by the molding die MD is regarded as E 4, and the total of the transferred photocurable resin and the base material is regarded as E 4 . It is desirable to satisfy the expressions (8) and (9) when the thickness of the molded product including the transferred photocurable resin and the base material is regarded as t 4 .
E 4 × t 4 3 ≧ 500 [MPa · mm 3 ] (8)
500 ≦ E 4 [MPa] (9)
 尚、第1層L1の材料はオレフィン系樹脂であると、樹脂充填性や離型性に優れるので好ましい。又、以下の式を満たすと更に好ましい。
 E1×t1 3≦5[MPa・mm3]   (10)
 E2/t2≦10[MPa/mm]   (11)
 0.7≦√(E1×t1 3×E2/t2)[MPa・mm]≦8   (12)
 2≦√(E1×t1 3×E2/t2)[MPa・mm]≦6   (13)
 E4×t4 3≧10,000[MPa・mm3]   (14)
In addition, since the material of the 1st layer L1 is excellent in resin filling property and mold release property, it is preferable that it is an olefin resin. Further, it is more preferable that the following expression is satisfied.
E 1 × t 1 3 ≦ 5 [MPa · mm 3 ] (10)
E 2 / t 2 ≦ 10 [MPa / mm] (11)
0.7 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 8 (12)
2 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 6 (13)
E 4 × t 4 3 ≧ 10,000 [MPa · mm 3 ] (14)
 第1層L1の材料は例えば、表1に示すものが好ましい。但し、表1のヤング率E1は任意値であり、メーカー・品番により異なる。成形型側の外部からUV光を照射する構成の場合、第1層L1の材料は十分なUV光の透過性を有する必要があるが、基材側からUV光を照射する場合には透過性は有しなくても良い。 For example, the material of the first layer L1 is preferably the one shown in Table 1. However, the Young's modulus E 1 in Table 1 is an arbitrary value and varies depending on the manufacturer and product number. In the case of a configuration in which UV light is irradiated from the outside on the mold side, the material of the first layer L1 needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. May not be present.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2層L2の材料は例えば、表2に示すものが好ましい。但し、表2のヤング率E2は任意値であり、メーカー・品番により異なる。成形型側の外部からUV光を照射する構成の場合、第2層L2の材料も十分なUV光の透過性を有する必要があるが、基材側からUV光を照射する場合には透過性は有しなくて良い。 The material of the second layer L2 is preferably the one shown in Table 2, for example. However, the Young's modulus E 2 in Table 2 is an arbitrary value and varies depending on the manufacturer and the product number. In the case of a configuration in which UV light is irradiated from the outside on the mold side, the material of the second layer L2 also needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. Does not have to.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第3層L3の材料は例えば、表3に示すものが好ましい。但し、表3のヤング率E3は任意値であり、メーカー・品番により異なる。成形型側の外部からUV光を照射する構成の場合、第3層L3の材料も十分なUV光の透過性を有する必要があるが、基材側からUV光を照射する場合には透過性は有しなくて良い。 For example, the materials of the third layer L3 are preferably those shown in Table 3. However, the Young's modulus E 3 in Table 3 is an arbitrary value and varies depending on the manufacturer and product number. In the case of a configuration in which UV light is irradiated from the outside on the mold side, the material of the third layer L3 also needs to have sufficient UV light transmittance, but when UV light is irradiated from the base material side, it is transparent. Does not have to.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 成形品の基材は例えば、表4に示すものが好ましい。但し、表4のヤング率E4は任意値であり、メーカー・品番により異なる。成形型側の外部からUV光を照射する構成の場合、基材は、UV光の透過性を有する必要はないが、基材側からUV光を照射する場合には、十分なUV透過性を有する必要がある。 For example, the base material of the molded product is preferably one shown in Table 4. However, the Young's modulus E 4 in Table 4 is an arbitrary value and varies depending on the manufacturer and product number. In the case of a configuration in which UV light is irradiated from the outside on the mold side, the base material does not need to have UV light transmittance. However, when UV light is irradiated from the base material side, sufficient UV transmittance is provided. It is necessary to have.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 成形品の表面微細構造は、例えば深さ50nm幅50nmの溝、φ100nmのピラーアレイ、φ100nmの孔、深さ20μm幅200μmの溝、φ20μmのピラーアレイ、φ20μmの孔などが例としてあげられる。 Examples of the surface microstructure of the molded product include, for example, a groove having a depth of 50 nm and a width of 50 nm, a φ100 nm pillar array, a φ100 nm hole, a depth of 20 μm and a width of 200 μm, a φ20 μm pillar array, and a φ20 μm hole.
 以下、実施例について説明する。図4(a)は、実施例1で用いたマスター型MMの正面図であり、図4(b)は、マスター型MMの中央部の拡大断面図である。図4に示すマスター型MMは、シリコン製であり、厚さ1mmで縦横30mmの矩形板状であって、中央の4mm四方の領域にラインアンドスペース構造LSを形成している。図4(b)に示すように、ラインアンドスペース構造LSは、高さ20nmで幅200nmの矩形断面の隆起部を、200nmの間隔で複数本、紙面垂直方向に延在させたものであり、成形品の形状に相当する。このようなマスター型MMの微細なラインアンドスペース構造LSは、例えば特開2009-206519号公報に記載されたナノインプリント法で形成できる。 Hereinafter, examples will be described. FIG. 4A is a front view of the master type MM used in Example 1, and FIG. 4B is an enlarged cross-sectional view of the central portion of the master type MM. The master type MM shown in FIG. 4 is made of silicon and has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and a line-and-space structure LS is formed in a central 4 mm square region. As shown in FIG. 4 (b), the line-and-space structure LS is formed by extending a plurality of ridges having a rectangular cross section with a height of 20 nm and a width of 200 nm in a direction perpendicular to the paper surface at intervals of 200 nm. Corresponds to the shape of the molded product. Such a fine line-and-space structure LS of the master type MM can be formed by, for example, a nanoimprint method described in JP-A-2009-206519.
 図5は、図4のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図であるが、ラインアンドスペース構造LSは誇張して示している。まず図5(a)に示すように、マスター型MMを、熱インプリント装置の上型HIUに取り付けると共に、これに対向する熱インプリント装置の下型HIDに、第1層の材料MT1を載置する。材料MT1は、ここではφ20mm、厚さ0.1mmのPMP(三井化学株式会社製の製品名RT18)を用いた。 FIG. 5 is a schematic view showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 4, but the line and space structure LS is exaggerated. First, as shown in FIG. 5A, the master mold MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master mold MM. Put. Here, PMP (product name RT18 manufactured by Mitsui Chemicals, Inc.) having a diameter of 20 mm and a thickness of 0.1 mm was used as the material MT1.
 かかる状態で、上型HIUを220℃に加熱し、下型HIDを30℃で一定とし、図5(b)に示すように、上型HIUと下型HIDを接近させ、10MPaで3分間加圧した後、上型HIUを30℃まで冷却した。その後、図5(c)に示すように上型HIUと下型HIDとを離間させ、ラインアンドスペース構造LSに対応した表面微細構造の転写面MSが転写成形された平面形状の第1層L1を取り出した。 In this state, the upper die HIU is heated to 220 ° C., the lower die HID is kept constant at 30 ° C., and the upper die HIU and the lower die HID are brought close to each other as shown in FIG. After pressing, the upper mold HIU was cooled to 30 ° C. Thereafter, as shown in FIG. 5C, the upper mold HIU and the lower mold HID are separated from each other, and a planar first layer L1 on which a transfer surface MS having a surface fine structure corresponding to the line and space structure LS is transferred and molded. Was taken out.
