WO2016150225A1 - 一种用于三维打印的柔性金属粉及其制备方法和应用方法 - Google Patents

一种用于三维打印的柔性金属粉及其制备方法和应用方法 Download PDF

Info

Publication number
WO2016150225A1
WO2016150225A1 PCT/CN2015/099752 CN2015099752W WO2016150225A1 WO 2016150225 A1 WO2016150225 A1 WO 2016150225A1 CN 2015099752 W CN2015099752 W CN 2015099752W WO 2016150225 A1 WO2016150225 A1 WO 2016150225A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
parts
powder
weight
dimensional printing
Prior art date
Application number
PCT/CN2015/099752
Other languages
English (en)
French (fr)
Inventor
陈庆
曾军堂
叶任海
Original Assignee
成都新柯力化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都新柯力化工科技有限公司 filed Critical 成都新柯力化工科技有限公司
Publication of WO2016150225A1 publication Critical patent/WO2016150225A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • Inventive name a flexible metal powder for three-dimensional printing, and a preparation method and application method thereof
  • the present invention belongs to the field of 3D printing manufacturing, and in particular relates to a flexible metal powder for three-dimensional printing manufacturing, and further relates to a method for preparing the flexible metal powder.
  • the metal powder directly uses 3D printing laser sintering to directly sinter the metal powder to obtain metal parts, but the metal parts obtained by the method have extremely high requirements on the sintered laser power, sintered material and sintering process, and there is spheroidization and warping. Deformation problems such as music, thus limiting large-scale applications.
  • metal powder indirect 3D printing of metal products has effectively promoted the application of 3D printing technology in the rapid manufacture of metal parts.
  • the indirect method is to mix the metal powder and the binder in a certain ratio, and selectively scan the mixed powder with a laser beam. The action of the laser melts the binder in the mixed powder and bonds the metal powder together to form a metal.
  • the Chinese invention patent CN101036944 adopts the coating method to prepare the nylon coated metal powder material;
  • the Chinese invention patent CN 102372918A discloses a selective laser-sintered nylon/aluminum powder composite powder material, which will be a nylon resin, an aluminum powder, an auxiliary agent. Add to the mechanical stirrer and stir evenly.
  • a green body of the metal part can be formed, and the metal product can be obtained by subsequent processing.
  • the problem of molding the metal powder is effectively solved by indirect 3D printing, but the indirect 3D printing of the metal powder mainly concentrates on the formation of the green body by the adhesive, and then the subsequent sintering treatment, mainly obtaining a hard metal. There is still a big gap between the mechanical properties of the products and the original metal products.
  • This method of indirect 3D printing of metal articles broadens the scope of application of 3D printed metal products. At present, 3D printing is limited to some special metal products, such as biocompatible medical metal stents, flexible molded products, etc., which require specific metal composite powders.
  • metal powders are indirectly 3D printed metal parts, and it is necessary to obtain hard metal products by post-treatment sintering and metal infiltration.
  • the present invention proposes a flexible metal powder for three-dimensional printing, which is mainly composed of metal powder embedded in a rubber body having a network structure, through three-dimensional Printing, a flexible metal product green body can be directly formed under lower temperature conditions. Further, the flexible metal product green body is subjected to thermal crosslinking treatment at a temperature of 150 to 160 ° C to obtain a flexible metal product excellent in strength, flexibility, and wear resistance without high-temperature sintering.
  • the present invention proposes a preparation method and application of a flexible metal powder for three-dimensional printing.
  • a flexible metal powder for three-dimensional printing is realized by the following technical solutions:
  • a flexible metal powder for three-dimensional printing which is characterized in that: metal powder is mainly embedded in a rubber body having a network structure, and is prepared from the following raw materials by weight:
  • the metal powder is stainless steel powder, aluminum powder, nickel powder, copper powder, zinc powder, tin powder having a particle diameter of less than 10 micrometers.
  • At least one of silver powder and titanium powder At least one of silver powder and titanium powder
  • the rubber body is one of styrene butadiene rubber, butadiene rubber, isoprene rubber, ethylene propylene rubber, and neoprene rubber;
  • the metal oxide is one of zinc oxide, magnesium oxide, aluminum oxide;
  • the softener is an alkyl methacrylate polymer, which is a polymer having an alkyl methacrylate unit, and is selected from methyl methacrylate, propyl methacrylate, and hexyl methacrylate. At least one of heptyl methacrylate and decyl methacrylate;
