WO2016151826A1 - Plasma thermal spray apparatus - Google Patents

Plasma thermal spray apparatus Download PDF

Info

Publication number
WO2016151826A1
WO2016151826A1 PCT/JP2015/059272 JP2015059272W WO2016151826A1 WO 2016151826 A1 WO2016151826 A1 WO 2016151826A1 JP 2015059272 W JP2015059272 W JP 2015059272W WO 2016151826 A1 WO2016151826 A1 WO 2016151826A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
sub
main
central axis
supply amount
Prior art date
Application number
PCT/JP2015/059272
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 北村
田中 誠
秀雄 石丸
智司 崎山
Original Assignee
中国電力株式会社
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 国立大学法人山口大学 filed Critical 中国電力株式会社
Priority to JP2016542790A priority Critical patent/JP6111477B2/en
Priority to PCT/JP2015/059272 priority patent/WO2016151826A1/en
Publication of WO2016151826A1 publication Critical patent/WO2016151826A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch

Definitions

  • the present invention has a main torch having a main anode and a plurality of sub torches having sub-cathodes, and sprays a thermal spray material melted by a plasma flame formed along the central axis of the main anode onto a substrate.
  • the present invention relates to a plasma spraying apparatus for forming a coating.
  • a material discharge hole is provided at the center of the center axis of the main anode of the main torch, and the center of the main electrode is formed from the material discharge hole.
  • a plasma spraying apparatus that can supply a thermal spray material along an axis, efficiently melt the thermal spray material, and spray it onto a base material to form a film (see, for example, Patent Document 1).
  • the main torch electrode is an anode whose temperature is lower than that of the cathode, and the cathode that needs to emit thermionic electrons to maintain the plasma arc is the sub torch side. Since the adhesion of the sprayed material to the main electrode side is suppressed, it is possible to provide a material discharge hole in the main electrode. That is, in the past, in order to avoid adhesion of the thermal spray material to the main electrode, the thermal spray material was supplied from a direction inclined with respect to the central axis of the main electrode where the plasma arc is formed. It became possible to supply thermal spray material along.
  • an object of the present invention is to provide a plasma spraying apparatus capable of forming a coating film by changing supply conditions of plasma gas.
  • the plasma spraying apparatus of the present invention includes a main anode having a material feeding pipe for feeding a material supply gas containing a sprayed material along a central axis, and the main plasma along the central axis.
  • a main torch for introducing gas and a central axis intersecting with the central axis of the main anode and arranged on a circumference centering on the central axis of the main anode and spaced apart from each other in the circumferential direction A plurality of sub-torches each having a sub-cathode, a plasma arc formed between the main anode and the sub-cathode, and the main plasma introduced along the central axis of the main anode
  • the plasma spraying apparatus includes a supply amount control unit that controls a supply amount of the sub-plasma gas. It is a plasma spraying device characterized.
  • the supply amount of the secondary plasma gas introduced toward the plasma flame formed along the central axis of the main anode and supplied along the central axis of the secondary cathode is controlled. Since the supply amount control unit is provided, the supply of the subplasma gas is controlled by controlling the supply amount of the subplasma gas acting from the direction intersecting the material supply gas when the sprayed material to be melted reaches the substrate. It is possible to form films with different amounts.
  • the supply amount control unit controls the supply amount of the sub-plasma gas so as to change the characteristics of the film to be formed. According to such a plasma spraying apparatus, it is possible to control the supply amount of the secondary plasma gas by the supply amount control unit to form films having different characteristics.
  • the characteristic of the coating is the thickness of the coating to be formed. According to such a plasma spraying apparatus, it is possible to form coatings having different thicknesses by controlling the supply amount of the secondary plasma gas by the supply amount control unit.
  • the supply amount control unit controls the supply amount of the secondary plasma gas to be increased as the thickness of the coating is increased. According to such a plasma spraying apparatus, it is possible to form a thick film by increasing the supply amount of the secondary plasma gas by the supply amount control unit.
  • the characteristic of the film may be the hardness of the film to be formed. According to such a plasma spraying apparatus, it is possible to control the supply amount of the secondary plasma gas by the supply amount control unit to form films having different hardnesses.
  • the supply amount control unit controls the supply amount of the secondary plasma gas to be increased as the hardness of the coating is increased. According to such a plasma spraying apparatus, it is possible to form a coating with high hardness by increasing the supply amount of the secondary plasma gas by the supply amount control unit, and by reducing the supply amount of the secondary plasma gas. It is possible to form a film with low hardness.
  • a characteristic database in which the characteristic of the film and the supply amount of the sub-plasma gas are associated with each other is generated, and the supply amount control unit includes the characteristic and the characteristic of the film to be formed. It is desirable to control the supply amount of the secondary plasma gas based on a database. According to such a plasma spraying apparatus, the supply amount control unit controls the supply amount of the secondary plasma gas based on the characteristics of the film to be formed and the characteristic database generated in advance. Easy.
  • the supply amount control unit observes at least one of a particle velocity and a particle temperature of the sprayed material sprayed on the base material, and observes the observation result and the coating of the coating to be formed. It is desirable to control the supply amount of the secondary plasma gas based on the characteristics. According to such a plasma spraying apparatus, the supply amount of the secondary plasma gas is controlled based on the observation result obtained by observing at least one of the particle velocity and the particle temperature of the sprayed material sprayed on the base material. Therefore, it is possible to form a film having desired characteristics.
  • the plurality of sub torches be arranged uniformly in the circumferential direction.
  • the plurality of sub-torches are arranged uniformly in the circumferential direction, so that the sub-plasma gas is supplied from the circumference centered on the central axis of the main anode. Since it acts on the gas, it is possible to cause the secondary plasma gas to act in a balanced manner.
  • a plasma spraying apparatus capable of forming a coating by changing the supply conditions of the spraying material.
  • FIG. 1 is a diagram showing a schematic configuration of a twin cathode type plasma spraying apparatus 100 as an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is an image which shows the state of the plasma flame 23 when subplasma gas 13, 49 is sprayed from two subtorches 2,39. It is a graph which shows the relationship between the supply amount of subplasma gas 13,49, and the thickness of the membrane
  • 1 is a diagram showing a schematic configuration of an integrated plasma spray apparatus 101.
  • FIG. 1 is a diagram showing a schematic configuration of a twin cathode type plasma spraying apparatus 100 as an embodiment of the present invention.
  • the electrode in the main torch 1 is the main anode (anode) 3 and the electrodes in the sub torches 2 and 39 are the sub cathode (cathode). 10 and 40.
  • the two sub-torches 2 and 39 have their center axes C2 intersecting with the center axis C1 of the main anode 3 substantially at right angles, and on the circumference centering on the center axis C1 of the main anode 3, They are arranged at intervals. Since the plasma spraying apparatus 100 of the present embodiment has two sub torches 2, the two sub torches 2 and 39 are arranged so as to face each other.
  • the main torch 1 includes a main anode 3, a main mantle 4 surrounding the main anode 3, an insulator 27 that insulates the main anode 3 and the main mantle 4, and the like, and is concentrically formed by the main mantle 4 and the insulator 27. Is retained.
  • the main anode 3 is formed of a material having excellent electrical conductivity, for example, a metal such as copper.
  • the main anode 3 includes a material feed pipe 19 having a spray material discharge hole 19a at the center of the tip on the central axis C1.
  • the main mantle 4 includes an opening (nozzle portion) 4a at the tip, and a tapered portion 4b provided between the opening 4a and the insulator 27.
  • the insulator 27 has a main plasma gas inlet 5 through which the main plasma gas 6 is introduced, and a swirl flow forming portion 50 for the introduced main plasma gas 6.
  • the main plasma gas 6 is introduced into the gas annular chamber 51, passes through the four swirl flow forming holes 52, and passes through the inner wall 53 (between the inner wall 53 and the main anode 3) of the insulator 27. It flows toward the opening 4a of the main mantle 4 so as to turn in the space.
  • the swirl flow forming holes 52 may be arranged in a single number or in a plurality, and in the case where a plurality of the swirl flow holes 52 are arranged, the swirl flow forming holes 52 should be evenly arranged around the central axis C1. Is preferred.
  • the two sub-torches 2 and 39 have the same structure, and the sub-cathodes (sub-torch activation electrodes) 10 and 40, sub-mantles 11 and 41 surrounding the sub-cathodes 10 and 40, and sub-cathodes 10 and 40.
  • Insulators 28 and 47 that insulate the outer jackets 11 and 41 from each other, and the central axis C2 of the secondary torches 2 and 39, that is, the central axis C2 of the secondary cathodes 10 and 40,
  • the central axis C ⁇ b> 1 of the main anode 3 and the main anode 3 and the sub-cathodes 10, 40 are arranged so as to intersect with each other.
  • the sub-cathodes 10 and 40 are made of a material having a high melting point, such as tungsten.
  • the sub-cathodes 10 and 40 are concentrically held by the sub-mantles 11 and 41 and the insulators 28 and 47.
  • the auxiliary mantles 11 and 41 are provided with holes 11a and 41a at the tip portions.
  • the insulators 28, 47 form a swirl flow similar to the sub-plasma gas inlets 12, 48 for introducing the sub-plasma gases 13, 49 toward the central axis C 1 of the main anode 3 and the insulator 27 of the main torch 1. Part 50.
  • a sub-plasma gas automatic supply device 30 for introducing the sub-plasma gases 13 and 49 is connected to the sub-plasma gas introduction ports 12 and 48, and the sub-plasma gas automatic supply device 30 is controlled as a supply amount control unit. It can be controlled by the device 31.
  • the positive terminal of the main power supply 7 is connected to the sub jacket 11 via the switch 45 after passing through the main anode 3 and the switch 55, and the positive terminal of the sub power supply 42 and the switch 44 are connected.
  • the negative terminal of the main power source 7 is connected to the main mantle 4 via the switch 8.
  • the negative terminal of the sub power source 42 is connected to the sub cathode 10 via the switch 46 and the negative terminal of the main power source 7 via the switch 9, and the negative terminal of the main power source 7 via the switch 9. It is connected to the sub-cathode 40 via the terminal and the switch 43.
  • the thermal spray material 20a indicates, for example, a conductive material such as metal, an insulating material such as ceramics, and the like.
  • An inert gas that can be turned into plasma such as argon or helium, is introduced into the main torch 1 from the main plasma gas inlet 5 as a main plasma gas 6 to form a swirling flow of the main plasma gas 6.
  • a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the main anode 3 and the main mantle 4 by the main power source 7.
  • a plasma arc is formed from the tip of the main anode 3 toward the main mantle 4. Even after the superposition of the high-frequency voltage is stopped, the plasma arc is maintained by releasing thermoelectrons from the main mantle 4. The main plasma gas 6 is heated by the plasma arc and becomes a plasma flame 16 which is emitted from the opening 4 a of the main mantle 4.
  • an auxiliary gas such as argon or helium, which can be converted into plasma, is used as the secondary plasma gas 13 from the secondary plasma gas automatic supply device 30 controlled by the control device 31 via the secondary plasma gas inlet 12.
  • the swirl flow of the auxiliary plasma gas 13 is formed.
  • a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the sub cathode 10 and the sub jacket 11 by the sub power source 42.
  • a secondary plasma arc is formed from the tip 10 a of the secondary cathode 10 toward the secondary jacket 11.
  • the plasma arc is maintained by thermionic emission from the sub-cathode 10 as in the conventional torch.
  • the sub-plasma gas 13 is heated by the plasma arc, and becomes a plasma flame 17 and is emitted from the hole 11 a of the sub-clutch 11.
  • an inert gas that can be turned into plasma such as argon or helium
  • an inert gas that can be turned into plasma such as argon or helium
  • the secondary plasma gas automatic supply device 30 controlled by the control device 31 via the secondary plasma gas inlet 48.
  • a swirling flow of the auxiliary plasma gas 49 is formed.
  • a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the sub cathode 40 and the sub jacket 41 by the sub power source 42.
  • a plasma arc is formed from the tip 40a of the sub cathode 40 toward the sub jacket 41.
  • the plasma arc is maintained by thermionic emission from the sub-cathode 40 as in the conventional torch.
  • the sub-plasma gas 49 is heated by the plasma arc and becomes a plasma flame 56 which is discharged from the hole 41 a of the sub-mantle jacket 41.
  • the main axis 3 and the sub-cathode 40 are emitted from the holes 41 a of the sub-cannula 41.
  • the plasma flame 56 intersects the plasma flame 16 formed by heating the plasma gas emitted from the main torch 1 by a hairpin-shaped plasma arc extending from the tip 10 a of the sub-cathode 10 to the anode point of the main anode 3.
  • a power transmission path is formed between the sub-cathodes 10 and 40 and the main anode 3.
  • a T-shaped plasma arc from the tips 10a, 40a of the sub-cathodes 10, 40 to the anode point of the main anode 3 is formed.
  • a plasma flame 23 is formed on the same axis of the main torch 1 by heating the main plasma gases 6, 13 and 49 emitted from the sub torches 2 and 39 and the main torch 1.
  • the material supply pipe 19 is supplied with a material supply gas 20 in which a thermal spray material 20a is mixed with an inert gas that can be turned into plasma, such as argon or helium.
  • a thermal spray material 20a discharged from the material feed pipe 19 through the thermal spray material discharge hole is supplied to the axial center of the plasma flame 23 formed on the central axis of the main anode 3 by the main anode 3 and the sub-cathode 10. And is melted by the plasma flame 23.
  • the plasma flame 23 includes sub-plasma gases 13 and 49 from the holes 11 a and 41 a of the sub-torches 2 and 39 that intersect the central axis C 1 of the main torch 1, that is, the central axis C 1 of the main anode 3. It is introduced from a direction substantially orthogonal to the central axis C1. For this reason, the plasma flame 23 is pressed to the central axis C1 side of the main anode 3 by the auxiliary plasma gases 13 and 49 introduced from two directions.
  • the melt 21 in which the thermal spray material 20 a is melted proceeds toward the base material 25 together with the plasma flame 23.
  • a gas suitable for film formation is applied to the base material 25 at a more appropriate temperature by ejecting a gas to the plasma from the plasma trimming unit 22 provided on the connecting pipe 26. By depositing, the high-quality film 24 can be efficiently formed.
  • two sub-torches are provided in the plasma spraying apparatus 100, but three or more sub-torches may be provided.
  • these sub-torches are arranged so that the central axis of the electrode included in the sub-torch intersects the front of the main anode 3 and at one point of the central axis outside the main torch 1. It is preferable that they are arranged, and it is more preferable that they are evenly arranged on the circumference of a circle perpendicular to the central axis with the intersecting point as the center.
  • each sub-torch is arranged so that the central axis of each sub-torch intersects the central axis of the main torch perpendicularly at the above-mentioned intersection. Preferably it is.
  • the main electrode is a cathode that needs to emit a quantity of thermoelectrons to maintain a plasma arc
  • the main anode 3 Is an anode whose temperature is lower than that of the sub-cathodes 10 and 40, preventing the supplied sprayed material from adhering to the softened main electrode.
  • a swirl flow is generated by the main plasma gas 6 introduced into the main torch 1 having the main anode, and the adhesion of the sprayed material 20a into the main torch 1 is suppressed, so that the sprayed material discharge hole 19a becomes the sprayed material 20a. It is prevented from being blocked by.
  • the thermal spray material 20a was supplied from a direction inclined with respect to the central axis of the main electrode to be formed, it became possible to supply the thermal spray material along the central axis of the main electrode.
  • the thermal spray material can be easily supplied to the center of the plasma flame, and the thermal spray material can be more reliably brought to the high temperature portion of the plasma flame and can be prevented from being scattered to the periphery. That is, it becomes possible to stably supply the thermal spray material to the high temperature part of the plasma flame, and to form a stable coating according to the supply amount of the thermal spray material and the plasma gas.
  • FIG. 3 is an image showing a state of the plasma flame 23 when the auxiliary plasma gases 13 and 49 are introduced from the two auxiliary torches 2 and 39.
  • FIG. 4 is a graph showing the relationship between the supply amount of the auxiliary plasma gases 13 and 49 and the thickness of the coating 24 to be formed.
  • the central axis C1 of the main torch 1 is obtained by photographing a plasma flame 23 extending from the spray material discharge hole 19a of the main torch 1 along the central axis C1 of the main torch 1 with a high-speed camera or the like. It was confirmed that the sub-plasma gases 13 and 49 introduced so as to go from two directions orthogonal to each other toward the central axis C1 of the main torch 1 suppress the air flow of particles diffusing in the direction away from the central axis C1. .
  • the thickness of the film 24 can be changed as a characteristic of the film 24 to be formed by controlling the supply amount of the sub-plasma gases 13 and 49. That is, the thicker film 24 is formed as the supply amount of the auxiliary plasma gases 13 and 49 is increased, or the thinner film 24 is formed as the supply amount of the auxiliary plasma gases 13 and 49 is decreased. Is possible. That is, by forming the coating film 24 by changing the supply amounts of the sub-plasma gases 13 and 49, it is possible to form the coating film 24 having different film thicknesses.
  • FIG. 5 is a graph showing the relationship between the supply amount of the auxiliary plasma gases 13 and 49 and the hardness of the coating 24 to be formed.
  • the hardness of the coating 24 increases as the supply amount of the auxiliary plasma gases 13 and 49 increases. From this result, it can be seen that the hardness can be changed as a characteristic of the film 24 formed by controlling the supply amount of the sub-plasma gases 13 and 49. That is, the film 24 having a high hardness is formed by increasing the supply amount of the sub-plasma gases 13 and 49, or the film 24 having a low hardness is formed by decreasing the supply amount of the sub-plasma gases 13 and 49. Is possible.
  • the plasma spraying apparatus 100 of the present embodiment from the direction intersecting the material supply gas 20 fed along the central axis C1 of the main anode 3, along the central axis C2 of the sub-cathodes 10, 40. Since the control device 31 for controlling the supply amount of the introduced secondary plasma gases 13 and 49 is provided, when the molten thermal spray material 20a reaches the substrate 25, it acts from the direction intersecting the plasma flame 23. It is possible to form the coating 24 by varying the amount of the subplasma gas 13 and 49 to be supplied.
  • the control device 31 controls the supply amount of the sub-plasma gas 13, 49 to increase the supply amount of the sub-plasma gas 13, 49 to form the thick film 24, or the sub-plasma gas 13, It is possible to form the thin film 24 by reducing the supply amount of 49. That is, by forming the coating film 24 by changing the supply amount of the sub-plasma gases 13 and 49, it is possible to form the coating film 24 having different film thicknesses.
  • the coating 24 having different hardness it is also possible to form the coating 24 having different hardness by controlling the supply amount of the sub-plasma gas 13, 49 by the control device 31. For this reason, it is possible to form the coating 24 having high hardness by increasing the supply amount of the sub-plasma gases 13 and 49 by the control device 31, and to decrease the supply amount of the sub-plasma gases 13 and 49. Thus, it is possible to form the coating 24 having a low hardness.
  • the sub plasma gases 13 and 49 are centered on the central axis C 1 of the main anode 3. Since it acts on the material supply gas 20 evenly from above the circumference, it is possible to cause the sub-plasma gases 13, 49 to act in a balanced manner.
  • the control of the auxiliary plasma gas automatic supply device 30 by the control device 31 is, for example, a database based on data as shown in the graphs of FIGS. 4 and 5, that is, the thickness or hardness of the formed film 24 and the auxiliary plasma gas 13, It is possible to generate a characteristic database that associates 49 supply amounts. Based on this characteristic database, the supply amount of the sub-plasma gases 13 and 49 with respect to the thickness or hardness of the film 24 to be formed is calculated, and the supply amount of the plasma gases 13 and 49 is controlled according to the conditions, thereby easily It is possible to control the thickness or hardness of the coating.
  • FIG. 6 is a diagram showing a schematic configuration of the plasma spraying apparatus 101 in which the main torch 1 and the sub torch 2 are integrated.
  • the plasma spraying apparatus 100 in which the main torch 1 and the sub-torch 2 are separately separated has been described.
  • FIG. 6 on the outlet side of the opening 4 a in the outer shell of the main torch 1.
  • An integrated plasma spraying apparatus 101 of the main torch 1 and the auxiliary torches 2 and 39 provided with the auxiliary torches 2 and 39 through the insulator 60 may be used.