 図6は、図5の工程で得られた第1層を用いた成形型の製造工程を示す模式図であるが、表面微細構造の転写面MSは誇張して示している。図6(a)に示すように、第3層L3としての縦横40mmで厚さ10mmの矩形板状の石英ガラス(株式会社ミスミ製)の上に、第2層L2としてφ20mm、厚さ3mmのシリコーンゴム(信越化学株式会社製の製品名X-32-3212)を載置し、その間に第2接着層B2を形成するために株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.02ml塗布した。 FIG. 6 is a schematic diagram showing the manufacturing process of the mold using the first layer obtained in the process of FIG. 5, but the transfer surface MS of the surface microstructure is exaggerated. As shown in FIG. 6A, on the rectangular plate-shaped quartz glass (manufactured by Misumi Co., Ltd.) having a thickness of 40 mm and a thickness of 10 mm as the third layer L3, the second layer L2 has a diameter of 20 mm and a thickness of 3 mm. Place silicone rubber (product name X-32-3212 manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.02 ml of epoxy UV curable resin PL manufactured by Daicel Co., Ltd. to form the second adhesive layer B2 therebetween. Applied.
 加えて、第2層L2の上に、図5の工程で得られた第1層L1を載置し、その間に第1接着層B1を形成するために株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.02ml塗布した。 In addition, on the second layer L2, the first layer L1 obtained in the step of FIG. 5 is placed, and in order to form the first adhesive layer B1 therebetween, an epoxy UV curing property manufactured by Daicel Corporation. 0.02 ml of resin PL was applied.
 かかる状態で、図6(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、接着層B1,B2を形成した。これにより、図6(c)に示すように、厚さ50μmの接着層B1,B2により第1層L1,第2層L2,第3層L3を積層した成形型MDが得られた。 In this state, as shown in FIG. 6B, UV light with a wavelength of 365 nm was irradiated for 60 seconds with an intensity of 300 mW / cm 2 from below the third layer L3 to form adhesive layers B1 and B2. Thereby, as shown in FIG.6 (c), the shaping | molding die MD which laminated | stacked 1st layer L1, 2nd layer L2, and 3rd layer L3 by 50-micrometer-thick adhesive layer B1, B2 was obtained.
 図7は、成形型を用いて成形品を成形する工程を示す図である。まず、図7(a)に示すように、成形型MDの第3層L3をフレームFRに固定して、更に成形型MDの第1層L1に対向するようにして、支持枠SPに下面周辺を支持された、縦横25mm、厚さ2mmのPC板(タキロン株式会社製の製品名PC1600)の基材STを配置した。 FIG. 7 is a diagram showing a process of forming a molded product using a mold. First, as shown in FIG. 7A, the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery. A substrate ST of a PC plate (product name PC1600 manufactured by Takiron Co., Ltd.) having a length of 25 mm and a thickness of 2 mm was disposed.
 かかる状態で、第1層L1上に、成形品の素材PLとして、株式会社ダイセル製のエポキシ系UV硬化性樹脂を0.01ml塗布し、支持枠SPに支持された平面形状の基材STを第1層L1に接近させた。このとき、基材STは、支持枠SPに下面周辺のみを自重に抗して支持されているので、基材STと第1層L1との間に均一な力が発生し、両者を平行に維持することができる。 In such a state, 0.01 ml of an epoxy-based UV curable resin manufactured by Daicel Co., Ltd. is applied as a molded product material PL on the first layer L1, and a planar substrate ST supported by the support frame SP is applied. It was made to approach the 1st layer L1. At this time, since the base material ST is supported by the support frame SP against only the periphery of the lower surface against its own weight, a uniform force is generated between the base material ST and the first layer L1, and both are made parallel. Can be maintained.
 この状態を維持しつつ、図7(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、素材PLを硬化させた。その後、図7(c)に示すように、支持枠SPに支持された基材STを第1層L1から離間すると、素材PLは基材STに貼り付いた状態となって第1層L1から剥がれ、更に支持枠SPから基材STを取り外すことで、表面微細構造MS’を有する成形品を得ることができた。 While maintaining this state, as shown in FIG. 7B, the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. . Thereafter, as shown in FIG. 7 (c), when the base material ST supported by the support frame SP is separated from the first layer L1, the material PL is attached to the base material ST and is removed from the first layer L1. By peeling off and further removing the substrate ST from the support frame SP, a molded product having the surface microstructure MS ′ could be obtained.
 実施例1における各部材の物性値は以下の通りである。
第1層L1のヤング率:E1=1,900[MPa]、厚さt1=0.1[mm]、第1接着層B1のヤング率:E=2,600[MPa]、厚さt=0.05[mm]、第1接着層B1を含む第1層の総合ヤング率と総合厚さにより得られる(1)式の値:2.2[MPa・mm3
The physical property values of each member in Example 1 are as follows.
Young's modulus of the first layer L1: E 1 = 1,900 [MPa], thickness t 1 = 0.1 [mm], Young's modulus of the first adhesive layer B1: E = 2,600 [MPa], thickness t = 0.05 [mm], the value of the formula (1) obtained by the total Young's modulus and the total thickness of the first layer including the first adhesive layer B1: 2.2 [MPa · mm 3 ]
第2層L2のヤング率:E2≒30[MPa],厚さt2=4[mm]
(3)式の値:8[MPa/mm]
以上より、(5)式の値:4.1[MPa・mm]
Young's modulus of the second layer L2: E 2 ≈30 [MPa], thickness t 2 = 4 [mm]
(3) Formula value: 8 [MPa / mm]
From the above, the value of formula (5): 4.1 [MPa · mm]
第3層L3のヤング率:E3=74,000[MPa]、厚さt3=10[mm]、第2接着層B2のヤング率:E=2,600[MPa]、厚さt=0.05[mm]、第2接着層B2を含む第3層の総合ヤング率と総合厚さにより得られる(6)式の値:74,000,000[MPa・mm3Young's modulus of the third layer L3: E 3 = 74,000 [MPa], thickness t 3 = 10 [mm], Young's modulus of the second adhesive layer B2: E = 2,600 [MPa], thickness t = 0.05 [mm], the value of the formula (6) obtained by the total Young's modulus and the total thickness of the third layer including the second adhesive layer B2: 74,000,000 [MPa · mm 3 ]
基材STのヤング率:E=2,250[MPa],厚さt=2[mm]、素材PLのヤング率:E=2,600[MPa],厚さt=0.05[mm]、基材STと素材PLからなる成形品のヤング率と厚さより求まる(8)式の値:18,000[MPa・mm3Young's modulus of the substrate ST: E = 2,250 [MPa], thickness t = 2 [mm], Young's modulus of the material PL: E = 2,600 [MPa], thickness t = 0.05 [mm] The value of the formula (8) obtained from the Young's modulus and thickness of the molded product made of the base material ST and the material PL: 18,000 [MPa · mm 3 ]
 実施例1は、第1層と第2層のそれぞれが積極的に変形し、かつ成形品が変形しないことで、第1層と成形品界面において隙間ができ、密着力を低減することができる。第1層と第2層の変形により、密着力低減の効果が大きい。 In Example 1, each of the first layer and the second layer is positively deformed and the molded product is not deformed, so that a gap is formed at the interface between the first layer and the molded product, and the adhesion can be reduced. . Due to the deformation of the first layer and the second layer, the effect of reducing the adhesion is great.
(実施例2)
 図8(a)は、実施例2で用いたマスター型MMの正面図であり、図8(b)は、マスター型MMの中央部の拡大断面図である。図8に示すマスター型MMは、シリコン製であり、厚さ1mmで縦横30mmの矩形板状であって、中央の4mm四方の領域にマトリクス状に配置した複数の円形孔HLを形成している。図8(b)に示すように、深さ200nmでφ200nmの円形孔HLを、ピッチ400nmで縦横に配置したものであり、成形品の形状に相当する。このようなマスター型MMの微細な円形孔HLも、例えば特開2009-206519号公報に記載されたナノインプリント法で形成できる。
(Example 2)
FIG. 8A is a front view of the master type MM used in the second embodiment, and FIG. 8B is an enlarged cross-sectional view of a central portion of the master type MM. The master type MM shown in FIG. 8 is made of silicon, has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and has a plurality of circular holes HL arranged in a matrix in a central 4 mm square region. . As shown in FIG. 8B, circular holes HL having a depth of 200 nm and a diameter of 200 nm are arranged vertically and horizontally at a pitch of 400 nm, which corresponds to the shape of the molded product. Such a fine circular hole HL of the master type MM can also be formed by the nanoimprint method described in, for example, Japanese Patent Application Laid-Open No. 2009-206519.