  • the interfacial modifier is a hyperbranched poly(amide-ester) having a spherical three-dimensional configuration, and the surface of the molecule is densely packed with a reactive terminal functional group, which has adhesion and can increase the adhesion of the metal powder.
  • Sexuality making the metal powder effective network in the rubber body with network structure, and having the toughness to the metal powder;
  • the antioxidant is N-isopropyl- ⁇ '-phenyl-p-phenylenediamine
  • the accelerator is one of the accelerator M, the accelerator DM, the accelerator CZ, and the accelerator TMTD.
  • a method of preparing a flexible metal powder for three-dimensional printing according to the present invention is characterized in that:
  • the activated metal powder obtained in the step 1), 10-15 parts by weight of the rubber body, 1-3 parts by weight of the softener, 0.2-0.5 parts by weight of the antioxidant are added to the double rotor continuous mixer, the rotor Speed 100-200 rev / min, mixing for 5-10 minutes, the metal powder is completely embedded in the rubber body with a mesh; then adding 2-3 parts by weight of metal oxide, 0.05-0.1 parts by weight of the promoted Qi ij, mixed Refining for 2-3 minutes;
  • step 3 3) directly feeding the kneaded material obtained in step 2) into an extrusion granulation device, and obtaining a large granular composite material by extrusion and dicing;
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • the two-rotor continuous mixer according to the step 2) the rotor flow path is operated, and has a longitudinal meshing and a transverse stretching function. Fully embed metal powder by longitudinal and transverse stretching It has a mesh rubber body.
  • the above preparation method, the extrusion granulation apparatus of the step 3), is a conical single-screw extruder, a reciprocating single-screw continuous extruder, and a twin-screw extrusion which have been reported and/or used at present.
  • conventional screw extrusion equipment such as machines, it can usually be carried out and completed. More preferably, it is carried out in a conical single screw extruder.
  • the colloid mill of the step 4) is a tooth-shaped grinding disc, so that the large-grain metal powder is continuously split, and is ground by a toothed disc to form a spherical fine flexible metal powder.
  • the present invention relates to a flexible metal powder for three-dimensional printing, wherein the surface of the hyperbranched poly(amide-ester) molecule is densely packed with a reactive terminal functional group, imparting good adhesion to the metal powder, utilizing longitudinal engagement and
  • the transversely stretched double-rotor continuous mixer allows the metal powder to be completely embedded in the rubber body having a mesh shape, and further obtains a flexible metal powder from the rubber body network by extrusion granulation and a colloid mill.
  • the flexible metal powder of the present invention is used as a three-dimensional printing raw material for a three-dimensional printing method of a flexible metal product, which is characterized in that a flexible metal product green body is obtained by selective thermal sintering and selective laser sintering of three-dimensional printing. . Further, the flexible metal product green body is subjected to thermal crosslinking treatment at a temperature of 150 to 160 ° C and a temperature of 1 to 2 MPa to obtain a flexible metal product excellent in strength, flexibility and abrasion resistance. Flanges, connectors, building models, etc. that can be used for 3D printing of special structures.
  • the present invention relates to a flexible metal powder for three-dimensional printing, a preparation method thereof and an application method thereof, and the outstanding features and excellent effects thereof are compared with the prior art:
  • the flexible metal powder for three-dimensional printing of the present invention is mainly composed of a metal powder embedded in a rubber body having a network structure, and can directly form a flexible metal product at a lower temperature condition by three-dimensional printing. , no high temperature sintering is required.
  • the surface of the molecule is densely packed with a reactive terminal functional group to impart good adhesion to the metal powder.
  • the double-rotor continuous mixer having longitudinal and transverse stretching is used to completely embed the metal powder in the rubber body having a mesh shape.
  • a flexible metal powder for three-dimensional printing according to the present invention as a three-dimensional printing raw material, a flexible metal product green body is obtained by selective thermal sintering and selective laser sintering of three-dimensional printing. Further The flexible metal product green body is subjected to thermal crosslinking treatment at a temperature of 150 to 160 ° C and a temperature of 1 to 2 MPa for 5 to 10 minutes to obtain a flexible metal product excellent in strength, flexibility and wear resistance. Can be used for three-dimensional printing of special structures such as flanges, connectors, building models and other flexible products.
