WO2016152264A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2016152264A1
WO2016152264A1 PCT/JP2016/053192 JP2016053192W WO2016152264A1 WO 2016152264 A1 WO2016152264 A1 WO 2016152264A1 JP 2016053192 W JP2016053192 W JP 2016053192W WO 2016152264 A1 WO2016152264 A1 WO 2016152264A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
output terminal
power
rectifier
Prior art date
Application number
PCT/JP2016/053192
Other languages
French (fr)
Japanese (ja)
Inventor
一典 宮原
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2017507560A priority Critical patent/JP6404454B2/en
Publication of WO2016152264A1 publication Critical patent/WO2016152264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This invention relates to the electric power supply apparatus which supplies electric power to a function part using photovoltaic power generation.
  • the observation data collection system described in Patent Literature 1 includes a plurality of analysis devices, a plurality of relay devices, and an aggregation device.
  • Multiple analysis devices are linked to one relay device.
  • the analysis devices linked to each relay device are different.
  • the aggregation device is linked to a plurality of relay devices.
  • the relay device acquires observation data of multiple analysis devices that it links to.
  • the relay device collects the acquired plurality of observation data and transmits it to the aggregation device.
  • the analysis device is arranged at a position away from the relay device and the aggregation device, and may be arranged at a position where power supply from a commercial power source cannot be received. In this case, the analysis device must generate power with its own device, and generate and transmit observation data using the generated power.
  • the amount of electric power required is often different depending on the position where the analyzer is arranged. For example, if the communication environment for wireless communication is good, the power related to communication is small, but if the communication environment for wireless communication is bad, the power related to communication is large.
  • the power generation of the analysis device is performed by solar power generation, the power generation amount varies depending on the environment such as sunshine. Therefore, the required number of photovoltaic power generation panels differs depending on the arrangement position.
  • the power generation function unit of the analysis device with the lowest power consumption is used, there is an analysis device that stops functioning and cannot transmit observation data.
  • the power generation function unit is individually formed in accordance with each analysis device, design and manufacturing costs increase.
  • the amount of power required may change due to changes over time, and even if a power generation function unit is individually formed for each analysis device, appropriate power supply is not always possible.
  • an object of the present invention is to provide a power supply device that can supply an appropriate amount of power with an appropriate circuit scale according to the installation position and situation.
  • the power supply device of the present invention includes a photovoltaic panel, a storage battery, and a charging unit.
  • the charging unit converts the electric charge generated by the photovoltaic panel into a DC voltage and charges the storage battery.
  • the power supply device further includes a DC voltage input terminal to which a DC voltage is input from the outside, and a DC voltage output terminal that outputs the DC voltage.
  • the power supply device further includes a first rectifier and a second rectifier.
  • the first rectifier is inserted into a DC power line connecting the DC voltage input terminal and the DC voltage output terminal.
  • the first rectifier rectifies current from the DC voltage input terminal to the DC voltage output terminal.
  • the second rectifier is connected between the DC power line on the DC voltage output terminal side of the first rectifier and the storage battery. The second rectifier rectifies current from the storage battery to the DC voltage output terminal.
  • the circuit composed of the above functional units is used as a unit power generation unit, and a number corresponding to the amount of power to be supplied is prepared.
  • the power supply device of the present invention includes a data input terminal, a data output terminal, and a data communication bus that connects the data input terminal and the data output terminal.
  • the charging unit is connected to the data communication bus.
  • the operating status of the charging unit can be acquired from the outside for each unit power generation unit. Thereby, the operation state of the whole power supply apparatus can be observed.
  • the block diagram which shows the structure of the observation system containing the electric power supply apparatus which concerns on the 1st Embodiment of this invention.
  • the block diagram of the electric power supply part which concerns on the 1st Embodiment of this invention.
  • the block diagram of the unit power generation unit which comprises the electric power supply part which concerns on the 1st Embodiment of this invention.
  • the block diagram of the unit electric power generation unit which comprises the electric power supply part which concerns on the 2nd Embodiment of this invention.
  • the block diagram of the electric power supply part which concerns on the 2nd Embodiment of this invention.
  • observation system including the power supply device according to the first embodiment of the present invention will be described with reference to the drawings.
  • the observation system shown in the present embodiment is used in, for example, a landslide detection system.
  • the configuration of the present embodiment is applied to a system that analyzes a predetermined phenomenon using observation data acquired at a remote place, that is, a system that cannot use a commercial power source and uses photovoltaic power generation. be able to.
  • FIG. 1 is a block diagram showing a configuration of an observation system including a power supply apparatus according to the first embodiment of the present invention.
  • the observation system 10 includes a slave unit (observation data transmission device) 20, a master unit (observation data relay device) 30, a file server 40, an analysis device 50, and a communication network 100.
  • the slave 20 is placed at the observation position. When there are a plurality of observation positions, the slave unit 20 is arranged for each observation position.
  • the slave unit 20 includes a control unit 21, a GNSS receiver 22, a GNSS antenna 23, a wireless LAN control unit 24, a wireless LAN antenna 25, a memory 26, a notification unit 27, and a power supply unit 60.
  • mobile_unit 20 is arrange
  • the power supply unit 60 of the slave unit 20 generates a DC voltage by self-power generation, and each functional unit of the slave unit 20 (the control unit 21, the GNSS receiver 22, the wireless LAN control unit 24, the notification unit 27). To supply power.
  • the notification unit 27 can be omitted.
  • the control unit 21 performs overall control of the slave unit 20.
  • the control unit 21 controls observation data storage and uploading. Specific contents of observation data storage and upload control in the control unit 21 will be described later.
  • the GNSS receiver 22 is connected to the control unit 21.
  • the GNSS receiver 22 generates observation data from the GNSS signal received by the GNSS antenna 23.
  • the GNSS receiver 22 outputs the generated observation data to the control unit 21.
  • GNSS is an abbreviation for Global Navigation Satelite System, and includes GPS (Global Positioning System), GLONASS (Global Navigation Satelite System), Galileo, and the like.
  • the observation data generated by the GNSS receiver 22 is data obtained from the reception result of GNSS signal (data obtained by acquisition and tracking), which is used for analysis and detection of landslide such as carrier phase.
  • the GNSS receiver 22 demodulates the navigation message from the GNSS signal.
  • the GNSS receiver 22 acquires time data from the navigation message.
  • the GNSS receiver 22 may measure the slave unit 20 from the tracking result of the GNSS signal.
  • the observation data includes a positioning result.
  • the wireless LAN control unit 24 is connected to the wireless LAN antenna 25 and the control unit 21.
  • the wireless LAN control unit 24 performs wireless communication with the wireless LAN AP 32 via the wireless LAN antenna 25 and the wireless LAN antenna 31 according to a predetermined protocol.
  • the wireless LAN control unit 24 converts the observation data given from the control unit 21 into a wireless communication protocol and transmits it from the wireless LAN antenna 25. Further, the wireless LAN control unit 24 converts the remote setting data received from the base unit 30 received by the wireless LAN antenna 25 into a protocol and outputs it to the control unit 21.
  • the memory 26 is connected to the control unit 21.
  • the memory 26 temporarily stores observation data.
  • the notification unit 27 is connected to the control unit 21.
  • the notification unit 27 is configured by a simple display element such as an LED.
  • the notification unit 27 is driven in a predetermined display mode by a notification signal from the control unit 21.
