WO2016152399A1 - Absorption refrigerator and dehumidifier - Google Patents

Absorption refrigerator and dehumidifier Download PDF

Info

Publication number
WO2016152399A1
WO2016152399A1 PCT/JP2016/056142 JP2016056142W WO2016152399A1 WO 2016152399 A1 WO2016152399 A1 WO 2016152399A1 JP 2016056142 W JP2016056142 W JP 2016056142W WO 2016152399 A1 WO2016152399 A1 WO 2016152399A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
water
ionic liquid
absorption refrigerator
regenerator
Prior art date
Application number
PCT/JP2016/056142
Other languages
French (fr)
Japanese (ja)
Inventor
秋澤 淳
大野 弘幸
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Priority to JP2017508134A priority Critical patent/JP6655063B2/en
Publication of WO2016152399A1 publication Critical patent/WO2016152399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an absorption refrigerator and a dehumidifier.
  • the ionic liquid and water are separated by heating a mixture of water and ionic liquid to turn the water into water vapor.
  • sensible heat heating such latent heat heating requires a temperature higher than the boiling point of the absorbing solution and a large amount of heat, so that there is a problem that energy efficiency is poor.
  • the absorption refrigerator in the first aspect of the present invention includes a mixer that mixes an ionic liquid whose compatibility with the refrigerant changes with temperature and the refrigerant, the refrigerant mixed in the mixer, and the ionic liquid.
  • the mixture is heated so that the ionic liquid and the refrigerant are separated from each other by the specific gravity difference between the ionic liquid and the refrigerant, and the refrigerant separated by the regenerator is vaporized to reduce the cold energy.
  • An absorption refrigerator comprising an evaporator to be generated.
  • the dehumidifier according to the second aspect of the present invention absorbs water contained in the air by allowing the ionic liquid whose compatibility with water changes with temperature to absorb the water, and absorbs the water. And a regenerator that heats the ionic liquid and separates the ionic liquid and the water in a liquid state by a difference in specific gravity between the ionic liquid and the water.
  • FIG. 1 is a schematic diagram illustrating an example of an absorption refrigerator 10.
  • the mixing state and separation state of an ionic liquid and water are shown. It is the table
  • the specific example of the cation of an ionic liquid is shown.
  • the specific example of the anion of an ionic liquid is shown.
  • 4 is a schematic diagram illustrating an example of a separator 44.
  • FIG. 3 is a schematic diagram showing a first state of a separator 200.
  • FIG. 6 is a schematic diagram showing a second state of the separator 200.
  • FIG. The mixed state and phase-separated state of other ionic liquids with specific gravity smaller than water and water are shown.
  • FIG. 3 is a schematic diagram showing a separator 300.
  • FIG. It is a schematic diagram which shows an example of the dehumidifier 400.
  • FIG. It is a schematic diagram which shows the absorption refrigerator 500. It is a schematic diagram which shows the absorption refrigerator 550.
  • FIG. 1 is a schematic diagram showing an example of an absorption refrigerator 10.
  • the absorption refrigerator 10 includes an evaporator 20, an absorber 30 as an example of a mixer, a regenerator 40, and a cooler 50.
  • the refrigerant is vaporized in the evaporator 20 to generate cold heat.
  • the vaporized refrigerant is absorbed by the absorbent by the absorber 30.
  • the refrigerant that has absorbed the refrigerant is separated from the refrigerant and the absorbent in the regenerator 40.
  • the absorbent from which the refrigerant has been separated is cooled by the cooler 50 and then transported to the absorber 30 to absorb the vaporized refrigerant again.
  • the refrigerant separated from the absorbent is also cooled by the cooler 50 and then conveyed to the evaporator 20. Again, the refrigerant is vaporized in the evaporator 20 to generate cold.
  • the absorption refrigerator 10 continuously generates cold by repeating the above cycle.
  • water is used as the refrigerant used in the absorption refrigerator 10.
  • an ionic liquid is used as an absorbent.
  • the ionic liquid is a salt in a liquid state at a temperature of 100 ° C. or lower, and in the present embodiment, an ionic liquid whose compatibility with water as a refrigerant changes depending on the temperature is used.
  • the ionic liquid may be referred to as IL.
  • FIG. 2 shows a mixed state and separated state of IL and water.
  • the state of the mixed solution 100 in which IL and water are compatible at a temperature lower than the transition temperature Tc. It becomes.
  • the compatibility between IL and water decreases, and the liquid is separated into a lower layer composed of the IL layer 104 and an upper layer composed of the aqueous layer 102 while remaining in a liquid state. It will be in the state.
  • the separation between the IL layer 104 and the water layer 102 may not be complete separation, and the IL layer 104 may contain a slight amount of water, or the water layer 102 may contain a slight amount of IL.
  • FIG. 3 is a table showing the types of IL and the transition temperature Tc. As shown in FIG. 3, the transition temperatures Tc of these ILs are all lower than the boiling point of water.
  • FIG. 4 shows a specific example of the cation of IL
  • FIG. 5 shows a specific example of the anion of IL.
  • IL can adjust the transition temperature Tc at which the compatibility with water changes as shown in FIG. 3 by recombining the cation shown in FIG. 4 and the anion shown in FIG.
  • [P 4444 ] [TsO] having a transition temperature Tc of 50 ° C. is used as IL.
  • the evaporator 20 generates cold by vaporizing water.
  • the evaporator 20 includes a vaporization unit 22 that vaporizes water and a collection unit 24 that collects IL contained in the water.
  • the evaporator 20 is connected to the regenerator 40 via the expansion valve 60, whereby the evaporator 20 is adjusted to a predetermined internal pressure that is lower than the internal pressure of the regenerator 40.
  • the regenerator 40 Due to the internal pressure difference between the regenerator 40 and the evaporator 20, water as a refrigerant is conveyed from the regenerator 40 to the evaporator 20 through the expansion valve 60. In the evaporator 20, water is ejected toward the vaporization unit 22. The ejected water takes the heat from the vaporizing section 22 and vaporizes. Further, the vaporizing unit 22 cools the object 80 by taking heat away from the object 80 passing through the vaporizing unit 22. In this way, the evaporator 20 outputs the cooled object 80.
  • the object 80 may be air, water, antifreeze (brine), or the like.
  • the input temperature of the object 80 is detected by the thermometer 26, and the output temperature is detected by the thermometer 28. Based on the detected temperature, the amount of water supplied to the evaporator 20 is controlled. For example, when the object 80 is cooled and the input temperature of the object 80 is higher than a preset temperature, the amount of water supplied to the evaporator 20 is increased. On the other hand, when the input temperature of the object 80 is lower than a preset temperature, the amount of water supplied to the evaporator 20 is reduced. Note that the amount of water supplied to the evaporator 20 may be similarly controlled by the output temperature.
  • the recovery unit 24 recovers the water containing IL transported to the evaporator 20.
  • the collecting unit 24 sends the water containing a predetermined amount of IL to the absorber 30 to create an equilibrium state.
  • the recovery unit 24 may transport the recovered water containing IL to the absorber 30 using a liquid pump.
  • the absorber 30 absorbs vaporized water in IL.
  • the absorber 30 is provided connected to the evaporator 20. Since the evaporator 20 and the absorber 30 are connected, the internal pressures of the evaporator 20 and the absorber 30 are substantially equal. By cooling the IL that has absorbed water with the cooling water 82, the internal pressure of the absorber 30 is lowered. Due to the decrease in the internal pressure, an internal pressure difference is generated between the evaporator 20 and the absorber 30. Due to this internal pressure difference, the vaporized water is transported from the evaporator 20 to the absorber 30.
  • the absorber 30 is connected to the regenerator 40 via an expansion valve 62. Since the internal pressure of the absorber 30 is lower than the internal pressure of the regenerator 40, IL as an absorbent is conveyed from the regenerator 40 to the absorber 30 through the expansion valve 62.
  • the absorber 30 When the absorber 30 absorbs the water vaporized by the IL, the temperature of the IL rises due to the absorption heat of the water. The absorber 30 cools IL using the cooling water 82. Thereby, IL is cooled and water absorption is promoted. The IL that has absorbed water in this way is transported to the regenerator 40 by the liquid pump 70.
  • the regenerator 40 includes a heater 42 and a separator 44.
  • the heater 42 heats the IL that has absorbed the water using the external fluid 84, and separates the IL and the water by the specific gravity difference between the IL and the water while being in a liquid state.
  • IL [P 4444 ] [TsO] used in the present embodiment has a transition temperature Tc of 50 ° C. Since the heater 42 only needs to be able to heat to a temperature higher than 50 ° C., which is the transition temperature Tc, in the present embodiment, for example, a heat source having a temperature higher than 50 ° C. and 60 ° C. or lower is used. Heating. Note that by using IL with a low transition temperature Tc, the heater 42 can use a lower temperature heat source. As a result, the absorption refrigerator 10 can output the cold using the low-temperature exhaust heat that has been discarded because it has not been used so far.
  • FIG. 6 is a schematic diagram showing an example of the separator 44.
  • the separator 44 takes out IL and water separated by the heater 42 separately.
  • the separator 44 includes a container 110, a sensor 112, one supply valve 114, and two discharge valves 116 and 118.
  • the container 110 is a hollow container and stores a mixed liquid separated into IL and water.
  • the supply pipe 120 connected to the heater 42 is connected to the upper surface of the container 110 via the supply valve 114.
  • the discharge pipe 122 is connected to a predetermined height on the side surface of the container 110 via the discharge valve 116.
  • the discharge pipe 124 is connected to the lower surface of the container 110 via a discharge valve 118.
  • the predetermined height of the side surface of the container 110 is, for example, a height that is 6/10 with respect to the height of the container 110 when the interface between IL and water is located at the center of the container 110. That's it.
  • the discharge valve 116 By connecting the discharge valve 116 to a height that is 6/10 with respect to the height of the container 110, even after the discharge valve 116 is released and water is taken out, the height of the container 110 is reduced to 1 /. Ten heights of water are left in the container 110.
  • the amount of water containing the IL transported from the recovery unit 24 to the absorber 30 increases.
  • the amount of IL conveyed to the evaporator 20 can be reduced. it can. Thereby, the quantity of the water containing IL conveyed from the collection
  • the supply valve 114 When the supply valve 114 is opened while the container 110 is empty, the mixed liquid separated into IL and water is supplied from the upper surface of the container 110. The mixed liquid of IL and water is supplied until the sensor 112 detects the liquid level. When the sensor 112 detects the liquid level, the sensor 112 closes the supply valve 114 and stops the supply of the mixed liquid of IL and water.
  • the predetermined time is, for example, 5 minutes.
  • the predetermined time may be a time required for separation of the liquid mixture of IL and water measured in advance, and may be a time obtained by multiplying the time by a predetermined safety factor. .
  • the extracted water is cooled by the cooler 50 and conveyed to the evaporator 20.
  • the discharge valve 116 is closed after a predetermined time has elapsed.
  • the predetermined time may be a time required for the water in the container 110 measured in advance to be discharged through the discharge valve 116, and a predetermined safety factor is set for the time. The multiplied time may be used.
  • the discharge valve 118 is opened, and IL and water are taken out. The extracted IL and water are cooled by the cooler 50 and conveyed to the absorber 30.
  • the cooler 50 cools the IL and water taken out by the separator 44.
  • the cooler 50 cools IL and water passing through the cooler 50 by circulating the coolant 86.
  • the water cooled by the cooler 50 is supplied to the evaporator 20 through the expansion valve 60.
  • the evaporator 20 vaporizes the supplied water again and generates cold.
  • the IL cooled by the cooler 50 is supplied to the absorber 30 through the expansion valve 62. Then, the absorber 30 again absorbs the vaporized water using the supplied IL.
  • the absorption refrigerator 10 in the present embodiment continuously generates cold by repeatedly executing the processing described above in the evaporator 20, the absorber 30, the regenerator 40, and the cooler 50.
  • the absorption refrigerator 10 of the present embodiment uses IL whose compatibility with water as a refrigerant changes at 50 ° C. as an absorbent. Therefore, IL and water can be separated by the difference in specific gravity between IL and water only by sensible heat heating the mixture of IL and water to 50 ° C. or higher.
  • the energy efficiency of the absorption refrigerator 10 can be improved greatly.
  • the COP (coefficient of performance) of the absorption refrigerator 10 in the present embodiment will be described.
  • the transition temperature Tc of IL as an absorbent is 55 ° C., heated from 35 ° C. to 60 ° C. in the heater 42, and 1 from a mixture of IL and water containing 60% by weight of water.
  • the COP was calculated as / 10 water was separated, and the COP was 1.5.
  • the energy efficiency of the absorption refrigerator 10 in this embodiment is the conventional efficiency. Great improvement over absorption refrigerators.
  • the drain valve 116 is opened and upper water is taken out after a predetermined time has elapsed since the supply valve 114 was closed.
  • the present invention is not limited to this.
  • a light emitting element and a light receiving element are provided at a height of 6/10 with respect to the container 110, and it is detected whether IL and water are separated based on the amount of light received by the light receiving element. Also good.
  • the transparency of the water layer 102 is higher than the transparency in a state where IL and water are compatible. Therefore, a threshold may be provided for the amount of light received by the light receiving element, and the discharge valve 116 may be released on condition that the amount of light received by the light receiving element exceeds the threshold.
  • the heater 42 has shown an example in which the IL that has absorbed water is heated using the external fluid 84 to separate the IL from the water.
  • the fluid 84 may be used to heat the container 110 of the separator 44. By heating the container 110, the separation state of IL and water in the container 110 can be maintained, so that the separation ability of IL and water in the separator 44 is improved.
  • FIG. 7 is a schematic diagram showing the absorption refrigerator 150.
  • the absorption refrigerator 150 illustrated in FIG. 7 further includes a heat exchanger 152.
  • the heat exchanger 152 performs heat exchange between the IL containing water transported from the absorber 30, which is an example of a mixer, and the IL transported from the separator 44.
  • the temperature of the IL containing water conveyed from the absorber 30 is lower than the temperature of the IL conveyed from the separator 44.
  • the heat exchanger 152 recovers the heat of the IL conveyed from the separator 44 having a relatively high temperature, and heats the IL containing water conveyed from the absorber 30. Thereby, the heating in the heater 42 can be reduced.
  • FIG. 8 is a schematic diagram showing a first state of the separator 200.
  • the black valve indicates a closed valve
  • the white valve indicates an open valve.
  • Separator 200 includes a plurality of separators 44 connected in parallel. Then, the liquid mixture of IL and water is supplied in turn while switching the plurality of separators 44, and after a predetermined time has passed since the supply, the IL and water are separated. Are taken out separately.
  • the separator 200 includes four containers 202, 204, 206, 208, four supply valves 210, 212, 214, 216, four sensors 112, and eight discharge valves 220, 222, 224, 226, 230, 232, 234, 236, one supply pipe 240, and two discharge pipes 242, 244.
  • the supply pipe 240 connected to the heater 42 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208.
  • One of the branched supply pipes 240 is connected to the upper surface of the container 202 via a supply valve 210.
  • one of the other branched supply pipes is connected to the top surface of the container 204 via a supply valve 212.
  • One of the other branched supply pipes is connected to the top surface of the container 206 via a supply valve 214, and one of the other branched supply pipes is connected to the container 208 via a supply valve 216. Connected to the top of the.
  • the discharge pipe 242 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208.
  • One of the branched discharge pipes 242 is connected to a predetermined height on the side surface of the container 202 via a discharge valve 220.
  • one of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 204 via a discharge valve 222.
  • One of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 206 via a discharge valve 224, and one of the other branched discharge pipes 242 is It is connected to a predetermined height on the side surface of the container 208 via a discharge valve 226.
  • the predetermined height is the same as the predetermined height in the separator 44, a duplicate description is omitted.
  • the discharge pipe 244 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208.
  • One of the branched discharge pipes 244 is connected to the lower surface of the container 202 via a discharge valve 230.
  • one of the other branched discharge pipes 242 is connected to the lower surface of the container 204 via a discharge valve 232.
  • One of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 206 via a discharge valve 234, and one of the other branched supply pipes is connected to the discharge pipe 242. It is connected to the lower surface of the container 208 via a valve 236.
  • the discharge valve 220 is opened, and water is taken out from the container 202. Further, in the container 204, the discharge valve 232 is opened, and IL and a small amount of water are taken out from the container 204. In the container 206, the supply valve 214 is opened, and the mixed liquid separated into IL and water is supplied to the container 206. Further, the container 208 is left in a state where it is filled with the mixed liquid separated into water and IL, and the IL and water are separated.
  • FIG. 9 is a schematic diagram showing a second state of the separator 200.
  • the discharge valve 220 is closed and the discharge valve 230 is opened, so that IL and a small amount of water are taken out from the container 202.
  • the discharge valve 232 is closed and the supply valve 212 is opened, and the mixed liquid separated into IL and water is supplied to the container 204.
  • the container 206 the container 206 is left in a state filled with the mixed liquid separated into IL and water, and the IL and water are separated.
  • the discharge valve 226 is opened, and water is taken out from the container 208.
  • a step in which a mixed solution separated into IL and water is supplied a step in which the mixture is left separated in a state filled with a mixed solution of IL and water, a step in which water is taken out,
  • the process of removing the IL and some amount of water is performed in turn in each of the four containers 202, 204, 206, 208.
  • deviated 1 in each container is performed in the same time so that each process may be performed simultaneously with four containers 202,204,206,208.
  • the mixed liquid separated into IL and water can be continuously supplied from the heater 42 to the separator 200.
  • water can be continuously supplied from the separator 200 to the evaporator 20, and IL can be continuously supplied from the separator 200 to the absorber 30.
  • FIG. 10 shows a mixed state and phase separation state of other IL and water having a specific gravity smaller than that of water.
  • the IL shown in FIG. 10 is in the state of a mixed solution 100 in which IL and water are compatible at a temperature lower than the transition temperature Tc.
  • the compatibility between IL and water decreases, and the upper layer composed of the IL layer 104 and the lower layer composed of the aqueous layer 102 are separated.
  • the IL layer 104 is the upper layer and the water layer 102 is the lower layer, unlike the example shown in FIG.
  • FIG. 11 is a table showing other IL types having a specific gravity smaller than that of water and the transition temperature Tc.
  • FIG. 12 shows specific examples of other IL cations
  • FIG. 13 shows specific examples of other IL anions.
  • IL contains the cation shown in FIG. 12 and the anion shown in FIG. 13, and the specific gravity of the IL is smaller than that of water as a refrigerant.
  • [P 6668 ] [EtOHPO 2 ] can be used as such an IL.
  • FIG. 14 is a schematic diagram showing the separator 300.
  • elements common to those in FIG. The separator 300 corresponds to IL having a specific gravity smaller than that of water as a refrigerant as an absorbent.
  • the separator 300 includes four containers 302, 304, 306, 308, four supply valves 210, 212, 214, 216, four sensors 112, four sensors 310, and eight discharge valves 220, 222, 224, 226, 230, 232, 234, 236, one supply pipe 240, and two discharge pipes 244, 320.
  • the discharge pipe 320 is branched into four for the purpose of connecting to the four containers 302, 304, 306, 308.
  • One of the branched discharge pipes 320 is connected to the lower surface of the container 302 via a discharge valve 220.
  • one of the other branched discharge pipes 320 is connected to the lower surface of the container 304 via a discharge valve 222.
  • one of the other branched discharge pipes 320 is connected to the lower surface of the container 306 via the discharge valve 224, and one of the other branched discharge pipes 320 is connected to the container via the discharge valve 226. It is connected to the lower surface of 308.
  • the discharge valve 220 is opened, and water is taken out from the container 302. The water is taken out until the sensor 310 detects the liquid level.
  • the sensor 310 closes the discharge valve 220 and stops taking out water.
  • the height of the sensor 310 is set such that, for example, water having a height of 1/10 of the height of the container 302 remains at the bottom of the container after the water extraction is stopped.
  • the discharge valve 232 is opened, and IL and a small amount of water are taken out from the container 304.
  • the supply valve 214 is opened, and the mixed liquid separated into IL and water is supplied to the container 306. Further, the container 308 is left in a state filled with the mixed liquid separated into IL and water to separate IL and water.
  • water can be taken out from the lower surface of the container 302 by using IL having a specific gravity smaller than that of water.
  • the pressure applied to the discharge pipe 320 is based on the weight obtained by adding the weight of water and the weight of IL. For this reason, the pressure applied to the discharge pipe 320 is greater than the pressure in the separator 200 when IL having a specific gravity greater than that of water is used. By increasing the pressure, the water extraction speed from the discharge pipe 320 can be increased.
  • FIG. 15 is a schematic diagram showing an example of the dehumidifier 400.
  • the dehumidifier 400 includes an absorber 410, a regenerator 40, and a cooler 50.
  • the dehumidifier 400 first, the water 414 contained in the air 412 is absorbed by the IL by the absorber 410, and the dehumidified air 412 is output.
  • the absorber 410 is common to the absorber 30 shown in FIG. 1 in the configuration in which the water 414 is absorbed by the IL, but includes the water 414 by taking in the air 412 including the water 414 and causing the IL to absorb the water 414. It differs in that no air 412 is output.
  • the IL that has absorbed the water 414 is separated into water 414 and IL in the regenerator 40.
  • the IL from which the water 414 has been separated is cooled by the cooler 50 and then transferred to the absorber 30 to absorb the water 414 from the air 412 again.
  • the regenerator 40 discharges the water 414 separated from the IL.
  • the dehumidifier 400 continuously outputs the air 412 that does not contain the water 414 by repeating the above cycle.
  • [P 4444 ] [TsO] having a transition temperature Tc of 50 ° C. was used as IL.
  • IL whose compatibility with water 414 changes at 50 ° C. is used as the refrigerant absorbent. Therefore, the IL and the water 414 can be separated by the specific gravity difference between the IL and the water 414 only by sensible heating the mixture of the IL and the water 414 to 50 ° C. or higher. For this reason, also in the dehumidifier 400 shown in FIG. 15, since the latent heat is not used to separate the IL and the water 414, the energy efficiency of the dehumidifier 400 can be greatly improved.
  • an IL using [P 4444 ] [TsO] is used as the refrigerant absorbent.
  • the refrigerant absorbent may include a plurality of types of IL.
  • additives other than IL may be included in IL, for example, a surfactant may be included in IL.
  • the refrigerant absorbent may be other than IL, and examples of such embodiments are shown in FIGS.
  • FIG. 16 is a schematic diagram showing an absorption refrigerator 500.
  • the mixer 520 of the absorption refrigerator 500 shown in FIG. 16 further includes a separation unit 510 in addition to the absorber 30 and the liquid pump 70.
  • it is a lithium bromide aqueous solution that absorbs water vaporized by the absorber 30.
  • an aqueous solution of a substance having high deliquescence such as calcium bromide or calcium chloride may be used.
  • the aqueous lithium bromide solution that has absorbed water in the absorber 30 is conveyed to the separation unit 510 by the liquid pump 70.
  • the separation unit 510 includes a semipermeable membrane 516, a first chamber 512 and a second chamber 514 separated by the semipermeable membrane 516.
  • the aqueous lithium bromide solution is stored in the second chamber 514.
  • Water contained in the lithium bromide aqueous solution permeates the semipermeable membrane and moves to the first chamber 512 that houses the IL.
  • the permeation method of the semipermeable membrane may be reverse osmosis or forward osmosis.
  • the IL that has absorbed the water in this way is sent to the regenerator 40.
  • the IL separated from the water in the regenerator 40 is transferred to the first chamber 512 of the separation unit 510 by the liquid pump 72 after being cooled by the cooler 50.
  • the water containing IL recovered by the recovery unit 24 of the evaporator 20 is also sent to the first chamber 512 of the separation unit 510.
  • IL is used again to absorb water passing through the semipermeable membrane.
  • the aqueous lithium bromide solution in the second chamber is returned to the absorber 30 and used again for absorbing the vaporized water.
  • water can be efficiently absorbed by using a lithium bromide aqueous solution having high compatibility with water as a refrigerant absorbent.
  • IL and water can be efficiently separated based on the change in compatibility.
  • FIG. 17 is a schematic diagram showing an absorption refrigerator 550.
  • the absorption refrigerator 550 shown in FIG. 17 further includes a concentration controller 560.
  • the concentration controller 560 for example, a capacitive deionization (CDI) apparatus that performs electrochemical deionization processing may be used.
  • CDI capacitive deionization
  • the lithium bromide aqueous solution sent from the separation unit 510 to the concentration controller 560 is divided into an aqueous solution containing lithium bromide at a high concentration and an aqueous solution containing a low concentration.
  • the low-concentration lithium bromide aqueous solution is mixed with the lithium bromide aqueous solution conveyed from the absorber 30 to the separation unit 510.
  • the high concentration lithium bromide aqueous solution is sent to the absorber 30.
  • concentration of the lithium bromide aqueous solution which flows into the absorber after the water separation by a semipermeable membrane can be raised further.
  • the absorption refrigerator 10 provided with the evaporator 20, the absorber 30 which is an example of a mixer, the regenerator 40, and the cooler 50 each was shown.
  • the evaporator 20, the absorber 30, the regenerator 40, and the cooler 50 may each be provided with two or more.
  • a plurality of absorbers 410, regenerators 40, and coolers 50 may be provided.

Abstract

In a regenerator of an absorption refrigerator, a mixture of water and an ionic liquid is heated to transform the water to steam, thereby separating the water and the ionic liquid. A problem encountered in the prior art is that, as compared with sensible heat heating, such latent heat heating requires a temperature at or above the boiling point of the absorption solution, as well as a large amount of heat, and energy efficiency was therefore poor. The absorption refrigerator (10) is provided with: a mixer (30) for mixing a refrigerant and an ionic liquid in which the miscibility with the refrigerant changes with the temperature; a regenerator (40) for heating the mixture of the refrigerant and the ionic liquid mixed by the mixer, and separating the ionic liquid and the refrigerant through the difference in specific gravity thereof while the ionic liquid and the refrigerant remain in the liquid state; and an evaporator (20) for vaporizing the refrigerant separated by the regenerator, to generate cold energy.

Description

吸収冷凍機および除湿機Absorption refrigerator and dehumidifier
 本発明は、吸収冷凍機および除湿機に関する。 The present invention relates to an absorption refrigerator and a dehumidifier.
 冷媒として水を、吸収剤として少なくとも1種のイオン液体を含んでなる吸収サイクルを用いて冷却する吸収冷凍機が知られている。(例えば、特許文献1参照)。
 特許文献1 特表2009-520073
There is known an absorption refrigerator that cools water using an absorption cycle that includes water as a refrigerant and at least one ionic liquid as an absorbent. (For example, refer to Patent Document 1).
Patent Document 1 Special Table 2009-520073
 上記吸収冷凍機における再生器では、水とイオン液体との混合物を加熱して水を水蒸気とすることでイオン液体と水とを分離させている。このような潜熱加熱は顕熱加熱に比べて、吸収溶液の沸点以上の温度と、多大な熱量とを必要とするのでエネルギー効率が悪い、という課題があった。 In the regenerator in the absorption refrigerator, the ionic liquid and water are separated by heating a mixture of water and ionic liquid to turn the water into water vapor. Compared with sensible heat heating, such latent heat heating requires a temperature higher than the boiling point of the absorbing solution and a large amount of heat, so that there is a problem that energy efficiency is poor.
 本発明の第1の態様における吸収冷凍機は、冷媒との相溶性が温度で変化するイオン液体と冷媒とを混合させる混合器と、前記混合器で混合された前記冷媒と前記イオン液体との混合物を加熱して、前記イオン液体と前記冷媒とを液体のまま前記イオン液体と前記冷媒との比重差により分離させる再生器と、前記再生器により分離された前記冷媒を気化させることで冷熱を発生させる蒸発器とを備える吸収冷凍機。 The absorption refrigerator in the first aspect of the present invention includes a mixer that mixes an ionic liquid whose compatibility with the refrigerant changes with temperature and the refrigerant, the refrigerant mixed in the mixer, and the ionic liquid. The mixture is heated so that the ionic liquid and the refrigerant are separated from each other by the specific gravity difference between the ionic liquid and the refrigerant, and the refrigerant separated by the regenerator is vaporized to reduce the cold energy. An absorption refrigerator comprising an evaporator to be generated.
 本発明の第2の態様における除湿機は、水との相溶性が温度で変化するイオン液体に空気に含まれる水を吸収させて、除湿された空気を出力する吸収器と、前記水を吸収したイオン液体を加熱して、前記イオン液体と前記水とを液体のまま前記イオン液体と前記水との比重差により分離させる再生器とを備える。 The dehumidifier according to the second aspect of the present invention absorbs water contained in the air by allowing the ionic liquid whose compatibility with water changes with temperature to absorb the water, and absorbs the water. And a regenerator that heats the ionic liquid and separates the ionic liquid and the water in a liquid state by a difference in specific gravity between the ionic liquid and the water.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
吸収冷凍機10の一例を示す模式図である。1 is a schematic diagram illustrating an example of an absorption refrigerator 10. イオン液体と水との混合状態および分離状態を示す。The mixing state and separation state of an ionic liquid and water are shown. イオン液体の種類と転移温度Tcを示した表である。It is the table | surface which showed the kind of ionic liquid, and transition temperature Tc. イオン液体のカチオンの具体例を示す。The specific example of the cation of an ionic liquid is shown. イオン液体のアニオンの具体例を示す。The specific example of the anion of an ionic liquid is shown. 分離器44の一例を示す模式図である。4 is a schematic diagram illustrating an example of a separator 44. FIG. 吸収冷凍機150を示す模式図である。It is a schematic diagram which shows the absorption refrigerator 150. FIG. 分離器200の第1の状態を示す模式図である。3 is a schematic diagram showing a first state of a separator 200. FIG. 分離器200の第2の状態を示す模式図である。6 is a schematic diagram showing a second state of the separator 200. FIG. 比重が水よりも小さい他のイオン液体と水との混合状態および相分離状態を示す。The mixed state and phase-separated state of other ionic liquids with specific gravity smaller than water and water are shown. 比重が水よりも小さい他のイオン液体の種類と転移温度Tcを示した表である。It is the table | surface which showed the kind and transition temperature Tc of the other ionic liquid whose specific gravity is smaller than water. 他のイオン液体のカチオンの具体例を示す。Specific examples of cations of other ionic liquids are shown. 他のイオン液体のアニオンの具体例を示す。The specific example of the anion of another ionic liquid is shown. 分離器300を示す模式図である。3 is a schematic diagram showing a separator 300. FIG. 除湿機400の一例を示す模式図である。It is a schematic diagram which shows an example of the dehumidifier 400. FIG. 吸収冷凍機500を示す模式図である。It is a schematic diagram which shows the absorption refrigerator 500. 吸収冷凍機550を示す模式図である。It is a schematic diagram which shows the absorption refrigerator 550.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、吸収冷凍機10の一例を示す模式図である。吸収冷凍機10は、蒸発器20と、混合器の一例として吸収器30と、再生器40と、冷却器50とを備える。吸収冷凍機10において、まず、冷媒は、蒸発器20において気化されて冷熱を発生させる。気化した冷媒は、吸収器30で吸収剤に吸収される。冷媒を吸収した吸収剤は、再生器40において冷媒と吸収剤とが分離される。冷媒が分離された吸収剤は、冷却器50によって冷却された後に吸収器30に搬送され、再び、気化した冷媒を吸収する。吸収剤から分離された冷媒は、同じく冷却器50によって冷却された後に蒸発器20に搬送される。そして、再び、冷媒は、蒸発器20において気化されて冷熱を発生させる。 FIG. 1 is a schematic diagram showing an example of an absorption refrigerator 10. The absorption refrigerator 10 includes an evaporator 20, an absorber 30 as an example of a mixer, a regenerator 40, and a cooler 50. In the absorption refrigerator 10, first, the refrigerant is vaporized in the evaporator 20 to generate cold heat. The vaporized refrigerant is absorbed by the absorbent by the absorber 30. The refrigerant that has absorbed the refrigerant is separated from the refrigerant and the absorbent in the regenerator 40. The absorbent from which the refrigerant has been separated is cooled by the cooler 50 and then transported to the absorber 30 to absorb the vaporized refrigerant again. The refrigerant separated from the absorbent is also cooled by the cooler 50 and then conveyed to the evaporator 20. Again, the refrigerant is vaporized in the evaporator 20 to generate cold.
 このように吸収冷凍機10は、上記サイクルを繰り返すことで継続的に冷熱を発生する。本実施形態において、吸収冷凍機10に用いる冷媒として水を用いている。また、吸収剤としてイオン液体を用いている。ここで、イオン液体とは、100℃以下の温度で液体状態の塩であり、本実施形態において、冷媒である水との相溶性が温度によって変化するイオン液体を用いている。なお、以後の説明において、イオン液体をILと称する場合がある。 Thus, the absorption refrigerator 10 continuously generates cold by repeating the above cycle. In the present embodiment, water is used as the refrigerant used in the absorption refrigerator 10. Moreover, an ionic liquid is used as an absorbent. Here, the ionic liquid is a salt in a liquid state at a temperature of 100 ° C. or lower, and in the present embodiment, an ionic liquid whose compatibility with water as a refrigerant changes depending on the temperature is used. In the following description, the ionic liquid may be referred to as IL.
 図2は、ILと水との混合状態および分離状態を示す。ILと水との相溶性が変化する温度を転移温度Tcとすると、転移温度Tcよりも低い温度においては、図2に示すように、ILと水とが相溶している混合液100の状態となる。混合液100を加熱して、転移温度Tc以上に温度を上昇させると、ILと水との相溶性は低下し、液体のままIL層104からなる下層と、水層102からなる上層とに分離した状態となる。なお、IL層104と水層102との分離は完全な分離でなくてもよく、IL層104がわずかな水を含んでいてもよく、水層102がわずかなILを含んでいてもよい。 FIG. 2 shows a mixed state and separated state of IL and water. Assuming that the temperature at which the compatibility of IL and water changes is the transition temperature Tc, as shown in FIG. 2, the state of the mixed solution 100 in which IL and water are compatible at a temperature lower than the transition temperature Tc. It becomes. When the mixed liquid 100 is heated to raise the temperature to the transition temperature Tc or higher, the compatibility between IL and water decreases, and the liquid is separated into a lower layer composed of the IL layer 104 and an upper layer composed of the aqueous layer 102 while remaining in a liquid state. It will be in the state. Note that the separation between the IL layer 104 and the water layer 102 may not be complete separation, and the IL layer 104 may contain a slight amount of water, or the water layer 102 may contain a slight amount of IL.
 図3は、ILの種類と転移温度Tcを示した表である。図3に示したように、これらのILの転移温度Tcはいずれも水の沸点より低い。 FIG. 3 is a table showing the types of IL and the transition temperature Tc. As shown in FIG. 3, the transition temperatures Tc of these ILs are all lower than the boiling point of water.
 図4は、ILのカチオンの具体例を示し、図5は、ILのアニオンの具体例を示す。このように、ILは、図4に示したカチオンと図5に示したアニオンを組み替えることによって、図3に示すように、水との相溶性が変化する転移温度Tcを調整できる。本実施形態においては、ILとして転移温度Tcが50℃である[P4444][TsO]を用いた。 FIG. 4 shows a specific example of the cation of IL, and FIG. 5 shows a specific example of the anion of IL. Thus, IL can adjust the transition temperature Tc at which the compatibility with water changes as shown in FIG. 3 by recombining the cation shown in FIG. 4 and the anion shown in FIG. In this embodiment, [P 4444 ] [TsO] having a transition temperature Tc of 50 ° C. is used as IL.
 再び、図1を参照して、蒸発器20は、水を気化させることで冷熱を発生させる。蒸発器20は、水を気化させる気化部22と、水に含まれるILを回収する回収部24とを備える。蒸発器20は、再生器40と膨張弁60を介して接続されており、これにより、蒸発器20は、再生器40の内圧よりも低い、予め定められた内圧に調整される。 Referring to FIG. 1 again, the evaporator 20 generates cold by vaporizing water. The evaporator 20 includes a vaporization unit 22 that vaporizes water and a collection unit 24 that collects IL contained in the water. The evaporator 20 is connected to the regenerator 40 via the expansion valve 60, whereby the evaporator 20 is adjusted to a predetermined internal pressure that is lower than the internal pressure of the regenerator 40.
 再生器40と蒸発器20との内圧差によって、冷媒である水は、膨張弁60を通って再生器40から蒸発器20へ搬送される。蒸発器20において水は、気化部22に向けて噴出される。噴出された水は、気化部22から熱を奪って気化する。また、気化部22は、気化部22を通る対象物80から熱を奪うことによって対象物80を冷却する。このようにして、蒸発器20は、冷却された対象物80を出力する。なお、対象物80としては、空気、水、不凍液(ブライン)等を用いてよい。 Due to the internal pressure difference between the regenerator 40 and the evaporator 20, water as a refrigerant is conveyed from the regenerator 40 to the evaporator 20 through the expansion valve 60. In the evaporator 20, water is ejected toward the vaporization unit 22. The ejected water takes the heat from the vaporizing section 22 and vaporizes. Further, the vaporizing unit 22 cools the object 80 by taking heat away from the object 80 passing through the vaporizing unit 22. In this way, the evaporator 20 outputs the cooled object 80. Note that the object 80 may be air, water, antifreeze (brine), or the like.
 対象物80は、温度計26によって入力温度が検知され、温度計28によって、出力温度が検知される。そして検知された温度に基づいて、蒸発器20への水の供給量が制御される。例えば、対象物80が冷却される場合であって、対象物80の入力温度が予め設定された温度より高い場合には、蒸発器20への水の供給量が増加される。一方、対象物80の入力温度が予め設定された温度よりも低い場合には、蒸発器20への水の供給量は減少される。なお、出力温度によっても同様に蒸発器20への水の供給量を制御してよい。 The input temperature of the object 80 is detected by the thermometer 26, and the output temperature is detected by the thermometer 28. Based on the detected temperature, the amount of water supplied to the evaporator 20 is controlled. For example, when the object 80 is cooled and the input temperature of the object 80 is higher than a preset temperature, the amount of water supplied to the evaporator 20 is increased. On the other hand, when the input temperature of the object 80 is lower than a preset temperature, the amount of water supplied to the evaporator 20 is reduced. Note that the amount of water supplied to the evaporator 20 may be similarly controlled by the output temperature.
 回収部24は、蒸発器20に搬送されたILを含む水を回収する。回収部24は、ILを含む水を回収した場合に、そのうちの予め定められた量のILを含む水を吸収器30に送ることによって平衡状態を作る。このように、蒸発器20に回収部24を設けることによって、ILが、蒸発器20に滞留することを防止できる。これにより、吸収冷凍機10の稼働途中でILを追加することなく、吸収冷凍機10を稼働させることができる。なお、回収部24は、回収したILを含む水を、液体ポンプを用いて吸収器30に搬送してもよい。 The recovery unit 24 recovers the water containing IL transported to the evaporator 20. When the water containing IL is collected, the collecting unit 24 sends the water containing a predetermined amount of IL to the absorber 30 to create an equilibrium state. Thus, by providing the recovery unit 24 in the evaporator 20, it is possible to prevent IL from staying in the evaporator 20. Thereby, the absorption refrigerator 10 can be operated without adding IL in the middle of operation of the absorption refrigerator 10. Note that the recovery unit 24 may transport the recovered water containing IL to the absorber 30 using a liquid pump.
 吸収器30は、気化した水をILに吸収させる。吸収器30は、蒸発器20に接続されて設けられる。蒸発器20と吸収器30は接続されているので、蒸発器20と吸収器30の内圧はほぼ等しい。水を吸収したILを冷却水82で冷却することにより、吸収器30の内圧が下がる。この内圧の低下により、蒸発器20と吸収器30との間に内圧差が生じる。この内圧差により、蒸発器20から吸収器30へ気化した水が搬送される。 The absorber 30 absorbs vaporized water in IL. The absorber 30 is provided connected to the evaporator 20. Since the evaporator 20 and the absorber 30 are connected, the internal pressures of the evaporator 20 and the absorber 30 are substantially equal. By cooling the IL that has absorbed water with the cooling water 82, the internal pressure of the absorber 30 is lowered. Due to the decrease in the internal pressure, an internal pressure difference is generated between the evaporator 20 and the absorber 30. Due to this internal pressure difference, the vaporized water is transported from the evaporator 20 to the absorber 30.
 吸収器30は、再生器40と膨張弁62を介して接続されている。吸収器30の内圧は再生器40の内圧よりも低いので、吸収剤であるILは、膨張弁62を通って再生器40から吸収器30へと搬送される。 The absorber 30 is connected to the regenerator 40 via an expansion valve 62. Since the internal pressure of the absorber 30 is lower than the internal pressure of the regenerator 40, IL as an absorbent is conveyed from the regenerator 40 to the absorber 30 through the expansion valve 62.
 吸収器30において、ILが気化した水を吸収すると、水の吸収熱によりILの温度が上昇する。吸収器30は、冷却水82を用いてILを冷却する。これにより、ILは冷却され、水の吸収が促進される。このようにして水を吸収したILは、液体ポンプ70によって再生器40へ搬送される。 When the absorber 30 absorbs the water vaporized by the IL, the temperature of the IL rises due to the absorption heat of the water. The absorber 30 cools IL using the cooling water 82. Thereby, IL is cooled and water absorption is promoted. The IL that has absorbed water in this way is transported to the regenerator 40 by the liquid pump 70.
 再生器40は、加熱器42と分離器44とを備える。加熱器42は、外部流体84を用いて水を吸収したILを加熱して、ILと水とを液体のままILと水との比重差により分離させる。本実施形態において使用したIL[P4444][TsO]は、転移温度Tcが50℃である。加熱器42は、転移温度Tcである50℃より高い温度に加熱できればよいので、本実施形態においては、例えば、50℃より高い温度であって60℃以下の熱源を用いて、外部流体84を加熱している。なお、転移温度Tcが低いILを用いることによって、加熱器42は、より低い温度の熱源を用いることができる。これにより、吸収冷凍機10は、今まで利用できず廃棄されていた低温の排熱等を利用して、冷熱を出力できるようになる。 The regenerator 40 includes a heater 42 and a separator 44. The heater 42 heats the IL that has absorbed the water using the external fluid 84, and separates the IL and the water by the specific gravity difference between the IL and the water while being in a liquid state. IL [P 4444 ] [TsO] used in the present embodiment has a transition temperature Tc of 50 ° C. Since the heater 42 only needs to be able to heat to a temperature higher than 50 ° C., which is the transition temperature Tc, in the present embodiment, for example, a heat source having a temperature higher than 50 ° C. and 60 ° C. or lower is used. Heating. Note that by using IL with a low transition temperature Tc, the heater 42 can use a lower temperature heat source. As a result, the absorption refrigerator 10 can output the cold using the low-temperature exhaust heat that has been discarded because it has not been used so far.
 図6は、分離器44の一例を示す模式図である。分離器44は、加熱器42によって分離されたILと水とを別々に取り出す。分離器44は、容器110と、センサ112と、1つの供給バルブ114と、2つの排出バルブ116、118と、を備える。 FIG. 6 is a schematic diagram showing an example of the separator 44. The separator 44 takes out IL and water separated by the heater 42 separately. The separator 44 includes a container 110, a sensor 112, one supply valve 114, and two discharge valves 116 and 118.
 容器110は、中空の容器であって、ILと水とに分離された混合液を収納する。加熱器42と接続した供給管120は、供給バルブ114を介して容器110の上面に接続されている。排出管122は、容器110の側面の予め定められた高さに排出バルブ116を介して接続されている。排出管124は、容器110の下面に排出バルブ118を介して接続されている。なお、容器110の側面の予め定められた高さは、ILと水との界面が容器110の中央に位置している場合において、例えば、容器110の高さに対して6/10となる高さである。排出バルブ116を容器110の高さに対して6/10となる高さに接続することによって、排出バルブ116を解放させて水を取り出した後においても、容器110の高さに対して1/10の高さの水を容器110内に残している。 The container 110 is a hollow container and stores a mixed liquid separated into IL and water. The supply pipe 120 connected to the heater 42 is connected to the upper surface of the container 110 via the supply valve 114. The discharge pipe 122 is connected to a predetermined height on the side surface of the container 110 via the discharge valve 116. The discharge pipe 124 is connected to the lower surface of the container 110 via a discharge valve 118. The predetermined height of the side surface of the container 110 is, for example, a height that is 6/10 with respect to the height of the container 110 when the interface between IL and water is located at the center of the container 110. That's it. By connecting the discharge valve 116 to a height that is 6/10 with respect to the height of the container 110, even after the discharge valve 116 is released and water is taken out, the height of the container 110 is reduced to 1 /. Ten heights of water are left in the container 110.
 吸収冷凍機10において、冷媒である水にILが含まれると、回収部24から吸収器30へ搬送するILを含む水の量が増える。水とILとの界面よりも高い位置に排出バルブ116を設け、水を取り出した後においても、水を容器110内に残すことにより、蒸発器20へ搬送されるILの量を少なくすることができる。これにより、回収部24から吸収器30へ搬送されるILを含む水の量を減らすことができる。 In the absorption refrigerator 10, if IL is contained in the coolant water, the amount of water containing the IL transported from the recovery unit 24 to the absorber 30 increases. By providing the discharge valve 116 at a position higher than the interface between water and IL and leaving the water in the container 110 even after the water is taken out, the amount of IL conveyed to the evaporator 20 can be reduced. it can. Thereby, the quantity of the water containing IL conveyed from the collection | recovery part 24 to the absorber 30 can be reduced.
 容器110が空の状態において、供給バルブ114が開放されると、容器110の上面からILと水とに分離された混合液が供給される。ILと水との混合液は、センサ112が液面を検出するまで供給される。センサ112は、液面を検出すると、供給バルブ114を閉じて、ILと水との混合液の供給を停止させる。 When the supply valve 114 is opened while the container 110 is empty, the mixed liquid separated into IL and water is supplied from the upper surface of the container 110. The mixed liquid of IL and water is supplied until the sensor 112 detects the liquid level. When the sensor 112 detects the liquid level, the sensor 112 closes the supply valve 114 and stops the supply of the mixed liquid of IL and water.
 供給バルブ114を閉じてから予め定められた時間が経過した後、排出バルブ116が開放されて、上層の水が取り出される。なお、予め定められた時間は、例えば、5分である。予め定められた時間は、予め測定されたILと水との混合液が分離するのに必要な時間であってよく、さらに当該時間に予め定められた安全率を乗じた時間であってもよい。取り出された水は、冷却器50によって冷却されて、蒸発器20へ搬送される。 After a predetermined time has elapsed since the supply valve 114 was closed, the discharge valve 116 is opened, and the upper layer water is taken out. The predetermined time is, for example, 5 minutes. The predetermined time may be a time required for separation of the liquid mixture of IL and water measured in advance, and may be a time obtained by multiplying the time by a predetermined safety factor. . The extracted water is cooled by the cooler 50 and conveyed to the evaporator 20.
 排出バルブ116は、例えば、予め定められた時間が経過した後に閉じられる。なお、予め定められた時間は、予め測定された容器110内の水が排出バルブ116を通って排出されるのに必要な時間であってよく、さらに、当該時間に予め定められた安全率を乗じた時間であってもよい。その後、排出バルブ118が開放され、ILと水とが取り出される。取り出されたILと水は、冷却器50によって冷却されて、吸収器30へ搬送される。 For example, the discharge valve 116 is closed after a predetermined time has elapsed. The predetermined time may be a time required for the water in the container 110 measured in advance to be discharged through the discharge valve 116, and a predetermined safety factor is set for the time. The multiplied time may be used. Thereafter, the discharge valve 118 is opened, and IL and water are taken out. The extracted IL and water are cooled by the cooler 50 and conveyed to the absorber 30.
 冷却器50は、分離器44によって取り出されたILおよび水を冷却する。冷却器50は、冷却水86を循環させることによって、冷却器50内を通過するILおよび水を冷却する。冷却器50で冷却された水は、膨張弁60を通って蒸発器20へ供給される。そして、蒸発器20は、再び、供給された水を気化させて冷熱を発生させる。一方、冷却器50で冷却されたILは、膨張弁62を通って吸収器30へ供給される。そして、吸収器30は、再び、供給されたILを用いて気化された水を吸収させる。このように、本実施形態における吸収冷凍機10は、蒸発器20、吸収器30、再生器40、冷却器50において上記で説明した処理を繰り返し実行することで継続的に冷熱を発生する。 The cooler 50 cools the IL and water taken out by the separator 44. The cooler 50 cools IL and water passing through the cooler 50 by circulating the coolant 86. The water cooled by the cooler 50 is supplied to the evaporator 20 through the expansion valve 60. And the evaporator 20 vaporizes the supplied water again and generates cold. On the other hand, the IL cooled by the cooler 50 is supplied to the absorber 30 through the expansion valve 62. Then, the absorber 30 again absorbs the vaporized water using the supplied IL. As described above, the absorption refrigerator 10 in the present embodiment continuously generates cold by repeatedly executing the processing described above in the evaporator 20, the absorber 30, the regenerator 40, and the cooler 50.
 本実施形態の吸収冷凍機10は、吸収剤として冷媒である水との相溶性が50℃で変化するILを用いている。そのため、ILと水との混合物を50℃以上に顕熱加熱するだけで、ILと水との比重差によりILと水とを分離できる。このように、本実施形態の吸収冷凍機10においては冷媒と吸収剤とを分離するのに冷媒を気化させる潜熱加熱をしないので、吸収冷凍機10のエネルギー効率を大きく向上させることができる。 The absorption refrigerator 10 of the present embodiment uses IL whose compatibility with water as a refrigerant changes at 50 ° C. as an absorbent. Therefore, IL and water can be separated by the difference in specific gravity between IL and water only by sensible heat heating the mixture of IL and water to 50 ° C. or higher. Thus, in the absorption refrigerator 10 of this embodiment, since the latent heat heating which vaporizes a refrigerant | coolant is not performed in order to isolate | separate a refrigerant | coolant and an absorbent, the energy efficiency of the absorption refrigerator 10 can be improved greatly.
 本実施形態における吸収冷凍機10のCOP(成績係数)について説明する。吸収冷凍機10において、吸収剤であるILの転移温度Tcが55℃であり、加熱器42において35℃から60℃に加熱して、60重量%の水を含むILと水との混合物から1/10の水を分離したとしてCOPを算出したところ、COPは1.5であった。90℃で潜熱加熱を行い水と吸収剤とを分離している従来の吸収冷凍機のCOPが0.7であることを考えると、本実施形態における吸収冷凍機10のエネルギー効率は、従来の吸収冷凍機に対して大きく向上している。 The COP (coefficient of performance) of the absorption refrigerator 10 in the present embodiment will be described. In the absorption refrigerator 10, the transition temperature Tc of IL as an absorbent is 55 ° C., heated from 35 ° C. to 60 ° C. in the heater 42, and 1 from a mixture of IL and water containing 60% by weight of water. The COP was calculated as / 10 water was separated, and the COP was 1.5. Considering that the COP of the conventional absorption refrigerator that performs latent heat heating at 90 ° C. to separate water and the absorbent is 0.7, the energy efficiency of the absorption refrigerator 10 in this embodiment is the conventional efficiency. Great improvement over absorption refrigerators.
 また、本実施形態においては、供給バルブ114を閉じてから予め定められた時間が経過した後、排出バルブ116が開放されて、上層の水が取り出される例を説明した。しかしながらこれに限られず、例えば、容器110に対して6/10となる高さに発光素子および受光素子を設け、受光素子が受光した光量に基づいてILと水とが分離したかを検出してもよい。水層102の透明度は、ILと水とが相溶した状態の透明度よりも高い。そのため、受光素子が受光した光量に閾値を設け、受光素子の受光量が当該閾値を超えたことを条件として、排出バルブ116を解放させてもよい。 Further, in the present embodiment, an example has been described in which the drain valve 116 is opened and upper water is taken out after a predetermined time has elapsed since the supply valve 114 was closed. However, the present invention is not limited to this. For example, a light emitting element and a light receiving element are provided at a height of 6/10 with respect to the container 110, and it is detected whether IL and water are separated based on the amount of light received by the light receiving element. Also good. The transparency of the water layer 102 is higher than the transparency in a state where IL and water are compatible. Therefore, a threshold may be provided for the amount of light received by the light receiving element, and the discharge valve 116 may be released on condition that the amount of light received by the light receiving element exceeds the threshold.
 また、本実施形態においては、加熱器42は、外部流体84を用いて水を吸収したILを加熱して、ILと水とを分離させる例を示したが、加熱器42は、さらに、外部流体84を用いて分離器44の容器110を加熱してもよい。容器110の加熱により、容器110におけるILと水との分離状態が維持できるので、分離器44におけるILと水との分離能力が向上する。 Further, in the present embodiment, the heater 42 has shown an example in which the IL that has absorbed water is heated using the external fluid 84 to separate the IL from the water. The fluid 84 may be used to heat the container 110 of the separator 44. By heating the container 110, the separation state of IL and water in the container 110 can be maintained, so that the separation ability of IL and water in the separator 44 is improved.
 次に、吸収冷凍機10の他の例について説明する。図7は、吸収冷凍機150を示す模式図である。図7において、図1と共通する要素には同じ参照番号を付して重複する説明を省略する。図7に示した吸収冷凍機150は、熱交換器152をさらに備える。 Next, another example of the absorption refrigerator 10 will be described. FIG. 7 is a schematic diagram showing the absorption refrigerator 150. In FIG. 7, the same reference numerals are assigned to elements common to those in FIG. The absorption refrigerator 150 illustrated in FIG. 7 further includes a heat exchanger 152.
 熱交換器152は、混合器の一例である吸収器30から搬送される水を含むILと、分離器44から搬送されるILとの間で熱交換を行う。吸収器30から搬送される水を含むILの温度は、分離器44から搬送されるILの温度よりも低い。熱交換器152は、相対的に温度が高い分離器44から搬送されるILの熱を回収し、吸収器30から搬送される水を含むILを加熱する。これにより、加熱器42における加熱を削減できる。 The heat exchanger 152 performs heat exchange between the IL containing water transported from the absorber 30, which is an example of a mixer, and the IL transported from the separator 44. The temperature of the IL containing water conveyed from the absorber 30 is lower than the temperature of the IL conveyed from the separator 44. The heat exchanger 152 recovers the heat of the IL conveyed from the separator 44 having a relatively high temperature, and heats the IL containing water conveyed from the absorber 30. Thereby, the heating in the heater 42 can be reduced.
 次に、分離器44の他の例について説明する。図8は、分離器200の第1の状態を示す模式図である。図8において、図6と同じ要素には同じ参照番号を付して重複する説明を省略する。また、以降の図において、黒色バルブは、閉じたバルブを示し、白色バルブは、開いたバルブを示す。分離器200は、並列に接続された複数の分離器44を備える。そして、これら複数の分離器44を切り替えながら順番にILと水との混合液を供給し、供給されてから予め定められた時間が経過してILと水とが分離した後に、ILと水とが別々に取り出される。 Next, another example of the separator 44 will be described. FIG. 8 is a schematic diagram showing a first state of the separator 200. In FIG. 8, the same elements as those in FIG. In the following drawings, the black valve indicates a closed valve, and the white valve indicates an open valve. Separator 200 includes a plurality of separators 44 connected in parallel. Then, the liquid mixture of IL and water is supplied in turn while switching the plurality of separators 44, and after a predetermined time has passed since the supply, the IL and water are separated. Are taken out separately.
 分離器200は、4つの容器202、204、206、208と、4つの供給バルブ210、212、214、216と、4つのセンサ112と、8つの排出バルブ220、222、224、226、230、232、234、236と、1つの供給管240と、2つの排出管242、244と、を備える。加熱器42と接続した供給管240は、4つの容器202、204、206、208に接続することを目的として、4つに分岐されている。分岐された供給管240の1つは、供給バルブ210介して容器202の上面に接続されている。同様に他の分岐された供給管の1つは、供給バルブ212を介して容器204の天面に接続されている。さらに他の分岐された供給管の1つは、供給バルブ214を介して容器206の天面に接続されており、他の分岐された供給管の1つは、供給バルブ216を介して容器208の天面に接続されている。 The separator 200 includes four containers 202, 204, 206, 208, four supply valves 210, 212, 214, 216, four sensors 112, and eight discharge valves 220, 222, 224, 226, 230, 232, 234, 236, one supply pipe 240, and two discharge pipes 242, 244. The supply pipe 240 connected to the heater 42 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208. One of the branched supply pipes 240 is connected to the upper surface of the container 202 via a supply valve 210. Similarly, one of the other branched supply pipes is connected to the top surface of the container 204 via a supply valve 212. One of the other branched supply pipes is connected to the top surface of the container 206 via a supply valve 214, and one of the other branched supply pipes is connected to the container 208 via a supply valve 216. Connected to the top of the.
 排出管242は、4つの容器202、204、206、208に接続することを目的として、4つに分岐されている。分岐された排出管242の1つは、排出バルブ220を介して、容器202の側面の予め定められた高さに接続されている。同様に他の分岐された排出管242の1つは、排出バルブ222を介して、容器204の側面の予め定められた高さに接続されている。さらに他の分岐された排出管242の1つは、排出バルブ224を介して容器206の側面の予め定められた高さに接続されており、他の分岐された排出管242の1つは、排出バルブ226を介して容器208の側面の予め定められた高さに接続されている。なお、予め定められた高さは、分離器44における予め定められた高さと同じなので、重複する説明を省略する。 The discharge pipe 242 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208. One of the branched discharge pipes 242 is connected to a predetermined height on the side surface of the container 202 via a discharge valve 220. Similarly, one of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 204 via a discharge valve 222. One of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 206 via a discharge valve 224, and one of the other branched discharge pipes 242 is It is connected to a predetermined height on the side surface of the container 208 via a discharge valve 226. In addition, since the predetermined height is the same as the predetermined height in the separator 44, a duplicate description is omitted.
 排出管244は、4つの容器202、204、206、208に接続することを目的として、4つに分岐されている。分岐された排出管244の1つは、排出バルブ230を介して、容器202の下面に接続されている。同様に他の分岐された排出管242の1つは、排出バルブ232を介して、容器204の下面に接続されている。さらに他の分岐された排出管242の1つは、排出バルブ234を介して容器206の側面の予め定められた高さに接続されており、他の分岐された供給管の1つは、排出バルブ236を介して容器208の下面に接続されている。 The discharge pipe 244 is branched into four for the purpose of connecting to the four containers 202, 204, 206, 208. One of the branched discharge pipes 244 is connected to the lower surface of the container 202 via a discharge valve 230. Similarly, one of the other branched discharge pipes 242 is connected to the lower surface of the container 204 via a discharge valve 232. One of the other branched discharge pipes 242 is connected to a predetermined height on the side of the container 206 via a discharge valve 234, and one of the other branched supply pipes is connected to the discharge pipe 242. It is connected to the lower surface of the container 208 via a valve 236.
 第1の状態において、容器202では、排出バルブ220が開放され、容器202から水が取り出される。また、容器204では、排出バルブ232が開放され、容器204からILと若干量の水とが取り出される。また、容器206では、供給バルブ214が開放され、容器206にILと水とに分離された混合液が供給される。また、容器208では、水とILとに分離された混合液により満たされた状態で放置されてILと水とが分離される。 In the first state, in the container 202, the discharge valve 220 is opened, and water is taken out from the container 202. Further, in the container 204, the discharge valve 232 is opened, and IL and a small amount of water are taken out from the container 204. In the container 206, the supply valve 214 is opened, and the mixed liquid separated into IL and water is supplied to the container 206. Further, the container 208 is left in a state where it is filled with the mixed liquid separated into water and IL, and the IL and water are separated.
 図9は、分離器200の第2の状態を示す模式図である。図9において、図8と同じ要素には同じ参照番号を付して重複する説明を省略する。第2の状態において、容器202では、排出バルブ220が閉じられるとともに排出バルブ230が開放され、容器202からILと若干量の水とが取り出される。容器204では、排出バルブ232が閉じられるとともに供給バルブ212が開放され、容器204にILと水とに分離された混合液が供給される。容器206では、ILと水とに分離された混合液により満たされた状態で放置されてILと水とが分離される。容器208では、排出バルブ226が開放され、容器208から水が取り出される。 FIG. 9 is a schematic diagram showing a second state of the separator 200. In FIG. 9, the same elements as those in FIG. In the second state, in the container 202, the discharge valve 220 is closed and the discharge valve 230 is opened, so that IL and a small amount of water are taken out from the container 202. In the container 204, the discharge valve 232 is closed and the supply valve 212 is opened, and the mixed liquid separated into IL and water is supplied to the container 204. In the container 206, the container 206 is left in a state filled with the mixed liquid separated into IL and water, and the IL and water are separated. In the container 208, the discharge valve 226 is opened, and water is taken out from the container 208.
 このように分離器200では、ILと水とに分離された混合液が供給される工程、ILと水との混合溶液により満たされた状態で放置して分離させる工程、水が取り出される工程、ILと若干量の水とが取り出される工程が、4つの容器202、204、206、208のそれぞれで順番に実行される。そして、それぞれの工程が4つの容器202、204、206、208で同時に実行されるように、それぞれの容器において1つずれた工程を同じ時間で実行させている。これにより、加熱器42から分離器200へ連続的にILと水とに分離された混合液の供給することができる。また、分離器200から蒸発器20へ、連続的に水を供給することができ、また、分離器200から吸収器30へ、連続的にILを供給することができる。 Thus, in the separator 200, a step in which a mixed solution separated into IL and water is supplied, a step in which the mixture is left separated in a state filled with a mixed solution of IL and water, a step in which water is taken out, The process of removing the IL and some amount of water is performed in turn in each of the four containers 202, 204, 206, 208. And the process shifted | deviated 1 in each container is performed in the same time so that each process may be performed simultaneously with four containers 202,204,206,208. Thereby, the mixed liquid separated into IL and water can be continuously supplied from the heater 42 to the separator 200. Further, water can be continuously supplied from the separator 200 to the evaporator 20, and IL can be continuously supplied from the separator 200 to the absorber 30.
 なお、図8、9においては、容器の数を4とした分離器200の例を示したが、容器の数は4つに限られず、複数であればよい。また、容器の数は、上述した4つの工程の時間に基づいて定めてもよい。 8 and 9 show an example of the separator 200 in which the number of containers is four, but the number of containers is not limited to four and may be plural. Moreover, you may determine the number of containers based on the time of four processes mentioned above.
 図10は、比重が水よりも小さい他のILと水との混合状態および相分離状態を示す。図10に示したILは、転移温度Tcよりも低い温度においては、ILと水とが相溶している混合液100の状態となる。混合液100を加熱して、転移温度Tc以上に温度を上昇させると、ILと水との相溶性は低下し、IL層104からなる上層と、水層102からなる下層とに分離した状態となる。このように、比重が水よりも小さいILにおいては、図2に示した例と異なり、IL層104が上層となり、水層102が下層となる。 FIG. 10 shows a mixed state and phase separation state of other IL and water having a specific gravity smaller than that of water. The IL shown in FIG. 10 is in the state of a mixed solution 100 in which IL and water are compatible at a temperature lower than the transition temperature Tc. When the mixed liquid 100 is heated and the temperature is raised to the transition temperature Tc or higher, the compatibility between IL and water decreases, and the upper layer composed of the IL layer 104 and the lower layer composed of the aqueous layer 102 are separated. Become. Thus, in the IL having a specific gravity smaller than that of water, the IL layer 104 is the upper layer and the water layer 102 is the lower layer, unlike the example shown in FIG.
 図11は、比重が水よりも小さい他のILの種類と転移温度Tcを示した表である。また、図12は、他のILのカチオンの具体例を示し、図13は、他のILのアニオンの具体例を示す。このように、ILは、図12に示したカチオンと図13に示したアニオンとを含み、当該ILは、冷媒である水よりも比重が小さい。このようなILとしては、例えば[P6668][EtOHPO]を用いることができる。 FIG. 11 is a table showing other IL types having a specific gravity smaller than that of water and the transition temperature Tc. FIG. 12 shows specific examples of other IL cations, and FIG. 13 shows specific examples of other IL anions. Thus, IL contains the cation shown in FIG. 12 and the anion shown in FIG. 13, and the specific gravity of the IL is smaller than that of water as a refrigerant. For example, [P 6668 ] [EtOHPO 2 ] can be used as such an IL.
 図14は、分離器300を示す模式図である。図14において、図8と共通の要素には同じ参照番号を付して重複する説明を省略する。分離器300は、吸収剤として冷媒である水よりも比重が小さいILに対応している。 FIG. 14 is a schematic diagram showing the separator 300. In FIG. 14, elements common to those in FIG. The separator 300 corresponds to IL having a specific gravity smaller than that of water as a refrigerant as an absorbent.
 分離器300は、4つの容器302、304、306、308と、4つの供給バルブ210、212、214、216と、4つのセンサ112と、4つのセンサ310と、8つの排出バルブ220、222、224、226、230、232、234、236と、1つの供給管240と、2つの排出管244、320と、を備える。 The separator 300 includes four containers 302, 304, 306, 308, four supply valves 210, 212, 214, 216, four sensors 112, four sensors 310, and eight discharge valves 220, 222, 224, 226, 230, 232, 234, 236, one supply pipe 240, and two discharge pipes 244, 320.
 排出管320は、4つの容器302、304、306、308に接続することを目的として、4つに分岐されている。分岐された排出管320の1つは、排出バルブ220を介して、容器302の下面に接続されている。同様に他の分岐された排出管320の1つは、排出バルブ222を介して、容器304の下面に接続されている。さらに他の分岐された排出管320の1つは、排出バルブ224を介して容器306の下面に接続されており、他の分岐された排出管320の1つは、排出バルブ226を介して容器308の下面に接続されている。 The discharge pipe 320 is branched into four for the purpose of connecting to the four containers 302, 304, 306, 308. One of the branched discharge pipes 320 is connected to the lower surface of the container 302 via a discharge valve 220. Similarly, one of the other branched discharge pipes 320 is connected to the lower surface of the container 304 via a discharge valve 222. Further, one of the other branched discharge pipes 320 is connected to the lower surface of the container 306 via the discharge valve 224, and one of the other branched discharge pipes 320 is connected to the container via the discharge valve 226. It is connected to the lower surface of 308.
 図14に示した状態において、容器302では、排出バルブ220が開放され、容器302から水が取り出される。水の取り出しは、センサ310が液面を検出するまで取り出される。センサ310は、液面を検出すると、排出バルブ220を閉じて水の取り出しを停止させる。なお、センサ310の高さは、例えば、水の取り出しを停止させた後において、容器302の高さの1/10の高さの水が容器の底に残るように設定されている。 In the state shown in FIG. 14, in the container 302, the discharge valve 220 is opened, and water is taken out from the container 302. The water is taken out until the sensor 310 detects the liquid level. When the sensor 310 detects the liquid level, the sensor 310 closes the discharge valve 220 and stops taking out water. The height of the sensor 310 is set such that, for example, water having a height of 1/10 of the height of the container 302 remains at the bottom of the container after the water extraction is stopped.
 容器304では、排出バルブ232が開放され、容器304からILと若干量の水とが取り出される。また、容器306では、供給バルブ214が開放され、容器306にILと水とに分離された混合液が供給される。また、容器308では、ILと水とに分離された混合液により満たされた状態で放置されてILと水とが分離される。 In the container 304, the discharge valve 232 is opened, and IL and a small amount of water are taken out from the container 304. In the container 306, the supply valve 214 is opened, and the mixed liquid separated into IL and water is supplied to the container 306. Further, the container 308 is left in a state filled with the mixed liquid separated into IL and water to separate IL and water.
 このように、比重が水よりも小さいILを用いることで、容器302の下面から水を取り出すことができる。容器302において、排出管320にかかる圧力は、水の重量とILの重量が加算された重量に基づく圧力となる。このため、排出管320にかかる圧力は、比重が水よりも大きいILを用いた場合における分離器200における圧力よりも大きくなる。圧力を大きくすることによって排出管320からの水の取り出し速度を速めることができる。 Thus, water can be taken out from the lower surface of the container 302 by using IL having a specific gravity smaller than that of water. In the container 302, the pressure applied to the discharge pipe 320 is based on the weight obtained by adding the weight of water and the weight of IL. For this reason, the pressure applied to the discharge pipe 320 is greater than the pressure in the separator 200 when IL having a specific gravity greater than that of water is used. By increasing the pressure, the water extraction speed from the discharge pipe 320 can be increased.
 図15は、除湿機400の一例を示す模式図である。図15において、図1と共通する要素には同じ参照番号を付して重複する説明を省略する。除湿機400は、吸収器410と再生器40と、冷却器50とを備える。 FIG. 15 is a schematic diagram showing an example of the dehumidifier 400. In FIG. 15, elements that are the same as those in FIG. The dehumidifier 400 includes an absorber 410, a regenerator 40, and a cooler 50.
 除湿機400において、まず、吸収器410で空気412に含まれる水414をILに吸収させて、除湿した空気412を出力する。吸収器410は、図1に示した吸収器30と水414をILに吸収させる構成において共通するが、水414を含む空気412を取り込み、ILに水414を吸収させることによって、水414を含まない空気412を出力する点において異なる。 In the dehumidifier 400, first, the water 414 contained in the air 412 is absorbed by the IL by the absorber 410, and the dehumidified air 412 is output. The absorber 410 is common to the absorber 30 shown in FIG. 1 in the configuration in which the water 414 is absorbed by the IL, but includes the water 414 by taking in the air 412 including the water 414 and causing the IL to absorb the water 414. It differs in that no air 412 is output.
 水414を吸収したILは、再生器40において水414とILとに分離される。水414が分離されたILは、冷却器50によって冷却された後に吸収器30に搬送され、再び、空気412から水414を吸収する。再生器40は、ILから分離された水414を排出する。このように、除湿機400は、上記サイクルを繰り返すことで継続的に水414を含まない空気412を出力する。図15に示した除湿機400において、ILとして転移温度Tcが50℃である[P4444][TsO]を用いた。 The IL that has absorbed the water 414 is separated into water 414 and IL in the regenerator 40. The IL from which the water 414 has been separated is cooled by the cooler 50 and then transferred to the absorber 30 to absorb the water 414 from the air 412 again. The regenerator 40 discharges the water 414 separated from the IL. As described above, the dehumidifier 400 continuously outputs the air 412 that does not contain the water 414 by repeating the above cycle. In the dehumidifier 400 shown in FIG. 15, [P 4444 ] [TsO] having a transition temperature Tc of 50 ° C. was used as IL.
 図15に示した除湿機400においても、冷媒吸収剤として、水414との相溶性が50℃で変化するILを用いている。そのため、ILと水414との混合物を50℃以上に顕熱加熱するだけで、ILと水414との比重差によりILと水414とを分離できる。このため、図15に示した除湿機400においても、ILと水414とを分離するのに潜熱加熱しないので、除湿機400のエネルギー効率を大きく向上させることができる。 Also in the dehumidifier 400 shown in FIG. 15, IL whose compatibility with water 414 changes at 50 ° C. is used as the refrigerant absorbent. Therefore, the IL and the water 414 can be separated by the specific gravity difference between the IL and the water 414 only by sensible heating the mixture of the IL and the water 414 to 50 ° C. or higher. For this reason, also in the dehumidifier 400 shown in FIG. 15, since the latent heat is not used to separate the IL and the water 414, the energy efficiency of the dehumidifier 400 can be greatly improved.
 本実施形態において、冷媒吸収剤として、例えば、[P4444][TsO]からなるILを用いた例を示したが、冷媒吸収剤は、複数の種類のILを含んでもよい。また、ILにIL以外の添加物を含めてもよく、例えば、ILに界面活性剤を含めてもよい。さらに、冷媒吸収剤はIL以外であってもよく、そのような実施形態の例を図16と図17において示す。 In the present embodiment, for example, an IL using [P 4444 ] [TsO] is used as the refrigerant absorbent. However, the refrigerant absorbent may include a plurality of types of IL. Moreover, additives other than IL may be included in IL, for example, a surfactant may be included in IL. Further, the refrigerant absorbent may be other than IL, and examples of such embodiments are shown in FIGS.
 図16は、吸収冷凍機500を示す模式図である。図16において、図1と共通する要素には同じ参照番号を付して重複する説明を省略する。図16に示した吸収冷凍機500の混合器520は、吸収器30及び液体ポンプ70にくわえて分離部510をさらに備える。本実施例において、吸収器30で気化した水を吸収するのは、臭化リチウム水溶液である。冷媒吸収剤の他の例として、臭化カルシウムや塩化カルシウム等の潮解性の高い物質の水溶液を用いてもよい。 FIG. 16 is a schematic diagram showing an absorption refrigerator 500. In FIG. 16, elements that are the same as those in FIG. The mixer 520 of the absorption refrigerator 500 shown in FIG. 16 further includes a separation unit 510 in addition to the absorber 30 and the liquid pump 70. In this embodiment, it is a lithium bromide aqueous solution that absorbs water vaporized by the absorber 30. As another example of the refrigerant absorbent, an aqueous solution of a substance having high deliquescence such as calcium bromide or calcium chloride may be used.
 吸収器30において水を吸収した臭化リチウム水溶液は、液体ポンプ70によって分離部510に搬送される。分離部510は、半透膜516と、半透膜516で隔てられた第1チャンバ512と第2チャンバ514を備える。臭化リチウム水溶液は第2チャンバ514に収納される。臭化リチウム水溶液に含まれる水は、半透膜を浸透して、ILを収納する第1チャンバ512に移動する。半透膜の浸透法は、逆浸透であってもいいし正浸透であってもよい。このようにして水を吸収したILは、再生器40へ送られる。 The aqueous lithium bromide solution that has absorbed water in the absorber 30 is conveyed to the separation unit 510 by the liquid pump 70. The separation unit 510 includes a semipermeable membrane 516, a first chamber 512 and a second chamber 514 separated by the semipermeable membrane 516. The aqueous lithium bromide solution is stored in the second chamber 514. Water contained in the lithium bromide aqueous solution permeates the semipermeable membrane and moves to the first chamber 512 that houses the IL. The permeation method of the semipermeable membrane may be reverse osmosis or forward osmosis. The IL that has absorbed the water in this way is sent to the regenerator 40.
 再生器40において水と分離したILは、冷却器50による冷却後に、液体ポンプ72によって分離部510の第1チャンバ512に搬送される。蒸発器20の回収部24によって回収されたILを含む水も、分離部510の第1チャンバ512に送られる。このようにして、ILは、半透膜を通過してくる水の吸収に再び利用される。一方、第2チャンバ内の臭化リチウム水溶液は吸収器30に戻され、気化した水の吸収に再び用いられる。これにより、水との相溶性が高い臭化リチウム水溶液を冷媒吸収剤として使用して、効率的に水を吸収することができる。また、相溶性の変化に基づいてILと水を効率的に分離することができる。 The IL separated from the water in the regenerator 40 is transferred to the first chamber 512 of the separation unit 510 by the liquid pump 72 after being cooled by the cooler 50. The water containing IL recovered by the recovery unit 24 of the evaporator 20 is also sent to the first chamber 512 of the separation unit 510. In this way, IL is used again to absorb water passing through the semipermeable membrane. On the other hand, the aqueous lithium bromide solution in the second chamber is returned to the absorber 30 and used again for absorbing the vaporized water. Thereby, water can be efficiently absorbed by using a lithium bromide aqueous solution having high compatibility with water as a refrigerant absorbent. Moreover, IL and water can be efficiently separated based on the change in compatibility.
 次に、吸収冷凍機500の他の例について説明する。図17は、吸収冷凍機550を示す模式図である。図17において、図16と共通する要素には同じ参照番号を付して重複する説明を省略する。図17に示した吸収冷凍機550は、濃度調節器560をさらに備える。濃度調節器560として、例えば、電気化学的に脱イオン処理する容量性脱イオン(CDI)装置を用いてもよい。 Next, another example of the absorption refrigerator 500 will be described. FIG. 17 is a schematic diagram showing an absorption refrigerator 550. In FIG. 17, elements that are the same as those in FIG. The absorption refrigerator 550 shown in FIG. 17 further includes a concentration controller 560. As the concentration controller 560, for example, a capacitive deionization (CDI) apparatus that performs electrochemical deionization processing may be used.
 分離部510から濃度調節器560に送られてくる臭化リチウム水溶液は、そこで、臭化リチウムを高濃度に含む水溶液と低濃度に含む水溶液とに分けられる。低濃度の臭化リチウム水溶液は、吸収器30から分離部510に搬送される臭化リチウム水溶液に混ぜられる。一方、高濃度の臭化リチウム水溶液は吸収器30に送られる。これにより,半透膜による水分離後の吸収器に流入する臭化リチウム水溶液の濃度をさらに高めることができる。 The lithium bromide aqueous solution sent from the separation unit 510 to the concentration controller 560 is divided into an aqueous solution containing lithium bromide at a high concentration and an aqueous solution containing a low concentration. The low-concentration lithium bromide aqueous solution is mixed with the lithium bromide aqueous solution conveyed from the absorber 30 to the separation unit 510. On the other hand, the high concentration lithium bromide aqueous solution is sent to the absorber 30. Thereby, the density | concentration of the lithium bromide aqueous solution which flows into the absorber after the water separation by a semipermeable membrane can be raised further.
 また、本実施形態において、蒸発器20、混合器の一例である吸収器30、再生器40、冷却器50をそれぞれ1つ備える吸収冷凍機10を示した。しかしながら、当該構成に限られず、蒸発器20、吸収器30、再生器40、冷却器50は、それぞれ複数設けられていてもよい。同様に、除湿機400においても、吸収器410、再生器40、冷却器50は、それぞれ複数設けられていてもよい。 Moreover, in this embodiment, the absorption refrigerator 10 provided with the evaporator 20, the absorber 30 which is an example of a mixer, the regenerator 40, and the cooler 50 each was shown. However, it is not restricted to the said structure, The evaporator 20, the absorber 30, the regenerator 40, and the cooler 50 may each be provided with two or more. Similarly, in the dehumidifier 400, a plurality of absorbers 410, regenerators 40, and coolers 50 may be provided.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
10、150、500、550 吸収冷凍機、20 蒸発器、22 気化部、24 回収部、26、28 温度計、30、410 吸収器、40 再生器、42 加熱器、44、200、300 分離器、50 冷却器、60、62 膨張弁、70、72 液体ポンプ、80 対象物、84 外部流体、82、86 冷却水、100 混合液、102 水層、104 IL層、110、202、204、206、208、302、304、306、308 容器、112、310 センサ、114、210、212、214、216 供給バルブ、116、118、220、222、224、226、230、232、234、236 排出バルブ、120、240 供給管、122、124、242、244、320 排出管、152 熱交換器、400 除湿機、412 空気、414 水、510 分離部、512 第1チャンバ、514 第2チャンバ、516 半透膜、520 混合器、560 濃度調節器 10, 150, 500, 550 Absorption refrigerator, 20 evaporator, 22 vaporizer, 24 recovery unit, 26, 28 thermometer, 30, 410 absorber, 40 regenerator, 42 heater, 44, 200, 300 separator , 50 cooler, 60, 62 expansion valve, 70, 72 liquid pump, 80 object, 84 external fluid, 82, 86 cooling water, 100 liquid mixture, 102 water layer, 104 IL layer, 110, 202, 204, 206 , 208, 302, 304, 306, 308 Container, 112, 310 Sensor, 114, 210, 212, 214, 216 Supply valve, 116, 118, 220, 222, 224, 226, 230, 232, 234, 236 Discharge valve , 120, 240 supply pipe, 122, 124, 242, 244, 320 discharge pipe, 152 heat Exchanger, 400 dehumidifier, 412 air, 414 water, 510 separation unit, 512 first chamber 514 second chamber, 516 a semi-permeable membrane, 520 a mixer, 560 concentration adjuster

Claims (14)

  1.  冷媒との相溶性が温度で変化するイオン液体と冷媒とを混合させる混合器と、
     前記混合器で混合された前記冷媒と前記イオン液体との混合物を加熱して、前記イオン液体と前記冷媒とを液体のまま前記イオン液体と前記冷媒との比重差により分離させる再生器と、
     前記再生器により分離された前記冷媒を気化させることで冷熱を発生させる蒸発器と、
    を備える吸収冷凍機。
    A mixer for mixing the refrigerant with an ionic liquid whose compatibility with the refrigerant changes with temperature;
    A regenerator that heats a mixture of the refrigerant and the ionic liquid mixed in the mixer and separates the ionic liquid and the refrigerant in a liquid state by a specific gravity difference between the ionic liquid and the refrigerant;
    An evaporator that generates cold by vaporizing the refrigerant separated by the regenerator;
    Absorption refrigerator equipped with.
  2.  前記混合器は、前記蒸発器で気化した前記冷媒を前記イオン液体に吸収させる吸収器を有する請求項1に記載の吸収冷凍機。 The absorption refrigerator according to claim 1, wherein the mixer has an absorber that causes the ionic liquid to absorb the refrigerant vaporized by the evaporator.
  3.  前記混合器は、
     前記蒸発器で気化した前記冷媒を前記イオン液体とは異なる冷媒吸収剤に吸収させる吸収器と、
     前記吸収器から搬送され、前記冷媒を吸収した前記冷媒吸収剤から分離する分離部と
    を備える請求項1の吸収冷凍機。
    The mixer is
    An absorber for absorbing the refrigerant vaporized in the evaporator by a refrigerant absorbent different from the ionic liquid;
    The absorption refrigerator according to claim 1, further comprising: a separation unit that is transported from the absorber and separates from the refrigerant absorbent that has absorbed the refrigerant.
  4.  前記分離部は浸透圧を用いて前記冷媒を前記冷媒吸収剤から分離する請求項3に記載の吸収冷凍機。 The absorption refrigerator according to claim 3, wherein the separation unit separates the refrigerant from the refrigerant absorbent using osmotic pressure.
  5.  前記冷媒吸収剤が臭化リチウム、臭化カルシウム、または塩化カルシウムを含む請求項3または4に記載の吸収冷凍機。 The absorption refrigerator according to claim 3 or 4, wherein the refrigerant absorbent contains lithium bromide, calcium bromide, or calcium chloride.
  6.  前記蒸発器は、前記冷媒を気化させる気化部と、前記冷媒に含まれる前記イオン液体を回収する回収部と、
    を備え、
     前記回収部は、前記冷媒に含まれるイオン液体を回収して、回収した前記イオン液体を前記混合器へ搬送する請求項1から5のいずれか1項に記載の吸収冷凍機。
    The evaporator includes a vaporization unit that vaporizes the refrigerant, a collection unit that collects the ionic liquid contained in the refrigerant,
    With
    The absorption refrigerator according to any one of claims 1 to 5, wherein the recovery unit recovers an ionic liquid contained in the refrigerant and conveys the recovered ionic liquid to the mixer.
  7.  前記再生器は、加熱器と分離器を備え、
     前記加熱器は、前記冷媒を吸収したイオン液体を加熱して、前記冷媒を液体のまま前記イオン液体と、を分離させ、
     前記分離器は、分離した前記冷媒と前記イオン液体とを別々に取り出す請求項1から6のいずれか1項に記載の吸収冷凍機。
    The regenerator includes a heater and a separator,
    The heater heats the ionic liquid that has absorbed the refrigerant and separates the ionic liquid from the liquid while the refrigerant remains in a liquid state.
    The absorption refrigerator according to any one of claims 1 to 6, wherein the separator takes out the separated refrigerant and the ionic liquid separately.
  8.  前記再生器は、並列に複数の前記分離器を備え、前記加熱器は、複数の前記分離器を切り替えながら順番に前記冷媒と前記イオン液体とを供給し、前記分離した冷媒とイオン液体が供給されてから予め定められた時間が経過した後に、前記冷媒と前記イオン液体とを別々に取り出す請求項7に記載の吸収冷凍機。 The regenerator includes a plurality of the separators in parallel, and the heater supplies the refrigerant and the ionic liquid in order while switching the plurality of separators, and the separated refrigerant and the ionic liquid are supplied. The absorption refrigerator according to claim 7, wherein the refrigerant and the ionic liquid are taken out separately after a predetermined time has elapsed since the start.
  9.  前記分離器は、前記冷媒を前記分離器に残しながら、前記冷媒と前記イオン液体とを別々に取り出す請求項7または請求項8に記載の吸収冷凍機。 The absorption refrigerator according to claim 7 or 8, wherein the separator takes out the refrigerant and the ionic liquid separately while leaving the refrigerant in the separator.
  10.  前記分離器は、前記冷媒を前記分離器に残しながら取り出した後に、前記イオン液体を取り出す請求項9に記載の吸収冷凍機。 The absorption refrigerator according to claim 9, wherein the separator takes out the ionic liquid after taking out the refrigerant while leaving the refrigerant in the separator.
  11.  前記再生器は、さらに冷却器を備え、
     前記冷却器は、前記分離器によって取り出されたイオン液体を冷却する請求項7から請求項10のいずれか一項に記載の吸収冷凍機。
    The regenerator further comprises a cooler,
    The absorption cooler according to any one of claims 7 to 10, wherein the cooler cools the ionic liquid taken out by the separator.
  12.  前記冷媒は、水であり、
     前記イオン液体は、前記イオン液体と、前記水とを等量混ぜた場合における前記イオン液体と前記水との相溶性が変化する温度が、5℃以上70℃以下の範囲内である請求項7から請求項11のいずれか一項に記載の吸収冷凍機。
    The refrigerant is water;
    The temperature at which the compatibility of the ionic liquid and the water changes when the ionic liquid and the water are mixed in an equal amount is within a range of 5 ° C to 70 ° C. The absorption refrigerator according to any one of claims 11 to 11.
  13.  前記加熱器は、60℃以下の熱源を用いて加熱し、前記イオン液体と前記水との相溶性が変化する温度は、前記熱源の温度以下である請求項12に記載の吸収冷凍機。 The absorption refrigerator according to claim 12, wherein the heater is heated using a heat source of 60 ° C or lower, and a temperature at which the compatibility between the ionic liquid and the water changes is equal to or lower than the temperature of the heat source.
  14.  水との相溶性が温度で変化するイオン液体に空気に含まれる前記水を吸収させて、除湿された空気を出力する吸収器と、
     前記水を吸収したイオン液体を加熱して、前記イオン液体と前記水とを液体のまま前記イオン液体と前記水との比重差により分離させる再生器と、
    を備える除湿機。
    An absorber that absorbs the water contained in the air into an ionic liquid whose compatibility with water changes with temperature and outputs dehumidified air; and
    A regenerator that heats the ionic liquid that has absorbed the water and separates the ionic liquid and the water in a liquid state by a specific gravity difference between the ionic liquid and the water;
    A dehumidifier.
PCT/JP2016/056142 2015-03-20 2016-02-29 Absorption refrigerator and dehumidifier WO2016152399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017508134A JP6655063B2 (en) 2015-03-20 2016-02-29 Absorption refrigerator and dehumidifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015058580 2015-03-20
JP2015-058580 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152399A1 true WO2016152399A1 (en) 2016-09-29

Family

ID=56977317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056142 WO2016152399A1 (en) 2015-03-20 2016-02-29 Absorption refrigerator and dehumidifier

Country Status (2)

Country Link
JP (1) JP6655063B2 (en)
WO (1) WO2016152399A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013277A (en) * 2016-07-20 2018-01-25 矢崎エナジーシステム株式会社 Absorption type system
JP2018035950A (en) * 2016-08-29 2018-03-08 株式会社デンソー Cold generating device
JP2019202917A (en) * 2018-05-24 2019-11-28 国立研究開発法人産業技術総合研究所 Production method of dry hydrogen gas derived from water electrolysis, and absorbent solution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215430A (en) * 1992-02-04 1993-08-24 Osaka Gas Co Ltd Absorption type refrigerating machine employing absorption promotor
JP2003144855A (en) * 2001-11-15 2003-05-20 Akio Miyanaga Membrane separation device and absorption refrigerator utilizing membrane separation
JP2003254683A (en) * 2002-02-28 2003-09-10 Ebara Corp Heat exchanger and absorption refrigerating machine using it
JP2012508298A (en) * 2008-11-07 2012-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Absorption cycle using ionic compounds and / or nonionic absorbing liquid as working fluid
JP2012510042A (en) * 2008-11-26 2012-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Absorption cycle system with double absorption circuit
JP2013513002A (en) * 2009-12-07 2013-04-18 エボニック デグサ ゲーエムベーハー Absorption refrigerator working medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506839B2 (en) * 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
KR101061875B1 (en) * 2007-12-17 2011-09-02 인하대학교 산학협력단 Recovery Method of Ionic Liquid Using Ultrasonic Atomization
KR100974890B1 (en) * 2008-04-18 2010-08-11 인하대학교 산학협력단 A recycling process of ionic liquids using microwave irradiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215430A (en) * 1992-02-04 1993-08-24 Osaka Gas Co Ltd Absorption type refrigerating machine employing absorption promotor
JP2003144855A (en) * 2001-11-15 2003-05-20 Akio Miyanaga Membrane separation device and absorption refrigerator utilizing membrane separation
JP2003254683A (en) * 2002-02-28 2003-09-10 Ebara Corp Heat exchanger and absorption refrigerating machine using it
JP2012508298A (en) * 2008-11-07 2012-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Absorption cycle using ionic compounds and / or nonionic absorbing liquid as working fluid
JP2012510042A (en) * 2008-11-26 2012-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Absorption cycle system with double absorption circuit
JP2013513002A (en) * 2009-12-07 2013-04-18 エボニック デグサ ゲーエムベーハー Absorption refrigerator working medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013277A (en) * 2016-07-20 2018-01-25 矢崎エナジーシステム株式会社 Absorption type system
JP2018035950A (en) * 2016-08-29 2018-03-08 株式会社デンソー Cold generating device
WO2018043059A1 (en) * 2016-08-29 2018-03-08 株式会社デンソー Cold generating device
JP2019202917A (en) * 2018-05-24 2019-11-28 国立研究開発法人産業技術総合研究所 Production method of dry hydrogen gas derived from water electrolysis, and absorbent solution
JP7116397B2 (en) 2018-05-24 2022-08-10 国立研究開発法人産業技術総合研究所 Dry water electrolysis hydrogen gas production method and absorption liquid

Also Published As

Publication number Publication date
JP6655063B2 (en) 2020-02-26
JPWO2016152399A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
US20110167864A1 (en) Ammonia refrigeration system
WO2016152399A1 (en) Absorption refrigerator and dehumidifier
EP2339252A1 (en) Air conditioning and dehumidification integrated system
US10124104B2 (en) Dialysate regeneration unit and blood dialyzing apparatus having the same
CN105709601A (en) Heat pump-double-effect membrane distillation apparatus and distillation method
KR101834881B1 (en) Adsorption type desalination system with time shifting of heat pump
JP2016180583A (en) Absorption type refrigerator
CN102205993A (en) Adverse current closed type multistage seawater desalination system and method
US10712057B2 (en) Method and device for generation of electric power and cold using low-potential heat sources
WO2016121012A1 (en) Liquid solid separating device
JP6165150B2 (en) Dehumidifier and method of using the same
US11473817B2 (en) Method to change fluid temperature using a thermally driven control unit
CN103550941A (en) Low-temperature evaporation and concentration device and high-concentration waste water concentration method
CN102679468B (en) Regeneration system of dehumidifying solution for moist air
JP2017113675A (en) Forward osmosis water making system and operation method of forward osmosis water making system
CN103807946B (en) The rectification regenerating unit of heat source tower anti-freezing solution
KR101210968B1 (en) Hybrid absorption type air conditioning system
CN102992422B (en) Batch-type small-temperature difference heat-pump low-temperature seawater desalting system and method
KR20150007131A (en) Absoption chiller
Wang et al. Applications of membrane distillation technology in energy transformation process-basis and prospect
Hassan et al. Integration of vacuum multi effect membrane distillation with adsorption/cooling system
EP2212629A1 (en) Non-vacuum absorption refrigeration
KR101927434B1 (en) Absorption refrigeration system
JP6796382B2 (en) Heating water manufacturing method and manufacturing system
CN115490383B (en) Membrane distillation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768302

Country of ref document: EP

Kind code of ref document: A1