WO2016151645A1 - Resist stripping liquid - Google Patents

Resist stripping liquid Download PDF

Info

Publication number
WO2016151645A1
WO2016151645A1 PCT/JP2015/003312 JP2015003312W WO2016151645A1 WO 2016151645 A1 WO2016151645 A1 WO 2016151645A1 JP 2015003312 W JP2015003312 W JP 2015003312W WO 2016151645 A1 WO2016151645 A1 WO 2016151645A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
film
resist
pyrrolidine
stripping solution
Prior art date
Application number
PCT/JP2015/003312
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 淵上
靖紀 鈴木
善秀 小佐野
明里 児玉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016151645A1 publication Critical patent/WO2016151645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention is a stripping solution for stripping a resist used in the manufacture of display devices such as liquid crystal and organic EL and semiconductors. More specifically, even a hard-baked resist film can remove a resist, and further, aluminum
  • the present invention also relates to a resist stripping solution that can be said to be substantially free from corrosion even for a film and a copper film.
  • a flat panel display such as a liquid crystal or an organic EL (Electro-Luminescence) is required to have a large screen.
  • FPD flat panel display
  • small high-definition screens are required for notebook PCs, tablet PCs, and smartphones.
  • a TFT Thin Film Transistor
  • Cu wiring Cu / Mo laminated wiring
  • TFTs using Al wiring are used for small high-definition screens.
  • Cu is also called copper
  • Mo is called molybdenum
  • Al is also called aluminum.
  • Some panel manufacturers produce TFTs using Al wiring and TFTs using Cu wiring in one factory.
  • the resist stripping solution can be shared between the case of using Al wiring and the case of using Cu wiring in the resist film peeling process. If possible, production costs can be reduced.
  • a water-based positive photoresist stripping solution generally has a composition comprising alkanolamine, a polar solvent, and water, and is used after being heated to about 40 to 50 ° C. in a resist stripping apparatus.
  • Alkanolamine is an essential component for solubilizing the carbonyl group of a DNQ (diazonaphthoquinone) compound, which is an alkali insolubilizing agent, in a positive photoresist stripping solution in a polar solvent and water by nucleophilic action.
  • Alkanolamines are classified as primary, secondary, and tertiary depending on the number of substituents other than hydrogen bonded to the nitrogen element. Among these, it is known that the smaller the series, the stronger the basicity and the stronger the nucleophilicity.
  • the smaller the series the stronger the power to solubilize the DNQ compound, which is an alkali insolubilizing agent, in a polar solvent or water, and a stronger resist stripping performance.
  • alkanolamine is known to have a chelating action on Cu.
  • the chelating action for Cu solubilizes Cu and thus corrodes the Cu film.
  • the chelating action for Cu is stronger as the alkanolamine series is smaller as is the case with basicity and nucleophilicity. Therefore, the alkanolamine with a smaller series corrodes the Cu film more strongly.
  • a-Si amorphous silicon
  • ⁇ Al wiring is not corrosive (chelating) by alkanolamine. Therefore, in order to remove the modified resist, it is common to use a primary alkanolamine having strong release performance.
  • Patent Document 1 discloses a resist stripping solution containing a compound represented by the formula (1) and a solvent. It is said that this resist stripper can also be used in the resist stripping process for Cu wiring and Al wiring.
  • the resist film is used for forming a wiring or the like through an etching process after being exposed and developed.
  • a step called post-bake is passed before the etching step. This is performed for the purpose of making the resist film harder before etching is performed.
  • the polymerization of the novolak resin constituting the resist film and the DNQ compound as the alkali insolubilizer proceeds further, and the resist film is prevented from peeling from the surface of the metal film during the etching process.
  • Patent Document 1 has been studied for hard baking, and it is said that the resist can be peeled even under conditions of hard baking at 160 ° C. for 5 minutes. Therefore, it is said that the stripping solution of Patent Document 1 can strip the resist even in the case of an unexpected situation that may occur during the manufacture of hard baking.
  • the compound of the formula (1) has a problem that it is a special compound that is not commercially available as a reagent or an industrial raw material.
  • the present invention has been conceived in view of the above problems, and even if a problem of hard baking occurs in the manufacturing process, Cu that can peel off the resist film after etching without stopping the manufacturing line.
  • the present invention provides a resist stripping solution that can be used in a stripping process for wiring and Al wiring.
  • the resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, a sugar alcohol, and a reducing agent. Further, a high boiling point solvent may be included.
  • the resist stripping solution according to the present invention can be shared in a resist stripping process for Cu wiring (including Cu / Mo laminated wiring) and Al wiring. Further, even if the resist film is hard-baked, the resist film can be peeled off. In addition, the resist stripping solution according to the present invention can strip the resist film that has been hard-baked in this way, while also damaging the Cu film, the Mo film disposed as the base of the Cu film, and the Al film. There is no.
  • the resist film on the aluminum film or the resist film on the Cu film can be stripped with one type of resist stripping solution. That is, it is not necessary to prepare a plurality of types of resist film stripping process lines, and the resist stripping solution may be managed in one type. Also, a process called ashing is not necessary. As a result, it is possible to contribute greatly to productivity and cost reduction in the factory.
  • the resist stripping solution according to the present invention contains sugar alcohol
  • the sugar alcohol having the highest boiling point among the components may solidify in the distillation tower as the last residue when performing distillation regeneration.
  • solidification in the distillation tower can be suppressed even when the sugar alcohol remains as a residue.
  • the resist film from which the resist stripper according to the present invention is peeled is assumed to be a positive resist.
  • the positive resist includes a novolac resin as a resin, and a diazonaphthoquinone (DNQ) compound is used as a photosensitive agent.
  • DNQ diazonaphthoquinone
  • This exposure turns the DNQ compound into indenketene.
  • indenketene associates with water, it turns into indenecarboxylic acid and dissolves in water.
  • the novolac resin originally has a property of being dissolved in an alkaline solution, but the melting point is protected by a DNQ compound.
  • the DNQ compound is altered by exposure and dissolved in a developer containing water, so that the novolak resin is also dissolved. In this way, patterning of the resist film is completed.
  • the substrate on which the patterning is completed with the resist film is subjected to wet etching or dry etching processing after post-baking.
  • Post bake is performed in order to advance polymerization of the novolak resin and the DNQ compound in the resist film to some extent.
  • the heat treatment is performed at 140 ° C. for about 5 minutes.
  • hard baking refers to heating conditions at 150 ° C. for 5 minutes or more. When the baking temperature rises, the novolak resin and the DNQ compound rapidly polymerize and firmly adhere to the underlying metal film, making it difficult to dissolve.
  • the resist stripping solution according to the present invention is also intended for a resist film that has undergone such hard baking.
  • the resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, and an additive.
  • the additive includes a sugar alcohol and a reducing agent. Further, a high boiling point solvent may be included.
  • the polar solvent may be an organic solvent having an affinity for water.
  • water-soluble organic solvents include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, diethyl sulfone, bis (2-hydroxyethyl) sulfone, and tetramethylene sulfone; N, N-dimethylformamide, N-methyl Amides such as formamide, N, N-dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N -Lactams such as hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisoprop
  • a mixture of at least one selected from dimethyl sulfoxide, N-methyl-2-pyrrolidone, and diethylene glycol monobutyl ether and at least one selected from ethylene glycol, diethylene glycol, and propylene glycol is preferable.
  • a desired result can be obtained by using a mixed liquid of diethylene glycol monobutyl ether (BDG) and propylene glycol (PG) as a polar solvent.
  • BDG diethylene glycol monobutyl ether
  • PG propylene glycol
  • a mixed solution of diethylene glycol monobutyl ether (BDG) and propylene glycol (PG) can be suitably used as a polar solvent.
  • BDG diethylene glycol monobutyl ether
  • PG propylene glycol
  • a polar solvent containing at least two liquids is effective.
  • the resist stripping solution according to the present invention can contain a high boiling point solvent having the same boiling point remaining as a residue together with the sugar alcohol described later.
  • the high boiling point solvent desirably has a higher boiling point than the component used as the polar solvent.
  • the high boiling point solvent is preferably one that can dissolve the sugar alcohol and the resist component. Furthermore, it is desirable that it can be easily dissolved in water. Accordingly, polyols having a high boiling point can be suitably used.
  • the polar solvents that can be suitably used are propylene glycol (boiling point 188 ° C.) and diethylene glycol monobutyl ether (boiling point 230 ° C.), a solvent having a boiling point higher than 230 ° C. is used.
  • specific high boiling solvents include polyols such as glycerin (boiling point 290 ° C.), diethylene glycol (boiling point 244 ° C.), 1,5-pentanediol (boiling point 242 ° C.), 1,6-hexanediol (boiling point). 250 ° C.), 1,7-heptanediol (boiling point 258 ° C.), 1,10-decanediol (boiling point 297 ° C.), and the like.
  • ethers in polyols include ethylene glycol monophenyl ether (boiling point 245 ° C.), triethylene glycol monomethyl (boiling point 249 ° C.), diethylene glycol dibutyl ether (boiling point 256 ° C.), triethylene glycol butyl methyl ether (boiling point). 261 ° C.), polyethylene glycol dimethyl ether (boiling point 264 to 294 ° C.), tetraethylene glycol dimethyl ether (boiling point 275 ° C.), polyethylene glycol monomethyl ether (boiling point 290 to 310 ° C.) and the like.
  • the polar solvent is preferably 50% by mass or more and 80% by mass or less based on the total amount of the resist stripping solution.
  • a high boiling point solvent when using a high boiling point solvent together, it is suitable to contain a high boiling point solvent 1 mass% or more and 5 mass% or less.
  • cyclic amine a 5-membered cyclic amine is desirable, and in particular, pyrrolidine or pyrrolidine having a substituent bonded to the 3-position is desirable.
  • 3-methylpyrrolidine, (S) -3-ethylpyrrolidine, 3-aminopyrrolidine, 3-acetamidopyrrolidine, 3- (N-acetyl-N-ethylamino) pyrrolidine, 3- (N-acetyl-N-methylamino) ) Pyrrolidine, (R) -3-hydroxypyrrolidine, 3- (ethylamino) pyrrolidine are preferably used.
  • These cyclic amines are effective in removing a hard-baked resist film.
  • pyrrolidine is generally distributed as a fragrance such as an intermediate for medicines and agricultural chemicals and gum, and is an easily available compound. Therefore, the cost of the stripping solution itself can be reduced.
  • the amount of cyclic amine added is preferably 0.5% by mass or more and less than 3.0% by mass with respect to the total amount of the resist stripping solution. More desirably, it is 0.8 mass% or more and 2.5 mass% or less. If the amount of cyclic amine is too large, the copper film and the molybdenum film are corroded, and if it is too small, the resist film that has undergone hard baking cannot be removed.
  • the sugar alcohol and reducing agent are added as additives.
  • the sugar alcohol sorbitol, xylitol, sucrose, mannitol, maltitol, lactitol and the like can be suitably used. These sugar alcohols suppress the dissolution of the Al film in the resist stripping solution and, together with the reducing agent (hydrazine), suppress the undercut of the Mo film.
  • the sugar alcohol is preferably 0.5% by mass or more and 10% by mass or less with respect to the total amount of the resist stripping solution. More desirably, it is 0.8 mass% or more and 2.0 mass% or less.
  • Sugar alcohol has a role as a corrosion inhibitor. Therefore, it is desirable to contain a certain amount. However, it does not contribute much to the resist film peeling. On the other hand, when the sugar alcohol is excessively added, when the resist stripping solution is distilled and regenerated, it remains in the distillation column and causes scaling. Therefore, it is good to contain in said range.
  • hydrazine can be suitably used.
  • the addition of the reducing agent suppresses Mo undercut by the cyclic amine.
  • the reducing agent is desirably in a range of more than 0.0128% by mass and less than 0.512% by mass with respect to the total amount of the resist stripping solution. More preferably, it is the range of 0.06 mass% or more and 0.4 mass% or less (0.06 mass% or more, 0.4 mass% or less).
  • Hydrazine may be hydrated from the viewpoint of safe handling. For example, when hydrazine monohydrate is used, the ratio of the reducing agent is in the range of more than 0.02% by mass and less than 0.8% by mass. Moreover, a more preferable range is 0.094 mass% or more and 0.63 mass% or less.
  • resist stripping solutions according to the present invention are shown below.
  • the resist stripping solution was evaluated for two points: “resist strippability” and “corrosiveness of metal film”.
  • a silicon thermal oxide film having a thickness of 100 nm was formed on a silicon substrate, and a copper film having a thickness of 300 nm was formed on the silicon thermal oxide film by sputtering.
  • a positive resist solution was applied onto the copper film by spin coating to prepare a resist film. After the resist film was dried, it was exposed using a wiring pattern mask. Then, the resist in the exposed portion was removed with a developer. That is, there is a state where there is a portion where the resist film of the wiring pattern remains on the copper film and a portion where the copper film is exposed.
  • the entire silicon substrate was post-baked at 150 ° C. for 10 minutes. This is a process of reproducing hard baking.
  • the exposed copper film was removed by etching using an overwater copper etchant. After the etching of the copper film was completed, the resist film on the remaining copper pattern was stripped using a sample resist stripping solution. The time for removing the resist film was examined in three stages, 40 seconds, 80 seconds, and 120 seconds. Then, the substrate was washed, and it was observed while interfering with an optical microscope whether or not the resist film remained on the copper film. When the remainder of the resist film was confirmed on the copper film, it was set to “x” (X), and when the remaining resist film was not confirmed, it was set to “ ⁇ ” (maru). Note that “ ⁇ ” (maru) means success or success, and “x” (cross) means failure or failure. The same applies to the following evaluations.