 図9は、図8のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図であるが、円形孔HLは誇張して示している。まず図9(a)に示すように、マスター型MMを、熱インプリント装置の上型HIUに取り付けると共に、これに対向する熱インプリント装置の下型HIDに、第1層の材料MT1を載置する。材料MT1は、ここではφ20mm、厚さ0.2mmのPP(積水成型株式会社製の製品名P-B134)を用いた。 FIG. 9 is a schematic diagram showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 8, but the circular hole HL is exaggerated. First, as shown in FIG. 9A, the master type MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master type MM. Put. Here, PP (product name P-B134 manufactured by Sekisui Molding Co., Ltd.) having a diameter of 20 mm and a thickness of 0.2 mm was used as the material MT1.
 かかる状態で、上型HIUを160℃に加熱し、下型HIDを30℃で一定にして、図9(b)に示すように、上型HIUと下型HIDを接近させ、10MPaで3分間加圧した後、上型HIUを30℃まで冷却した。その後、図9(c)に示すように上型HIUと下型HIDとを離間させ、複数の円形孔HLに対応した凸部からなる表面微細構造の転写面MSが転写成形された第1層L1を取り出した。 In this state, the upper die HIU is heated to 160 ° C., the lower die HID is kept constant at 30 ° C., and the upper die HIU and the lower die HID are brought close to each other as shown in FIG. After pressurization, the upper mold HIU was cooled to 30 ° C. Thereafter, as shown in FIG. 9 (c), the upper die HIU and the lower die HID are separated from each other, and a transfer surface MS having a surface microstructure composed of convex portions corresponding to the plurality of circular holes HL is transferred and molded. L1 was removed.
 図10は、図9の工程で得られた第1層を用いた成形型の製造工程を示す模式図であるが、表面微細構造の転写面MSは誇張して示している。図10(a)に示すように、第3層L3としての縦横40mmで厚さ10mmの矩形板状の石英ガラス(株式会社ミスミ製)の上に、第2層L2としてφ20mm、厚さ1.5mmのシリコーンゴムを載置した。加えて、第2層L2の上に、図9の工程で得られた第1層L1を載置することで、第1層L1,第2層L2,第3層L3を積層した成形型MDが得られた(図10(b))。本実施例では、第1層L1と第2層L2の間、及び第2層L2と第3層L3の間に接着層を設けてはいない。これは、使用したシリコーンゴムが,本来的に接着層に代わる接着保持性を有するからである。 FIG. 10 is a schematic view showing the manufacturing process of the mold using the first layer obtained in the process of FIG. 9, but the transfer surface MS having the surface fine structure is exaggerated. As shown in FIG. 10A, on the rectangular plate-shaped quartz glass (manufactured by MISUMI Corporation) having a thickness of 40 mm and a thickness of 10 mm as the third layer L3, the second layer L2 has a diameter of 20 mm and a thickness of 1. mm. A 5 mm silicone rubber was placed. In addition, the mold MD in which the first layer L1, the second layer L2, and the third layer L3 are stacked by placing the first layer L1 obtained in the process of FIG. 9 on the second layer L2. Was obtained (FIG. 10B). In the present embodiment, no adhesive layer is provided between the first layer L1 and the second layer L2 and between the second layer L2 and the third layer L3. This is because the used silicone rubber inherently has adhesive retention properties that replace the adhesive layer.
 図11は、成形型を用いて成形品を成形する工程を示す図である。まず、図11(a)に示すように、成形型MDの第3層L3をフレームFRに固定して、更に成形型MDの第1層L1に対向するようにして、支持枠SPに下面周辺を支持された、縦横25mm、厚さ2mmのPC板(旭化成テクノプラス株式会社製の製品名デミグラスK)の基材STを配置した。 FIG. 11 is a diagram showing a process of forming a molded product using a mold. First, as shown in FIG. 11A, the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery. The base material ST of PC board (product name Demigrass K manufactured by Asahi Kasei Technoplus Co., Ltd.) having a length of 25 mm and a thickness of 2 mm was disposed.
 かかる状態で、第1層L1上に、成形品の素材PLとして、株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.01ml塗布し、支持枠SPに支持された基材STを第1層L1に接近させた。このとき、基材STは、支持枠SPに下面周辺のみを自重に抗して支持されているので、基材STと第1層L1との間に均一な力が発生し、両者を平行に維持することができる。 In this state, 0.01 ml of an epoxy-based UV curable resin PL manufactured by Daicel Corporation is applied as the material PL of the molded product on the first layer L1, and the base material ST supported by the support frame SP is the first. Approached layer L1. At this time, since the base material ST is supported by the support frame SP against only the periphery of the lower surface against its own weight, a uniform force is generated between the base material ST and the first layer L1, and both are made parallel. Can be maintained.
 この状態を維持しつつ、図11(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、素材PLを硬化させた。その後、図11(c)に示すように、支持枠SPに支持された基材STを第1層L1から離間すると、素材PLは基材STに貼り付いた状態となって第1層L1から剥がれ、更に支持枠SPから基材STを取り外すことで、表面微細構造MS’を有する成形品を得ることができた。 While maintaining this state, as shown in FIG. 11B, the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. . Thereafter, as shown in FIG. 11 (c), when the base material ST supported by the support frame SP is separated from the first layer L1, the material PL is attached to the base material ST and is removed from the first layer L1. By peeling off and further removing the substrate ST from the support frame SP, a molded product having the surface microstructure MS ′ could be obtained.
 実施例2における各部材の物性値は以下の通りである。
第1層L1のヤング率:E1=1,000[MPa]、厚さt1=0.2[mm]
第1層の(1)式の値:8[MPa・mm3
The physical property values of each member in Example 2 are as follows.
Young's modulus of the first layer L1: E 1 = 1,000 [MPa], thickness t 1 = 0.2 [mm]
Value of formula (1) of the first layer: 8 [MPa · mm 3 ]
第2層L2のヤング率:E2≒50[MPa]、厚さt2=4[mm]
(3)式の値:13[MPa/mm]
以上より、(5)式の値:10[MPa・mm]
Young's modulus of the second layer L2: E 2 ≈50 [MPa], thickness t 2 = 4 [mm]
Value of equation (3): 13 [MPa / mm]
From the above, the value of the formula (5): 10 [MPa · mm]
第3層L3のヤング率:E3=74,000[MPa]、厚さt3=10[mm]
第3層の(6)式の値:74,000,000[MPa・mm3
Young's modulus of the third layer L3: E 3 = 74,000 [MPa], thickness t 3 = 10 [mm]
Value of formula (6) of third layer: 74,000,000 [MPa · mm 3 ]
基材STのヤング率:E=1,800[MPa],厚さt=1[mm]
素材PLのヤング率:E=2,600[MPa],厚さt=0.05[mm]
基材STと素材PLからなる成形品のヤング率と厚さより求まる(8)式の値:1,800[MPa・mm3
Young's modulus of the substrate ST: E = 1,800 [MPa], thickness t = 1 [mm]
Young's modulus of the material PL: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of equation (8) obtained from Young's modulus and thickness of molded product made of base material ST and material PL: 1,800 [MPa · mm 3 ]
(実施例3)
 図12(a)は、実施例3で用いたマスター型MMの正面図であり、図12(b)は、マスター型MMの中央部の拡大断面図である。図12に示すマスター型MMは、シリコン製であり、厚さ1mmで縦横30mmの矩形板状であって、中央の4mm四方の領域にマトリクス状に配置した複数の円筒部CYを形成している。図12(b)に示すように、高さ4μmでφ2μmの突出した円筒部CYを、ピッチ4μmで縦横に配置したものであり、成形品の形状に相当する。このようなマスター型MMの微細な円筒部CYも、例えば特開2009-206519号公報に記載されたナノインプリント法で形成できる。
(Example 3)
FIG. 12A is a front view of the master type MM used in Example 3, and FIG. 12B is an enlarged cross-sectional view of the central portion of the master type MM. The master type MM shown in FIG. 12 is made of silicon, has a rectangular plate shape with a thickness of 1 mm and a length and width of 30 mm, and forms a plurality of cylindrical portions CY arranged in a matrix in a central 4 mm square region. . As shown in FIG. 12B, protruding cylindrical portions CY having a height of 4 μm and a diameter of 2 μm are arranged vertically and horizontally at a pitch of 4 μm, which corresponds to the shape of the molded product. Such a fine cylindrical portion CY of the master type MM can also be formed by the nanoimprint method described in, for example, JP-A-2009-206519.
