WO2016150144A1 - 一种实现异系统同频组网的方法及装置 - Google Patents
一种实现异系统同频组网的方法及装置 Download PDFInfo
- Publication number
- WO2016150144A1 WO2016150144A1 PCT/CN2015/091573 CN2015091573W WO2016150144A1 WO 2016150144 A1 WO2016150144 A1 WO 2016150144A1 CN 2015091573 W CN2015091573 W CN 2015091573W WO 2016150144 A1 WO2016150144 A1 WO 2016150144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- cell
- same
- spectrum
- bandwidth
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/02—Channels characterised by the type of signal
- H04L5/06—Channels characterised by the type of signal the signals being represented by different frequencies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
Definitions
- the embodiments of the present invention relate to, but are not limited to, a multi-mode base station technology, and in particular, a method and apparatus for implementing a different system co-frequency networking based on two different systems of UMTS and LTE.
- WCDMA Wideband Code Division Multi-Access
- IMT-2000 International Mobile Telecommunication-2000
- 3GPP Third Generation Partnership Project
- UTRAN UMTS Terrestrial Radio Access Network
- the main feature of WCDMA is that the air interface uses direct sequence spread spectrum code division multiple access (DS-CDMA) and frequency division duplex (FDD), and the chip rate is 3.84 Mcps.
- the carrier bandwidth is 5MHz.
- High-speed downlink packet access HSDPA, High Speed Downlink Packet Access
- High Speed Uplink Packet Access HSPA
- RNC Radio Network Controller
- Node B Node B
- New technologies such as link adaptation, smaller transmission time interval (TTI) and multi-carrier frequency combining.
- TTI transmission time interval
- HSPA+ HSPA+
- the UTRAN provides wireless access services for User Equipment (UE) in the Universal Mobile Telecommunications System (UMTS).
- UE User Equipment
- UMTS Universal Mobile Telecommunications System
- the air interface standard between the two is defined by the 3GPP protocol, some of which are related to the concept and content of this document. Briefly described below.
- FIG. 1 is a schematic diagram of a logical structure of a UMTS system.
- the UTRAN may be composed of multiple Radio Network Subsystems (RNS) and defined by the 3GPP standard with a core network (CN, Core Network).
- RNS Radio Network Subsystems
- CN Core Network
- the Iu interface is connected; each RNS is composed of multiple Node Bs and is controlled by a Radio Network Controller (RNC).
- RNC Radio Network Controller
- the RNC and the Node B are connected by using the Iub interface defined by the 3GPP standard, and are used between the RNCs.
- the two logical network elements, RNC and Node B can also be implemented in the same physical device, so that the Iub interface defined by 3GPP becomes the internal interface of the physical device.
- RNC and Node B this paper obeys the functional division of RNC and Node B defined by the 3GPP standard. It does not distinguish between whether RNC and Node B use different physical devices or use the same physical device respectively. When it comes to the mutual function between the RNC and the Node B, it does not distinguish whether to use the Iub interface or use the internal interface.
- LTE Long Term Evolution
- eUTRAN Evolved Universal Terrestrial Access Network
- EPC Evolved Packet Core
- the LTE air interface can adopt Time Division Duplex (TDD) mode or FDD mode. This article only focuses on the FDD mode.
- TDD Time Division Duplex
- SC-FDMA Single Carrier-Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- the standard frequency bands defined by 3GPP include 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz.
- FIG. 2 is a schematic diagram of a logical structure of an LTE system.
- the eUTRAN is different from the UTRAN.
- the flat base architecture is used, and the enhanced base station eNB directly connects with the EPC using the S1 interface defined by the 3GPP standard to cancel the controller node;
- the X2 interface connection defined by the 3GPP standard is used;
- the resource of each eNB may be defined as one or more cells (Cell), as an access point for the UE to communicate with the eUTRAN, and the LTE Uu interface defined by the 3GPP standard between the eUTRAN and the UE connection.
- Cell cells
- the LTE air interface is based on OFDM technology, and uses mutually orthogonal subcarriers to modulate data, so that it has higher spectrum use efficiency than the conventional FDM technology.
- each subcarrier has a low bandwidth such as 15 kHz, the adjustment symbol rate is also low, but sufficient subcarriers can be used in parallel to increase the overall transmission rate. Therefore, the LTE system has frequency division scheduling capability, and can allocate different subcarriers for different users.
- 3 is a schematic diagram of subcarriers in LTE. As shown in FIG. 3, one symbol of one subcarrier is defined as one resource element (RE, Resource Element), and a certain number of subcarriers and symbols are defined as one resource block (RB, Resource). Block).
- the LTE base station eNB can allocate resources to different users in units of RBs.
- the base station can use multiple antennas to complete the wireless coverage of the geographical area.
- the area covered by each antenna can be called a sector.
- Multiple carrier frequencies can be deployed in each sector using frequency diversity.
- Both UMTS and LTE have the same frequency networking capability, that is, two adjacent sectors use the same carrier frequency deployment.
- the multi-mode base station has been widely used in the industry, that is, two logical entities, Node B and eNB, are simultaneously deployed on the same network element to support both UMTS and LTE access systems.
- Multi-carrier power amplifier technology and products have also been matured, and multiple carriers of different bandwidths can be deployed in each sector.
- the spectrum resources used by the operator to deploy the radio access network need to be applied to the wireless spectrum supervision department, and only the spectrum resources with limited bandwidth can be obtained.
- UMTS includes WCDMA and its evolved HSPA technology
- LTE also includes its evolved LTE-Enhanced (LTE-A) technology.
- the embodiment of the invention provides a method and a device for implementing the same-frequency co-frequency networking, which can implement the UMTS and LTE different system co-frequency networking, and simultaneously reduce the co-channel interference between different systems to ensure system performance.
- the embodiment of the invention provides a method for implementing the same-system co-frequency networking, including:
- the frequency bands used by the first system and the second system of the same frequency adjacent cell are staggered.
- the frequency bands used by the first system and the second system that are staggered by the same-frequency neighboring cell include:
- the same-frequency adjacent cell includes two pairs or more pairs;
- the method further includes: before the frequency band that is used by the first system and the second system in the same-frequency neighboring cell, the method further includes:
- the same-frequency adjacent cell includes two pairs or more pairs;
- the method further includes: combining the same Two or more consecutive second system cells located in the same base station in the frequency neighboring cell;
- the frequency bands used by the first system and the second system that are staggered in the same-frequency neighboring cell include: re-adjusting the center frequency of the co-frequency adjacent cells after combining and compressing, so as to be close to the non-contiguous cells in the same frequency Coincident the edges of the spectrum.