  • a silicon thermal oxide film was formed to a thickness of 100 nm on a silicon substrate, and a copper film was formed to a thickness of 300 nm on the silicon thermal oxide film by sputtering to prepare a Cu film sample. This is called “Cu gate”.
  • a molybdenum film was formed to a thickness of 20 nm on a silicon thermal oxide film on a silicon substrate, and a copper film was subsequently formed to a thickness of 300 nm to prepare a Cu / Mo laminated film sample. . This is called “Cu / Mo gate”.
  • an aluminum film was formed to a thickness of 300 nm on the silicon thermal oxide film on the silicon substrate to produce an Al film sample. This is called “Al gate”.
  • the base material for corrosivity evaluation is a resist formed in a wiring shape on a Cu film, Cu / Mo film, or Al film formed on a silicon thermal oxide film on a silicon substrate. Consists of layers.
  • Etching was performed by immersing these corrosive evaluation base materials in an etchant for copper film or aluminum film for the time of just etching. Thereafter, the corrosive evaluation base material after etching was immersed in a sample resist stripper for 4 minutes to strip the resist film. After the corrosive evaluation base material immersed in the sample resist stripper for 4 minutes was washed and dried, the wiring portion was cut and the cut surface was observed. The surface of the copper film after the resist was peeled was also observed.
  • the resist film In the evaluation of corrosiveness, the resist film is not subjected to heat treatment until it is hard baked. Moreover, the judgment of just etching was made when the silicon thermal oxide film was visually confirmed from the start of etching.
  • the observation of the cut surface was performed using SEM (Scanning Electron Microscope) (manufactured by Hitachi: SU8020 type) under the conditions of an acceleration voltage of 1 kV and 30,000 to 50,000 times.
  • SEM Sccanning Electron Microscope
  • the cut surface shape is shown in FIG. FIG. 1A shows the cut surface shape in the case of Cu Gate and Al Gate.
  • the cut surface shape of the just-etched portion has a taper angle 5 of approximately 30 ° to 60 ° with respect to the substrate 1.
  • the film part 2 is a Cu film in the case of Cu Gate, and an Al film in the case of Al Gate.
  • Fig. 1 (b) shows the case of Cu / Mo Gate.
  • the upper Cu layer 2 has a taper angle 5.
  • the underlying Mo layer 3 is preferably etched along the tapered surface 6 of the Cu layer 2. However, as shown in FIG. 1B, there may be an etching residue 7 from the Cu layer 2.
  • Corrosivity is evaluated as “ ⁇ ” (X) if corrosion is confirmed on either the film part 2 or the surface 4 of the film part 2 or the underlying Mo layer 3 by observing the cross-sectional shape. When no corrosion was observed, it was judged as “ ⁇ ” (maru).
  • the surface state of the copper layer 2 was observed with an SEM.
  • the copper film is corroded by being immersed in the resist stripping solution for a long time. This can be grasped by SEM surface observation. Obviously, when it was confirmed that the surface of the copper layer 2 was corroded, the evaluation was “x” (X).
  • sample resist stripping solution was prepared as follows.
  • the sample resist stripping solution is composed of a cyclic amine, a polar solvent, water, and an additive.
  • Example 1 As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 0.8% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 27.6% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives. Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain the sample resist stripping solution of Example 1.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • HN Hydrazine monohydrate
  • HN Hydrazine monohydrate
  • hydrazine monohydrate corresponds to 0.064 mass% of hydrazine.
  • the remaining 0.036% by mass of hydrazine monohydrate is water. Therefore, it can be said that the composition ratio of the above water is 30.036% by mass including the amount added as hydrazine monohydrate.
  • the same notation is used when hydrazine monohydrate is used.
  • Example 2 increased the amount of cyclic amine.
  • the increase in pyrrolidine was adjusted with the polar solvent PG.
  • cyclic amine pyrrolidine, a five-membered cyclic amine, was used.
  • Pyrrolidine (PRL) 1.5% by mass
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 26.9% by mass
  • Sugar alcohol and a reducing agent were added as additives.
  • Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine)
  • HN Hydrazine monohydrate
  • Example 3 In Example 3, the type of the cyclic amine of Example 2 was changed.
  • 3- (Ethylamino) pyrrolidine (EAPRL) 1.5% by mass
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 26.9% by mass
  • Sugar alcohol and a reducing agent were added as additives.
  • Example 4 glycerin was further added to the polar solvent of Example 1. The increase in glycerin was adjusted with the polar solvent PG.
  • cyclic amine pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 0.8% by mass
  • polar solvent PG cyclic amine
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Glycerin 2.0% by mass Water 30.0% by mass Sugar alcohol and a reducing agent were added as additives.
  • Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 4.
  • Example 5 In Example 5, glycerin was further added to the polar solvent of Example 2. The increase in glycerin was adjusted with the polar solvent PG.
  • cyclic amine pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 1.5% by mass
  • polar solvent PG cyclic amine
  • PRL Pyrrolidine
  • Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 5.
  • Example 6 In Example 6, glycerin was further added to the polar solvent of Example 3. The increase in glycerin was adjusted with the polar solvent PG. The 5-membered cyclic amine 3- (ethylamino) pyrrolidine (EAPRL) was used as the cyclic amine. 3- (Ethylamino) pyrrolidine (EAPRL) 1.5% by mass Three types of polar solvents were mixed. Propylene glycol (PG) 24.9% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass Glycerin 2.0% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives. Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 6.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl
  • Example 7 In Example 7, the pyrrolidine (0.8% by mass) of Example 1 was increased to 2.0% by mass. The increase in pyrrolidine was adjusted with the polar solvent PG. As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 26.4% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives. Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 7.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Sorbitol (Stol) 1.5% by mass Hydrazine mono
  • Example 8 In Example 8, the pyrrolidine (0.8% by mass) of Example 1 was increased to 2.5% by mass. The increase in pyrrolidine was adjusted with the polar solvent PG. As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 2.5% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 25.9% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives. Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.1% by mass (0.064% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 8.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Sorbitol (Stol) 1.5% by mass Hydrazine mono
  • Example 9 In Example 9, the amount of hydrazine monohydrate (0.1% by mass) of Example 2 (pyrrolidine: 1.5% by mass) was increased to 0.6% by mass. The increment of hydrazine monohydrate was adjusted with the polar solvent PG.
  • cyclic amine pyrrolidine, a five-membered cyclic amine, was used.
  • Pyrrolidine (PRL) 1.5% by mass
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 26.4% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass Water 30.0% by mass Sugar alcohol and a reducing agent were added as additives.
  • Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.6% by mass (0.384 mass% in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Example 9.
  • Table 1 shows the results of the sample resist stripping composition and the “resist stripping property” and “corrosiveness of the metal film” for Examples 1 to 9 described above.
  • Table 1 the composition ratio of hydrazine together with the composition ratio of hydrazine monohydrate is shown as “hydrazine conversion value”.
  • the comparative example 1 is a composition which increased the pyrrolidine (0.8 mass%) of Example 1 to 3.0 mass%.
  • the increase in pyrrolidine was adjusted with the polar solvent PG.
  • cyclic amine pyrrolidine, a five-membered cyclic amine, was used.
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 25.4% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass Water 30.0% by mass Sugar alcohol and a reducing agent were added as additives.
  • the increase of the reducing agent was adjusted with the polar solvent PG.
  • As the cyclic amine pyrrolidine, a five-membered cyclic amine, was used. Pyrrolidine (PRL) 1.5% by mass
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 26.2% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives.
  • Sorbitol (Stol) 1.5% by mass Hydrazine monohydrate (HN) 0.8% by mass (0.512% by mass in terms of hydrazine) The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 2.
  • the reduction amount of the reducing agent was adjusted with the polar solvent PG.
  • PG cyclic amine
  • pyrrolidine a five-membered cyclic amine
  • PRL Pyrrolidine
  • PRL 1.50% by mass
  • Two types of polar solvents were mixed.
  • Propylene glycol (PG) 26.98% by mass
  • Diethylene glycol monobutyl ether (BDG) 40.00% by mass 30.0% by weight of water Sugar alcohol and a reducing agent were added as additives.
  • Table 2 shows the composition of the sample resist stripping solution and the results of “resist stripping property” and “corrosiveness of metal film” for Comparative Examples 1 to 3 described above.
  • the following comparative example was prepared as a sample for confirming the effectiveness of a specific cyclic amine in the resist stripping solution according to the present invention.
  • Comparative Example 4 In Comparative Example 4, the 5-membered cyclic amine 2-methylpyrrolidine was used. There is no additive added. 2-Methylpyrrolidine 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 28.0% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 4.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Comparative Example 5 In Comparative Example 5, 5-membered cyclic amine 1-methylpyrrolidine was used. There is no additive added. 1-methylpyrrolidine 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 28.0% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass Water 30.0% by mass The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 5.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Comparative Example 6 In Comparative Example 6, the 5-membered cyclic amine 2-methoxymethylpyrrolidine was used. There is no additive added. 2-Methoxymethylpyrrolidine 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 28.0% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 6.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Comparative Example 7 In Comparative Example 7, 5-membered cyclic amine 3- (ethylamino) pyrrolidine was used. There is no additive added. 3- (Ethylamino) pyrrolidine 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 28.0% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass Water 30.0% by mass The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 7.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Comparative Example 8 In Comparative Example 8, pyrrolidine, a five-membered cyclic amine, was used. There is no additive added. Pyrrolidine 2.0% by mass Two types of polar solvents were mixed. Propylene glycol (PG) 28.0% by mass Diethylene glycol monobutyl ether (BDG) 40.0% by mass 30.0% by weight of water The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 8.
  • PG Propylene glycol
  • BDG Diethylene glycol monobutyl ether
  • Table 3 shows the results of the sample resist stripping solution compositions and “resist stripping properties” for Comparative Examples 4 to 8 described above.
  • the immersion time was 6 minutes (4 minutes in Tables 1 and 2).
  • each% represents mass% with respect to the total amount of the resist stripping solution.
  • PG represents propylene glycol
  • BDG represents diethylene glycol monobutyl ether.
  • Example 1 (0.8% by mass of pyrrolidine) that took the longest stripping time, the hard-baked resist film could be stripped in a short time of 120 seconds after immersion.
  • Example 3 the cyclic amine was replaced with 3- (ethylamino) pyrrolidine.
  • Example 3 the hard-baked resist film was peeled off in 80 seconds, and the problems of corrosion of the metal film and undercut of the Mo film were not caused.
  • Mo undercut was good when the amount of hydrazine monohydrate was 0.8 mass% or more. Roughness was observed on the surface of the copper layer. If there is too much reducing agent, the copper layer is considered to be damaged. When hydrazine monohydrate was 0.02% by mass or less, Mo undercut was observed.
  • the ratio of hydrazine monohydrate is more than 0.02% by mass and less than 0.8% by mass (in terms of hydrazine, more than 0.0128% by mass and less than 0.512% by mass).
  • Table 3 shows the effect of certain five-membered cyclic amines.
  • Comparative Example 4 has 2-methylpyrrolidine with a substituent bonded at the 2-position
  • Comparative Example 5 has 1-methylpyrrolidine with a substituent bonded at the 1-position
  • Comparative Example 6 has 2-position.
  • pyrrolidine having a substituent at the 3-position such as 3- (ethylamino) pyrrolidine (Comparative Example 7), or ordinary pyrrolidine to which no substituent is bonded (Comparative Example 8) is hard-baked.
  • the resist film thus obtained could be peeled off.
  • these pyrrolidines and 3- (ethylamino) pyrrolidines are compositions prepared so that Mo undercut does not occur.
  • Examples 4 to 6 were obtained by adding 2.0% by mass of glycerin to the polar solvents of Examples 1 to 3.
  • the hard-baked resist film could be peeled off in 80 to 120 seconds, and the Cu gate and Al gate were not damaged, and Mo undercut was not caused.
  • resist stripping solutions of Examples 4 to 6 contain glycerin having a high boiling point, sugar alcohol and stripped resist components can be prevented from solidifying in the distillation tower when regenerating by distillation after use.
  • the resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, a sugar alcohol, and a reducing agent, so that the resist stripping process for the Cu film, the Cu / Mo film, and the Al film is performed. Can be used in common. Furthermore, even if the resist film is hard-baked, it can be peeled off.
  • the resist stripping solution of the present invention can be suitably used as a resist stripping solution when a positive resist is used.
  • This can be suitably used for general production of FPD such as a liquid crystal display, a plasma display, and an organic EL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A hard-baked resist film is firmly fixed to a base metal film when a novolac resin and a DNQ compound are excessively polymerized. Therefore, in some cases, the hard-baked resist film could not be stripped by means of a common resist stripping liquid capable of stripping a resist film disposed on a Cu film, a Cu/Mo film, or an Al film. Provided is a resist stripping liquid characterized by containing a cyclic amine, a polar solvent, water, a sugar alcohol, and a reductant, particularly wherein at least one from among pyrrolidine and a compound having a substituent bonded at a 3-posistion of pyrrolidine is used as the cyclic amine and hydrazine is used as the reductant.