 図13は、図12のマスター型MMを用いて、成形型の第1層L1を転写形成する工程を示す模式図であるが、円筒部CYは誇張して示している。まず図13(a)に示すように、マスター型MMを、熱インプリント装置の上型HIUに取り付けると共に、これに対向する熱インプリント装置の下型HIDに、第1層の材料MT1を載置する。材料MT1は、ここではφ20mm、厚さ0.15mmのPETを用いた。 FIG. 13 is a schematic view showing a process of transferring and forming the first layer L1 of the mold using the master mold MM of FIG. 12, but the cylindrical portion CY is exaggerated. First, as shown in FIG. 13A, the master type MM is attached to the upper mold HIU of the thermal imprint apparatus, and the first layer material MT1 is mounted on the lower mold HID of the thermal imprint apparatus facing the master type MM. Put. As the material MT1, here, PET having a diameter of 20 mm and a thickness of 0.15 mm was used.
 かかる状態で、上型HIUを150℃に加熱し、下型HIDを30℃で一定として、図13(b)に示すように、上型HIUと下型HIDを接近させ、10MPaで3分間加圧した後、上型HIUを30℃まで冷却した。その後、図13(c)に示すように上型HIUと下型HIDとを離間させ、円筒部CYに対応した表面微細構造の転写面MSが転写成形された第1層L1を取り出した。 In this state, the upper die HIU is heated to 150 ° C., the lower die HID is kept constant at 30 ° C., and the upper die HIU and the lower die HID are brought close to each other as shown in FIG. After pressing, the upper mold HIU was cooled to 30 ° C. Thereafter, as shown in FIG. 13C, the upper die HIU and the lower die HID were separated from each other, and the first layer L1 on which the transfer surface MS having the surface fine structure corresponding to the cylindrical portion CY was transferred and taken out was taken out.
 更に、図6に示す工程と同様にして、第3層L3としての縦横40mmで厚さ10mmの矩形板状の石英ガラス(株式会社ミスミ製)の上に、第2層L2としてφ20mm、厚さ3mmのシリコーンゴムを載置し、その間に第2接着層B2を形成するために株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.02ml塗布した。 Further, in the same manner as in the process shown in FIG. 6, on the rectangular plate-like quartz glass (made by MISUMI Corporation) having a thickness of 40 mm and a thickness of 10 mm as the third layer L3, the second layer L2 has a diameter of 20 mm and a thickness. 3 mm silicone rubber was placed, and in order to form the second adhesive layer B2, 0.02 ml of an epoxy UV curable resin PL manufactured by Daicel Corporation was applied.
 加えて、第2層L2の上に、図13の工程で得られた第1層L1を載置し、その間に第1接着層B1を形成するために株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.02ml塗布した。 In addition, on the second layer L2, the first layer L1 obtained in the step of FIG. 13 is placed, and in order to form the first adhesive layer B1 therebetween, an epoxy UV curable product manufactured by Daicel Corporation. 0.02 ml of resin PL was applied.
 かかる状態で、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、接着層B1,B2を形成した。これにより、厚さ50nmの接着層B1,B2により第1層L1,第2層L2,第3層L3を積層した成形型MDが得られた。但し、成形型MDには、プラズマCVDでSiO2を7nm製膜し、離型剤オプツール(ダイキン株式会社製)を浸漬により製膜した。これにより離型性が高まる。 In this state, UV light having a wavelength of 365 nm was irradiated from below the third layer L3 at an intensity of 300 mW / cm 2 for 60 seconds to form adhesive layers B1 and B2. As a result, a mold MD was obtained in which the first layer L1, the second layer L2, and the third layer L3 were laminated by the adhesive layers B1 and B2 having a thickness of 50 nm. However, on the mold MD, a SiO 2 film having a thickness of 7 nm was formed by plasma CVD, and a release agent OPTOOL (manufactured by Daikin Corporation) was formed by immersion. Thereby, mold release property increases.
 図14は、成形型を用いて成形品を成形する工程を示す図である。まず、図14(a)に示すように、成形型MDの第3層L3をフレームFRに固定して、更に成形型MDの第1層L1に対向するようにして、支持枠SPに下面周辺を支持された、縦横25mm、厚さ2mmのPC板(タキロン株式会社製の製品名PC1600)の基材STを配置した。 FIG. 14 is a diagram showing a process of forming a molded product using a mold. First, as shown in FIG. 14 (a), the third layer L3 of the molding die MD is fixed to the frame FR, and is further opposed to the first layer L1 of the molding die MD so that the support frame SP has a lower periphery. A substrate ST of a PC plate (product name PC1600 manufactured by Takiron Co., Ltd.) having a length of 25 mm and a thickness of 2 mm was disposed.
 かかる状態で、第1層L1上に、成形品の素材PLとして、株式会社ダイセル製のUV硬化性樹脂PLを0.01ml塗布し、支持枠SPに支持された基材STを第1層L1に接近させた。このとき、基材STは、支持枠SPに下面周辺のみを自重に抗して支持されているので、基材STと第1層L1との間に均一な力が発生し、両者を平行に維持することができる。 In this state, 0.01 ml of a UV curable resin PL manufactured by Daicel Co., Ltd. is applied as the material PL of the molded product on the first layer L1, and the base material ST supported by the support frame SP is applied to the first layer L1. Approached. At this time, since the base material ST is supported by the support frame SP against only the periphery of the lower surface against its own weight, a uniform force is generated between the base material ST and the first layer L1, and both are made parallel. Can be maintained.
 この状態を維持しつつ、図14(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、素材PLを硬化させた。その後、図14(c)に示すように、支持枠SPに支持された基材STを第1層L1から離間すると、素材PLは基材STに貼り付いた状態となって第1層L1から剥がれ、更に支持枠SPから基材STを取り外すことで、表面微細構造MS’を有する成形品を得ることができた。 While maintaining this state, as shown in FIG. 14B, the material PL was cured by irradiating UV light having a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. . Thereafter, as shown in FIG. 14 (c), when the base material ST supported by the support frame SP is separated from the first layer L1, the material PL is attached to the base material ST and is removed from the first layer L1. By peeling off and further removing the substrate ST from the support frame SP, a molded product having the surface microstructure MS ′ could be obtained.
 実施例3における各部材の物性値は以下の通りである。
第1層L1のヤング率:E1=4,000[MPa]、厚さt1=0.15[mm]
第1接着層B1のヤング率:E=2,600[MPa]、厚さt=0.05[mm]
第1接着層B1を含む第1層の総合ヤング率と総合厚さにより得られる(1)式の値:13.8[MPa・mm3
The physical property values of each member in Example 3 are as follows.