- the method further includes: after the frequency band that is actually used by the first system in the same-frequency neighboring cell, and the frequency band used by the first system and the second system of the same-frequency neighboring cell.
- the bandwidth actually used by the second system in the same-frequency neighboring cell is compressed to be smaller than a preset bandwidth requirement value.
- edge is an upper edge or a lower edge.
- the first system is a universal mobile communication system UMTS
- the second system is a long term evolution LTE system.
- the method further includes: the LTE cell uses a non-coincidence frequency for its edge user The resources of the spectrum are used for data transmission.
- the compression is a bilateral bandwidth compression mode or a one-side bandwidth compression mode.
- the embodiment of the invention further provides an apparatus for implementing the same-system co-frequency networking, comprising: a compression module and a processing module, wherein:
- the compression module is configured to compress a bandwidth actually used by the first system in the same-frequency neighboring cell to be smaller than a preset bandwidth requirement value
- the processing module is configured to shift a frequency band used by the first system and the second system of the same frequency adjacent cell.
- the processing module is configured to: re-adjust a center frequency of the second system cell of the same-frequency neighboring cell to be close to an edge of the non-coincident spectrum.
- the compression module is further configured to:
- the bandwidth actually used by one or more pairs of co-frequency adjacent first system cells that have not undergone block compression is compressed to be smaller than a preset bandwidth requirement value; and each pair of co-frequency adjacent first systems is adjusted And/or the center frequency of the second system cell, making its spectrum continuous.
- the compression module is further configured to: combine two or more of the same-frequency neighboring cells located in the same base station a second system cell with continuous spectrum;
- the processing module is configured to: re-adjust the center frequency of the merged compressed intra-frequency neighboring cell so as to be close to the edge of the non-coincident spectrum.
- the compression module is further configured to: compress a bandwidth actually used by the second system in the same-frequency neighboring cell to be smaller than a preset bandwidth requirement value.
- the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
- the technical solution of the embodiment of the present invention includes compressing the bandwidth actually used by the first system in the same-frequency adjacent cell to be smaller than the preset bandwidth requirement value; and staggering the first system of the same-frequency adjacent cell and The frequency band used by the second system.
- a non-coincidence spectrum is generated between adjacent cells in the same frequency, and the second system passes the non-coincidence spectrum as much as possible. Data transmission is performed, thereby reducing co-channel interference between adjacent cells in the same frequency.
- FIG. 1 is a schematic diagram showing the logical structure of a UMTS system in the related art
- FIG. 2 is a schematic diagram of a logical structure of an LTE system in related art
- FIG. 3 is a schematic diagram of subcarriers in LTE in the related art
- FIG. 4 is a flowchart of a method for implementing a same-system co-frequency networking according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of a device for implementing a same-system co-frequency networking according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of a typical scenario of an application example application of the present invention.
- FIG. 7(a) is a schematic diagram showing the spectrum distribution of each intra-frequency network cell in the first application example of the present invention.
- FIG. 7(b) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the first application processing example of the related art
- FIG. 8 is a schematic diagram of a bilateral bandwidth compression method adopted by the application example 1 of the present invention.
- FIG. 9(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 2 of the present invention.
- FIG. 9(b) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the second application example of the related art processing.
- FIG. 10(a) is a schematic diagram showing the spectrum distribution of each intra-frequency network cell in the third application example of the present invention.
- FIG. 10(b) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the third application example of the related art processing
- 11(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 4 of the present invention.
- 11(b) is a schematic diagram showing the spectrum distribution of each co-frequency networking cell in the fourth application example of the related art.
- FIG. 12 is a schematic diagram of a single-side bandwidth compression method adopted by the application example 4 of the present invention.
- FIG. 4 is a flowchart of a method for implementing a co-frequency networking according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
- Step 400 Compress the bandwidth actually used by the first system in the same-frequency neighboring cell to be smaller than a preset bandwidth requirement value
- the base station can compress the bandwidth of the UMTS actually used to constitute the different system to be less than 5 MHz, for example,
- the UMTS waveform of the 5 MHz bandwidth can be filtered by the transceiver of the base station, and only the frequency of 2.1 MHz on both sides of the central frequency point is transmitted and received to achieve the spectrum compression purpose.
- industry applications have demonstrated that system performance with 4.2 MHz bandwidth UMTS is within acceptable limits with respect to 5 MHz bandwidth performance.
- Step 401 Stagger the frequency bands used by the first system and the second system of the same-frequency adjacent cell.
- the first system in the different system is the UMTS and the second system is the LTE.
- the frequency bands used by the UMTS and the LTE of the same-frequency neighboring cell are deployed as staggered as possible, for example, the uncompressed intra-frequency neighboring cell is re-adjusted.
- the center frequency is such that it is close to the edge of the non-coincident spectrum (which is the available spectrum) between the adjacent cells in the same frequency, such as the edge of the edge or the lower edge, to reduce the overlapping bandwidth of the UMTS and LTE spectrum, thereby reducing the UMTS and LTE co-frequency Interference between adjacent cells.
- the method further includes: enabling the LTE cell to perform data transmission for the resources of the edge user to use the non-coherent spectrum as much as possible.
- a non-coincidence spectrum is generated between adjacent cells in the same frequency, and the second system performs data transmission through the non-coincidence spectrum as much as possible, thereby reducing the same frequency between adjacent cells in the same frequency. interference.
- the same-frequency interference of the cell in the second system to the cell in the first system is also reduced.
- the method of the embodiment of the present invention further includes: pairing one or more pairs of the same frequency that has not been processed through step 400.
- the bandwidth actually used by the adjacent first system cell ie, the first system cell in the same-frequency neighboring cell
- each pair of the same-frequency adjacent first system is adjusted. / or the center frequency of the second system cell, making its spectrum continuous.
- the method of the embodiment of the present invention further includes: combining two of the same-frequency neighboring cells located in the same base station. Or two or more second system cells with continuous spectrum; and adjusting the intermediate frequency of each pair of intra-frequency neighboring cells to make the spectrum continuous.
- the method in the embodiment of the present invention compresses the bandwidth used by the first system in the same-frequency neighboring cell, and then shifts the same-frequency phase.
- the method further includes:
- the bandwidth actually used by the second system in the same-frequency neighboring cell is compressed to be smaller than a preset bandwidth requirement value.
- the bandwidth demand value here may be the same as or different from the bandwidth requirement value in step 400.
- FIG. 5 is a schematic structural diagram of a device for implementing a same-system co-frequency networking according to an embodiment of the present invention. As shown in FIG. 5, the method includes at least a compression module 501 and a processing module 502.
- the compression module 501 is configured to compress a bandwidth actually used by the first system in the same-frequency neighboring cell to be smaller than a preset bandwidth requirement value
- the processing module 502 is configured to shift the frequency bands used by the first system and the second system of the same frequency adjacent cell.