Description

レジスト剥離液Resist stripper
 本発明は、液晶、有機EL等のディスプレイデバイスや半導体の製造時に用いるレジストを剥離するための剥離液であり、より詳しくはハードベークされたレジスト膜であっても、レジストを除去できさらに、アルミニウム膜および銅膜に対しても、実質的に腐食しないといえるレジスト剥離液に関する。 The present invention is a stripping solution for stripping a resist used in the manufacture of display devices such as liquid crystal and organic EL and semiconductors. More specifically, even a hard-baked resist film can remove a resist, and further, aluminum The present invention also relates to a resist stripping solution that can be said to be substantially free from corrosion even for a film and a copper film.
 液晶や有機EL(Electro-Luminescence)等のフラットパネルディスプレイ(FPD)では、大画面のものが求められている。一方でノートPC、タブレットPC、スマートフォン用として、小型高精細画面が求められている。大画面用としては、Cu配線若しくはCu/Mo積層配線(以後単に「Cu配線」とも呼ぶ。)を用いたTFT(Thin Film Transistor)が用いられている。また、小型高精細画面用としては、Al配線を用いたTFTが用いられている。なお、以下Cuは銅、Moはモリブデン、Alはアルミニウムとも呼ぶ。 A flat panel display (FPD) such as a liquid crystal or an organic EL (Electro-Luminescence) is required to have a large screen. On the other hand, small high-definition screens are required for notebook PCs, tablet PCs, and smartphones. For a large screen, a TFT (Thin Film Transistor) using Cu wiring or Cu / Mo laminated wiring (hereinafter also simply referred to as “Cu wiring”) is used. In addition, TFTs using Al wiring are used for small high-definition screens. Hereinafter, Cu is also called copper, Mo is called molybdenum, and Al is also called aluminum.
 パネル製造メーカの中には、1つの工場内で、Al配線を用いたTFTと、Cu配線を用いたTFTを生産している場合もある。Al配線を用いたTFTと、Cu配線を用いたTFTの両方を生産する場合、レジスト膜の剥離工程で、Al配線を用いる場合と、Cu配線を用いる場合とでレジスト剥離液を共用することができれば生産コストを削減できる。 Some panel manufacturers produce TFTs using Al wiring and TFTs using Cu wiring in one factory. When both TFTs using Al wiring and TFTs using Cu wiring are produced, the resist stripping solution can be shared between the case of using Al wiring and the case of using Cu wiring in the resist film peeling process. If possible, production costs can be reduced.
 水系のポジ型フォトレジスト用剥離液は、一般にアルカノールアミン、極性溶媒、水からなる組成であり、レジスト剥離装置内で40~50℃程度に加熱されて使用される。 A water-based positive photoresist stripping solution generally has a composition comprising alkanolamine, a polar solvent, and water, and is used after being heated to about 40 to 50 ° C. in a resist stripping apparatus.
 アルカノールアミンは求核作用によって、ポジ型フォトレジスト剥離液中のアルカリ不溶化剤であるDNQ(ジアゾナフトキノン)化合物のカルボニル基を極性溶媒および水に可溶化するために必須の成分とされている。アルカノールアミンは、窒素元素に結合している水素以外の置換基の数によって一級、二級、三級に分類される。このうち、級数が小さいほど塩基性が強く、求核性も強いことが知られている。 Alkanolamine is an essential component for solubilizing the carbonyl group of a DNQ (diazonaphthoquinone) compound, which is an alkali insolubilizing agent, in a positive photoresist stripping solution in a polar solvent and water by nucleophilic action. Alkanolamines are classified as primary, secondary, and tertiary depending on the number of substituents other than hydrogen bonded to the nitrogen element. Among these, it is known that the smaller the series, the stronger the basicity and the stronger the nucleophilicity.
 したがって、級数が小さなアルカノールアミンであるほど、アルカリ不溶化剤であるDNQ化合物を極性溶媒や水に可溶化する力が強く、強力なレジスト剥離性能を発揮する。 Therefore, the smaller the series, the stronger the power to solubilize the DNQ compound, which is an alkali insolubilizing agent, in a polar solvent or water, and a stronger resist stripping performance.
 一方で、アルカノールアミンはCuに対してキレート作用があることが知られている。Cuに対するキレート作用は、Cuを可溶化するため、Cu膜を腐食することになる。Cuに対するキレート作用は、塩基性や求核性同様にアルカノールアミンの級数が小さいほど強い。したがって、級数が小さいアルカノールアミンほど、Cu膜を強く腐食する。 On the other hand, alkanolamine is known to have a chelating action on Cu. The chelating action for Cu solubilizes Cu and thus corrodes the Cu film. The chelating action for Cu is stronger as the alkanolamine series is smaller as is the case with basicity and nucleophilicity. Therefore, the alkanolamine with a smaller series corrodes the Cu film more strongly.
 Al配線を用いた高精細画面用TFTの生産プロセスでは、半導体(アモルファスシリコン:以後「a-Si」ともいう。)のドライエッチング工程において、レジストがダメージを受けて変性し、レジストを剥離するのが困難になる場合がある。これは、ポジ型レジスト膜を構成するDNQ化合物とノボラック樹脂の重合が過剰に進むためと考えられる。 In the production process of high-definition screen TFTs using Al wiring, in the dry etching process of a semiconductor (amorphous silicon: hereinafter also referred to as “a-Si”), the resist is damaged and denatured, and the resist is peeled off. May be difficult. This is presumably because the polymerization of the DNQ compound and the novolak resin constituting the positive resist film proceeds excessively.
 Al配線はアルカノールアミンによる腐食作用(キレート作用)を受けない。したがって、変性したレジストを剥離するため、強力な剥離性能を有する一級アルカノールアミンを使用するのが一般的である。 ¡Al wiring is not corrosive (chelating) by alkanolamine. Therefore, in order to remove the modified resist, it is common to use a primary alkanolamine having strong release performance.
 一方、Cu配線の場合は、一級若しくは二級のアルカノールアミンを用いると、Cu配線の腐食が許容できない程度に発生する場合が多い。したがって、三級アルカノールアミンを用いる剥離液が提案されている。三級アルカノールアミンはCuへのキレート作用が弱く、Cu膜の腐食を実用上問題のない範囲に抑えることができる。しかし、塩基性や求核性もキレート作用同様弱く、一級若しくは二級のアルカノールアミンを用いたレジスト剥離液と比較し、レジスト剥離力が弱いという欠点があった。 On the other hand, in the case of Cu wiring, when primary or secondary alkanolamine is used, corrosion of Cu wiring often occurs to an unacceptable level. Therefore, a stripping solution using a tertiary alkanolamine has been proposed. Tertiary alkanolamines have a weak chelating action on Cu, and can suppress the corrosion of the Cu film to a practically acceptable range. However, the basicity and nucleophilicity are weak as well as the chelating action, and there is a drawback that the resist stripping force is weak compared to a resist stripping solution using primary or secondary alkanolamine.
 このような技術背景の下で、一級アルカノールアミンを用いたAl配線用レジスト剥離液と同等以上の剥離性能を有し、Cu配線、Al配線の両方に用いることができるレジスト剥離液組成物が求められている。 Under such a technical background, there is a need for a resist stripping solution composition that has a stripping performance equivalent to or better than that of a resist stripping solution for Al wiring using primary alkanolamine and can be used for both Cu wiring and Al wiring. It has been.
 また特許文献1には、(1)式で示される化合物および溶剤を含むレジスト剥離液が開示されている。このレジスト剥離液もCu配線およびAl配線のレジスト剥離工程で共用できるとされている。 Patent Document 1 discloses a resist stripping solution containing a compound represented by the formula (1) and a solvent. It is said that this resist stripper can also be used in the resist stripping process for Cu wiring and Al wiring.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
特許第5279921号公報Japanese Patent No. 5279921
 レジスト膜は、露光され、現像された後に、エッチング工程を経て、配線等を形成する場合に用いられる。ここでエッチング工程の前にはポストベークという工程を通過する。これはエッチングが行われる前に、レジスト膜をより硬くすることを目的に行われる。このポストベークで、レジスト膜を構成するノボラック樹脂とアルカリ不溶化剤であるDNQ化合物の重合はより進み、エッチング工程中に金属膜の表面からレジスト膜が剥離することを抑制する。 The resist film is used for forming a wiring or the like through an etching process after being exposed and developed. Here, a step called post-bake is passed before the etching step. This is performed for the purpose of making the resist film harder before etching is performed. By this post-baking, the polymerization of the novolak resin constituting the resist film and the DNQ compound as the alkali insolubilizer proceeds further, and the resist film is prevented from peeling from the surface of the metal film during the etching process.
 しかし、このポストベークの工程で、加熱温度が上がりすぎる(ハードベーク状態)と、レジスト膜中で生じるノボラック樹脂とDNQ化合物の重合が進みすぎ、従来のレジスト剥離液で剥離できなくなる場合が発生する。 However, in this post-baking process, if the heating temperature rises too much (hard bake state), the polymerization of the novolak resin and DNQ compound that occurs in the resist film proceeds so much that the conventional resist stripping solution cannot be stripped. .
 この点、特許文献1はハードベークに対する検討がされており、160℃で5分というハードベークの条件でも、レジストが剥離できるとされている。したがって、ハードベークという製造中に起こり得る不測の事態に対しても特許文献1の剥離液は、レジストを剥離できるとされている。 In this regard, Patent Document 1 has been studied for hard baking, and it is said that the resist can be peeled even under conditions of hard baking at 160 ° C. for 5 minutes. Therefore, it is said that the stripping solution of Patent Document 1 can strip the resist even in the case of an unexpected situation that may occur during the manufacture of hard baking.
 しかしながら、(1)式の化合物は、試薬としても、工業原料としても、市販されていない特殊な化合物であるという課題があった。 However, the compound of the formula (1) has a problem that it is a special compound that is not commercially available as a reagent or an industrial raw material.
本発明は上記の課題に鑑みて想到されたものであり、仮に製造工程上でハードベークという問題が発生したとしても、製造ラインを止めることなく、エッチング後のレジスト膜を剥離することができるCu配線およびAl配線での剥離工程で共用することのできるレジスト剥離液を提供するものである。 The present invention has been conceived in view of the above problems, and even if a problem of hard baking occurs in the manufacturing process, Cu that can peel off the resist film after etching without stopping the manufacturing line. The present invention provides a resist stripping solution that can be used in a stripping process for wiring and Al wiring.
 より具体的に本発明に係るレジスト剥離液は、 環状アミンと、極性溶媒と、水と、糖アルコールと、還元剤を含むことを特徴とする。また、高沸点溶媒を含んでもよい。 More specifically, the resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, a sugar alcohol, and a reducing agent. Further, a high boiling point solvent may be included.
 本発明に係るレジスト剥離液は、Cu配線(Cu/Mo積層配線を含む)およびAl配線でのレジスト剥離工程で共用することができる。また、仮にレジスト膜にハードベークが施されたとしても、レジスト膜を剥離することができる。また、本発明に係るレジスト剥離液は、この様にハードベークされたレジスト膜を剥離できる一方、Cu膜、Cu膜の下地として配されるMo膜、またAl膜に対してもダメージを与えることがない。 The resist stripping solution according to the present invention can be shared in a resist stripping process for Cu wiring (including Cu / Mo laminated wiring) and Al wiring. Further, even if the resist film is hard-baked, the resist film can be peeled off. In addition, the resist stripping solution according to the present invention can strip the resist film that has been hard-baked in this way, while also damaging the Cu film, the Mo film disposed as the base of the Cu film, and the Al film. There is no.
 したがって、アルミニウム膜上のレジスト膜であっても、Cu膜上のレジスト膜であっても、1種類のレジスト剥離液で剥離することができる。つまり、レジスト膜の剥離工程ラインを複数種類用意する必要がなく、またレジスト剥離液も1種類の管理でよい。また、アッシングと言った工程も不要になる。その結果、工場での生産性およびコスト低減に高く寄与することができる。 Therefore, the resist film on the aluminum film or the resist film on the Cu film can be stripped with one type of resist stripping solution. That is, it is not necessary to prepare a plurality of types of resist film stripping process lines, and the resist stripping solution may be managed in one type. Also, a process called ashing is not necessary. As a result, it is possible to contribute greatly to productivity and cost reduction in the factory.
 また、本発明に係るレジスト剥離液は、糖アルコールを含むため、蒸留再生を行う際に、成分中で最も沸点の高い糖アルコールが最後の残渣として蒸留塔内で固化する場合がある。しかし、糖アルコールと共に残渣として残る程度の沸点を有する高沸点溶媒を含ませることで、糖アルコールが残渣として残る場合でも蒸留塔内で固化することを抑制できる。 In addition, since the resist stripping solution according to the present invention contains sugar alcohol, the sugar alcohol having the highest boiling point among the components may solidify in the distillation tower as the last residue when performing distillation regeneration. However, by including a high-boiling solvent having a boiling point that remains as a residue together with the sugar alcohol, solidification in the distillation tower can be suppressed even when the sugar alcohol remains as a residue.
Cu/Mo積層膜のテーパー角およびMoアンダーカットを説明する図である。It is a figure explaining the taper angle and Mo undercut of a Cu / Mo laminated film.
 以下本発明に係るレジスト剥離液について説明する。なお、以下の説明は本発明に係るフォトレジスト剥離液の一実施形態を示すものであり、本発明の趣旨を逸脱しない範囲で、以下の実施形態および実施例は改変されてもよい。 Hereinafter, the resist stripping solution according to the present invention will be described. The following description shows an embodiment of the photoresist stripping solution according to the present invention, and the following embodiments and examples may be modified without departing from the gist of the present invention.
 本発明に係るレジスト剥離液が剥離するレジスト膜は、ポジ型レジストを想定している。ポジ型レジストには、樹脂としてノボラック系の樹脂が含まれ、感光剤としてジアゾナフトキノン(DNQ)化合物が使用される。エッチングを行う場合、基板上にレジスト膜を形成し、パターンを介して露光を行う。  The resist film from which the resist stripper according to the present invention is peeled is assumed to be a positive resist. The positive resist includes a novolac resin as a resin, and a diazonaphthoquinone (DNQ) compound is used as a photosensitive agent. When etching is performed, a resist film is formed on the substrate, and exposure is performed through the pattern. *
 この露光によってDNQ化合物がインデンケテンに変わる。インデンケテンは水と会合すると、インデンカルボン酸に変わり、水に溶解する。ノボラック系の樹脂は、もともとアルカリ溶液に溶解する性質を有するが、DNQ化合物によって溶解点をプロテクトされている。DNQ化合物が露光によって変質し、水を含む現像液に溶け出すことで、ノボラック樹脂も溶け出す。このようにしてレジスト膜のパターニングが完成する。 This exposure turns the DNQ compound into indenketene. When indenketene associates with water, it turns into indenecarboxylic acid and dissolves in water. The novolac resin originally has a property of being dissolved in an alkaline solution, but the melting point is protected by a DNQ compound. The DNQ compound is altered by exposure and dissolved in a developer containing water, so that the novolak resin is also dissolved. In this way, patterning of the resist film is completed.
 レジスト膜によってパターンニングが完成した基板は、ポストベークを経てウエットエッチング若しくは、ドライエッチング処理が施される。ポストベークはレジスト膜中のノボラック樹脂とDNQ化合物の重合をある程度進めるために行われる。通常140℃で5分程度の加熱処理である。本明細書でハードベークとは、150℃で5分以上の加熱条件を言う。ノボラック樹脂とDNQ化合物は、ベーク温度が上昇すると、急速に重合が進み下地の金属膜に強固に固着し、溶解しにくくなる。本発明に係るレジスト剥離液は、このようなハードベークを経たレジスト膜をも対象とする。 The substrate on which the patterning is completed with the resist film is subjected to wet etching or dry etching processing after post-baking. Post bake is performed in order to advance polymerization of the novolak resin and the DNQ compound in the resist film to some extent. Usually, the heat treatment is performed at 140 ° C. for about 5 minutes. In this specification, hard baking refers to heating conditions at 150 ° C. for 5 minutes or more. When the baking temperature rises, the novolak resin and the DNQ compound rapidly polymerize and firmly adhere to the underlying metal film, making it difficult to dissolve. The resist stripping solution according to the present invention is also intended for a resist film that has undergone such hard baking.
 本発明に係るレジスト剥離液は、環状アミンと、極性溶媒と、水と、添加剤を含む。また、添加剤は、糖アルコールおよび還元剤を含む。さらに、高沸点溶媒を含んでも良い。 The resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, and an additive. The additive includes a sugar alcohol and a reducing agent. Further, a high boiling point solvent may be included.
 極性溶媒としては、水と親和性のある有機溶媒であればよい。このような水溶性有機溶媒としては、ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2-ヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジエチルアセトアミド等のアミド類;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-ヒドロキシメチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類;エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルなどのジエチレングリコールモノアルキルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどのプロピレングリコールモノアルキルエーテル(アルキルは炭素原子数1~6の低級アルキル基)等の多価アルコール類、およびその誘導体が挙げられる。 The polar solvent may be an organic solvent having an affinity for water. Examples of such water-soluble organic solvents include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, diethyl sulfone, bis (2-hydroxyethyl) sulfone, and tetramethylene sulfone; N, N-dimethylformamide, N-methyl Amides such as formamide, N, N-dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N -Lactams such as hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl -2-Imidazolidinones such as imidazolidinone; Glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether Propylene glycol monoalkyl ether such as diethylene glycol monoalkyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether Ruki ethers (alkyl is a lower alkyl group having 1 to 6 carbon atoms) are exemplified polyvalent alcohols, and derivatives thereof, and the like.
 これらの中で、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジエチレングリコールモノブチルエーテルの中から選ばれる少なくとも1種と、エチレングリコール、ジエチレングリコール、プロピレングリコールの中から選ばれる少なくとも1種の混合液が好適に利用できる。中でも、ポジ型レジストに対しては、ジエチレングリコールモノブチルエーテル(BDG)と、プロピレングリコール(PG)との混合液を極性溶媒として利用すると、望ましい結果を得ることができる。 Among these, a mixture of at least one selected from dimethyl sulfoxide, N-methyl-2-pyrrolidone, and diethylene glycol monobutyl ether and at least one selected from ethylene glycol, diethylene glycol, and propylene glycol is preferable. Available. In particular, for a positive resist, a desired result can be obtained by using a mixed liquid of diethylene glycol monobutyl ether (BDG) and propylene glycol (PG) as a polar solvent.
 また、本発明に係るレジスト剥離液では、極性溶媒としてジエチレングリコールモノブチルエーテル(BDG)とプロピレングリコール(PG)の混合液が好適に利用できる。これらの極性溶媒は、レジスト膜を溶解し、また溶解しやすくする。特にプロピレングリコールはレジスト膜を膨潤させ、ジエチレングリコールモノブチルエーテル(BDG)は、レジスト膜を溶解する。したがって、少なくとも2液を含有する極性溶媒が効果的である。 In the resist stripping solution according to the present invention, a mixed solution of diethylene glycol monobutyl ether (BDG) and propylene glycol (PG) can be suitably used as a polar solvent. These polar solvents dissolve and facilitate dissolution of the resist film. In particular, propylene glycol swells the resist film, and diethylene glycol monobutyl ether (BDG) dissolves the resist film. Therefore, a polar solvent containing at least two liquids is effective.
 また、本発明に係るレジスト剥離液では、後述する糖アルコールと共に残渣として残る同程度の沸点を有する高沸点溶媒を含めることができる。この高沸点溶媒は、極性溶媒として用いた成分よりも沸点が高い事が望ましい。また、高沸点溶媒は、糖アルコールおよびレジスト成分を溶解させることができるものが望ましい。さらに、水に容易に溶解できることが望ましい。したがって、ポリオール類の中で沸点が高いものが好適に利用できる。レジスト剥離液を蒸留再生する際に糖アルコールおよびレジスト成分は最後の残渣として残る。その際にこれらの残渣が固化するのを防止するためである。 Further, the resist stripping solution according to the present invention can contain a high boiling point solvent having the same boiling point remaining as a residue together with the sugar alcohol described later. The high boiling point solvent desirably has a higher boiling point than the component used as the polar solvent. Further, the high boiling point solvent is preferably one that can dissolve the sugar alcohol and the resist component. Furthermore, it is desirable that it can be easily dissolved in water. Accordingly, polyols having a high boiling point can be suitably used. When the resist stripping solution is regenerated by distillation, the sugar alcohol and the resist component remain as the last residue. This is to prevent these residues from solidifying at that time.
 例えば、好適に利用できる極性溶媒をプロピレングリコール(沸点188℃)と、ジエチレングリコールモノブチルエーテル(沸点230℃)とすると、沸点が230℃より高い溶媒を使用する。この場合具体的な高沸点溶媒としては、ポリオール類としては、グリセリン(沸点290℃)、ジエチレングリコール(沸点244℃)、1,5-ペンタンジオール(沸点242℃)、1,6-ヘキサンジオール(沸点250℃)、1,7-ヘプタンジオール(沸点258℃)、1,10-デカンジオール(沸点297℃)等が挙げられる。 For example, if the polar solvents that can be suitably used are propylene glycol (boiling point 188 ° C.) and diethylene glycol monobutyl ether (boiling point 230 ° C.), a solvent having a boiling point higher than 230 ° C. is used. In this case, specific high boiling solvents include polyols such as glycerin (boiling point 290 ° C.), diethylene glycol (boiling point 244 ° C.), 1,5-pentanediol (boiling point 242 ° C.), 1,6-hexanediol (boiling point). 250 ° C.), 1,7-heptanediol (boiling point 258 ° C.), 1,10-decanediol (boiling point 297 ° C.), and the like.
 また、ポリオール類の中のエーテル類としては、エチレングリコールモノフェニルエーテル(沸点245℃)、トリエチレングリコールモノメチル(沸点249℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールブチルメチルエーテル(沸点261℃)、ポリエチレングリコールジメチルエーテル(沸点264~294℃)、テトラエチレングリコールジメチルエーテル(沸点275℃)、ポリエチレングリコールモノメチルエーテル(沸点290~310℃)等が挙げられる。 Further, ethers in polyols include ethylene glycol monophenyl ether (boiling point 245 ° C.), triethylene glycol monomethyl (boiling point 249 ° C.), diethylene glycol dibutyl ether (boiling point 256 ° C.), triethylene glycol butyl methyl ether (boiling point). 261 ° C.), polyethylene glycol dimethyl ether (boiling point 264 to 294 ° C.), tetraethylene glycol dimethyl ether (boiling point 275 ° C.), polyethylene glycol monomethyl ether (boiling point 290 to 310 ° C.) and the like.
 極性溶媒はレジスト剥離液全量に対して50質量%以上80質量%以下が好適である。なお、高沸点溶媒を併用する場合は、高沸点溶媒を1質量%以上5質量%以下含有させるのが好適である。 The polar solvent is preferably 50% by mass or more and 80% by mass or less based on the total amount of the resist stripping solution. In addition, when using a high boiling point solvent together, it is suitable to contain a high boiling point solvent 1 mass% or more and 5 mass% or less.
 環状アミンとしては五員環状アミンが望ましく、特にピロリジン若しくはピロリジンの3位の位置に置換基が結合したものが望ましい。例えば、3メチルピロリジン、(S)-3-エチルピロリジン、3-アミノピロリジン、3-アセトアミドピロリジン、3-(N-アセチル-N-エチルアミノ)ピロリジン、3-(N-アセチル-N-メチルアミノ)ピロリジン、(R)-3-ヒドロキシピロリジン、3-(エチルアミノ)ピロリジンは好適に用いられる。これらの環状アミンは、ハードベークされたレジスト膜の剥離に効果がある。また、ピロリジンは医農薬中間体、ガムなどの香料として一般に流通しており、入手が容易な化合物である。したがって、剥離液自体のコストを削減させることができる。 As the cyclic amine, a 5-membered cyclic amine is desirable, and in particular, pyrrolidine or pyrrolidine having a substituent bonded to the 3-position is desirable. For example, 3-methylpyrrolidine, (S) -3-ethylpyrrolidine, 3-aminopyrrolidine, 3-acetamidopyrrolidine, 3- (N-acetyl-N-ethylamino) pyrrolidine, 3- (N-acetyl-N-methylamino) ) Pyrrolidine, (R) -3-hydroxypyrrolidine, 3- (ethylamino) pyrrolidine are preferably used. These cyclic amines are effective in removing a hard-baked resist film. In addition, pyrrolidine is generally distributed as a fragrance such as an intermediate for medicines and agricultural chemicals and gum, and is an easily available compound. Therefore, the cost of the stripping solution itself can be reduced.
 環状アミンの添加量は、レジスト剥離液全量に対して、0.5質量%以上、3.0質量%未満が好適な範囲である。より望ましくは0.8質量%以上、2.5質量%以下である。環状アミンの量が多すぎると、銅膜およびモリブデン膜が腐食され、少なすぎるとハードベークを受けたレジスト膜が剥離できない。 The amount of cyclic amine added is preferably 0.5% by mass or more and less than 3.0% by mass with respect to the total amount of the resist stripping solution. More desirably, it is 0.8 mass% or more and 2.5 mass% or less. If the amount of cyclic amine is too large, the copper film and the molybdenum film are corroded, and if it is too small, the resist film that has undergone hard baking cannot be removed.
 添加剤として添加されるのは糖アルコールおよび還元剤である。糖アルコールとしては、ソルビトール、キシリトール、スクロース、マンニトール、マルチトール、ラクチトール等が好適に利用できる。これら糖アルコールは、Al膜がレジスト剥離液中に溶解することを抑制し、還元剤(ヒドラジン)と共に、Mo膜のアンダーカットを抑制する。 The sugar alcohol and reducing agent are added as additives. As the sugar alcohol, sorbitol, xylitol, sucrose, mannitol, maltitol, lactitol and the like can be suitably used. These sugar alcohols suppress the dissolution of the Al film in the resist stripping solution and, together with the reducing agent (hydrazine), suppress the undercut of the Mo film.
 また、糖アルコールは、レジスト剥離液全量に対して0.5質量%以上10質量%以下が好適である。より望ましくは0.8質量%以上2.0質量%以下である。糖アルコールは腐食防止剤としての役割がある。したがって、一定量は含有させるのが望ましい。しかし、レジスト膜の剥離に関してはあまり寄与しない。一方、糖アルコールの添加が過剰な場合は、レジスト剥離液を蒸留再生する際に、蒸留塔内で残留しスケーリングの原因となる。したがって、上記の範囲で含有させるのがよい。 Further, the sugar alcohol is preferably 0.5% by mass or more and 10% by mass or less with respect to the total amount of the resist stripping solution. More desirably, it is 0.8 mass% or more and 2.0 mass% or less. Sugar alcohol has a role as a corrosion inhibitor. Therefore, it is desirable to contain a certain amount. However, it does not contribute much to the resist film peeling. On the other hand, when the sugar alcohol is excessively added, when the resist stripping solution is distilled and regenerated, it remains in the distillation column and causes scaling. Therefore, it is good to contain in said range.
 還元剤としては、ヒドラジンが好適に利用できる。還元剤の添加は、環状アミンによるMoアンダーカットを抑制する。還元剤は、レジスト剥離液全量に対して0.0128質量%より多く0.512質量%より少ない範囲が望ましい。より好ましくは0.06質量%以上0.4質量%以下(0.06質量%以上、0.4質量%以下)の範囲である。なお、ヒドラジンは安全に取扱う観点から水和物を用いても良い。例えば、ヒドラジン1水和物を用いる場合は、上記の還元剤の割合は、0.02質量%より多く0.8質量%より少ない範囲となる。また、より好ましい範囲は、0.094質量%以上0.63質量%以下である。 As the reducing agent, hydrazine can be suitably used. The addition of the reducing agent suppresses Mo undercut by the cyclic amine. The reducing agent is desirably in a range of more than 0.0128% by mass and less than 0.512% by mass with respect to the total amount of the resist stripping solution. More preferably, it is the range of 0.06 mass% or more and 0.4 mass% or less (0.06 mass% or more, 0.4 mass% or less). Hydrazine may be hydrated from the viewpoint of safe handling. For example, when hydrazine monohydrate is used, the ratio of the reducing agent is in the range of more than 0.02% by mass and less than 0.8% by mass. Moreover, a more preferable range is 0.094 mass% or more and 0.63 mass% or less.
 以下に本発明に係るレジスト剥離液の実施例および比較例を示す。レジスト剥離液は「レジスト剥離性」と「金属膜の腐食性」の2点について評価した。 Examples and comparative examples of resist stripping solutions according to the present invention are shown below. The resist stripping solution was evaluated for two points: “resist strippability” and “corrosiveness of metal film”.
 <レジスト剥離性>
 シリコン基板上に、シリコン熱酸化膜を100nm成膜し、シリコン熱酸化膜上にスパッタ法で銅膜を300nmの厚みに形成した。その銅膜上にポジ型レジスト液をスピンコートで塗布しレジスト膜を作製した。レジスト膜が乾燥した後、配線パターンのマスクを用いて露光した。そして現像液で、感光した部分のレジストを除去した。つまり、銅膜上に配線パターンのレジスト膜が残った部分と、銅膜が露出した部分がある状態である。
<Resist peelability>
A silicon thermal oxide film having a thickness of 100 nm was formed on a silicon substrate, and a copper film having a thickness of 300 nm was formed on the silicon thermal oxide film by sputtering. A positive resist solution was applied onto the copper film by spin coating to prepare a resist film. After the resist film was dried, it was exposed using a wiring pattern mask. Then, the resist in the exposed portion was removed with a developer. That is, there is a state where there is a portion where the resist film of the wiring pattern remains on the copper film and a portion where the copper film is exposed.
 その後シリコン基板全体を150℃で10分のポストベークを行った。これは、ハードベークを再現する工程である。 Thereafter, the entire silicon substrate was post-baked at 150 ° C. for 10 minutes. This is a process of reproducing hard baking.
 次に、過水系の銅のエッチャントを用いて、露出した銅膜をエッチングし除去した。銅膜のエッチングが終了した後、残った銅のパターン上のレジスト膜をサンプルレジスト剥離液を用いて剥離した。レジスト膜の剥離のための時間は、40秒後、80秒後、120秒後の三段階で検討した。そして基板を洗浄し、銅膜上にレジスト膜が残留しているか否かを光学顕微鏡で干渉をかけながら観察した。銅膜上にレジスト膜の残りが確認された場合は、「×」(バツ)とし、レジスト膜の残りが確認されなかった場合は、「○」(マル)とした。なお、「○」(マル)は成功若しくは合格を意味し、「×」(バツ)は失敗若しくは不合格を意味する。以下の評価でも同じである。 Next, the exposed copper film was removed by etching using an overwater copper etchant. After the etching of the copper film was completed, the resist film on the remaining copper pattern was stripped using a sample resist stripping solution. The time for removing the resist film was examined in three stages, 40 seconds, 80 seconds, and 120 seconds. Then, the substrate was washed, and it was observed while interfering with an optical microscope whether or not the resist film remained on the copper film. When the remainder of the resist film was confirmed on the copper film, it was set to “x” (X), and when the remaining resist film was not confirmed, it was set to “◯” (maru). Note that “◯” (maru) means success or success, and “x” (cross) means failure or failure. The same applies to the following evaluations.
 <金属膜の腐食性>
 金属膜の腐食性は以下のようにして評価した。まず、シリコン基板上にシリコン熱酸化膜を100nmの厚みに成膜し、シリコン熱酸化膜上にスパッタ法で銅膜を300nmの厚みで成膜し、Cu膜サンプルを作製した。これを「Cu gate」と呼ぶ。同様にシリコン基板上のシリコン熱酸化膜上に、モリブデン膜を20nmの厚みで成膜し、その上に続けて銅膜を300nmの厚みで成膜し、Cu/Moの積層膜サンプルを作製した。これを、「Cu/Mo gate」と呼ぶ。また、シリコン基板上のシリコン熱酸化膜上にアルミニウム膜を300nmの厚さで成膜し、Al膜サンプルを作製した。これを「Al gate」と呼ぶ。
<Corrosiveness of metal film>
The corrosivity of the metal film was evaluated as follows. First, a silicon thermal oxide film was formed to a thickness of 100 nm on a silicon substrate, and a copper film was formed to a thickness of 300 nm on the silicon thermal oxide film by sputtering to prepare a Cu film sample. This is called “Cu gate”. Similarly, a molybdenum film was formed to a thickness of 20 nm on a silicon thermal oxide film on a silicon substrate, and a copper film was subsequently formed to a thickness of 300 nm to prepare a Cu / Mo laminated film sample. . This is called “Cu / Mo gate”. In addition, an aluminum film was formed to a thickness of 300 nm on the silicon thermal oxide film on the silicon substrate to produce an Al film sample. This is called “Al gate”.
 これらの評価サンプル上に配線形状にパターニングしたレジストを形成し、腐食性評価用の基材とした。つまり、腐食性評価用基材は、シリコン基板上のシリコン熱酸化膜上に形成されたCu膜、Cu/Mo膜、Al膜のいずれかの層と、その上に配線形状に形成されたレジスト層からなる。 A resist patterned into a wiring shape was formed on these evaluation samples, and used as a base material for corrosive evaluation. In other words, the base material for corrosivity evaluation is a resist formed in a wiring shape on a Cu film, Cu / Mo film, or Al film formed on a silicon thermal oxide film on a silicon substrate. Consists of layers.
 これらの腐食性評価用基材を銅膜用若しくは、アルミニウム膜用のエッチャントにジャストエッチングする時間の間浸漬させ、エッチングを行った。その後エッチング後の腐食性評価用基材をサンプルレジスト剥離液に4分間浸漬させ、レジスト膜を剥離した。サンプルレジスト剥離液に4分間浸漬させた腐食性評価用基材を洗浄し、乾燥させた後、配線部分を切断し、切断面を観察した。また、レジストを剥離した後の銅膜の表面も観察した。 Etching was performed by immersing these corrosive evaluation base materials in an etchant for copper film or aluminum film for the time of just etching. Thereafter, the corrosive evaluation base material after etching was immersed in a sample resist stripper for 4 minutes to strip the resist film. After the corrosive evaluation base material immersed in the sample resist stripper for 4 minutes was washed and dried, the wiring portion was cut and the cut surface was observed. The surface of the copper film after the resist was peeled was also observed.
 なお、腐食性の評価では、レジスト膜にはハードベーク状態になるまでの熱処理は加えていない。また、ジャストエッチングの判断は、エッチング開始からシリコン熱酸化膜が目視で確認できた時点とした。 In the evaluation of corrosiveness, the resist film is not subjected to heat treatment until it is hard baked. Moreover, the judgment of just etching was made when the silicon thermal oxide film was visually confirmed from the start of etching.
 切断面の観測は、SEM(Scanning Electron Microscope)(日立製:SU8020型)を用い、加速電圧1kV、30,000~50,000倍の条件で行った。 The observation of the cut surface was performed using SEM (Scanning Electron Microscope) (manufactured by Hitachi: SU8020 type) under the conditions of an acceleration voltage of 1 kV and 30,000 to 50,000 times.
 切断面形状を図1に示す。図1(a)には、Cu GateおよびAl Gateの場合の切断面形状を示す。ジャストエッチングされた部分の切断面形状は、基板1に対してほぼ30°乃至60°の角度のテーパー角5が形成されている。膜部2は、Cu Gateの場合は、Cu膜であり、Al Gateの場合はAl膜である。 The cut surface shape is shown in FIG. FIG. 1A shows the cut surface shape in the case of Cu Gate and Al Gate. The cut surface shape of the just-etched portion has a taper angle 5 of approximately 30 ° to 60 ° with respect to the substrate 1. The film part 2 is a Cu film in the case of Cu Gate, and an Al film in the case of Al Gate.
 図1(b)にはCu/Mo Gateの場合を示す。Cu/Mo Gateの場合は、少なくとも上層のCu層2はテーパー角5を有している。下地のMo層3は、Cu層2のテーパー面6に沿ってエッチングされるのが望ましい。しかし、図1(b)に示すように、Cu層2よりエッチング残り7があってもよい。 Fig. 1 (b) shows the case of Cu / Mo Gate. In the case of Cu / Mo Gate, at least the upper Cu layer 2 has a taper angle 5. The underlying Mo layer 3 is preferably etched along the tapered surface 6 of the Cu layer 2. However, as shown in FIG. 1B, there may be an etching residue 7 from the Cu layer 2.
 腐食性の評価は、この断面形状の観察により、膜部2や膜部2の表面4若しくは下地のMo層3のいずれかに腐食が確認された場合は、「×」(バツ)と判断し、腐食が観測されなかった場合は「○」(マル)と判断した。 Corrosivity is evaluated as “×” (X) if corrosion is confirmed on either the film part 2 or the surface 4 of the film part 2 or the underlying Mo layer 3 by observing the cross-sectional shape. When no corrosion was observed, it was judged as “◯” (maru).
 特にCu/Mo Gateの場合は、図1(c)に示すように、下地のMo層3とCu層2の間に腐食が発生する場合がある。つまり、銅層2とモリブデン層3の界面からMo溶解がスタートし、選択的にモリブデン層3が銅層2より早くエッチングされることがある。したがって、Mo層3とCu層2の間に隙間10を確認できた場合は、評価は「×」(バツ)とした。 Particularly in the case of Cu / Mo Gate, corrosion may occur between the underlying Mo layer 3 and Cu layer 2 as shown in FIG. That is, Mo dissolution starts from the interface between the copper layer 2 and the molybdenum layer 3 and the molybdenum layer 3 may be selectively etched earlier than the copper layer 2. Therefore, when the gap 10 could be confirmed between the Mo layer 3 and the Cu layer 2, the evaluation was “x” (X).
 また、銅層2の表面の状態をSEMで観察した。銅膜は長時間のレジスト剥離液への浸漬によって、腐食を受ける。これはSEMの表面観察によって把握できる。明らかに、銅層2の表面が腐食を受けていることが確認されたら、評価は「×」(バツ)とした。 Also, the surface state of the copper layer 2 was observed with an SEM. The copper film is corroded by being immersed in the resist stripping solution for a long time. This can be grasped by SEM surface observation. Obviously, when it was confirmed that the surface of the copper layer 2 was corroded, the evaluation was “x” (X).
 <サンプルレジスト剥離液>
 以下の要領でサンプルレジスト剥離液を調製した。サンプルレジスト剥離液は、環状アミンと極性溶媒と水と添加剤で構成されている。
<Sample resist stripper>
A sample resist stripping solution was prepared as follows. The sample resist stripping solution is composed of a cyclic amine, a polar solvent, water, and an additive.
 (1)実施例1
 環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 0.8質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 27.6質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例1のサンプルレジスト剥離液とした。
(1) Example 1
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 0.8% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 27.6% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain the sample resist stripping solution of Example 1.
 なお、ヒドラジン一水和物の0.1質量%は、ヒドラジン0.064質量%に当たる。ヒドラジン一水和物の残りの0.036質量%分は水である。したがって、上記の水の組成比は、ヒドラジン一水和物として投入される分も含めると30.036質量%であるといえる。以下全ての実施例と比較例において、ヒドラジン一水和物を用いた場合は、同様
の表記とする。
In addition, 0.1 mass% of hydrazine monohydrate corresponds to 0.064 mass% of hydrazine. The remaining 0.036% by mass of hydrazine monohydrate is water. Therefore, it can be said that the composition ratio of the above water is 30.036% by mass including the amount added as hydrazine monohydrate. In the following examples and comparative examples, the same notation is used when hydrazine monohydrate is used.
 (2)実施例2
 実施例2は環状アミンの量を増やした。ピロリジンの増加分は極性溶媒PGで調整した。
環状アミンは五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 1.5質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.9質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例2のサンプルレジスト剥離液とした。
(2) Example 2
Example 2 increased the amount of cyclic amine. The increase in pyrrolidine was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 1.5% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.9% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain the sample resist stripping solution of Example 2.
 (3)実施例3
 実施例3は実施例2の環状アミンの種類を変更した。
環状アミンとして五員環状アミンの3-(エチルアミノ)ピロリジン(EAPRL)を用いた。
3-(エチルアミノ)ピロリジン(EAPRL) 1.5質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.9質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例3のサンプルレジスト剥離液とした。
なお、3-(エチルアミノ)ピロリジンは、下記(2)式で表される化合物である。
(3) Example 3
In Example 3, the type of the cyclic amine of Example 2 was changed.
The 5-membered cyclic amine 3- (ethylamino) pyrrolidine (EAPRL) was used as the cyclic amine.
3- (Ethylamino) pyrrolidine (EAPRL) 1.5% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.9% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain the sample resist stripping solution of Example 3.
3- (Ethylamino) pyrrolidine is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (4)実施例4
 実施例4は実施例1の極性溶媒にグリセリンをさらに添加した。グリセリンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 0.8質量%
極性溶媒は、3種類を混合した。
プロピレングリコール(PG) 25.6質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
グリセリン 2.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例4のサンプルレジスト剥離液とした。
(4) Example 4
In Example 4, glycerin was further added to the polar solvent of Example 1. The increase in glycerin was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 0.8% by mass
Three types of polar solvents were mixed.
Propylene glycol (PG) 25.6% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Glycerin 2.0% by mass
Water 30.0% by mass
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 4.
 (5)実施例5
 実施例5は実施例2の極性溶媒にグリセリンをさらに添加した。グリセリンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 1.5質量%
極性溶媒は、3種類を混合した。
プロピレングリコール(PG) 24.9質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
グリセリン 2.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例5のサンプルレジスト剥離液とした。
(5) Example 5
In Example 5, glycerin was further added to the polar solvent of Example 2. The increase in glycerin was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 1.5% by mass
Three types of polar solvents were mixed.
Propylene glycol (PG) 24.9% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Glycerin 2.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 5.
 (6)実施例6
 実施例6は実施例3の極性溶媒にグリセリンをさらに添加した。グリセリンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンの3-(エチルアミノ)ピロリジン(EAPRL)を用いた。
3-(エチルアミノ)ピロリジン(EAPRL) 1.5質量%
極性溶媒は、3種類を混合した。
プロピレングリコール(PG) 24.9質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
グリセリン 2.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例6のサンプルレジスト剥離液とした。
(6) Example 6
In Example 6, glycerin was further added to the polar solvent of Example 3. The increase in glycerin was adjusted with the polar solvent PG.
The 5-membered cyclic amine 3- (ethylamino) pyrrolidine (EAPRL) was used as the cyclic amine.
3- (Ethylamino) pyrrolidine (EAPRL) 1.5% by mass
Three types of polar solvents were mixed.
Propylene glycol (PG) 24.9% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Glycerin 2.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 6.
 (7)実施例7
 実施例7は実施例1のピロリジン(0.8質量%)を2.0質量%まで増やした。ピロリジンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.4質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例7のサンプルレジスト剥離液とした。
(7) Example 7
In Example 7, the pyrrolidine (0.8% by mass) of Example 1 was increased to 2.0% by mass. The increase in pyrrolidine was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.4% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 7.
 (8)実施例8
 実施例8は実施例1のピロリジン(0.8質量%)を2.5質量%まで増やした。ピロリジンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 2.5質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 25.9質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して実施例8のサンプルレジスト剥離液とした。
(8) Example 8
In Example 8, the pyrrolidine (0.8% by mass) of Example 1 was increased to 2.5% by mass. The increase in pyrrolidine was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 2.5% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 25.9% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 8.
 (9)実施例9
 実施例9は実施例2(ピロリジン:1.5質量%)のヒドラジン一水和物の量(0.1質量%)を0.6質量%まで増やした。ヒドラジン一水和物の増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 1.5質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.4質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.6質量%
(ヒドラジン換算で0.384質量%)
以上を混合攪拌して実施例9のサンプルレジスト剥離液とした。
(9) Example 9
In Example 9, the amount of hydrazine monohydrate (0.1% by mass) of Example 2 (pyrrolidine: 1.5% by mass) was increased to 0.6% by mass. The increment of hydrazine monohydrate was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 1.5% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.4% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Water 30.0% by mass
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.6% by mass
(0.384 mass% in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Example 9.
 以上の実施例1から9についてのサンプルレジスト剥離液組成および、「レジスト剥離性」と「金属膜の腐食性」についての結果を表1に示した。なお、表1においては、ヒドラジン一水和物の組成比と共にヒドラジンでの組成比を「ヒドラジン換算値」として示した。 Table 1 shows the results of the sample resist stripping composition and the “resist stripping property” and “corrosiveness of the metal film” for Examples 1 to 9 described above. In Table 1, the composition ratio of hydrazine together with the composition ratio of hydrazine monohydrate is shown as “hydrazine conversion value”.
 (10)比較例1
 比較例1は実施例1のピロリジン(0.8質量%)を3.0質量%まで増やした組成である。ピロリジンの増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 3.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 25.4質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.1質量%
(ヒドラジン換算で0.064質量%)
以上を混合攪拌して比較例1のサンプルレジスト剥離液とした。
(10) Comparative Example 1
The comparative example 1 is a composition which increased the pyrrolidine (0.8 mass%) of Example 1 to 3.0 mass%. The increase in pyrrolidine was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 3.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 25.4% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Water 30.0% by mass
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.1% by mass
(0.064% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 1.
 (11)比較例2
 比較例2は、実施例2(PRL=1.5質量%)の還元剤の量(HN=0.1質量%)を0.8質量%まで増やした組成である。還元剤の増加分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 1.5質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.2質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.5質量%
ヒドラジン一水和物(HN) 0.8質量%
(ヒドラジン換算で0.512質量%)
以上を混合攪拌して比較例2のサンプルレジスト剥離液とした。
(11) Comparative Example 2
The comparative example 2 is a composition which increased the quantity (HN = 0.1 mass%) of the reducing agent of Example 2 (PRL = 1.5 mass%) to 0.8 mass%. The increase of the reducing agent was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 1.5% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.2% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.5% by mass
Hydrazine monohydrate (HN) 0.8% by mass
(0.512% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 2.
 (12)比較例3
 比較例3は、実施例2(PRL=1.50質量%)の還元剤の量(HN=0.1質量%)を0.02質量%まで減らした組成である。還元剤の減少分は極性溶媒PGで調整した。
環状アミンとして五員環状アミンのピロリジンを用いた。
ピロリジン(PRL) 1.50質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 26.98質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.00質量%
水 30.0質量%
添加剤として、糖アルコールと、還元剤を添加した。
ソルビトール(Stol) 1.50質量%
ヒドラジン一水和物(HN) 0.02質量%
(ヒドラジン換算で0.0128質量%)
以上を混合攪拌して比較例3のサンプルレジスト剥離液とした。
(12) Comparative Example 3
The comparative example 3 is a composition which reduced the quantity (HN = 0.1 mass%) of the reducing agent of Example 2 (PRL = 1.50 mass%) to 0.02 mass%. The reduction amount of the reducing agent was adjusted with the polar solvent PG.
As the cyclic amine, pyrrolidine, a five-membered cyclic amine, was used.
Pyrrolidine (PRL) 1.50% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 26.98% by mass
Diethylene glycol monobutyl ether (BDG) 40.00% by mass
30.0% by weight of water
Sugar alcohol and a reducing agent were added as additives.
Sorbitol (Stol) 1.50% by mass
Hydrazine monohydrate (HN) 0.02% by mass
(0.0128% by mass in terms of hydrazine)
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 3.
 以上の比較例1から3についてのサンプルレジスト剥離液組成および、「レジスト剥離性」と「金属膜の腐食性」についての結果を表2に示した。 Table 2 shows the composition of the sample resist stripping solution and the results of “resist stripping property” and “corrosiveness of metal film” for Comparative Examples 1 to 3 described above.
 次に本発明に係るレジスト剥離液において特定の環状アミンの有効性を確認するサンプルとして以下の比較例を用意した。 Next, the following comparative example was prepared as a sample for confirming the effectiveness of a specific cyclic amine in the resist stripping solution according to the present invention.
 (13)比較例4
 比較例4は、五員環状アミンの2-メチルピロリジンを用いた。なお、添加剤は入れていない。
2-メチルピロリジン 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 28.0質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
以上を混合攪拌して比較例4のサンプルレジスト剥離液とした。
(13) Comparative Example 4
In Comparative Example 4, the 5-membered cyclic amine 2-methylpyrrolidine was used. There is no additive added.
2-Methylpyrrolidine 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 28.0% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 4.
 (14)比較例5
 比較例5は、五員環状アミンの1-メチルピロリジンを用いた。なお、添加剤は入れていない。
1-メチルピロリジン 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 28.0質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
以上を混合攪拌して比較例5のサンプルレジスト剥離液とした。
(14) Comparative Example 5
In Comparative Example 5, 5-membered cyclic amine 1-methylpyrrolidine was used. There is no additive added.
1-methylpyrrolidine 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 28.0% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Water 30.0% by mass
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 5.
 (15)比較例6
 比較例6は、五員環状アミンの2-メトキシメチルピロリジンを用いた。なお、添加剤は入れていない。
2-メトキシメチルピロリジン 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 28.0質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
以上を混合攪拌して比較例6のサンプルレジスト剥離液とした。
(15) Comparative Example 6
In Comparative Example 6, the 5-membered cyclic amine 2-methoxymethylpyrrolidine was used. There is no additive added.
2-Methoxymethylpyrrolidine 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 28.0% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 6.
 (16)比較例7
 比較例7は、五員環状アミンの3-(エチルアミノ)ピロリジンを用いた。なお、添加剤は入れていない。
3-(エチルアミノ)ピロリジン 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 28.0質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
以上を混合攪拌して比較例7のサンプルレジスト剥離液とした。
(16) Comparative Example 7
In Comparative Example 7, 5-membered cyclic amine 3- (ethylamino) pyrrolidine was used. There is no additive added.
3- (Ethylamino) pyrrolidine 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 28.0% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
Water 30.0% by mass
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 7.
 (17)比較例8
 比較例8は、五員環状アミンのピロリジンを用いた。なお、添加剤は入れていない。
ピロリジン 2.0質量%
極性溶媒は、2種類を混合した。
プロピレングリコール(PG) 28.0質量%
ジエチレングリコールモノブチルエーテル(BDG) 40.0質量%
水 30.0質量%
以上を混合攪拌して比較例8のサンプルレジスト剥離液とした。
(17) Comparative Example 8
In Comparative Example 8, pyrrolidine, a five-membered cyclic amine, was used. There is no additive added.
Pyrrolidine 2.0% by mass
Two types of polar solvents were mixed.
Propylene glycol (PG) 28.0% by mass
Diethylene glycol monobutyl ether (BDG) 40.0% by mass
30.0% by weight of water
The above was mixed and stirred to obtain a sample resist stripping solution of Comparative Example 8.
 以上の比較例4から8についてのサンプルレジスト剥離液組成および、「レジスト剥離性」についての結果を表3に示した。なお、比較例4から8については、浸漬時間を6分(表1および2の場合は4分)とした。 Table 3 shows the results of the sample resist stripping solution compositions and “resist stripping properties” for Comparative Examples 4 to 8 described above. In Comparative Examples 4 to 8, the immersion time was 6 minutes (4 minutes in Tables 1 and 2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1乃至表3において、各%は、レジスト剥離液全量に対しての質量%をあらわす。また、PGはプロピレングリコール、BDGはジエチレングリコールモノブチルエーテルをあらわす。 In Tables 1 to 3, each% represents mass% with respect to the total amount of the resist stripping solution. PG represents propylene glycol, and BDG represents diethylene glycol monobutyl ether.
 表1の実施例1乃至3と表2の比較例1乃至3を参照する。実施例1、2および比較例1(表2)の環状アミン(ピロリジン)を見ると、環状アミンの増加に従い、レジスト剥離時間が短くなっている。一方、比較例1(表2)を参照すると、ピロリジンを3.0質量%で調合したサンプルレジスト剥離液は、「Cu/Mo gate」つまりMo膜とCu膜の積層膜で、Moのアンダーカットが認められた。つまり、ピロリジンはレジスト剥離液全量に対して3.0質量%未満、好ましくは2.5質量%以下であることが望ましい。 Refer to Examples 1 to 3 in Table 1 and Comparative Examples 1 to 3 in Table 2. When the cyclic amine (pyrrolidine) of Examples 1 and 2 and Comparative Example 1 (Table 2) is seen, the resist stripping time is shortened as the cyclic amine increases. On the other hand, referring to Comparative Example 1 (Table 2), the sample resist stripping solution prepared by adding 3.0% by mass of pyrrolidine is “Cu / Mo gate”, that is, a laminated film of Mo film and Cu film, and Mo undercut. Was recognized. That is, pyrrolidine is less than 3.0% by mass, preferably 2.5% by mass or less, based on the total amount of the resist stripping solution.
 また、最も剥離時間が長くかかった実施例1(ピロリジン0.8質量%)でも浸漬後120秒という短い時間でハードベークされたレジスト膜を剥離させることができた。 Further, even in Example 1 (0.8% by mass of pyrrolidine) that took the longest stripping time, the hard-baked resist film could be stripped in a short time of 120 seconds after immersion.
 実施例3は環状アミンを3-(エチルアミノ)ピロリジンに置き換えたものである。実施例3は、ハードベークされたレジスト膜を80秒で剥離させ、金属膜の腐食やMo膜のアンダーカットという問題をも生じさせなかった。 In Example 3, the cyclic amine was replaced with 3- (ethylamino) pyrrolidine. In Example 3, the hard-baked resist film was peeled off in 80 seconds, and the problems of corrosion of the metal film and undercut of the Mo film were not caused.
 表2の比較例2および比較例3と表1の実施例1乃至9を参照すると、ヒドラジン一水和物の量は、0.8質量%以上だとMoのアンダーカットは良好であったが、銅層の表面に荒れが認められた。還元剤が多すぎると銅層はダメージを受けるものと考えられる。また、ヒドラジン一水和物が0.02質量%以下の場合は、Moのアンダーカットが認められた。 Referring to Comparative Example 2 and Comparative Example 3 in Table 2 and Examples 1 to 9 in Table 1, Mo undercut was good when the amount of hydrazine monohydrate was 0.8 mass% or more. Roughness was observed on the surface of the copper layer. If there is too much reducing agent, the copper layer is considered to be damaged. When hydrazine monohydrate was 0.02% by mass or less, Mo undercut was observed.
 よって、ヒドラジン一水和物は0.02質量%より多く0.8質量%より少ない(ヒドラジン換算値では、0.0128質量%より多く0.512質量%より少ない)比率が好適といえる。 Therefore, it can be said that the ratio of hydrazine monohydrate is more than 0.02% by mass and less than 0.8% by mass (in terms of hydrazine, more than 0.0128% by mass and less than 0.512% by mass).
 表3を参照する。表3は特定の五員環状アミンの効果について示す。比較例4には、2位の位置に置換基が結合した2-メチルピロリジン、比較例5には、1位の位置に置換基が結合した1-メチルピロリジン、比較例6には、2位の位置に置換基が結合した2-メトキシメチルピロリジン、比較例7には3位の位置に置換基が結合した3-(エチルアミノ)ピロリジン、比較例8には置換基が結合していないピロリジンを用いた。 Refer to Table 3. Table 3 shows the effect of certain five-membered cyclic amines. Comparative Example 4 has 2-methylpyrrolidine with a substituent bonded at the 2-position, Comparative Example 5 has 1-methylpyrrolidine with a substituent bonded at the 1-position, and Comparative Example 6 has 2-position. 2-methoxymethylpyrrolidine having a substituent bonded at position 3, 3- (ethylamino) pyrrolidine having a substituent bonded at position 3 in Comparative Example 7, and pyrrolidine having no substituent bonded to Comparative Example 8 Was used.
 実施例で用いた3-(エチルアミノ)ピロリジン(比較例7)とピロリジン(比較例8)は、ハードベークされたレジスト膜を40秒乃至80秒で剥離することができた。一方、1位の位置と2位の位置にメチル基が結合した1-メチルピロリジン(比較例5)と2-メチルピロリジン(比較例4)および、2-メトキシメチルピロリジン(比較例6)は、120秒かけてもハードベークされたレジスト膜を剥離することができなかった。 3- (Ethylamino) pyrrolidine (Comparative Example 7) and pyrrolidine (Comparative Example 8) used in the examples were able to peel off the hard-baked resist film in 40 to 80 seconds. On the other hand, 1-methylpyrrolidine (Comparative Example 5), 2-methylpyrrolidine (Comparative Example 4) and 2-methoxymethylpyrrolidine (Comparative Example 6) in which a methyl group is bonded to the 1-position and 2-position are: Even after 120 seconds, the hard-baked resist film could not be removed.
 以上のことより、ピロリジンの1位の位置および2位の位置に置換基が結合したピロリジンは、ハードベークされたレジスト膜を実用的な範囲で剥離することができないと結論される。 From the above, it is concluded that pyrrolidine having a substituent bonded to the 1-position and 2-position of pyrrolidine cannot peel the hard-baked resist film within a practical range.
 一方、3-(エチルアミノ)ピロリジン(比較例7)のように、3位の位置に置換基が付いたピロリジンや、置換基が結合していない通常のピロリジン(比較例8)が、ハードベークされたレジスト膜を剥離することができた。実施例1乃至3は、このようなピロリジンおよび3-(エチルアミノ)ピロリジンをMoアンダーカットが発生しないように調整した組成であると言える。 On the other hand, pyrrolidine having a substituent at the 3-position, such as 3- (ethylamino) pyrrolidine (Comparative Example 7), or ordinary pyrrolidine to which no substituent is bonded (Comparative Example 8) is hard-baked. The resist film thus obtained could be peeled off. In Examples 1 to 3, it can be said that these pyrrolidines and 3- (ethylamino) pyrrolidines are compositions prepared so that Mo undercut does not occur.
 再び表1を参照して、実施例4乃至6は、実施例1乃至3の極性溶媒にグリセリンを2.0質量%含有させたものである。これらの実施例は、ハードベークされたレジスト膜を80秒乃至120秒で剥離させることができ、さらに、Cu gate、Al gateにダメージを与えず、Moのアンダーカットも生じさせなかった。 Referring again to Table 1, Examples 4 to 6 were obtained by adding 2.0% by mass of glycerin to the polar solvents of Examples 1 to 3. In these examples, the hard-baked resist film could be peeled off in 80 to 120 seconds, and the Cu gate and Al gate were not damaged, and Mo undercut was not caused.
 つまり、レジスト剥離液として実用に供することができる。さらに、実施例4乃至6のレジスト剥離液は、沸点の高いグリセリンを含んでいるので、使用後に蒸留再生する際に、蒸留塔中で糖アルコールや剥離したレジスト成分が固化することを防止できる。 That is, it can be put to practical use as a resist stripping solution. Furthermore, since the resist stripping solutions of Examples 4 to 6 contain glycerin having a high boiling point, sugar alcohol and stripped resist components can be prevented from solidifying in the distillation tower when regenerating by distillation after use.
 以上のように、本発明に係るレジスト剥離液は、環状アミンと、極性溶媒と、水と、糖アルコールと、還元剤を含むことで、Cu膜、Cu/Mo膜、Al膜のレジスト剥離工程で共通に使用することができる。さらに、レジスト膜がハードベークされていてもこれを剥離させることができる。 As described above, the resist stripping solution according to the present invention includes a cyclic amine, a polar solvent, water, a sugar alcohol, and a reducing agent, so that the resist stripping process for the Cu film, the Cu / Mo film, and the Al film is performed. Can be used in common. Furthermore, even if the resist film is hard-baked, it can be peeled off.
 本発明のレジスト剥離液は、ポジ型レジストを用いた場合のレジスト剥離液として好適に利用することができる。これは、液晶ディスプレイ、プラズマディスプレイ、有機ELなどFPDの製造一般に好適に利用することができる。 The resist stripping solution of the present invention can be suitably used as a resist stripping solution when a positive resist is used. This can be suitably used for general production of FPD such as a liquid crystal display, a plasma display, and an organic EL.
1 基板
2 膜部
3 Mo層(下地層)
4 (膜部2の)表面
5 テーパー角
6 テーパー面
7 エッチング残り
10 隙間
1 Substrate 2 Film part 3 Mo layer (underlayer)
4 Surface 5 (of film part 2) Taper angle 6 Tapered surface 7 Etching remaining 10 Clearance

Claims (10)

  1.  環状アミンと、極性溶媒と、水と、糖アルコールと、還元剤を含むことを特徴とするレジスト剥離液。 A resist stripping solution comprising a cyclic amine, a polar solvent, water, a sugar alcohol, and a reducing agent.
  2.  前記環状アミンは、五員環状アミンであることを特徴とする請求項1に記載されたレジスト剥離液。 The resist stripping solution according to claim 1, wherein the cyclic amine is a five-membered cyclic amine.
  3.  前記五員環状アミンはピロリジンもしくはピロリジンの3位に置換基があるものであることを特徴とする請求項2に記載されたレジスト剥離液。 The resist stripping solution according to claim 2, wherein the five-membered cyclic amine is pyrrolidine or has a substituent at the 3-position of pyrrolidine.
  4.  前記ピロリジンの3位に置換基があるものは3-(エチルアミノ)ピロリジンであることを特徴とする請求項3に記載されたレジスト剥離液。 The resist stripping solution according to claim 3, wherein the pyrrolidine having a substituent at the 3-position is 3- (ethylamino) pyrrolidine.
  5.  前記環状アミンが全量に対して0.5質量%以上、3.0質量%未満含有することを特徴とする請求項1乃至4の何れか1の請求項に記載されたレジスト剥離液。 The resist stripping solution according to any one of claims 1 to 4, wherein the cyclic amine is contained in an amount of 0.5% by mass or more and less than 3.0% by mass with respect to the total amount.
  6.  前記糖アルコールはソルビトールであることを特徴とする請求項1乃至5の何れか1の請求項に記載されたレジスト剥離液。 6. The resist stripping solution according to any one of claims 1 to 5, wherein the sugar alcohol is sorbitol.
  7.  前記還元剤がヒドラジンであることを特徴とする請求項1乃至6の何れか1の請求項に記載されたレジスト剥離液。 The resist remover according to any one of claims 1 to 6, wherein the reducing agent is hydrazine.
  8.  前記環状アミンは、0.5質量%以上、3.0質量%未満であり、
     前記極性溶媒は、50質量%以上80質量%以下であり、
     前記水は10質量%以上50質量%以下であり、
     前記糖アルコールは、0.5質量%以上10質量%以下であり、
     前記還元剤は、0.0128質量%より多く0.512質量%より少ないことを特徴とする請求項1乃至7の何れか1の請求項に記載されたレジスト剥離液。
    The cyclic amine is 0.5 mass% or more and less than 3.0 mass%,
    The polar solvent is 50% by mass or more and 80% by mass or less,
    The water is 10 mass% or more and 50 mass% or less,
    The sugar alcohol is 0.5 mass% or more and 10 mass% or less,
    The resist stripping solution according to any one of claims 1 to 7, wherein the reducing agent is greater than 0.0128% by mass and less than 0.512% by mass.
  9.  さらにグリセリンを有することを特徴とする請求項1乃至8の何れか1の請求項に記載されたレジスト剥離液。 The resist stripping solution according to any one of claims 1 to 8, further comprising glycerin.
  10.  前記環状アミンは、0.5質量%以上、3.0質量%未満であり、
     前記極性溶媒は、50質量%以上80質量%以下であり、
     前記グリセリンは1質量%以上5質量%以下であり、
     前記水は10質量%以上50質量%以下であり、
     前記糖アルコールは、0.5質量%以上10質量%以下であり、
     前記還元剤は、0.0128質量%より多く0.512質量%より少ないことを特徴とする請求項9に記載されたレジスト剥離液。
    The cyclic amine is 0.5 mass% or more and less than 3.0 mass%,
    The polar solvent is 50% by mass or more and 80% by mass or less,
    The glycerin is 1% by mass or more and 5% by mass or less,
    The water is 10 mass% or more and 50 mass% or less,
    The sugar alcohol is 0.5 mass% or more and 10 mass% or less,
    The resist stripping solution according to claim 9, wherein the reducing agent is greater than 0.0128 mass% and less than 0.512 mass%.
PCT/JP2015/003312 2015-03-24 2015-07-01 Resist stripping liquid WO2016151645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-060353 2015-03-24
JP2015060353A JP5885046B1 (en) 2015-03-24 2015-03-24 Resist stripper

Publications (1)

Publication Number Publication Date
WO2016151645A1 true WO2016151645A1 (en) 2016-09-29

Family

ID=55457031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003312 WO2016151645A1 (en) 2015-03-24 2015-07-01 Resist stripping liquid

Country Status (3)

Country Link
JP (1) JP5885046B1 (en)
TW (1) TWI548955B (en)
WO (1) WO2016151645A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049208A1 (en) * 2019-09-09 2021-03-18
CN112805631A (en) * 2019-11-20 2021-05-14 松下知识产权经营株式会社 Resist stripping liquid
JP2021081617A (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist stripping solution
WO2021100254A1 (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist removal solution
JP2021081618A (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist stripping solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805629B (en) * 2019-11-20 2022-02-15 松下知识产权经营株式会社 Resist stripping liquid

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786261A (en) * 1993-09-13 1995-03-31 Mitsubishi Gas Chem Co Inc Method for peeling photoresist
JPH07219241A (en) * 1993-10-07 1995-08-18 J T Baker Inc Photoresist stripper containing reducer for reduction of metal corrosion
JPH09283507A (en) * 1996-04-12 1997-10-31 Mitsubishi Gas Chem Co Inc Photoresist exfoliation agent and manufacture of semiconductor integrated circuit
JP2000284506A (en) * 1999-03-31 2000-10-13 Sharp Corp Photoresist stripper composition and stripping method
JP2005043873A (en) * 2003-06-26 2005-02-17 Dongwoo Fine-Chem Co Ltd Photoresist stripping liquid composition and method for stripping photoresist by using the same
KR20080051250A (en) * 2006-12-05 2008-06-11 동우 화인켐 주식회사 Photoresist stripper composition and exfoliation method of a photoresist using it
KR20080076016A (en) * 2007-02-14 2008-08-20 동우 화인켐 주식회사 Photoresist stripper composition and exfoliation method of a photoresist using it
WO2008140076A1 (en) * 2007-05-15 2008-11-20 Nagase Chemtex Corporation Photoresist remover composition
JP2009194049A (en) * 2008-02-13 2009-08-27 Sanyo Chem Ind Ltd Detergent for copper wire semiconductor
JP2009217267A (en) * 2008-03-07 2009-09-24 Air Products & Chemicals Inc Stripper for dry film removal
WO2010086893A1 (en) * 2009-01-27 2010-08-05 三洋化成工業株式会社 Cleaning agent for copper-wired semiconductor
WO2015029277A1 (en) * 2013-09-02 2015-03-05 パナソニックIpマネジメント株式会社 Resist remover liquid

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786261A (en) * 1993-09-13 1995-03-31 Mitsubishi Gas Chem Co Inc Method for peeling photoresist
JPH07219241A (en) * 1993-10-07 1995-08-18 J T Baker Inc Photoresist stripper containing reducer for reduction of metal corrosion
JPH09283507A (en) * 1996-04-12 1997-10-31 Mitsubishi Gas Chem Co Inc Photoresist exfoliation agent and manufacture of semiconductor integrated circuit
JP2000284506A (en) * 1999-03-31 2000-10-13 Sharp Corp Photoresist stripper composition and stripping method
JP2005043873A (en) * 2003-06-26 2005-02-17 Dongwoo Fine-Chem Co Ltd Photoresist stripping liquid composition and method for stripping photoresist by using the same
KR20080051250A (en) * 2006-12-05 2008-06-11 동우 화인켐 주식회사 Photoresist stripper composition and exfoliation method of a photoresist using it
KR20080076016A (en) * 2007-02-14 2008-08-20 동우 화인켐 주식회사 Photoresist stripper composition and exfoliation method of a photoresist using it
WO2008140076A1 (en) * 2007-05-15 2008-11-20 Nagase Chemtex Corporation Photoresist remover composition
JP2009194049A (en) * 2008-02-13 2009-08-27 Sanyo Chem Ind Ltd Detergent for copper wire semiconductor
JP2009217267A (en) * 2008-03-07 2009-09-24 Air Products & Chemicals Inc Stripper for dry film removal
WO2010086893A1 (en) * 2009-01-27 2010-08-05 三洋化成工業株式会社 Cleaning agent for copper-wired semiconductor
WO2015029277A1 (en) * 2013-09-02 2015-03-05 パナソニックIpマネジメント株式会社 Resist remover liquid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049208A1 (en) * 2019-09-09 2021-03-18
WO2021049208A1 (en) * 2019-09-09 2021-03-18 富士フイルム株式会社 Treatment liquid, kit, treatment liquid production method, substrate cleaning method, and substrate treatment method
JP7324290B2 (en) 2019-09-09 2023-08-09 富士フイルム株式会社 Processing liquid, kit, manufacturing method of processing liquid, cleaning method of substrate, processing method of substrate
CN114364780A (en) * 2019-09-09 2022-04-15 富士胶片株式会社 Treatment liquid, kit, method for producing treatment liquid, method for cleaning substrate, and method for treating substrate
JP2021081618A (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist stripping solution
WO2021100255A1 (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist removal solution
WO2021100254A1 (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist removal solution
JP2021081616A (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist stripping solution
WO2021100256A1 (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist removal solution
TWI730912B (en) * 2019-11-20 2021-06-11 日商松下知識產權經營股份有限公司 Resistor Stripping Liquid
TWI730911B (en) * 2019-11-20 2021-06-11 日商松下知識產權經營股份有限公司 Resistor Stripping Liquid
TWI730913B (en) * 2019-11-20 2021-06-11 日商松下知識產權經營股份有限公司 Resistor Stripping Liquid
CN112805631B (en) * 2019-11-20 2021-08-13 松下知识产权经营株式会社 Resist stripping liquid
JP2021081617A (en) * 2019-11-20 2021-05-27 パナソニックIpマネジメント株式会社 Resist stripping solution
CN112805631A (en) * 2019-11-20 2021-05-14 松下知识产权经营株式会社 Resist stripping liquid

Also Published As

Publication number Publication date
JP5885046B1 (en) 2016-03-15
TW201635051A (en) 2016-10-01
JP2016180828A (en) 2016-10-13
TWI548955B (en) 2016-09-11

Similar Documents

Publication Publication Date Title
JP6277511B2 (en) Resist stripper
JP5885046B1 (en) Resist stripper
JP4678673B2 (en) Photoresist stripping solution
TWI494713B (en) Photoresist stripping solution
JP2016095413A (en) Resist removal liquid
JP5885043B1 (en) Resist stripper and method for producing the same
JP5885041B1 (en) Resist stripper
JP5809444B2 (en) Stripper for photoresist
TWI629353B (en) Receptor stripping solution
JP6176584B1 (en) Resist stripper
JP5885045B1 (en) Resist stripper and method for producing the same
JP2010002580A (en) Resist stripping liquid
TWI640842B (en) Photoresist stripper
JP6198095B1 (en) Resist stripper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886202

Country of ref document: EP

Kind code of ref document: A1