Young's modulus of the first layer L1: E 1 = 4,000 [MPa], thickness t 1 = 0.15 [mm]
Young's modulus of the first adhesive layer B1: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of the formula (1) obtained by the total Young's modulus and the total thickness of the first layer including the first adhesive layer B1: 13.8 [MPa · mm 3 ]
第2層L2のヤング率:E2≒10[MPa]、厚さt2=3[mm]
(3)式の値:3[MPa/mm]
以上より、(5)式の値:6.8[MPa・mm]
Young's modulus of the second layer L2: E 2 ≈10 [MPa], thickness t 2 = 3 [mm]
(3) Formula value: 3 [MPa / mm]
From the above, the value of equation (5): 6.8 [MPa · mm]
第3層L3のヤング率:E3=74,000[MPa]、厚さt3=10[mm]
第2接着層B2のヤング率:E=2,600[MPa]、厚さt=0.05[mm]
第2接着層B2を含む第3層の総合ヤング率と総合厚さにより得られる(6)式の値:74,000,000[MPa・mm3
Young's modulus of the third layer L3: E 3 = 74,000 [MPa], thickness t 3 = 10 [mm]
Young's modulus of the second adhesive layer B2: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of the formula (6) obtained by the total Young's modulus and the total thickness of the third layer including the second adhesive layer B2: 74,000,000 [MPa · mm 3 ]
基材STのヤング率:E=2,250[MPa],厚さt=2[mm]
素材PLのヤング率:E=2,600[MPa],厚さt=0.05[mm]
基材STと素材PLからなる成形品のヤング率と厚さより求まる(8)式の値:18,000[MPa・mm3
Young's modulus of the substrate ST: E = 2,250 [MPa], thickness t = 2 [mm]
Young's modulus of the material PL: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of formula (8) obtained from Young's modulus and thickness of molded product made of base material ST and material PL: 18,000 [MPa · mm 3 ]
(実施例4)
 以下のように実施例4を作成した。具体的には、図4に示すマスター型MMから、図5に示す工程で第1層L1を成形した。次いで、図5に示す工程を経て、表面微細構造の転写面を持つ第1層L1を成形した。但し、材料MT1は、ここではφ20mm、厚さ0.05mmのPMP(三井化学株式会社製の製品名MX002)を用いた。更に、図6に示す工程を経て、成形型MDを形成した。厚さ10μmの接着層B1,B2により第1層L1,第2層L2,第3層L3を相互に接着した。
Example 4
Example 4 was made as follows. Specifically, the first layer L1 was formed from the master mold MM shown in FIG. 4 by the process shown in FIG. Next, the first layer L1 having a transfer surface with a surface fine structure was formed through the process shown in FIG. However, PMT (product name MX002 made by Mitsui Chemicals, Inc.) having a diameter of 20 mm and a thickness of 0.05 mm was used as the material MT1 here. Furthermore, the mold MD was formed through the process shown in FIG. The first layer L1, the second layer L2, and the third layer L3 were adhered to each other by the adhesive layers B1 and B2 having a thickness of 10 μm.
 図15は、成形型を用いて成形品を成形する工程を示す図である。まず、図15(a)に示すように、成形型MDの第3層L3をフレームFRに固定して、更に成形型MDの第1層L1に対向するようにして、筒状の支持枠SPの上端により保持した光透過性の素材としてのガラス板GLと、支持枠SPの下端により下面周辺を支持された、縦横25mm、厚さ2mmのガラス板(スライドガラス)の基材STとを積層して配置した。 FIG. 15 is a diagram showing a process of forming a molded product using a mold. First, as shown in FIG. 15 (a), the third layer L3 of the mold MD is fixed to the frame FR, and is further opposed to the first layer L1 of the mold MD, so that the cylindrical support frame SP. A glass plate GL as a light-transmitting material held by the upper end of the substrate and a base plate ST of a glass plate (slide glass) of 25 mm in length and width and supported at the lower surface periphery by the lower end of the support frame SP. Arranged.
 かかる状態で、第1層L1上に、成形品の素材PLとして、株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.01ml塗布し、支持枠SPに支持されたガラス板GLと基材STとを第1層L1に接近させた。このとき、基材STは、支持枠SPに下面周辺のみを自重に抗して支持されているので、基材STと第1層L1との間に均一な力が発生し、両者を平行に維持することができる。 In this state, 0.01 ml of an epoxy UV curable resin PL manufactured by Daicel Co., Ltd. is applied on the first layer L1 as the material PL of the molded product, and the glass plate GL and the base material supported by the support frame SP ST was brought close to the first layer L1. At this time, since the base material ST is supported by the support frame SP against only the periphery of the lower surface against its own weight, a uniform force is generated between the base material ST and the first layer L1, and both are made parallel. Can be maintained.
 この状態を維持しつつ、図15(b)に示すように、ガラス板GLと基材STの上方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、素材PLを硬化させた。その後、図15(c)に示すように、支持枠SPに支持された基材STを第1層L1から離間すると、素材PLは基材STに貼り付いた状態となって第1層L1から剥がれ、更に支持枠SPから基材STを取り外すことで、表面微細構造MS’を有する成形品を得ることができた。 While maintaining this state, as shown in FIG. 15 (b), UV light having a wavelength of 365 nm is irradiated at an intensity of 300 mW / cm 2 for 60 seconds from above the glass plate GL and the base material ST, and the material PL is applied. Cured. Thereafter, as shown in FIG. 15 (c), when the base material ST supported by the support frame SP is separated from the first layer L1, the material PL is attached to the base material ST and is removed from the first layer L1. By peeling off and further removing the substrate ST from the support frame SP, a molded product having the surface microstructure MS ′ could be obtained.
 実施例4における各部材の物性値は以下の通りである。
第1層L1のヤング率:E1=900[MPa]、厚さt1=0.05[mm]
第1接着層B1のヤング率:E=2,600[MPa]、厚さt=0.01[mm]
第1接着層B1を含む第1層の総合ヤング率と総合厚さにより得られる(1)式の値:0.12[MPa・mm3
The physical property values of each member in Example 4 are as follows.
Young's modulus of the first layer L1: E 1 = 900 [MPa], thickness t 1 = 0.05 [mm]
Young's modulus of the first adhesive layer B1: E = 2,600 [MPa], thickness t = 0.01 [mm]
The value of the formula (1) obtained by the total Young's modulus and the total thickness of the first layer including the first adhesive layer B1: 0.12 [MPa · mm 3 ]
第2層L2のヤング率:E2≒50[MPa]、厚さt4=4[mm]
(3)式の値:13[MPa/mm]
以上より、(5)式の値1.2[MPa・mm]
Young's modulus of the second layer L2: E 2 ≈50 [MPa], thickness t 4 = 4 [mm]
Value of equation (3): 13 [MPa / mm]
From the above, the value of formula (5) 1.2 [MPa · mm]
第3層L3のヤング率:E3=74,000[MPa]、厚さt3=10[mm]
第2接着層B2のヤング率:E=2,600[MPa]、厚さt=0.01[mm]
第2接着層B2を含む第3層の総合ヤング率と総合厚さにより得られる(6)式の値:74,000,000[MPa・mm3
Young's modulus of the third layer L3: E 3 = 74,000 [MPa], thickness t 3 = 10 [mm]
Young's modulus of the second adhesive layer B2: E = 2,600 [MPa], thickness t = 0.01 [mm]
Value of the formula (6) obtained by the total Young's modulus and the total thickness of the third layer including the second adhesive layer B2: 74,000,000 [MPa · mm 3 ]
基材STのヤング率:E=73,000[MPa],厚さt=2[mm]
素材PLのヤング率:E=2,600[MPa],厚さt=0.05[mm]
基材STと素材PLからなる成形品のヤング率と厚さより求まる(8)式の値:584,000[MPa・mm3
Young's modulus of the substrate ST: E = 73,000 [MPa], thickness t = 2 [mm]
Young's modulus of the material PL: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of formula (8) determined from Young's modulus and thickness of molded product made of base material ST and material PL: 584,000 [MPa · mm 3 ]
(比較例)
 以下、比較例を作成した。具体的には、図4に示すマスター型MMから、図5に示す工程で第1層L1を成形した。本比較例では、第2層を用いず、第1層と第3層を直接積層するものとする。
(Comparative example)
Hereinafter, comparative examples were created. Specifically, the first layer L1 was formed from the master mold MM shown in FIG. 4 by the process shown in FIG. In this comparative example, the first layer and the third layer are directly laminated without using the second layer.