- the processing module 502 is configured to: re-adjust the center frequency of the uncompressed intra-frequency neighboring cells so as to be close to the edge of the non-coincident spectrum (which is the available spectrum), such as the edge or the lower edge.
- the compression module 501 is further configured to: perform a first system in a pair or a pair of intra-frequency adjacent cells that have not undergone block compression and/or Or the bandwidth actually used by the second system is compressed to be smaller than the preset bandwidth requirement value; and the center frequency of each pair of co-frequency neighboring cells is adjusted to make the spectrum continuous.
- the compression module 501 is further configured to: combine two or more co-frequency neighboring cells that are not compressed in the same base station, and use the frequency
- the wide compression technique enables the base station to actually use the compressed bandwidth; and adjusts the IF frequency of each pair of co-frequency neighboring cells to make the spectrum continuous;
- the processing module 502 is configured to: re-adjust the combined and compressed co-frequency
- the center frequency of the neighboring cell is such that it is close to the edge of the non-coincident spectrum (which is the available spectrum) such as the edge or the lower edge.
- the compression module 501 is further configured to: compress the bandwidth actually used by the second system in the same-frequency neighboring cell, so that Less than the preset bandwidth demand value.
- FIG. 6 is a schematic diagram of a typical scenario of an application example application of the present invention.
- two multi-mode base stations that is, a multi-mode base station A and a multi-mode base station B, and two logical entities of a Node B and an eNB exist in a multi-mode base station.
- the RNC and the EPC which may be the same or different, that is, the multi-mode base station A and the multi-mode base station B may be connected to the same RNC and EPC, or may be respectively connected to different RNCs and EPCs.
- the multimode base station A and the multimode base station B respectively use different carriers such as the frequency band F1, the frequency band F2, and the frequency band F3 on the antennas of the respective one sectors, and respectively deploy three cells such as Cell A1 and Cell. A2, Cell A3 and Cell B1, Cell B2, and Cell B3. It is assumed that the two sectors belonging to the multimode base station A and the multimode base station B cover the geographically adjacent area. Therefore, Cell A1 and Cell B1, Cell A2 and Cell B2, Cell A3 and Cell B3 are respectively formed in the frequency band F1 and the frequency band. F2 and co-frequency neighboring cells on frequency band F3.
- FIG. 7(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 1 of the present invention.
- the frequency band F1 of the multi-mode base station A is 5 MHz bandwidth
- the Cell A1 in the UMTS cell is deployed.
- the actual use bandwidth of the compressed Cell A1 is 4.2 MHz.
- FIG. 8 is a schematic diagram of the bilateral bandwidth compression mode adopted in the example, as shown in FIG.
- the transceiver of the base station filters the UMTS waveform of the 5 MHz bandwidth, and only transmits and receives the frequency of 2.1 MHz on both sides of the central frequency point for spectrum compression purposes, as shown in the bilateral bandwidth compression mode shown in FIG.
- Industry applications have demonstrated that system performance with 4.2MHz bandwidth UMTS is in an acceptable range relative to 5MHz bandwidth performance;
- the frequency band F2 of the multimode base station A and the multimode base station B is 5 MHz bandwidth, and the UMTS cells are respectively deployed as Cell A2 and Cell B2 in the figure.
- the Cell A2 and Cell B2 can also be bandwidth-compressed.
- the actual used bandwidth of Cell A2 and Cell B2 is compressed to 4.2 MHz.
- the center frequency points of the Cell A1 and Cell A2 cells of the multimode base station A are reconfigured so that the spectrum of the two cells is continuous and the spectrum of the Cell A3 on the frequency band F3 is also continuous;
- the multimode base station B is Cell B2's center frequency is reconfigured to match the frequency band The Cell B3 spectrum on F3 is also continuous;
- the frequency band F3 of the multimode base station A and the multimode base station B is 5 MHz bandwidth, and the UMTS cells are respectively deployed as Cell A3 and Cell B3 in the figure.
- the bandwidth compression of Cell A3 and Cell B3 may not be performed.
- Cell A3 and Cell B3 still use the actual bandwidth of 5 MHz;
- the frequency band F1 of the multimode base station B deploys the Cell B1 in the LTE cell as shown in the figure, and theoretically, the 1.4 MHz, 3 MHz or 5 MHz bandwidth can be used. In the application example 1, the 5 MHz bandwidth with the highest spectrum utilization is taken as an example.
- the center frequency of Cell B1 on band F1 of multimode base station B is placed close to the lower edge of the available non-coincident spectrum.
- the spectrum of each cell of the multimode base station A and the multimode base station B is such that the spectrum of the Cell B1 and the intra-frequency UMTS cell in the LTE cell are as shown in the figure.
- the Cell B1 spectrum can generate about 1.6 MHz.
- Coincidence of the spectrum, that is, Cell B1 can use the LTE technology principle to allocate RBs on the 1.6MHz spectrum of the non-coincident spectrum region to the edge users as much as possible, thereby reducing the co-channel interference of Cell B1 to Cell A1.
- the same-frequency interference of Cell A1 on Cell B1 is also reduced.
- the frequency band F2 and the frequency band F3 in this embodiment may not exist, and the operator may deploy by using the foregoing method as long as the spectrum bandwidth is more than 5 MHz.
- FIG. 9(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 2 of the present invention.
- the multi-mode base station A and the multi-mode are used by using the bandwidth compression technique.
- the UMTS cell deployed in the 5 MHz bandwidth of the frequency band F3 of the base station B is compressed by the Cell A3 in the figure to obtain 4.2 MHz.
- the spectrum distribution of each cell of the multimode base station A and the multimode base station B shown in FIG. 9(a) is such that each of the same frequency networking in the application example 2 of the related art processing method shown in FIG. 9(b) is used.
- Spectrum division of a cell Compared with the schematic diagram of the LTE cell, a non-coincidence spectrum of about 2.4 MHz is generated in the spectrum of the Cell B1 in the LTE cell, and the energy of the part of the UMTS cell in which the Cell A1 falls within the spectrum of the Cell B1 of the LTE cell is relatively reduced.
- B1 can use the LTE technology principle to allocate RBs on the 2.4MHz spectrum for its edge users to transmit data. Compared with the application example 1, the interference between the Cell B1 and the Cell A1 co-frequency network is reduced.
- 10(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 3 of the present invention.
- the frequency band F1 and the frequency band F2 of the multi-mode base station B may also be used.
- the bandwidth is combined to deploy an LTE cell with a 10 MHz bandwidth as shown in Cell B1'.