Abstract

This plasma thermal spray apparatus comprises: a main torch for introducing a main plasma gas along a central axis, the main torch comprising a main anode having a material delivery tube for delivering a material supply gas containing a thermal spray material along the central axis; and a plurality of subtorches having a central axis that intersects the central axis of the main anode and disposed circumferentially apart from one another on a circumference around the central axis of the main anode, the subtorches comprising a subcathode. The plasma thermal spray apparatus forms a coating of the thermal spray material by: delivering the material supply gas through the material delivery tube to a plasma flame generated along the central axis of the main anode from plasma arcs formed between the main anode and the subcathodes, the main plasma gas introduced along the central axis of the main anode, and a subplasma gas introduced along the central axes of the subcathodes towards the central axis of the main anode; and melting and spraying the thermal spray material onto a base material. The plasma thermal spray apparatus is provided with supply rate control units for controlling the supply rate of the subplasma gas.

Description

プラズマ溶射装置Plasma spraying equipment
 本発明は、主陽極を備える主トーチ及び副陰極を備える複数の副トーチを有し、前記主陽極の前記中心軸に沿うように形成されるプラズマ炎により溶融された溶射材料を基材に吹き付けて皮膜を形成するプラズマ溶射装置に関する。 The present invention has a main torch having a main anode and a plurality of sub torches having sub-cathodes, and sprays a thermal spray material melted by a plasma flame formed along the central axis of the main anode onto a substrate. The present invention relates to a plasma spraying apparatus for forming a coating.
 従来、主陽極を備える主トーチ及び副陰極を備える複数の副トーチを有するプラズマ溶射装置において、主トーチの主陽極の中心軸の先端中央に材料吐出孔を設け、材料吐出孔から主電極の中心軸に沿うように溶射材料を供給し、溶射材料を効率よく溶融させて基材に吹き付けて膜を形成することができるプラズマ溶射装置が知られている(例えば、特許文献1参照)。 Conventionally, in a plasma spraying apparatus having a main torch having a main anode and a plurality of sub torches having sub-cathodes, a material discharge hole is provided at the center of the center axis of the main anode of the main torch, and the center of the main electrode is formed from the material discharge hole. There is known a plasma spraying apparatus that can supply a thermal spray material along an axis, efficiently melt the thermal spray material, and spray it onto a base material to form a film (see, for example, Patent Document 1).
特開2010-110669号公報JP 2010-110669 A
 上記のようなプラズマ溶射装置では、主トーチの電極を、陰極よりも温度が低い陽極とし、プラズマアークを維持する量の熱電子を放出する必要のある陰極を副トーチ側とすることで、軟化した主電極側への溶射材料の付着が抑えられるため、主電極に材料吐出孔を設けることが可能である。すなわち、以前は主電極への溶射材料の付着を避けるために、プラズマアークが形成される主電極の中心軸に対して傾斜する方向から溶射材料を供給していたが、主電極の中心軸に沿うように溶射材料を供給することができるようになった。これにより、溶射材料が周辺に対してより温度が高いプラズマ炎の中心に確実に供給できるようになるとともに、溶射材料の周辺への飛散を抑えることができるようになった。さらに、実験による検証の結果、発明者らは、これまでのプラズマ溶射装置に存在しなかった当該プラズマ溶射装置の副電極に沿うように導入される副プラズマガスの供給条件をパラメータとして変化させることで、皮膜の特性を制御できることが明らかとなった。
 そこで本発明は、プラズマガスの供給条件を異ならせて皮膜を形成することが可能なプラズマ溶射装置を提供することを目的とする。
In the plasma spraying apparatus as described above, the main torch electrode is an anode whose temperature is lower than that of the cathode, and the cathode that needs to emit thermionic electrons to maintain the plasma arc is the sub torch side. Since the adhesion of the sprayed material to the main electrode side is suppressed, it is possible to provide a material discharge hole in the main electrode. That is, in the past, in order to avoid adhesion of the thermal spray material to the main electrode, the thermal spray material was supplied from a direction inclined with respect to the central axis of the main electrode where the plasma arc is formed. It became possible to supply thermal spray material along. As a result, the sprayed material can be reliably supplied to the center of the plasma flame having a higher temperature with respect to the periphery, and scattering of the sprayed material to the periphery can be suppressed. Furthermore, as a result of verification by experiment, the inventors changed the supply condition of the subplasma gas introduced along the subelectrode of the plasma spraying apparatus, which did not exist in the conventional plasma spraying apparatus, as a parameter. It became clear that the properties of the film could be controlled.
Therefore, an object of the present invention is to provide a plasma spraying apparatus capable of forming a coating film by changing supply conditions of plasma gas.
 前記目的を達成するために本発明のプラズマ溶射装置は、中心軸に沿って溶射材料を含む材料供給ガスを送入する材料送入管を有する主陽極を備え、前記中心軸に沿って主プラズマガスを導入する主トーチと、中心軸が前記主陽極の前記中心軸と交差し、当該主陽極の前記中心軸を中心とする円周上に、当該円周方向に互いに間隔を隔てて配置される副陰極を備える複数の副トーチと、を有し、前記主陽極と前記副陰極との間に形成されるプラズマアークと、前記主陽極の前記中心軸に沿うように導入される前記主プラズマガスと、前記副陰極の前記中心軸に沿い前記主陽極の前記中心軸に向かうように導入される前記副プラズマガスと、により前記主陽極の前記中心軸に沿うように形成されるプラズマ炎に、前記材料送入管から前記材料供給ガスが送入されて前記溶射材料が溶融され基材に吹き付けられて前記溶射材料の皮膜を形成するプラズマ溶射装置において、前記副プラズマガスの供給量を制御する供給量制御部を備えることを特徴とするプラズマ溶射装置である。 In order to achieve the above object, the plasma spraying apparatus of the present invention includes a main anode having a material feeding pipe for feeding a material supply gas containing a sprayed material along a central axis, and the main plasma along the central axis. A main torch for introducing gas and a central axis intersecting with the central axis of the main anode and arranged on a circumference centering on the central axis of the main anode and spaced apart from each other in the circumferential direction A plurality of sub-torches each having a sub-cathode, a plasma arc formed between the main anode and the sub-cathode, and the main plasma introduced along the central axis of the main anode A plasma flame formed along the central axis of the main anode by a gas and the sub-plasma gas introduced along the central axis of the sub-cathode and toward the central axis of the main anode. The material from the material feed tube In a plasma spraying apparatus in which a supply gas is fed and the sprayed material is melted and sprayed onto a substrate to form a coating of the sprayed material, the plasma spraying apparatus includes a supply amount control unit that controls a supply amount of the sub-plasma gas. It is a plasma spraying device characterized.
 このようなプラズマ溶射装置によれば、主陽極の中心軸に沿うように形成されるプラズマ炎に向かって導入され副陰極の中心軸に沿うように供給される副プラズマガスの供給量を制御する供給量制御部を備えているので、溶融される溶射材料を基材上に到達する際に材料供給ガスに交差する方向から作用する副プラズマガスの供給量を制御することにより副プラズマガスの供給量を異ならせて皮膜を形成することが可能である。 According to such a plasma spraying apparatus, the supply amount of the secondary plasma gas introduced toward the plasma flame formed along the central axis of the main anode and supplied along the central axis of the secondary cathode is controlled. Since the supply amount control unit is provided, the supply of the subplasma gas is controlled by controlling the supply amount of the subplasma gas acting from the direction intersecting the material supply gas when the sprayed material to be melted reaches the substrate. It is possible to form films with different amounts.
 かかるプラズマ溶射装置であって、前記供給量制御部は、形成される前記皮膜の特性を変えるべく前記副プラズマガスの供給量を制御することが望ましい。
 このようなプラズマ溶射装置によれば、供給量制御部により副プラズマガスの供給量を制御して互いに特性の異なる皮膜を形成することが可能である。
In this plasma spraying apparatus, it is preferable that the supply amount control unit controls the supply amount of the sub-plasma gas so as to change the characteristics of the film to be formed.
According to such a plasma spraying apparatus, it is possible to control the supply amount of the secondary plasma gas by the supply amount control unit to form films having different characteristics.
 かかるプラズマ溶射装置であって、前記皮膜の特性は、形成される前記皮膜の厚みであることが望ましい。
 このようなプラズマ溶射装置によれば、供給量制御部により副プラズマガスの供給量を制御して互いに厚みが異なる皮膜を形成することが可能である。
In such a plasma spraying apparatus, it is desirable that the characteristic of the coating is the thickness of the coating to be formed.
According to such a plasma spraying apparatus, it is possible to form coatings having different thicknesses by controlling the supply amount of the secondary plasma gas by the supply amount control unit.
 かかるプラズマ溶射装置であって、前記皮膜の厚みを厚くするときほど、前記供給量制御部により前記副プラズマガスの供給量が多くなるように制御することが望ましい。
 このようなプラズマ溶射装置によれば、供給量制御部により副プラズマガスの供給量を多くすることにより、厚みが厚い皮膜を形成することが可能である。
In this plasma spraying apparatus, it is desirable that the supply amount control unit controls the supply amount of the secondary plasma gas to be increased as the thickness of the coating is increased.
According to such a plasma spraying apparatus, it is possible to form a thick film by increasing the supply amount of the secondary plasma gas by the supply amount control unit.
 かかるプラズマ溶射装置であって、前記皮膜の特性は、形成される前記皮膜の硬度であることとしてもよい。
 このようなプラズマ溶射装置によれば、供給量制御部により副プラズマガスの供給量を制御して互いに硬度が異なる皮膜を形成することが可能である。
In this plasma spraying apparatus, the characteristic of the film may be the hardness of the film to be formed.
According to such a plasma spraying apparatus, it is possible to control the supply amount of the secondary plasma gas by the supply amount control unit to form films having different hardnesses.
 かかるプラズマ溶射装置であって、前記皮膜の前記硬度が高くするときほど、前記供給量制御部により前記副プラズマガスの供給量が多くなるように制御することが望ましい。
 このようなプラズマ溶射装置によれば、供給量制御部により副プラズマガスの供給量を多くすることにより硬度が高い皮膜の形成することが可能であり、副プラズマガスの供給量を少なくすることにより硬度が低い皮膜を形成することが可能である。
In such a plasma spraying apparatus, it is preferable that the supply amount control unit controls the supply amount of the secondary plasma gas to be increased as the hardness of the coating is increased.
According to such a plasma spraying apparatus, it is possible to form a coating with high hardness by increasing the supply amount of the secondary plasma gas by the supply amount control unit, and by reducing the supply amount of the secondary plasma gas. It is possible to form a film with low hardness.
 かかるプラズマ溶射装置であって、前記皮膜の前記特性と前記副プラズマガスの供給量とを対応付けた特性データベースを生成し、前記供給量制御部は、形成すべき前記皮膜の前記特性と前記特性データベースとに基づいて前記副プラズマガスの供給量を制御することが望ましい。
 このようなプラズマ溶射装置によれば、供給量制御部は、形成すべき皮膜の特性と予め生成した特性データベースとに基づいて、副プラズマガスの供給量を制御するので、皮膜の特性の制御が容易である。
In this plasma spraying apparatus, a characteristic database in which the characteristic of the film and the supply amount of the sub-plasma gas are associated with each other is generated, and the supply amount control unit includes the characteristic and the characteristic of the film to be formed. It is desirable to control the supply amount of the secondary plasma gas based on a database.
According to such a plasma spraying apparatus, the supply amount control unit controls the supply amount of the secondary plasma gas based on the characteristics of the film to be formed and the characteristic database generated in advance. Easy.
 かかるプラズマ溶射装置であって、前記供給量制御部は、前記基材に吹き付けられる前記溶射材料の粒子速度と粒子温度との少なくともいずれか一方を観測し、観測結果と形成すべき前記皮膜の前記特性とに基づいて前記副プラズマガスの供給量を制御することが望ましい。
 このようなプラズマ溶射装置によれば、基材に吹き付けられる溶射材料の粒子速度と粒子温度との少なくともいずれか一方を観測した観測結果に基づいて副プラズマガスの供給量を制御するので、より正確な制御が可能であり所望の特性を備えた皮膜を形成することが可能である。
In this plasma spraying apparatus, the supply amount control unit observes at least one of a particle velocity and a particle temperature of the sprayed material sprayed on the base material, and observes the observation result and the coating of the coating to be formed. It is desirable to control the supply amount of the secondary plasma gas based on the characteristics.
According to such a plasma spraying apparatus, the supply amount of the secondary plasma gas is controlled based on the observation result obtained by observing at least one of the particle velocity and the particle temperature of the sprayed material sprayed on the base material. Therefore, it is possible to form a film having desired characteristics.
 かかるプラズマ溶射装置であって、前記複数の副トーチは、前記円周方向において均等に配置されていることが望ましい。
 このようなプラズマ溶射装置によれば、複数の副トーチは、円周方向において均等に配置されているので、副プラズマガスは、主陽極の中心軸を中心とする円周上から均等に材料供給ガスに作用するので、副プラズマガスをバランス良く作用させることが可能である。
In this plasma spraying apparatus, it is desirable that the plurality of sub torches be arranged uniformly in the circumferential direction.
According to such a plasma spraying apparatus, the plurality of sub-torches are arranged uniformly in the circumferential direction, so that the sub-plasma gas is supplied from the circumference centered on the central axis of the main anode. Since it acts on the gas, it is possible to cause the secondary plasma gas to act in a balanced manner.
 本発明によれば、溶射材料の供給条件を変更して皮膜を形成することが可能なプラズマ溶射装置を提供することができる。 According to the present invention, it is possible to provide a plasma spraying apparatus capable of forming a coating by changing the supply conditions of the spraying material.
本発明の一実施形態としてのツインカソード型プラズマ溶射装置100の概略構成を示す図である。1 is a diagram showing a schematic configuration of a twin cathode type plasma spraying apparatus 100 as an embodiment of the present invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 2つの副トーチ2、39から副プラズマガス13、49を吹き付けたときのプラズマ炎23の状態を示す画像である。It is an image which shows the state of the plasma flame 23 when subplasma gas 13, 49 is sprayed from two subtorches 2,39. 副プラズマガス13、49の供給量と形成される皮膜24の厚みとの関係を示すグラフである。It is a graph which shows the relationship between the supply amount of subplasma gas 13,49, and the thickness of the membrane | film | coat 24 formed. 副プラズマガス13、49の供給量と形成される皮膜24の硬度との関係を示すグラフである。It is a graph which shows the relationship between the supply amount of subplasma gas 13,49, and the hardness of the membrane | film | coat 24 formed. 一体型プラズマ溶射装置101の概略構成を示す図である。1 is a diagram showing a schematic configuration of an integrated plasma spray apparatus 101. FIG.
 以下、本発明に係るプラズマ溶射装置の好適な実施形態を、添付図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of a plasma spraying apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
 まず、本発明のプラズマ溶射装置として、主トーチと副トーチとを備える複合トーチ型プラズマ溶射装置であって、1つの主トーチと複数の副トーチとを備えたプラズマ溶射装置について説明する。なお、本実施形態の複合トーチ型プラズマ溶射装置は、たとえば、1つの主トーチと2つの副トーチを備えている。図1は、本発明の一実施形態としてのツインカソード型プラズマ溶射装置100の概略構成を示す図である。本実施形態のツインカソード型プラズマ溶射装置(以下、プラズマ溶射装置という)100は、主トーチ1における電極が主陽極(アノード)3であって、副トーチ2、39における電極が副陰極(カソード)10、40である。 First, as a plasma spraying apparatus according to the present invention, a plasma spraying apparatus including a main torch and a plurality of sub-torches, which is a composite torch type plasma spraying apparatus including a main torch and a sub-torch, will be described. Note that the composite torch type plasma spraying apparatus of the present embodiment includes, for example, one main torch and two auxiliary torches. FIG. 1 is a diagram showing a schematic configuration of a twin cathode type plasma spraying apparatus 100 as an embodiment of the present invention. In the twin cathode type plasma spraying apparatus (hereinafter referred to as plasma spraying apparatus) 100 of the present embodiment, the electrode in the main torch 1 is the main anode (anode) 3 and the electrodes in the sub torches 2 and 39 are the sub cathode (cathode). 10 and 40.
 2つの副トーチ2、39は、その中心軸C2が主陽極3の中心軸C1とほぼ直角に交差し、主陽極3の中心軸C1を中心とする円周上に、当該円周方向に互いに間隔を隔てて配置されている。本実施形態のプラズマ溶射装置100は、副トーチ2が2つなので、2つの副トーチ2、39が互いに対向するように配置されている。 The two sub-torches 2 and 39 have their center axes C2 intersecting with the center axis C1 of the main anode 3 substantially at right angles, and on the circumference centering on the center axis C1 of the main anode 3, They are arranged at intervals. Since the plasma spraying apparatus 100 of the present embodiment has two sub torches 2, the two sub torches 2 and 39 are arranged so as to face each other.
 主トーチ1は、主陽極3と、該主陽極3を囲む主外套4と、主陽極3と主外套4とを絶縁する絶縁体27などを備え、主外套4と、絶縁体27によって同心に保持されている。
 主陽極3は、電気伝導率に優れた材料、例えば、銅などの金属により形成されている。主陽極3は、中心軸C1上にある先端中央に溶射材料吐出孔19aを有する材料送入管19を備える。
The main torch 1 includes a main anode 3, a main mantle 4 surrounding the main anode 3, an insulator 27 that insulates the main anode 3 and the main mantle 4, and the like, and is concentrically formed by the main mantle 4 and the insulator 27. Is retained.
The main anode 3 is formed of a material having excellent electrical conductivity, for example, a metal such as copper. The main anode 3 includes a material feed pipe 19 having a spray material discharge hole 19a at the center of the tip on the central axis C1.
 主外套4は、先端部の開口部(ノズル部)4aと、該開口部4aと絶縁体27との間に設けられたテーパー部4bとを備えている。 The main mantle 4 includes an opening (nozzle portion) 4a at the tip, and a tapered portion 4b provided between the opening 4a and the insulator 27.
 絶縁体27は、主プラズマガス6を導入する主プラズマガス導入口5と、導入した主プラズマガス6の旋回流形成部50を有している。主プラズマガス6は、図2に示すように、ガス環状室51へ導入され、4個の旋回流形成孔52を通って、絶縁体27の内壁53(内壁53と主陽極3との間の空間)を旋回するようにして主外套4の開口部4aに向かって流れる。なお、上記旋回流形成孔52は、1個配置されていても、複数個配置されていてもよく、複数個配置されている場合には、中心軸C1を中心に均等に配置されていることが好ましい。 The insulator 27 has a main plasma gas inlet 5 through which the main plasma gas 6 is introduced, and a swirl flow forming portion 50 for the introduced main plasma gas 6. As shown in FIG. 2, the main plasma gas 6 is introduced into the gas annular chamber 51, passes through the four swirl flow forming holes 52, and passes through the inner wall 53 (between the inner wall 53 and the main anode 3) of the insulator 27. It flows toward the opening 4a of the main mantle 4 so as to turn in the space. The swirl flow forming holes 52 may be arranged in a single number or in a plurality, and in the case where a plurality of the swirl flow holes 52 are arranged, the swirl flow forming holes 52 should be evenly arranged around the central axis C1. Is preferred.