  • the parent device (observation data relay device) 30 includes a wireless LAN antenna 31, a wireless LAN AP (access point) 32, a router 33, and a power supply unit 60.
  • the master unit 30 may also be arranged in a place where commercial power is difficult to use or where commercial power is not available.
  • the power supply unit 60 of the base unit 30 generates a DC voltage by self-power generation and supplies power to each functional unit (wireless LANAP 32 and router 33) of the base unit.
  • mobile_unit 20 are attaching
  • the number of the built-in unit power generation units may not be the same so that it may mention later. Absent.
  • the wireless LAN AP 32 performs wireless communication with the wireless LAN control unit 24 via the wireless LAN antenna 31 and the wireless LAN antenna 25 using a predetermined protocol.
  • the wireless LAN AP 32 performs protocol conversion on the remote setting data acquired via the router 33 and transmits it from the wireless LAN antenna 31.
  • the wireless LAN AP 32 converts the observation data received from the slave unit 20 received by the wireless LAN antenna 31 into a protocol and outputs it to the router 33.
  • the router 33 connects the wireless LAN AP 32 to the network 100. That is, the router 33 performs protocol conversion between the wireless communication network between the parent device 30 and the child device 20 and the network 100.
  • the router 33 transmits the observation data output from the wireless LAN AP 32 to the file server 40.
  • the router 33 transmits a setting signal from the analysis device 50 connected via the network 100 to the wireless LAN AP 32.
  • the file server 40 stores observation data transmitted from the parent device 30. Further, the file server 40 transmits observation data to the analysis device 50 in response to a read request from the analysis device 50.
  • the analysis device 50 generates detection data for the observation target using the observation data read from the file server 40. For example, if the observation system 10 is a landslide detection system, the position change and speed of each observation position are acquired from observation data, and a landslide is detected.
  • the analysis device 50 transmits a setting signal to the parent device 30 and the child device 20.
  • the setting signal is set by an operator using an operation input unit provided in the analysis device 50.
  • the setting signal is set by the analysis device 50 based on the analysis results so far.
  • FIG. 2 is a block diagram of the power supply unit according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram of a unit power generation unit constituting the power supply unit according to the first embodiment of the present invention.
  • the power supply unit 60 includes unit power generation units 610, 620, and 630.
  • the unit power generation units 610, 620, and 630 have the configuration of the unit power generation unit 600 shown in FIG.
  • the unit power generation unit 600 includes a photovoltaic power generation panel 601, a charging unit 602, a storage battery 603, rectifiers 604 and 605, a DC voltage input terminal Pin, and a DC voltage output terminal Pout.
  • the photovoltaic panel 601 is connected to the charging unit 602.
  • Charging unit 602 is connected to storage battery 603.
  • the storage battery 603 is connected to the DC voltage output terminal Pout via the rectifier 604 (second rectifier of the present invention).
  • the DC voltage input terminal Pin and the DC voltage output terminal Pout are connected via a rectifier 605 (first rectifier of the present invention).
  • the power transmission line on the DC voltage output terminal Pout side of the rectifier 604 and the power transmission line on the DC voltage output terminal Pout side of the rectifier 605 are connected.
  • the photovoltaic panel 601 generates electric charge according to the amount of light irradiated.
  • the charging unit 602 converts the charge generated by the photovoltaic panel into a DC voltage.
  • the charging unit 602 converts the electric charge generated by the photovoltaic panel 601 into a DC voltage by performing MPPT control or the like.
  • the charging unit 602 converts the converted DC voltage into a charging voltage for the storage battery 603 and supplies it to the storage battery 603.
  • the storage battery 603 is charged by the charging voltage from the charging unit 602 and supplies a DC voltage to the DC voltage output terminal Pout via the rectifier 604.
  • the circuit of the rectifier 604 is configured such that a current flows from the storage battery 603 to the DC voltage output terminal Pout.
  • the rectifier 604 includes a diode having an anode connected to the storage battery 603 and a cathode connected to the DC voltage output terminal Pout.
  • the rectifier 605 has a circuit configured such that a current flows from the DC voltage input terminal Pin to the DC voltage output terminal Pout.
  • the rectifier 605 includes a diode having an anode connected to the DC voltage input terminal Pin and a cathode connected to the DC voltage output terminal Pout.
  • the unit power generation unit 600 has sufficient power stored in the storage battery 603, and the voltage that can be output from the storage battery 603 is higher than the DC voltage input from the DC voltage input terminal Pin.
  • a DC voltage DC power
  • the storage battery 603 is supplied from the storage battery 603 to the DC voltage output terminal Pout.
  • the unit power generation unit 600 if the amount of power stored in the storage battery 603 is insufficient and the voltage that can be output from the storage battery 603 is lower than the DC voltage input from the DC voltage input terminal Pin, the DC from the DC voltage input terminal Pin A DC voltage (DC power) is supplied to the voltage output terminal Pout.
  • the power supply unit 60 connects the unit power generation units 600 (610, 620, 630) having such a configuration as shown in FIG.
  • the DC voltage output terminal Pout of the unit power generation unit 610 is connected to each functional unit of the slave unit 20.
  • the DC voltage output terminal Pout of the unit power generation unit 620 is connected to the DC voltage input terminal Pin of the unit power generation unit 610.
  • the DC voltage output terminal Pout of the unit power generation unit 630 is connected to the DC voltage input terminal Pin of the unit power generation unit 630.
  • the unit power generation units 630, 620, and 610 are cascade-connected in this order.
  • the number of unit power generation units constituting the power supply unit 60 can be appropriately adjusted according to the amount of power required by the slave unit 20. That is, the number of unit power generation units to be cascade-connected is reduced for the slave unit 20 with a small amount of power consumption. On the other hand, the number of unit power generation units to be cascade-connected is increased for the slave unit 20 that consumes a large amount of power.
  • the power supply unit 60 that can supply a necessary amount of power without increasing the circuit configuration can be installed for each slave unit.
  • the configuration of the present embodiment when the amount of power required over time changes, it is not necessary to replace the entire power supply unit 60, and it is only necessary to adjust the number of unit power generation units. In particular, when the required amount of power increases, it is necessary to increase the amount of power generation.
  • a required number of unit power generation units may be added, and the specifications of the power supply unit 60 are as follows. Can be easily optimized. In particular, in the landslide detection system, the handset 20 is often arranged in a mountain where the work is not easy. However, by using this configuration, the power supply unit 60 corresponding to the amount of power of the handset 20 can be easily worked. realizable.
  • the configuration of the present embodiment it is possible to supply power appropriately according to changes in the installed environment. Thereby, the operation time of the slave unit can be made as long as possible, and the transmission of the observation data can be continued. For example, even if it becomes a situation where power generation and charging cannot be performed due to snow or the like, the supply power is automatically adjusted by the cascade connection of the plurality of unit power generation units described above, and appropriate power supply can be realized. .
  • the power supply unit 60 of the child device 20 is shown, but the power supply unit 60 of the parent device 30 has the same configuration. As a result, the power supply unit 60 that can supply the necessary amount of power to the parent device 30 without increasing the circuit configuration can be realized.
  • FIG. 4 is a block diagram of a unit power generation unit constituting the power supply unit according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram of a power supply unit according to the second embodiment of the present invention.
  • the configuration of the power supply unit 60A is different from that of the observation system according to the first embodiment.
  • the power supply unit 60A includes a plurality of unit power generation units 610A, 620A, and 630A.
  • Unit power generation units 610A, 620A, and 630A have the same configuration as unit power generation unit 600A shown in FIG.
  • the unit power generation unit 600A includes a data input terminal PinD, a data output terminal PoutD, and a data communication bus 606 as compared to the unit power generation unit 600 according to the first embodiment.
  • the data input terminal PinD and the data output terminal PoutD are connected by a data communication bus 606.
  • the data communication bus 606 is realized by an I2C bus, for example.
  • the charging unit 602 is connected to the data communication bus 606.
  • the power supply unit 60A connects the unit power generation units 600A (610A, 620A, 630A) having such a configuration as shown in FIG.
  • the DC voltage output terminal Pout of the unit power generation unit 610A is connected to each functional unit of the slave unit 20.
  • the DC voltage output terminal Pout of the unit power generation unit 620A is connected to the DC voltage input terminal Pin of the unit power generation unit 610.
  • the DC voltage output terminal Pout of the unit power generation unit 630A is connected to the DC voltage input terminal Pin of the unit power generation unit 630A.
  • the power supply function units in the unit power generation units 630A, 620A, and 610A are cascade-connected in this order.
  • the data output terminal PoutD of the unit power generation unit 610A is connected to the control unit 21 of the slave unit 20.
  • the data output terminal PoutD of the unit power generation unit 620A is connected to the data input terminal PinD of the unit power generation unit 610A.
  • the data output terminal PoutD of the unit power generation unit 630A is connected to the data input terminal PinD of the unit power generation unit 620A.
  • the operation of the charging unit 602 of each unit power generation unit 610A, 620A, 630A can be monitored.
  • the MPPT control state of each charging unit 602 the charge amount of the storage battery 603, and the like can be monitored.
  • the configuration of the present embodiment can also be applied to the parent device 30.
  • Observation system 20 Slave unit (observation data transmitter) 21: Control unit 22: GNSS receiver 23: GNSS antenna 24: Wireless LAN control unit 25: Wireless LAN antenna 26: Memory 27: Notification unit 30: Master unit (observation data relay device) 40: file server 50: analysis device 60: power supply unit 100: communication network 600, 610, 620, 630, 610A, 620A, 630A: unit power generation unit 601: photovoltaic power generation panel 602: charging unit 603: storage batteries 604, 605: Rectifier 606: Data communication bus

Abstract

[Problem] To provide a power supply device capable of supplying an appropriate amount of power on an appropriate circuit scale according to installation location and conditions. [Solution] A unit power generation unit 600 constituting a power supply unit 60 is equipped with a photovoltaic panel 601, a charging unit 602, a power storage cell 603, rectifier circuits 604, 605, a DC voltage input terminal Pin, and a DC voltage output terminal Pout. The charging unit 602 converts the electric charge produced by the photovoltaic panel 601 into DC voltage, and charges the power storage cell 603. The rectifier 605 is inserted into a DC power line for connecting the DC voltage input terminal Pin and the DC voltage output terminal Pout. The rectifier 605 rectifies the current from the DC voltage input terminal Pin to the DC voltage output terminal Pout. The rectifier 604 is connected between the power storage cell 603 and the DC power line on the DC voltage output terminal Pout side of the rectifier 605. The rectifier 604 rectifies the current from the power storage cell 603 to the DC voltage output terminal Pout.

Description

電力供給装置Power supply
 本発明は、太陽光発電を用いて機能部に電力を供給する電力供給装置に関する。 This invention relates to the electric power supply apparatus which supplies electric power to a function part using photovoltaic power generation.
 現在、防災の観点から、地滑り等の観測を行うシステムが各種考案されている。例えば、特許文献1に記載の観測データ回収システムは、複数の解析装置、複数の中継装置、および集約装置を備える。 Currently, various systems for observing landslides have been devised from the viewpoint of disaster prevention. For example, the observation data collection system described in Patent Literature 1 includes a plurality of analysis devices, a plurality of relay devices, and an aggregation device.
 1つの中継装置には複数の解析装置がリンクしている。各中継装置がリンクする解析装置は異なる。集約装置は、複数の中継装置にリンクしている。 中 継 Multiple analysis devices are linked to one relay device. The analysis devices linked to each relay device are different. The aggregation device is linked to a plurality of relay devices.
 中継装置は、自身がリンクしている複数の解析装置の観測データを取得する。中継装置は、取得した複数の観測データをまとめて、集約装置に送信する。 The relay device acquires observation data of multiple analysis devices that it links to. The relay device collects the acquired plurality of observation data and transmits it to the aggregation device.
 解析装置は、中継装置、集約装置とは離れた位置に配置されており、商用電源から電力供給を受けられない位置に配置されることもある。この場合、解析装置は、自装置にて発電を行い、この発電した電力によって観測データの生成および送信を行わなければならない。 The analysis device is arranged at a position away from the relay device and the aggregation device, and may be arranged at a position where power supply from a commercial power source cannot be received. In this case, the analysis device must generate power with its own device, and generate and transmit observation data using the generated power.
特開2004-185459号公報JP 2004-185459 A
 しかしながら、解析装置が配置される位置によって、必要とする電力量は異なることが多い。例えば、無線通信の通信環境が良好であれば通信に係る電力は小さくて済むが、無線通信の通信環境が悪ければ通信に係る電力は大きくなる。 However, the amount of electric power required is often different depending on the position where the analyzer is arranged. For example, if the communication environment for wireless communication is good, the power related to communication is small, but if the communication environment for wireless communication is bad, the power related to communication is large.
 また、解析装置の発電を太陽光発電で行う場合、日照等の環境によって発電量が異なってしまう。したがって、配置位置によって、必要とされる太陽光発電パネルの枚数が異なる。ここで、全ての解析装置において十分に電力をまかなえるようにすると、発電機能部が増長になる解析装置が存在する。一方、最も少ない消費電力の解析装置の発電機能部に合わせると、機能が停止して観測データを送信できない解析装置が存在してしまう。また、それぞれの解析装置に合わせて発電機能部を個別に形成すると、設計、製作費用が嵩んでしまう。また、経時変化によって必要とされる電力量が変化することもあり、解析装置毎に個別に発電機能部を形成したとしても、適切な電力供給を行えるとは限らない。 In addition, when the power generation of the analysis device is performed by solar power generation, the power generation amount varies depending on the environment such as sunshine. Therefore, the required number of photovoltaic power generation panels differs depending on the arrangement position. Here, there is an analysis device in which the power generation function unit is increased if sufficient power is supplied to all the analysis devices. On the other hand, when the power generation function unit of the analysis device with the lowest power consumption is used, there is an analysis device that stops functioning and cannot transmit observation data. In addition, if the power generation function unit is individually formed in accordance with each analysis device, design and manufacturing costs increase. In addition, the amount of power required may change due to changes over time, and even if a power generation function unit is individually formed for each analysis device, appropriate power supply is not always possible.
 したがって、本発明の目的は、設置位置や状況に応じて、適切な回路規模で適切な電力量を供給することができる電力供給装置を提供することにある。 Therefore, an object of the present invention is to provide a power supply device that can supply an appropriate amount of power with an appropriate circuit scale according to the installation position and situation.
 この発明の電力供給装置は、光発電パネル、蓄電池、および充電部を備える。充電部は、光発電パネルの発生する電荷を直流電圧に変換し、蓄電池に充電する。電力供給装置は、さらに、外部から直流電圧が入力される直流電圧入力端子と、直流電圧を出力する直流電圧出力端子とを備える。電力供給装置は、さらに、第1整流器と第2整流器を備える。第1整流器は、直流電圧入力端子と直流電圧出力端子を接続する直流電力ラインに挿入される。第1整流器は、直流電圧入力端子から直流電圧出力端子へ電流を整流する。第2整流器は、第1整流器の直流電圧出力端子側の直流電力ラインと蓄電池との間に接続される。第2整流器は、蓄電池から直流電圧出力端子へ電流を整流する。 The power supply device of the present invention includes a photovoltaic panel, a storage battery, and a charging unit. The charging unit converts the electric charge generated by the photovoltaic panel into a DC voltage and charges the storage battery. The power supply device further includes a DC voltage input terminal to which a DC voltage is input from the outside, and a DC voltage output terminal that outputs the DC voltage. The power supply device further includes a first rectifier and a second rectifier. The first rectifier is inserted into a DC power line connecting the DC voltage input terminal and the DC voltage output terminal. The first rectifier rectifies current from the DC voltage input terminal to the DC voltage output terminal. The second rectifier is connected between the DC power line on the DC voltage output terminal side of the first rectifier and the storage battery. The second rectifier rectifies current from the storage battery to the DC voltage output terminal.
 この構成では、上記機能部からなる回路を単位発電ユニットとし、供給すべき電力量に応じた個数を用意する。前段の単位発電ユニットの直流電圧出力端子を後段の直流電圧入力端子に接続する。すなわち、複数の単位発電ユニットをカスケード接続する。これにより、適切な回路規模で適切な電力量を供給することができる。 In this configuration, the circuit composed of the above functional units is used as a unit power generation unit, and a number corresponding to the amount of power to be supplied is prepared. Connect the DC voltage output terminal of the front unit power generation unit to the DC voltage input terminal of the rear stage. That is, a plurality of unit power generation units are cascade-connected. Thereby, it is possible to supply an appropriate amount of power with an appropriate circuit scale.
 また、この発明の電力供給装置は、データ入力端子、データ出力端子、および、データ入力端子とデータ出力端子を接続するデータ通信バスを備える。充電部は、データ通信バスに接続されている。 The power supply device of the present invention includes a data input terminal, a data output terminal, and a data communication bus that connects the data input terminal and the data output terminal. The charging unit is connected to the data communication bus.
 この構成では、充電部の動作状況を、単位発電ユニット毎に外部から取得可能になる。これにより、電力供給装置全体の動作状態を観測することができる。 In this configuration, the operating status of the charging unit can be acquired from the outside for each unit power generation unit. Thereby, the operation state of the whole power supply apparatus can be observed.
 この発明によれば、設置位置や状況に応じて、適切な回路規模で適切な電力量を供給することができる。 According to the present invention, it is possible to supply an appropriate amount of power with an appropriate circuit scale according to the installation position and situation.
本発明の第1の実施形態に係る電力供給装置を含む観測システムの構成を示すブロック図The block diagram which shows the structure of the observation system containing the electric power supply apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電力供給部のブロック図The block diagram of the electric power supply part which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電力供給部を構成する単位発電ユニットのブロック図The block diagram of the unit power generation unit which comprises the electric power supply part which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る電力供給部を構成する単位発電ユニットのブロック図The block diagram of the unit electric power generation unit which comprises the electric power supply part which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る電力供給部のブロック図The block diagram of the electric power supply part which concerns on the 2nd Embodiment of this invention.
 本発明の第1の実施形態に係る電力供給装置を含む観測システムについて、図を参照して説明する。なお、本実施形態で示す観測システムは、例えば、地滑り検出システム等に用いられる。しかしながら、遠隔地で取得した観測データを用いて、所定の現象について解析を行うシステム、すなわち商用電源を容易に利用できず、光発電を利用するシステムであれば、本実施形態の構成を適用することができる。 The observation system including the power supply device according to the first embodiment of the present invention will be described with reference to the drawings. Note that the observation system shown in the present embodiment is used in, for example, a landslide detection system. However, the configuration of the present embodiment is applied to a system that analyzes a predetermined phenomenon using observation data acquired at a remote place, that is, a system that cannot use a commercial power source and uses photovoltaic power generation. be able to.
 図1は、本発明の第1の実施形態に係る電力供給装置を含む観測システムの構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of an observation system including a power supply apparatus according to the first embodiment of the present invention.
 観測システム10は、子機(観測データ送信装置)20、親機(観測データ中継装置)30、ファイルサーバ40、解析装置50、および通信ネットワーク100を備える。 The observation system 10 includes a slave unit (observation data transmission device) 20, a master unit (observation data relay device) 30, a file server 40, an analysis device 50, and a communication network 100.
 子機20は、観測位置に配置される。観測位置が複数箇所の場合、観測位置毎に子機20が配置される。 The slave 20 is placed at the observation position. When there are a plurality of observation positions, the slave unit 20 is arranged for each observation position.
 子機20は、制御部21、GNSS受信機22、GNSSアンテナ23、無線LAN制御部24、無線LAN用アンテナ25、メモリ26、通知部27、および、電力供給部60を備える。子機20は、観測対象位置に配置されている。子機20は、可能な限りオープンスカイな環境に配置されていることが好ましい。地滑り検出システムの場合、観測対象位置は、山中等の商用電源が利用しにくい、または、商用電源が利用できない場所である。したがって、子機20の電力供給部60は、自力発電により、直流電圧を発生して、子機20の各機能部(制御部21、GNSS受信機22、無線LAN制御部24、通知部27)に電力を供給する。なお、通知部27は省略することもできる。 The slave unit 20 includes a control unit 21, a GNSS receiver 22, a GNSS antenna 23, a wireless LAN control unit 24, a wireless LAN antenna 25, a memory 26, a notification unit 27, and a power supply unit 60. The subunit | mobile_unit 20 is arrange | positioned in the observation object position. It is preferable that the subunit | mobile_unit 20 is arrange | positioned in the open sky environment as much as possible. In the case of a landslide detection system, the observation target position is a place where a commercial power source is difficult to use such as in the mountains or where the commercial power source cannot be used. Therefore, the power supply unit 60 of the slave unit 20 generates a DC voltage by self-power generation, and each functional unit of the slave unit 20 (the control unit 21, the GNSS receiver 22, the wireless LAN control unit 24, the notification unit 27). To supply power. The notification unit 27 can be omitted.
 制御部21は、子機20の全体制御を行う。また、制御部21は、観測データの記憶、アップロードの制御を行う。制御部21における観測データの記憶、アップロードの制御についての具体的な内容は、後述する。 The control unit 21 performs overall control of the slave unit 20. The control unit 21 controls observation data storage and uploading. Specific contents of observation data storage and upload control in the control unit 21 will be described later.
 GNSS受信機22は、制御部21に接続されている。GNSS受信機22は、GNSSアンテナ23で受信したGNSS信号から観測データを生成する。GNSS受信機22は、生成した観測データを制御部21に出力する。 The GNSS receiver 22 is connected to the control unit 21. The GNSS receiver 22 generates observation data from the GNSS signal received by the GNSS antenna 23. The GNSS receiver 22 outputs the generated observation data to the control unit 21.
 GNSSとは、Global Navigation Satellite Systemの略語であり、GPS(Global Positioning System)、GLONASS(Global Navigation Satellite System)、Galileo等を含む。 GNSS is an abbreviation for Global Navigation Satelite System, and includes GPS (Global Positioning System), GLONASS (Global Navigation Satelite System), Galileo, and the like.
 GNSS受信機22で生成される観測データは、搬送波位相等、地滑りの解析、検出に利用し、GNSS信号の受信結果(捕捉、追尾によって得られるデータ)から得られるデータである。 The observation data generated by the GNSS receiver 22 is data obtained from the reception result of GNSS signal (data obtained by acquisition and tracking), which is used for analysis and detection of landslide such as carrier phase.
 また、GNSS受信機22は、GNSS信号から航法メッセージを復調する。GNSS受信機22は、航法メッセージから時刻データを取得する。なお、GNSS受信機22は、GNSS信号の追尾結果から子機20を測位してもよい。この場合、観測データには、測位結果が含まれる。 The GNSS receiver 22 demodulates the navigation message from the GNSS signal. The GNSS receiver 22 acquires time data from the navigation message. Note that the GNSS receiver 22 may measure the slave unit 20 from the tracking result of the GNSS signal. In this case, the observation data includes a positioning result.
 無線LAN制御部24は、無線LAN用アンテナ25、制御部21に接続されている。無線LAN制御部24は、無線LAN用アンテナ25および無線LAN用アンテナ31を介した無線LAN用AP32との無線通信を、予め決められたプロトコルによって実行する。無線LAN制御部24は、制御部21から与えられた観測データを、無線通信のプロトコルに変換して、無線LAN用アンテナ25から送信する。また、無線LAN制御部24は、無線LAN用アンテナ25で受信した親機30からの遠隔設定データをプロトコル変換して制御部21に出力する。 The wireless LAN control unit 24 is connected to the wireless LAN antenna 25 and the control unit 21. The wireless LAN control unit 24 performs wireless communication with the wireless LAN AP 32 via the wireless LAN antenna 25 and the wireless LAN antenna 31 according to a predetermined protocol. The wireless LAN control unit 24 converts the observation data given from the control unit 21 into a wireless communication protocol and transmits it from the wireless LAN antenna 25. Further, the wireless LAN control unit 24 converts the remote setting data received from the base unit 30 received by the wireless LAN antenna 25 into a protocol and outputs it to the control unit 21.
 メモリ26は、制御部21に接続されている。メモリ26は観測データを一時記憶する。 The memory 26 is connected to the control unit 21. The memory 26 temporarily stores observation data.
 通知部27は、制御部21に接続されている。通知部27は、LED等の簡易な表示素子によって構成されている。通知部27は、制御部21からの通知信号によって、所定の表示態様に駆動される。 The notification unit 27 is connected to the control unit 21. The notification unit 27 is configured by a simple display element such as an LED. The notification unit 27 is driven in a predetermined display mode by a notification signal from the control unit 21.
 親機(観測データ中継装置)30は、無線LAN用アンテナ31、無線LANAP(アクセスポイント)32、ルータ33、および、電力供給部60を備える。地滑り検出システムの場合、親機30も、商用電源が利用しにくい、または、商用電源が利用できない場所に配置されることがある。この場合、親機30の電力供給部60は、自力発電により、直流電圧を発生して、親機の各機能部(無線LANAP32、および、ルータ33)に電力を供給する。なお、親機30の電力供給部60と子機20の電力供給部60は、同じ記号を付しているが、後述するように、内蔵される単位発電ユニットの個数は同じであるとは限らない。 The parent device (observation data relay device) 30 includes a wireless LAN antenna 31, a wireless LAN AP (access point) 32, a router 33, and a power supply unit 60. In the case of a landslide detection system, the master unit 30 may also be arranged in a place where commercial power is difficult to use or where commercial power is not available. In this case, the power supply unit 60 of the base unit 30 generates a DC voltage by self-power generation and supplies power to each functional unit (wireless LANAP 32 and router 33) of the base unit. In addition, although the power supply part 60 of the main | base station 30 and the power supply part 60 of the subunit | mobile_unit 20 are attaching | subjecting the same code | symbol, the number of the built-in unit power generation units may not be the same so that it may mention later. Absent.
 無線LANAP32は、無線LAN用アンテナ31および無線LAN用アンテナ25を介した無線LAN制御部24との無線通信を、予め決められたプロトコルによって実行する。無線LANAP32は、ルータ33を介して取得した遠隔設定データをプロトコル変換して、無線LAN用アンテナ31から送信する。また、無線LANAP32は、無線LAN用アンテナ31で受信した子機20からの観測データをプロトコル変換してルータ33に出力する。 The wireless LAN AP 32 performs wireless communication with the wireless LAN control unit 24 via the wireless LAN antenna 31 and the wireless LAN antenna 25 using a predetermined protocol. The wireless LAN AP 32 performs protocol conversion on the remote setting data acquired via the router 33 and transmits it from the wireless LAN antenna 31. The wireless LAN AP 32 converts the observation data received from the slave unit 20 received by the wireless LAN antenna 31 into a protocol and outputs it to the router 33.
 ルータ33は、無線LANAP32をネットワーク100に接続する。すなわち、ルータ33は、親機30と子機20との無線通信網とネットワーク100との間でのプロトコル変換を実行する。ルータ33は、無線LANAP32から出力される観測データを、ファイルサーバ40に送信する。ルータ33は、ネットワーク100を介して接続された解析装置50からの設定信号を、無線LANAP32に送信する。 The router 33 connects the wireless LAN AP 32 to the network 100. That is, the router 33 performs protocol conversion between the wireless communication network between the parent device 30 and the child device 20 and the network 100. The router 33 transmits the observation data output from the wireless LAN AP 32 to the file server 40. The router 33 transmits a setting signal from the analysis device 50 connected via the network 100 to the wireless LAN AP 32.
 ファイルサーバ40は、親機30から送信される観測データを記憶する。また、ファイルサーバ40は、解析装置50からの読み出し要求に応じて、観測データを、解析装置50に送信する。 The file server 40 stores observation data transmitted from the parent device 30. Further, the file server 40 transmits observation data to the analysis device 50 in response to a read request from the analysis device 50.
 解析装置50は、ファイルサーバ40から読み出した観測データを用いて、観測対象に対する検出データを生成する。例えば、観測システム10が地滑り検出システムであれば、観測データから各観測位置の位置変化および速度を取得して、地滑りを検出する。解析装置50は、親機30および子機20に対して設定信号を送信する。設定信号は、解析装置50に備えられた操作入力部を用いてオペレータによって設定される。また、設定信号は、解析装置50がこれまでの解析結果に基づいて設定される。 The analysis device 50 generates detection data for the observation target using the observation data read from the file server 40. For example, if the observation system 10 is a landslide detection system, the position change and speed of each observation position are acquired from observation data, and a landslide is detected. The analysis device 50 transmits a setting signal to the parent device 30 and the child device 20. The setting signal is set by an operator using an operation input unit provided in the analysis device 50. The setting signal is set by the analysis device 50 based on the analysis results so far.
 図2は、本発明の第1の実施形態に係る電力供給部のブロック図である。図3は、本発明の第1の実施形態に係る電力供給部を構成する単位発電ユニットのブロック図である。 FIG. 2 is a block diagram of the power supply unit according to the first embodiment of the present invention. FIG. 3 is a block diagram of a unit power generation unit constituting the power supply unit according to the first embodiment of the present invention.
 図2に示すように、電力供給部60は、単位発電ユニット610,620,630を備える。単位発電ユニット610,620,630は、図3に示す単位発電ユニット600の構成を備える。 2, the power supply unit 60 includes unit power generation units 610, 620, and 630. The unit power generation units 610, 620, and 630 have the configuration of the unit power generation unit 600 shown in FIG.
 図3に示すように、単位発電ユニット600は、光発電パネル601、充電部602、蓄電池603、整流器604,605、直流電圧入力端子Pin、および、直流電圧出力端子Poutを備える。 As shown in FIG. 3, the unit power generation unit 600 includes a photovoltaic power generation panel 601, a charging unit 602, a storage battery 603, rectifiers 604 and 605, a DC voltage input terminal Pin, and a DC voltage output terminal Pout.
 光発電パネル601は、充電部602に接続されている。充電部602は蓄電池603に接続されている。蓄電池603は、整流器604(本発明の第2整流器)を介して直流電圧出力端子Poutに接続されている。直流電圧入力端子Pinと直流電圧出力端子Poutは、整流器605(本発明の第1整流器)を介して接続されている。整流器604の直流電圧出力端子Pout側の電力伝送ラインと、整流器605の直流電圧出力端子Pout側の電力伝送ラインは接続されている。 The photovoltaic panel 601 is connected to the charging unit 602. Charging unit 602 is connected to storage battery 603. The storage battery 603 is connected to the DC voltage output terminal Pout via the rectifier 604 (second rectifier of the present invention). The DC voltage input terminal Pin and the DC voltage output terminal Pout are connected via a rectifier 605 (first rectifier of the present invention). The power transmission line on the DC voltage output terminal Pout side of the rectifier 604 and the power transmission line on the DC voltage output terminal Pout side of the rectifier 605 are connected.
 光発電パネル601は、照射された光量に応じて電荷を発生する。充電部602は、光発電パネルで発した電荷を直流電圧に変換する。充電部602は、MPPT制御等を行うことによって、光発電パネル601の発生した電荷を直流電圧に変換する。充電部602は、変換した直流電圧を、蓄電池603の充電電圧に変換して、蓄電池603に供給する。蓄電池603は、充電部602からの充電電圧によって充電されるとともに、整流器604を介して、直流電圧出力端子Poutに直流電圧を供給する。 The photovoltaic panel 601 generates electric charge according to the amount of light irradiated. The charging unit 602 converts the charge generated by the photovoltaic panel into a DC voltage. The charging unit 602 converts the electric charge generated by the photovoltaic panel 601 into a DC voltage by performing MPPT control or the like. The charging unit 602 converts the converted DC voltage into a charging voltage for the storage battery 603 and supplies it to the storage battery 603. The storage battery 603 is charged by the charging voltage from the charging unit 602 and supplies a DC voltage to the DC voltage output terminal Pout via the rectifier 604.
 整流器604は、蓄電池603から直流電圧出力端子Poutに電流が流れるように回路が構成されている。例えば、整流器604は、蓄電池603に接続するアノードと、直流電圧出力端子Poutに接続するカソードを備えるダイオードからなる。 The circuit of the rectifier 604 is configured such that a current flows from the storage battery 603 to the DC voltage output terminal Pout. For example, the rectifier 604 includes a diode having an anode connected to the storage battery 603 and a cathode connected to the DC voltage output terminal Pout.
 整流器605は、直流電圧入力端子Pinから直流電圧出力端子Poutに電流が流れるように回路が構成されている。例えば、整流器605は、直流電圧入力端子Pinに接続するアノードと、直流電圧出力端子Poutに接続するカソードを備えるダイオードからなる。 The rectifier 605 has a circuit configured such that a current flows from the DC voltage input terminal Pin to the DC voltage output terminal Pout. For example, the rectifier 605 includes a diode having an anode connected to the DC voltage input terminal Pin and a cathode connected to the DC voltage output terminal Pout.
 このような構成とすることによって、単位発電ユニット600は、蓄電池603に蓄電されている電力が十分であり、蓄電池603から出力可能な電圧が直流電圧入力端子Pinから入力される直流電圧よりも高ければ、蓄電池603から直流電圧出力端子Poutに、直流電圧(直流電力)を供給する。 With this configuration, the unit power generation unit 600 has sufficient power stored in the storage battery 603, and the voltage that can be output from the storage battery 603 is higher than the DC voltage input from the DC voltage input terminal Pin. For example, a DC voltage (DC power) is supplied from the storage battery 603 to the DC voltage output terminal Pout.
 一方、単位発電ユニット600は、蓄電池603の蓄電量が不十分で、蓄電池603から出力可能な電圧が直流電圧入力端子Pinから入力される直流電圧よりも低くれば、直流電圧入力端子Pinから直流電圧出力端子Poutに、直流電圧(直流電力)を供給する。 On the other hand, in the unit power generation unit 600, if the amount of power stored in the storage battery 603 is insufficient and the voltage that can be output from the storage battery 603 is lower than the DC voltage input from the DC voltage input terminal Pin, the DC from the DC voltage input terminal Pin A DC voltage (DC power) is supplied to the voltage output terminal Pout.
 電力供給部60は、このような構成からなる単位発電ユニット600(610,620,630)を、図2に示すように接続する。 The power supply unit 60 connects the unit power generation units 600 (610, 620, 630) having such a configuration as shown in FIG.
 具体的には、単位発電ユニット610の直流電圧出力端子Poutを子機20の各機能部に接続されている。単位発電ユニット620の直流電圧出力端子Poutを単位発電ユニット610の直流電圧入力端子Pinに接続されている。単位発電ユニット630の直流電圧出力端子Poutを単位発電ユニット630の直流電圧入力端子Pinに接続されている。言い換えれば、単位発電ユニット630,620,610は、この順でカスケード接続されている。 Specifically, the DC voltage output terminal Pout of the unit power generation unit 610 is connected to each functional unit of the slave unit 20. The DC voltage output terminal Pout of the unit power generation unit 620 is connected to the DC voltage input terminal Pin of the unit power generation unit 610. The DC voltage output terminal Pout of the unit power generation unit 630 is connected to the DC voltage input terminal Pin of the unit power generation unit 630. In other words, the unit power generation units 630, 620, and 610 are cascade-connected in this order.
 このような構成とすることによって、子機20の必要な電力量に応じて、電力供給部60を構成する単位発電ユニットの個数を適宜調整することができる。すなわち、消費電力量が小さな子機20に対しては、カスケード接続する単位発電ユニットの個数を少なくする。一方、消費電力量が大きな子機20に対しては、カスケード接続する単位発電ユニットの個数を多くする。 With such a configuration, the number of unit power generation units constituting the power supply unit 60 can be appropriately adjusted according to the amount of power required by the slave unit 20. That is, the number of unit power generation units to be cascade-connected is reduced for the slave unit 20 with a small amount of power consumption. On the other hand, the number of unit power generation units to be cascade-connected is increased for the slave unit 20 that consumes a large amount of power.
 これによって、回路構成が増長にならず、必要な電力量を供給できる電力供給部60を、子機毎に設置することができる。 Thus, the power supply unit 60 that can supply a necessary amount of power without increasing the circuit configuration can be installed for each slave unit.
 また、本実施形態の構成を用いることによって、経時的に必要な電力量が変化したときに、電力供給部60の全体を取り替える必要はなく、単位発電ユニットの個数を調整するだけでよい。特に、必要な電力量が多くなった場合、発電量を増加させる必要があるが、本実施形態の構成を用いることによって、必要数の単位発電ユニットを増設すればよく、電力供給部60の仕様を容易に適正化することができる。特に、地滑り検出システムでは、作業が容易でない山中に子機20が配置されることが多いが、この構成を用いることによって、子機20の電力量に応じた電力供給部60を容易な作業によって実現できる。 In addition, by using the configuration of the present embodiment, when the amount of power required over time changes, it is not necessary to replace the entire power supply unit 60, and it is only necessary to adjust the number of unit power generation units. In particular, when the required amount of power increases, it is necessary to increase the amount of power generation. However, by using the configuration of the present embodiment, a required number of unit power generation units may be added, and the specifications of the power supply unit 60 are as follows. Can be easily optimized. In particular, in the landslide detection system, the handset 20 is often arranged in a mountain where the work is not easy. However, by using this configuration, the power supply unit 60 corresponding to the amount of power of the handset 20 can be easily worked. realizable.
 また、本実施形態の構成を用いることによって、設置された環境の変化に応じて適切に電力を供給することができる。これによって、子機の動作時間をできる限り長くし、観測データの送信を継続することができる。例えば、積雪等によって発電および充電ができないような状況になっても、上述の複数の単位発電ユニットのカスケード接続によって、供給電力が自動的に調整され、適切な電力の供給を実現することができる。 Also, by using the configuration of the present embodiment, it is possible to supply power appropriately according to changes in the installed environment. Thereby, the operation time of the slave unit can be made as long as possible, and the transmission of the observation data can be continued. For example, even if it becomes a situation where power generation and charging cannot be performed due to snow or the like, the supply power is automatically adjusted by the cascade connection of the plurality of unit power generation units described above, and appropriate power supply can be realized. .
 なお、上述の説明では、子機20の電力供給部60について示したが、親機30の電力供給部60も同様の構成からなる。これによって、親機30に対して、回路構成が増長にならず、必要な電力量を供給できる電力供給部60を実現できる。 In the above description, the power supply unit 60 of the child device 20 is shown, but the power supply unit 60 of the parent device 30 has the same configuration. As a result, the power supply unit 60 that can supply the necessary amount of power to the parent device 30 without increasing the circuit configuration can be realized.
 次に、本発明の第2の実施形態に係る電力供給装置を含む観測システムについて、図を参照して説明する。図4は、本発明の第2の実施形態に係る電力供給部を構成する単位発電ユニットのブロック図である。図5は、本発明の第2の実施形態に係る電力供給部のブロック図である。 Next, an observation system including a power supply device according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram of a unit power generation unit constituting the power supply unit according to the second embodiment of the present invention. FIG. 5 is a block diagram of a power supply unit according to the second embodiment of the present invention.
 本実施形態に係る観測システムでは、電力供給部60Aの構成が、第1の実施形態に係る観測システムと異なる。 In the observation system according to the present embodiment, the configuration of the power supply unit 60A is different from that of the observation system according to the first embodiment.
 図5に示すように、電力供給部60Aは、複数の単位発電ユニット610A,620A,630Aを備える。単位発電ユニット610A,620A,630Aは、図4に示す単位発電ユニット600Aと同じ構成である。 As shown in FIG. 5, the power supply unit 60A includes a plurality of unit power generation units 610A, 620A, and 630A. Unit power generation units 610A, 620A, and 630A have the same configuration as unit power generation unit 600A shown in FIG.
 単位発電ユニット600Aは、第1の実施形態に係る単位発電ユニット600に対して、データ入力端子PinD、データ出力端子PoutD、および、データ通信バス606を備える。データ入力端子PinDとデータ出力端子PoutDは、データ通信バス606によって接続されている。データ通信バス606は、例えば、I2Cバスによって実現される。 The unit power generation unit 600A includes a data input terminal PinD, a data output terminal PoutD, and a data communication bus 606 as compared to the unit power generation unit 600 according to the first embodiment. The data input terminal PinD and the data output terminal PoutD are connected by a data communication bus 606. The data communication bus 606 is realized by an I2C bus, for example.
 充電部602は、データ通信バス606に接続されている。 The charging unit 602 is connected to the data communication bus 606.
 電力供給部60Aは、このような構成からなる単位発電ユニット600A(610A,620A,630A)を、図5に示すように接続する。 The power supply unit 60A connects the unit power generation units 600A (610A, 620A, 630A) having such a configuration as shown in FIG.
 具体的には、単位発電ユニット610Aの直流電圧出力端子Poutを子機20の各機能部に接続されている。単位発電ユニット620Aの直流電圧出力端子Poutを単位発電ユニット610の直流電圧入力端子Pinに接続されている。単位発電ユニット630Aの直流電圧出力端子Poutを単位発電ユニット630Aの直流電圧入力端子Pinに接続されている。言い換えれば、単位発電ユニット630A,620A,610Aにおける電力供給の機能部は、この順でカスケード接続されている。 Specifically, the DC voltage output terminal Pout of the unit power generation unit 610A is connected to each functional unit of the slave unit 20. The DC voltage output terminal Pout of the unit power generation unit 620A is connected to the DC voltage input terminal Pin of the unit power generation unit 610. The DC voltage output terminal Pout of the unit power generation unit 630A is connected to the DC voltage input terminal Pin of the unit power generation unit 630A. In other words, the power supply function units in the unit power generation units 630A, 620A, and 610A are cascade-connected in this order.
 さらに、単位発電ユニット610Aのデータ出力端子PoutDは、子機20の制御部21に接続されている。単位発電ユニット620Aのデータ出力端子PoutDは、単位発電ユニット610Aのデータ入力端子PinDに接続されている。単位発電ユニット630Aのデータ出力端子PoutDは、単位発電ユニット620Aのデータ入力端子PinDに接続されている。この構成によって、単位発電ユニット610A,620A,630Aの充電部602は、データ通信バス606を介して制御部21に接続されている。 Furthermore, the data output terminal PoutD of the unit power generation unit 610A is connected to the control unit 21 of the slave unit 20. The data output terminal PoutD of the unit power generation unit 620A is connected to the data input terminal PinD of the unit power generation unit 610A. The data output terminal PoutD of the unit power generation unit 630A is connected to the data input terminal PinD of the unit power generation unit 620A. With this configuration, the charging units 602 of the unit power generation units 610A, 620A, and 630A are connected to the control unit 21 via the data communication bus 606.
 このような構成とすることによって、各単位発電ユニット610A,620A,630Aの充電部602の動作を監視することができる。例えば、各充電部602のMPPT制御の状態、蓄電池603の充電量等を監視することができる。 With such a configuration, the operation of the charging unit 602 of each unit power generation unit 610A, 620A, 630A can be monitored. For example, the MPPT control state of each charging unit 602, the charge amount of the storage battery 603, and the like can be monitored.
 これによって、例えば、各単位発電ユニット610A,620A,630Aの整流器に対して制御信号を入力できる構成を加え、各整流器を制御部21から制御することも可能である。これにより、さらに、各単位発電ユニット610A,620A,630Aの状態に応じて、安定して子機20に直流電圧を供給することができる。 Thus, for example, a configuration in which a control signal can be input to the rectifier of each unit power generation unit 610A, 620A, 630A can be added, and each rectifier can be controlled from the control unit 21. Thereby, furthermore, according to the state of each unit electric power generation unit 610A, 620A, 630A, a DC voltage can be stably supplied to the subunit | mobile_unit 20. FIG.
 なお、本実施形態の構成も、親機30にも適用することができる。 The configuration of the present embodiment can also be applied to the parent device 30.
10:観測システム
20:子機(観測データ送信装置)
21:制御部
22:GNSS受信機
23:GNSSアンテナ
24:無線LAN制御部
25:無線LAN用アンテナ
26:メモリ
27:通知部
30:親機(観測データ中継装置)
40:ファイルサーバ
50:解析装置
60:電力供給部
100:通信ネットワーク
600,610,620,630,610A,620A,630A:単位発電ユニット
601:光発電パネル
602:充電部
603:蓄電池
604,605:整流器
606:データ通信バス
10: Observation system 20: Slave unit (observation data transmitter)
21: Control unit 22: GNSS receiver 23: GNSS antenna 24: Wireless LAN control unit 25: Wireless LAN antenna 26: Memory 27: Notification unit 30: Master unit (observation data relay device)
40: file server 50: analysis device 60: power supply unit 100: communication network 600, 610, 620, 630, 610A, 620A, 630A: unit power generation unit 601: photovoltaic power generation panel 602: charging unit 603: storage batteries 604, 605: Rectifier 606: Data communication bus

Claims (2)

  1.  光発電パネルと、
     蓄電池と、
     前記光発電パネルの発生する電荷を直流電圧に変換し、前記蓄電池に充電する充電部と、
     外部から直流電圧が入力される直流電圧入力端子と、
     直流電圧を出力する直流電圧出力端子と、
     前記直流電圧入力端子と前記直流電圧出力端子を接続する直流電力ラインに挿入され、前記直流電圧入力端子から前記直流電圧出力端子へ電流を整流する第1整流器と、
     前記第1整流器の前記直流電圧出力端子側の直流電力ラインと前記蓄電池との間に接続され、前記蓄電池から前記直流電圧出力端子へ電流を整流する第2整流器と、
     を備える、電力供給装置。
    Photovoltaic panels,
    A storage battery,
    A charging unit for converting the electric charge generated by the photovoltaic panel into a DC voltage and charging the storage battery;
    A DC voltage input terminal to which a DC voltage is input from the outside;
    A DC voltage output terminal for outputting a DC voltage;
    A first rectifier inserted into a DC power line connecting the DC voltage input terminal and the DC voltage output terminal, and rectifying a current from the DC voltage input terminal to the DC voltage output terminal;
    A second rectifier connected between a DC power line on the DC voltage output terminal side of the first rectifier and the storage battery and rectifying a current from the storage battery to the DC voltage output terminal;
    A power supply device comprising:
  2.  請求項1に記載の電力供給装置であって、
     データ入力端子と、
     データ出力端子と、
     前記データ入力端子と前記データ出力端子を接続するデータ通信バスと、を備え、
     前記充電部は、前記データ通信バスに接続されている、
     電力供給装置。
    The power supply device according to claim 1,
    A data input terminal;
    A data output terminal;
    A data communication bus connecting the data input terminal and the data output terminal,
    The charging unit is connected to the data communication bus,
    Power supply device.
PCT/JP2016/053192 2015-03-24 2016-02-03 Power supply device WO2016152264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017507560A JP6404454B2 (en) 2015-03-24 2016-02-03 Power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015061052 2015-03-24
JP2015-061052 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152264A1 true WO2016152264A1 (en) 2016-09-29

Family

ID=56978174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053192 WO2016152264A1 (en) 2015-03-24 2016-02-03 Power supply device

Country Status (2)

Country Link
JP (1) JP6404454B2 (en)
WO (1) WO2016152264A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138336U (en) * 1983-03-03 1984-09-14 三菱電機株式会社 load power supply
JPS6194128A (en) * 1984-10-16 1986-05-13 Matsushita Electric Ind Co Ltd Memory back-up device
JP2000152496A (en) * 1998-10-30 2000-05-30 Hewlett Packard Co <Hp> Method and device for supplying redundant power by connecting power source to segment or ring
JP2012147508A (en) * 2011-01-06 2012-08-02 Sharp Corp Dc feeding system
US20130082525A1 (en) * 2011-09-29 2013-04-04 GCCA Inc. Shared Power System with Multiple Inputs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140023125A (en) * 2012-08-17 2014-02-26 엘지전자 주식회사 Energy storage device, device for managing power, mobile termianl and method for operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138336U (en) * 1983-03-03 1984-09-14 三菱電機株式会社 load power supply
JPS6194128A (en) * 1984-10-16 1986-05-13 Matsushita Electric Ind Co Ltd Memory back-up device
JP2000152496A (en) * 1998-10-30 2000-05-30 Hewlett Packard Co <Hp> Method and device for supplying redundant power by connecting power source to segment or ring
JP2012147508A (en) * 2011-01-06 2012-08-02 Sharp Corp Dc feeding system
US20130082525A1 (en) * 2011-09-29 2013-04-04 GCCA Inc. Shared Power System with Multiple Inputs

Also Published As

Publication number Publication date
JPWO2016152264A1 (en) 2017-12-28
JP6404454B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5419018B2 (en) Spread spectrum communication system
KR101674019B1 (en) Solar power equipment monitoring device server
JP2010186795A (en) Photoelectric cell device and method for determining failure
JP5843695B2 (en) Radiation dose data management system and radiation dose data communication method
CN101425700A (en) Remote power control system and power supply tap
CN110007687B (en) Unmanned aerial vehicle searching system
Tanaka et al. Development and operations of nano-satellite FITSAT-1 (NIWAKA)
US20080299939A1 (en) Emergency beacon for cell phone or the like
EP3407465B1 (en) Method and system for operation monitoring and optimization of a set of photovoltaic panels
CN109246638B (en) Data acquisition method of signal synchronous acquisition system based on WiFi wireless and GPS time service
Kjellby et al. Design and prototype implementation of long-range self-powered wireless IoT devices
JP6404454B2 (en) Power supply
KR20150030786A (en) System for controlling solar photovoltatic power control system
KR101466342B1 (en) Gps terminal comprising solar cell
WO2018180889A1 (en) Power conversion device, power conversion system, and dc power supply device
CN206557385U (en) AIS portable transponders
CN109309559B (en) Distributed signal synchronous acquisition system based on WiFi wireless and GPS time service
JP2012005055A (en) Automatic meter reading terminal device
JP6303062B1 (en) Sensor device
US10141738B2 (en) DC powered local positioning system
CN202204930U (en) Global positioning system (GPS) tracking device and system
US20090009318A1 (en) Remote data collection using mesh technology
JP2015001519A (en) Current measuring apparatus
Dhanalakshmi et al. Enhancing Indoor Navigation: Bluetooth Beacon-Based Localization Systems
WO2016152263A1 (en) Observation-data relay device and observation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768167

Country of ref document: EP

Kind code of ref document: A1