- the LTE cell deployed in the 10 MHz bandwidth of the frequency band F1 of the multimode base station B and the bandwidth of the frequency band F2 is compressed by the bandwidth compression technology to obtain a bandwidth of about 9 MHz.
- the LTE cell Cell B1' center frequency point of multimode base station B is configured to be close to the lower edge of the available spectrum.
- the Cell B1' in the LTE cell and the adjacent UMTS cell have a coincident spectrum between Cell A1 and Cell A2, and both form a co-frequency neighboring cell. It will cause mutual interference.
- the Cell B1' spectrum has a 2.4 MHz bandwidth that does not coincide with Cell A1.
- the Cell B1' can use the LTE technology principle to allocate the RBs on the non-coincident spectrum to the edge users as much as possible, thereby reducing the mutual interference of the Cell B1' and the Cell A1 and Cell A2 co-frequency networking.
- FIG. 11(a) is a schematic diagram showing the spectrum distribution of each intra-frequency group cell in the application example 4 of the present invention.
- the bandwidth of the multi-mode base station A is assumed to be F1, the bandwidth of the multi-mode base station A and the multi-mode base station B.
- F2 is 5MHz bandwidth
- UMTS cells such as Cell A1, Cell A2 and Cell B2 are respectively deployed, and the actual use bandwidth is compressed to 4.2 MHz.
- FIG. 12 is a schematic diagram of a single-side bandwidth compression method used in the present example. As shown in FIG. 12, the transceiver of the base station can be filtered only on a single side of the 5 MHz bandwidth, and Cell A1, Cell A2, and Cell B2.
- the spectrum of unilateral filtering is continuous.
- the configuration center frequency of Cell A1, Cell A2, and Cell B2 can be maintained unchanged, thus reducing the change of the network configuration; it is assumed that the LTE cell of the frequency band F1 of the multimode base station B is configured as shown in the case of Cell B1.
- the center frequency is made continuous with the spectrum of Cell B2 in the UMTS cell as shown.
- Multimode base station A and multimode base station B The spectrum distribution of each cell is as shown in FIG. 11(a), and thus, compared with the spectrum distribution diagram of each of the same-frequency networking cells in the application example 4 of the related art processing shown in FIG. 11(b), the LTE cell is compared.
- Cell B1 can use LTE technology principle to allocate RBs on these non-coincident spectrums for data transmission to the edge users, thereby reducing Cell B1 and Cell A1 and Cell A2 interfere with each other in the same frequency network.
- a non-coincidence spectrum is generated between adjacent cells in the same frequency, and the second system performs data transmission through the non-coincidence spectrum as much as possible, thereby reducing the same frequency between adjacent cells in the same frequency. interference.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种实现异系统同频组网的方法及装置,包括压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值(400);错开同频相邻小区的第一系统和第二系统使用的频段(401)。
Description
本发明实施例涉及但不限于多模基站技术,尤指一种基于UMTS和LTE两种不同系统的实现异系统同频组网的方法及装置。
宽带码分多址(WCDMA,Wideband Code Division Multi-Access)是ITU确定的IMT-2000(International Mobile Telecommunication-2000)标准之一,是由第三代移动通讯合作组织(3GPP,Third Generation Partnership Project)制定的,基于GSM MAP核心网,UMTS陆地无线接入网(UTRAN,UMTS Terrestrial Radio Access Network)为无线接口的第三代移动通信系统。相对于其他第二代和第三代移动通信系统,WCDMA主要特点是空中接口采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。
在WCDMA标准发布后,3GPP组织依然不断改进协议标准,以提升该系统的性能,分别在R5和R6版本的协议中引入了高速下行分组接入(HSDPA,High Speed Downlink Packet Access)和高速上行分组接入(HSUPA,High Speed Uplink Packet Access)技术。HSDPA和HSUPA统称高速分组接入(HSPA),相对于以前版本的WCDMA主要技术改进在于将部分数据处理任务从无线网络控制器(RNC)移动到节点B(Node B)完成,并采用高阶调制、链路自适应、更小传输时间间隔(TTI)和多载频合并等新技术。在3GPP R7版本之后的HSPA技术又引入一些改进增强功能,也被称为HSPA+。为了方便描述,本文中不区分HSPA和HSPA+概念。