 図16は、得られた第1層を用いた比較例の製造工程を示す模式図であるが、表面微細構造の転写面MSは誇張して示している。図16(a)に示すように、第3層L3としての縦横40mmで厚さ10mmの矩形板状の石英ガラス(株式会社ミスミ製)の上に、第1層L1を載置し、その間に接着層B1を形成するために株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.01ml塗布した。 FIG. 16 is a schematic view showing a manufacturing process of a comparative example using the obtained first layer, but the transfer surface MS of the surface fine structure is exaggerated. As shown in FIG. 16 (a), the first layer L1 is placed on a rectangular plate-like quartz glass (manufactured by MISUMI Corporation) having a length and width of 40 mm and a thickness of 10 mm as the third layer L3. In order to form the adhesive layer B1, 0.01 ml of an epoxy UV curable resin PL manufactured by Daicel Corporation was applied.
 かかる状態で、図16(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、接着層B1を形成した。これにより、図16(c)に示すように、厚さ50μmの接着層B1により第1層L1と第3層L3を積層した成形型MD’が得られた。比較例の各部材の物性値は、以下の通りである。 In this state, as shown in FIG. 16B, UV light having a wavelength of 365 nm was irradiated for 60 seconds with an intensity of 300 mW / cm 2 from below the third layer L3 to form an adhesive layer B1. As a result, as shown in FIG. 16C, a mold MD ′ in which the first layer L1 and the third layer L3 were laminated by the adhesive layer B1 having a thickness of 50 μm was obtained. The physical property values of each member of the comparative example are as follows.
第1層L1のヤング率:E1=1,900[MPa]、厚さt1=0.1[mm]
第1接着層B1のヤング率:E=2,600[MPa]、厚さt=0.05[mm]
第1接着層B1を含む第1層の総合ヤング率と総合厚さにより得られる(1)式の値:2.2[MPa・mm3
Young's modulus of the first layer L1: E 1 = 1,900 [MPa], thickness t 1 = 0.1 [mm]
Young's modulus of the first adhesive layer B1: E = 2,600 [MPa], thickness t = 0.05 [mm]
Value of the formula (1) obtained by the total Young's modulus and the total thickness of the first layer including the first adhesive layer B1: 2.2 [MPa · mm 3 ]
第2層(第3層L3)のヤング率:E3=74,000[MPa]、厚さt3=10[mm]
(3)式の値:7400[MPa/mm]
以上より、(5)式の値:128[MPa・mm]
Young's modulus of the second layer (third layer L3): E 3 = 74,000 [MPa], thickness t 3 = 10 [mm]
(3) Formula value: 7400 [MPa / mm]
From the above, the value of equation (5): 128 [MPa · mm]
 図17は、比較例の成形型を用いて成形品を成形する工程を示す図である。まず、図17(a)に示すように、成形型MD’の第3層L3をフレームFRに固定して、更に第1層L1に対向するようにして、支持枠SPに下面周辺を支持された、縦横25mm、厚さ2mmのPC板(タキロン株式会社製の製品名PC1600)の基材STを配置した。 FIG. 17 is a diagram illustrating a process of molding a molded product using the mold of the comparative example. First, as shown in FIG. 17 (a), the third layer L3 of the mold MD ′ is fixed to the frame FR, and further, the periphery of the lower surface is supported by the support frame SP so as to face the first layer L1. Further, a base material ST of a PC plate (product name PC1600 manufactured by Takiron Co., Ltd.) having a length and width of 25 mm and a thickness of 2 mm was disposed.
 かかる状態で、第1層L1上に、成形品の素材PLとして、株式会社ダイセル製のエポキシ系UV硬化性樹脂PLを0.02ml塗布し、支持枠SPに支持された基材STを第1層L1に接近させた。このとき、基材STは、支持枠SPに下面周辺のみを自重に抗して支持されているので、基材STと第1層L1との間に均一な力が発生し、両者を平行に維持することができる。 In this state, 0.02 ml of epoxy-based UV curable resin PL manufactured by Daicel Corporation is applied as the material PL of the molded product on the first layer L1, and the base material ST supported by the support frame SP is the first. Approached layer L1. At this time, since the base material ST is supported by the support frame SP against only the periphery of the lower surface against its own weight, a uniform force is generated between the base material ST and the first layer L1, and both are made parallel. Can be maintained.
 この状態を維持しつつ、図17(b)に示すように、第3層L3の下方より、波長365nmのUV光を300mW/cm2の強度で60秒照射して、素材PLを硬化させた。その後、図17(c)に示すように、支持枠SPに支持された基材STを第1層L1から離間すると、素材PLの多くは基材STに貼り付いた状態となって第1層L1から剥がれたが、素材PLの一部は第1層L1側に残ってしまった。以下、実施例1と比較例との差について考察する。 While maintaining this state, as shown in FIG. 17B, the material PL was cured by irradiating UV light with a wavelength of 365 nm with an intensity of 300 mW / cm 2 for 60 seconds from below the third layer L3. . After that, as shown in FIG. 17C, when the base material ST supported by the support frame SP is separated from the first layer L1, most of the material PL is attached to the base material ST and becomes the first layer. Although peeled off from L1, a part of the material PL remained on the first layer L1 side. Hereinafter, the difference between Example 1 and the comparative example will be considered.
 本発明者は、実施例1と比較例のそれぞれ30サンプルについて、成形時の最大密着力(光硬化性樹脂を離型するときの力の最大値)を測定した。その結果を図18に示す。図18を参照して、実施例1ではいずれのサンプルも安定して低い密着力であるのに対し、比較例では、特に離型初期の時点で密着力が高く剥がれにくかった。 The inventor measured the maximum adhesion force during molding (the maximum value of the force when releasing the photocurable resin) for 30 samples of Example 1 and Comparative Example. The result is shown in FIG. Referring to FIG. 18, all the samples in Example 1 had a stable and low adhesion, whereas in the comparative example, the adhesion was particularly high and difficult to peel off at the initial stage of mold release.
 更に、離型工程の密着力の時間変化を測定した図19によれば、実施例1の方が、比較例よりも密着力の立ち上がりが緩やかであった。また、離型の様子をハイスピードカメラで撮影した結果、型が変形することで、離型時間が長くなっている様子が確認された。以上より、実施例の構成により、型と成形品の表面微細構造を損傷させること無く、安定して成形できることがわかった。表5に、比較結果をまとめて示す。 Furthermore, according to FIG. 19 in which the time change of the adhesion force in the mold release process was measured, the rise of the adhesion force was slower in Example 1 than in the comparative example. Moreover, as a result of taking a picture of the mold release with a high speed camera, it was confirmed that the mold was deformed and the mold release time was prolonged. From the above, it has been found that the configuration of the example enables stable molding without damaging the surface microstructure of the mold and the molded product. Table 5 summarizes the comparison results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明は、明細書に記載の実施形態・実施例に限定されるものではなく、他の実施形態・実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments and examples described in the specification, and includes other embodiments, examples, and modified examples. It will be apparent to those skilled in the art from the technical idea.