 2つの副トーチ2、39は、同一の構造をなしており、副陰極(副トーチ起動電極)10、40と、該副陰極10、40を囲む副外套11、41と、副陰極10、40と副外套11、41とを絶縁する絶縁体28、47などを備え、副トーチ2、39の中心軸C2、すなわち副陰極10、40の中心軸C2は、主トーチ1の中心軸C1、すなわち主陽極3の中心軸C1と、主陽極3と副陰極10、40との前方で交差するように配置されている。 The two sub-torches 2 and 39 have the same structure, and the sub-cathodes (sub-torch activation electrodes) 10 and 40, sub-mantles 11 and 41 surrounding the sub-cathodes 10 and 40, and sub-cathodes 10 and 40. Insulators 28 and 47 that insulate the outer jackets 11 and 41 from each other, and the central axis C2 of the secondary torches 2 and 39, that is, the central axis C2 of the secondary cathodes 10 and 40, The central axis C <b> 1 of the main anode 3 and the main anode 3 and the sub-cathodes 10, 40 are arranged so as to intersect with each other.
 副陰極10、40は、融点が高い材料、例えば、タングステンなどの材料により形成されている。副陰極10、40は、副外套11、41と、絶縁体28、47によって同心に保持されている。 The sub-cathodes 10 and 40 are made of a material having a high melting point, such as tungsten. The sub-cathodes 10 and 40 are concentrically held by the sub-mantles 11 and 41 and the insulators 28 and 47.
 副外套11、41は、先端部に孔11a、41aを備えている。絶縁体28、47は、副プラズマガス13、49を主陽極3の中心軸C1に向かうように導入する副プラズマガス導入口12、48と、主トーチ1の絶縁体27と同様の旋回流形成部50を有している。また、副プラズマガス導入口12、48には、副プラズマガス13、49を導入する副プラズマガス自動供給装置30が接続されており、副プラズマガス自動供給装置30は供給量制御部としての制御装置31により制御可能である。 The auxiliary mantles 11 and 41 are provided with holes 11a and 41a at the tip portions. The insulators 28, 47 form a swirl flow similar to the sub-plasma gas inlets 12, 48 for introducing the sub-plasma gases 13, 49 toward the central axis C 1 of the main anode 3 and the insulator 27 of the main torch 1. Part 50. Further, a sub-plasma gas automatic supply device 30 for introducing the sub-plasma gases 13 and 49 is connected to the sub-plasma gas introduction ports 12 and 48, and the sub-plasma gas automatic supply device 30 is controlled as a supply amount control unit. It can be controlled by the device 31.
 図1に示すように、主電源7の正端子は、主陽極3とスイッチ55を介した後に、スイッチ45を介して副外套11に接続され、また、副電源42の正端子及びスイッチ44を介して副外套41と接続され、主電源7の負端子はスイッチ8を介して主外套4に接続される。
 また、副電源42の負端子は、スイッチ46を介して副陰極10、及び、スイッチ9を介して主電源7の負端子、及びに接続され、また、スイッチ9を介して主電源7の負端子、及び、スイッチ43を介して副陰極40に接続される。
As shown in FIG. 1, the positive terminal of the main power supply 7 is connected to the sub jacket 11 via the switch 45 after passing through the main anode 3 and the switch 55, and the positive terminal of the sub power supply 42 and the switch 44 are connected. And the negative terminal of the main power source 7 is connected to the main mantle 4 via the switch 8.
The negative terminal of the sub power source 42 is connected to the sub cathode 10 via the switch 46 and the negative terminal of the main power source 7 via the switch 9, and the negative terminal of the main power source 7 via the switch 9. It is connected to the sub-cathode 40 via the terminal and the switch 43.
 次に、プラズマ溶射装置100を用いて、溶射材料20aをプラズマ溶射する方法について説明する。ここで、溶射材料20aとは、例えば、金属等の導電性材料、セラミックス等の絶縁性材料などを示している。
 アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを主プラズマガス6として、主プラズマガス導入口5から主トーチ1内に導入し、主プラズマガス6の旋回流を形成させる。また、スイッチ9を開き、スイッチ8を閉じた状態で、主電源7により主陽極3と主外套4との間に、直流電圧に高周波高電圧を重畳した電圧を印加する。その結果、主陽極3の先端から主外套4に向かうプラズマアークが形成される。そして、高周波電圧の重畳を停止した後も、主外套4から熱電子が放出されることで、プラズマアークが維持される。このプラズマアークにより主プラズマガス6が加熱され、プラズマ炎16となって主外套4の開口部4aから放出される。
Next, a method for plasma spraying the thermal spray material 20a using the plasma thermal spray apparatus 100 will be described. Here, the thermal spray material 20a indicates, for example, a conductive material such as metal, an insulating material such as ceramics, and the like.
An inert gas that can be turned into plasma, such as argon or helium, is introduced into the main torch 1 from the main plasma gas inlet 5 as a main plasma gas 6 to form a swirling flow of the main plasma gas 6. Further, with the switch 9 opened and the switch 8 closed, a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the main anode 3 and the main mantle 4 by the main power source 7. As a result, a plasma arc is formed from the tip of the main anode 3 toward the main mantle 4. Even after the superposition of the high-frequency voltage is stopped, the plasma arc is maintained by releasing thermoelectrons from the main mantle 4. The main plasma gas 6 is heated by the plasma arc and becomes a plasma flame 16 which is emitted from the opening 4 a of the main mantle 4.
 加えて、アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを副プラズマガス13として、制御装置31により制御された副プラズマガス自動供給装置30から副プラズマガス導入口12を介して副トーチ2内に導入し、副プラズマガス13の旋回流を形成させる。また、スイッチ43、44を開き、スイッチ45、46を閉じた状態で、副電源42により副陰極10と副外套11との間に直流電圧に高周波高電圧を重畳した電圧を印加する。その結果、副陰極10の先端10aから副外套11に向かう副プラズマアークが形成される。そして、高周波高電圧の重畳を停止した後も、従来型のトーチと同様に、副陰極10からの熱電子放出により、プラズマアークが維持される。このプラズマアークにより副プラズマガス13が加熱され、プラズマ炎17となって副外套11の孔11aから放出される。 In addition, an auxiliary gas such as argon or helium, which can be converted into plasma, is used as the secondary plasma gas 13 from the secondary plasma gas automatic supply device 30 controlled by the control device 31 via the secondary plasma gas inlet 12. The swirl flow of the auxiliary plasma gas 13 is formed. Further, with the switches 43 and 44 opened and the switches 45 and 46 closed, a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the sub cathode 10 and the sub jacket 11 by the sub power source 42. As a result, a secondary plasma arc is formed from the tip 10 a of the secondary cathode 10 toward the secondary jacket 11. Even after the superposition of the high frequency high voltage is stopped, the plasma arc is maintained by thermionic emission from the sub-cathode 10 as in the conventional torch. The sub-plasma gas 13 is heated by the plasma arc, and becomes a plasma flame 17 and is emitted from the hole 11 a of the sub-clutch 11.
 主陽極3の中心軸C1と副陰極10の中心軸C2は、主陽極3と副陰極10の前方において、主トーチ1及び副トーチ2の外部で交差するため、主トーチ1から放出されるプラズマ炎16と副トーチ2から放出されるプラズマ炎17により導電路が形成される。この状態で、スイッチ9を閉じた後に、スイッチ45,46を開くと、主トーチ1と副トーチ2の内部で発生していたプラズマアークが収束し、代わって副陰極10の先端10aから主陽極3の陽極点に至るヘアピン状のプラズマアークが形成される。 Since the central axis C1 of the main anode 3 and the central axis C2 of the sub-cathode 10 intersect outside the main torch 1 and the sub-torch 2 in front of the main anode 3 and the sub-cathode 10, plasma emitted from the main torch 1 A conductive path is formed by the flame 16 and the plasma flame 17 emitted from the auxiliary torch 2. In this state, when the switches 45 and 46 are opened after the switch 9 is closed, the plasma arc generated in the main torch 1 and the sub torch 2 converges, and instead, from the tip 10a of the sub cathode 10 to the main anode. A hairpin-shaped plasma arc reaching the anode point 3 is formed.
 その後、アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを副プラズマガス49として、制御装置31により制御された副プラズマガス自動供給装置30から副プラズマガス導入口48を介して副トーチ39内に導入し、副プラズマガス49の旋回流を形成させる。また、スイッチ43、44を閉じた状態で、副電源42により副陰極40と副外套41との間に直流電圧に、高周波高電圧を重畳した電圧を印加する。その結果、副陰極40の先端40aから副外套41に向かうプラズマアークが形成される。そして、高周波高電圧の重畳を停止した後も、従来型のトーチと同様に、副陰極40からの熱電子放出により、プラズマアークが維持される。このプラズマアークにより副プラズマガス49が加熱され、プラズマ炎56となって副外套41の孔41aから放出される。 Thereafter, an inert gas that can be turned into plasma, such as argon or helium, is used as the secondary plasma gas 49 from the secondary plasma gas automatic supply device 30 controlled by the control device 31 via the secondary plasma gas inlet 48. And a swirling flow of the auxiliary plasma gas 49 is formed. Further, with the switches 43 and 44 closed, a voltage obtained by superimposing a high frequency high voltage on a DC voltage is applied between the sub cathode 40 and the sub jacket 41 by the sub power source 42. As a result, a plasma arc is formed from the tip 40a of the sub cathode 40 toward the sub jacket 41. Even after the superposition of the high frequency high voltage is stopped, the plasma arc is maintained by thermionic emission from the sub-cathode 40 as in the conventional torch. The sub-plasma gas 49 is heated by the plasma arc and becomes a plasma flame 56 which is discharged from the hole 41 a of the sub-mantle jacket 41.