UTRAN在通用移动通信系统(UMTS,Universal Mobile Telecommunications System)中为用户设备(UE,User Equipment)提供无线接入服务,两者间的空中接口标准由3GPP协议定义,其中部分与本文相关概念和内容简述如下。
图1为UMTS系统的逻辑结构示意图,如附图1所示,UTRAN可以由多个无线网络子系统(RNS,Radio Network Subsystem)组成,与核心网(CN,Core Network)之间使用3GPP标准定义的Iu接口连接;每个RNS由多个Node B组成,并由一个无线网络控制器(RNC,Radio Network Controller)控制,RNC和Node B之间使用3GPP标准定义的Iub接口连接,RNC之间使用3GPP标准定义的Iur接口连接;每个Node B中的资源可以定义成为一个或多个小区(Cell),作为UE与UTRAN通信的接入点,UTRAN和UE之间使用3GPP标准定义的Uu接口连接。需要说明的是,RNC和Node B这两种逻辑网元也可以设置在同一个物理设备中实现,这样3GPP定义的Iub接口变成这种物理设备的内部接口。本文在提到RNC和Node B的功能时,服从3GPP标准定义的RNC和Node B的功能分工,并不区分RNC和Node B分别使用不同的物理设备还是使用同一个物理设备来实现;本文在提到RNC和Node B间的相互功能时,也不区分是否使用Iub接口或使用内部接口。
长期演进(LTE,Long Term Evolution)是相对于UMTS的长期演进系统,同属于IMT标准协议家族,由3GPP组织制定,在R8协议版本开始引入。LTE是基于演进数据包核心网(EPC,Evolved Packet Core)的增强通用陆地接入网(eUTRAN,Evolved Universal Terrestrial Access Network)。LTE空中接口可以采用时分双工(TDD)模式或FDD模式,本文仅关注FDD模式。在FDD模式中,上下行无线分别基于单载波-频分复用(SC-FDMA,Single Carrier-Frequency Division Multiple Access)和正交频分复用(OFDMA,Orthogonal Frequency Division Multiple Access)多址接入技术。由于基于OFDM技术,LTE空口可以使用灵活的无线带宽,3GPP已定义的标准频段带宽包括1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz等。
图2为LTE系统的逻辑结构示意图,如附图2所示,eUTRAN不同于UTRAN,采用扁平化架构,增强型基站eNB直接与EPC使用3GPP标准定义的S1接口连接,取消控制器节点;eNB之间使用3GPP标准定义的X2接口连接;每个eNB的资源可以定义成为一个或多个小区(Cell),作为UE与eUTRAN通信的接入点,eUTRAN和UE之间使用3GPP标准定义的LTE Uu接口连接。
LTE空口基于OFDM技术,使用相互正交的子载波调制数据,这样,比传统FDM技术具备更高的频谱使用效率。之外,由于每个子载波频宽较低如15KHz,调整符号速率也较低,但可以并行使用足够多的子载波提升整体传输速率。因此LTE系统具备频分调度能力,能够为不同用户分配不同的子载波。图3为LTE中子载波的示意图,如图3所示,一个子载波的一个符号定义为一个资源单元(RE,Resource Element),连续一定数量子载波和符号定义为一个资源块(RB,Resource Block)。LTE基站eNB能以RB为单位给不同用户分配资源。
不论UMTS还是LTE,基站都可以使用多个天线完成对地理区域的无线覆盖,采用蜂窝型空间分集方式,每个天线覆盖的区域可以称为一个扇区。每个扇区中可以使用频率分集方式部署多个载频。UMTS和LTE分别都具备同频组网能力,即相邻两个扇区使用相同的载频部署。目前,业界已经广泛使用多模基站,即在同一个网元上同时部署Node B和eNB两种逻辑实体,以同时支持UMTS和LTE接入制式。多载波功放技术和产品也已经成熟使用,可以在每个扇区部署不同频宽的多个载波。运营商部署无线接入网络使用的频谱资源需要向无线频谱监管部门申请,并且只能得到有限频宽的频谱资源。
虽然UMTS和LTE各自系统都具备同频组网能力,但并没有明确UMTS和LTE两种不同的异系统同频组网的方案。其中,UMTS包括WCDMA及其演进HSPA技术;LTE也包括其演进LTE增强(LTE-A,LTE-Advanced)技术。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种实现异系统同频组网的方法及装置,能够实现UMTS和LTE异系统同频组网,同时降低异系统间同频干扰,保证系统性能。
本发明实施例提供了一种实现异系统同频组网的方法,包括:
压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带
宽需求值;
错开同频相邻小区的第一系统和第二系统使用的频段。
可选地,其中,所述错开同频相邻小区的第一系统和第二系统使用的频段包括:
重新调整所述同频相邻小区中的第二系统小区的中心频率,使其紧靠所述同频相邻小区间的非重合频谱的边缘。
可选地,其中,所述同频相邻小区包括两对或两对以上;
所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,所述方法还包括:
对未经过所述压缩的一对或一对以上同频相邻第一系统小区实际使用的频宽进行压缩,使其小于所述带宽需求值;并调整每对同频相邻第一系统和/或第二系统小区的中心频率,使其频谱连续。
可选地,其中,所述同频相邻小区包括两对或两对以上;
所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,所述方法还包括:合并所述同频相邻小区中位于同一基站的两个或两个以上频谱连续的第二系统小区;
所述错开同频相邻小区的第一系统和第二系统使用的频段包括:重新调整合并压缩后的同频相邻小区的中心频率,使其紧靠所述同频相邻小区间的非重合频谱的边缘。
可选地,所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,所述方法还包括:
压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。
可选地,其中,所述边缘为上边缘或下边缘。
可选地,其中,所述第一系统为通用移动通信系统UMTS,所述第二系统为长期演进LTE系统。
可选地,该方法还包括:所述LTE的小区对于其边缘用户使用非重合频
谱的资源进行数据传输。
可选地,其中,所述压缩为双边频宽压缩方式或单边频宽压缩方式。
本发明实施例还提供了一种实现异系统同频组网的装置,包括:压缩模块和处理模块,其中:
所述压缩模块,设置为压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;
所述处理模块,设置为错开同频相邻小区的第一系统和第二系统使用的频段。
可选地,其中,所述处理模块是设置为:重新调整所述同频相邻小区的第二系统小区的中心频率,使其紧靠非重合频谱的边缘。
可选地,其中,当所述同频相邻小区包括两对或两对以上时,所述压缩模块还设置为:
对未经过拼块压缩的一对或一对以上同频相邻第一系统小区实际使用的频宽进行压缩,使其小于预先设置的带宽需求值;并调整每对同频相邻第一系统和/或第二系统小区的中心频率,使其频谱连续。
可选地,其中,当所述同频相邻小区包括两对或两对以上时,所述压缩模块还设置为:合并所述同频相邻小区中位于同一基站的两个或两个以上频谱连续的第二系统小区;
所述处理模块是设置为:重新调整合并压缩后的同频相邻小区的中心频率,使其紧靠非重合频谱的边缘。
可选地,其中,所述压缩模块还设置为:压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
与相关技术相比,本发明实施例技术方案包括压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;错开同频相邻小区的第一系统和第二系统使用的频段。通过本发明实施例提供的技术方案,使得同频相邻小区间产生了非重合频谱,并且第二系统尽可能通过非重合频谱
