WO2016151941A1 - Water discharging device - Google Patents

Water discharging device Download PDF

Info

Publication number
WO2016151941A1
WO2016151941A1 PCT/JP2015/082762 JP2015082762W WO2016151941A1 WO 2016151941 A1 WO2016151941 A1 WO 2016151941A1 JP 2015082762 W JP2015082762 W JP 2015082762W WO 2016151941 A1 WO2016151941 A1 WO 2016151941A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water discharge
particle diameter
flow velocity
discharge device
Prior art date
Application number
PCT/JP2015/082762
Other languages
French (fr)
Japanese (ja)
Inventor
雄大朗 大原
健介 村田
政信 金城
仁 中尾
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to JP2017507333A priority Critical patent/JP6641674B2/en
Priority to CN201580056949.6A priority patent/CN107075844B/en
Priority to US15/529,922 priority patent/US20180044898A1/en
Publication of WO2016151941A1 publication Critical patent/WO2016151941A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/042Arrangements on taps for wash-basins or baths for connecting to the wall
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/08Jet regulators or jet guides, e.g. anti-splash devices
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C2001/0414Water-basin installations specially adapted to wash-basins or baths allowing different orientations of the spout or the outlet nozzle

Definitions

  • the present invention relates to a water discharge device, and more particularly to a water discharge device that discharges water so that water spreads from a water discharge port.
  • spray water discharge water discharge in which water spreads from the water discharge port
  • This spray water discharge is useful in that water can be discharged over a wide range while realizing water saving.
  • Patent Document 1 discloses a configuration of a nozzle that performs spray water discharge as described above.
  • Patent Document 2 discloses a hand-washing machine that sprays and discharges electrolyzed water having a sterilizing function to sterilize hands.
  • the spray water discharge as described above is effective for water saving, the water flow is likely to occur because the flow velocity is larger than that of general water discharge (for example, foam water discharge or shower water discharge). For this reason, the inventor of the present invention has clarified the parameters involved in water splashing in spray water discharge, and has considered realizing spray water discharge that does not cause water splash.
  • general water discharge for example, foam water discharge or shower water discharge
  • the present invention has been made to solve the above-described problems, and an object thereof is to appropriately suppress water splashing in a water discharge device that discharges water so that water spreads from a water discharge port.
  • the present invention is a water discharge device that is installed with a predetermined open space between the water receiving portion and discharges water toward the water receiving portion, and is provided with a predetermined amount from the water outlet.
  • a water discharge unit that sprays water droplets so as to spread at an angle, and has a water discharge unit set to discharge a predetermined flow rate, and the water droplets ejected from the water discharge unit have an average flow velocity X (m / m sec) and the average particle diameter Y ( ⁇ m) satisfy the following conditional expression (1).
  • Y ⁇ 9300 ⁇ X (-1.5) Formula (1)
  • the average flow velocity and the average particle diameter of the water droplets ejected from the water spouting portion in the water spouting device that ejects water droplets toward the water receiving portion so as to spread at a predetermined angle from the water spouting port, the average flow velocity and the average particle diameter of the water droplets ejected from the water spouting portion. And satisfying the above conditional expression (1), it is possible to appropriately suppress water splashing due to water droplets ejected from the water discharge section while ensuring water saving and water discharge over a wide range.
  • the average flow velocity X and the average particle diameter Y of the water droplets ejected from the water discharger further satisfy the following conditional expression (2).
  • Y ⁇ ⁇ 360 ⁇ X + 1500 Formula (2) In the present invention configured as above, since the average flow velocity and the average particle diameter of the water droplets ejected from the water discharger satisfy the above conditional expression (2), appropriate cleaning performance by water discharge of the water discharger (Hand washing performance, etc.) can be ensured.
  • the average flow velocity X of the water droplet injected from the water discharging part is 1.7 (m / sec) or more.
  • the water droplets ejected from the water discharge unit is set to 1.7 (m / sec) or more, the water droplets are ejected so as to spread at a predetermined angle from the water discharge port. It is possible to appropriately realize the water discharge form.
  • the average particle diameter Y of the water droplet injected from the water discharging part is 35 (micrometers) or more.
  • the water droplets ejected from the water discharger can be appropriately lowered without floating. it can.
  • the water droplet injected from the water discharging part can be appropriately made to reach the object such as the user's hand that is presented toward the water discharging part, for example.
  • the average particle diameter Y of the water droplet injected from the water discharging part is 9000 (micrometers) or less.
  • the average particle diameter of the water droplets ejected from the water discharger is set to 9000 ( ⁇ m) or less, it is appropriate that the water droplets ejected from the water discharger break up in the middle. Can be suppressed. Thereby, it becomes easy to control to suppress water splash.
  • the water discharger ejects water droplets so as to spread at an angle of 40 to 50 degrees as a predetermined angle.
  • the angle (discharge angle) corresponding to the range when water is discharged from the water discharge port is set to 40 to 50 degrees. It can be covered and the hand washing performance can be improved.
  • water splash in a water discharge device that injects water droplets so as to spread from the water outlet, water splash can be appropriately suppressed by injecting water droplets having an appropriate flow velocity and particle diameter.
  • FIG. 2 (A) is the perspective view which looked at this water discharging apparatus from diagonally downward
  • FIG.2 (B) is It is sectional drawing which looked at this water discharging apparatus along the IIB-IIB line
  • FIG. 2 (B) is a longitudinal cross-sectional view of this water discharging part for demonstrating the principle of the spray water discharging of the water discharging part by embodiment of this invention. It is a whole block diagram of the measurement system used in order to measure water splash in the embodiment of the present invention.
  • FIG. 2 (A) is the perspective view which looked at this water discharging apparatus from diagonally downward
  • FIG.2 (B) is It is sectional drawing which looked at this water discharging apparatus along the IIB-IIB line
  • It is a longitudinal cross-sectional view of this water discharging part for demonstrating the principle of the spray water discharging of the water discharging part by embodiment of this invention. It is a whole
  • FIG. 5A and FIG. 5B are diagrams illustrating an example of measurement results obtained by the measurement system according to the embodiment of the present invention.
  • 6 (A) and 6 (B) are diagrams showing other examples of measurement results obtained by the measurement system according to the embodiment of the present invention. It is explanatory drawing about the upper limit boundary line of the average flow velocity and average particle diameter of the water droplet injected from the water discharging apparatus by embodiment of this invention. It is explanatory drawing about the lower limit boundary line of the average flow velocity of the water droplet injected from the water discharging apparatus by embodiment of this invention, and an average particle diameter. It is a figure which shows the water discharging form by the said water discharging apparatus in the case of changing variously the flow volume applied to the water discharging apparatus by embodiment of this invention.
  • FIG. 1 is a perspective view of a hand basin to which a water discharge device according to an embodiment of the present invention is applied, viewed obliquely from above.
  • the hand-washing machine 1 mainly includes a water discharge device 2 that performs water discharge (spray water discharge / mist water discharge) in a mist shape so that water spreads from a water discharge port as indicated by a symbol M.
  • a bowl 3 serving as a water receiving portion that receives water discharged from the water discharging device 2 and drains it from a drain port (not shown).
  • FIG. 2 is a diagram for specifically explaining the configuration of the water discharger according to the embodiment of the present invention.
  • 2A is a perspective view of the water discharger according to the embodiment of the present invention as seen obliquely from below, and
  • FIG. 2B shows the water discharger along the line IIB-IIB in FIG. 2A.
  • the water discharge device 2 has a water discharge pipe 11 that is a curved tubular member.
  • the tip of the water discharge pipe 11 is covered with a nozzle-shaped water discharge unit 13 configured to perform spray water discharge (mist water discharge) in which water spreads at a predetermined angle from the water discharge port 13a, and infrared rays.
  • a sensor 14 for detecting a detected object is disposed, and a flow path 15 that is connected to the water discharge unit 13 and supplies water to the water discharge unit 13 is provided inside the water discharge pipe 11.
  • the water discharge device 2 detects an object to be detected such as a human body using the sensor 14 and switches between executing and stopping water discharge from the water discharge unit 13.
  • FIG. 3 is a schematic diagram showing an enlarged vertical section of the water discharger 13 viewed along the direction of water flow.
  • the water flowing in from the inlet 13 b provided at the upper end part causes a straight flow (see arrow A ⁇ b> 11) in the internal flow path 13 d and the internal flow path 13 d.
  • a swirling flow (see arrow A12) is generated in the internal flow path 13d by the water flowing in from the slit portion 13c formed on the outer peripheral surface of the upper end portion.
  • water is intermittently discharged over a range larger than the cross-sectional area (opening diameter) of the water discharge port 13a, in other words, water droplets are ejected.
  • water spreads and is discharged from the water outlet 13a at a predetermined discharge angle ⁇ .
  • the discharge angle ⁇ may be set to 40 to 50 degrees, and the entire hand of the user may be covered with the spray water discharged from the water discharge unit 13.
  • the term “spray water discharge” means that water is intermittently discharged so as to spread from the water discharge port 13a of the water discharge unit 13 at a predetermined angle ⁇ , in other words, water droplets are discharged. It shall mean that it is jetted.
  • the spout 13a of the spout unit 13 has a smaller cross-sectional area than a spout of a general spout unit (for example, a spout unit that performs foam water discharge or shower water discharge), the resistance is strong and a pressure reducing action is generated. Accordingly, at least one of a constant flow valve, a pressure regulating valve, and a constant pressure valve (not shown in FIG. 2) is provided on the upstream side of the flow path 15 of the water discharge device 2 described above, and a predetermined flow rate and / or a water discharge unit 13 is provided. It is preferable to supply water of a predetermined pressure. By appropriately adjusting these valves, each of the flow velocity and the particle diameter (strictly speaking, the average flow velocity and the average particle diameter) in the spray water discharged from the water discharge section 13 is set to a desired value.
  • the water discharging apparatus 2 detected the to-be-detected object, such as a human body, using the sensor 14, the automatic water discharging apparatus which switched the water discharge and water discharge stop automatically was shown (refer FIG. 2).
  • the present invention is not limited to application to such an automatic water discharge device, but can also be applied to a water discharge device that manually stops water discharge and stops water discharge.
  • the flow rate and particle diameter of the spray water discharged by the water discharger 13 of the water discharge device 2 in the embodiment of the present invention will be described. Specifically, the average flow velocity and the average particle diameter of water droplets to be ejected from the water discharger 13 to be applied to the water discharge device 2 according to the present embodiment will be described.
  • the inventor of the present invention attempted to elucidate the range of the average flow velocity and the average particle diameter of water droplets to be ejected from the water discharge unit 13 of the water discharge device 2 by performing various measurements as described below.
  • the average flow velocity of the water droplets ejected from the water discharge unit 13 of the water discharge device 2 the average flow velocity at a position 100 (mm) away from the water discharge port 13 a of the water discharge unit 13 is used.
  • the “average flow velocity” of the water droplets corresponds to the moving speed of the water droplets.
  • the “average particle size” of the water droplets ejected from the water discharge unit 13 of the water discharge device 2 is the Sauter average value (total volume / total volume) based on the particle size distribution obtained by the Franchohel analysis method using a He—Ne laser. Total surface area) is used.
  • the “average particle diameter” of the water droplet corresponds to the diameter of the water droplet. The reason for using such “average flow velocity” and “average particle diameter” is that the flow speed and particle diameter of water droplets ejected from the water discharger 13 are distributed and not uniform.
  • FIG. 4 schematically shows an overall configuration diagram of a measurement system used to measure water splash in the embodiment of the present invention.
  • the measurement system 50 ejects a water droplet WD and collides with a water discharge device 51 that can set various flow rates and particle diameters of the water droplet WD and the water droplet WD ejected from the water discharge device 51.
  • a light 56 that emits light toward the ground glass 52 from below, and a PC (personal computer) 57 that receives image data taken by the high-speed camera 54 and processes the image data.
  • the ground glass 52 has a size of 300 (mm) ⁇ 300 (mm) ⁇ 5 (mm). Further, the water discharge port of the water discharge device 51 and the surface of the ground glass 52 are separated from each other by 100 (mm).
  • the high-speed camera 54 performs high-speed shooting at 10,000 (frames / second) at a resolution of 1280 (pixels) ⁇ 800 (pixels). Furthermore, adjusting the pressure and flow rate of the water supplied to the water discharge device 51, changing the opening diameter of the water discharge port applied to the water discharge device 51, and changing the width of the slit applied in the water discharge device 51. As a result, the flow velocity and particle diameter of the water droplet WD ejected from the water discharge device 51 are changed. In addition, the incident angle of the water droplet WD ejected from the water discharging device 51 to the ground glass 52 is assumed to be constant.
  • the water film WF is formed on the ground glass 52, and the water splash when the water droplet WD collides with the water film WF is measured.
  • This is not a hand in the dry state at the beginning of hand washing (that is, a state where no water film is formed on the surface of the hand), but a hand in a wet state after the middle of hand washing (that is, a water film is formed on the surface of the hand).
  • the hand in the wet state is simulated by the ground glass 52 on which the water film WF is formed, and the water splash generated in the hand in the wet state is examined.
  • the water film WF is formed on the ground glass 52.
  • the ground glass 52 is hydrophilic, the water film WF is formed only by flowing water on the surface.
  • water droplets WD are ejected from the water discharge device 51 toward the ground glass 52.
  • a slit of 5 (mm) ⁇ 10 (mm) is applied to the water discharge device 51 in order to adjust the focus on the ejection of the water droplet WD from the water discharge device 51 to the ground glass 52.
  • light is irradiated from both of the two lights 55 and 56 toward the ground glass 52, and in this state, the vicinity of the collision point of the water droplet WD on the ground glass 52 is photographed by the high speed camera 54.
  • the PC 57 processes the image taken by the high speed camera 54 to obtain the particle diameter of the water droplet WD.
  • the PC 57 performs image analysis on the captured image including the water droplet WD and the scale 53, whereby the length on the captured image corresponding to 1 (mm) of the scale 53 and the particle diameter of the water droplet WD on the captured image. And the actual particle diameter of the water droplet WD is obtained from the ratio of these two values.
  • the PC 57 processes the image photographed by the high speed camera 54 to obtain the flow velocity of the water droplet WD (corresponding to the moving velocity of the water droplet WD).
  • the PC 57 performs image analysis on the captured image including the water droplet WD and the scale 53, thereby obtaining an actual moving distance from the distance on the captured image where the water droplet WD has moved during a predetermined number of frames (described above). The flow velocity of the water droplet WD is obtained from the actual moving distance).
  • the measurer visually determines the water film WF and the water droplet WD included in the photographed image, and determines whether or not water splash has occurred due to the water droplet WD colliding with the water film WF.
  • water splashing means that the water film WF is lifted when the water droplet WD collides with the water film WF, and the raised water film WF is flipped (divided) and the water droplet jumps.
  • FIG. 5 is a diagram illustrating an example of a measurement result obtained by the measurement system 50 according to the embodiment of the present invention.
  • FIGS. 5A and 5B show an example of a captured image when the particle diameter of the water droplet WD is made constant and the flow velocity of the water droplet WD is varied.
  • FIG. 5A shows an example of a photographed image when the flow velocity of the water droplet WD is 3 (m / sec)
  • FIG. 5B shows the flow velocity of the water droplet WD of 5 (m / sec).
  • An example of a photographed image is shown, and the particle diameter of the water droplet WD is fixed to 750 ( ⁇ m) when these flow velocities are applied.
  • the incident angle of the water droplet WD on the ground glass 52 is fixed to 90 degrees.
  • the captured images are arranged in order from left to right in time series.
  • the image corresponding to the water droplet WD is circled, and water splash may occur.
  • a bar is attached near the location on the image.
  • FIG. 6 is a diagram showing another example of the measurement result obtained by the measurement system 50 according to the embodiment of the present invention.
  • FIGS. 6A and 6B show an example of a photographed image when the flow velocity of the water droplet WD is made constant and the particle diameter of the water droplet WD is varied.
  • FIG. 6A shows an example of a photographed image when the particle diameter of the water droplet WD is 400 ( ⁇ m)
  • FIG. 6B shows the particle diameter of the water droplet WD is 820 ( ⁇ m).
  • An example of a captured image is shown, and it is assumed that the flow velocity of the water droplet WD is fixed to 4 (m / sec) when these particle diameters are applied.
  • the incident angle of the water droplet WD on the ground glass 52 is fixed to 90 degrees.
  • the captured images are arranged in order from left to right in time series.
  • the image corresponding to the water droplet WD is circled, and water splash may occur.
  • a bar is attached near the location on the image.
  • each of the flow velocity and particle diameter of the water droplet WD ejected from the water discharge device 51 is set variously, and whether or not water splash occurs in the above-described method for various combinations of flow velocity and particle diameter. Was measured. The result is shown in FIG.
  • FIG. 7 is a diagram showing the presence or absence of water splash measured for various combinations of flow velocity and particle diameter applied to water droplets, and the average flow velocity and average particles of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention. It is a figure for demonstrating the upper limit boundary line of a diameter.
  • the horizontal axis represents the flow velocity (m / sec) of the water droplet
  • the vertical axis represents the particle size ( ⁇ m) of the water droplet.
  • indicates the flow velocity and particle diameter when it is determined that no water splash has occurred by measurement
  • X indicates water splash by measurement.
  • the flow rate and particle size when it is determined that the occurrence of the From such a measurement result using the curve L1 as shown in FIG. 7 as a boundary line, the regions defined by the flow velocity and the particle diameter are the region R1 where water splash occurs and the region R2 where water splash does not occur.
  • the curve L1 represented by the above formula (3) is used as the upper limit boundary for the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2. That is, the following formula (4) based on the formula (3) is used as a conditional formula to be satisfied by the average flow velocity X (m / sec) and the average particle diameter Y ( ⁇ m) of water droplets ejected from the water discharge device 2. And If such conditional expression (4) is satisfied by the average flow velocity X (m / sec) and the average particle diameter Y ( ⁇ m) of the water droplets ejected from the water discharging device 2, the water droplets ejected from the water discharging device 2 It will be possible to appropriately suppress water splashing due to. Y ⁇ 9300 ⁇ X (-1.5) Formula (4)
  • the following measurement procedure is performed in obtaining the above lower limit boundary line.
  • a pseudo soil containing ethanol and Sudan Red at a mass ratio of “6: 1” is created.
  • the created 0.2 (cc) pseudo dirt is adhered to ground glass having a size of 80 (mm) ⁇ 80 (mm).
  • the ground glass to which pseudo-stain is adhered is left for 1 minute, and the pseudo-stain is spread on the whole ground glass by its own weight, and then the ground glass to which pseudo-stain is adhered is heated at 50 (° C.) for 2 minutes by a hot plate. And dry.
  • water discharge is performed for 5 seconds toward the center of the ground glass by the water discharge device. In this case, the water outlet of the water discharging device and the surface of the ground glass are separated by 80 (mm).
  • the ground glass on which water has been discharged as described above is dried by heating at 50 (° C.) for 1 minute with a hot plate, and then placed in a Petri dish.
  • 20 (cc) of oleic acid is dropped into a Petri dish to separate the pseudo soil from the ground glass.
  • oleic acid and pseudo-fouling are collected, and these are put into a special container of the spectrophotometer and measured.
  • the stain removal rate indicating the degree of removal of the pseudo dirt (assuming that the smaller the value, the higher the degree of removal of the pseudo dirt). Ask.
  • a measurement value when only oleic acid is used is obtained in advance, and the above-described water discharge is not performed (that is, 0.2 ( The ground glass is measured in a state where 100% of cc) pseudo-stain remains, and the measured value when the stain removal rate is the maximum value (100%) is obtained. Then, based on the measurement values obtained in advance in this way, the stain removal rate (decrease rate) corresponding to the value obtained by the measurement using the spectrophotometer-dedicated container containing the oleic acid and pseudo soil collected this time )
  • spray water discharged from the water discharge device 2 and 2 liters of foam water discharged per minute are applied as water discharged to the ground glass to which pseudo dirt is adhered, and the measurement results are obtained according to the procedure described above under the same conditions for each. Obtained. More specifically, when spray water spouting was applied, the measurement was performed by changing the flow velocity and particle diameter of water droplets ejected by the water spouting device 2 in various ways. In this case, by applying various types of water discharger 13 to the water discharger 2 (which changes the flow rate of the water discharger 13), the flow velocity and particle diameter of the water droplets to be ejected were changed.
  • FIG. 8 is a diagram showing the results of the flow velocity and the particle diameter at which a stain removal rate of about 22 (%) was obtained by spray water discharge, and the average flow velocity of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention It is a figure for demonstrating the minimum boundary line of an average particle diameter.
  • the horizontal axis represents the flow velocity (m / sec), and the vertical axis represents the particle diameter ( ⁇ m).
  • the lower limit boundary line for the average flow velocity and the average particle diameter of the water droplets ejected from the water discharge device 2 is defined by the straight line L2 represented by the above formula (5). That is, the following formula (6) based on the formula (5) is used as a conditional formula to be satisfied by the average flow velocity X (m / sec) and the average particle diameter Y ( ⁇ m) of water droplets ejected from the water discharge device 2.
  • a water discharge form in which water is intermittently discharged in a range larger than the opening diameter of the water discharge port 13a of the water discharge unit 13 is applied as the spray water discharge. Whether or not such spray water discharge is appropriately formed depends on the flow velocity (uniquely corresponding to the flow rate) applied to the water discharge device 2. This will be specifically described with reference to FIG.
  • FIG. 9 is a diagram showing a specific example of the water discharge form by the water discharge device 2 when the flow rate applied to the water discharge device 2 according to the embodiment of the present invention is variously changed.
  • FIG. 9 shows, sequentially from the left, a photographed image showing a water discharge form when a flow rate of 0.2 (L / min) is applied, and a photograph showing a water discharge form when a flow rate of 0.15 (L / min) is applied.
  • An image, a photographed image showing a water discharge form when a flow rate of 0.1 (L / min) is applied, and a photographed image showing a water discharge form when a flow rate of 0.05 (L / min) is applied are shown. .
  • the flow velocity corresponding to the flow rate of 0.05 (L / min) is used as the lower limit value of the average flow velocity of the water droplets ejected from the water discharge unit 13 of the water discharge device 2.
  • the opening diameter of the water discharge port 13a of the water discharge section 13 is 0.8 (mm)
  • it corresponds to an opening diameter of 0.8 (mm) using a theoretical formula of “flow rate cross-sectional area ⁇ flow velocity”.
  • a flow rate of about 1.7 (m / sec) is obtained from the cross-sectional area and the flow rate of 0.05 (L / min) described above.
  • 1.7 (m / sec) is used as the lower limit value of the average flow velocity of water droplets ejected from the water discharge device 2.
  • the water discharge device 2 forms appropriate spray water discharge. It becomes possible, that is, it spreads over a range larger than the opening diameter of the water discharge port 13a and can discharge water intermittently.
  • the lower limit of the average particle diameter is defined using the following formula (7) obtained by modifying a general Stokes formula.
  • Equation (7) “d” indicates the particle size, “ ⁇ ” indicates the viscosity of water, “v” indicates the terminal velocity, “ ⁇ p ” indicates the density of water, and “ ⁇ f ” indicates The density of air is shown, and “g” shows the acceleration of gravity.
  • the terminal velocity v is assumed to be a velocity when the force is balanced and stops changing when the object receives a body force such as gravity or centrifugal force and a drag force depending on the velocity. In this case, it is assumed that the object is moving alone, that is, even if another object is present, it is moving without being affected by it. In equation (7), it is assumed that the velocity of the particle traveling vector is zero, and actually the particle falls freely in the direction of gravity.
  • the particle diameter d when the terminal velocity v ⁇ 0 is used as the lower limit value of the average particle diameter. This is because the state where the terminal velocity v ⁇ 0 corresponds to the state where the water droplets ejected from the water discharging device 2 are floating without falling. Since the expression (7) does not hold when the terminal speed v is 0, 1 (mm / sec) is substituted into the expression (7) as the terminal speed v. Further, the values of the water viscosity ⁇ , the water density ⁇ p , and the air density ⁇ f when the water temperature and the air temperature are 5 ° C. are substituted into the equation (7), respectively. Then, a particle diameter d of about 35 ( ⁇ m) is obtained.
  • 35 ( ⁇ m) obtained in this way is used as the lower limit value of the average particle diameter of water droplets ejected from the water discharge device 2. If this 35 ( ⁇ m) is applied and the average particle diameter of the water droplets ejected from the water discharging device 2 is 35 ( ⁇ m) or more, the water droplets ejected from the water discharging device 2 can be appropriately lowered without floating. become able to. Thereby, for example, the water droplets ejected from the water discharge device 2 can appropriately reach the user's hand.
  • the particle diameter of water droplets ejected from the water discharge device 2 exceeds 9000 ( ⁇ m)
  • the water droplets break up without being maintained even in a windless state. Turned out to be.
  • the water droplets ejected from the water discharging device 2 are split in the middle, it becomes difficult to control and water splash cannot be appropriately suppressed.
  • the upper limit value of the average particle diameter of the water droplets ejected from the water spouting device 2 is specified from the viewpoint of preventing the water droplets ejected by the water spouting device 2 from maintaining the particle diameter appropriately and not splitting. .
  • the average particle diameter of water droplets ejected from the water discharge device 2 is used. Is 9000 ( ⁇ m) or less.
  • FIG. 10 is a diagram for explaining a preferable range of the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention.
  • the horizontal axis represents the flow velocity (m / sec)
  • the vertical axis represents the particle diameter ( ⁇ m).
  • the average flow velocity described in (3) above is shown.
  • the flow velocity and the particle diameter in the range R3 defined by the curve L1 and the straight lines L2 to L5 so as to satisfy all the conditions described in the above (1) to (5). Is applied as the average flow velocity and average particle diameter of water droplets ejected from the water discharge device 2.
  • the average flow velocity and average particle diameter of water droplets ejected from the water discharge device 2 are the above conditional expressions ( By satisfy
  • the average flow velocity and average particle diameter of the water droplets ejected from the water discharger 2 satisfy the above-described conditional expression (6), so that the water discharger 2 can be appropriately supplied with the spray water discharged. Cleaning performance (hand washing performance, etc.) can be ensured.
  • the water discharge device 2 by setting the average flow velocity of the water droplets ejected from the water discharge device 2 to 1.7 (m / sec) or more, appropriate water spray can be formed by the water discharge device 2. In other words, it is possible to appropriately realize a water discharge mode in which water is intermittently discharged over a range larger than the opening diameter of the water discharge port 13a.
  • the average particle diameter of the water droplets ejected from the water discharging device 2 is set to 35 ( ⁇ m) or more, so that the water droplets ejected from the water discharging device 2 are appropriately lowered without floating. Can do. Thereby, for example, the water droplets ejected from the water discharge device 2 can appropriately reach the user's hand.
  • the water droplets ejected from the water spouting device 2 break up in the middle by setting the average particle diameter of the water droplets ejected from the water spouting device 2 to 9000 ( ⁇ m) or less. Can be suppressed. Thereby, it becomes easy to control to suppress water splash.
  • the entire user's hand is sprayed by the spray water discharged from the water discharge device 2. It can be covered and the hand washing performance can be improved.
  • the average flow velocity and average particle diameter of the water droplets ejected from the water discharger 2 satisfy all the conditions (1) to (5) described in the section ⁇ Flow velocity and particle diameter of spray water discharge>.
  • the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2 are any one or more of the conditions (1) to (5) (various combinations of the conditions (1) to (5)) May also be satisfied).
  • general tap water (city water) is discharged from the water discharge device 2, but instead, functional water having a sterilizing function, such as electrolyzed water (that is, sterilizing). Water) may be discharged.
  • an electrolytic bath may be provided on the upstream side of the flow path 15 of the water discharging device 2, and the electrolytic water generated by the electrolytic bath may be discharged from the water discharging portion 13.
  • FIG. 11 is the perspective view which looked at the kitchen which applied the water discharging apparatus by the modification in embodiment of this invention from diagonally upward.
  • the kitchen 5 shown in FIG. 11 mainly includes a water discharge device 6 that performs water discharge (spray water discharge / mist water discharge) in a mist shape so that water spreads from the water discharge port as indicated by reference numeral M, and the water discharge device 6.
  • a sink 7 serving as a water receiving portion that receives the discharged water and drains it from a drain port (not shown). If the same structure as the water discharging apparatus 2 by embodiment mentioned above is applied with respect to the water discharging apparatus 6 of such a kitchen 5, the effect similar to the content described in the section of ⁇ the effect by this embodiment> is obtained. can get.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Nozzles (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

A water discharging device 2 that is disposed to ensure a prescribed open space with a bowl 3 and that discharges water toward the bowl 3 comprises a water discharging unit 13 that emits water droplets from a water discharging port 13a so as to spread out at a prescribed angle θ, wherein the water discharging unit 13 is set to discharge water at a prescribed flow rate. The water droplets emitted from the water discharging unit 13 satisfy the conditional equation of Y ≤ 9300 × X(−1.5), where X is the average flow speed (m/sec) and Y is the average particle size (μm).

Description

吐水装置Water discharge device
 本発明は、吐水装置に関し、特に、吐水口から水が広がっていくように吐水する吐水装置に関する。 The present invention relates to a water discharge device, and more particularly to a water discharge device that discharges water so that water spreads from a water discharge port.
 従来から、吐水装置において節水を実現するための種々の試みがなされている。その中で、低流量にて霧状に水を吐水する噴霧吐水(吐水口から水が広がっていくような吐水)は節水に有効である。この噴霧吐水は、節水を実現しつつ、広範囲に渡って吐水できる点で有用である。 Conventionally, various attempts have been made to realize water saving in a water discharge device. Among them, spray water discharge (water discharge in which water spreads from the water discharge port) that discharges water in a mist form at a low flow rate is effective for saving water. This spray water discharge is useful in that water can be discharged over a wide range while realizing water saving.
 例えば、特許文献1には、上記のような噴霧吐水を行うノズルの構成が開示されている。また、例えば特許文献2には、殺菌機能を有する電解水を噴霧吐水して、手を殺菌する手洗器が開示されている。 For example, Patent Document 1 discloses a configuration of a nozzle that performs spray water discharge as described above. For example, Patent Document 2 discloses a hand-washing machine that sprays and discharges electrolyzed water having a sterilizing function to sterilize hands.
特開2004-050121号公報JP 2004-050121 A 特開平11-241381号公報JP 11-241381 A
 上述したような噴霧吐水は、節水には有効であるが、一般的な吐水(例えば泡沫吐水やシャワー吐水など)と比べて流速が大きいため、水跳ねが生じやすい。そのため、本発明の発明者は、噴霧吐水において水跳ねに関与するパラメータを解明して、水跳ねが生じないような噴霧吐水を実現することを考えた。 Although the spray water discharge as described above is effective for water saving, the water flow is likely to occur because the flow velocity is larger than that of general water discharge (for example, foam water discharge or shower water discharge). For this reason, the inventor of the present invention has clarified the parameters involved in water splashing in spray water discharge, and has considered realizing spray water discharge that does not cause water splash.
 本発明は、上記のような課題を解決するためになされたものであり、吐水口から水が広がっていくように吐水する吐水装置において、水跳ねを適切に抑制することを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to appropriately suppress water splashing in a water discharge device that discharges water so that water spreads from a water discharge port.
 上記の目的を達成するために、本発明は、水受け部との間に所定の開放空間を確保して設置され、この水受け部に向って吐水する吐水装置であって、吐水口から所定角度にて広がっていくように水滴を噴射する吐水部であって、所定の流量を吐水するよう設定された吐水部を有し、吐水部から噴射された水滴は、その平均流速X(m/sec)と平均粒子径Y(μm)とが以下の条件式(1)を満たす、ことを特徴とする。
  Y≦9300×X(-1.5)  式(1)
In order to achieve the above object, the present invention is a water discharge device that is installed with a predetermined open space between the water receiving portion and discharges water toward the water receiving portion, and is provided with a predetermined amount from the water outlet. A water discharge unit that sprays water droplets so as to spread at an angle, and has a water discharge unit set to discharge a predetermined flow rate, and the water droplets ejected from the water discharge unit have an average flow velocity X (m / m sec) and the average particle diameter Y (μm) satisfy the following conditional expression (1).
Y ≦ 9300 × X (-1.5) Formula (1)
 このように構成された本発明では、吐水口から所定角度にて広がっていくように水受け部に向かって水滴を噴射する吐水装置において、吐水部から噴射された水滴の平均流速と平均粒子径とが上記の条件式(1)を満たすようにするので、節水と広範囲に渡る吐水とを確保しつつ、吐水部から噴射された水滴による水跳ねを適切に抑制することができる。 In the present invention configured as described above, in the water spouting device that ejects water droplets toward the water receiving portion so as to spread at a predetermined angle from the water spouting port, the average flow velocity and the average particle diameter of the water droplets ejected from the water spouting portion. And satisfying the above conditional expression (1), it is possible to appropriately suppress water splashing due to water droplets ejected from the water discharge section while ensuring water saving and water discharge over a wide range.
 本発明において、好ましくは、吐水部から噴射された水滴の平均流速Xと平均粒子径Yとが更に以下の条件式(2)を満たす。
  Y≧-360×X+1500  式(2)
 このように構成された本発明においては、吐水部から噴射された水滴の平均流速と平均粒子径とが上記の条件式(2)を満たすようにするので、吐水部の吐水による適切な洗浄性能(手洗い性能など)を確保することができる。
In the present invention, preferably, the average flow velocity X and the average particle diameter Y of the water droplets ejected from the water discharger further satisfy the following conditional expression (2).
Y ≧ −360 × X + 1500 Formula (2)
In the present invention configured as above, since the average flow velocity and the average particle diameter of the water droplets ejected from the water discharger satisfy the above conditional expression (2), appropriate cleaning performance by water discharge of the water discharger (Hand washing performance, etc.) can be ensured.
 本発明において、好ましくは、吐水部から噴射された水滴の平均流速Xは1.7(m/sec)以上である。
 このように構成された本発明においては、吐水部から噴射された水滴の平均流速を1.7(m/sec)以上にするので、吐水口から所定角度にて広がっていくように水滴を噴射する吐水形態を、適切に実現することができる。
In this invention, Preferably, the average flow velocity X of the water droplet injected from the water discharging part is 1.7 (m / sec) or more.
In the present invention configured as described above, since the average flow velocity of the water droplets ejected from the water discharge unit is set to 1.7 (m / sec) or more, the water droplets are ejected so as to spread at a predetermined angle from the water discharge port. It is possible to appropriately realize the water discharge form.
 本発明において、好ましくは、吐水部から噴射された水滴の平均粒子径Yは35(μm)以上である。
 このように構成された本発明においては、吐水部から噴射された水滴の平均粒子径を35(μm)以上にするので、吐水部から噴射された水滴を浮遊させずに適切に下降させることができる。これにより、吐水部から噴射された水滴を、例えば吐水部に向けて差し出された利用者の手などの対象物に、適切に到達させることができる。
In this invention, Preferably, the average particle diameter Y of the water droplet injected from the water discharging part is 35 (micrometers) or more.
In the present invention configured as described above, since the average particle diameter of the water droplets ejected from the water discharger is 35 (μm) or more, the water droplets ejected from the water discharger can be appropriately lowered without floating. it can. Thereby, the water droplet injected from the water discharging part can be appropriately made to reach the object such as the user's hand that is presented toward the water discharging part, for example.
 本発明において、好ましくは、吐水部から噴射された水滴の平均粒子径Yは9000(μm)以下である。
 このように構成された本発明においては、吐水部から噴射された水滴の平均粒子径を9000(μm)以下にするので、吐水部から噴射された水滴が途中で分裂してしまうことを適切に抑制することができる。これにより、水跳ねを抑制するように制御しやすくなる。
In this invention, Preferably, the average particle diameter Y of the water droplet injected from the water discharging part is 9000 (micrometers) or less.
In the present invention configured as described above, since the average particle diameter of the water droplets ejected from the water discharger is set to 9000 (μm) or less, it is appropriate that the water droplets ejected from the water discharger break up in the middle. Can be suppressed. Thereby, it becomes easy to control to suppress water splash.
 本発明において、好ましくは、吐水部は、所定角度として40~50度の角度にて広がっていくように水滴を噴射する。
 このように構成された本発明においては、吐水口から水を吐出させるときの範囲に対応する角度(吐出角度)を40~50度にするので、吐水部からの吐水によって利用者の手全体を覆うことができ、手洗い性能を向上させることができる。
In the present invention, preferably, the water discharger ejects water droplets so as to spread at an angle of 40 to 50 degrees as a predetermined angle.
In the present invention configured as described above, the angle (discharge angle) corresponding to the range when water is discharged from the water discharge port is set to 40 to 50 degrees. It can be covered and the hand washing performance can be improved.
 本発明によれば、吐水口から広がっていくように水滴を噴射する吐水装置において、適当な流速及び粒子径を有する水滴を噴射するようにすることで、水跳ねを適切に抑制することができる。 According to the present invention, in a water discharge device that injects water droplets so as to spread from the water outlet, water splash can be appropriately suppressed by injecting water droplets having an appropriate flow velocity and particle diameter. .
本発明の実施形態による吐水装置を適用した手洗器を斜め上方から見た斜視図である。It is the perspective view which looked at the hand-washing machine which applied the water discharging apparatus by embodiment of this invention from diagonally upward. 本発明の実施形態による吐水装置の構成を具体的に説明するための図であり、図2(A)は、この吐水装置を斜め下方から見た斜視図であり、図2(B)は、この吐水装置を図2(A)中のIIB-IIB線に沿って見た断面図である。It is a figure for demonstrating the structure of the water discharging apparatus by embodiment of this invention concretely, FIG. 2 (A) is the perspective view which looked at this water discharging apparatus from diagonally downward, FIG.2 (B) is It is sectional drawing which looked at this water discharging apparatus along the IIB-IIB line | wire in FIG. 2 (A). 本発明の実施形態による吐水部の噴霧吐水の原理を説明するための、この吐水部の縦断面図である。It is a longitudinal cross-sectional view of this water discharging part for demonstrating the principle of the spray water discharging of the water discharging part by embodiment of this invention. 本発明の実施形態において水跳ねを測定するために用いた測定システムの全体構成図である。It is a whole block diagram of the measurement system used in order to measure water splash in the embodiment of the present invention. 図5(A)及び図5(B)は、本発明の実施形態による測定システムによって得られた測定結果の一例を示す図である。FIG. 5A and FIG. 5B are diagrams illustrating an example of measurement results obtained by the measurement system according to the embodiment of the present invention. 図6(A)及び図6(B)は、本発明の実施形態による測定システムによって得られた測定結果の他の例を示す図である。6 (A) and 6 (B) are diagrams showing other examples of measurement results obtained by the measurement system according to the embodiment of the present invention. 本発明の実施形態による吐水装置から噴射させる水滴の平均流速及び平均粒子径の上限境界線についての説明図である。It is explanatory drawing about the upper limit boundary line of the average flow velocity and average particle diameter of the water droplet injected from the water discharging apparatus by embodiment of this invention. 本発明の実施形態による吐水装置から噴射させる水滴の平均流速及び平均粒子径の下限境界線についての説明図である。It is explanatory drawing about the lower limit boundary line of the average flow velocity of the water droplet injected from the water discharging apparatus by embodiment of this invention, and an average particle diameter. 本発明の実施形態による吐水装置に適用する流量を種々に変更した場合における当該吐水装置による吐水形態を示す図である。It is a figure which shows the water discharging form by the said water discharging apparatus in the case of changing variously the flow volume applied to the water discharging apparatus by embodiment of this invention. 本発明の実施形態による吐水装置から噴射させる水滴の平均流速及び平均粒子径の好適な範囲についての説明図である。It is explanatory drawing about the suitable range of the average flow velocity and average particle diameter of the water droplet injected from the water discharging apparatus by embodiment of this invention. 本発明の実施形態における変形例による吐水装置を適用したキッチンを斜め上方から見た斜視図である。It is the perspective view which looked at the kitchen which applied the water discharging apparatus by the modification in embodiment of this invention from diagonally upward.
 以下では、添付図面を参照して、本発明の実施形態による吐水装置を説明する。 Hereinafter, a water discharge device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 <装置構成>
 まず、図1乃至図3を参照して、本発明の実施形態による吐水装置の構成について説明する。
<Device configuration>
First, with reference to FIG. 1 thru | or FIG. 3, the structure of the water discharging apparatus by embodiment of this invention is demonstrated.
 図1は、本発明の実施形態による吐水装置を適用した手洗器を斜め上方から見た斜視図である。図1に示すように、手洗器1は、主に、符号Mに示すように吐水口から水が広がっていくように霧状に吐水(噴霧吐水/ミスト吐水)を行う吐水装置2と、この吐水装置2から吐水された水を受け止めて排水口(図示せず)から排水する、水受け部としてのボウル3と、を有する。 FIG. 1 is a perspective view of a hand basin to which a water discharge device according to an embodiment of the present invention is applied, viewed obliquely from above. As shown in FIG. 1, the hand-washing machine 1 mainly includes a water discharge device 2 that performs water discharge (spray water discharge / mist water discharge) in a mist shape so that water spreads from a water discharge port as indicated by a symbol M. A bowl 3 serving as a water receiving portion that receives water discharged from the water discharging device 2 and drains it from a drain port (not shown).
 図2は、本発明の実施形態による吐水装置の構成を具体的に説明するための図である。図2(A)は、本発明の実施形態による吐水装置を斜め下方から見た斜視図であり、図2(B)は、この吐水装置を図2(A)中のIIB-IIB線に沿って見た断面図である。 FIG. 2 is a diagram for specifically explaining the configuration of the water discharger according to the embodiment of the present invention. 2A is a perspective view of the water discharger according to the embodiment of the present invention as seen obliquely from below, and FIG. 2B shows the water discharger along the line IIB-IIB in FIG. 2A. FIG.
 図2(A)及び図2(B)に示すように、吐水装置2は、湾曲した管状部材である吐水管11を有する。吐水管11の先端部には、吐水口13aから所定角度をもって水が広がっていく噴霧吐水(ミスト吐水)を行うように構成されたノズル状の吐水部13、及び、赤外線などを利用して被検知物を検知するセンサ14が配設されており、吐水管11の内部には、吐水部13に接続され、当該吐水部13に対して水を供給する流路15が配設されている。吐水装置2は、センサ14を用いて人体などの被検知物を検知して、吐水部13からの吐水の実行と停止とを切り替える。 2A and 2B, the water discharge device 2 has a water discharge pipe 11 that is a curved tubular member. The tip of the water discharge pipe 11 is covered with a nozzle-shaped water discharge unit 13 configured to perform spray water discharge (mist water discharge) in which water spreads at a predetermined angle from the water discharge port 13a, and infrared rays. A sensor 14 for detecting a detected object is disposed, and a flow path 15 that is connected to the water discharge unit 13 and supplies water to the water discharge unit 13 is provided inside the water discharge pipe 11. The water discharge device 2 detects an object to be detected such as a human body using the sensor 14 and switches between executing and stopping water discharge from the water discharge unit 13.
 次に、図3を参照して、本実施形態による吐水部13の噴霧吐水の原理について説明する。図3は、水の流れ方向に沿って見た吐水部13の縦断面を拡大して示した模式図である。 Next, with reference to FIG. 3, the principle of the spray water discharge of the water discharge part 13 by this embodiment is demonstrated. FIG. 3 is a schematic diagram showing an enlarged vertical section of the water discharger 13 viewed along the direction of water flow.
 図3に示すように、吐水部13においては、上端部に設けられた流入口13bから流入した水によって、内部流路13d内に直進流(矢印A11参照)が生じると共に、内部流路13dの上端部の外周面に形成されたスリット部13cから流入した水によって、内部流路13d内に旋回流(矢印A12参照)が生じる。このような直進流と旋回流との相乗効果によって、内部流路13dの下端部の吐水口13aから、フルコーン状に噴霧吐水が行われる。具体的には、吐水口13aの断面積(開口径)よりも大きな範囲に広がって水が断続的に吐出される、言い換えると水滴が噴射される。この場合、図3に示すように、吐水口13aから所定の吐出角度θにて水が広がって吐出される。例えば、この吐出角度θを40~50度にして、吐水部13からの噴霧吐水によって利用者の手全体を覆うようにするとよい。 As shown in FIG. 3, in the water discharge part 13, the water flowing in from the inlet 13 b provided at the upper end part causes a straight flow (see arrow A <b> 11) in the internal flow path 13 d and the internal flow path 13 d. A swirling flow (see arrow A12) is generated in the internal flow path 13d by the water flowing in from the slit portion 13c formed on the outer peripheral surface of the upper end portion. By such a synergistic effect of the straight flow and the swirl flow, the spray water discharge is performed in a full cone shape from the water discharge port 13a at the lower end of the internal flow path 13d. Specifically, water is intermittently discharged over a range larger than the cross-sectional area (opening diameter) of the water discharge port 13a, in other words, water droplets are ejected. In this case, as shown in FIG. 3, water spreads and is discharged from the water outlet 13a at a predetermined discharge angle θ. For example, the discharge angle θ may be set to 40 to 50 degrees, and the entire hand of the user may be covered with the spray water discharged from the water discharge unit 13.
 以上述べたように、本明細書では、「噴霧吐水」の文言は、吐水部13の吐水口13aから所定角度θにて広がっていくように水を断続的に吐水すること、言い換えると水滴を噴射することを意味するものとする。 As described above, in the present specification, the term “spray water discharge” means that water is intermittently discharged so as to spread from the water discharge port 13a of the water discharge unit 13 at a predetermined angle θ, in other words, water droplets are discharged. It shall mean that it is jetted.
 なお、吐水部13の吐水口13aは、一般的な吐水部(例えば泡沫吐水やシャワー吐水を行う吐水部)の吐水口よりも断面積が小さい為、抵抗が強く減圧作用を生じる。したがって、上記した吐水装置2の流路15の上流側に、定流量弁、調圧弁及び定圧弁の少なくとも一以上を設け(図2では図示せず)、吐水部13に所定の流量及び/又は所定の圧力の水を供給するのがよい。これらの弁を適当に調節しておくことで、吐水部13からの噴霧吐水における流速及び粒子径(厳密には平均流速及び平均粒子径)のそれぞれが所望の値に設定されるようになる。 In addition, since the spout 13a of the spout unit 13 has a smaller cross-sectional area than a spout of a general spout unit (for example, a spout unit that performs foam water discharge or shower water discharge), the resistance is strong and a pressure reducing action is generated. Accordingly, at least one of a constant flow valve, a pressure regulating valve, and a constant pressure valve (not shown in FIG. 2) is provided on the upstream side of the flow path 15 of the water discharge device 2 described above, and a predetermined flow rate and / or a water discharge unit 13 is provided. It is preferable to supply water of a predetermined pressure. By appropriately adjusting these valves, each of the flow velocity and the particle diameter (strictly speaking, the average flow velocity and the average particle diameter) in the spray water discharged from the water discharge section 13 is set to a desired value.
 また、上記した例では、吐水装置2として、センサ14を用いて人体などの被検知物を検知して吐水と吐水の停止とを自動的に切り替える自動吐水装置を示したが(図2参照)、本発明は、そのような自動吐水装置への適用に限定はされず、手動により吐水と吐水の停止とを行う吐水装置にも適用可能である。 Moreover, in the above-mentioned example, although the water discharging apparatus 2 detected the to-be-detected object, such as a human body, using the sensor 14, the automatic water discharging apparatus which switched the water discharge and water discharge stop automatically was shown (refer FIG. 2). The present invention is not limited to application to such an automatic water discharge device, but can also be applied to a water discharge device that manually stops water discharge and stops water discharge.
 <噴霧吐水の流速及び粒子径> <Flow velocity and particle size of spray water>
 次に、本発明の実施形態における吐水装置2の吐水部13による噴霧吐水の流速及び粒子径について説明する。具体的には、本実施形態による吐水装置2に対して適用すべき、吐水部13から噴射させる水滴の平均流速及び平均粒子径について説明する。本発明の発明者は、以下に述べるような種々の測定を行うことで、吐水装置2の吐水部13から噴射させるべき水滴の平均流速及び平均粒子径の範囲についての解明を図った。 Next, the flow rate and particle diameter of the spray water discharged by the water discharger 13 of the water discharge device 2 in the embodiment of the present invention will be described. Specifically, the average flow velocity and the average particle diameter of water droplets to be ejected from the water discharger 13 to be applied to the water discharge device 2 according to the present embodiment will be described. The inventor of the present invention attempted to elucidate the range of the average flow velocity and the average particle diameter of water droplets to be ejected from the water discharge unit 13 of the water discharge device 2 by performing various measurements as described below.
 ここで、吐水装置2の吐水部13から噴射される水滴の「平均流速」には、吐水部13の吐水口13aから100(mm)離れた位置での平均流速を用いるものとする。この水滴の「平均流速」は、水滴の移動速度に相当するものである。他方で、吐水装置2の吐水部13から噴射される水滴の「平均粒子径」には、He-Neレーザを利用したフランホーヘル解析法で得られる粒子径分布に基づいたザウター平均値(総体積/総表面積)を用いるものとする。この水滴の「平均粒子径」は、水滴の直径に相当するものである。
 なお、このような「平均流速」及び「平均粒子径」を用いるのは、吐水部13から噴射される水滴の流速及び粒子径には分布があり、一様ではないからである。
Here, for the “average flow velocity” of the water droplets ejected from the water discharge unit 13 of the water discharge device 2, the average flow velocity at a position 100 (mm) away from the water discharge port 13 a of the water discharge unit 13 is used. The “average flow velocity” of the water droplets corresponds to the moving speed of the water droplets. On the other hand, the “average particle size” of the water droplets ejected from the water discharge unit 13 of the water discharge device 2 is the Sauter average value (total volume / total volume) based on the particle size distribution obtained by the Franchohel analysis method using a He—Ne laser. Total surface area) is used. The “average particle diameter” of the water droplet corresponds to the diameter of the water droplet.
The reason for using such “average flow velocity” and “average particle diameter” is that the flow speed and particle diameter of water droplets ejected from the water discharger 13 are distributed and not uniform.
 (1)流速及び粒子径の上限境界線
 まず、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均流速及び平均粒子径の上限境界線について説明する。この上限境界線は、本実施形態による吐水装置2の吐水部13から噴射された水滴による水跳ねを抑制する観点から定められる。
(1) Upper limit boundary line of flow velocity and particle diameter First, the upper limit boundary line of the average flow velocity and the average particle diameter of water droplets ejected from the water discharger 13 of the water discharge device 2 according to the present embodiment will be described. This upper limit boundary line is determined from the viewpoint of suppressing water splash due to water droplets ejected from the water discharger 13 of the water discharger 2 according to the present embodiment.
 図4は、本発明の実施形態において水跳ねを測定するために用いた測定システムの全体構成図を概略的に示している。 FIG. 4 schematically shows an overall configuration diagram of a measurement system used to measure water splash in the embodiment of the present invention.
 図4に示すように、測定システム50は、水滴WDを噴射すると共に、この水滴WDの流速及び粒子径を種々に設定可能な吐水装置51と、この吐水装置51から噴射された水滴WDが衝突するすりガラス52と、このすりガラス52上に載置されたスケール53と、水滴WDが衝突するすりガラス52の表面を少なくとも含む範囲を撮影するハイスピードカメラ54と、すりガラス52に向けて上方から光を照射するライト55と、すりガラス52に向けて下方から光を照射するライト56と、ハイスピードカメラ54が撮影した画像データが供給され、この画像データを処理するPC(パーソナルコンピュータ)57と、を有する。 As shown in FIG. 4, the measurement system 50 ejects a water droplet WD and collides with a water discharge device 51 that can set various flow rates and particle diameters of the water droplet WD and the water droplet WD ejected from the water discharge device 51. A ground glass 52, a scale 53 placed on the ground glass 52, a high-speed camera 54 that captures at least a range including the surface of the ground glass 52 on which the water droplet WD collides, and light is irradiated toward the ground glass 52 from above. A light 56 that emits light toward the ground glass 52 from below, and a PC (personal computer) 57 that receives image data taken by the high-speed camera 54 and processes the image data.
 具体的には、すりガラス52は、300(mm)×300(mm)×5(mm)のサイズを有する。また、吐水装置51の吐水口とすりガラス52の表面とは、100(mm)離間される。また、ハイスピードカメラ54は、1280(ピクセル)×800(ピクセル)の解像度にて、10000(フレーム/秒)で高速度撮影を行う。更に、吐水装置51に供給する水の圧力や流量を調整したり、吐水装置51に適用する吐水口の開口径を変更したり、吐水装置51内に適用するスリットの幅を変更したりすることによって、吐水装置51から噴射させる水滴WDの流速及び粒子径が変化される。なお、吐水装置51から噴射された水滴WDのすりガラス52への入射角については一定にするものとする。 Specifically, the ground glass 52 has a size of 300 (mm) × 300 (mm) × 5 (mm). Further, the water discharge port of the water discharge device 51 and the surface of the ground glass 52 are separated from each other by 100 (mm). The high-speed camera 54 performs high-speed shooting at 10,000 (frames / second) at a resolution of 1280 (pixels) × 800 (pixels). Furthermore, adjusting the pressure and flow rate of the water supplied to the water discharge device 51, changing the opening diameter of the water discharge port applied to the water discharge device 51, and changing the width of the slit applied in the water discharge device 51. As a result, the flow velocity and particle diameter of the water droplet WD ejected from the water discharge device 51 are changed. In addition, the incident angle of the water droplet WD ejected from the water discharging device 51 to the ground glass 52 is assumed to be constant.
 ここで、本実施形態では、すりガラス52上に水膜WFを形成し、この水膜WFに水滴WDを衝突させたときの水跳ねを測定するようにする。これは、手洗い初期の乾燥状態にある手(つまり手の表面に水膜が形成されていない状態)ではなく、手洗い中期以降の湿潤状態にある手(つまり手の表面に水膜が形成されている状態)を想定し、この湿潤状態にある手を、水膜WFを形成したすりガラス52によって模擬することで、湿潤状態にある手に生じる水跳ねを調べようとしたものである。 Here, in this embodiment, the water film WF is formed on the ground glass 52, and the water splash when the water droplet WD collides with the water film WF is measured. This is not a hand in the dry state at the beginning of hand washing (that is, a state where no water film is formed on the surface of the hand), but a hand in a wet state after the middle of hand washing (that is, a water film is formed on the surface of the hand). In this case, the hand in the wet state is simulated by the ground glass 52 on which the water film WF is formed, and the water splash generated in the hand in the wet state is examined.
 なお、湿潤状態よりも、乾燥状態のほうが、水跳ねが生じやすい。この理由は、以下の通りである。衝突物体が乾燥状態にある場合には、つまり衝突物体の表面に水膜が形成されていない状態では、主に、水と衝突物体との間の摩擦力、水の吸着力及び水の表面張力が働くことで、水跳ねが生じにくい。これに対して、衝突物体が湿潤状態にある場合には、つまり衝突物体の表面に水膜が形成されている状態では、水と衝突物体(水膜も含む)との間の摩擦力が小さくなり、衝突時に発生した圧力が外部の空気側(圧力が低い側)へと逃げていき、このときに発生した水膜を持ち上げる力が表面張力よりも大きくなることで、水膜が弾けて水跳ねが生じやすい。 In addition, water splashing is more likely to occur in the dry state than in the wet state. The reason for this is as follows. When the collision object is in a dry state, that is, when a water film is not formed on the surface of the collision object, the frictional force between the water and the collision object, the water adsorption force, and the water surface tension are mainly used. By working, water splash is less likely to occur. On the other hand, when the collision object is in a wet state, that is, when a water film is formed on the surface of the collision object, the frictional force between water and the collision object (including the water film) is small. The pressure generated at the time of collision escapes to the outside air side (low pressure side), and the force that lifts the water film generated at this time is greater than the surface tension, so that the water film can rebound and water Bouncing easily occurs.
 次に、本実施形態による水跳ねの測定手順について説明する。まず、すりガラス52上に水膜WFを形成する。この場合、すりガラス52は親水性のため、表面に水を流すだけで水膜WFが形成される。次に、吐水装置51からすりガラス52に向けて水滴WDを噴射させる。この場合、吐水装置51からすりガラス52への水滴WDの噴射に関する焦点を合わせるために、5(mm)×10(mm)のスリットを吐水装置51に対して適用する。次に、2つのライト55、56の両方からすりガラス52に向けて光を照射させて、この状態で、ハイスピードカメラ54によってすりガラス52上の水滴WDの衝突箇所付近を撮影する。 Next, a procedure for measuring water splash according to the present embodiment will be described. First, the water film WF is formed on the ground glass 52. In this case, since the ground glass 52 is hydrophilic, the water film WF is formed only by flowing water on the surface. Next, water droplets WD are ejected from the water discharge device 51 toward the ground glass 52. In this case, a slit of 5 (mm) × 10 (mm) is applied to the water discharge device 51 in order to adjust the focus on the ejection of the water droplet WD from the water discharge device 51 to the ground glass 52. Next, light is irradiated from both of the two lights 55 and 56 toward the ground glass 52, and in this state, the vicinity of the collision point of the water droplet WD on the ground glass 52 is photographed by the high speed camera 54.
 次に、PC57が、ハイスピードカメラ54によって撮影された画像を処理して、水滴WDの粒子径を求める。この場合、PC57が、水滴WD及びスケール53を含む撮影画像を画像解析することで、スケール53の1(mm)に対応する撮影画像上での長さと、撮影画像上での水滴WDの粒子径とを得て、これらの2つの値の比率から水滴WDの実際の粒子径を求める。次に、PC57が、ハイスピードカメラ54によって撮影された画像を処理して、水滴WDの流速(水滴WDの移動速度に相当する)を求める。この場合、PC57が、水滴WD及びスケール53を含む撮影画像を画像解析することで、所定フレーム数の間に水滴WDが移動した撮影画像上での距離から、実際の移動距離を求め(上記した水滴WDの粒子径を求める方法と同様の方法で求められる)、この実際の移動距離から、水滴WDの流速を求める。次に、測定者が、撮影画像に含まれる水膜WF及び水滴WDを目視することで、水滴WDが水膜WFに衝突することで水跳ねが生じたか否かを判断する。なお、ここでいう「水跳ね」とは、水滴WDが水膜WFに衝突することで水膜WFが持ち上がり、持ち上がった水膜WFが弾けて(分裂して)水滴が跳ねることを意味する。 Next, the PC 57 processes the image taken by the high speed camera 54 to obtain the particle diameter of the water droplet WD. In this case, the PC 57 performs image analysis on the captured image including the water droplet WD and the scale 53, whereby the length on the captured image corresponding to 1 (mm) of the scale 53 and the particle diameter of the water droplet WD on the captured image. And the actual particle diameter of the water droplet WD is obtained from the ratio of these two values. Next, the PC 57 processes the image photographed by the high speed camera 54 to obtain the flow velocity of the water droplet WD (corresponding to the moving velocity of the water droplet WD). In this case, the PC 57 performs image analysis on the captured image including the water droplet WD and the scale 53, thereby obtaining an actual moving distance from the distance on the captured image where the water droplet WD has moved during a predetermined number of frames (described above). The flow velocity of the water droplet WD is obtained from the actual moving distance). Next, the measurer visually determines the water film WF and the water droplet WD included in the photographed image, and determines whether or not water splash has occurred due to the water droplet WD colliding with the water film WF. Here, “water splashing” means that the water film WF is lifted when the water droplet WD collides with the water film WF, and the raised water film WF is flipped (divided) and the water droplet jumps.
 図5は、本発明の実施形態による測定システム50によって得られた測定結果の一例を示す図である。具体的には、図5(A)及び図5(B)は、水滴WDの粒子径を一定にし、水滴WDの流速を異ならせたときの撮影画像の一例を示している。詳しくは、図5(A)は、水滴WDの流速が3(m/sec)であるときの撮影画像の一例を示し、図5(B)は、水滴WDの流速が5(m/sec)であるときの撮影画像の一例を示しており、これらの流速を適用したときに水滴WDの粒子径を750(μm)に固定したものとする。加えて、すりガラス52(水膜WFも含む)への水滴WDの入射角を90度に固定したものとする。なお、図5(A)及び図5(B)では、撮影画像を時系列的に左から右に順に並べてあり、説明の便宜上、水滴WDに対応する画像を丸で囲み、水跳ねが生じ得る画像上の箇所付近にバーを付している。 FIG. 5 is a diagram illustrating an example of a measurement result obtained by the measurement system 50 according to the embodiment of the present invention. Specifically, FIGS. 5A and 5B show an example of a captured image when the particle diameter of the water droplet WD is made constant and the flow velocity of the water droplet WD is varied. Specifically, FIG. 5A shows an example of a photographed image when the flow velocity of the water droplet WD is 3 (m / sec), and FIG. 5B shows the flow velocity of the water droplet WD of 5 (m / sec). An example of a photographed image is shown, and the particle diameter of the water droplet WD is fixed to 750 (μm) when these flow velocities are applied. In addition, the incident angle of the water droplet WD on the ground glass 52 (including the water film WF) is fixed to 90 degrees. In FIGS. 5A and 5B, the captured images are arranged in order from left to right in time series. For convenience of explanation, the image corresponding to the water droplet WD is circled, and water splash may occur. A bar is attached near the location on the image.
 図5(A)に示すように、水滴WDの流速が3(m/sec)である場合には水跳ねが生じていないことがわかり(符号A21参照)、図5(B)に示すように、水滴WDの流速が5(m/sec)である場合には水跳ねが生じていることがわかる(符号A22参照)。これより、水滴WDの流速が大きくなると、水跳ねが生じやすいと言える。 As shown in FIG. 5 (A), it can be seen that water splash does not occur when the flow velocity of the water droplet WD is 3 (m / sec) (see reference A21), as shown in FIG. 5 (B). When the flow velocity of the water droplet WD is 5 (m / sec), it can be seen that water splash has occurred (see reference A22). From this, it can be said that water splash is likely to occur when the flow velocity of the water droplet WD increases.
 図6は、本発明の実施形態による測定システム50によって得られた測定結果の他の例を示す図である。具体的には、図6(A)及び図6(B)は、水滴WDの流速を一定にし、水滴WDの粒子径を異ならせたときの撮影画像の一例を示している。詳しくは、図6(A)は、水滴WDの粒子径が400(μm)であるときの撮影画像の一例を示し、図6(B)は、水滴WDの粒子径が820(μm)であるときの撮影画像の一例を示しており、これらの粒子径を適用したときに水滴WDの流速を4(m/sec)に固定したものとする。加えて、すりガラス52(水膜WFも含む)への水滴WDの入射角を90度に固定したものとする。なお、図6(A)及び図6(B)では、撮影画像を時系列的に左から右に順に並べてあり、説明の便宜上、水滴WDに対応する画像を丸で囲み、水跳ねが生じ得る画像上の箇所付近にバーを付している。 FIG. 6 is a diagram showing another example of the measurement result obtained by the measurement system 50 according to the embodiment of the present invention. Specifically, FIGS. 6A and 6B show an example of a photographed image when the flow velocity of the water droplet WD is made constant and the particle diameter of the water droplet WD is varied. Specifically, FIG. 6A shows an example of a photographed image when the particle diameter of the water droplet WD is 400 (μm), and FIG. 6B shows the particle diameter of the water droplet WD is 820 (μm). An example of a captured image is shown, and it is assumed that the flow velocity of the water droplet WD is fixed to 4 (m / sec) when these particle diameters are applied. In addition, the incident angle of the water droplet WD on the ground glass 52 (including the water film WF) is fixed to 90 degrees. In FIGS. 6A and 6B, the captured images are arranged in order from left to right in time series. For convenience of explanation, the image corresponding to the water droplet WD is circled, and water splash may occur. A bar is attached near the location on the image.
 図6(A)に示すように、水滴WDの粒子径が400(μm)である場合には水跳ねが生じていないことがわかり(符号A31参照)、図6(B)に示すように、水滴WDの粒子径が820(μm)である場合には水跳ねが生じていることがわかる(符号A32参照)。これより、水滴WDの粒子径が大きくなると、水跳ねが生じやすいと言える。 As shown in FIG. 6 (A), when the particle diameter of the water droplet WD is 400 (μm), it can be seen that no water splash occurs (see reference A31), and as shown in FIG. 6 (B), When the particle diameter of the water droplet WD is 820 (μm), it can be seen that water splashing occurs (see reference A32). From this, it can be said that when the particle diameter of the water droplet WD increases, water splash is likely to occur.
 本実施形態では、吐水装置51から噴射させる水滴WDの流速及び粒子径のそれぞれを種々に設定して、種々の流速及び粒子径の組み合わせについて、上記したような方法にて水跳ねが生じるか否かを測定した。その結果を図7に示す。 In this embodiment, each of the flow velocity and particle diameter of the water droplet WD ejected from the water discharge device 51 is set variously, and whether or not water splash occurs in the above-described method for various combinations of flow velocity and particle diameter. Was measured. The result is shown in FIG.
 図7は、水滴に適用した種々の流速及び粒子径の組み合わせについて測定された水跳ねの有無を示す図であって、本発明の実施形態による吐水装置2から噴射させる水滴の平均流速及び平均粒子径の上限境界線を説明するための図である。 FIG. 7 is a diagram showing the presence or absence of water splash measured for various combinations of flow velocity and particle diameter applied to water droplets, and the average flow velocity and average particles of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention. It is a figure for demonstrating the upper limit boundary line of a diameter.
 図7は、横軸に水滴の流速(m/sec)を示しており、縦軸に水滴の粒子径(μm)を示している。具体的には、図7中の「○」は、測定により水跳ねが生じていないと判断されたときの流速及び粒子径を示しており、図7中の「×」は、測定により水跳ねが生じたと判断されたときの流速及び粒子径を示している。このような測定結果より、図7に示すような曲線L1を境界線として用いて、流速と粒子径とによって規定される領域を、水跳ねが生じる領域R1と、水跳ねが生じない領域R2とに分割することができる。そして、この曲線L1は、流速x(m/sec)及び粒子径y(μm)を用いて、以下の近似式(3)で表すことができる。
  y=9300×x(-1.5)  式(3)
In FIG. 7, the horizontal axis represents the flow velocity (m / sec) of the water droplet, and the vertical axis represents the particle size (μm) of the water droplet. Specifically, “◯” in FIG. 7 indicates the flow velocity and particle diameter when it is determined that no water splash has occurred by measurement, and “X” in FIG. 7 indicates water splash by measurement. The flow rate and particle size when it is determined that the occurrence of the From such a measurement result, using the curve L1 as shown in FIG. 7 as a boundary line, the regions defined by the flow velocity and the particle diameter are the region R1 where water splash occurs and the region R2 where water splash does not occur. Can be divided into The curve L1 can be expressed by the following approximate expression (3) using the flow velocity x (m / sec) and the particle diameter y (μm).
y = 9300 × x (−1.5) Formula (3)
 本実施形態では、上記の式(3)で表される曲線L1を、吐水装置2から噴射させる水滴の平均流速及び平均粒子径についての上限境界線として用いることとする。つまり、吐水装置2から噴射させる水滴の平均流速X(m/sec)と平均粒子径Y(μm)とが満たすべき条件式として、式(3)に基づいた以下の式(4)を用いることとする。このような条件式(4)を、吐水装置2から噴射させる水滴の平均流速X(m/sec)と平均粒子径Y(μm)とが満たすようにすれば、吐水装置2から噴射された水滴による水跳ねを適切に抑制できるようになる。
  Y≦9300×X(-1.5)  式(4)
In the present embodiment, the curve L1 represented by the above formula (3) is used as the upper limit boundary for the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2. That is, the following formula (4) based on the formula (3) is used as a conditional formula to be satisfied by the average flow velocity X (m / sec) and the average particle diameter Y (μm) of water droplets ejected from the water discharge device 2. And If such conditional expression (4) is satisfied by the average flow velocity X (m / sec) and the average particle diameter Y (μm) of the water droplets ejected from the water discharging device 2, the water droplets ejected from the water discharging device 2 It will be possible to appropriately suppress water splashing due to.
Y ≦ 9300 × X (-1.5) Formula (4)
 (2)流速及び粒子径の下限境界線
 次に、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均流速及び平均粒子径の下限境界線について説明する。この下限境界線は、本実施形態の吐水装置2による洗浄性能(汚れ除去性能/手洗い性能)を確保する観点から定められる。
(2) Lower limit boundary line of flow velocity and particle diameter Next, the lower limit boundary line of the average flow velocity and average particle diameter of water droplets ejected from the water discharger 13 of the water discharge device 2 according to the present embodiment will be described. This lower limit boundary line is determined from the viewpoint of ensuring the cleaning performance (dirt removal performance / hand washing performance) by the water discharge device 2 of the present embodiment.
 本実施形態では、上記した下限境界線を求めるに当たって、以下のような測定手順を実施する。まず、エタノールとスーダンレッドとを「6:1」の質量比で含む疑似汚れを作成する。次に、作成した0.2(cc)の疑似汚れを、80(mm)×80(mm)のサイズのすりガラスに付着させる。次に、疑似汚れを付着させたすりガラスを1分間放置して、自重により疑似汚れをすりガラス全体に広げ、この後に、疑似汚れを付着させたすりガラスをホットプレートによって50(℃)で2分間加熱して乾燥させる。次に、吐水装置によって、すりガラスの中心に向かって5秒間吐水を行う。この場合、吐水装置の吐水口とすりガラスの表面とを80(mm)離間させる。 In the present embodiment, the following measurement procedure is performed in obtaining the above lower limit boundary line. First, a pseudo soil containing ethanol and Sudan Red at a mass ratio of “6: 1” is created. Next, the created 0.2 (cc) pseudo dirt is adhered to ground glass having a size of 80 (mm) × 80 (mm). Next, the ground glass to which pseudo-stain is adhered is left for 1 minute, and the pseudo-stain is spread on the whole ground glass by its own weight, and then the ground glass to which pseudo-stain is adhered is heated at 50 (° C.) for 2 minutes by a hot plate. And dry. Next, water discharge is performed for 5 seconds toward the center of the ground glass by the water discharge device. In this case, the water outlet of the water discharging device and the surface of the ground glass are separated by 80 (mm).
 次に、上記のような吐水が行われたすりガラスを、ホットプレートによって50(℃)で1分間加熱して乾燥させた後、ペトリ皿に入れる。次に、ペトリ皿に20(cc)のオレイン酸を滴下して、すりガラスから疑似汚れを分離させる。次に、オレイン酸及び疑似汚れを回収し、これらを分光光度計の専用容器に入れて測定する。次に、この分光光度計を用いた測定により得られた値から、疑似汚れが除去された度合いを示す汚れ落ち率(値が小さいほど、疑似汚れが除去された度合いが高いものとする)を求める。具体的には、まず、事前に、分光光度計の0補正を行うべく、オレイン酸のみを用いたときの測定値を求めておくと共に、上記した吐水を行っていない状態(つまり0.2(cc)の疑似汚れが100%残っている状態)でのすりガラスを測定し、汚れ落ち率が最大値(100%)であるときの測定値を求めておく。そして、このようにして事前に得られた測定値に基づき、今回回収したオレイン酸及び疑似汚れを入れた分光光度計専用容器を用いた測定により得られた値に対応する汚れ落ち率(減少率)を求める。 Next, the ground glass on which water has been discharged as described above is dried by heating at 50 (° C.) for 1 minute with a hot plate, and then placed in a Petri dish. Next, 20 (cc) of oleic acid is dropped into a Petri dish to separate the pseudo soil from the ground glass. Next, oleic acid and pseudo-fouling are collected, and these are put into a special container of the spectrophotometer and measured. Next, from the value obtained by the measurement using this spectrophotometer, the stain removal rate indicating the degree of removal of the pseudo dirt (assuming that the smaller the value, the higher the degree of removal of the pseudo dirt). Ask. Specifically, first, in order to perform zero correction of the spectrophotometer, a measurement value when only oleic acid is used is obtained in advance, and the above-described water discharge is not performed (that is, 0.2 ( The ground glass is measured in a state where 100% of cc) pseudo-stain remains, and the measured value when the stain removal rate is the maximum value (100%) is obtained. Then, based on the measurement values obtained in advance in this way, the stain removal rate (decrease rate) corresponding to the value obtained by the measurement using the spectrophotometer-dedicated container containing the oleic acid and pseudo soil collected this time )
 ここで、疑似汚れを付着させたすりガラスへの吐水として、吐水装置2による噴霧吐水と、毎分2リットルの泡沫吐水とを適用して、それぞれについて同様の条件にて上記した手順により測定結果を得た。より具体的には、噴霧吐水を適用する場合には、吐水装置2によって噴射させる水滴の流速及び粒子径を種々に変えて測定を行った。この場合、吐水装置2に種々のタイプの吐水部13を適用することで(これにより吐水部13による流量が変更される)、噴射される水滴の流速及び粒子径を変化させた。 Here, spray water discharged from the water discharge device 2 and 2 liters of foam water discharged per minute are applied as water discharged to the ground glass to which pseudo dirt is adhered, and the measurement results are obtained according to the procedure described above under the same conditions for each. Obtained. More specifically, when spray water spouting was applied, the measurement was performed by changing the flow velocity and particle diameter of water droplets ejected by the water spouting device 2 in various ways. In this case, by applying various types of water discharger 13 to the water discharger 2 (which changes the flow rate of the water discharger 13), the flow velocity and particle diameter of the water droplets to be ejected were changed.
 このような測定により、毎分2リットルの泡沫吐水では、22(%)の汚れ落ち率が得られた。そして、噴霧吐水を用いた場合の測定結果の中から、毎分2リットルの泡沫吐水による汚れ落ち率22(%)と同程度の汚れ落ち率が得られたときの流速及び粒子径を抽出した。その結果を図8に示す。 According to such a measurement, a soil removal rate of 22 (%) was obtained with 2 liters of foam spout. And from the measurement result when using spray water discharge, the flow rate and the particle diameter were obtained when the soil removal rate equivalent to the stain removal rate 22 (%) by 2 liters of foam water discharge was obtained. . The result is shown in FIG.
 図8は、噴霧吐水により22(%)程度の汚れ落ち率が得られた流速及び粒子径の結果を示す図であって、本発明の実施形態による吐水装置2から噴射させる水滴の平均流速及び平均粒子径の下限境界線を説明するための図である。 FIG. 8 is a diagram showing the results of the flow velocity and the particle diameter at which a stain removal rate of about 22 (%) was obtained by spray water discharge, and the average flow velocity of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention It is a figure for demonstrating the minimum boundary line of an average particle diameter.
 図8は、横軸に流速(m/sec)を示しており、縦軸に粒子径(μm)を示している。具体的には、図8中の「▲」は、22(%)程度の汚れ落ち率が得られた流速及び粒子径を示している。このような結果より、22(%)程度の汚れ落ち率が得られる流速x(m/sec)と粒子径y(μm)との関係を、図8に示す直線L2に対応する以下の近似式(5)で表すことができる。
  y=-360×x+1500  式(5)
In FIG. 8, the horizontal axis represents the flow velocity (m / sec), and the vertical axis represents the particle diameter (μm). Specifically, “▲” in FIG. 8 indicates the flow velocity and particle diameter at which a stain removal rate of about 22% was obtained. From these results, the following approximate expression corresponding to the straight line L2 shown in FIG. 8 shows the relationship between the flow velocity x (m / sec) and the particle diameter y (μm) at which a stain removal rate of about 22 (%) is obtained. (5).
y = −360 × x + 1500 Formula (5)
 本実施形態では、上記の式(5)で表される直線L2によって、吐水装置2から噴射させる水滴の平均流速及び平均粒子径についての下限境界線を規定する。つまり、吐水装置2から噴射させる水滴の平均流速X(m/sec)と平均粒子径Y(μm)とが満たすべき条件式として、式(5)に基づいた以下の式(6)を用いることとする。このような条件式(6)を、吐水装置2から噴射させる水滴の平均流速X(m/sec)と平均粒子径Y(μm)とが満たすようにすれば、吐水装置2の噴霧吐水によって、毎分2リットルの泡沫吐水による汚れ落ち率と同程度の汚れ落ち率を実現できるようになる。即ち、吐水装置2の噴霧吐水による適切な洗浄性能を確保できるようになる。
  Y≧-360×X+1500  式(6)
In the present embodiment, the lower limit boundary line for the average flow velocity and the average particle diameter of the water droplets ejected from the water discharge device 2 is defined by the straight line L2 represented by the above formula (5). That is, the following formula (6) based on the formula (5) is used as a conditional formula to be satisfied by the average flow velocity X (m / sec) and the average particle diameter Y (μm) of water droplets ejected from the water discharge device 2. And If such conditional expression (6) is satisfied by the average flow velocity X (m / sec) of the water droplets ejected from the water discharger 2 and the average particle diameter Y (μm), It becomes possible to realize a stain removal rate comparable to the stain removal rate by 2 liters of foam spout water per minute. That is, it is possible to ensure appropriate cleaning performance by the spray water discharged from the water discharge device 2.
Y ≧ −360 × X + 1500 Formula (6)
 (3)流速の下限値
 次に、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均流速の下限値について説明する。この下限値は、本実施形態の吐水装置2によって適切な噴霧吐水を形成する観点から定められる。
(3) Lower limit value of flow velocity Next, the lower limit value of the average flow velocity of water droplets ejected from the water discharger 13 of the water discharge device 2 according to the present embodiment will be described. This lower limit is determined from the viewpoint of forming appropriate spray water discharge by the water discharge device 2 of the present embodiment.
 上述したように、本実施形態では、吐水部13の吐水口13aの開口径よりも大きな範囲に広がって水が断続的に吐出されるような吐水形態を、噴霧吐水として適用している。そのような噴霧吐水が適切に形成されるか否かは、吐水装置2に適用する流速(一義的に流量に相当する)に依存する。これについて、図9を参照して具体的に説明する。 As described above, in this embodiment, a water discharge form in which water is intermittently discharged in a range larger than the opening diameter of the water discharge port 13a of the water discharge unit 13 is applied as the spray water discharge. Whether or not such spray water discharge is appropriately formed depends on the flow velocity (uniquely corresponding to the flow rate) applied to the water discharge device 2. This will be specifically described with reference to FIG.
 図9は、本発明の実施形態による吐水装置2に適用する流量を種々に変更した場合における当該吐水装置2による吐水形態の具体例を示す図である。図9は、左から順に、0.2(L/min)の流量を適用した場合の吐水形態を示す撮影画像、0.15(L/min)の流量を適用した場合の吐水形態を示す撮影画像、0.1(L/min)の流量を適用した場合の吐水形態を示す撮影画像、0.05(L/min)の流量を適用した場合の吐水形態を示す撮影画像、を示している。 FIG. 9 is a diagram showing a specific example of the water discharge form by the water discharge device 2 when the flow rate applied to the water discharge device 2 according to the embodiment of the present invention is variously changed. FIG. 9 shows, sequentially from the left, a photographed image showing a water discharge form when a flow rate of 0.2 (L / min) is applied, and a photograph showing a water discharge form when a flow rate of 0.15 (L / min) is applied. An image, a photographed image showing a water discharge form when a flow rate of 0.1 (L / min) is applied, and a photographed image showing a water discharge form when a flow rate of 0.05 (L / min) is applied are shown. .
 図9より、0.1~0.2(L/min)の流量では、吐水装置2により適切な噴霧吐水が形成されている、つまり吐水口13aの開口径よりも大きな範囲に広がって水が断続的に吐出されていることがわかる。これに対して、0.05(L/min)の流量では、吐水装置2により適切な噴霧吐水が形成されていない、つまり吐水口13aの開口径よりも大きな範囲に広がって水が断続的に吐出されていないことがわかる。こうなるのは、小さな流量では、適切な噴霧吐水を形成するのに必要な旋回流(図3中の矢印A12参照)を吐水部13の内部に形成することができないからである。 From FIG. 9, at a flow rate of 0.1 to 0.2 (L / min), appropriate spray water discharge is formed by the water discharge device 2, that is, water spreads over a range larger than the opening diameter of the water discharge port 13a. It turns out that it is discharging intermittently. On the other hand, at a flow rate of 0.05 (L / min), appropriate spray water discharge is not formed by the water discharge device 2, that is, the water is intermittently spread over a range larger than the opening diameter of the water discharge port 13a. It turns out that it is not discharged. This is because a swirling flow (see arrow A12 in FIG. 3) necessary for forming appropriate spray water discharge cannot be formed inside the water discharge section 13 at a small flow rate.
 したがって、本実施形態では、上記の0.05(L/min)の流量に対応する流速を、吐水装置2の吐水部13から噴射させる水滴の平均流速の下限値として用いることとする。吐水部13の吐水口13aの開口径が0.8(mm)である場合には、「流量=断面積×流速」の理論式を用いて、0.8(mm)の開口径に対応する断面積と、上記した0.05(L/min)の流量とから、約1.7(m/sec)の流速が求められる。本実施形態では、この1.7(m/sec)を、吐水装置2から噴射させる水滴の平均流速の下限値として用いる。このような1.7(m/sec)を適用して、吐水装置2から噴射させる水滴の平均流速を1.7(m/sec)以上にすれば、吐水装置2により適切な噴霧吐水を形成できるようになる、つまり吐水口13aの開口径よりも大きな範囲に広がって水を断続的に吐出できるようになる。 Therefore, in this embodiment, the flow velocity corresponding to the flow rate of 0.05 (L / min) is used as the lower limit value of the average flow velocity of the water droplets ejected from the water discharge unit 13 of the water discharge device 2. When the opening diameter of the water discharge port 13a of the water discharge section 13 is 0.8 (mm), it corresponds to an opening diameter of 0.8 (mm) using a theoretical formula of “flow rate = cross-sectional area × flow velocity”. A flow rate of about 1.7 (m / sec) is obtained from the cross-sectional area and the flow rate of 0.05 (L / min) described above. In the present embodiment, 1.7 (m / sec) is used as the lower limit value of the average flow velocity of water droplets ejected from the water discharge device 2. By applying 1.7 (m / sec) as described above and setting the average flow velocity of water droplets ejected from the water discharge device 2 to 1.7 (m / sec) or more, the water discharge device 2 forms appropriate spray water discharge. It becomes possible, that is, it spreads over a range larger than the opening diameter of the water discharge port 13a and can discharge water intermittently.
 (4)粒子径の下限値
 次に、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均粒子径の下限値について説明する。この下限値は、本実施形態の吐水装置2によって噴射された水滴を浮遊させずに適切に下降させる観点から定められる。
(4) Lower limit value of particle diameter Next, the lower limit value of the average particle diameter of water droplets ejected from the water discharger 13 of the water discharge device 2 according to the present embodiment will be described. This lower limit is determined from the viewpoint of appropriately lowering the water droplets ejected by the water discharging device 2 of the present embodiment without floating.
 本実施形態では、一般的なストークスの式を変形した以下の式(7)を用いて、平均粒子径の下限値を規定することを考える。
Figure JPOXMLDOC01-appb-I000001
In the present embodiment, it is considered that the lower limit of the average particle diameter is defined using the following formula (7) obtained by modifying a general Stokes formula.
Figure JPOXMLDOC01-appb-I000001
 式(7)において、「d」は粒子径を示し、「η」は水の粘度を示し、「v」は終端速度を示し、「ρp」は水の密度を示し、「ρf」は空気の密度を示し、「g」は重力加速度を示している。終端速度vは、物体が、重力又は遠心力などの体積力と、速度に依存する抗力とを受けるときに、それらの力が釣り合って変化しなくなったときの速度であるものとする。この場合、物体は、単独で運動しているものとする、つまり、他の物体が存在していても、それからの影響を受けずに運動しているものとする。なお、式(7)では、粒子進行ベクトルの速度をゼロと仮定しており、実際には重力方向へ自由落下する。 In equation (7), “d” indicates the particle size, “η” indicates the viscosity of water, “v” indicates the terminal velocity, “ρ p ” indicates the density of water, and “ρ f ” indicates The density of air is shown, and “g” shows the acceleration of gravity. The terminal velocity v is assumed to be a velocity when the force is balanced and stops changing when the object receives a body force such as gravity or centrifugal force and a drag force depending on the velocity. In this case, it is assumed that the object is moving alone, that is, even if another object is present, it is moving without being affected by it. In equation (7), it is assumed that the velocity of the particle traveling vector is zero, and actually the particle falls freely in the direction of gravity.
 本実施形態では、上記の式(7)において、終端速度v≒0であるときの粒子径dを、平均粒子径の下限値として用いる。こうするのは、終端速度v≒0である状態は、吐水装置2から噴射された水滴が下降せずに浮遊している状態に相当するからである。終端速度vを0とすると式(7)が成り立たないため、終端速度vとして1(mm/sec)を式(7)に代入する。また、水温及び気温が5℃であるときの水の粘度η、水の密度ρp、空気の密度ρfの値を、それぞれ、式(7)に代入する。そうすると、約35(μm)の粒子径dが求められる。 In the present embodiment, in the above equation (7), the particle diameter d when the terminal velocity v≈0 is used as the lower limit value of the average particle diameter. This is because the state where the terminal velocity v≈0 corresponds to the state where the water droplets ejected from the water discharging device 2 are floating without falling. Since the expression (7) does not hold when the terminal speed v is 0, 1 (mm / sec) is substituted into the expression (7) as the terminal speed v. Further, the values of the water viscosity η, the water density ρ p , and the air density ρ f when the water temperature and the air temperature are 5 ° C. are substituted into the equation (7), respectively. Then, a particle diameter d of about 35 (μm) is obtained.
 本実施形態では、このように求められた35(μm)を、吐水装置2から噴射させる水滴の平均粒子径の下限値として用いる。この35(μm)を適用して、吐水装置2から噴射させる水滴の平均粒子径を35(μm)以上にすれば、吐水装置2から噴射された水滴を浮遊させずに適切に下降させることができるようになる。これにより、吐水装置2から噴射された水滴を、例えば利用者の手に適切に到達させることができるようになる。 In the present embodiment, 35 (μm) obtained in this way is used as the lower limit value of the average particle diameter of water droplets ejected from the water discharge device 2. If this 35 (μm) is applied and the average particle diameter of the water droplets ejected from the water discharging device 2 is 35 (μm) or more, the water droplets ejected from the water discharging device 2 can be appropriately lowered without floating. become able to. Thereby, for example, the water droplets ejected from the water discharge device 2 can appropriately reach the user's hand.
 (5)粒子径の上限値
 次に、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均粒子径の上限値について説明する。
(5) Upper limit of particle diameter Next, the upper limit of the average particle diameter of the water droplet injected from the water discharging part 13 of the water discharging apparatus 2 by this embodiment is demonstrated.
 本発明の発明者が行った測定によれば、吐水装置2から噴射された水滴の粒子径が9000(μm)を超えると、無風状態であっても、粒子径が維持されずに水滴が分裂することが判明した。このように、吐水装置2から噴射された水滴が途中で分裂すると、制御が困難となり、水跳ねを適切に抑制できなくなる。 According to the measurement performed by the inventors of the present invention, when the particle diameter of water droplets ejected from the water discharge device 2 exceeds 9000 (μm), the water droplets break up without being maintained even in a windless state. Turned out to be. As described above, when the water droplets ejected from the water discharging device 2 are split in the middle, it becomes difficult to control and water splash cannot be appropriately suppressed.
 したがって、本実施形態では、吐水装置2によって噴射された水滴がその粒子径を適切に維持して分裂しないようにする観点から、吐水装置2から噴射させる水滴の平均粒子径の上限値を規定する。具体的には、本実施形態では、上記した測定結果より、吐水装置2から噴射させる水滴の平均粒子径の上限値として9000(μm)を用いて、吐水装置2から噴射させる水滴の平均粒子径を9000(μm)以下にする。 Therefore, in this embodiment, the upper limit value of the average particle diameter of the water droplets ejected from the water spouting device 2 is specified from the viewpoint of preventing the water droplets ejected by the water spouting device 2 from maintaining the particle diameter appropriately and not splitting. . Specifically, in the present embodiment, from the above measurement results, using 9000 (μm) as the upper limit value of the average particle diameter of water droplets ejected from the water discharge device 2, the average particle diameter of water droplets ejected from the water discharge device 2 is used. Is 9000 (μm) or less.
 (6)好適な流速及び粒子径の範囲
 次に、図10を参照して、上記の(1)~(5)で述べた内容に応じた、本実施形態による吐水装置2の吐水部13から噴射させる水滴の平均流速及び平均粒子径の好適な範囲について説明する。
(6) Preferred Flow Rate and Range of Particle Size Next, referring to FIG. 10, from the water discharge unit 13 of the water discharge device 2 according to the present embodiment according to the contents described in (1) to (5) above. A suitable range of the average flow velocity and average particle diameter of the water droplets to be ejected will be described.
 図10は、本発明の実施形態による吐水装置2から噴射させる水滴の平均流速及び平均粒子径の好適な範囲を説明するための図である。図10は、横軸に流速(m/sec)を示しており、縦軸に粒子径(μm)を示している。具体的には、図10には、上記の(1)、(2)で述べた曲線L1及び直線L2に加えて(図7及び図8参照)、上記の(3)で述べた平均流速の下限値である1.7(m/sec)に対応する直線L3と、上記の(4)で述べた平均粒子径の下限値である35(μm)に対応する直線L4と、上記の(5)で述べた平均粒子径の上限値である9000(μm)に対応する直線L5と、を重ね合わせて示している。 FIG. 10 is a diagram for explaining a preferable range of the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2 according to the embodiment of the present invention. In FIG. 10, the horizontal axis represents the flow velocity (m / sec), and the vertical axis represents the particle diameter (μm). Specifically, in FIG. 10, in addition to the curves L1 and L2 described in (1) and (2) above (see FIGS. 7 and 8), the average flow velocity described in (3) above is shown. A straight line L3 corresponding to the lower limit of 1.7 (m / sec), a straight line L4 corresponding to the lower limit of 35 (μm) of the average particle diameter described in (4) above, and the above (5 And a straight line L5 corresponding to 9000 (μm) which is the upper limit value of the average particle diameter described in the above.
 図10に示すように、本実施形態では、上記の(1)~(5)で述べた条件を全て満たすように、曲線L1及び直線L2~L5によって規定される範囲R3内の流速及び粒子径を、吐水装置2から噴射させる水滴の平均流速及び平均粒子径として適用するようにする。 As shown in FIG. 10, in the present embodiment, the flow velocity and the particle diameter in the range R3 defined by the curve L1 and the straight lines L2 to L5 so as to satisfy all the conditions described in the above (1) to (5). Is applied as the average flow velocity and average particle diameter of water droplets ejected from the water discharge device 2.
 <本実施形態による作用効果>
 次に、本発明の実施形態による吐水装置の作用効果について説明する。
<Operational effects of this embodiment>
Next, the effect of the water discharging apparatus by embodiment of this invention is demonstrated.
 本実施形態によれば、節水と広範囲に渡る吐水とを実現可能な噴霧吐水を行う吐水装置2において、この吐水装置2から噴射された水滴の平均流速と平均粒子径とが上記の条件式(4)を満たすようにすることで、吐水装置2から噴射された水滴による水跳ねを適切に抑制することができる。 According to the present embodiment, in the water discharge device 2 that performs spray water discharge capable of realizing water saving and water discharge over a wide range, the average flow velocity and average particle diameter of water droplets ejected from the water discharge device 2 are the above conditional expressions ( By satisfy | filling 4), the water splash by the water droplet injected from the water discharging apparatus 2 can be suppressed appropriately.
 また、本実施形態によれば、吐水装置2から噴射された水滴の平均流速と平均粒子径とが上記の条件式(6)を満たすようにすることで、吐水装置2の噴霧吐水による適切な洗浄性能(手洗い性能など)を確保することができる。 Moreover, according to this embodiment, the average flow velocity and average particle diameter of the water droplets ejected from the water discharger 2 satisfy the above-described conditional expression (6), so that the water discharger 2 can be appropriately supplied with the spray water discharged. Cleaning performance (hand washing performance, etc.) can be ensured.
 また、本実施形態によれば、吐水装置2から噴射された水滴の平均流速を1.7(m/sec)以上にすることで、吐水装置2によって適切な噴霧吐水を形成することができる。つまり、吐水口13aの開口径よりも大きな範囲に広がって水を断続的に吐出する吐水形態を、適切に実現することができる。 Further, according to the present embodiment, by setting the average flow velocity of the water droplets ejected from the water discharge device 2 to 1.7 (m / sec) or more, appropriate water spray can be formed by the water discharge device 2. In other words, it is possible to appropriately realize a water discharge mode in which water is intermittently discharged over a range larger than the opening diameter of the water discharge port 13a.
 また、本実施形態によれば、吐水装置2から噴射された水滴の平均粒子径を35(μm)以上にすることで、吐水装置2から噴射された水滴を浮遊させずに適切に下降させることができる。これにより、吐水装置2から噴射された水滴を、例えば利用者の手に適切に到達させることができるようになる。 Moreover, according to this embodiment, the average particle diameter of the water droplets ejected from the water discharging device 2 is set to 35 (μm) or more, so that the water droplets ejected from the water discharging device 2 are appropriately lowered without floating. Can do. Thereby, for example, the water droplets ejected from the water discharge device 2 can appropriately reach the user's hand.
 また、本実施形態によれば、吐水装置2から噴射された水滴の平均粒子径を9000(μm)以下にすることで、吐水装置2から噴射された水滴が途中で分裂してしまうことを適切に抑制することができる。これにより、水跳ねを抑制するように制御しやすくなる。 Moreover, according to this embodiment, it is appropriate that the water droplets ejected from the water spouting device 2 break up in the middle by setting the average particle diameter of the water droplets ejected from the water spouting device 2 to 9000 (μm) or less. Can be suppressed. Thereby, it becomes easy to control to suppress water splash.
 また、本実施形態によれば、吐水装置2の吐水口13aからの吐出角度θ(図3参照)を40~50度にすることで、吐水装置2からの噴霧吐水によって利用者の手全体を覆うことができ、手洗い性能を向上させることができる。 In addition, according to the present embodiment, by setting the discharge angle θ (see FIG. 3) from the water discharge port 13a of the water discharge device 2 to 40 to 50 degrees, the entire user's hand is sprayed by the spray water discharged from the water discharge device 2. It can be covered and the hand washing performance can be improved.
 <変形例>
 上記した実施形態では、吐水装置2から噴射された水滴の平均流速及び平均粒子径が、<噴霧吐水の流速及び粒子径>のセクションで述べた(1)~(5)の条件を全て満たすようにしていたが、こうすることに限定はされない。他の例では、吐水装置2から噴射された水滴の平均流速及び平均粒子径が、(1)~(5)のいずれか一以上の条件((1)~(5)の条件の種々の組み合わせも含む)を満たすようにしてもよい。
<Modification>
In the embodiment described above, the average flow velocity and average particle diameter of the water droplets ejected from the water discharger 2 satisfy all the conditions (1) to (5) described in the section <Flow velocity and particle diameter of spray water discharge>. However, this is not a limitation. In another example, the average flow velocity and the average particle diameter of water droplets ejected from the water discharge device 2 are any one or more of the conditions (1) to (5) (various combinations of the conditions (1) to (5)) May also be satisfied).
 また、上記した実施形態では、吐水装置2から、一般的な水道水(都市水)を吐水させていたが、この代わりに、例えば電解水などの、除菌機能を有する機能水(つまり除菌水)を吐水させてもよい。1つの例では、吐水装置2の流路15の上流側に電解槽を設けて、この電解槽によって生成した電解水を吐水部13から吐水させればよい。 Further, in the above-described embodiment, general tap water (city water) is discharged from the water discharge device 2, but instead, functional water having a sterilizing function, such as electrolyzed water (that is, sterilizing). Water) may be discharged. In one example, an electrolytic bath may be provided on the upstream side of the flow path 15 of the water discharging device 2, and the electrolytic water generated by the electrolytic bath may be discharged from the water discharging portion 13.
 また、上記した実施形態では、本発明を手洗器に適用した例を示したが(図1参照)、本発明の適用はこれに限定はされない。他の例では、本発明をキッチンに適用することができる。
 図11は、本発明の実施形態における変形例による吐水装置を適用したキッチンを斜め上方から見た斜視図である。図11に示すキッチン5は、主に、符号Mに示すように吐水口から水が広がっていくように霧状に吐水(噴霧吐水/ミスト吐水)を行う吐水装置6と、この吐水装置6から吐水された水を受け止めて排水口(図示せず)から排水する、水受け部としてのシンク7と、を有する。このようなキッチン5の吐水装置6に対して、上述した実施形態による吐水装置2と同様の構成を適用すれば、<本実施形態による作用効果>のセクションで述べた内容と同様の作用効果が得られる。
Moreover, although the example which applied this invention to the hand-washing machine was shown in above-described embodiment (refer FIG. 1), application of this invention is not limited to this. In another example, the present invention can be applied to a kitchen.
FIG. 11: is the perspective view which looked at the kitchen which applied the water discharging apparatus by the modification in embodiment of this invention from diagonally upward. The kitchen 5 shown in FIG. 11 mainly includes a water discharge device 6 that performs water discharge (spray water discharge / mist water discharge) in a mist shape so that water spreads from the water discharge port as indicated by reference numeral M, and the water discharge device 6. A sink 7 serving as a water receiving portion that receives the discharged water and drains it from a drain port (not shown). If the same structure as the water discharging apparatus 2 by embodiment mentioned above is applied with respect to the water discharging apparatus 6 of such a kitchen 5, the effect similar to the content described in the section of <the effect by this embodiment> is obtained. can get.
 1 手洗器
 2、6 吐水装置
 3 ボウル
 5 キッチン
 6 シンク
 11 吐水管
 13 吐水部
 13a 吐水口
 15 流路
DESCRIPTION OF SYMBOLS 1 Washing machine 2, 6 Water discharging apparatus 3 Bowl 5 Kitchen 6 Sink 11 Water discharging pipe 13 Water discharging part 13a Water discharging port 15 Flow path

Claims (6)

  1.  水受け部との間に所定の開放空間を確保して設置され、この水受け部に向って吐水する吐水装置であって、
     吐水口から所定角度にて広がっていくように水滴を噴射する吐水部であって、所定の流量を吐水するよう設定された上記吐水部を有し、
     上記吐水部から噴射された水滴は、その平均流速X(m/sec)と平均粒子径Y(μm)とが以下の条件式(1)を満たす、ことを特徴とする吐水装置。
      Y≦9300×X(-1.5)  式(1)
    A water discharging device that is installed with a predetermined open space between the water receiving portion and discharges water toward the water receiving portion,
    A water discharger that sprays water droplets so as to spread at a predetermined angle from the water discharge port, and has the water discharger set to discharge a predetermined flow rate,
    The water droplets ejected from the water discharge part have a mean flow velocity X (m / sec) and a mean particle diameter Y (μm) satisfying the following conditional expression (1).
    Y ≦ 9300 × X (-1.5) Formula (1)
  2.  上記吐水部から噴射された水滴の平均流速Xと平均粒子径Yとが更に以下の条件式(2)を満たす、請求項1に記載の吐水装置。
      Y≧-360×X+1500  式(2)
    The water discharge device according to claim 1, wherein the average flow velocity X and the average particle diameter Y of the water droplets ejected from the water discharge portion further satisfy the following conditional expression (2).
    Y ≧ −360 × X + 1500 Formula (2)
  3.  上記吐水部から噴射された水滴の平均流速Xは1.7(m/sec)以上である、請求項1又は2に記載の吐水装置。 The water discharge device according to claim 1 or 2, wherein an average flow velocity X of water droplets ejected from the water discharge unit is 1.7 (m / sec) or more.
  4.  上記吐水部から噴射された水滴の平均粒子径Yは35(μm)以上である、請求項1乃至3の何れか1項に記載の吐水装置。 The water discharge device according to any one of claims 1 to 3, wherein an average particle diameter Y of water droplets ejected from the water discharge portion is 35 (µm) or more.
  5.  上記吐水部から噴射された水滴の平均粒子径Yは9000(μm)以下である、請求項1乃至4の何れか1項に記載の吐水装置。 The water discharge device according to any one of claims 1 to 4, wherein an average particle diameter Y of water droplets ejected from the water discharge portion is 9000 (µm) or less.
  6.  上記吐水部は、上記所定角度として40~50度の角度にて広がっていくように水滴を噴射する、請求項1乃至5の何れか1項に記載の吐水装置。 The water discharging device according to any one of claims 1 to 5, wherein the water discharging unit sprays water droplets so as to spread at an angle of 40 to 50 degrees as the predetermined angle.
PCT/JP2015/082762 2015-03-26 2015-11-20 Water discharging device WO2016151941A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017507333A JP6641674B2 (en) 2015-03-26 2015-11-20 Water spouting device
CN201580056949.6A CN107075844B (en) 2015-03-26 2015-11-20 Water discharge device
US15/529,922 US20180044898A1 (en) 2015-03-26 2015-11-20 Water discharging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064229 2015-03-26
JP2015064229 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016151941A1 true WO2016151941A1 (en) 2016-09-29

Family

ID=56977180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082762 WO2016151941A1 (en) 2015-03-26 2015-11-20 Water discharging device

Country Status (4)

Country Link
US (1) US20180044898A1 (en)
JP (1) JP6641674B2 (en)
CN (1) CN107075844B (en)
WO (1) WO2016151941A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112030A (en) * 2008-11-05 2010-05-20 Toto Ltd Faucet and integrated kitchen system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6921769U (en) * 1968-06-06 1969-11-13 American Standard Inc Eine Ges OUTLET MOUTH PIECE FOR LOW-SPRAYING FLOWS
ATE455597T1 (en) * 2002-02-22 2010-02-15 Takayasu Okubo WATER SPRAY PLATE AND SHOWER HEAD
DK1720660T3 (en) * 2004-02-26 2010-03-22 Pursuit Dynamics Plc Improvements in method and apparatus for producing a fog
CH698604B1 (en) * 2005-11-29 2009-09-15 Creaholic Sa Wash.
US8746357B2 (en) * 2006-10-20 2014-06-10 Ada Technologies, Inc. Fine water mist multiple orientation discharge fire extinguisher
US20080301859A1 (en) * 2007-06-07 2008-12-11 Terry Chou Bridge Device for Swimming Goggles
JP4207090B1 (en) * 2007-07-31 2009-01-14 Toto株式会社 Water discharge device
KR101436708B1 (en) * 2010-03-18 2014-09-01 가부시키가이샤 리코 Liquid droplet ejecting method, liquid droplet ejection apparatus, inkjet recording apparatus, production method of fine particles, fine particle production apparatus, and toner
JP5854365B2 (en) * 2010-09-29 2016-02-09 Toto株式会社 Foam spouting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112030A (en) * 2008-11-05 2010-05-20 Toto Ltd Faucet and integrated kitchen system

Also Published As

Publication number Publication date
CN107075844A (en) 2017-08-18
CN107075844B (en) 2019-05-17
JPWO2016151941A1 (en) 2018-01-18
US20180044898A1 (en) 2018-02-15
JP6641674B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5828363B2 (en) Kitchen faucet
CN104080544B (en) Atomising device
Watson et al. Water entry dynamics of spheres with heterogeneous wetting properties
CN107284034B (en) Liquid management system
JP6108353B2 (en) Full cone spray nozzle
WO2016151941A1 (en) Water discharging device
JP5502708B2 (en) Seeding device
JP2010142894A (en) Liquid cyclone apparatus
Zhang et al. Far-field properties of aerated water jets in air
JP5631174B2 (en) Seeding device
CN204528732U (en) A kind of veil type dust arrester
JP2013091019A (en) Water drop appreciation apparatus
WO2012137955A1 (en) Hygienic washing device
JP2010112030A (en) Faucet and integrated kitchen system
US20200391228A1 (en) Nozzle assembly and method for delivery of adjustably-sized droplets in a spray
CN106269626A (en) Anti-splash guard shield
US20220324419A1 (en) Vehicular washing method
JP6800868B2 (en) Seeding device
JP2019117151A (en) Seeding device
JP2019075413A5 (en)
Ko et al. A Study on the Phenomena of Droplet Impact onto a Liquid Film
JP2010240580A (en) Liquid injection nozzle and shower head
CN101363237A (en) Commutating device
JP2017161154A (en) Cooling device
JPH0760164A (en) Contraction nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529922

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017507333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886493

Country of ref document: EP

Kind code of ref document: A1