  • the activated metal powder obtained in the step 1) 10 parts by weight of styrene-butadiene rubber, 1 part by weight of the softener methyl methacrylate, 0.2 parts by weight of the antioxidant N-isopropyl- ⁇ '- Phenyl-p-phenylenediamine was added to a two-rotor continuous mixer at a rotor speed of 150 rpm for 10 minutes.
  • the metal powder was completely embedded in the rubber body with a mesh; then 2 parts by weight of zinc oxide and 0.05 parts by weight were added.
  • Promoter M mixing for 3 minutes;
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • the flexible metal powder obtained in Example 1 was subjected to selective thermal sintering by three-dimensional printing to obtain a flanged metal product green body.
  • the flexible metal product green body was thermally crosslinked at a temperature of 160 ° C and a pressure of 2 MPa for 5 minutes to obtain a flexible metal flange excellent in strength, flexibility and wear resistance.
  • step 3 3) directly feeding the kneaded material obtained in step 2) into a reciprocating single-screw continuous extruder, and obtaining a large granular composite material by extrusion and pelletizing;
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • the flexible metal powder obtained in Example 2 was subjected to selective laser sintering by three-dimensional printing to obtain a green body of a coupling metal product.
  • the flexible metal product green body was thermally crosslinked at a temperature of 160 ° C under an IMPa pressure for 6 minutes to obtain a coupling excellent in strength, flexibility, and wear resistance.
  • the activated metal powder obtained in the step 1) 10 parts by weight of isoprene rubber, 3 parts by weight of the softener hexyl methacrylate, -0.5 parts by weight of the antioxidant N-isopropyl- ⁇ ' -Phenyl-p-phenylenediamine was added to a two-rotor continuous mixer at a rotor speed of 200 rpm for 10 minutes.
  • the metal powder was completely embedded in the rubber body with a mesh; then 3 parts by weight of alumina, 0.1 weight was added. a portion of the accelerator CZ, mixing for 3 minutes;
  • step 3 3) directly feeding the kneaded material obtained in step 2) into a twin-screw extruder, and obtaining a large granular composite material by extrusion and pelletizing;
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • Example 3 The flexible metal powder obtained in Example 3 was fabricated into a building model by three-dimensional printing.
  • the activated metal powder obtained in the step 1) 10 parts by weight of ethylene propylene rubber, 1 part by weight of the softening agent heptyl methacrylate, 0.2 parts by weight of the antioxidant N-isopropyl- ⁇ '- Phenyl-p-phenylenediamine was added to a two-rotor continuous mixer at a rotor speed of 100 rpm for 7 minutes.
  • the metal powder was completely embedded in the rubber body with a mesh; then 3 parts by weight of zinc oxide and 0.06 parts by weight were added. Promoter TMTD, mixing for 3 minutes;
  • step 3 3) directly feeding the kneaded material obtained in step 2) into a conical single-screw extrusion device, and obtaining a large granular composite material by extrusion and pelletizing;
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • Example 4 The flexible metal powder obtained in Example 4 was obtained by three-dimensional printing to obtain a flexible conductive controller.
  • the large particle composite material obtained in the step 3) is sent to a colloid mill and ground under a liquid nitrogen cooling condition to form a 80 mesh sieved flexible metal powder.
  • the flexible metal powder obtained in Example 5 was subjected to selective laser sintering by three-dimensional printing to obtain a human body-assisted bone tissue green body.
  • the flexible metal bone tissue green body was heat-crosslinked at a temperature of 155 ° C under an IMPa pressure for 5 minutes to obtain a human-assisted bone tissue excellent in strength and flexibility.
  • the adhesion of the metal powder is imparted by the interface modifier, and the double rotor connection with longitudinal and transverse stretching is utilized.
  • the kneader is continuously mixed, and the metal powder is completely embedded in the rubber body having a mesh shape, and the flexible metal powder from the rubber body network is further obtained by extrusion granulation and a colloid mill.
  • the flexible metal powder is obtained by three-dimensional printing to obtain a green metal product, and a flexible metal product excellent in strength, flexibility and wear resistance is obtained by thermal crosslinking treatment. Can be used for 3D printing of special structures for flanges, connectors, building models, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种用于三维打印的柔性金属粉主要由金属粉镶嵌在具有网络结构的橡胶体中组成,且按重量份计由以下原料制备而成:金属粉80-85份,橡胶体10-15份,金属氧化物2-3份,软化剂1-3份,界面改性剂1-2份,防老剂0.2-0.5份,促进剂0.05-0.1份;其中通过界面改性剂赋予金属粉附着性,并利用具有纵向啮合和横向拉伸的双转子连续混炼机使金属粉完全嵌入具有网状的橡胶体中,进一步通过挤出造粒、胶体研磨机得到由橡胶体网络的所述柔性金属粉。所述柔性金属粉通过三维打印得到金属制品生坯,通过热交联处理得到强度、柔性、耐磨性优异的柔性金属制品。

Description

发明名称:一种用于三维打印的柔性金属粉及其制备方法和应用方 法
技术领域
[0001] 本发明属于 3D打印制造领域, 具体涉及一种用于三维打印制造的柔性金属粉, 并进一步涉及该柔性金属粉的制备方法。
背景技术
[0002] 金属材料的 3D打印制造技术之所以难度大, 是因为金属的熔点比较高, 涉及到 了金属的固液相变、 表面扩散以及热传导等多种物理过程。 另外, 生成的晶体 组织是否良好、 整个试件是否均匀、 内部杂质和孔隙的大小等等都会引起 3D打 印金属制品性能的改变。 为了解决这些问题, 一方面在打印工艺上进行改进, 如激光的功率和能量分布、 激光聚焦点的移动速度和路径、 加料速度、 保护气 压、 外部温度等; 另一方面对金属粉末进行改进, 以满足不同金属制品的打印 需求。
[0003] 金属粉末直接利用 3D打印的激光烧结可直接烧结金属粉末得到金属零部件, 但 该方法所得金属件对烧结的激光功率、 烧结材料及烧结工艺等要求极高, 且存 在球化、 翘曲等变形问题, 因而使得大规模应用受到限制。 目前采用金属粉末 间接 3D打印金属制品, 有效推动了 3D打印技术在金属零件快速制造的应用。 间 接法是将金属粉末和粘结剂按一定比例混合均匀, 用激光束对混合粉末进行选 择性扫描, 激光的作用使混合粉末中的粘结剂熔化并将金属粉末粘结在一起, 形成金属零件的生坯, 再通过后续二次烧结、 金属浸渗处理得到金属制件产品 。 如中国发明专利 CN101036944采用覆膜法制备了尼龙覆膜金属粉末材料; 中 国发明专利 CN 102372918A公幵了一种基于选择性激光烧结尼龙 /铝粉复合粉末 材料, 将尼龙树脂、 铝粉、 助剂加至机械搅拌器内搅拌均匀, 过筛得到。 通过 利用尼龙的粘接性将金属粉在较低温度下粘接可形成金属零件的生坯, 再通过 后续处理即可得到金属制品。 尽管这种间接法 3D打印制造金属制品的性能存在 缺陷, 但这种通过间接 3D打印金属零件的方法使 3D打印制造技术在金属制品中 的应用成为可能。
[0004] 根据上述, 通过间接 3D打印有效解决了金属粉末的成型问题, 但金属粉末通过 间接 3D打印主要集中在通过粘接剂形成生坯, 然后再后续烧结处理, 主要得到 一种硬质金属制品, 其机械性能与原有金属制品还存在较大差距。 而这种通过 间接 3D打印金属制品的方法为 3D打印金属制品的应用拓宽了范围。 目前 3D打印 一些特殊的金属制品应用研究较少, 如具有生物相容性的医疗金属支架、 具有 柔性的模型制品等, 则需要特定的金属复合粉。
技术问题
[0005] 目前金属粉末通过间接 3D打印金属零件, 需要通过后处理烧结、 金属浸渗得到 硬质金属制品。
问题的解决方案
技术解决方案
[0006] 为了拓宽金属粉末通过间接 3D打印金属零件的应用, 本发明提出一种用于三维 打印的柔性金属粉, 该柔性金属粉主要由金属粉镶嵌在具有网络结构的橡胶体 组成, 通过三维打印, 在较低温度条件下可直接形成具有柔性的金属制品生坯 。 进一步该柔性金属制品生坯通过 150〜160°C温度条件下热交联处理, 可得到强 度、 柔性、 耐磨性优异的柔性金属制品, 无需高温烧结。
[0007] 进一步, 本发明提出一种用于三维打印的柔性金属粉的制备方法和应用。
[0008] 一种用于三维打印的柔性金属粉, 是通过如下技术方案实现的:
[0009] 一种用于三维打印的柔性金属粉, 其特征是: 主要由金属粉镶嵌在具有网络结 构的橡胶体中组成, 按重量份计由以下原料制备而成:
[0010] 金属粉 80-85份,
[0011] 橡胶体 10-15份,
[0012] 金属氧化物 2-3份,
[0013] 软化剂 1-3份,
[0014] 界面改性剂 1-2份,
[0015] 防老剂 0.2-0.5份,
[0016] 促进剂 0.05-0.1份; [0017] 所述的金属粉为粒径小于 10微米的不锈钢粉、 铝粉、 镍粉、 铜粉、 锌粉、 锡粉
、 银粉、 钛粉中的至少一种;
[0018] 所述的橡胶体为丁苯橡胶、 顺丁橡胶、 异戊橡胶、 乙丙橡胶、 氯丁橡胶中的一 种;
[0019] 所述的金属氧化物为氧化锌、 氧化镁、 氧化铝中的一种;
[0020] 所述的软化剂为甲基丙烯酸烷基酯系聚合物, 是具有甲基丙烯酸烷基酯单元的 聚合物, 选用甲基丙烯酸甲酯、 甲基丙烯酸丙酯、 甲基丙烯酸己酯、 甲基丙烯 酸庚酯、 甲基丙烯酸壬酯中的至少一种;
[0021] 所述的界面改性剂为超支化聚 (酰胺-酯), 具有球形状的三维构型, 分子表面均 密布着具有反应活性的末端官能团, 具有附着力, 可增加金属粉的附着性, 使 金属粉有效网络在具有网络结构的橡胶体中, 并具有对金属粉的增韧性;
[0022] 所述的防老剂为 N-异丙基 -Ν'-苯基对苯二胺;
[0023] 所述的促进剂为促进剂M、 促进剂 DM、 促进剂 CZ、 促进剂 TMTD中的一种。
[0024] 本发明一种用于三维打印的柔性金属粉的制备方法, 其特征是按照如下方式进 行:
[0025] 1) 将 80-85重量份的金属粉、 1-2重量份的界面改性剂加入到球磨机中, 在氮气 保护条件下研磨 20-30min, 从而使界面改性剂分子表面反应活性的末端官能团对 金属粉活化, 增加金属粉的附着力;
[0026] 2) 将步骤 1) 得到的活化金属粉、 10-15重量份的橡胶体、 1-3重量份的软化剂 、 0.2-0.5重量份的防老剂加入双转子连续混炼机, 转子速度 100-200转 /min, 混 炼 5-10分钟, 金属粉完全嵌入具有网状的橡胶体中; 然后加入 2-3重量份的金属 氧化物、 0.05-0.1重量份的促进齐 ij, 混炼 2-3分钟;
[0027] 3) 将步骤 2) 得到的混炼物料直接热喂料进入挤出造粒设备, 通过挤出、 切粒 得到大颗粒状复合材料;
[0028] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
上述制备方法, 步骤 2) 所述的双转子连续混炼机, 其转子流道运转吋具有纵 向啮合, 横向拉伸的分散功能。 通过纵向啮合和横向拉伸, 使金属粉完全嵌入 具有网状的橡胶体中。
[0030] 上述制备方法, 步骤 3) 所述的挤出造粒设备, 为目前已有报道和 /或使用的锥 形单螺杆挤出机、 往复式单螺杆连续挤出机、 双螺杆挤出机等常用的螺杆挤出 设备中, 通常都可以进行和完成。 其中更优选的是锥形单螺杆挤出机中进行。
[0031] 上述制备方法, 步骤 4) 所述的胶体研磨机为齿形磨盘, 使大颗粒金属粉不断 分裂, 并通过齿形盘研磨形成球形的微细柔性金属粉。
[0032] 本发明一种用于三维打印的柔性金属粉, 通过超支化聚 (酰胺 -酯)分子表面均密 布着具有反应活性的末端官能团, 赋予金属粉良好的附着性, 利用具有纵向啮 合和横向拉伸的双转子连续混炼机, 使金属粉完全嵌入具有网状的橡胶体中, 进一步通过挤出造粒、 胶体研磨机得到由橡胶体网络的柔性金属粉。
[0033] 本发明柔性金属粉作为三维打印原料, 用于通过三维打印柔性金属制品的应用 方法,其特征是:通过三维打印的选择性热烧结、 选择性激光烧结得到具有柔性的 金属制品生坯。 进一步该柔性金属制品生坯通过 150〜160°C温度、 l-2MPa条件 下热交联处理 5-lOmin得到强度、 柔性、 耐磨性优异的柔性金属制品。 可用于三 维打印特殊结构的法兰、 连接器、 建筑模型等。
发明的有益效果
有益效果
[0034] 本发明一种用于三维打印的柔性金属粉及其制备方法和应用方法, 与现有技术 相比, 其突出的特点和优异的效果在于:
[0035] 1、 本发明一种用于三维打印的柔性金属粉, 主要由金属粉镶嵌在具有网络结 构的橡胶体组成, 通过三维打印, 在较低温度条件下可直接形成具有柔性的金 属制品, 无需高温烧结。
[0036] 2、 本发明一种用于三维打印的柔性金属粉的制备方法, 通过超支化聚 (酰胺-酯
)分子表面均密布着具有反应活性的末端官能团, 赋予金属粉良好的附着性, 利 用具有纵向啮合和横向拉伸的双转子连续混炼机, 使金属粉完全嵌入具有网状 的橡胶体中。
[0037] 3、 本发明一种用于三维打印的柔性金属粉, 作为三维打印原料, 通过三维打 印的选择性热烧结、 选择性激光烧结得到具有柔性的金属制品生坯。 进一步该 柔性金属制品生坯通过 150〜160°C温度、 l-2MPa条件下热交联处理 5-lOmin得到 强度、 柔性、 耐磨性优异的柔性金属制品。 可用于三维打印特殊结构的法兰、 连接器、 建筑模型等柔性制品。
实施该发明的最佳实施例
本发明的最佳实施方式
[0038] 实施例 1
[0039] 1) 将 80重量份粒径小于 10微米的不锈钢粉、 1重量份的界面改性剂超支化聚( 酰胺 -酯)加入到球磨机中, 在氮气保护条件下研磨 20min, 从而使界面改性剂分 子表面反应活性的末端官能团对金属粉活化, 增加金属粉的附着力;
[0040] 2) 将步骤 1) 得到的活化金属粉、 10重量份的丁苯橡胶、 1重量份的软化剂甲 基丙烯酸甲酯、 0.2重量份的防老剂 N-异丙基 -Ν'-苯基对苯二胺加入双转子连续 混炼机, 转子速度 150转 /min, 混炼 10分钟, 金属粉完全嵌入具有网状的橡胶体 中; 然后加入 2重量份的氧化锌、 0.05重量份的促进剂 M, 混炼 3分钟;
[0041] 3) 将步骤 2) 得到的混炼物料直接热喂料进入锥形单螺杆挤出机, 通过挤出、 切粒得到大颗粒状复合材料;
[0042] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
[0043] 将实施例 1得到的柔性金属粉通过三维打印的选择性热烧结, 得到一种法兰的 金属制品生坯。 将该柔性金属制品生坯在 160°C温度、 2MPa压力条件下热交联处 理 5min得到强度、 柔性、 耐磨性优异的柔性金属法兰。
本发明的实施方式
[0044] 实施例 2
[0045] 1) 将 60重量份粒径小于 10微米的铝粉、 25重量份的锌粉、 1重量份的界面改性 剂超支化聚 (酰胺 -酯)加入到球磨机中, 在氮气保护条件下研磨 25min, 从而使界 面改性剂分子表面反应活性的末端官能团对金属粉活化, 增加金属粉的附着力
[0046] 2) 将步骤 1) 得到的活化金属粉、 10重量份的顺丁橡胶、 2重量份的软化剂甲 基丙烯酸丙酯、 0.3重量份的防老剂 N-异丙基 -Ν'-苯基对苯二胺加入双转子连续 混炼机, 转子速度 200转 /min, 混炼 5分钟, 金属粉完全嵌入具有网状的橡胶体中
; 然后加入 2重量份的氧化镁、 0.08重量份的促进剂 DM, 混炼 2分钟;
[0047] 3) 将步骤 2) 得到的混炼物料直接热喂料进入往复式单螺杆连续挤出机, 通过 挤出、 切粒得到大颗粒状复合材料;
[0048] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
[0049] 将实施例 2得到的柔性金属粉通过三维打印的选择性激光烧结, 得到一种联轴 器金属制品生坯。 将该柔性金属制品生坯在 160°C温度、 IMPa压力条件下热交联 处理 6min得到强度、 柔性、 耐磨性优异的联轴器。
[0050] 实施例 3
[0051] 1) 将 50重量份粒径小于 10微米的铜粉、 35重量份的银粉、 2重量份的界面改性 剂超支化聚 (酰胺 -酯)加入到球磨机中, 在氮气保护条件下研磨 30min, 从而使界 面改性剂分子表面反应活性的末端官能团对金属粉活化, 增加金属粉的附着力
[0052] 2) 将步骤 1) 得到的活化金属粉、 10重量份的异戊橡胶、 3重量份的软化剂甲 基丙烯酸己酯、 -0.5重量份的防老剂 N-异丙基 -Ν'-苯基对苯二胺加入双转子连续 混炼机, 转子速度 200转 /min, 混炼 10分钟, 金属粉完全嵌入具有网状的橡胶体 中; 然后加入 3重量份的氧化铝、 0.1重量份的促进剂 CZ, 混炼 3分钟;
[0053] 3) 将步骤 2) 得到的混炼物料直接热喂料进入双螺杆挤出机, 通过挤出、 切粒 得到大颗粒状复合材料;
[0054] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
[0055] 将实施例 3得到的柔性金属粉通过三维打印制造建筑模型。
[0056] 实施例 4
[0057] 1) 将 70重量份的粒径小于 10微米的镍粉、 10重量份的锡粉、 1重量份的界面改 性剂超支化聚 (酰胺 -酯)加入到球磨机中, 在氮气保护条件下研磨 20min, 从而使 界面改性剂分子表面反应活性的末端官能团对金属粉活化, 增加金属粉的附着 [0058] 2) 将步骤 1) 得到的活化金属粉、 10重量份的乙丙橡胶、 1重量份的软化剂甲 基丙烯酸庚酯、 0.2重量份的防老剂 N-异丙基 -Ν'-苯基对苯二胺加入双转子连续 混炼机, 转子速度 100转 /min, 混炼 7分钟, 金属粉完全嵌入具有网状的橡胶体中 ; 然后加入 3重量份的氧化锌、 0.06重量份的促进剂 TMTD, 混炼 3分钟;
[0059] 3) 将步骤 2) 得到的混炼物料直接热喂料进入锥形单螺杆挤出设备, 通过挤出 、 切粒得到大颗粒状复合材料;
[0060] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
[0061] 将实施例 4得到的柔性金属粉通过三维打印得到柔性导电控制器。
[0062] 实施例 5
[0063] 1) 将 70重量份粒径小于 10微米的镍粉、 15重量份的钛粉、 1重量份的界面改性 剂超支化聚 (酰胺 -酯)加入到球磨机中, 在氮气保护条件下研磨 25min, 从而使界 面改性剂分子表面反应活性的末端官能团对金属粉活化, 增加金属粉的附着力
[0064] 2) 将步骤 1) 得到的活化金属粉、 10重量份的顺丁橡胶、 2重量份的软化剂甲 基丙烯酸丙酯、 0.3重量份的防老剂 N-异丙基 -Ν'-苯基对苯二胺加入双转子连续 混炼机, 转子速度 200转 /min, 混炼 5分钟, 金属粉完全嵌入具有网状的橡胶体中 ; 然后加入 2重量份的氧化镁、 0.08重量份的促进剂 DM, 混炼 2分钟;
[0065] 3) 将步骤 2) 得到的混炼物料直接热喂料进入往复式单螺杆连续挤出机, 通过 挤出、 切粒得到大颗粒状复合材料;
[0066] 4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条件下研磨 形成 80目过筛的柔性金属粉。
[0067] 将实施例 5得到的柔性金属粉通过三维打印的选择性激光烧结, 得到一种人体 辅助骨组织生坯。 将该柔性金属骨组织生坯在 155°C温度、 IMPa压力条件下热交 联处理 5min得到强度、 柔性优异的人体辅助骨组织。
工业实用性
[0068] 通过界面改性剂赋予金属粉附着性, 利用具有纵向啮合和横向拉伸的双转子连 续混炼机, 使金属粉完全嵌入具有网状的橡胶体中, 进一步通过挤出造粒、 胶 体研磨机得到由橡胶体网络的柔性金属粉。 柔性金属粉通过三维打印得到金属 制品生坯, 通过热交联处理得到强度、 柔性、 耐磨性优异的柔性金属制品。 可 用于三维打印特殊结构的法兰、 连接器、 建筑模型等。

Claims

权利要求书
[权利要求 1] 一种用于三维打印的柔性金属粉, 其特征是: 主要由金属粉镶嵌在具 有网络结构的橡胶体中组成, 按重量份计由以下原料制备而成: 金属粉 80-85份,
橡胶体 10-15份,
金属氧化物 2-3份,
软化剂 1-3份,
界面改性剂 1-2份,
防老剂 0.2-0.5份,
促进剂 0.05-0.1份;
所述的金属粉为粒径小于 10微米的不锈钢粉、 铝粉、 镍粉、 铜粉、 锌 粉、 锡粉、 银粉、 钛粉中的至少一种;
所述的橡胶体为丁苯橡胶、 顺丁橡胶、 异戊橡胶、 乙丙橡胶、 氯丁橡 胶中的一种; 所述的金属氧化物为氧化锌、 氧化镁、 氧化铝中的一种;
所述的软化剂为甲基丙烯酸烷基酯系聚合物;
所述的界面改性剂为超支化聚酰胺 -酯;
所述的防老剂为 N-异丙基 -Ν'-苯基对苯二胺;
所述的促进剂为促进剂M、 促进剂 DM、 促进剂 CZ、 促进剂 TMTD中 的一种。
[权利要求 2] 根据权利要求 1所述一种用于三维打印的柔性金属粉, 其特征在于: 所述软化剂为甲基丙烯酸甲酯、 甲基丙烯酸丙酯、 甲基丙烯酸己酯、 甲基丙烯酸庚酯、 甲基丙烯酸壬酯中的至少一种。
[权利要求 3] —种制备如权利要求 1所述用于三维打印的柔性金属粉的方法, 其特 征是将权利要求 1所述的重量份比例的原料按如下方式加工: 1) 将 80-85重量份的金属粉、 1-2重量份的界面改性剂加入到球磨机 中, 在氮气保护条件下研磨 20-30min, 从而使界面改性剂分子表面反 应活性的末端官能团对金属粉活化, 增加金属粉的附着力; 2) 将步骤 1) 得到的活化金属粉、 10-15重量份的橡胶体、 1-3重量份 的软化剂、 0.2-0.5重量份的防老剂加入双转子连续混炼机, 转子速度 100-200转 /min, 混炼 5- 10分钟, 双转子连续混炼机其转子流道运转吋 具有纵向啮合, 横向拉伸的分散功能, 通过纵向啮合和横向拉伸, 使 金属粉完全嵌入具有网状的橡胶体中; 然后加入 2-3重量份的金属氧 化物、 0.05-0.1重量份的促进齐 ij, 混炼 2-3分钟;
3) 将步骤 2) 得到的混炼物料直接热喂料进入挤出造粒设备, 通过挤 出、 切粒得到大颗粒状复合材料;
4) 将步骤 3) 得到的大颗粒复合材料送入胶体研磨机, 在液氮冷却条 件下研磨形成 80目过筛的柔性金属粉。
[权利要求 4] 根据权利要求 3所述一种用于三维打印的柔性金属粉的制备方法, 其 特征在于: 步骤 4) 所述的胶体研磨机为齿形磨盘, 使大颗粒金属粉 不断分裂, 并通过齿形盘研磨形成球形的微细柔性金属粉。
[权利要求 5] —种如权利要求 1所述用于三维打印的柔性金属粉的应用方法,其特征 在于:通过三维打印的选择性热烧结、 选择性激光烧结得到具有柔性 的金属制品生坯, 进一步该柔性金属制品生坯通过 150〜160°C温度、 l-2MPa条件下热交联处理 5-lOmin得到强度、 柔性、 耐磨性优异的柔 性金属制品。
PCT/CN2015/099752 2015-03-26 2015-12-30 一种用于三维打印的柔性金属粉及其制备方法和应用方法 WO2016150225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510133935.1A CN104801703B (zh) 2015-03-26 2015-03-26 一种用于三维打印的柔性金属粉及其制备方法和应用方法
CN201510133935.1 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016150225A1 true WO2016150225A1 (zh) 2016-09-29

Family

ID=53687134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099752 WO2016150225A1 (zh) 2015-03-26 2015-12-30 一种用于三维打印的柔性金属粉及其制备方法和应用方法

Country Status (2)

Country Link
CN (1) CN104801703B (zh)
WO (1) WO2016150225A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801703B (zh) * 2015-03-26 2016-08-24 成都新柯力化工科技有限公司 一种用于三维打印的柔性金属粉及其制备方法和应用方法
CN105057664B (zh) * 2015-08-14 2017-10-10 东莞劲胜精密组件股份有限公司 一种3d打印粉料及3d打印方法
US10195667B2 (en) 2015-11-23 2019-02-05 Delavan Inc. Powder removal systems
CN105458257B (zh) * 2015-12-08 2018-09-07 南通金源智能技术有限公司 一种3d打印钛基复合材料义齿
CN105562676B (zh) * 2015-12-23 2017-07-11 成都新柯力化工科技有限公司 一种用于3d打印的增强金属复合材料及其制备方法
TWI658920B (zh) * 2015-12-28 2019-05-11 曼瑟森三汽油公司 於建立平台上製造物件之加法製造方法及用於加法製造方法之具有特定表面化學性之金屬基材
CN105504174B (zh) * 2015-12-29 2017-12-05 李吟啸 一种3d打印用球形丁苯橡胶及其制备方法
CN106077605A (zh) * 2016-06-06 2016-11-09 芜湖启泽信息技术有限公司 一种3d打印粉料及3d打印方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852273B2 (en) * 2003-01-29 2005-02-08 Adma Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
CN102372918A (zh) * 2010-08-12 2012-03-14 湖南华曙高科技有限责任公司 基于选择性激光烧结的尼龙/铝粉复合粉末材料
CN103189187A (zh) * 2010-11-01 2013-07-03 株式会社其恩斯 在喷墨三维印刷法中用于形成光加工模型的造型材料、在光加工时用于支持光加工模型的形状的支持材料和光加工模型的制造方法
CN104801703A (zh) * 2015-03-26 2015-07-29 成都新柯力化工科技有限公司 一种用于三维打印的柔性金属粉及其制备方法和应用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094480B2 (ja) * 2003-05-08 2008-06-04 住友電気工業株式会社 連鎖状金属粉末とその製造方法、及びそれを用いた導電性付与材
CN100503090C (zh) * 2007-04-04 2009-06-24 华中科技大学 一种尼龙覆膜金属粉末材料的制备方法
CN103862040B (zh) * 2014-04-04 2015-10-07 袁志刚 一种用于3d打印的镁基金属粉体材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852273B2 (en) * 2003-01-29 2005-02-08 Adma Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
CN102372918A (zh) * 2010-08-12 2012-03-14 湖南华曙高科技有限责任公司 基于选择性激光烧结的尼龙/铝粉复合粉末材料
CN103189187A (zh) * 2010-11-01 2013-07-03 株式会社其恩斯 在喷墨三维印刷法中用于形成光加工模型的造型材料、在光加工时用于支持光加工模型的形状的支持材料和光加工模型的制造方法
CN104801703A (zh) * 2015-03-26 2015-07-29 成都新柯力化工科技有限公司 一种用于三维打印的柔性金属粉及其制备方法和应用方法

Also Published As

Publication number Publication date
CN104801703A (zh) 2015-07-29
CN104801703B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2016150225A1 (zh) 一种用于三维打印的柔性金属粉及其制备方法和应用方法
CN103242767B (zh) 一种耐高温双马来酰亚胺树脂载体结构胶膜及其制备方法
CN103665802B (zh) 一种用于3d打印的聚乳酸材料的制备方法
CN105778484B (zh) 一种应用于fdm技术的3d打印的改性尼龙材料及其打印方法
CN106832905A (zh) 聚合物基微/纳米复合材料粉体及其制备方法
CN102140246A (zh) 一种制备选择性激光烧结用尼龙粉末的方法
CN106317863B (zh) 一种尼龙/碳纳米管复合材料及其制备方法
TW201531507A (zh) 石墨烯複合纖維及其製備方法
CN107163565B (zh) 用于选择性激光烧结尼龙复合材料及其制备方法
CN104164053A (zh) 一种流动可控环氧树脂预浸料及其制备方法
CN102816336B (zh) 一种聚丙烯编织袋用高填充塑料母粒的制备方法
CN102311642A (zh) 一种硫酸钙晶须改性尼龙66复合材料及其制备工艺
CN104987681B (zh) 一种无机填料协同增韧聚乳酸混杂材料及其制备方法
CN107760018A (zh) 一种选择性激光烧结3d打印用pa‑12复合材料粉末
CN102328075A (zh) 一种不锈钢康复医疗器械及其制造方法
CN105175851B (zh) 一种精密铸造蜡及其制备方法和用途
CN107189423A (zh) 基于fdm3d打印的减磨材料及其制备方法和增强该材料制品减磨性能的方法
CN106479020A (zh) 一种复合工程塑料及其制备工艺
CN105623088A (zh) 一种具有磁性能的聚丙烯塑料母粒
CN102234406B (zh) 一种硫酸钙晶须改性聚苯乙烯复合材料及其制备工艺
CN104788792A (zh) 一种制备高能低温球磨连续挤压复合材料的方法及该方法制备的复合材料
CN109956756A (zh) 一种pom基陶瓷注射成型材料及其制备方法
CN108033793A (zh) 一种3d打印用氮化硅陶瓷材料及其制备方法
CN104761846A (zh) 一种橡胶胶粉复合材料的制备方法
CN105694102A (zh) 一种复合石墨烯微片散热母料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886147

Country of ref document: EP

Kind code of ref document: A1