进行数据传输,从而实现了降低同频相邻小区间的同频干扰。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中UMTS系统的逻辑结构示意图;
图2为相关技术中LTE系统的逻辑结构示意图;
图3为相关技术中LTE中子载波的示意图;
图4为本发明实施例实现异系统同频组网的方法的流程图;
图5为本发明实施例实现异系统同频组网的装置的组成结构示意图;
图6为本发明应用示例应用的典型场景的示意图;
图7(a)为本发明应用示例一中每个同频组网小区的频谱分布示意图
图7(b)为相关技术处理应用示例一中每个同频组网小区的频谱分布示意图;
图8为本发明应用示例一采用的双边频宽压缩方式的示意图;
图9(a)为本发明应用示例二中每个同频组网小区的频谱分布示意图;
图9(b)为相关技术处理应用示例二中每个同频组网小区的频谱分布示意图;
图10(a)为本发明应用示例三中每个同频组网小区的频谱分布示意图;
图10(b)为相关技术处理应用示例三中每个同频组网小区的频谱分布示意图;
图11(a)为本发明应用示例四中每个同频组网小区的频谱分布示意;
图11(b)为相关技术应用示例四中每个同频组网小区的频谱分布示意图;
图12为本发明应用示例四采用的单边频宽压缩方式的示意图。
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不
冲突的情况下,本发明实施例及实施例中的特征可以相互任意组合。
图4为本发明实施例实现同频组网的方法的流程图,如图4所示,包括:
步骤400:压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;
以异系统中的第一系统为UMTS和第二系统为LTE为例,当运营商有5MHz或以上频谱资源时,可以在基站压缩构成异系统的UMTS实际使用的频宽使其小于5MHz,比如,可以通过基站的收发信机对5MHz带宽的UMTS波形进行滤波,仅发送和接收中心频点两边2.1MHz的频率达到频谱压缩目的。而且,业界应用已经证明采用4.2MHz带宽UMTS的系统性能相对于5MHz带宽的性能损失在可接受范围。
步骤401:错开同频相邻小区的第一系统和第二系统使用的频段。
还以异系统中的第一系统为UMTS和第二系统为LTE为例,将同频相邻小区的UMTS和LTE使用的频段尽量错开部署,比如,重新调整未被压缩的同频相邻小区的中心频率,使其紧靠同频相邻小区间的非重合频谱(是可用频谱)的边缘如上边缘或下边缘,以减少UMTS和LTE频谱的重合带宽,从而达到了降低UMTS和LTE同频相邻小区间的干扰。
可选地,还包括:使LTE小区对于其边缘用户尽量使用非重合频谱的资源进行数据传输。
通过本发明实施例提供的技术方案,使得同频相邻小区间产生了非重合频谱,并且第二系统尽可能通过非重合频谱进行数据传输,从而实现了降低同频相邻小区间的同频干扰。同时,由于第一系统中的小区只有部分频谱能量落在第二系统的小区频谱内,也降低了第二系统中小区对第一系统中小区的同频干扰。
当同频相邻小区包括两对或两对以上时,可选地,步骤400与步骤401之间,本发明实施例方法还包括:对未经过步骤400处理的一对或一对以上同频相邻第一系统小区(即同频相邻小区中的第一系统小区)实际使用的频宽进行压缩,使其小于预先设置的带宽需求值;并调整每对同频相邻第一系统和/或第二系统小区的中心频率,使其频谱连续。
当同频相邻小区包括两对或两对以上时,可选地,步骤400与步骤401之间,本发明实施例方法还包括:合并所述同频相邻小区中位于同一基站的两个或两个以上频谱连续的第二系统小区;并调整每对同频相邻小区的中频频率,使其频谱连续。
可选地,为了增加第一系统和第二系统同频相邻小区的非重合频谱,本发明实施例方法中压缩同频相邻小区中第一系统实际使用的频宽后,错开同频相邻小区的第一系统和第二系统使用的频段之前,还包括:
压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。这里的带宽需求值与步骤400中的带宽需求值可以相同,也可以不同。
图5为本发明实施例实现异系统同频组网的装置的组成结构示意图,如图5所示,至少包括:压缩模块501、处理模块502;其中,
所述压缩模块501,设置为压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;
所述处理模块502,设置为错开同频相邻小区的第一系统和第二系统使用的频段。
其中处理模块502是设置为:重新调整未被压缩的同频相邻小区的中心频率,使其紧靠非重合频谱(是可用频谱)的边缘如上边缘或下边缘。
可选地,当同频相邻小区包括两对或两对以上时,压缩模块501还设置为:对未经过拼块压缩的一对或一对以上同频相邻小区中第一系统和/或第二系统实际使用的频宽进行压缩,使其小于预先设置的带宽需求值;并调整每对同频相邻小区的中心频率,使其频谱连续。
可选地,当同频相邻小区包括两对或两对以上时,压缩模块501还设置为:合并位于同一基站的未被压缩的两个或两个以上同频相邻小区,并利用频宽压缩技术,使该基站实际使用压缩后的带宽;并调整每对同频相邻小区的中频频率,使其频谱连续;相应地,处理模块502是设置为:重新调整合并压缩后的同频相邻小区的中心频率,使其紧靠非重合频谱(是可用频谱)的边缘如上边缘或下边缘。
可选地,为了增加第一系统和第二系统同频相邻小区的非重合频谱,压缩模块501还设置为:压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。
下面结合应用示例对本发明实施例提供的技术方案进行详细描述。
图6为本发明应用示例应用的典型场景的示意图,如图6所示,包括两个多模基站即多模基站A和多模基站B,多模基站内部存在Node B和eNB两种逻辑实体,分别连接到RNC和EPC,可以相同也可以不同即多模基站A和多模基站B可以连接同一个RNC和EPC,或者也可以各自连接到不同的RNC和EPC。
如图6所示,假设多模基站A和多模基站B分别在各自的一个扇区的天线上使用不同载波如频段F1、频段F2和频段F3,各自部署了三个小区如Cell A1、Cell A2、Cell A3和Cell B1、Cell B2、Cell B3。假设分属多模基站A和多模基站B的这两个扇区覆盖地理相邻区域,因此,Cell A1和Cell B1、Cell A2和Cell B2、Cell A3和Cell B3分别组成在频段F1、频段F2和频段F3上的同频相邻小区。
图7(a)为本发明应用示例一中每个同频组网小区的频谱分布示意图,结合图6,假设多模基站A的频段F1为5MHz频宽,部署UMTS小区如图中的Cell A1,如图7(a)所示,在本示例中,压缩Cell A1的实际使用频宽到4.2MHz,图8为本示例采用的双边频宽压缩方式的示意图,如图8所示,可以通过基站的收发信机对5MHz带宽的UMTS波形进行滤波,仅发送和接收中心频点两边2.1MHz的频率达到频谱压缩目的,如图8所示的双边频宽压缩方式。业界应用已经证明采用4.2MHz带宽UMTS的系统性能相对于5MHz带宽的性能损失在可接受范围;
假设多模基站A和多模基站B的频段F2为5MHz频宽,分别部署UMTS小区如图中的Cell A2和Cell B2。为了空出足够的频宽,在应用示例一中,可以对Cell A2和Cell B2也进行带宽压缩,如图7(a)所示,均压缩Cell A2和Cell B2的实际使用频宽到4.2MHz;同时,将多模基站A的Cell A1和Cell A2小区的中心频点进行重配,使这两个小区的频谱连续并与频段F3上的Cell A3的频谱也连续;将多模基站B的Cell B2的中心频点进行重配,使其与频段
F3上的Cell B3频谱也连续;
假设多模基站A和多模基站B的频段F3为5MHz频宽,分别部署UMTS小区如图中的Cell A3和Cell B3。在应用示例一中,可以不对Cell A3和Cell B3进行带宽压缩,如图7(a)所示,Cell A3和Cell B3仍然使用实际频宽5MHz;
假设多模基站B的频段F1部署LTE小区如图中的Cell B1,理论上可以使用1.4MHz、3MHz或5MHz频宽,在应用示例一中,以频谱利用率最高的5MHz频宽为例,配置多模基站B的频段F1上的Cell B1的中心频点,使其紧靠可用的非重合频谱的下边缘。