B1      第1接着層
B2      第2接着層
CY      円筒部
FR      フレーム
GL      ガラス板
HID     下型
HIU     上型
HL      円形孔
L1      第1層
L2      第2層
L3      第3層
LS      ラインアンドスペース構造
MD      成形型
MM      マスター型
MS      表面微細構造の転写面
MS’     表面微細構造
MT1     材料
PL      光硬化性樹脂
SP      支持枠
ST      基材
B1 First adhesive layer B2 Second adhesive layer CY Cylindrical part FR Frame GL Glass plate HID Lower mold HIU Upper mold HL Circular hole L1 First layer L2 Second layer L3 Third layer LS Line and space structure MD Mold MM Master mold MS Transfer surface MS 'surface microstructure MS' surface microstructure MT1 Material PL Photocurable resin SP Support frame ST Base material

Claims (24)

  1.  基材に付着させた光硬化性樹脂に、最大段差50μm以下の表面微細構造を転写成形するための成形型であって、
     前記成形型が少なくとも第1層と第2層の2層構造を有しており、
     前記第1層が前記表面微細構造の転写面を形成しており、前記第1層のヤング率をE1とし、前記第1層の厚みをt1としたときに、(1)、(2)式を満たし、
     E1×t1 3≦15[MPa・mm3]    (1)
     300≦E1≦5,000[MPa]   (2)
     前記第2層のヤング率をE2とし、前記第2層の厚みをt2としたときに、(3)、(4)式を満たし、
     E2/t2≦15[MPa/mm]   (3)
     5≦E2≦100   (4)
     更に、(5)式を満たす成形型。
     0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
    A mold for transferring and molding a surface microstructure having a maximum step of 50 μm or less to a photocurable resin attached to a substrate,
    The mold has a two-layer structure of at least a first layer and a second layer;
    The first layer forms a transfer surface of said surface microstructure, the Young's modulus of the first layer and E 1, the thickness of the first layer is taken as t 1, (1), (2 )
    E 1 × t 1 3 ≦ 15 [MPa · mm 3 ] (1)
    300 ≦ E 1 ≦ 5,000 [MPa] (2)
    When the Young's modulus of the second layer is E 2 and the thickness of the second layer is t 2 , the expressions (3) and (4) are satisfied,
    E 2 / t 2 ≦ 15 [MPa / mm] (3)
    5 ≦ E 2 ≦ 100 (4)
    Furthermore, the shaping | molding die which satisfy | fills (5) Formula.
    0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
  2.  前記第1層と前記第2層との間に第1接着層が設けられているときは、前記第1層と前記第1接着層とを総合した総合ヤング率をE1とみなし、前記第1層と前記第1接着層とを総合した総合厚みをt1とみなして、(1)、(2)式を計算する請求項1に記載の成形型。 When the first adhesive layer is provided between the first layer and the second layer, the total Young's modulus combining the first layer and the first adhesive layer is regarded as E 1, and the first The mold according to claim 1, wherein the total thickness of one layer and the first adhesive layer is regarded as t 1 and the equations (1) and (2) are calculated.
  3.  前記第2層を挟んで前記第1層とは反対側に第3層を積層してなり、前記第3層のヤング率をE3とし、前記第3層の厚みをt3としたときに、(6)、(7)式を満たす請求項1又は2に記載の成形型。
     E3×t3 3≧50,000[MPa・mm3]   (6)
     50,000≦E3[MPa]   (7)
    When a third layer is laminated on the opposite side of the first layer across the second layer, the Young's modulus of the third layer is E 3 and the thickness of the third layer is t 3 The mold according to claim 1 or 2, satisfying the formulas (6) and (7).
    E 3 × t 3 3 ≧ 50,000 [MPa · mm 3 ] (6)
    50,000 ≦ E 3 [MPa] (7)
  4.  前記第2層と前記第3層との間に第2接着層が設けられているときは、前記第3層と前記第2接着層とを総合した総合ヤング率をE3とみなし、前記第3層と前記第2接着層とを総合した総合厚みをt3とみなして、(6)、(7)式を計算する請求項3に記載の成形型。 When the second adhesive layer is provided between the second layer and the third layer, the total Young's modulus combining the third layer and the second adhesive layer is regarded as E 3 , the overall thickness of the overall three-layer and a second adhesive layer is regarded as t 3, (6), the mold according to claim 3 for calculating the expression (7).
  5.  前記成形型により表面微細構造を転写成形された光硬化性樹脂と前記基材からなる成形品の、前記転写された光硬化性樹脂と前記基材とを総合したヤング率をE4とみなし、前記成形品の、前記転写された光硬化性樹脂と前記基材とを総合した厚みをt4とみなしたときに、(8)、(9)式を満たす請求項1~4のいずれかに記載の成形型。
     E4×t4 3≧500[MPa・mm3]   (8)
     500≦E4   [MPa]   (9)
    The Young's modulus of the molded product composed of the photocurable resin having the surface microstructure transferred and molded by the molding die and the base material is regarded as E 4, and the total of the transferred photocurable resin and the base material is regarded as E 4 . 5. When the total thickness of the transferred photocurable resin and the base material of the molded product is regarded as t 4 , the formulas (8) and (9) are satisfied. Mold described.
    E 4 × t 4 3 ≧ 500 [MPa · mm 3 ] (8)
    500 ≦ E 4 [MPa] (9)
  6.  前記第1層の材料がオレフィン系樹脂である請求項1~5のいずれかに記載の成形型。 The mold according to any one of claims 1 to 5, wherein the material of the first layer is an olefin resin.
  7.  前記表面微細構造の最大段差が1μm以下である請求項1~6のいずれかに記載の成形型。 The molding die according to any one of claims 1 to 6, wherein the maximum step of the surface microstructure is 1 µm or less.
  8.  以下の式を満たす請求項1~7のいずれかに記載の成形型。
     E1×t1 3≦5[MPa・mm3]   (10)
    The mold according to any one of claims 1 to 7, which satisfies the following formula.
    E 1 × t 1 3 ≦ 5 [MPa · mm 3 ] (10)
  9.  以下の式を満たす請求項1~8のいずれかに記載の成形型。
     E2/t2≦10[MPa/mm]   (11)
    The mold according to any one of claims 1 to 8, which satisfies the following formula.
    E 2 / t 2 ≦ 10 [MPa / mm] (11)
  10.  以下の式を満たす請求項1~9のいずれかに記載の成形型。
     0.7≦√(E1×t1 3×E2/t2)[MPa・mm]≦8   (12)
    The mold according to any one of claims 1 to 9, which satisfies the following formula.
    0.7 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 8 (12)
  11.  以下の式を満たす請求項1~9のいずれかに記載の成形型。
     2≦√(E1×t1 3×E2/t2)[MPa・mm]≦6   (13)
    The mold according to any one of claims 1 to 9, which satisfies the following formula.
    2 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 6 (13)
  12.  以下の式を満たす請求項5~9のいずれかに記載の成形型。
     E4×t4 3≧10,000[MPa・mm3]   (14)
    The mold according to any one of claims 5 to 9, which satisfies the following formula.
    E 4 × t 4 3 ≧ 10,000 [MPa · mm 3 ] (14)
  13.  最大段差50μm以下の表面微細構造の転写面が形成された第1層と、前記第1層と異なる第2層を少なくとも有する成形型と、
     前記第1層に対向するように基材を設け、
     前記第1層に光硬化性樹脂を塗布し、前記基材と前記光硬化性樹脂を接近させ、
     前記基材に前記光硬化性樹脂が張り付いた状態で、前記成形型から離型することで成形品を製造する成形方法。
     ただし、前記第1層のヤング率をE1、前記第1層の厚みをt1、前記第2層のヤング率をE2、前記第2層の厚みをt2としたとき、前記成形型は下記式を満たす。
     E1×t1 3≦15[MPa・mm3]    (1)
     300≦E1≦5,000[MPa]   (2)
     E2/t2≦15[MPa/mm]     (3)
     5≦E2≦100            (4)
     0.03≦√(E1×t1 3×E2/t2)[MPa・mm]≦10   (5)
    A first layer on which a transfer surface having a surface microstructure with a maximum step of 50 μm or less is formed, and a mold having at least a second layer different from the first layer;
    A base material is provided so as to face the first layer,
    Applying a photocurable resin to the first layer, bringing the substrate and the photocurable resin close to each other,
    The molding method which manufactures a molded article by releasing from the said shaping | molding die in the state which the said photocurable resin stuck to the said base material.
    However, when the Young's modulus of the first layer is E 1 , the thickness of the first layer is t 1 , the Young's modulus of the second layer is E 2 , and the thickness of the second layer is t 2 , the mold Satisfies the following formula.
    E 1 × t 1 3 ≦ 15 [MPa · mm 3 ] (1)
    300 ≦ E 1 ≦ 5,000 [MPa] (2)
    E 2 / t 2 ≦ 15 [MPa / mm] (3)
    5 ≦ E 2 ≦ 100 (4)
    0.03 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 10 (5)
  14.  前記第1層と前記第2層との間に第1接着層が設けられているときは、前記第1層と前記第1接着層とを総合した総合ヤング率をE1とみなし、前記第1層と前記第1接着層とを総合した総合厚みをt1とみなして、(1)、(2)式を計算する請求項13に記載の成形方法。 When the first adhesive layer is provided between the first layer and the second layer, the total Young's modulus combining the first layer and the first adhesive layer is regarded as E 1, and the first The molding method according to claim 13, wherein the total thickness of one layer and the first adhesive layer is regarded as t 1 and the equations (1) and (2) are calculated.
  15.  前記第2層を挟んで前記第1層とは反対側に第3層を積層してなり、前記第3層のヤング率をE3とし、前記第3層の厚みをt3としたときに、(6)、(7)式を満たす請求項13又は14に記載の成形方法。
     E3×t3 3≧50,000[MPa・mm3]   (6)
     50,000≦E3[MPa]   (7)
    When a third layer is laminated on the opposite side of the first layer across the second layer, the Young's modulus of the third layer is E 3 and the thickness of the third layer is t 3 The molding method according to claim 13 or 14, wherein the formulas (6) and (7) are satisfied.
    E 3 × t 3 3 ≧ 50,000 [MPa · mm 3 ] (6)
    50,000 ≦ E 3 [MPa] (7)
  16.  前記第2層と前記第3層との間に第2接着層が設けられているときは、前記第3層と前記第2接着層とを総合した総合ヤング率をE3とみなし、前記第3層と前記第2接着層とを総合した総合厚みをt3とみなして、(6)、(7)式を計算する請求項15に記載の成形方法。 When the second adhesive layer is provided between the second layer and the third layer, the total Young's modulus combining the third layer and the second adhesive layer is regarded as E 3 , the overall thickness of the overall three-layer and a second adhesive layer is regarded as t 3, (6), forming method according to claim 15 to calculate the equation (7).
  17.  前記成形型により表面微細構造を転写成形された光硬化性樹脂と前記基材からなる成形品の、前記転写された光硬化性樹脂と前記基材とを総合したヤング率をE4とみなし、前記成形品の、前記転写された光硬化性樹脂と前記基材とを総合した厚みをt4とみなしたときに、(8)、(9)式を満たす請求項13~16のいずれかに記載の成形方法。
     E4×t4 3≧500[MPa・mm3]   (8)
     500≦E4   [MPa]   (9)
    The Young's modulus of the molded product composed of the photocurable resin having the surface microstructure transferred and molded by the molding die and the base material is regarded as E 4, and the total of the transferred photocurable resin and the base material is regarded as E 4 . When the total thickness of the transferred photocurable resin and the base material of the molded product is regarded as t 4 , the formulas (8) and (9) are satisfied. The forming method as described.
    E 4 × t 4 3 ≧ 500 [MPa · mm 3 ] (8)
    500 ≦ E 4 [MPa] (9)
  18.  前記第1層の材料がオレフィン系樹脂である請求項13~17のいずれかに記載の成形方法。 The molding method according to any one of claims 13 to 17, wherein the material of the first layer is an olefin resin.
  19.  前記表面微細構造の最大段差が1μm以下である請求項13~18のいずれかに記載の成形方法。 The molding method according to any one of claims 13 to 18, wherein a maximum step of the surface microstructure is 1 µm or less.
  20.  以下の式を満たす請求項13~19のいずれかに記載の成形方法。
     E1×t1 3≦5[MPa・mm3]   (10)
    The molding method according to any one of claims 13 to 19, which satisfies the following formula.
    E 1 × t 1 3 ≦ 5 [MPa · mm 3 ] (10)
  21.  以下の式を満たす請求項13~20のいずれかに記載の成形方法。
     E2/t2≦10[MPa/mm]   (11)
    The molding method according to any one of claims 13 to 20, which satisfies the following formula.
    E 2 / t 2 ≦ 10 [MPa / mm] (11)
  22.  以下の式を満たす請求項13~21のいずれかに記載の成形方法。
     0.7≦√(E1×t1 3×E2/t2)[MPa・mm]≦8   (12)
    The molding method according to any one of claims 13 to 21, which satisfies the following formula.
    0.7 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 8 (12)
  23.  以下の式を満たす請求項13~21のいずれかに記載の成形方法。
     2≦√(E1×t1 3×E2/t2)[MPa・mm]≦6   (13)
    The molding method according to any one of claims 13 to 21, which satisfies the following formula.
    2 ≦ √ (E 1 × t 1 3 × E 2 / t 2 ) [MPa · mm] ≦ 6 (13)
  24.  以下の式を満たす請求項17~21のいずれかに記載の成形方法。
     E4×t4 3≧10,000[MPa・mm3]   (14)
    The molding method according to any one of claims 17 to 21, which satisfies the following formula.
    E 4 × t 4 3 ≧ 10,000 [MPa · mm 3 ] (14)
PCT/JP2016/056725 2015-03-20 2016-03-04 Molding die and molding method WO2016152451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508160A JPWO2016152451A1 (en) 2015-03-20 2016-03-04 Mold and molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057323 2015-03-20
JP2015057323 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152451A1 true WO2016152451A1 (en) 2016-09-29

Family

ID=56977324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056725 WO2016152451A1 (en) 2015-03-20 2016-03-04 Molding die and molding method

Country Status (2)

Country Link
JP (1) JPWO2016152451A1 (en)
WO (1) WO2016152451A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006620A (en) * 2007-06-29 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Stamper for imprinting and its manufacturing method
JP2012061861A (en) * 2011-11-04 2012-03-29 Hitachi Ltd Stamper for imprinting, and imprint method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006620A (en) * 2007-06-29 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Stamper for imprinting and its manufacturing method
JP2012061861A (en) * 2011-11-04 2012-03-29 Hitachi Ltd Stamper for imprinting, and imprint method

Also Published As

Publication number Publication date
JPWO2016152451A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
CN104094140B (en) Diffraction grating and manufacture method thereof
JP5098450B2 (en) Method for producing uneven pattern forming sheet and uneven pattern forming sheet
JPWO2014122868A1 (en) Manufacturing method of optical member and manufacturing method of lens
US20080225390A1 (en) Optical microstructure plate and fabrication mold thereof
JP5383110B2 (en) Imprint device
JP2006039450A (en) Method for forming antireflection film, apparatus for forming antireflection film, antireflection film and optical component
US7736550B2 (en) Method of manufacturing an optical device by means of a replication method
JP4604696B2 (en) Film light guide plate and manufacturing method thereof
TW201505812A (en) Second mold to which irregular first mold pattern has been transferred, second mold manufacturing method, method for manufacturing article using second mold, optical panel manufacturing method and optical element manufacturing method
JP5838777B2 (en) Manufacturing method of mold for molding
EP3456506B1 (en) Method for manufacturing replica master mold, and method for manufacturing body to be formed
WO2016152451A1 (en) Molding die and molding method
JP6578883B2 (en) Film mold and imprint method
JP2012252113A (en) Method for manufacturing wafer lens
JP6491928B2 (en) Replica mold and manufacturing method thereof
CN106910747B (en) Thin film transistor array substrate, substrate and manufacturing method thereof
JP3384757B2 (en) Method for manufacturing fine shape transfer product and method for manufacturing optical member
TW201504698A (en) Method for manufacturing light guide plate and light guide plate
TWI768116B (en) Master for electroforming and method for manufacturing electroforming mold using the master
JP2014029534A (en) Process sheet original plate for manufacturing optical diffuser, and method for manufacturing optical diffuser
JP6249587B2 (en) Manufacturing method of optical sheet
JP2007136810A (en) Imprinting device and imprinting method
JP2007268876A (en) Pattern transfer method, pattern transfer apparatus and manufacturing method of optical disk
JP2013226667A (en) Method of manufacturing sheet-shaped member including fine irregular pattern and sheet-shaped member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768354

Country of ref document: EP

Kind code of ref document: A1