 主陽極3の中心軸と副陰極40の中心軸は、主陽極3と副陰極40の前方において、主トーチ1及び副トーチ39の外部で交差するため、副外套41の孔41aから放出されたプラズマ炎56は、副陰極10の先端10aから主陽極3の陽極点に至るヘアピン状のプラズマアークが主トーチ1から放出されるプラズマガスを加熱することで形成されるプラズマ炎16と交差することで、各副陰極10、40と主陽極3の間に伝電路が形成される。この状態において、スイッチ55を閉じた後に、スイッチ44を開くと、副陰極10、40の先端10a、40aから主陽極3の陽極点に至るT字状のプラズマアークが形成され、このプラズマアークによって各副トーチ2、39、主トーチ1から放出される主プラズマガス6、13、49が加熱されることで、主トーチ1の同軸上にプラズマ炎23が形成される。 Since the central axis of the main anode 3 and the central axis of the sub-cathode 40 intersect the outside of the main torch 1 and the sub-torch 39 in front of the main anode 3 and the sub-cathode 40, the main axis 3 and the sub-cathode 40 are emitted from the holes 41 a of the sub-cannula 41. The plasma flame 56 intersects the plasma flame 16 formed by heating the plasma gas emitted from the main torch 1 by a hairpin-shaped plasma arc extending from the tip 10 a of the sub-cathode 10 to the anode point of the main anode 3. Thus, a power transmission path is formed between the sub-cathodes 10 and 40 and the main anode 3. In this state, when the switch 44 is opened after the switch 55 is closed, a T-shaped plasma arc from the tips 10a, 40a of the sub-cathodes 10, 40 to the anode point of the main anode 3 is formed. A plasma flame 23 is formed on the same axis of the main torch 1 by heating the main plasma gases 6, 13 and 49 emitted from the sub torches 2 and 39 and the main torch 1.
 材料送入管19には、アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスに溶射材料20aが混合された材料供給ガス20が送入される。材料送入管19から溶射材料吐出孔を介して吐出された溶射材料20aは、主陽極3と副陰極10により、主陽極3の中心軸上に形成されるプラズマ炎23の軸中心に供給され、プラズマ炎23によって溶融される。 The material supply pipe 19 is supplied with a material supply gas 20 in which a thermal spray material 20a is mixed with an inert gas that can be turned into plasma, such as argon or helium. The thermal spray material 20 a discharged from the material feed pipe 19 through the thermal spray material discharge hole is supplied to the axial center of the plasma flame 23 formed on the central axis of the main anode 3 by the main anode 3 and the sub-cathode 10. And is melted by the plasma flame 23.
 プラズマ炎23には、主トーチ1の中心軸C1、すなわち主陽極3の中心軸C1の前方で交差する副トーチ2、39の孔11a、41aから副プラズマガス13、49が、主トーチ1の中心軸C1とほぼ直交して対向する方向から導入されている。このため、プラズマ炎23は、2方向から導入される副プラズマガス13、49により主陽極3の中心軸C1側に押圧されている。 The plasma flame 23 includes sub-plasma gases 13 and 49 from the holes 11 a and 41 a of the sub-torches 2 and 39 that intersect the central axis C 1 of the main torch 1, that is, the central axis C 1 of the main anode 3. It is introduced from a direction substantially orthogonal to the central axis C1. For this reason, the plasma flame 23 is pressed to the central axis C1 side of the main anode 3 by the auxiliary plasma gases 13 and 49 introduced from two directions.
 溶射材料20aが溶融された溶融物21は、プラズマ炎23とともに基材25に向かって進行する。このとき、基材25の直前で、連結管26上に設けられたプラズマトリミング部22から、プラズマにガスを噴出することで、成膜に適した溶融物をより適切な温度の基材25に堆積させ、高品質な皮膜24を効率よく形成することができる。 The melt 21 in which the thermal spray material 20 a is melted proceeds toward the base material 25 together with the plasma flame 23. At this time, immediately before the base material 25, a gas suitable for film formation is applied to the base material 25 at a more appropriate temperature by ejecting a gas to the plasma from the plasma trimming unit 22 provided on the connecting pipe 26. By depositing, the high-quality film 24 can be efficiently formed.
 なお、本実施形態においては、プラズマ溶射装置100において副トーチを2つ設けることとしているが、副トーチを3つ以上設けてもよい。副トーチを2つ以上設ける場合には、これらの副トーチは、副トーチが有する電極の中心軸が、主トーチ1の外部において、主陽極3の前方かつ中心軸の一点で交差するように、配置されていることが好ましく、その交差する点を中心とした、中心軸に垂直な円の円周上に均等に配置されていることがより好ましい。また、プラズマ溶射装置100において副トーチを2つ以上設ける場合には、各副トーチの中心軸が上記交差する点で主トーチの中心軸に垂直に交差するように、各副トーチが配置されていることが好ましい。 In the present embodiment, two sub-torches are provided in the plasma spraying apparatus 100, but three or more sub-torches may be provided. When two or more sub-torches are provided, these sub-torches are arranged so that the central axis of the electrode included in the sub-torch intersects the front of the main anode 3 and at one point of the central axis outside the main torch 1. It is preferable that they are arranged, and it is more preferable that they are evenly arranged on the circumference of a circle perpendicular to the central axis with the intersecting point as the center. When two or more sub-torches are provided in the plasma spraying apparatus 100, each sub-torch is arranged so that the central axis of each sub-torch intersects the central axis of the main torch perpendicularly at the above-mentioned intersection. Preferably it is.
 上記実施形態にて説明したプラズマ溶射装置100では、従来型のプラズマ溶射装置では、主電極を、プラズマアークを維持する量の熱電子を放出させる必要のある陰極としていたのに対し、主陽極3を、副陰極10、40に対して温度が低い陽極とすることで、供給された溶射材料が軟化した主電極に付着しまうことを防いでいる。更に、主陽極を備える主トーチ1内に導入する主プラズマガス6にて旋回流を発生させ、主トーチ1内への溶射材料20aの付着を抑えることにより、溶射材料吐出孔19aが溶射材料20aにより塞がれることを防止している。 In the plasma spraying apparatus 100 described in the above embodiment, in the conventional plasma spraying apparatus, the main electrode is a cathode that needs to emit a quantity of thermoelectrons to maintain a plasma arc, whereas the main anode 3 Is an anode whose temperature is lower than that of the sub-cathodes 10 and 40, preventing the supplied sprayed material from adhering to the softened main electrode. Further, a swirl flow is generated by the main plasma gas 6 introduced into the main torch 1 having the main anode, and the adhesion of the sprayed material 20a into the main torch 1 is suppressed, so that the sprayed material discharge hole 19a becomes the sprayed material 20a. It is prevented from being blocked by.
 このように主電極及び主トーチ1内への溶射材料20aの付着を抑えることにより、従来のプラズマ溶射装置では、主電極への溶射材料の付着を避けるために、トーチの外側で、プラズマアークが形成される主電極の中心軸に対して傾斜する方向から溶射材料を供給していたのに対し、主電極の中心軸に沿うように溶射材料を供給することが可能となった。これにより、溶射材料をプラズマ炎の中心に供給されやすくなり、プラズマ炎の高温部に溶射材料をより確実に至らせるとともに周辺への飛散を抑えることが可能となった。すなわち、溶射材料をプラズマ炎の高温部に安定して供給することが可能となり、溶射材料及びプラズマガスの供給量に応じた、安定した皮膜を形成することが可能となった。 In this way, by suppressing the adhesion of the thermal spray material 20a into the main electrode and the main torch 1, in the conventional plasma spraying apparatus, in order to avoid the adhesion of the thermal spray material to the main electrode, the plasma arc is generated outside the torch. While the thermal spray material was supplied from a direction inclined with respect to the central axis of the main electrode to be formed, it became possible to supply the thermal spray material along the central axis of the main electrode. As a result, the thermal spray material can be easily supplied to the center of the plasma flame, and the thermal spray material can be more reliably brought to the high temperature portion of the plasma flame and can be prevented from being scattered to the periphery. That is, it becomes possible to stably supply the thermal spray material to the high temperature part of the plasma flame, and to form a stable coating according to the supply amount of the thermal spray material and the plasma gas.
 本願の発明者は、これまでパラメータとして存在しなかった副プラズマガス13、49の供給条件をパラメータとして、形成される皮膜24の特性の変化を試験した。すなわち、副プラズマガス13、49の供給量を変化させて皮膜24を形成することを試みた。図3は、2つの副トーチ2、39から副プラズマガス13、49を導入したときのプラズマ炎23の状態を示す画像である。図4は、副プラズマガス13、49の供給量と形成される皮膜24の厚みとの関係を示すグラフである。 The inventor of the present application tested the change in the characteristics of the film 24 to be formed using the supply conditions of the sub-plasma gases 13 and 49 that have not existed as parameters until now. That is, it tried to form the membrane | film | coat 24 by changing supply_amount | feed_rate of subplasma gas 13,49. FIG. 3 is an image showing a state of the plasma flame 23 when the auxiliary plasma gases 13 and 49 are introduced from the two auxiliary torches 2 and 39. FIG. 4 is a graph showing the relationship between the supply amount of the auxiliary plasma gases 13 and 49 and the thickness of the coating 24 to be formed.
 図3に示すように、主トーチ1の溶射材料吐出孔19aから主トーチ1の中心軸C1に沿うように伸びるプラズマ炎23を高速度カメラ等により撮影することにより、主トーチ1の中心軸C1と直交して対向する2方向から主トーチ1の中心軸C1に向かうように導入される副プラズマガス13、49が、中心軸C1から離れる方向に拡散する粒子の気流を押さえ込むことが確認された。 As shown in FIG. 3, the central axis C1 of the main torch 1 is obtained by photographing a plasma flame 23 extending from the spray material discharge hole 19a of the main torch 1 along the central axis C1 of the main torch 1 with a high-speed camera or the like. It was confirmed that the sub-plasma gases 13 and 49 introduced so as to go from two directions orthogonal to each other toward the central axis C1 of the main torch 1 suppress the air flow of particles diffusing in the direction away from the central axis C1. .
 そして、副プラズマガス13、49の供給量を違えて、形成された皮膜24の膜厚を測定した結果、図4に示すように、副プラズマガス13、49の供給量を増やすと形成される皮膜24の膜厚が厚くなることが確認された。 Then, as a result of measuring the film thickness of the formed film 24 with different supply amounts of the sub-plasma gases 13, 49, as shown in FIG. 4, it is formed when the supply amount of the sub-plasma gases 13, 49 is increased. It was confirmed that the film thickness of the film 24 was increased.
 これらの結果から、副プラズマガス13、49の供給量を制御して、形成される皮膜24の特性として皮膜24の厚みを変え得ることがわかる。すなわち、副プラズマガス13、49の供給量をより多くするほど厚みの厚い皮膜24を形成する、または、副プラズマガス13、49の供給量をより少なくするほど厚みの薄い皮膜24を形成することが可能となる。すなわち、副プラズマガス13、49の供給量を変えて皮膜24を形成することにより、膜厚の異なる皮膜24を形成することが可能となる。 From these results, it can be seen that the thickness of the film 24 can be changed as a characteristic of the film 24 to be formed by controlling the supply amount of the sub-plasma gases 13 and 49. That is, the thicker film 24 is formed as the supply amount of the auxiliary plasma gases 13 and 49 is increased, or the thinner film 24 is formed as the supply amount of the auxiliary plasma gases 13 and 49 is decreased. Is possible. That is, by forming the coating film 24 by changing the supply amounts of the sub-plasma gases 13 and 49, it is possible to form the coating film 24 having different film thicknesses.
 また、発明者は、副プラズマガス13、49の供給量を異ならせて皮膜24の硬度を測定した。
 図5は、副プラズマガス13、49の供給量と形成される皮膜24の硬度との関係を示すグラフである。図5に示すように、副プラズマガス13、49の供給量が多いほど、皮膜24の硬度が高くなる。この結果から、副プラズマガス13、49の供給量を制御して形成される皮膜24の特性として硬度を変え得ることができることがわかる。すなわち、副プラズマガス13、49の供給量をより多くして硬度が高い皮膜24を形成する、或いは、副プラズマガス13、49の供給量をより少なくして硬度が低い皮膜24を形成することが可能となる。
Further, the inventor measured the hardness of the coating 24 by changing the supply amounts of the auxiliary plasma gases 13 and 49.
FIG. 5 is a graph showing the relationship between the supply amount of the auxiliary plasma gases 13 and 49 and the hardness of the coating 24 to be formed. As shown in FIG. 5, the hardness of the coating 24 increases as the supply amount of the auxiliary plasma gases 13 and 49 increases. From this result, it can be seen that the hardness can be changed as a characteristic of the film 24 formed by controlling the supply amount of the sub-plasma gases 13 and 49. That is, the film 24 having a high hardness is formed by increasing the supply amount of the sub-plasma gases 13 and 49, or the film 24 having a low hardness is formed by decreasing the supply amount of the sub-plasma gases 13 and 49. Is possible.
 本実施形態のプラズマ溶射装置100によれば、主陽極3の中心軸C1に沿うように送入される材料供給ガス20に交差する方向から、副陰極10、40の中心軸C2に沿うように導入される副プラズマガス13、49の供給量を制御する制御装置31を備えているので、溶融される溶射材料20aを基材25上に到達する際に、プラズマ炎23に交差する方向から作用する副プラズマガス13、49の供給量を異ならせて皮膜24を形成することが可能である。 According to the plasma spraying apparatus 100 of the present embodiment, from the direction intersecting the material supply gas 20 fed along the central axis C1 of the main anode 3, along the central axis C2 of the sub-cathodes 10, 40. Since the control device 31 for controlling the supply amount of the introduced secondary plasma gases 13 and 49 is provided, when the molten thermal spray material 20a reaches the substrate 25, it acts from the direction intersecting the plasma flame 23. It is possible to form the coating 24 by varying the amount of the subplasma gas 13 and 49 to be supplied.
 そして、制御装置31により副プラズマガス13、49の供給量を制御し、副プラズマガス13、49の供給量をより多くして厚さの厚い皮膜24を形成する、または、副プラズマガス13、49の供給量をより少なくして厚みの薄い皮膜24を形成することが可能である。すなわち、副プラズマガス13、49の供給量を変えて皮膜24を形成することにより、膜厚の異なる皮膜24を形成することが可能である。 Then, the control device 31 controls the supply amount of the sub-plasma gas 13, 49 to increase the supply amount of the sub-plasma gas 13, 49 to form the thick film 24, or the sub-plasma gas 13, It is possible to form the thin film 24 by reducing the supply amount of 49. That is, by forming the coating film 24 by changing the supply amount of the sub-plasma gases 13 and 49, it is possible to form the coating film 24 having different film thicknesses.
 また、制御装置31により副プラズマガス13、49の供給量を制御して互いに硬度が異なる皮膜24を形成することも可能である。このため、制御装置31により副プラズマガス13、49の供給量をより多くすることにより硬度が高い皮膜24の形成することが可能であり、副プラズマガス13、49の供給量をより少なくすることにより硬度が低い皮膜24を形成することが可能である。 It is also possible to form the coating 24 having different hardness by controlling the supply amount of the sub-plasma gas 13, 49 by the control device 31. For this reason, it is possible to form the coating 24 having high hardness by increasing the supply amount of the sub-plasma gases 13 and 49 by the control device 31, and to decrease the supply amount of the sub-plasma gases 13 and 49. Thus, it is possible to form the coating 24 having a low hardness.
 また、複数の副トーチ2を、主トーチ1の主陽極3の中心軸C1を中心とする円周方向において均等に配置すると、副プラズマガス13、49は、主陽極3の中心軸C1を中心とする円周上から均等に材料供給ガス20に作用するので、副プラズマガス13、49をバランス良く作用させることが可能である。 Further, when the plurality of sub torches 2 are evenly arranged in the circumferential direction around the central axis C 1 of the main anode 3 of the main torch 1, the sub plasma gases 13 and 49 are centered on the central axis C 1 of the main anode 3. Since it acts on the material supply gas 20 evenly from above the circumference, it is possible to cause the sub-plasma gases 13, 49 to act in a balanced manner.
 制御装置31による副プラズマガス自動供給装置30の制御は、例えば、図4、図5のグラフに示すようなデータに基づくデータベース、すなわち、形成される皮膜24の厚みまたは硬度と副プラズマガス13、49の供給量とを対応付けた特性データベースを生成することが出来る。この特性データベースに基づいて、形成すべき皮膜24の厚み、または硬度に対する副プラズマガス13、49の供給量を算出し、その条件に従ってプラズマガス13、49の供給量を制御することにより、容易に皮膜の厚さ、または硬度を制御することが可能である。 The control of the auxiliary plasma gas automatic supply device 30 by the control device 31 is, for example, a database based on data as shown in the graphs of FIGS. 4 and 5, that is, the thickness or hardness of the formed film 24 and the auxiliary plasma gas 13, It is possible to generate a characteristic database that associates 49 supply amounts. Based on this characteristic database, the supply amount of the sub-plasma gases 13 and 49 with respect to the thickness or hardness of the film 24 to be formed is calculated, and the supply amount of the plasma gases 13 and 49 is controlled according to the conditions, thereby easily It is possible to control the thickness or hardness of the coating.
 このとき、基材25に吹き付けられる溶射材料20aの粒子速度と粒子温度との少なくともいずれか一方をCCDカメラ、分光輝度計等により観測し、観測結果と形成すべき皮膜24の厚み、または硬度とに基づいて制御装置31により副プラズマガス13、49の供給量を制御すると、より正確な制御が可能であり所望の厚み、または硬度を備えた皮膜24を形成することが可能である。 At this time, at least one of the particle velocity and the particle temperature of the thermal spray material 20a sprayed on the base material 25 is observed with a CCD camera, a spectral luminance meter or the like, and the observation result and the thickness or hardness of the coating 24 to be formed are determined. If the control device 31 controls the supply amounts of the sub-plasma gases 13 and 49 based on the above, more accurate control is possible and the coating 24 having a desired thickness or hardness can be formed.
 図6は、主トーチ1と副トーチ2とが一体となったプラズマ溶射装置101の概略構成を示す図である。
 上記実施形態においては、主トーチ1と副トーチ2とが別個に分離しているプラズマ溶射装置100について説明したが、図6に示すように、主トーチ1の外套における開口部4aの出口側に副トーチ2、39が絶縁体60を介して設けられた、主トーチ1と副トーチ2、39の一体型プラズマ溶射装置101であっても構わない。
FIG. 6 is a diagram showing a schematic configuration of the plasma spraying apparatus 101 in which the main torch 1 and the sub torch 2 are integrated.
In the above-described embodiment, the plasma spraying apparatus 100 in which the main torch 1 and the sub-torch 2 are separately separated has been described. However, as shown in FIG. 6, on the outlet side of the opening 4 a in the outer shell of the main torch 1. An integrated plasma spraying apparatus 101 of the main torch 1 and the auxiliary torches 2 and 39 provided with the auxiliary torches 2 and 39 through the insulator 60 may be used.
 また、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。 Further, the above embodiment is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.
1 主トーチ、2 副トーチ、3 主陽極、4 主外套、4a 開口部、
4b テーパー部、5 主プラズマガス導入口、6 主プラズマガス、7 主電源、
8、9 スイッチ、10 副陰極、10a 副陰極の先端、11 副外套、11a 孔、12 副プラズマガス導入口、13 副プラズマガス、14 副電源、15 スイッチ、16 プラズマ炎、17 プラズマ炎、18 プラズマ、
19 材料送入管、19a  溶射材料吐出孔、20 材料供給ガス、20a 溶射材料、
21 溶融物、22 プラズマトリミング部、23 プラズマ炎、24 皮膜、
25 基材、26 連結管、27、28 絶縁体、30 副プラズマガス自動供給装置、
31 制御装置、39 副トーチ、40 副陰極、40a 副陰極の先端、
41 副外套、41a 孔、42 副電源、
43、44、45、46 スイッチ、47 絶縁体、
48 副プラズマガス導入口、49 副プラズマガス、50 旋回流形成部、
51 ガス環状室、52 旋回流形成孔、53 内壁、55 スイッチ、
56 プラズマ炎、60 絶縁体、100 ツインカソード型プラズマ溶射装置、
101 一体型プラズマ溶射装置、
C1 主陽極の中心軸、C2 副陰極の中心軸、
1 main torch, 2 sub torch, 3 main anode, 4 main mantle, 4a opening,
4b taper part, 5 main plasma gas inlet, 6 main plasma gas, 7 main power supply,
8, 9 switch, 10 sub cathode, 10a tip of sub cathode, 11 sub jacket, 11a hole, 12 sub plasma gas inlet, 13 sub plasma gas, 14 sub power supply, 15 switch, 16 plasma flame, 17 plasma flame, 18 plasma,
19 Material feeding pipe, 19a Spraying material discharge hole, 20 Material supply gas, 20a Spraying material,
21 melt, 22 plasma trimming section, 23 plasma flame, 24 coating,
25 Substrate, 26 Connecting pipe, 27, 28 Insulator, 30 Sub-plasma gas automatic supply device,
31 control device, 39 sub-torch, 40 sub-cathode, 40a tip of sub-cathode,
41 sub jacket, 41a hole, 42 sub power supply,
43, 44, 45, 46 switch, 47 insulator,
48 sub-plasma gas inlet, 49 sub-plasma gas, 50 swirl flow forming section,
51 gas annular chamber, 52 swirl flow forming hole, 53 inner wall, 55 switch,
56 plasma flame, 60 insulator, 100 twin cathode type plasma spraying device,
101 Integrated plasma spraying device,
C1 central axis of the main anode, C2 central axis of the sub-cathode,

Claims (9)

  1.  中心軸に沿って溶射材料を含む材料供給ガスを送入する材料送入管を有する主陽極を備え、前記中心軸に沿って主プラズマガスを導入する主トーチと、
     中心軸が前記主陽極の前記中心軸と交差し、当該主陽極の前記中心軸を中心とする円周上に、当該円周方向に互いに間隔を隔てて配置される副陰極を備える複数の副トーチと、
    を有し、
     前記主陽極と前記副陰極との間に形成されるプラズマアークと、
     前記主陽極の前記中心軸に沿うように導入される前記主プラズマガスと、
     前記副陰極の前記中心軸に沿い前記主陽極の前記中心軸に向かうように導入される前記副プラズマガスと、により前記主陽極の前記中心軸に沿うように形成されるプラズマ炎に、前記材料送入管から前記材料供給ガスが送入されて前記溶射材料が溶融され基材に吹き付けられて前記溶射材料の皮膜を形成するプラズマ溶射装置において、
     前記副プラズマガスの供給量を制御する供給量制御部を備えることを特徴とするプラズマ溶射装置。
    A main torch comprising a main anode having a material feed pipe for feeding a material supply gas containing a sprayed material along a central axis, and introducing a main plasma gas along the central axis;
    A plurality of sub-cathodes comprising a sub-cathode having a central axis intersecting with the central axis of the main anode and being spaced apart from each other in the circumferential direction on a circumference centered on the central axis of the main anode Torch,
    Have
    A plasma arc formed between the main anode and the sub-cathode;
    The main plasma gas introduced along the central axis of the main anode;
    The material is applied to the plasma flame formed along the central axis of the main anode by the sub-plasma gas introduced along the central axis of the sub-cathode and toward the central axis of the main anode. In the plasma spraying apparatus in which the material supply gas is fed from a feeding pipe, the sprayed material is melted and sprayed onto a base material to form a coating of the sprayed material,
    A plasma spraying apparatus comprising a supply amount control unit for controlling a supply amount of the sub-plasma gas.
  2.  前記供給量制御部は、形成される前記皮膜の特性を変えるべく前記副プラズマガスの供給量を制御することを特徴とする請求項1に記載のプラズマ溶射装置。 2. The plasma spraying apparatus according to claim 1, wherein the supply amount control unit controls the supply amount of the sub-plasma gas so as to change the characteristics of the film to be formed.
  3.  前記皮膜の特性は、形成される前記皮膜の厚みであることを特徴とする請求項2に記載のプラズマ溶射装置。 The plasma spraying apparatus according to claim 2, wherein the characteristic of the coating is the thickness of the coating to be formed.
  4.  前記皮膜の厚みを厚くするときほど、前記供給量制御部により前記副プラズマガスの供給量が多くなるように制御することを特徴とする請求項3に記載のプラズマ溶射装置。 4. The plasma spraying apparatus according to claim 3, wherein the supply amount control unit controls the supply amount of the secondary plasma gas to be increased as the thickness of the coating is increased.
  5.  前記皮膜の特性は、形成される前記皮膜の硬度であることを特徴とする請求項2に記載のプラズマ溶射装置。
    The plasma spraying apparatus according to claim 2, wherein the characteristic of the coating is a hardness of the coating to be formed.
  6.  前記皮膜の前記硬度を高くするときほど、前記供給量制御部により前記副プラズマガスの供給量が多くなるように制御することを特徴とする請求項5に記載のプラズマ溶射装置。 6. The plasma spraying apparatus according to claim 5, wherein the supply amount of the sub-plasma gas is controlled to be increased by the supply amount control unit as the hardness of the coating is increased.
  7.  前記皮膜の前記特性と前記副プラズマガスの供給量とを対応付けた特性データベースを生成し、
     前記供給量制御部は、形成すべき前記皮膜の前記特性と前記特性データベースとに基づいて前記副プラズマガスの供給量を制御することを特徴とする請求項2~6に記載のプラズマ溶射装置。
    Generating a characteristic database associating the characteristic of the film with the supply amount of the secondary plasma gas;
    7. The plasma spraying apparatus according to claim 2, wherein the supply amount control unit controls the supply amount of the sub-plasma gas based on the characteristics of the film to be formed and the characteristic database.
  8.  前記供給量制御部は、前記基材に吹き付けられる前記溶射材料の粒子速度と粒子温度との少なくともいずれか一方を観測し、観測結果と形成すべき前記皮膜の前記特性とに基づいて前記副プラズマガスの供給量を制御することを特徴とする請求項2~6に記載のプラズマ溶射装置。 The supply amount control unit observes at least one of a particle velocity and a particle temperature of the thermal spray material sprayed on the base material, and based on the observation result and the characteristics of the coating to be formed, the subplasma 7. The plasma spraying apparatus according to claim 2, wherein a gas supply amount is controlled.
  9.  前記複数の副トーチは、前記円周方向において均等に配置されていることを特徴とする請求項1~8に記載のプラズマ溶射装置。 The plasma spraying apparatus according to any one of claims 1 to 8, wherein the plurality of sub-torches are arranged uniformly in the circumferential direction.
PCT/JP2015/059272 2015-03-25 2015-03-25 Plasma thermal spray apparatus WO2016151826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016542790A JP6111477B2 (en) 2015-03-25 2015-03-25 Plasma spraying equipment
PCT/JP2015/059272 WO2016151826A1 (en) 2015-03-25 2015-03-25 Plasma thermal spray apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059272 WO2016151826A1 (en) 2015-03-25 2015-03-25 Plasma thermal spray apparatus

Publications (1)

Publication Number Publication Date
WO2016151826A1 true WO2016151826A1 (en) 2016-09-29

Family

ID=56977028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059272 WO2016151826A1 (en) 2015-03-25 2015-03-25 Plasma thermal spray apparatus

Country Status (2)

Country Link
JP (1) JP6111477B2 (en)
WO (1) WO2016151826A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584455A (en) * 1991-02-21 1993-04-06 Plasma Technik Ag Plasma melt-spraying device for melt-spraying powder material or gas material
JPH05339699A (en) * 1992-06-08 1993-12-21 Onoda Cement Co Ltd Plasma thermal spraying method
JP2002231498A (en) * 2001-01-31 2002-08-16 Chugoku Electric Power Co Inc:The Composite torch type plasma generating method and device
JP2005525465A (en) * 2002-02-28 2005-08-25 スネクマ・セルビス Thermal spray equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515277B2 (en) * 2008-11-04 2014-06-11 株式会社日本セラテック Plasma spraying equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584455A (en) * 1991-02-21 1993-04-06 Plasma Technik Ag Plasma melt-spraying device for melt-spraying powder material or gas material
JPH05339699A (en) * 1992-06-08 1993-12-21 Onoda Cement Co Ltd Plasma thermal spraying method
JP2002231498A (en) * 2001-01-31 2002-08-16 Chugoku Electric Power Co Inc:The Composite torch type plasma generating method and device
JP2005525465A (en) * 2002-02-28 2005-08-25 スネクマ・セルビス Thermal spray equipment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATSUSHI HASUI: "Yosha Kogaku", 20 May 1969 (1969-05-20), pages 176 - 177 *
JAPAN THERMAL SPRAYING SOCIETY, YOSHA BENRAN, 31 May 1964 (1964-05-31), pages 644 - 647 *
JAPAN THERMAL SPRAYING SOCIETY, YOSHA HANDBOOK, 25 October 1994 (1994-10-25), pages 137 - 141 *

Also Published As

Publication number Publication date
JP6111477B2 (en) 2017-04-12
JPWO2016151826A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US20160074887A1 (en) Plasma spraying apparatus
EP0244774B1 (en) Improved plasma flame spray gun method and apparatus with adjustable ratio of radial and tangential plasma gas flow
US9376740B2 (en) Plasma systems and methods including high enthalpy and high stability plasmas
JP5689456B2 (en) Plasma transfer type wire arc spray system, method for starting plasma transfer type wire arc spray system apparatus, and method for coating cylinder bore surface of combustion engine using plasma transfer type wire arc spray system apparatus
JP5597652B2 (en) Plasma torch with side injector
JP4664679B2 (en) Plasma spraying equipment
JPH07107876B2 (en) Plasma generator and plasma generating method
JP2014199821A (en) Hybrid plasma-cold spray method and apparatus
JPH03150341A (en) Conjugate torch type plasma generator and plasma generating method using the same
CN104955582B (en) Apparatus for thermally coating a surface
JP5515277B2 (en) Plasma spraying equipment
US10354845B2 (en) Atmospheric pressure pulsed arc plasma source and methods of coating therewith
JP6111477B2 (en) Plasma spraying equipment
KR101933941B1 (en) A plasma gun device capable of increasing cooling efficiency and generating uniform plasma
JP2016143533A (en) Plasma spray apparatus
WO2015147127A1 (en) Plasma spraying device
RU142250U1 (en) PLASMOTRON FOR SPRAYING
WO2020004190A1 (en) Thermal spraying device
US20200215638A1 (en) Tig torch for welding, soldering or coating
US20160013021A1 (en) Gas cooled plasma spraying device
JP5091801B2 (en) Composite torch type plasma generator
JPH0341822Y2 (en)
JPH05339699A (en) Plasma thermal spraying method
JPH08167497A (en) Plasma spraying torch
JPH0819513B2 (en) How to spray chrome

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016542790

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886379

Country of ref document: EP

Kind code of ref document: A1