如图7(a)所示的多模基站A和多模基站B的每个小区频谱分布,这样,LTE小区如图中的Cell B1与同频UMTS小区如图中的Cell A1的频谱虽然还有重合频谱的区域,但是,与图7(b)所示的采用相关技术处理应用示例一中每个同频组网小区的频谱分布示意图相比,Cell B1频谱内能够产生约1.6MHz的非重合频谱,也就是说,Cell B1可以利用LTE技术原理尽量为其边缘用户分配这非重合频谱区域的1.6MHz频谱上的RB进行数据传输,从而实现了降低Cell B1对Cell A1的同频干扰。同时,由于UMTS小区如图中的Cell A1只有部分频谱能量落在LTE小区如图中的Cell B1频谱内,也降低了Cell A1对Cell B1的同频干扰。
需要说明的是,本实施例中的频段F2和频段F3也可以不存在,运营商只要有5MHz以上频谱带宽,就可以利用上述方法进行部署。
图9(a)为本发明应用示例二中每个同频组网小区的频谱分布示意图,结合图6,在应用示例一的基础上,使用频宽压缩技术,将多模基站A和多模基站B的频段F3的5MHz频宽部署的UMTS小区如图中的Cell A3进行压缩得到4.2MHz。并重新配置多模基站A的Cell A1、Cell A2和Cell A3小区的中心频点,使其频谱连续并分布在整个频宽的上端;重新配置多模基站B的Cell B2和Cell B3小区的中心频点,使其频谱连续并分布在整个频宽的上端;同时,配置多模基站B的频段F1的LTE小区如图中的Cell B1的中心频点,使其紧靠可用频谱的下边缘。
如图9(a)所示的多模基站A和多模基站B的每个小区频谱分布,这样,与图9(b)所示的采用相关技术处理应用示例二中每个同频组网小区的频谱分
布示意图相比,LTE小区如图中的Cell B1频谱内产生了约2.4MHz的非重合频谱,同时UMTS小区如图中的Cell A1落在LTE小区Cell B1频谱内部分的能量也相对减少,Cell B1可以利用LTE技术原理尽量为其边缘用户分配这2.4MHz频谱上的RB进行数据传输,相对于应用示例一,更降低了Cell B1和Cell A1同频组网的相互干扰。
图10(a)为本发明应用示例三中每个同频组网小区的频谱分布示意图,结合图6,在应用示例二的基础上,也可以将多模基站B的频段F1和频段F2的频宽合并起来部署具有10MHz带宽的LTE小区如图中的Cell B1’。在应用示例三中,利用频宽压缩技术,将多模基站B的频段F1和频段F2的频宽的10MHz频宽部署的LTE小区如图中的Cell B1’进行压缩得到实际使用约9MHz带宽,业界应用已经证明这种频谱压缩技术对相对于10MHz带宽的系统性能损失在可接受范围;配置多模基站B的LTE小区Cell B1’中心频点,使其紧靠可用频谱的下边缘。如图10(a)所示,这样,LTE小区如图中的Cell B1’与相邻UMTS小区如图中的Cell A1和Cell A2之间都有重合频谱,都形成了同频邻区,因此是会产生相互干扰。但是,与图10(b)所示的采用相关技术处理应用示例三中每个同频组网小区的频谱分布示意图相比,Cell B1’频谱内与Cell A1有不重合的2.4MHz频宽,与Cell A2有不重合的1.8MHz频宽。Cell B1’可以利用LTE技术原理尽量为其边缘用户分配这些不重合频谱上的RB进行数据传输,从而降低了Cell B1’和Cell A1及Cell A2同频组网的相互干扰。
图11(a)为本发明应用示例四中每个同频组网小区的频谱分布示意,结合图6,假设多模基站A的频宽F1,多模基站A和多模基站B的频宽F2都为5MHz频宽,分别部署UMTS小区如Cell A1,Cell A2和Cell B2,压缩其实际使用频宽到4.2MHz。图12为本示例采用的单边频宽压缩方式的示意图,如图12所示,可以通过基站的收发信机仅在5MHz带宽的某个单边进行滤波,而且Cell A1,Cell A2和Cell B2单边滤波的频谱连续。这种方式可以维持Cell A1,Cell A2和Cell B2的配置中心频点不变,这样,减少了对网络配置的改变;假设配置多模基站B的频段F1的LTE小区如图中的Cell B1的中心频点,使其和UMTS小区如图中的Cell B2的频谱连续。多模基站A和多模基站B
的每个小区频谱分布如图11(a)所示,这样,与图11(b)所示的采用相关技术处理应用示例四中每个同频组网小区的频谱分布示意图相比,LTE小区如图中的Cell B1频谱内产生了约1.6MHz的非重合频谱,而Cell B1正好可以利用LTE技术原理尽量为其边缘用户分配这些不重合频谱上的RB进行数据传输,从而降低了Cell B1和Cell A1和Cell A2同频组网的相互干扰。
需要说明,本文上述实施例仅是对本发明实施例可行性及使用方法的一些示例性说明,并不代表所有可能的应用组合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
通过本发明实施例提供的技术方案,使得同频相邻小区间产生了非重合频谱,并且第二系统尽可能通过非重合频谱进行数据传输,从而实现了降低同频相邻小区间的同频干扰。
Claims (15)
- 一种实现异系统同频组网的方法,包括:压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;错开同频相邻小区的第一系统和第二系统使用的频段。
- 根据权利要求1所述的方法,其中,所述错开同频相邻小区的第一系统和第二系统使用的频段包括:重新调整所述同频相邻小区中的第二系统小区的中心频率,使其紧靠所述同频相邻小区间的非重合频谱的边缘。
- 根据权利要求1所述的方法,其中,所述同频相邻小区包括两对或两对以上;所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,所述方法还包括:对未经过所述压缩的一对或一对以上同频相邻第一系统小区实际使用的频宽进行压缩,使其小于所述带宽需求值;并调整每对同频相邻第一系统和/或第二系统小区的中心频率,使其频谱连续。
- 根据权利要求1所述的方法,其中,所述同频相邻小区包括两对或两对以上;所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,所述方法还包括:合并所述同频相邻小区中位于同一基站的两个或两个以上频谱连续的第二系统小区;所述错开同频相邻小区的第一系统和第二系统使用的频段包括:重新调整合并压缩后的同频相邻小区的中心频率,使其紧靠所述同频相邻小区间的非重合频谱的边缘。
- 根据权利要求1所述的方法,所述压缩同频相邻小区中第一系统实际使用的频宽后,所述错开同频相邻小区的第一系统和第二系统使用的频段之前,还包括:压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。
- 根据权利要求2或4所述的方法,其中,所述边缘为上边缘或下边缘。
- 根据权利要求1~5任一项所述的方法,其中,所述第一系统为通用移动通信系统UMTS,所述第二系统为长期演进LTE系统。
- 根据权利要求7所述的方法,所述方法还包括:所述LTE的小区对于其边缘用户使用非重合频谱的资源进行数据传输。
- 根据权利要求1~5任一项所述的方法,其中,所述压缩为双边频宽压缩方式或单边频宽压缩方式。
- 一种实现异系统同频组网的装置,包括:压缩模块和处理模块,其中:所述压缩模块,设置为压缩同频相邻小区中第一系统实际使用的频宽,使其小于预先设置的带宽需求值;所述处理模块,设置为错开同频相邻小区的第一系统和第二系统使用的频段。
- 根据权利要求10所述的装置,其中,所述处理模块是设置为:重新调整所述同频相邻小区的第二系统小区的中心频率,使其紧靠非重合频谱的边缘。
- 根据权利要求10所述的装置,其中,当所述同频相邻小区包括两对或两对以上时,所述压缩模块还设置为:对未经过拼块压缩的一对或一对以上同频相邻第一系统小区实际使用的频宽进行压缩,使其小于预先设置的带宽需求值;并调整每对同频相邻第一系统和/或第二系统小区的中心频率,使其频谱连续。
- 根据权利要求10所述的装置,其中,当所述同频相邻小区包括两对或两对以上时,所述压缩模块还设置为:合并所述同频相邻小区中位于同一基站的两个或两个以上频谱连续的第二系统小区;所述处理模块是设置为:重新调整合并压缩后的同频相邻小区的中心频率,使其紧靠非重合频谱的边缘。
- 根据权利要求10~13任一项所述的装置,其中,所述压缩模块还设置为:压缩所述同频相邻小区中第二系统实际使用的频宽,使其小于预先设置的带宽需求值。
- 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-10任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15886066.8A EP3261376B1 (en) | 2015-03-23 | 2015-10-09 | Heterogeneous-system same-frequency networking method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510127671.9A CN106162653B (zh) | 2015-03-23 | 2015-03-23 | 一种实现异系统同频组网的方法及装置 |
CN201510127671.9 | 2015-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016150144A1 true WO2016150144A1 (zh) | 2016-09-29 |
Family
ID=56977040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/091573 WO2016150144A1 (zh) | 2015-03-23 | 2015-10-09 | 一种实现异系统同频组网的方法及装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3261376B1 (zh) |
CN (1) | CN106162653B (zh) |
WO (1) | WO2016150144A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109673054B (zh) * | 2018-02-11 | 2020-06-05 | 中兴通讯股份有限公司 | 频率分配方法和系统 |
CN109511125B (zh) * | 2018-11-15 | 2021-12-03 | 中国科学院上海微系统与信息技术研究所 | 一种无线网络中识别邻区干扰与异系统干扰的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102065438A (zh) * | 2010-12-22 | 2011-05-18 | 大唐移动通信设备有限公司 | 一种频点集合的获取、组网方法及设备 |
CN103634803A (zh) * | 2012-08-21 | 2014-03-12 | 普天信息技术研究院有限公司 | 一种降低同频干扰的方法 |
US8804649B1 (en) * | 2011-07-14 | 2014-08-12 | Airhop Communications, Inc. | Self-optimization in heterogeneous networks |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100936696B1 (ko) * | 2007-11-16 | 2010-01-13 | 고려대학교 산학협력단 | 직교 주파수 분할 다중 접속 시스템에서 대역 분산적 자원할당 방법 및 장치 |
WO2012149733A1 (zh) * | 2011-09-09 | 2012-11-08 | 华为技术有限公司 | 通信系统信号处理方法、设备及系统 |
-
2015
- 2015-03-23 CN CN201510127671.9A patent/CN106162653B/zh active Active
- 2015-10-09 EP EP15886066.8A patent/EP3261376B1/en active Active
- 2015-10-09 WO PCT/CN2015/091573 patent/WO2016150144A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102065438A (zh) * | 2010-12-22 | 2011-05-18 | 大唐移动通信设备有限公司 | 一种频点集合的获取、组网方法及设备 |
US8804649B1 (en) * | 2011-07-14 | 2014-08-12 | Airhop Communications, Inc. | Self-optimization in heterogeneous networks |
CN103634803A (zh) * | 2012-08-21 | 2014-03-12 | 普天信息技术研究院有限公司 | 一种降低同频干扰的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106162653B (zh) | 2021-02-12 |
CN106162653A (zh) | 2016-11-23 |
EP3261376B1 (en) | 2020-04-15 |
EP3261376A1 (en) | 2017-12-27 |
EP3261376A4 (en) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7301046B2 (ja) | 新無線における仮想リソースブロックから物理リソースブロックへのマッピング | |
US12074700B2 (en) | Integrated circuit | |
JP6936386B2 (ja) | 帯域幅パートにおけるサウンディング基準信号(srs)送信を管理するための技法および装置 | |
EP3565317B1 (en) | Terminal device, base station device, communication method, and integrated circuit | |
US10602392B2 (en) | Wireless communication method and wireless communication apparatus | |
US11621873B2 (en) | Multiplexing paging signals with synchronization signals in new radio | |
KR102287100B1 (ko) | Fdr 통신 환경에서 자기 간섭을 완화하는 방법 | |
CN110463257A (zh) | 用于新无线电中的双模式操作的技术 | |
WO2018199079A1 (ja) | 端末装置、基地局装置、通信方法、および、集積回路 | |
TW201931906A (zh) | 用於具有不同的數位方案的上行鏈路的時序提前粒度 | |
US10355743B2 (en) | Frequency hopping design for large bandwidth allocations in eMTC | |
CN115176499A (zh) | 基于l1/l2的小区选择 | |
US9635607B2 (en) | Method and terminal for performing up-link transmission at reduced power | |
CN102076031A (zh) | 一种配置小区信息的方法和装置 | |
TW201442525A (zh) | 在無線通訊系統中使用頻譜的裝置和方法 | |
WO2016131326A1 (zh) | 一种正交频分复用系统频谱资源的使用方法及相应的基站 | |
WO2014125928A1 (ja) | 無線基地局、ユーザ端末及び無線通信方法 | |
US20210058211A1 (en) | Multiplexing demodulation reference signals and synchronization signals in new radio | |
KR102099821B1 (ko) | 매크로셀과 소규모셀이 공존하는 환경에서 단말이 소규모셀로의 핸드오버를 위한 방법 | |
CN113273253A (zh) | 用于辅小区的恢复机制 | |
CN110557833A (zh) | 资源配置方法、网络设备和终端 | |
JP2009272828A (ja) | 移動通信システムにおける通信装置 | |
WO2016150144A1 (zh) | 一种实现异系统同频组网的方法及装置 | |
Miki et al. | CA for bandwidth extension in LTE-advanced | |
JP5641061B2 (ja) | 無線通信装置、無線通信システムおよび無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15886066 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015886066 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |