WO2018199079A1 - 端末装置、基地局装置、通信方法、および、集積回路 - Google Patents

端末装置、基地局装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2018199079A1
WO2018199079A1 PCT/JP2018/016583 JP2018016583W WO2018199079A1 WO 2018199079 A1 WO2018199079 A1 WO 2018199079A1 JP 2018016583 W JP2018016583 W JP 2018016583W WO 2018199079 A1 WO2018199079 A1 WO 2018199079A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
base station
reconfiguration message
numerology
Prior art date
Application number
PCT/JP2018/016583
Other languages
English (en)
French (fr)
Inventor
秀和 坪井
山田 昇平
一成 横枕
高橋 宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018199079A1 publication Critical patent/WO2018199079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a terminal device, a base station device, a communication method, and an integrated circuit.
  • a wireless access method and a wireless network for cellular mobile communication (hereinafter referred to as “Long Term Evolution (LTE: registered trademark)” or “Evolved Universal Terrestrial Access: EUTRA”) is a third generation partnership project (3rd Generation). Partnership Project: 3GPP).
  • LTE-Advanced Pro which is an LTE extension technology
  • NR New Radio technology
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • mMTC massive machine type communication
  • Non-Patent Document 2 it is considered that communication is performed using a plurality of different physical parameters (for example, subcarrier spacing) (Non-Patent Document 2), and the terminal device uses any one of the plurality of different physical parameters. It is necessary to specify whether to communicate with the base station apparatus.
  • 3GPP R1-166878 http: // www. 3 gpp. org / ftp / tsg_ran / WG1_RL1 / TSGR1_86 / Docs / R1-166678.
  • Non-patent Document 3 it is considered that a base station apparatus and a terminal apparatus communicate using a plurality of physical parameters (numerology) based on terminal capabilities and physical parameters supported by a cell.
  • the necessary parameter notification method and application method have not been studied, and there has been a problem that communication between the base station apparatus and the terminal apparatus cannot be performed efficiently.
  • An object of the present invention is to provide a communication method, a communication method used for the base station device, an integrated circuit mounted on the terminal device, and an integrated circuit mounted on the base station device.
  • a first aspect of the present invention is a terminal device that communicates with a base station device via a cell, the receiving unit receiving a radio resource control (RRC) reconfiguration message from the base station device, Based on the parameters included in the reconfiguration message of radio resource control, the parameters are set, and the logic to transmit based on the parameter settings and uplink transmission information including information on the transmission duration received from the physical layer.
  • RRC radio resource control
  • a base station device that communicates with a terminal device via a cell, the transmitter configured to transmit a radio resource control (RRC) reconfiguration message to the terminal device,
  • RRC radio resource control
  • a processing unit that includes a parameter in a reconfiguration message for radio resource control, wherein the parameter includes information on a transmission duration associated with a logical channel, and the logical channel is associated with a data radio bearer.
  • a third aspect of the present invention is a communication method applied to a terminal apparatus that communicates with a base station apparatus via a cell, and receives a reconfiguration message for radio resource control (RRC) from the base station apparatus.
  • RRC radio resource control
  • a fourth aspect of the present invention is a communication method applied to a base station device that communicates with a terminal device via a cell, and transmits a radio resource control (RRC) reconfiguration message to the terminal device. And including a parameter in the radio resource control reconfiguration message, the parameter including information on a transmission duration associated with a logical channel, wherein the logical channel is associated with a data radio bearer It is done.
  • RRC radio resource control
  • a fifth aspect of the present invention is an integrated circuit mounted on a terminal device that communicates with a base station device via a cell, and receives a reconfiguration message of radio resource control (RRC) from the base station device.
  • RRC radio resource control
  • a sixth aspect of the present invention is an integrated circuit mounted on a base station device that communicates with a terminal device via a cell, and transmits a radio resource control (RRC) reconfiguration message to the terminal device. And a function of including a parameter in the radio resource control reconfiguration message, the parameter includes information on a transmission duration associated with a logical channel, and The channel is associated with a data radio bearer.
  • RRC radio resource control
  • the terminal device and the base station device can communicate efficiently.
  • LTE (and LTE-A Pro) and NR may be defined as different RATs (Radio Access Technology).
  • NR may be defined as a technology included in LTE.
  • LTE may be defined as a technology included in NR. This embodiment may be applied to NR, LTE and other RATs. In the following description, terms related to LTE will be used for description, but the present invention may be applied to other technologies using other terms.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the wireless communication system includes a terminal device 2 and a base station device 3.
  • the base station apparatus 3 may comprise one or a plurality of transmission / reception points 4 (transmission reception points: TRP).
  • the base station apparatus 3 may serve the terminal apparatus 2 with the communicable range (communication area) controlled by the base station apparatus 3 as one or a plurality of cells.
  • the base station apparatus 3 may serve the terminal apparatus 2 by setting the communicable range (communication area) controlled by one or a plurality of transmission / reception points 4 as one or a plurality of cells.
  • one cell may be divided into a plurality of partial areas (also referred to as a beamed area or a beamed cell), and the terminal device 2 may be served in each partial area.
  • the partial region may be identified based on a beam index, a quasi-collocation index, or a precoding index used in beamforming.
  • the communication area covered by the base station device 3 may have a different size and a different shape for each frequency. Moreover, the area to cover may differ for every frequency.
  • a wireless network in which cells having different types of base station apparatuses 3 and different cell radii are mixed at the same frequency or different frequencies to form one communication system is referred to as a heterogeneous network.
  • a wireless communication link from the base station device 3 to the terminal device 2 is referred to as a downlink.
  • a wireless communication link from the terminal device 2 to the base station device 3 is referred to as an uplink.
  • a direct wireless communication link from the terminal device 2 to another terminal device 2 is referred to as a side link.
  • orthogonal frequency division including a cyclic prefix is performed.
  • Multiplexing Orthogonal Division Division Multiplexing
  • SC-FDM Single Carrier Frequency Multiplexing
  • DFT-S-Frequency OFDM Discrete Fourier Transform Spreading OFDM
  • M-CDM Multi-Carrier Code Division Multiplexing
  • a universal filter multicarrier (UFMC: Universal-Filtered Multi- A carrier OFDM, a filter OFDM (F-OFDM: Filtered OFDM), a window-multiplied OFDM (Windowed OFDM), and a filter bank multicarrier (FBMC: Filter-Bank Multi-Carrier) may be used.
  • UMC Universal-Filtered Multi- A carrier OFDM
  • F-OFDM Filtered OFDM
  • Windowed OFDM window-multiplied OFDM
  • FBMC Filter-Bank Multi-Carrier
  • OFDM is described as an OFDM transmission system, but the case of using the above-described other transmission system is also included in one aspect of the present invention.
  • CP is not used in the wireless communication between the terminal device 2 and the base station device 3 and / or the wireless communication between the terminal device 2 and another terminal device 2, or zero padding is used instead of the CP.
  • the above-described transmission method may be used.
  • CP and zero padding may be added to both the front and rear.
  • the terminal device 2 operates by regarding the inside of the cell as a communication area.
  • the terminal device 2 may move to another appropriate cell by a cell reselection procedure when the terminal device 2 is not wirelessly connected (also referred to as an idle state or an RRC_IDLE state).
  • a cell reselection procedure when the terminal device 2 is not wirelessly connected (also referred to as an idle state or an RRC_IDLE state).
  • RRC_CONNECTED state When the terminal device 2 is wirelessly connected (connected state, also referred to as RRC_CONNECTED state), it may move to another cell by a handover procedure.
  • an appropriate cell is a cell in which access from the terminal device 2 is determined not to be prohibited based on information indicated by the base station device 3, and the downlink reception quality is predetermined. Indicates a cell that satisfies a condition.
  • the terminal device 2 may move to another appropriate cell by a cell reselection procedure in an inactive state (also referred to as an inactive state
  • a cell set to be used for communication with the terminal device 2 among the cells of the base station device 3 is selected as a serving cell (Serving cell).
  • a cell not used for other communication may be referred to as a neighbor cell.
  • part or all of the system information required in the serving cell may be notified or notified to the terminal device 2 in another cell.
  • one or a plurality of serving cells are set for the terminal device 2.
  • the set serving cells may include one primary cell and one or a plurality of secondary cells.
  • the primary cell may be a serving cell that has undergone an initial connection establishment procedure, a serving cell that has initiated a connection re-establishment procedure, or a cell that has been designated as a primary cell in a handover procedure.
  • One or more secondary cells may be set when an RRC (Radio Resource Control) connection is established or after an RRC connection is established.
  • RRC Radio Resource Control
  • a cell group (also referred to as a master cell group (MCG)) composed of one or a plurality of serving cells including a primary cell (PCell) does not include a primary cell, and at least a random access procedure can be performed and is inactive Even if one or a plurality of cell groups (also referred to as a secondary cell group (SCG)) including one or a plurality of serving cells including a primary secondary cell (PSCell) that is not in a state are set for the terminal device 2 Good.
  • MCG master cell group
  • SCG secondary cell group
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the TDD (Time Division Duplex) method or the FDD (Frequency Division Duplex) method may be applied to all of the plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier (or downlink carrier).
  • a carrier corresponding to a serving cell is referred to as an uplink component carrier (or uplink carrier).
  • a carrier corresponding to the serving cell is referred to as a side link component carrier (or side link carrier).
  • a downlink component carrier, an uplink component carrier, and / or a side link component carrier are collectively referred to as a component carrier (or carrier).
  • the following downlink physical channels are used in downlink wireless communication between the terminal device 2 and the base station device 3.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • ⁇ NR-PBCH New Radio Physical Broadcast Channel
  • NR-PDCCH New Radio Physical Downlink Control Channel
  • NR-PDSCH New Radio Physical Downlink Shared Channel
  • MIB Master Information Block
  • one or more important information blocks may be transmitted as an important information message.
  • the important information block may include information indicating a part or all of a frame number (SFN: System Frame Number) (for example, information on a position in a super frame composed of a plurality of frames).
  • SFN System Frame Number
  • a radio frame (10 ms) is composed of 10 subframes of 1 ms, and the radio frame is identified by a frame number. The frame number returns to 0 at 1024 (Wrap around).
  • information that can identify the region for example, identifier information of base station transmission beams constituting the region
  • the base station transmission beam identifier information may be indicated using an index of the base station transmission beam (precoding).
  • the time position in the frame (for example, the subframe number including the important information block (important information message)) is identified.
  • Possible information may be included. That is, information for determining each of the subframe numbers in which the transmission of the important information block (important information message) using the index of the different base station transmission beam is performed may be included.
  • the important information may include information necessary for connection to the cell and mobility.
  • the important information message may be a part of the system information message. Further, a part or all of the important information message may be referred to as minimum system information (Minimum SI).
  • the terminal device 2 may regard the cell as a cell (Barred Cell) whose access is prohibited. Further, only a part of the minimum system information may be broadcast on the PBCH, and the remaining minimum system information may be transmitted on the NR-PSCH described later.
  • the NR-PDCCH is used to transmit downlink control information (DCI) in downlink wireless communication (wireless communication from the base station apparatus 3 to the terminal apparatus 2).
  • DCI downlink control information
  • one or a plurality of DCIs (which may be referred to as DCI formats) are defined for transmission of downlink control information. That is, the field for downlink control information is defined as DCI and mapped to information bits.
  • DCI including information indicating the timing for transmitting HARQ-ACK for the scheduled NR-PDSCH (for example, the number of symbols from the last symbol included in NR-PDSCH to HARQ-ACK transmission) is defined. Also good.
  • DCI used for scheduling of one downlink radio communication NR-PDSCH (transmission of one downlink transport block) in one cell may be defined.
  • DCI used for scheduling of one uplink radio communication NR-PUSCH (transmission of one uplink transport block) in one cell may be defined as DCI.
  • DCI indicates a subcarrier interval (SCS) of one downlink radio communication NR-PDSCH in one cell and / or a unit of time used for scheduling (transmission time interval, TTI: Transmission Time Interval). Information may be included.
  • SCS subcarrier interval
  • TTI Transmission Time Interval
  • DCI may include information for indicating a subcarrier interval (SCS) and / or a transmission time interval (TTI) of one uplink radio communication NR-PDSCH in one cell.
  • SCS subcarrier interval
  • TTI transmission time interval
  • DCI includes information related to scheduling of NR-PDSCH or NR-PUSCH.
  • the DCI for the downlink is also referred to as a downlink grant or a downlink assignment.
  • the DCI for the uplink is also referred to as an uplink grant or an uplink assignment.
  • the NR-PDSCH is used for transmission of downlink data (DL-SCH: Downlink Shared Channel) from an intermediate access (MAC: Medium Access Control). It is also used for transmission of system information (SI: System Information) and random access response (RAR).
  • SI System Information
  • RAR random access response
  • the base station device 3 and the terminal device 2 exchange (transmit / receive) signals in an upper layer (high layer).
  • the base station device 3 and the terminal device 2 transmit and receive RRC signaling (RRC message: Radio Resource Control message, RRC information control: Radio Resource Control) in the radio resource control (RRC: Radio Resource Control) layer. May be.
  • RRC signaling RRC message: Radio Resource Control message
  • RRC information control Radio Resource Control
  • the base station device 3 and the terminal device 2 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer.
  • the RRC signaling and / or the MAC control element is also referred to as an upper layer signal (higher layer signaling).
  • the upper layer means an upper layer viewed from the physical layer, and may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS layer, and the like.
  • the upper layer may include one or a plurality of RRC layers, RLC layers, PDCP layers, NAS layers, and the like.
  • NR-PDSCH may be used to transmit RRC signaling and MAC control elements.
  • the RRC signaling transmitted from the base station apparatus 3 may be common signaling for a plurality of terminal apparatuses 2 in the cell.
  • the RRC signaling transmitted from the base station apparatus 3 may be signaling dedicated to a certain terminal apparatus 2 (also referred to as dedicated signaling). That is, information specific to a terminal device (UE-specific) may be transmitted to a certain terminal device 2 using dedicated signaling.
  • NR-PRACH may be used to transmit a random access preamble.
  • NR-PRACH includes initial connection establishment procedure, handover procedure, connection re-establishment procedure, synchronization (timing adjustment) for uplink transmission, and NR-PUSCH (UL-SCH) resource. It may be used to indicate a request.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • ⁇ Synchronization signal (SS) Reference signal (RS) The synchronization signal is used for the terminal apparatus 2 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (Second Synchronization Signal).
  • PSS Primary Synchronization Signal
  • Second Synchronization Signal secondary synchronization signal
  • the synchronization signal may be used for the terminal device 2 to specify a cell identifier (cell ID: Cell Identifier, also referred to as PCI: Physical Cell Identifier).
  • the synchronization signal may be used for selection / identification / determination of a base station transmission beam used by the base station device 3 and / or a terminal reception beam used by the terminal device 2 in downlink beamforming. That is, the synchronization signal may be used for the terminal device 2 to select / identify / determine the index of the base station transmission beam applied to the downlink signal by the base station device 3.
  • the synchronization signal, primary synchronization signal, and secondary synchronization signal used in NR may be referred to as NR-SS, NR-PSS, and NR-SSS, respectively.
  • the synchronization signal may also be used to measure cell quality. For example, the reception power (SSRP) and reception quality (SSRQ) of the synchronization signal may be used for measurement. Further, the synchronization signal may be used for channel correction of some downlink physical channels.
  • a downlink reference signal (hereinafter also simply referred to as a reference signal in the present embodiment) may be classified into a plurality of reference signals based on the application or the like. For example, one or more of the following reference signals may be used as the reference signal.
  • ⁇ DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • MRS Mobility Reference Signal
  • the DMRS may be used for propagation path compensation when demodulating the received modulated signal.
  • DMRSs may be collectively referred to as DMRSs for NR-PDSCH demodulation, NR-PDCCH demodulation, and / or NR-PBCH demodulation, or may be individually defined.
  • CSI-RS may be used for channel state measurement and beam management.
  • PTRS may be used to track the phase, such as by movement of the terminal.
  • MRS may be used to measure reception quality from multiple base station devices for handover.
  • a reference signal for compensating for phase noise may be defined in the reference signal.
  • the reference signal may be used for radio resource measurement (RRM).
  • RRM radio resource measurement
  • the reference signal may be used for beam management.
  • Beam management includes analog and / or digital beams in a transmission apparatus (base station apparatus 3 in the case of downlink and terminal apparatus 2 in the case of uplink), and reception apparatus (terminal apparatus 2 in the case of downlink).
  • the following procedure may be included as a procedure for configuring, setting or establishing the beam pair link.
  • Beam selection ⁇ Beam improvement (Beam refinement)
  • Beam recovery Beam recovery
  • the beam selection may be a procedure for selecting a beam in communication between the base station device 3 and the terminal device 2.
  • the beam improvement may be a procedure for changing the beam between the base station apparatus 3 and the terminal apparatus 2 optimally by selecting a beam having a higher gain or moving the terminal apparatus 2.
  • the beam recovery may be a procedure for reselecting a beam when the quality of the communication link is deteriorated due to a blockage caused by passage of an obstacle or a person in communication between the base station apparatus 3 and the terminal apparatus 2.
  • Beam management may include beam selection, beam improvement.
  • Beam recovery may include the following procedures. -Beam failure detection-Discovery of new beam-Transmission of beam recovery request-Monitor response to beam recovery request For example, when selecting a transmission beam of the base station apparatus 3 in the terminal apparatus 2, CSI-RS or A synchronization signal (for example, SSS) in the synchronization signal block may be used, or a pseudo-co-location (QCL) assumption may be used.
  • CSI-RS or A synchronization signal for example, SSS
  • QCL pseudo-co-location
  • Two antenna ports are said to be QCL if the long term property of the channel on which a symbol at one antenna port is carried can be inferred from the channel on which the symbol at the other antenna port is carried .
  • the long-term characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, when antenna port 1 and antenna port 2 are QCL with respect to average delay, this means that the reception timing of antenna port 2 can be inferred from the reception timing of antenna port 1.
  • This QCL can be extended to beam management. Therefore, a QCL extended to a space may be newly defined.
  • the arrival angle AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.
  • Angle angle spread
  • ASA Angle Spread of Arrival
  • ZSA Zero angle Spread of Arrival
  • send angle AoD, ZoD, etc.
  • Angle Spread eg, ASD (AngleSpread) Spread of Departure
  • spatial correlation It may be a patial Correlation).
  • the operations of the base station device 3 and the terminal device 2 equivalent to the beam management may be defined as the beam management by the QCL assumption of the space and the radio resource (time and / or frequency).
  • the plurality of reference signals may have the function of other reference signals.
  • At least one of the plurality of reference signals, or other reference signal is a cell-specific reference signal (CRS), a base station apparatus 3 or a transmission / reception point 4 individually set for a cell.
  • CRS cell-specific reference signal
  • BRS beam-specific reference signal
  • UE-specific reference signal UE-specific reference signal
  • At least one of the reference signals may be used for fine synchronization that allows numerology such as radio parameters and subcarrier intervals, FFT window synchronization, and the like.
  • At least one of the reference signals may be used for radio resource measurement (RRM).
  • RRM radio resource measurement
  • at least one of the reference signals may be used for beam management.
  • the radio resource measurement is also simply referred to as measurement.
  • the beam may also be defined as a transmission or reception filter setting (Filter Configuration).
  • At least one of the reference signals may include a synchronization signal.
  • the following uplink physical channels are used in uplink wireless communication between the terminal device 2 and the base station device 3 (wireless communication from the terminal device 2 to the base station device 3).
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ NR-PUCCH New Radio Physical Uplink Control Channel
  • NR-PUSCH New Radio Physical Uplink Shared Channel
  • NR-PRACH New Radio Physical Random Access Channel
  • the NR-PUCCH is used for transmitting uplink control information (UCI).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used for requesting UL-SCH resources.
  • SR Scheduling Request
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACK knowledge).
  • HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • NR-PUSCH is used for transmission of uplink data (UL-SCH: Uplink Shared Channel) from mediated access (MAC: Medium Access Control). Further, it may be used for transmitting HARQ-ACK and / or CSI together with uplink data. Further, it may be used to transmit only CSI or only HARQ-ACK and CSI. That is, it may be used to transmit only UCI.
  • UL-SCH Uplink Shared Channel
  • MAC Medium Access Control
  • NR-PUSCH may be used to transmit RRC signaling and MAC control elements.
  • NR-PUSCH may be used for transmission of UE capability (UE Capability) in the uplink.
  • the same name for example, NR-PCCH
  • NR-PDCCH NR-PDCCH
  • NR-PUCCH NR-PUCCH
  • NR-PSCH NR-PDSCH and NR-PUSCH.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the medium access control (Medium Access Control: MAC) layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, transport blocks are mapped to code words, and an encoding process is performed for each code word.
  • the protocol stack that handles user data of the terminal device 2 and the base station device 3 is a user plane (UP (User-plane, U-Plane)) protocol stack
  • the protocol stack that handles control data is a control plane (CP ( Control-plane, C-Plane)) protocol stack.
  • UP User-plane, U-Plane
  • CP Control-plane, C-Plane
  • the physical layer provides a transmission service to an upper layer using a physical channel (Physical Channel).
  • the PHY layer is connected to an upper medium access control layer (Medium Access Control layer: MAC layer) by a transport channel. Data moves between the MAC layer, the PHY layer, and the layer (layer) via the transport channel. Data transmission / reception is performed between the PHY layers of the terminal device 2 and the base station device 3 via a physical channel.
  • Medium Access Control layer Medium Access Control layer: MAC layer
  • the MAC layer maps various logical channels to various transport channels.
  • the MAC layer is connected to an upper radio link control layer (Radio Link Control layer: RLC layer) through a logical channel.
  • the logical channel is roughly classified according to the type of information to be transmitted, and is divided into a control channel for transmitting control information and a traffic channel for transmitting user information.
  • the MAC layer has a function of controlling the PHY layer to perform intermittent transmission / reception (DRX / DTX), a function of executing a random access procedure, a function of notifying information of transmission power, a function of performing HARQ control, and the like.
  • the RLC layer divides the data received from the upper layer (Segmentation) and adjusts the data size so that the lower layer can transmit data appropriately.
  • the RLC layer also has a function for guaranteeing the QoS (Quality of Service) required by each data. That is, the RLC layer has functions such as data retransmission control.
  • the packet data convergence protocol layer (Packet Data Convergence Protocol layer: PDCP layer) has a header compression function that compresses unnecessary control information in order to efficiently transmit IP packets as user data in a wireless section.
  • the PDCP layer also has a data encryption function.
  • the control plane protocol stack has a radio resource control layer (Radio Resource Control layer: RRC layer).
  • RRC layer sets and reconfigures a radio bearer (RB), and controls a logical channel, a transport channel, and a physical channel.
  • the RB may be divided into a signaling radio bearer (Signaling Radio Bearer: SRB) and a data radio bearer (Data Radio Bearer: DRB), and the SRB may be used as a route for transmitting an RRC message as control information. Good.
  • the DRB may be used as a route for transmitting user data.
  • Each RB may be set between the RRC layers of the base station device 3 and the terminal device 2.
  • the PHY layer corresponds to the physical layer of the first layer in the hierarchical structure of the generally known Open Systems Interconnection (OSI) model, and the MAC layer, RLC layer, and PDCP layer are OSI.
  • the RRC layer corresponds to the data link layer, which is the second layer of the model, and the network layer, which is the third layer of the OSI model.
  • the above functional classification of the MAC layer, RLC layer, and PDCP layer is an example, and some or all of the functions may not be implemented. Also, some or all of the functions of each layer may be included in other layers.
  • the MAC layer control element and RRC signaling are higher layer signals.
  • RRC signaling is an upper layer signal. From the viewpoint of the RRC layer, the MAC layer and the physical layer are lower layers.
  • the NAS layer is also referred to as an upper layer (Upper Layer).
  • the signaling protocol used between the network and the terminal device 2 is divided into an access layer (Access Stratum: AS) protocol and a non-access layer (Non-Access Stratum: NAS) protocol.
  • AS access layer
  • the protocol below the RRC layer is an access layer protocol used between the terminal device 2 and the base station device 3.
  • Protocols such as connection management (CM) and mobility management (MM) of the terminal device 2 are non-access layer protocols and are used between the terminal device 2 and the core network (CN).
  • CM connection management
  • MM mobility management
  • CN core network
  • communication using a non-access layer protocol is transparently performed via the base station device 3 between the terminal device 2 and a mobile management entity (Mobility Management Entity: MME).
  • MME Mobile Management Entity
  • subframes will be described. Although referred to as a subframe in this embodiment, it may be referred to as a resource unit, a radio frame, a time interval, a time interval, or the like. One or a plurality of subframes may constitute one radio frame.
  • FIG. 4 is a diagram illustrating an example of a schematic configuration of a downlink slot according to the embodiment of the present invention.
  • Each radio frame is 10 ms long.
  • Each radio frame is composed of 10 subframes and X slots. That is, the length of one subframe is 1 ms.
  • the uplink slot is defined in the same manner, and the downlink slot and the uplink slot may be defined separately.
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols.
  • the number of subcarriers constituting one slot depends on the downlink and uplink bandwidths of the cell.
  • Each element in the resource grid is referred to as a resource element.
  • Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
  • the resource block is used to express a mapping of resource elements of a certain physical downlink channel (PDSCH or the like) or uplink channel (PUSCH or the like).
  • resource blocks virtual resource blocks and physical resource blocks are defined.
  • a physical uplink channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • one physical resource block is defined by 7 consecutive OFDM symbols in the time domain and 12 consecutive subcarriers in the frequency domain. The That is, one physical resource block is composed of (7 ⁇ 12) resource elements.
  • one physical resource block is defined by, for example, 6 consecutive OFDM symbols in the time domain and 12 consecutive subcarriers in the frequency domain. That is, one physical resource block is composed of (6 ⁇ 12) resource elements. At this time, one physical resource block corresponds to one slot in the time domain, and corresponds to 180 kHz (720 kHz in the case of 60 kHz) in the frequency domain when the subcarrier interval is 15 kHz. Physical resource blocks are numbered from 0 in the frequency domain.
  • FIG. 5 is a diagram showing the relationship in the time domain of subframes, slots, and minislots.
  • the subframe may be 1 ms regardless of the subcarrier interval
  • the number of OFDM symbols included in the slot may be 7 or 14
  • the slot length varies depending on the subcarrier interval.
  • the slot length may be defined as 0.5 / ( ⁇ f / 15) ms when the number of OFDM symbols constituting one slot is 7, where the subcarrier interval is ⁇ f (kHz).
  • ⁇ f may be defined by a subcarrier interval (kHz).
  • the slot length may be defined as 1 / ( ⁇ f / 15) ms.
  • ⁇ f may be defined by a subcarrier interval (kHz).
  • the slot length may be defined as X / 14 / ( ⁇ f / 15) ms.
  • a mini-slot (may be referred to as a sub-slot) is a time unit configured with fewer OFDM symbols than the number of OFDM symbols included in the slot. This figure shows an example in which a minislot is composed of 2 OFDM symbols. The OFDM symbols in the minislot may coincide with the OFDM symbol timing that constitutes the slot.
  • the minimum scheduling unit may be a slot or a minislot.
  • FIG. 6 is a diagram illustrating an example of a slot or a subframe (subframe type).
  • a case where the slot length is 0.5 ms at a subcarrier interval of 15 kHz is shown as an example.
  • D indicates the downlink and U indicates the uplink.
  • ⁇ Downlink part (duration)
  • One or more of the gap and the uplink part (duration) may be included.
  • 6A may be referred to as a certain time interval (for example, a minimum unit of time resources that can be allocated to one UE, or a time unit, etc.
  • a plurality of minimum units of time resources are bundled to be referred to as a time unit.
  • 6 (b) is an example used for downlink transmission, and FIG. 6 (b) performs uplink scheduling via the PCCH, for example, with the first time resource, and the processing delay and downlink of the PCCH. Uplink signal is transmitted through the uplink switching time and the gap for generating the transmission signal.
  • FIG. 6 (c) is used for transmission of the downlink PCCH and / or downlink PSCH in the first time resource, through the processing delay, the downlink to uplink switching time, and the gap for transmission signal generation.
  • the uplink signal may be used for transmission of HARQ-ACK and / or CSI, that is, UCI.
  • FIG. 6 (d) is used for transmission of the downlink PCCH and / or downlink PSCH in the first time resource, via the processing delay, the downlink to uplink switching time, and the gap for transmission signal generation.
  • the uplink signal may be used for transmission of uplink data, that is, UL-SCH.
  • FIG. 6E shows an example in which all are used for uplink transmission (uplink PSCH or PCCH).
  • the above-described downlink part and uplink part may be composed of a plurality of OFDM symbols as in LTE.
  • the resource grid may be defined by a plurality of subcarriers and a plurality of OFDM symbols or SC-FDMA symbols. Further, the number of subcarriers constituting one slot may depend on the cell bandwidth. The number of OFDM symbols constituting one downlink part or uplink part may be 1 or 2 or more.
  • each of the elements in the resource grid is referred to as a resource element. Also, the resource element may be identified using a subcarrier number and an OFDM symbol or an SC-FDMA symbol number.
  • the base station apparatus 3 may transmit a signal having the subframe configuration in FIG.
  • the RRC connection reconfiguration messages are (8A) rrc-TransactionIdentifier, (8B) measconfig, (8C) mobilityCouldInfo, (8D) dedicatedInfoNassList, (8E) radioRestrictCNS, (8E) (8H) fullConfig, (8I) sCellToReleaseList, (8J) sCellToAddModList, and (8K) systemInformationBlockDedicated may be included.
  • rrc-TransactionIdentifier is an element used to identify an RRC procedure (transaction), and has an integer of 0 to 3, for example.
  • measConfig is information for setting (Performed) measurement performed by the terminal device 2 and may include setting of a gap period for measurement.
  • dedicatedInfoNASList is a list of NAS layer information specific to the terminal device 2 exchanged between the network and the terminal device 2 and includes NAS layer information for each DRB. The RRC layer transparently transmits this information. Are transferred to the upper layer (NAS layer).
  • radioResourceConfigDedicated may include information used for setting, changing, and / or releasing an SRB or DRB, information for changing a MAC layer setting, information on a physical layer channel setting, and the like.
  • securityConfigHO is a setting relating to security, and may include, for example, setting of an integrity protection algorithm in the AS layer of the SRB, setting of an SRB and / or DRB ciphering algorithm.
  • fullConfig is information indicating whether or not a specific option is applied to the RRC connection reconfiguration message, and the terminal device 2 determines that (8H) fullConfig is included in the RRC connection reconfiguration message. You may make it apply the setting contained in a specific element.
  • sCellToReleaseList, (8J) sCellToAddModList may include information used for adding, changing, and / or releasing a secondary cell.
  • (8K) systemInformationBlockDedicated may include a part of the broadcast information of the target cell.
  • mobilityControlInfo includes parameters necessary for mobility (for example, handover) by network control as shown in FIG. (8C) mobilityControlInfo is (9A) targetPhysCellCellId, (9B) carrierFreq, (9C) carrierBandwidth, (9D) t304, (9E) newUE-Identity, (9F) radioCondition May be included. Further, (8C) mobilityControlInfo may include various other information.
  • targetPhysCellId indicates the target cell identifier (for example, physical cell identifier). Also, the target PhysCellCellId may include information indicating an area in the cell (for example, time index information or SS block identifier). In addition, information (for example, time index information or SS block identifier) indicating an area in the cell may be included as a parameter different from targetPhysCellId.
  • carrierFreq indicates frequency information used by the terminal device 2 in the target cell.
  • carrierBandwidth indicates information on the downlink and / or uplink bandwidth of the target cell.
  • t304 indicates a timer value related to the handover.
  • the terminal device 2 may execute a predetermined process when the handover is not normally completed within the time indicated by the timer.
  • newUE-Identity indicates a new identifier (for example, C-RNTI) of the terminal device 2 in the target cell.
  • radioResourceConfigCommon includes information used for specifying common radio resource settings such as random access parameters and static physical layer parameters (Specify) as shown in FIG.
  • radioResourceConfigCommon is (10A) rach-ConfigCommon, (10B) prach-Config, (10C) pdsch-ConfigCommon, (10D) push-Config-UmmFunCongFRS (10G) UplinkPowerControlCommon, (10H) antennaInfoCommon, (10I) p-Max, (10J) tdd-Config may be included.
  • radioResourceConfigCommon may include other various information.
  • the settings of (10C) pdsch-ConfigCommon and (10D) push-ConfigCommon may be combined into one setting (psch-ConfigCommon).
  • the above-mentioned part or all of the information included in (9F) radioResourceConfigCommon may be information for each area in the cell.
  • rach-ConfigCommon includes information used to specify a general random access parameter (Generic random access parameter).
  • Generic random access parameter For example, (10A) rach-ConfigCommon is threshold information for determining the number of preambles that are not used individually (non-dedicated) and which grouped preambles are used as random access preamble information. And / or some or all of the information regarding power ramping.
  • patch-Config includes information used to specify the PRACH settings.
  • (10B) patch-Config is a part of the index information of the root sequence of the random access preamble, the information of the time / frequency resource used for transmitting the random access preamble, and / or the information of the numerology used for transmitting the preamble. Or it may include all.
  • pdsch-ConfigCommon includes information for specifying a common PDSCH setting.
  • pdsch-ConfigCommon is information on the energy per unit resource of the downlink reference signal, information on the power ratio between the downlink reference signal and the PDSCH, and / or the numerology used for receiving the PDCCH and / or PDSCH. May include some or all of the information.
  • (10D) push-ConfigCommon includes information for specifying common PUSCH settings and / or uplink reference signal settings.
  • (10D) push-ConfigCommon may include some or all of band information of PUSCH resources, hopping information, and / or information on numerology used for transmission of PUCCH and / or PUSCH.
  • puch-ConfigCommon includes information for specifying a common PUCCH setting.
  • (10E) pucch-ConfigCommon may include numerology information used for transmission of PUCCH.
  • (10F) soundingRS-UL-ConfigCommon includes information for specifying the setting of a common uplink reference signal that can be used for measurement by the base station apparatus 3.
  • (10F) soundingRS-UL-ConfigCommon may include numerology information used for transmission of part or all of the uplink reference signal.
  • uplinkPowerControlCommon includes information for specifying a common uplink power control setting.
  • (10H) antennaInfoCommon includes information for specifying a common antenna setting.
  • (10I) p-Max includes information for limiting uplink transmission by the terminal device 2.
  • (10J) tdd-Config includes information for specifying a TDD-specific physical channel setting.
  • (9G) rach-ConfigDedicated includes information used to specify individual random access parameters assigned to the terminal device 2. For example, it may include some or all of information that explicitly indicates the format of the random access preamble, time / frequency resources, and / or information about the numerology used to transmit the preamble. In addition, (9G) rach-ConfigDedicated may include information for each region in the cell.
  • the terminal apparatus 2 transmits in the target cell (1) random access preamble, (2) PUSCH including RRC connection reconfiguration complete message
  • the terminal device 2 receives at the target cell (1) a synchronization signal, (2) an important information block, (3) a PDCCH for receiving a PDSCH including a random access response message, and (4) a random access response message.
  • SCG-Configuration secondary cell group setting
  • the setting of the secondary cell group may include a part or all of (11A) scg-ConfigPartMCG and (11B) scg-ConfigPartSCG.
  • the scg-ConfigPartMCG is a setting related to the master cell group when the secondary cell group is set. For example, information related to key information update and / or information related to the power of the master cell group and the secondary cell group May be included.
  • scg-ConfigPartSCG is a secondary cell group setting, for example, as shown in FIG. But you can.
  • radioResourceConfigDedicated SCG is a radio resource setting specific to the terminal device 2 for the SCG, and may include information for adding / changing a DRB, MAC layer setting information, a timer setting value, and / or constant information.
  • pSCellToAddMod is addition / change information of a cell to be a PSCell, index information for identifying the SCell (PSCell), a cell identifier (for example, a physical cell identifier or a cell global identifier), and downlink carrier frequency information , PSCell common radio resource setting and / or PSCell terminal device 2 specific radio resource setting information may be included.
  • sCellToAddModListSCG is information on addition / change of a cell to be an SCell of the secondary cell group, and may include a list of one or a plurality of SCell information. Further, each SCell information includes SCell index information for identifying the SCell, a cell identifier (for example, a physical cell identifier or a cell global identifier), downlink carrier frequency information, and / or SCell common radio resource setting information. May be included.
  • sCellToReleaseListSCG is information for releasing the SCell of the secondary cell group, and may include a list of one or more SCell index information to be released.
  • mobilityControlInfoSCG is information necessary for changing the secondary cell group, and is used to specify an identifier assigned to the terminal device 2 and an individual random access parameter assigned to the terminal device 2 in the secondary cell group. Information and / or information regarding cryptographic algorithms may be included.
  • terminal device 2 transmits the cell (PSCell or all SCells) in the secondary cell group reconfigured.
  • Random access preamble (2) PUCCH, (3) PUSCH, (2) Random, (2) Random (2) Random received by cell (PSCell or all SCells) of secondary cell group in which terminal device 2 is reconfigured PDCCH for receiving a PDSCH including an access response message, (3) PDSCH including a random access response message, (4) PDCCH for receiving a PDSCH including a call (paging) message, (5) Call PDSCH including a message of paging), some or part of the information for identifying the numerology for the whole of or may include all.
  • (12E) mobility control info SCG included in numerology information used for preamble transmission as part of information used for specifying individual random access parameters assigned to terminal device 2 is included.
  • (12B) pSCellToAddMod uses the numerology used for transmission / reception of the above-described signals and / or channels of PSCell (or common to cells of the secondary cell group). May be included.
  • FIG. 14 is a diagram illustrating an example of the above (8E) radioResourceConfigDedicated, (14A) srb-ToAddModList, (14B) drb-ToAddModList, (14C) drb-ToReleaseList, (14D) macFigDonC included.
  • (14A) srb-ToAddModList, (14B) drb-ToAddModList, and (14C) drb-ToReleaseList are information used for setting, changing, and / or releasing SRBs and DRBs.
  • (14D) mac-MainConfig is information for changing the setting of the MAC layer.
  • (14E) physicalConfigDedicated is information regarding the channel setting of the physical layer.
  • RRC connection reconfiguration messages for example, (8E) radioResourceConfigDedicated and (12A) radioResourceConfigDedicated SCG information
  • numerology for example, subcarrier interval (SCS) information
  • SCS subcarrier interval
  • TTI Transmission Time Interval
  • the numerology used in each cell (or cell group) can be specified.
  • FIG. 15 is an example showing information on numerology and a unit of time (transmission time interval, TTI) used for scheduling.
  • SCS indicates a subcarrier interval (unit: kHz).
  • Symbol indicates the number of OFDM symbols included in one slot.
  • SlotNum indicates the number of slots included in one TTI.
  • TTI Len indicates a time unit (transmission time interval, TTI) used for scheduling (unit: ms).
  • Idx indicates an identifier (or index) that identifies a combination (parameter set) of each parameter.
  • a plurality of parameter sets as shown in FIG. 15 may be defined in the specification, and the RRC connection reconfiguration message may include information (Idx) indicating which parameter set is used.
  • Idx information indicating which parameter set is used.
  • the RRC connection reconfiguration message includes one or a plurality of parameter sets as shown in FIG. 15, and the RRC connection reconfiguration message includes information (Idx) indicating which parameter set is used. ) May be included.
  • TTI Len can be uniquely identified from the combination of SCS, Symbol, and SlotNum, any one piece of information may be omitted.
  • TTI Len can be uniquely identified from the combination of SCS, Symbol, and SlotNum, any one piece of information may be omitted from the parameter set.
  • TTI transmission time interval
  • dTTI standard TTI
  • OFDM symbol length information may be included as a parameter instead of the OFDM symbol number information.
  • CP Cyclic Prefix
  • slot aggregation level (Aggregation Level: AL) information may be included as a parameter.
  • some or all information of the parameter set may be notified by another method.
  • a part of a parameter set applied to PDSCH (combination of Symbol and SlotNum) is notified by an RRC connection reconfiguration message, and SCS information is notified by another signal or channel (for example, PDCCH (DCI)).
  • PDCCH PDCCH
  • the physical layer setting information (for example, information included in (14E) physicalConfigDedicated) includes the above parameter set information, and the logical channel setting information (for example, information included in (14B) drb-ToAddModList).
  • Information associating the logical channel with the TTI may be included.
  • the information associating the logical channel with the TTI is information that can identify each logical channel and the TTI used for transmission (and / or reception) of the logical channel (for example, the TTI length itself (0.5 ms or 1.0 ms).
  • the message is an example, and the RRC connection reconfiguration message may include information other than the RRC connection reconfiguration message, or may not include part of the information of the RRC connection reconfiguration message. Further, the RRC connection reconfiguration message may have a different structure, information element name, or parameter name from the RRC connection reconfiguration message.
  • the present invention is not limited to this, and when adding or modifying the numerology, The present invention can also be applied to a case where the numerology is changed when the information is not included in the RRC connection reconfiguration message, or a case where the numerology of the secondary cell group is changed, added or modified.
  • the setting of numerology may involve resetting or re-establishment (Re-establishment) of the second layer (PDCP layer, RLC layer and / or MAC layer). Also, the setting of numerology may involve execution of random access in PCell.
  • the master cell group setting may be a synchronous master cell group reconfiguration procedure (a procedure with random access) including a second layer reset and / or re-establishment.
  • the setting of the secondary cell group may be a synchronous secondary cell group reconfiguration procedure (a procedure with random access) including a second layer reset and / or re-establishment.
  • the setting of the master cell group may be a synchronous master cell group resetting procedure (a procedure involving random access) including a security refresh.
  • the setting of the secondary cell group may be a synchronous secondary cell group resetting procedure (procedure with random access) including a security refresh if the DRB of the secondary cell group is set.
  • This procedure may be used in various scenarios.
  • the scenario includes establishment of a secondary cell group (Establishment), PSCell change, security key refresh, DRB change, and / or numerology change.
  • the terminal device 2 may execute an operation related to the setting of the secondary cell group by receiving an RRC connection reconfiguration message including mobility control information (mobilityControlInfoSCG) for the secondary cell group.
  • mobilityControlInfoSCG mobility control information
  • the network controls the mobility of the terminal device 2. Further, the network may control the mobility of the terminal device 2 in an inactive state.
  • the PCell may be changed using an RRC connection reconfiguration message including mobility control information.
  • the SCell may be changed using an RRC connection reconfiguration message that includes (or does not include) mobility control information.
  • the secondary cell group may be established, reconfigured, or released using an RRC connection reconfiguration message including (or not including) the mobility control information of the secondary cell group.
  • a master cell group change procedure that is, an RRC connection reconfiguration message including mobilityControlInfo
  • a secondary cell group change procedure that is, an RRC connection reconfiguration message including mobilityControlInfoSCG
  • the base station apparatus 3 instructs the terminal apparatus 2 to change the numerology by notifying the terminal apparatus 2 of an RRC connection reconfiguration message including the setting for the terminal apparatus 2 (step S71).
  • the terminal device 2 that can receive the RRC connection reconfiguration message and follow the setting including the RRC connection reconfiguration message transmits an RRC connection reconfiguration complete message (RRCConnectionReconfigurationComplete) to the base station device 3 (step S72). Further, based on the information of the RRC connection reset message, the following reset process is started (step S73).
  • the terminal device 2 synchronizes the downlink of the target PCell based on the configuration.
  • the terminal device 2 adds new numerology information when the RRC connection reconfiguration message includes numerology information. Based on downlink synchronization may be started.
  • the MAC layer function of the master cell group and the MAC layer function of the secondary cell group may be reset if set. Further, the terminal device 2 may re-establish the PDCP layer function for all established radio bearers. Moreover, the terminal device 2 may re-establish the function of the RLC layer of the master cell group and the function of the RLC layer of the secondary cell group if set. Moreover, the terminal device 2 is good also as an inactive state for the other cells except PSCell among SCells of the secondary cell group.
  • the terminal device 2 includes the mobility control information of the secondary cell group and the mobility control information of the master cell group (not a handover) in the RRC connection reconfiguration message, Alternatively, when the setting of the secondary cell group included in the RRC connection reconfiguration message is set to be released, the function of the MAC layer of the secondary cell group may be reset based on the setting. Further, the terminal device 2 includes the mobility control information of the secondary cell group in the RRC connection reconfiguration message and does not include the mobility control information of the master cell group (not a handover), or is included in the RRC connection reconfiguration message. The PDCP layer may be re-established or data recovered when the secondary cell group setting is set to be released.
  • the terminal device 2 when the terminal device 2 includes the mobility control information of the secondary cell group in the RRC connection reconfiguration message, or when the setting of the secondary cell group included in the RRC connection reconfiguration message is set to be released, The RLC layer of the master cell group and / or the RLC layer of the secondary cell group may be reestablished. Further, the terminal device 2 includes the mobility control information of the secondary cell group in the RRC connection reconfiguration message and does not include the mobility control information of the master cell group (not a handover), or is included in the RRC connection reconfiguration message. When the setting of the secondary cell group to be set is set to be released, other cells except the PSCell may be inactivated among the SCells of the secondary cell group.
  • step S73 when the received secondary cell group setting is set to be released, the terminal device 2 releases the secondary cell group setting excluding the DRB setting, and the secondary cell group You may stop the timer.
  • the terminal device 2 may reconfigure the specific radio resource setting when the RRC connection reconfiguration message includes the radio resource setting specific to the terminal device 2. Moreover, the terminal device 2 performs addition or change of PSCell, when the addition / change information of the cell used as PSCell is included in the RRC connection reconfiguration message. Moreover, the terminal device 2 may perform addition or change of SCell of a secondary cell group, when the addition / change information of the cell used as SCell of a secondary cell group is contained in a RRC connection reset message. Moreover, when the information for releasing the SCell of the secondary cell group is included in the RRC connection reconfiguration message, the terminal device 2 may execute the release of the SCell of the secondary cell group.
  • the terminal device 2 may detect the synchronization signal based on the information.
  • the terminal device 2 may try to detect the synchronization signal using a predetermined numerology. Thereby, the numerology of the synchronization signal detected when there are a plurality of numerologies that may be used for the synchronization signal of the target cell can be uniquely specified.
  • the terminal device 2 starts a random access procedure to transmit uplink data, and transmits a random access preamble.
  • the base station apparatus 3 that has received the random access preamble detects a transmission timing shift of the terminal apparatus 2 and transmits a random access response including information (timing advance command) for correcting the shift to the terminal apparatus 2 (step) S74).
  • the terminal device 2 may transmit the random access preamble based on the information.
  • the terminal device 2 may select one.
  • the terminal device 2 may transmit the random access preamble using a predetermined numerology.
  • the same numerology as NS-SSS or a numerology corresponding to (uniquely derived) numerology of NR-SSS may be used.
  • an appropriate numerology can be set for each terminal device 2.
  • the terminal device 2 receives the random access response based on the information. Also good.
  • the terminal device 2 uses the same numerology as the predetermined numerology or NR-SSS. And a random access response may be received.
  • an appropriate numerology can be set for each terminal device 2.
  • the PDSCH numerology including the random access response message may be derived by a combination of information provided in the RRC connection reconfiguration message and information provided in the PDCCH.
  • the identifier of the above parameter set may be notified by PDCCH.
  • information related to SCS may be notified by PDCCH.
  • the PDSCH numerology including the random access response message may be uniquely derived from the PDCCH numerology.
  • the numerology of PDCCH and PDSCH may be the same.
  • a combination of PDCCH and PDSCH numerology may be defined in advance (or set by an RRC connection reconfiguration message).
  • the numerology of the uplink resources (PUCCH transmission resources and / or PUSCH transmission resources) allocated by the uplink grant provided by the random access response is provided by the information provided in the RRC connection reconfiguration message and the PDCCH. It may be derived by combination with information. For example, the identifier of the above parameter set may be notified by PDCCH. In addition, information related to SCS may be notified by PDCCH.
  • the numerology of uplink resources (PUCCH transmission resources and / or PUSCH transmission resources) allocated by the uplink grant provided by the random access response may be uniquely derived from the PDCCH numerology.
  • the numerology of PDCCH and PUSCH may be the same.
  • a combination of PDCCH and PUSCH numerology may be defined in advance (or set by an RRC connection reconfiguration message).
  • the numerology of PDCCH and PUCCH may be the same.
  • a combination of PDCCH and PUCCH numerology may be defined in advance (or set by an RRC connection reconfiguration message).
  • the PDSCH numerology may be derived by a combination of information provided by the RRC connection reconfiguration message and information provided by the PDCCH. For example, the identifier of the above parameter set may be notified by PDCCH. In addition, information related to SCS may be notified by PDCCH.
  • the PDSCH numerology may be uniquely derived from the PDCCH numerology.
  • the numerology of PDSCH indicated by PDCCH and PDCCH may be the same.
  • a combination of PDSCH numerologies indicated by PDCCH and PDCCH may be defined in advance (or set by an RRC connection reconfiguration message).
  • the numerology of uplink resources (PUCCH transmission resources and / or PUSCH transmission resources) allocated by the uplink grant is derived by a combination of information provided by the RRC connection reconfiguration message and information provided by the PDCCH. May be.
  • the identifier of the above parameter set may be notified by PDCCH.
  • information related to SCS may be notified by PDCCH.
  • the numerology of uplink resources (PUCCH transmission resources and / or PUSCH transmission resources) allocated by the uplink grant may be uniquely derived from the PDCCH numerology.
  • the numerology of PUSCH indicated by PDCCH and PDCCH may be the same.
  • a combination of PUSCH numerologies indicated by PDCCH and PDCCH may be defined in advance (or set by an RRC connection reconfiguration message).
  • the numerology of PDCCH and PUCCH may be the same.
  • a combination of PDCCH and PUCCH numerology may be defined in advance (or set by an RRC connection reconfiguration message).
  • the physical layer of the terminal device 2 derives the size of the uplink resource allocated to the own station and the length of the TTI by receiving the DCI indicating the uplink grant through the PDCCH, and notifies the MAC layer of the terminal device 2 To do.
  • the MAC layer of the terminal device 2 generates a MAC PDU to be transmitted based on at least the length of the TTI assigned to the logical channel and the priority of the logical channel (LCP: Logical Channel Priority). At this time, the derivation of the priority between the logical channels by the LCP may be performed only between the logical channels associated with the TTI length of the allocated uplink resource.
  • LCP Logical Channel Priority
  • the assigned uplink resource when the TTI length of the assigned uplink resource is not associated with any of the logical channels, the assigned uplink resource may be regarded as invalid. Further, even if the TTI length of the allocated uplink resource is not linked to any of the logical channels, it can be considered that the assigned uplink resource is linked to all the logical channels. Good.
  • the setting of numerology may not involve a reset or re-establishment of a part of the second layer (PDCP layer, RLC layer and / or MAC layer).
  • the setting of numerology does not have to be accompanied by execution of random access.
  • the master cell group setting may be a master cell group reconfiguration procedure (a procedure not involving random access) that does not include the second layer reset and / or re-establishment.
  • the setting of the secondary cell group may be a secondary cell group reconfiguration procedure (a procedure not involving random access) that does not include a reset and / or re-establishment of a part of the second layer.
  • the terminal device 2 may execute an operation related to the setting of the secondary cell group by receiving an RRC connection reconfiguration message including mobility control information (mobilityControlInfoSCG) for the secondary cell group.
  • mobilityControlInfoSCG mobility control information
  • the network controls the mobility of the terminal device 2. Further, the network may control the mobility of the terminal device 2 in an inactive state.
  • the PCell may be changed using an RRC connection reconfiguration message including mobility control information.
  • the SCell (including PSCell) may be changed using an RRC connection reconfiguration message that includes (or does not include) mobility control information.
  • the secondary cell group may be established, reconfigured, or released using an RRC connection reconfiguration message including (or not including) the mobility control information of the secondary cell group.
  • a master cell group change procedure that is, an RRC connection reconfiguration message including mobilityControlInfo
  • a secondary cell group change procedure that is, an RRC connection reconfiguration message including mobilityControlInfoSCG
  • the base station apparatus 3 notifies the terminal apparatus 2 of an RRC connection reconfiguration message (RRCConnectionReconfiguration) including a setting for the terminal apparatus 2, so that setting with addition and / or modification and / or deletion of numerology information is performed. Is instructed to the terminal device 2 (step S131).
  • RRC connection reconfiguration message RRCConnectionReconfiguration
  • the terminal device 2 that can receive the RRC connection reconfiguration message and follow the setting including the RRC connection reconfiguration message transmits an RRC connection reconfiguration complete message (RRCConnectionReconfigurationComplete) to the base station device 3 (step S132). Furthermore, based on the information of the RRC connection reset message, the following reset process is started (step S133).
  • the terminal device 2 includes the mobility control information of the secondary cell group and the mobility control information of the master cell group (not handover) in the RRC connection reconfiguration message, or RRC.
  • the setting of the secondary cell group included in the connection reconfiguration message is set to be released, the function of the MAC layer of the secondary cell group may be reset based on the setting.
  • the terminal device 2 uses the PDCP layer. Need not be re-established or data recovered.
  • the DRB split DRB
  • SCG DRB SCG-only DRB
  • the terminal device 2 may execute data recovery of the PDCP layer.
  • the terminal device 2 when the terminal device 2 includes the mobility control information of the secondary cell group in the RRC connection reconfiguration message, or when the setting of the secondary cell group included in the RRC connection reconfiguration message is set to be released, The RLC layer of the master cell group and / or the RLC layer of the secondary cell group may be reestablished. Further, the terminal device 2 includes the mobility control information of the secondary cell group in the RRC connection reconfiguration message and does not include the mobility control information of the master cell group (not a handover), or is included in the RRC connection reconfiguration message. When the setting of the secondary cell group to be set is set to be released, other cells except the PSCell may be inactivated among the SCells of the secondary cell group.
  • step S133 when the received secondary cell group setting is set to be released, the terminal device 2 releases the secondary cell group setting excluding the DRB setting, and the secondary cell group You may stop the timer.
  • the terminal device 2 may reconfigure the specific radio resource setting when the RRC connection reconfiguration message includes a radio resource setting specific to the terminal device 2. Moreover, the terminal device 2 performs addition or change of PSCell, when the addition / change information of the cell used as PSCell is included in the RRC connection reconfiguration message. Moreover, the terminal device 2 may perform addition or change of SCell of a secondary cell group, when the addition / change information of the cell used as SCell of a secondary cell group is contained in a RRC connection reset message. Moreover, when the information for releasing the SCell of the secondary cell group is included in the RRC connection reconfiguration message, the terminal device 2 may execute the release of the SCell of the secondary cell group.
  • the terminal device 2 may transmit an RRC connection reconfiguration completion message (RRCConnectionReconfigurationComplete) to the base station device 3.
  • the RRC connection reconfiguration completion message may be transmitted by a Cell (allocated with an SRB transmission resource).
  • the MRC setting and SCG setting (for example, (8E) radioResourceConfigDedicated and (12A) setting information of each MAC layer of radioResourceConfigDedicated SCG) in the RRC connection reconfiguration message are used in the cell.
  • Multiple numerologies can be specified.
  • DCI Downlink Control Information
  • DCI Format 0 may include multiple bits of information (Carrier Indicator) indicating the scheduled component carrier. Also, DCI Format 0 may include one or a plurality of bits flags for identifying another format having the same length and this format. In addition, DCI Format 0 may include an information bit indicating the resource position of the scheduled PUSCH. Also, DCI Format 0 may include information for performing resource location hopping. Further, DCI Format 0 may include information indicating a modulation scheme, a coding scheme, and a redundancy version. Also, DCI Format 0 may include a New Data Indicator indicating whether it is New Data.
  • DCI Format 0 may include a transmission power control command (TPC) for performing scheduled PUSCH power control. Also, DCI Format 0 may include information (SRS Request) for requesting SRS transmission. Also, DCI Format 0 may include information on the scheduled PUSCH subcarrier interval. Further, DCI Format 0 may include other necessary information.
  • TPC transmission power control command
  • SRS Request information for requesting SRS transmission. Also, DCI Format 0 may include information on the scheduled PUSCH subcarrier interval. Further, DCI Format 0 may include other necessary information.
  • the DCI Format 1 may include multiple bits of information (Carrier Indicator) indicating the component carrier on which the PDSCH is scheduled. Further, DCI Format 1 may include an information bit indicating the resource position of the scheduled PDSCH. Also, DCI Format 1 may include information indicating a modulation scheme, a coding scheme (Coding Scheme), and a redundancy version (Redundancy Version). Further, the DCI Format 1 may include a HARQ process number (HARQ Process Number). Also, the DCI Format 1 may include a New Data Indicator indicating whether it is a New Data.
  • Carrier Indicator indicating the component carrier on which the PDSCH is scheduled.
  • DCI Format 1 may include an information bit indicating the resource position of the scheduled PDSCH.
  • DCI Format 1 may include information indicating a modulation scheme, a coding scheme (Coding Scheme), and a redundancy version (Redundancy Version). Further, the DCI Format 1 may include a HARQ process number (HARQ Process Number). Also
  • DCI Format 1 may include a transmission power control command (TPC) for performing scheduled PUCCH power control. Also, DCI Format 1 may include information related to the scheduled subcarrier interval of PDSCH. Also, DCI Format 1 may include information on the scheduled PUCCH subcarrier interval. The DCI Format 1 may include other necessary information.
  • TPC transmission power control command
  • the drb-ToAddMod may include an identifier for identifying the EPS bearer when setting up the DRB.
  • drb-ToAddMod may include PDCP layer setting information.
  • drb-ToAddMod may include RLC layer setting information.
  • drb-ToAddMod may include a logical channel identifier corresponding to the DRB when setting up the DRB.
  • drb-ToAddMod may include logical channel setting information.
  • the drb-ToAddMod may include information indicating the TTI length associated with the logical channel.
  • the information indicating the TTI length associated with the logical channel is information that can identify the TTI length used for transmission (and / or reception) of the logical channel (for example, the TTI length itself (0.5 ms or 1.0 ms)). Or the number of OFDM symbols (7 symbols or 14 symbols), ratio to standard TTI (1dTTI or 0.5dTTI), slot information (1 Slot or 2 Slot, or miniSlot (0.5dTTI), Slot (1dTTI), MultiSlot (2dTTI))).
  • drb-ToAddMod may include other necessary information.
  • the numerology information includes numerology addition / modification information and may include a list of one or more numerology settings, similar to (12C) sCellToAddModListSCG. Moreover, the list which deletes a numerology setting may be included similarly to (12D) sCellToReleaseListSCG.
  • (14E) settings of each channel and each signal included in the information included in physicalConfigDedicated for example, pdsch-ConfigDedicated, which is the setting of PDSCH, pdch-ConfigDedicated, PucchDConfig, which is the setting of PUCCH, Pucch-Config-Config Numerology information may be included for each of push-ConfigDedicated, which is a setting of SRS, soundingRS-UL-ConfigDedicated, which is a setting of SRS, schedulingRequestConfig, which is a setting of a scheduling request (SR), and the like.
  • numerology information used in common for each channel may be included in (14E) physicalConfigDedicated.
  • the setting information of the numerology of each channel and each signal may be configured as one or a plurality of sets.
  • the numerology of each channel and each signal may be set as the primary numerology (or primary numerology set), and another numerology may be set for each channel and each signal as the secondary numerology (or secondary numerology set).
  • the primary numerology and / or secondary numerology setting information may include an uplink numerology and a downlink numerology setting common to each physical channel.
  • the primary numerology and / or secondary numerology setting information may include a numerology setting for each physical channel.
  • (14E) physicalConfigDedicated may be included in the setting information of primary numerology and / or secondary numerology
  • (14E) physicalConfigDedicated may include setting information of primary numerology and / or secondary numerology.
  • an RRC connection reconfiguration message including mobility control information may be used, and when changing a secondary numerology, an RRC connection reconfiguration message not including mobility control information may be used. Further, it may be specified or notified whether primary numerology or secondary numerology is used for each component carrier or each cell group. In addition, switching between primary numerology and secondary numerology may be notified by RRC layer or MAC layer or physical layer signaling (for example, RRC connection reconfiguration message or MAC control element or DCI). A plurality of secondary numerologies may be set. In this case, an identifier for identifying each secondary numerology may be set. The primary numerology may be referred to as master numerology.
  • the primary numerology setting may be included in the mobility control information
  • the secondary numerology setting may be included in an element of the RRC connection reconfiguration message other than the mobility control information.
  • both the primary numerology setting and the secondary numerology setting may be included in the elements of the RRC connection reconfiguration message other than the mobility control information.
  • the primary numerology and / or the secondary numerology may be configured to be separated on the uplink and the downlink. That is, uplink primary numerology and downlink primary numerology may be defined.
  • the information of the numerology set to the cell may be included in the RRC connection reconfiguration message for adding / modifying the SCell and / or PSCell.
  • information that can determine which numerology is applied is included in the elements of the RRC connection reconfiguration message for adding SCell and / or PSCell (for example, (8J) sCellToAddModList cell information and (12B) pSCellToAddMod). Also good. For example, it indicates whether primary or secondary numerology is applied to elements of an RRC connection reconfiguration message for adding SCell and / or PSCell (for example, (8J) sCellToAddModList cell information and (12B) pSCellToAddMod) Information (for example, 1-bit information) may be included.
  • the default numerology for example, Primary numerology
  • the setting of the primary numerology and / or the secondary numerology may include a plurality of numerology settings.
  • the maximum number (for example, up to two) may be set as the type of numerology included in the setting of the primary numerology and / or the secondary numerology.
  • the secondary numerology may include the same settings as the primary numerology.
  • downlink numerology setting may be set for each PUCCH group and / or for each physical channel.
  • the plurality of serving cells may be used as one PUCCH group.
  • this PUCCH group may be set as the Primary PUCCH group.
  • the PUCCH signaling of a plurality of serving cells including the SCell is associated with the PUCCH of a certain SCell in which the PUCCH is set, this PUCCH group may be referred to as a Secondary PUCCH group.
  • a downlink numerology that is common to one PUCCH group may be set.
  • a downlink numerology that is common to the PUCCH groups may be set.
  • the downlink numerology common to each PUCCH group may include an independent numerology for each physical channel.
  • the maximum number of PUCCH groups may be set for each cell group. Also, the maximum number (for example, up to two) may be set as the type of numerology set for each uplink and / or downlink physical channel.
  • either the primary numerology or the secondary numerology setting, or the numerology setting for each PUCCH group may be included in each.
  • the setting of the primary numerology and the secondary numerology may be included in either of the numerology settings for each PUCCH group.
  • CSI-RS setting information may be included in information elements included in the RRC connection reconfiguration message (for example, (8E) radioResourceConfigDedicated, (12A) radioResourceConfigDedicated SCG, measurement target for RRM measurement, etc.). Further, the setting information may include information indicating the numerology of each CSI-RS or information indicating the numerology for each CSI-RS set. In addition, when different numerologies are set between CSI-RSs, the terminal apparatus 2 may regard all CSI-RS settings as valid. Further, the terminal device 2 may regard only the Numerology CSI-RS setting set for PDSCH reception as valid.
  • the terminal device 2 may support a TTI bundle (TTI bundling).
  • TTI bundling is for scheduling PUSCH resources of multiple TTIs using one PDCCH in a situation with poor radio quality such as cell edge, and applying the HARQ process incremental redundancy method to each TTI resource.
  • the data (RV cycling data) changed from the redundancy version (RV) or the repetition of the same data (Repetition data) is sent in order to apply the Chase combining method. is there.
  • the RRC connection reconfiguration message may include information indicating whether to enable TTI bundling.
  • the bundling size may be set to a predetermined value (for example, four).
  • the bundling size may be notified by a message or signal in the RRC layer, the MAC layer, or the physical layer.
  • a 2 ms TTI PUSCH in which four 0.5 ms slots are aggregated is assigned by slot aggregation.
  • the MAC layer function of the terminal device 2 generates a MAC PDU including data of a logical channel that is set to be transmitted with a 2 ms TTI and gives the MAC PDU to the physical layer.
  • (C) When the TTI bundling is valid, for example, if the bundling size is 4, the physical layer function of the terminal device 2 generates data of four different RVs (when the incremental redundancy method is applied), Data generated using four PUSCH resources is transmitted. That is, in (A), a slot having a length of 0.5 ms forms a 2 ms TTI using four slots by slot aggregation. As a result, a schedule in units of 2 ms is performed. In (B), the data of the logical channel permitted to transmit in 2 ms TTI is assigned to the PUSCH.
  • numerology is set for each channel.
  • correspondence between time resources and numerology is notified using an RRC connection reconfiguration message and / or MAC control element and / or DCI.
  • a partial section (slot, subframe, frame, or the like) constituting a time section for example, a frame, a superframe, a hyperframe, or a range of 40 ms or 80 ms from the beginning of a certain reference frame) in units of a certain time length Information indicating the position of the combination) and information indicating the numerology (uplink and / or downlink) may be notified.
  • a partial section slot, subframe, frame, or the like
  • a time section for example, a frame, a superframe, a hyperframe, or a range of 40 ms or 80 ms from the beginning of a certain reference frame
  • Information indicating the position of the combination and information indicating the numerology (uplink and / or downlink) may be notified.
  • A Sampling rate
  • B Subcarrier interval
  • C Subframe length
  • D Time unit used for scheduling (transmission time interval, TTI: Transmission Time Interval)
  • E OFDM symbol length
  • F 1 subframe
  • TTI Transmission Time Interval
  • the physical layer channel setting may include subcarrier interval information (for each signal and / or channel) and / or information on the number of OFDM symbols included in one subframe. . Further, the physical layer of the terminal device 2 may notify the MAC layer of the terminal device 2 of the transmission time interval of the received downlink data and / or the acquired transmission time interval of the uplink transmission resource. . Thereby, appropriate scheduling based on the transmission time interval can be performed in the MAC layer of the terminal device 2.
  • the transmission time interval (TTI) is included in the numerology, but the present invention is not limited thereto, and may be set as another parameter. Even in this case, when numerology information is included in a certain message, a transmission time interval (TTI) may be included in the message.
  • TTI Transmission Duration
  • FIG. 2 is a schematic block diagram showing the configuration of the terminal device 2 of the present embodiment.
  • the terminal device 2 includes a wireless transmission / reception unit 20 and an upper layer processing unit 24.
  • the wireless transmission / reception unit 20 includes an antenna unit 21, an RF (Radio Frequency) unit 22, and a baseband unit 23.
  • the upper layer processing unit 24 includes a medium access control layer processing unit 25 and a radio resource control layer processing unit 26.
  • the wireless transmission / reception unit 20 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit. Moreover, you may provide the control part which controls the operation
  • the upper layer processing unit 24 outputs the uplink data (transport block) generated by the user operation or the like to the wireless transmission / reception unit 20.
  • the upper layer processing unit 24 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). A part or all of the processing of the Resource Control (RRC) layer is performed.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio radio resource control
  • the medium access control layer processing unit 25 included in the upper layer processing unit 24 performs processing of the medium access control layer.
  • the medium access control layer processing unit 25 controls transmission of the scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 26.
  • the radio resource control layer processing unit 26 included in the upper layer processing unit 24 performs processing of the radio resource control layer.
  • the radio resource control layer processing unit 26 manages various setting information / parameters of the own device.
  • the radio resource control layer processing unit 26 sets various setting information / parameters based on the upper layer signal received from the base station apparatus 3. That is, the radio resource control layer processing unit 26 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station apparatus 3.
  • the wireless transmission / reception unit 20 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the radio transmission / reception unit 20 separates, demodulates, and decodes the signal received from the base station apparatus 3 and outputs the decoded information to the upper layer processing unit 24.
  • the radio transmission / reception unit 20 generates a transmission signal by modulating and encoding data, and transmits the transmission signal to the base station apparatus 3.
  • the RF unit 22 converts the signal received via the antenna unit 21 into a baseband signal by orthogonal demodulation (down-conversion: down cover), and removes unnecessary frequency components.
  • the RF unit 22 outputs the processed analog signal to the baseband unit.
  • the baseband unit 23 converts the analog signal input from the RF unit 22 into a digital signal.
  • the baseband unit 23 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs fast Fourier transform (FFT) on the signal from which CP is removed, and outputs a signal in the frequency domain. Extract.
  • CP Cyclic Prefix
  • FFT fast Fourier transform
  • the baseband unit 23 performs an inverse fast Fourier transform (IFFT) on the data to generate an SC-FDMA symbol, adds a CP to the generated SC-FDMA symbol, and converts the baseband digital signal to Generate and convert baseband digital signals to analog signals.
  • IFFT inverse fast Fourier transform
  • the RF unit 22 removes an extra frequency component from the analog signal input from the baseband unit 23 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits it through the antenna unit 21. To do.
  • the RF unit 22 amplifies power. Further, the RF unit 22 may have a function of controlling transmission power.
  • the RF unit 22 is also referred to as a transmission power control unit.
  • the terminal device 2 may be configured to include a plurality of parts or all of each unit in order to support transmission / reception processing in the same subframe of a plurality of frequencies (frequency bands, frequency bandwidths) or cells.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present embodiment.
  • the base station apparatus 3 includes a radio transmission / reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit. Moreover, you may provide the control part which controls the operation
  • the upper layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). A part or all of the processing of the Resource Control (RRC) layer is performed.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio radio resource control
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the medium access control layer.
  • the medium access control layer processing unit 35 performs processing related to the scheduling request based on various setting information / parameters managed by the radio resource control layer processing unit 36.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the radio resource control layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block), system information, RRC message, MAC CE (Control Element), etc. arranged in the physical downlink shared channel, or obtains it from the upper node. , Output to the wireless transceiver 30.
  • the radio resource control layer processing unit 36 manages various setting information / parameters of each terminal device 2.
  • the radio resource control layer processing unit 36 may set various setting information / parameters for each of the terminal devices 2 via upper layer signals. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
  • the function of the wireless transmission / reception unit 30 is the same as that of the wireless transmission / reception unit 20, description thereof is omitted.
  • the base station apparatus 3 is connected to one or more transmission / reception points 4, some or all of the functions of the wireless transmission / reception unit 30 may be included in each transmission / reception point 4.
  • the upper layer processing unit 34 transmits (transfers) a control message or user data between the base station apparatuses 3 or between the upper network apparatus (MME, S-GW (Serving-GW)) and the base station apparatus 3. ) Or receive.
  • MME upper network apparatus
  • S-GW Serving-GW
  • FIG. 3 other constituent elements of the base station apparatus 3 and transmission paths for data (control information) between the constituent elements are omitted, but other functions necessary for operating as the base station apparatus 3 are omitted. It is clear that it has a plurality of blocks as constituent elements.
  • a radio resource management layer processing unit and an application layer processing unit exist above the radio resource control layer processing unit 36.
  • part in the figure is an element that realizes the functions and procedures of the terminal device 2 and the base station device 3, which are also expressed by terms such as section, circuit, component device, device, and unit.
  • Each of the parts denoted by reference numerals 20 to 26 included in the terminal device 2 may be configured as a circuit.
  • Each of the parts denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • a first aspect of the present invention is a terminal device, which is a first device indicating one or a plurality of candidates of any combination or combination of subcarrier intervals, slot numbers, OFDM symbol numbers, and transmission time intervals.
  • SCS subcarrier interval
  • TTI transmission time interval
  • the receiving unit further receives second information indicating the association of each of one or a plurality of logical channels with a transmission time interval, and based on the first information
  • a medium access control layer processing unit that generates a MAC layer protocol data unit (MAC-PDU) based on the specified transmission time interval and the second information.
  • MAC-PDU MAC layer protocol data unit
  • the first information is notified by an RRC connection reconfiguration message.
  • MCI mobility control information
  • the transmission time interval of the corresponding physical downlink shared channel is determined based on the information (second information) notified on the physical downlink control channel and the first information. Identify.
  • the transmission time interval of the allocated physical uplink shared channel is determined based on information (third information) notified on the physical downlink control channel and the first information. Identify.
  • a second aspect of the present invention is a base station apparatus, which is a first that indicates one or a plurality of candidates of any combination or combination of subcarrier intervals, slot numbers, OFDM symbol numbers, and transmission time intervals.
  • a control unit that generates the information, and at least a subcarrier interval (SCS) and a transmission time interval (TTI) set for a physical channel based on at least the first information. ), Or one or a plurality of candidates of the combination, and a transmission unit that transmits a physical channel.
  • SCS subcarrier interval
  • TTI transmission time interval
  • a third aspect of the present invention is a communication method applied to a terminal apparatus, and is a combination of one or a plurality of subcarrier intervals, slot numbers, OFDM symbol numbers, and transmission time intervals.
  • SCS subcarrier interval
  • TTI transmission time interval
  • a fourth aspect of the present invention is an integrated circuit mounted on a terminal device, and is one or a plurality of combinations or combinations of subcarrier intervals, slot numbers, OFDM symbol numbers, and transmission time intervals.
  • the terminal device is caused to exhibit the function of specifying one or more candidates for the combination.
  • a fifth aspect of the present invention is a communication method applied to a base station apparatus, and any one or a combination of a subcarrier interval, a slot number, an OFDM symbol number, and a transmission time interval.
  • TTI transmission time interval
  • a sixth aspect of the present invention is an integrated circuit mounted on a base station apparatus, and is one or a plurality of combinations or combinations of subcarrier intervals, slot numbers, OFDM symbol numbers, and transmission time intervals.
  • a function of transmitting a physical channel using any one of a combination with a transmission time interval (TTI) or one or a plurality of candidates of the combination is exhibited to the base station apparatus.
  • TTI transmission time interval
  • the terminal device 2 and the base station device 3 can communicate efficiently.
  • the uplink transmission scheme can be applied to both communication systems of the FDD (frequency division duplex) scheme and the TDD (time division duplex) scheme.
  • the names of the parameters and events shown in the embodiments are referred to for convenience of explanation, and even if the names actually applied differ from the names of the embodiments of the present invention, It does not affect the gist of the invention claimed in the embodiments of the invention.
  • connection used in each embodiment is not limited to a configuration in which a certain device and another certain device are directly connected using a physical line, and is logically connected. And a configuration in which wireless connection is performed using a wireless technology.
  • the terminal device 2 is also called a user terminal, a mobile station device, a communication terminal, a mobile device, a terminal, a UE (User Equipment), and an MS (Mobile Station).
  • the base station device 3 includes a radio base station device, a base station, a radio base station, a fixed station, an NB (NodeB), an eNB (evolved NodeB), a BTS (Base Transceiver Station), a BS (Base Station), an NR NB (NR NodeB). ), NNB, TRP (Transmission and Reception Point), gNB (next generation Node B).
  • the base station device 3 can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 2 according to the above-described embodiment can also communicate with the base station device 3 as an aggregate.
  • the base station device 3 in the above-described embodiment may be an EUTRAN (Evolved Universal Terrestrial Radio Access Network) or a next generation core network (NextGen Core).
  • the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a program that operates on an apparatus according to one aspect of the present invention is a program that controls a central processing unit (CPU) or the like to function a computer so as to realize the function of the embodiment according to one aspect of the present invention. Also good.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or other storage system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments according to one aspect of the present invention may be recorded on a computer-readable recording medium. You may implement
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or other recording medium that can be read by a computer. Also good.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured by a digital circuit or an analog circuit.
  • one or more aspects of the present invention can use a new integrated circuit based on the technology.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • Terminal device 3
  • Base station device 20
  • Radio transmission / reception unit 21 22
  • Antenna unit 22 22
  • RF unit 23 23
  • Baseband unit 24 34
  • Upper layer processing unit 25 35
  • Medium access control layer processing unit 26 36
  • Radio resource Control layer processor 4 4

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置が、前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信する受信部と、前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行ない、前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択する処理部とを備え、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。

Description

端末装置、基地局装置、通信方法、および、集積回路
 本発明は、端末装置、基地局装置、通信方法、および、集積回路に関する。
 本願は、2017年4月27日に日本に出願された特願2017-088203号について優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE:登録商標)」、または、「Evolved Universal Terrestrial Radio Access:EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project:3GPP)において検討されている。また、3GPPにおいて、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、LTEの拡張技術であるLTE―Advanced Proおよび新しい無線アクセス技術であるNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra―Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。
 またNRでは、異なる複数の物理パラメータ(例えばサブキャリア間隔)を用いて通信することが検討されており(非特許文献2)、端末装置は、異なる複数の物理パラメータのうちのいずれの物理パラメータを用いて基地局装置と通信するかを特定する必要がある。
RP-161214,NTT DOCOMO,"Revision of SI: Study on New Radio Access Technology",2016年6月 3GPP R1-166878 http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86/Docs/R1-166878.zip 3GPP R2-168531 http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_96/Docs/R2-168531.zip
 NRでは、端末の能力とセルでサポートされる物理パラメータに基づき、基地局装置と端末装置とが複数の物理パラメータ(ヌメロロジー)を用いて通信することが検討されている(非特許文献3)。しかしながら、必要なパラメータの通知方法や適用方法についての検討が行われておらず、基地局装置と端末装置との通信を、効率的に行うことができないという課題があった。
 本発明の一態様は、上記した事情に鑑みてなされたもので、基地局装置との通信を効率的に行うことができる端末装置、該端末装置と通信する基地局装置、該端末装置に用いられる通信方法、該基地局装置に用いられる通信方法、該端末装置に実装される集積回路、該基地局装置に実装される集積回路を提供することを目的の一つとする。
 (1)上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、基地局装置とセルを介して通信する端末装置であって、前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信する受信部と、前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行ない、前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択する処理部とを備え、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 (2)本発明の第2の態様は、端末装置とセルを介して通信する基地局装置であって、前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信する送信部と、前記無線リソース制御の再設定メッセージにパラメータを含める処理部を備え、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 (3)本発明の第3の態様は、基地局装置とセルを介して通信する端末装置に適用される通信方法であって、前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信するステップと、前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行なうステップと、前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択するステップとを含み、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 (4)本発明の第4の態様は、端末装置とセルを介して通信する基地局装置に適用される通信方法であって、前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信するステップと、前記無線リソース制御の再設定メッセージにパラメータを含めるステップとを含み、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 (5)本発明の第5の態様は、基地局装置とセルを介して通信する端末装置に実装される集積回路であって、前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信する機能と、前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行なう機能と、前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択する機能とを前記端末装置に対して発揮させ、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 (6)本発明の第6の態様は、端末装置とセルを介して通信する基地局装置に実装される集積回路であって、前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信する機能と、前記無線リソース制御の再設定メッセージにパラメータを含める機能とを前記基地局装置に対して発揮させ、前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、前記論理チャネルはデータ無線ベアラと対応付けられる。
 本発明の一態様によれば、端末装置および基地局装置は、効率的に通信を行うことができる。
本実施形態の無線通信システムの概念図である。 本発明の実施形態に係る端末装置の概略構成の一例を示すブロック図である。 本発明の実施形態に係る基地局装置の概略構成の一例を示すブロック図である。 本発明の実施形態に係る下りリンクスロットの概略構成の一例を示す図である。 本発明の実施形態に係るサブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。 本発明の実施形態に係るスロットまたはサブフレームの一例を示す図である。 本発明の実施形態に係るRRC接続再設定手順の一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージの一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージに含まれる要素の一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージに含まれる要素の一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージに含まれる要素の一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージに含まれる要素の一例を示す図である。 本発明の実施形態に係るRRC接続再設定手順の一例を示す図である。 本発明の実施形態に係るRRC接続再設定メッセージに含まれる要素の一例を示す図である。 本発明の実施形態に係るヌメロロジーに関する情報および送信時間間隔(TTI)設定の一例を示す図である。
 以下、本発明の実施形態について説明する。
 本実施形態の無線通信システム、および無線ネットワークについて説明する。
 LTE(およびLTE-A Pro)とNRは、異なるRAT(Radio Access Technology)として定義されてもよい。NRは、LTEに含まれる技術として定義されてもよい。LTEは、NRに含まれる技術として定義されてもよい。本実施形態はNR、LTEおよび他のRATに適用されてよい。以下の説明では、LTEに関連する用語を用いて説明するが、他の用語を用いる他の技術において適用されてもよい。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置2および基地局装置3を具備する。また、基地局装置3は、1または複数の送受信点4(transmission reception point:TRP)を具備してもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置2をサーブしてもよい。また、基地局装置3は、1または複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置2をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area、またはBeamed cellとも称する)にわけ、それぞれの部分領域において端末装置2をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックス、クワジコロケーションのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。
 基地局装置3がカバーする通信エリアは周波数毎にそれぞれ異なる広さ、異なる形状であっても良い。また、カバーするエリアが周波数毎に異なっていてもよい。また、基地局装置3の種別やセル半径の大きさが異なるセルが、同一の周波数または異なる周波数に混在して1つの通信システムを形成している無線ネットワークのことを、ヘテロジニアスネットワークと称する。
 基地局装置3から端末装置2への無線通信リンクを下りリンクと称する。端末装置2から基地局装置3への無線通信リンクを上りリンクと称する。端末装置2から他の端末装置2への直接無線通信リンクをサイドリンクと称する。
 図1において、端末装置2と基地局装置3の間の無線通信および/または端末装置2と他の端末装置2の間の無線通信では、サイクリックプレフィックス(CP:Cyclic Prefix)を含む直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM:Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM:Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM:Multi-Carrier Code Division Multiplexing)が用いられてもよい。
 また、図1において、端末装置2と基地局装置3の間の無線通信および/または端末装置2と他の端末装置2の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC:Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM:Filtered OFDM)、窓が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC:Filter-Bank Multi-Carrier)が用いられてもよい。
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明の一態様に含まれる。
 また、図1において、端末装置2と基地局装置3の間の無線通信および/または端末装置2と他の端末装置2の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。
 端末装置2は、セルの中を通信エリアとみなして動作する。端末装置2が、非無線接続時(アイドル状態、RRC_IDLE状態とも称する)はセル再選択手順によって別の適切なセルへ移動してもよい。端末装置2が、無線接続時(コネクティッド状態、RRC_CONNECTED状態とも称する)はハンドオーバ手順によって別のセルへ移動してもよい。適切なセルとは、一般的に、基地局装置3から示される情報に基づいて端末装置2のアクセスが禁止されていないと判断されるセルであって、かつ、下りリンクの受信品質が所定の条件を満たすセルのことを示す。また、端末装置2が、不活動状態(インアクティブ状態とも称する)において、セル再選択手順によって別の適切なセルへ移動してもよい。端末装置2が、不活動状態において、ハンドオーバ手順によって別のセルへ移動してもよい。
 端末装置2がある基地局装置3と通信可能であるとき、その基地局装置3のセルのうち、端末装置2との通信に使用されるように設定されているセルを在圏セル(Serving cell)と称して、その他の通信に使用されないセルは周辺セル(Neighboring cell)と称してよい。また、在圏セルにおいて必要となるシステム情報の一部あるいは全部は、端末装置2に対して、別のセルで報知または通知される場合もある。
 本実施形態では、端末装置2に対して1つまたは複数のサービングセルが設定される。複数のサービングセルが端末装置2に対して設定された場合、設定された複数のサービングセルは、1つのプライマリセルと1つまたは複数のセカンダリセルとを含んでよい。プライマリセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルでもよい。RRC(Radio Resource Control)接続が確立された時点、または、RRC接続が確立された後に、1つまたは複数のセカンダリセルが設定されてもよい。また、プライマリセル(PCell)を含む1つまたは複数のサービングセルで構成されるセルグループ(マスターセルグループ(MCG)とも称する)と、プライマリセルを含まず、少なくともランダムアクセス手順が実施可能であり非活性状態とならないプライマリセカンダリセル(PSCell)を含む1つまたは複数のサービングセルで構成される1つまたは複数のセルグループ(セカンダリセルグループ(SCG)とも称する)とが端末装置2に対して設定されてもよい。
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてよい。複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリア(あるいは下りリンクキャリア)と称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリア(あるいは上りリンクキャリア)と称する。サイドリンクにおいて、サービングセルに対応するキャリアをサイドリンクコンポーネントキャリア(あるいはサイドリンクキャリア)と称する。下りリンクコンポーネントキャリア、上りリンクコンポーネントキャリア、および/またはサイドリンクコンポーネントキャリアを総称してコンポーネントキャリア(あるいはキャリア)と称する。
 本実施形態の物理チャネルおよび物理シグナルについて説明する。
 図1において、端末装置2と基地局装置3の下りリンク無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・NR-PBCH(New Radio Physical Broadcast CHannel)
・NR-PDCCH(New Radio Physical Downlink Control CHannel)
・NR-PDSCH(New Radio Physical Downlink Shared CHannel)
 NR-PBCHは、端末装置2が必要とする重要なシステム情報(Essential information)を含む重要情報ブロック(MIB:Master Information Block、EIB:Essential Information Block)を基地局装置3が報知するために用いられる。ここで、1つまたは複数の重要情報ブロックは、重要情報メッセージとして送信されてもよい。例えば、重要情報ブロックにはフレーム番号(SFN:System Frame Number)の一部あるいは全部を示す情報(例えば、複数のフレームで構成されるスーパーフレーム内における位置に関する情報)が含まれてもよい。例えば、無線フレーム(10ms)は、1msのサブフレームの10個で構成され、無線フレームは、フレーム番号で識別される。フレーム番号は、1024で0に戻る(Wrap around)。また、セル内の領域ごとに異なる重要情報ブロックが送信される場合には領域を識別できる情報(例えば、領域を構成する基地局送信ビームの識別子情報)が含まれてもよい。ここで、基地局送信ビームの識別子情報は、基地局送信ビーム(プリコーディング)のインデックスを用いて示されてもよい。また、セル内の領域ごとに異なる重要情報ブロック(重要情報メッセージ)が送信される場合にはフレーム内の時間位置(例えば、当該重要情報ブロック(重要情報メッセージ)が含まれるサブフレーム番号)を識別できる情報が含まれてもよい。すなわち、異なる基地局送信ビームのインデックスが用いられた重要情報ブロック(重要情報メッセージ)の送信のそれぞれが行われるサブフレーム番号のそれぞれを決定するための情報が含まれてもよい。例えば、重要情報には、セルへの接続やモビリティのために必要な情報が含まれてもよい。また、重要情報メッセージはシステム情報メッセージの一部であってもよい。また、重要情報メッセージの一部あるいは全部が、最少システム情報(Minimum SI)と称されてもよい。あるセルにおける有効な最少システム情報のすべてが取得できない場合に、端末装置2は、そのセルをアクセスが禁止されたセル(Barred Cell)とみなしてもよい。また、最少システム情報の一部のみがPBCHで報知され、残りの最少システム情報が後述するNR-PSCHで送信されてもよい。
 NR-PDCCHは、下りリンクの無線通信(基地局装置3から端末装置2への無線通信)において、下りリンク制御情報(Downlink Control Information:DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。
 例えば、DCIとして、スケジューリングされたNR-PDSCHに対するHARQ-ACKを送信するタイミング(例えば、NR-PDSCHに含まれる最後のシンボルからHARQ-ACK送信までのシンボル数)示す情報を含むDCIが定義されてもよい。
 例えば、DCIとして、1つのセルにおける1つの下りリンクの無線通信NR-PDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングのために用いられるDCIが定義されてもよい。
 例えば、DCIとして、1つのセルにおける1つの上りリンクの無線通信NR-PUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングのために用いられるDCIが定義されてもよい。
 例えば、DCIには、1つのセルにおける1つの下りリンクの無線通信NR-PDSCHのサブキャリア間隔(SCS)および/またはスケジューリングに用いられる時間の単位(送信時間間隔、TTI:Transmission Time Interval)を示すための情報が含まれてもよい。
 例えば、DCIには、1つのセルにおける1つの上りリンクの無線通信NR-PDSCHのサブキャリア間隔(SCS)および/または送信時間間隔(TTI)を示すための情報が含まれてもよい。
 ここで、DCIには、NR-PDSCHあるいはNR-PUSCHのスケジューリングに関する情報が含まれる。ここで、下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。
 NR-PDSCHは、媒介アクセス(MAC:Medium Access Control)からの下りリンクデータ(DL-SCH:Downlink Shared CHannel)の送信に用いられる。また、システム情報(SI:System Information)やランダムアクセス応答(RAR:Random Access Response)などの送信にも用いられる。
 ここで、基地局装置3と端末装置2は、上位層(higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置2は、無線リソース制御(RRC:Radio Resource Control)層において、RRCシグナリング(RRC message:Radio Resource Control message、RRC information:Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置2は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、RRCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。
 NR-PDSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置2に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置2に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)な情報は、ある端末装置2に対して専用のシグナリングを用いて送信されてもよい。
 NR-PRACHは、ランダムアクセスプリアンブルを送信するために用いられてもよい。NR-PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびNR-PUSCH(UL-SCH)リソースの要求を示すために用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal:SS)
・参照信号(Reference Signal:RS)
 同期信号は、端末装置2が下りリンクの周波数領域および時間領域の同期をとるために用いられる。同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(Second Synchronization Signal)を含んでよい。また、同期信号は、端末装置2がセル識別子(セルID:Cell Identifier、PCI:Physical Cell Identifierとも称する)を特定するために用いられてもよい。また、同期信号は、下りリンクビームフォーミングにおいて基地局装置3が用いる基地局送信ビームおよび/または端末装置2が用いる端末受信ビームの選択/識別/決定に用いられてよい。すなわち、同期信号は、基地局装置3によって下りリンク信号に対して適用された基地局送信ビームのインデックスを、端末装置2が選択/識別/決定するために用いられてもよい。NRにおいて用いられる同期信号、プライマリ同期信号およびセカンダリ同期信号をそれぞれNR-SS、NR-PSS、NR-SSSと称してもよい。また、同期信号は、セルの品質を測定するために用いられてもよい。例えば同期信号の受信電力(SSRP)や受信品質(SSRQ)が測定に用いられてよい。また、同期信号は、一部の下りリンク物理チャネルの伝搬路補正を行なうために用いられてもよい。
 下りリンクの参照信号(以下、本実施形態では単に参照信号とも記載する)は、用途等に基づいて複数の参照信号に分類されてよい。例えば、参照信号には以下の参照信号の1つまたは複数が用いられてよい。
・DMRS(Demodulation Reference Signal)
・CSI-RS(Channel State Information Reference Signal)
・PTRS(Phase Tracking Reference Signal)
・MRS(Mobility Reference Signal)
 DMRSは、受信した変調信号の復調時の伝搬路補償に用いられてよい。DMRSは、NR-PDSCHの復調用、NR-PDCCHの復調用、および/またはNR-PBCHの復調用のDMRSを総じてDMRSと称してもよいし、それぞれ個別に定義されてもよい。
 CSI-RSは、チャネル状態測定およびビームマネジメントに用いられてよい。PTRSは、端末の移動等により位相をトラックするために使用されてよい。MRSは、ハンドオーバのための複数の基地局装置からの受信品質を測定するために使用されてよい。
 また、参照信号には、位相雑音を補償するための参照信号が定義されてもよい。
 また、参照信号は、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号は、ビームマネジメントに用いられてよい。
 ビームマネジメントは、送信装置(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置2である)におけるアナログおよび/またはディジタルビームと、受信装置(下りリンクの場合は端末装置2、上りリンクの場合は基地局装置3である)におけるアナログおよび/またはディジタルビームの指向性を合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置2の手続きであってよい。
 なお、ビームペアリンクを構成、設定または確立する手続きとして、下記の手続きを含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
 例えば、ビーム選択は、基地局装置3と端末装置2の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置2の移動によって最適な基地局装置3と端末装置2の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置2の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。
 ビームマネジメントには、ビーム選択、ビーム改善が含まれてよい。ビームリカバリには、下記の手続きを含んでよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
 例えば、端末装置2における基地局装置3の送信ビームを選択する際にCSI-RSまたは同期信号ブロック内の同期信号(例えば、SSS)を用いてもよいし、擬似同位置(QCL:Quasi Co―Location)想定を用いてもよい。
 もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。
 このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間のQCL想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival)、ZoA(Zenith angle of Arrival)など)および/または角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD、ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSS(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)であってもよい。
 この方法により、ビームマネジメントとして、空間のQCL想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置2の動作が定義されてもよい。
 ただし、上記複数の参照信号の少なくとも一部は、他の参照信号がその機能を有してもよい。
 また、上記複数の参照信号の少なくとも1つ、あるいはその他の参照信号が、セルに対して個別に設定されるセル固有参照信号(Cell-specific reference signal;CRS)、基地局装置3あるいは送受信点4が用いる送信ビーム毎のビーム固有参照信号(Beam-specific reference signal;BRS)、および/または、端末装置2に対して個別に設定される端末固有参照信号(UE-specific reference signal;URS)として定義されてもよい。
 また、参照信号の少なくとも1つは、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。
 また、参照信号の少なくとも1つは、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号の少なくとも1つは、ビームマネジメントに用いられてよい。無線リソース測定のことを以下では単に測定とも称する。また、ビームは、送信または受信フィルタ設定(Filter Configuration)と定義されてよい。
 また、参照信号の少なくとも1つに、同期信号が含まれてもよい。
 図1において、端末装置2と基地局装置3の上りリンク無線通信(端末装置2から基地局装置3の無線通信)では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・NR-PUCCH(New Radio Physical Uplink Control CHannel)
・NR-PUSCH(New Radio Physical Uplink Shared CHannel)
・NR-PRACH(New Radio Physical Random Access CHannel)
 NR-PUCCHは、上りリンク制御情報(Uplink Control Information:UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI:Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR:Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit:MAC PDU,Downlink-Shared Channel:DL-SCH)に対するHARQ-ACKを示してもよい。
 NR-PUSCHは、媒介アクセス(MAC:Medium Access Control)からの上りリンクデータ(UL-SCH:Uplink Shared CHannel)の送信に用いられる。また、上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
 NR-PUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、NR-PUSCHは、上りリンクに置いてUEの能力(UE Capability)の送信に用いられてもよい。
 なお、NR-PDCCHとNR-PUCCHには同一の呼称(例えばNR-PCCH)および同一のチャネル定義が用いられてもよいし。NR-PDSCHとNR-PUSCHには同一の呼称(例えばNR-PSCH)および同一のチャネル定義が用いられてもよい。
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control:MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block:TB)またはMAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliver)デ-タの単位である。物理層において、トランスポートブロックはコ-ドワードにマップされ、コ-ドワード毎に符号化処理が行なわれる。
 本実施形態の無線プロトコル構造について説明する。
 本実施形態では、端末装置2及び基地局装置3のユーザデータを扱うプロトコルスタックをユーザプレーン(UP(User-plane、U-Plane))プロトコルスタック、制御データを扱うプロトコルスタックを制御プレーン(CP(Control-plane、C-Plane))プロトコルスタックと称する。
 物理層(Physical layer:PHY層)は、物理チャネル(Physical Channel)を利用して上位層に伝送サービスを提供する。PHY層は、上位の媒体アクセス制御層(Medium Access Control layer:MAC層)とトランスポートチャネルで接続される。トランスポートチャネルを介して、MAC層とPHY層とレイヤ(layer:層)間でデータが移動する。端末装置2と基地局装置3のPHY層間において、物理チャネルを介してデータの送受信が行われる。
 MAC層は、多様な論理チャネルを多様なトランスポートチャネルにマッピングを行う。MAC層は、上位の無線リンク制御層(Radio Link Control layer:RLC層)とは論理チャネルで接続される。論理チャネルは、伝送される情報の種類によって大きく分けられ、制御情報を伝送する制御チャネルとユーザ情報を伝送するトラフィックチャネルに分けられる。MAC層は、間欠受送信(DRX・DTX)を行うためにPHY層の制御を行う機能、ランダムアクセス手順を実行する機能、送信電力の情報を通知する機能、HARQ制御を行う機能などを持つ。
 RLC層は、上位層から受信したデータを分割(Segmentation)し、下位層が適切にデータ送信できるようにデータサイズを調節する。また、RLC層は、各データが要求するQoS(Quality of Service)を保証するための機能も持つ。すなわち、RLC層は、データの再送制御等の機能を持つ。
 パケットデータコンバージェンスプロトコル層(Packet Data Convergence Protocol layer:PDCP層)は、ユーザデータであるIPパケットを無線区間で効率的に伝送するために、不要な制御情報の圧縮を行うヘッダ圧縮機能を持つ。また、PDCP層は、データの暗号化の機能も持つ。
 さらに、制御プレーンプロトコルスタックには、無線リソース制御層(Radio Resource Control layer:RRC層)がある。RRC層は、無線ベアラ(Radio Bearer:RB)の設定・再設定を行い、論理チャネル、トランスポートチャネル及び物理チャネルの制御を行う。RBは、シグナリグ無線ベアラ(Signaling Radio Bearer:SRB)とデータ無線ベアラ(Data Radio Bearer:DRB)とに分けられてもよく、SRBは、制御情報であるRRCメッセージを送信する経路として利用されてもよい。DRBは、ユーザデータを送信する経路として利用されてもよい。基地局装置3と端末装置2のRRC層間で各RBの設定が行われてもよい。
 なお、PHY層は一般的に知られる開放型システム間相互接続(Open Systems Interconnection:OSI)モデルの階層構造の中で第一層の物理層に対応し、MAC層、RLC層及びPDCP層はOSIモデルの第二層であるデータリンク層に対応し、RRC層はOSIモデルの第三層であるネットワーク層に対応する。
 上記のMAC層、RLC層及びPDCP層の機能分類は一例であり、各機能の一部あるいは全部が実装されなくてもよい。また、各層の機能の一部あるいは全部が他の層に含まれてもよい。例えば、物理層から見れば、MAC層のコントロールエレメント、およびRRCシグナリングは、上位層の信号である。例えば、MAC層から見れば、RRCシグナリングは、上位層の信号である。RRC層から見れば、MAC層および物理層は、下位層である。RRC層から見て、例えばNAS層は、上層(Upper Layer)とも称する。
 また、ネットワークと端末装置2との間で用いられるシグナリングプロトコルは、アクセス層(Access Stratum:AS)プロトコルと非アクセス層(Non-Access Stratum:NAS)プロトコルとに分割される。例えば、RRC層以下のプロトコルは、端末装置2と基地局装置3との間で用いられるアクセス層プロトコルである。また、端末装置2の接続管理(Connection Management:CM)やモビリティ管理(Mobility Management:MM)などのプロトコルは非アクセス層プロトコルであり、端末装置2とコアネットワーク(CN)との間で用いられる。例えば、端末装置2とモバイル管理エンティティ(Mobility Management Entity:MME)との間で、非アクセス層プロトコルを用いた通信が、基地局装置3を介して透過的に行われる。
 以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。また、1つまたは複数のサブフレームが1つの無線フレームを構成してもよい。
 図4は、本発明の実施形態に係る下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびX個のスロットから構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。図4は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
 リソースブロックは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。スロットに含まれるOFDMシンボル数X=7で、NCPの場合には、1つの物理リソースブロックは、時間領域において7個の連続するOFDMシンボルと周波数領域において12個の連続するサブキャリアとから定義される。つまり、1つの物理リソースブロックは、(7×12)個のリソースエレメントから構成される。ECP(Extended CP)の場合、1つの物理リソースブロックは、例えば、時間領域において6個の連続するOFDMシンボルと、周波数領域において12個の連続するサブキャリアとにより定義される。つまり、1つの物理リソースブロックは、(6×12)個のリソースエレメントから構成される。このとき、1つの物理リソースブロックは、時間領域において1つのスロットに対応し、15kHzのサブキャリア間隔の場合、周波数領域において180kHz(60kHzの場合には720kHz)に対応する。物理リソースブロックは、周波数領域において0から番号が付けられている。
 次に、サブフレーム、スロット、ミニスロットについて説明する。図5は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義されてよい。例えば、サブフレームはサブキャリア間隔によらず1msであってよく、スロットに含まれるOFDMシンボル数は7または14であってよく、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。そのため、スロット長は、サブキャリア間隔をΔf(kHz)とすると、1スロットを構成するOFDMシンボル数が7の場合、スロット長は0.5/(Δf/15)msで定義されてよい。ここで、Δfはサブキャリア間隔(kHz)で定義されてよい。また、1スロットを構成するOFDMシンボル数が14の場合、スロット長は1/(Δf/15)msで定義されてよい。ここで、Δfはサブキャリア間隔(kHz)で定義されてよい。さらに、スロットに含まれるOFDMシンボル数をXとしたときに、スロット長はX/14/(Δf/15)msで定義されてもよい。
 ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。
 図6は、スロットまたはサブフレーム(サブフレームタイプ)の一例を示す図である。ここでは、サブキャリア間隔15kHzにおいてスロット長が0.5msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクパート(デュレーション)
・ギャップ
・上りリンクパート(デュレーション)のうち1つまたは複数を含んでよい。
 図6(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図6(b)は、最初の時間リソースで例えばPCCHを介して上りリンクのスケジューリングを行い、PCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンク信号を送信する。図6(c)は、最初の時間リソースで下りリンクのPCCHおよび/または下りリンクのPSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPSCHまたはPCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ-ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図6(d)は、最初の時間リソースで下りリンクのPCCHおよび/または下りリンクのPSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPSCHおよび/またはPCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL-SCHの送信に用いられてもよい。図6(e)は、全て上りリンク送信(上りリンクのPSCHまたはPCCH)に用いられている例である。
 上述の下りリンクパート、上りリンクパートは、LTEと同様複数のOFDMシンボルで構成されてよい。
 ここで、リソースグリッドが、複数のサブキャリアと複数のOFDMシンボルまたはSC-FDMAシンボルによって定義されてもよい。また、1つのスロットを構成するサブキャリアの数は、セルの帯域幅に依存してもよい。1つの下りリンクパート、上りリンクパートを構成するOFDMシンボルの数は1または2以上であってもよい。ここで、リソースグリッド内のエレメントのそれぞれはリソースエレメントと称される。また、リソースエレメントは、サブキャリアの番号とOFDMシンボルまたはSC-FDMAシンボル番号を用いて識別されてもよい。
 基地局装置3は、図6のサブフレーム構成の信号を送信してよい。
 本実施形態で用いるRRC接続再設定メッセージの一例を、図8を用いて説明する。
 図8に示すように、RRC接続再設定メッセージは(8A)rrc-TransactionIdentifier、(8B)measConfig、(8C)mobilityControlInfo、(8D)dedicatedInfoNASList、(8E)radioResourceConfigDedicated、(8F)securityConfigHO、(8G)otherConfig、(8H)fullConfig、(8I)sCellToReleaseList、(8J)sCellToAddModList、(8K)systemInfomationBlockDedicatedの一部あるいは全部を含んでよい。
 (8A)rrc-TransactionIdentifierは、RRCプロシージャ(トランザクション)の識別に用いられる要素であり、例えば0から3の整数を値として持つ。(8B)measConfigは、端末装置2によって実行される(Performed)測定を設定するための情報であり、測定のためのギャップ期間の設定を含んでよい。(8D)dedicatedInfoNASListは、ネットワークと端末装置2との間でやり取りされる端末装置2固有のNAS層の情報のリストであり、DRB毎のNAS層の情報を含み、RRC層は透過的にこの情報を上位レイヤ(NAS層)に転送する。(8E)radioResourceConfigDedicatedは、SRBやDRBの設定、変更、および/または解放に使われる情報、MAC層の設定を変更するための情報、物理層のチャネル設定に関する情報などが含まれてよい。(8F)securityConfigHOは、セキュリティに関する設定であり、例えば、SRBのAS層における完全性保証(Integrity Protection)アルゴリズムの設定や、SRBおよび/またはDRBの暗号(Ciphering)アルゴリズムの設定などを含んでよい。(8H)fullConfigは、このRRC接続再設定メッセージに特定のオプションが適用されるか否かを示す情報であり、端末装置2は、(8H)fullConfigがRRC接続再設定メッセージに含まれる場合に、特定の要素に含まれる設定を適用するようにしてよい。(8I)sCellToReleaseList、(8J)sCellToAddModListは、セカンダリセルの追加、変更、および/または解放に使われる情報が含まれてよい。(8K)systemInfomationBlockDedicatedは、ターゲットセルの報知情報の一部を含んでよい。
 (8C)mobilityControlInfoは、図9に示すような、ネットワーク制御によるモビリティ(例えばハンドオーバ)のために必要なパラメータを含む。(8C)mobilityControlInfoは、(9A)targetPhysCellId、(9B)carrierFreq、(9C)carrierBandwidth、(9D)t304、(9E)newUE-Identity、(9F)radioResourceConfigCommon、(9G)rach-ConfigDedicated、の一部あるいは全部を含んでよい。また、(8C)mobilityControlInfoは、その他の様々な情報を含んでもよい。
 (9A)targetPhysCellIdは、ターゲットセルの識別子(例えば物理セル識別子)を示す。また、targetPhysCellIdにはセル内の領域を示す情報(例えばタイムインデックス情報やSSブロック識別子)が含まれてもよい。また、targetPhysCellIdとは異なるパラメータとしてセル内の領域を示す情報(例えば例えばタイムインデックス情報やSSブロック識別子)が含まれてもよい。(9B)carrierFreqは、端末装置2がターゲットセルで使う周波数の情報を示す。(9C)carrierBandwidthは、ターゲットセルの下りリンクおよび/または上りリンクの帯域幅の情報を示す。(9D)t304は、ハンドオーバに関するタイマーの値を示し、例えば端末装置2は、タイマーで示される時間内にハンドオーバが正常に完了しない場合に既定の処理を実行してもよい。(9E)newUE-Identityは、ターゲットセルにおける端末装置2の新しい識別子(例えばC-RNTI)を示す。
 (9F)radioResourceConfigCommonは、図10に示すような、ランダムアクセスパラメータや静的な物理層パラメータなどの共通無線リソース設定を特定する(Specify)ために使われる情報を含む。(9F)radioResourceConfigCommonは、(10A)rach-ConfigCommon、(10B)prach-Config、(10C)pdsch-ConfigCommon、(10D)pusch-ConfigCommon、(10E)pucch-ConfigCommon、(10F)soundingRS-UL-ConfigCommon、(10G)uplinkPowerControlCommon、(10H)antennaInfoCommon、(10I)p-Max、(10J)tdd-Config、の一部あるいは全部を含んでよい。また、(9F)radioResourceConfigCommonは、その他の様々な情報を含んでもよい。また、(10C)pdsch-ConfigCommonと(10D)pusch-ConfigCommonの設定をまとめて一つの設定(psch-ConfigCommon)としてもよい。また、(9F)radioResourceConfigCommonに含まれる上記一部あるいは全部の情報は、セル内の領域ごとの情報であってもよい。
 (10A)rach-ConfigCommonは、一般的なランダムアクセスパラメータ(Generic random access parameter)を特定するために使われる情報を含む。例えば(10A)rach-ConfigCommonは、ランダムアクセスプリアンブルの情報として、個別に使用されない(Non-dedicated)プリアンブルの数、グループ化されたプリアンブルの何れのグループのプリアンブルを用いるかを判断するための閾値情報、および/またはパワーランピングに関する情報、の一部あるいは全部を含んでよい。
 (10B)prach-Configは、PRACH設定を特定するために使われる情報を含む。例えば、(10B)prach-Configは、ランダムアクセスプリアンブルのルートシーケンスのインデックス情報、ランダムアクセスプリアンブル送信に用いられる時間/周波数リソースの情報、および/またはプリアンブルの送信に用いられるヌメロロジーの情報、の一部または全部を含んでよい。
 (10C)pdsch-ConfigCommonは、共通のPDSCH設定を特定するための情報を含む。例えば、(10C)pdsch-ConfigCommonは、下りリンクの参照信号の単位リソースあたりのエネルギーの情報、下りリンク参照信号とPDSCHの電力比に関する情報、および/またはPDCCHおよび/またはPDSCHの受信に用いられるヌメロロジーに関する情報、の一部または全部を含んでよい。
 (10D)pusch-ConfigCommonは、共通のPUSCH設定、および/または上りリンク参照信号の設定を特定するための情報を含む。例えば、(10D)pusch-ConfigCommonは、PUSCHリソースの帯域情報、ホッピング情報、および/またはPUCCHおよび/またはPUSCHの送信に用いられるヌメロロジーに関する情報、の一部または全部を含んでよい。
 (10E)pucch-ConfigCommonは、共通のPUCCH設定を特定するための情報を含む。例えば、(10E)pucch-ConfigCommonは、PUCCHの送信に用いられるヌメロロジーの情報を含んでよい。(10F)soundingRS-UL-ConfigCommonは、基地局装置3による測定に使うことができる共通の上りリンクの参照信号の設定を特定するための情報を含む。例えば、(10F)soundingRS-UL-ConfigCommonは、上りリンクの参照信号の一部あるいは全部の送信に用いられるヌメロロジーの情報を含んでよい。(10G)uplinkPowerControlCommonは、共通の上りリンクの電力制御設定を特定するための情報を含む。(10H)antennaInfoCommonは、共通のアンテナ設定を特定するための情報を含む。(10I)p-Maxは、端末装置2による上りリンク送信を制限するための情報を含む。(10J)tdd-Configは、TDD特有の物理チャネル設定を特定するための情報を含む。
 (9G)rach-ConfigDedicatedは、端末装置2に対して割り当てられる個別のランダムアクセスパラメータを特定するために使われる情報を含む。例えば、ランダムアクセスプリアンブルのフォーマットや時間/周波数リソースを明示的に示す情報、および/またはプリアンブルの送信に用いられるヌメロロジーに関する情報、の一部または全部を含んでよい。また、(9G)rach-ConfigDedicatedはセル内の領域ごとの情報を含んでもよい。
 (8G)otherConfigは、その他の設定の一部あるいは全部が含まれる。
 また、(8C)mobilityControlInfo、あるいは(8C)mobilityControlInfoに含まれる情報要素の何れかに、端末装置2がターゲットセルで送信する(1)ランダムアクセスプリアンブル、(2)RRC接続再設定完了メッセージを含むPUSCH、端末装置2がターゲットセルで受信する(1)同期信号、(2)重要情報ブロック、(3)ランダムアクセス応答のメッセージを含むPDSCHを受信するためのPDCCH、(4)ランダムアクセス応答のメッセージを含むPDSCH、(5)呼び出し(ページング)のメッセージを含むPDSCHを受信するためのPDCCH、(6)呼び出し(ページング)のメッセージを含むPDSCH、の一部または全部に対するヌメロロジーを特定する情報の一部あるいは全部が含まれてもよい。
 RRC接続再設定メッセージに含まれるセカンダリセルグループの設定(SCG-Configuration)の一例を、図11を用いて説明する。
 図11に示すように、セカンダリセルグループの設定は(11A)scg-ConfigPartMCG、(11B)scg-ConfigPartSCGの一部あるいは全部を含んでよい。
 (11A)scg-ConfigPartMCGは、セカンダリセルグループの設定を行う際のマスターセルグループにも関連する設定であり、例えば鍵情報の更新に関する情報および/またはマスターセルグループおよびセカンダリセルグループの電力に関する情報などが含まれてもよい。(11B)scg-ConfigPartSCGは、セカンダリセルグループの設定であり、例えば図12に示すような、(12A)radioResourceConfigDedicatedSCG、pSCellToAddMod、(12C)sCellToAddModListSCG、(12D)sCellToReleaseListSCG、および/または(12E)mobilityControlInfoSCGを含んでもよい。
 (12A)radioResourceConfigDedicatedSCGは、SCGに対する端末装置2固有の無線リソース設定であり、DRBの追加/変更のための情報、MAC層の設定情報、タイマーの設定値、および/または定数情報を含んでよい。(12B)pSCellToAddModは、PSCellとなるセルの追加/変更情報であり、SCell(PSCell)を識別するためのインデックス情報、セルの識別子(例えば物理セル識別子またはセルグローバル識別子)、下りリンクのキャリア周波数情報、PSCellの共通無線リソース設定、および/またはPSCellの端末装置2固有の無線リソース設定の情報が含まれてよい。
 (12C)sCellToAddModListSCGは、セカンダリセルグループのSCellとなるセルの追加/変更情報であり、1つまたは複数のSCell情報のリストを含んでよい。さらに、各SCell情報にはSCellを識別するためのSCellインデックス情報、セルの識別子(例えば物理セル識別子またはセルグローバル識別子)、下りリンクのキャリア周波数情報、および/またはSCellの共通無線リソース設定の情報が含まれてよい。(12D)sCellToReleaseListSCGは、セカンダリセルグループのSCellを解放するための情報であり、解放する1つまたは複数のSCellインデックス情報のリストを含んでよい。
 (12E)mobilityControlInfoSCGは、セカンダリセルグループの変更に必要な情報であり、セカンダリセルグループにおいて端末装置2に割り当てられる識別子、端末装置2に対して割り当てられる個別のランダムアクセスパラメータを特定するために使われる情報、および/または暗号アルゴリズムに関する情報が含まれてよい。
 ここで、(11B)scg-ConfigPartSCG、あるいは(11B)scg-ConfigPartSCGに含まれる情報要素の何れかに、端末装置2が再設定されたセカンダリセルグループのセル(PSCellまたはすべてのSCell)で送信する(1)ランダムアクセスプリアンブル、(2)PUCCH、(3)PUSCH、端末装置2が再設定されたセカンダリセルグループのセル(PSCellまたはすべてのSCell)で受信する(1)同期信号、(2)ランダムアクセス応答のメッセージを含むPDSCHを受信するためのPDCCH、(3)ランダムアクセス応答のメッセージを含むPDSCH、(4)呼び出し(ページング)のメッセージを含むPDSCHを受信するためのPDCCH、(5)呼び出し(ページング)のメッセージを含むPDSCH、の一部または全部に対するヌメロロジーを特定する情報の一部あるいは全部が含まれてもよい。
 例えば、(12E)mobilityControlInfoSCGに含まれる、端末装置2に対して割り当てられる個別のランダムアクセスパラメータを特定するために使われる情報の一部として、プリアンブルの送信に用いられるヌメロロジーの情報が含まれてもよい。また、セカンダリセルグループのセルで共通のヌメロロジーが用いられる場合、(12B)pSCellToAddModに、PSCell(またはセカンダリセルグループのセルで共通)の、上述のシグナルおよび/またはチャネルの送信/受信に用いられるヌメロロジーの情報が含まれてもよい。また、セカンダリセルグループのセルで独立したヌメロロジーが用いられる場合、(12B)pSCellToAddModおよび/または(12C)sCellToAddModListSCGの各SCell情報に、SCell毎の、上述のシグナルおよび/またはチャネルの送信に用いられるヌメロロジーの情報が含まれてもよい。
 図14は、上記(8E)radioResourceConfigDedicatedの一例を示す図であり、(14A)srb-ToAddModList、(14B)drb-ToAddModList、(14C)drb-ToReleaseList、(14D)mac-MainConfig、(14E)physicalConfigDedicatedが含まれる。(14A)srb-ToAddModList、(14B)drb-ToAddModList、および(14C)drb-ToReleaseListは、SRBやDRBの設定、変更、および/または解放に使われる情報である。(14D)mac-MainConfigは、MAC層の設定を変更するための情報である。(14E)physicalConfigDedicatedは、物理層のチャネル設定に関する情報である。
 また、RRC接続再設定メッセージ(例えば、(8E)radioResourceConfigDedicatedと、(12A)radioResourceConfigDedicatedSCGの各情報)にヌメロロジーに関する情報(例えばサブキャリア間隔(SCS)情報)および/またはスケジューリングに用いられる時間の単位(送信時間間隔、TTI:Transmission Time Interval)を示すための情報を含めることにより、それぞれのセル(またはセルグループ)で用いられるヌメロロジーを指定することができる。
 例えば、図15は、ヌメロロジーに関する情報およびスケジューリングに用いられる時間の単位(送信時間間隔、TTI)を示す一例である。図15において、SCSはサブキャリア間隔(単位はkHz)を示す。Symbolは1つのスロットに含まれるOFDMシンボル数を示す。SlotNumは、1つのTTIに含まれるスロット数を示す。TTI Lenは、スケジューリングに用いられる時間の単位(送信時間間隔、TTI)の時間(単位はms)を示す。Idxは各パラメータの組み合わせ(パラメータセット)を識別する識別子(またはインデックス)を示す。
 例えば、図15で示されるような複数のパラメータセットが仕様で定義され、RRC接続再設定メッセージに、何れのパラメータセットが使われるかを示す情報(Idx)が含まれてもよい。
 また、例えば、RRC接続再設定メッセージに、図15で示されるような1または複数のパラメータセットが含まれ、さらに、RRC接続再設定メッセージに、何れのパラメータセットが使われるかを示す情報(Idx)が含まれてもよい。
 また、TTI Lenは、SCSとSymbolとSlotNumの組み合わせから一意に同定することができるため、何れか1つの情報が省略されてもよい。
 また、TTI Lenは、SCSとSymbolとSlotNumの組み合わせから一意に同定することができるため、何れか1つの情報がパラメータセットから省略されてもよい。
 また、パラメータセットには実際のスケジューリングに用いられる時間の単位(送信時間間隔、TTI)とは別に、様々な演算等に用いられる標準TTI(dTTI)の情報が追加されてもよい。また、標準TTIは仕様で既定されていてもよい。
 また、OFDMシンボル数の情報の代わりにOFDMシンボル長の情報がパラメータとして含まれてもよい。
 また、CP(Cyclic Prefix)に関する情報がパラメータとして含まれてもよい。
 また、複数のスロットを集約してスケジューリング周期とする場合に、スロットの集約レベル(Aggregation Level:AL)情報がパラメータとして含まれてもよい。
 また、パラメータセットの一部あるいは全部の情報が別の方法によって通知されてもよい。例えば、PDSCHに適用されるパラメータセットの一部(SymbolとSlotNumの組み合わせ)がRRC接続再設定メッセージで通知され、SCSの情報が、別の信号やチャネル(例えばPDCCH(DCI))で通知されてもよい。これにより、PDSCHの送信に適用されるサブキャリア間隔の候補がセル内で複数ある場合であっても、RRC接続再設定メッセージで通知する情報量を抑え、動的にサブキャリア間隔とTTIを設定することができる。これはPDSCH以外のチャネル(例えばPUCCH、PUSCHなど)の設定にも適用することができる。
 また、物理層の設定情報(例えば、(14E)physicalConfigDedicatedに含まれる情報)に上記のパラメータセットの情報が含まれ、論理チャネルの設定情報(例えば、(14B)drb-ToAddModListに含まれる情報)に論理チャネルとTTIとを関連付ける情報が含まれてもよい。ここで、論理チャネルとTTIとを関連付ける情報は、各論理チャネルと、その論理チャネルの送信(および/または受信)に用いるTTIを同定可能な情報(例えばTTI長そのもの(0.5msや1.0ms)、またはOFDMシンボル数(7シンボルや14シンボル)、または、標準TTIとの比率(1dTTIや0.5dTTI)、またはスロット情報(1Slotや2Slot)、またはスロットタイプ情報(miniSlot(0.5dTTI)、Slot(1dTTI)、MultiSlot(2dTTI))、あるいはTTIタイプ情報(NormalTTI(1dTTI)、ShortenedTTI(0.5dTTI))など)であってもよい。
 なお、上記メッセージは一例であり、RRC接続再設定メッセージは上記RRC接続再設定メッセージ以外の情報を含んでもよいし、上記RRC接続再設定メッセージの一部の情報を含まなくてもよい。また、RRC接続再設定メッセージは、上記RRC接続再設定メッセージとは異なる構造、情報要素名、あるいはパラメータ名でもよい。
 接続状態または不活動状態の端末装置2が、1または複数の物理チャネルのヌメロロジーを変更する動作の一例について図7を用いて説明する。
 なお、ここではマスターセルグループのモビリティ制御情報(MobilityControlInfo)がRRC接続再設定メッセージに含まれる場合のヌメロロジー変更の手順を説明するが、これに限らず、ヌメロロジーを追加または修正する場合や、モビリティ制御情報がRRC接続再設定メッセージに含まれない場合にヌメロロジーを変更する場合や、セカンダリセルグループのヌメロロジーを変更または追加または修正する場合にも適用することができる。
 ヌメロロジーの設定は、第2層(PDCP層、RLC層および/またはMAC層)のリセットまたは再確立(Re-establishment)を伴ってよい。また、ヌメロロジーの設定は、PCellでのランダムアクセスの実行を伴ってよい。また、マスターセルグループの設定は、第2層のリセットおよび/または再確立を含む同期マスターセルグループ再設定プロシージャ(ランダムアクセスを伴うプロシージャ)であってよい。また、セカンダリセルグループの設定は、第2層のリセットおよび/または再確立を含む同期セカンダリセルグループ再設定プロシージャ(ランダムアクセスを伴うプロシージャ)であってよい。また、マスターセルグループの設定は、セキュリティのリフレッシュを含む同期マスターセルグループ再設定プロシージャ(ランダムアクセスを伴うプロシージャ)であってよい。また、セカンダリセルグループの設定は、もしセカンダリセルグループのDRBが設定されている場合にはセキュリティのリフレッシュを含む同期セカンダリセルグループ再設定プロシージャ(ランダムアクセスを伴うプロシージャ)であってよい。このプロシージャは、様々なシナリオで使われてよい。例えば、シナリオとは、セカンダリセルグループの確立(Establishment)、PSCellの変更、セキュリティ鍵のリフレッシュ、DRBの変更、および/またはヌメロロジーの変更などである。端末装置2は、セカンダリセルグループに対するモビリティ制御情報(mobilityControlInfoSCG)を含むRRC接続再設定メッセージを受信することでセカンダリセルグループの設定に関連する動作を実行してもよい。
 コネクティッド状態ではネットワークが端末装置2のモビリティを制御する。また、不活動状態でネットワークが端末装置2のモビリティを制御してもよい。ネットワーク制御のモビリティにおいて、モビリティ制御情報を含むRRC接続再設定メッセージを用いてPCellが変更されてもよい。また、ネットワーク制御のモビリティにおいて、モビリティ制御情報を含む(または含まない)RRC接続再設定メッセージを用いてSCellが変更されてもよい。
 また、セカンダリセルグループのモビリティ制御情報を含む(または含まない)RRC接続再設定メッセージを用いてセカンダリセルグループが確立、再設定、または解放されてもよい。また、マスターセルグループの再設定において、PCellへのランダムアクセスが必要な場合、マスターセルグループの変更プロシージャ(すなわち、mobilityControlInfoを含むRRC接続再設定メッセージ)が用いられてもよい。また、セカンダリセルグループの再設定において、PSCellへのランダムアクセスが必要な場合、セカンダリセルグループの変更プロシージャ(すなわち、mobilityControlInfoSCGを含むRRC接続再設定メッセージ)が用いられてもよい。
 基地局装置3は、端末装置2に対して、前記端末装置2に対する設定を含むRRC接続再設定(RRCConnectionReconfiguration)メッセージを通知することによって、ヌメロロジーの変更を端末装置2に指示する(ステップS71)。
 RRC接続再設定メッセージを受け取り、そのRRC接続再設定メッセージを含む設定に従うことができる端末装置2は、RRC接続再設定完了メッセージ(RRCConnectionReconfigurationComplete)を基地局装置3に送信する(ステップS72)。さらにRRC接続再設定メッセージの情報に基づいて、以下の再設定処理を開始する(ステップS73)。
 ステップS73の再設定処理において、端末装置2は、RRC接続再設定メッセージにモビリティ制御情報が含まれる場合、設定に基づきターゲットPCellの下りリンクの同期をとる。端末装置2は、RRC接続再設定メッセージにモビリティ制御情報が含まれ、ターゲットとなるPCellが現在のPCellであっても、RRC接続再設定メッセージにヌメロロジー情報が含まれる場合に、新たなヌメロロジー情報に基づく下りリンク同期を開始してもよい。
 また、マスターセルグループのMAC層の機能と、もし設定されていればセカンダリセルグループのMAC層の機能をリセットしてよい。また、端末装置2は、確立されていたすべての無線ベアラのためのPDCP層の機能を再確立してよい。また、端末装置2は、マスターセルグループのRLC層の機能と、もし設定されていればセカンダリセルグループのRLC層の機能を再確立してよい。また、端末装置2は、セカンダリセルグループのSCellのうち、PSCellを除く他のセルを不活性状態としてよい。
 また、ステップS73の再設定処理において、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合、設定に基づきセカンダリセルグループのMAC層の機能をリセットしてよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合に、PDCP層を再確立またはデータリカバリーしてよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれる場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合に、マスターセルグループのRLC層および/またはセカンダリセルグループのRLC層を再確立してよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合に、セカンダリセルグループのSCellのうち、PSCellを除く他のセルを不活性状態としてよい。
 また、ステップS73の再設定処理において、端末装置2は、受信したセカンダリセルグループの設定が解放するように設定されている場合、DRB設定を除くセカンダリセルグループの設定を解放して、セカンダリセルグループに関するタイマーを停止してよい。
 また、ステップS73の再設定処理において、端末装置2は、RRC接続再設定メッセージに端末装置2固有の無線リソース設定が含まれる場合、固有の無線リソース設定を再設定してよい。また、端末装置2は、RRC接続再設定メッセージにPSCellとなるセルの追加/変更情報が含まれる場合、PSCellの追加または変更を実行する。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのSCellとなるセルの追加/変更情報が含まれる場合、セカンダリセルグループのSCellの追加または変更を実行してよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのSCellを解放するための情報が含まれる場合、セカンダリセルグループのSCellの解放を実行してよい。
 端末装置2は、同期信号のヌメロロジー情報がRRC接続再設定メッセージに含まれる場合、その情報に基づき、同期信号を検出してもよい。同期信号のヌメロロジー情報がRRC接続再設定メッセージで提供されない場合、端末装置2は、予め定められたヌメロロジーを用いて同期信号の検出を試みてもよい。これにより、ターゲットセルの同期信号に用いられる可能性があるヌメロロジーが複数あるような場合に検出する同期信号のヌメロロジーを一意に指定できる。
 そして、端末装置2は、上りリンクデータを送信するためにランダムアクセス手順を開始し、ランダムアクセスプリアンブルを送信する。ランダムアクセスプリアンブルを受信した基地局装置3は、端末装置2の送信タイミングのずれを検出し、ずれを補正するための情報(タイミングアドバンスコマンド)を含むランダムアクセス応答を端末装置2に送信する(ステップS74)。ランダムアクセスプリアンブルのヌメロロジー情報がRRC接続再設定メッセージに含まれる場合、端末装置2は、その情報に基づき、ランダムアクセスプリアンブルを送信してもよい。ヌメロロジー情報が複数含まれる場合には端末装置2が何れかを選択してもよい。ランダムアクセスプリアンブルのヌメロロジー情報がRRC接続再設定メッセージで提供されない場合、端末装置2は、予め定められたヌメロロジーを用いてランダムアクセスプリアンブルを送信してもよい。例えば、NS-SSSと同じヌメロロジー、またはNR-SSSのヌメロロジーに対応する(一意に導出される)ヌメロロジーを用いてもよい。これにより、ターゲットセルで複数のヌメロロジーがサポートされている場合に端末装置2ごとに適切なヌメロロジーを設定することができる。また、ランダムアクセス応答の受信のためのPDCCH受信および/またはPDSCH受信で用いられるヌメロロジー情報がRRC接続再設定メッセージに含まれる場合、端末装置2は、その情報に基づき、ランダムアクセス応答を受信してもよい。ランダムアクセス応答の受信のためのPDCCH受信および/またはPDSCH受信で用いられるヌメロロジー情報がRRC接続再設定メッセージで提供されない場合、端末装置2は、予め定められたヌメロロジーまたはNR-SSSと同じヌメロロジーを用いてランダムアクセス応答を受信してもよい。これにより、ターゲットセルで複数のヌメロロジーがサポートされている場合に端末装置2ごとに適切なヌメロロジーを設定することができる。
 また、ランダムアクセス応答のメッセージが含まれるPDSCHのヌメロロジーは、RRC接続再設定メッセージで提供される情報とPDCCHで提供される情報との組み合わせによって導出されてもよい。例えば、PDCCHで前述のパラメータセットの識別子が通知されてもよい。また、PDCCHでSCSに関する情報が通知されてもよい。
 また、ランダムアクセス応答のメッセージが含まれるPDSCHのヌメロロジーは、PDCCHのヌメロロジーから一意に導出されてもよい。例えば、PDCCHとPDSCHのヌメロロジーは同一であってもよい。また、PDCCHとPDSCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。
 また、ランダムアクセス応答で提供される上りリンクグラントによって割り当てられた上りリンクリソース(PUCCH送信リソースおよび/またはPUSCH送信リソース)のヌメロロジーは、RRC接続再設定メッセージで提供される情報とPDCCHで提供される情報との組み合わせによって導出されてもよい。例えば、PDCCHで前述のパラメータセットの識別子が通知されてもよい。また、PDCCHでSCSに関する情報が通知されてもよい。
 また、ランダムアクセス応答で提供される上りリンクグラントによって割り当てられた上りリンクリソース(PUCCH送信リソースおよび/またはPUSCH送信リソース)のヌメロロジーは、PDCCHのヌメロロジーから一意に導出されてもよい。例えば、PDCCHとPUSCHのヌメロロジーは同一であってもよい。また、PDCCHとPUSCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。また、PDCCHとPUCCHのヌメロロジーは同一であってもよい。また、PDCCHとPUCCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。
 また、PDSCHのヌメロロジーは、RRC接続再設定メッセージで提供される情報とPDCCHで提供される情報との組み合わせによって導出されてもよい。例えば、PDCCHで前述のパラメータセットの識別子が通知されてもよい。また、PDCCHでSCSに関する情報が通知されてもよい。
 また、PDSCHのヌメロロジーは、PDCCHのヌメロロジーから一意に導出されてもよい。例えば、PDCCHとPDCCHで示されるPDSCHのヌメロロジーは同一であってもよい。また、PDCCHとPDCCHで示されるPDSCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。
 また、上りリンクグラントによって割り当てられた上りリンクリソース(PUCCH送信リソースおよび/またはPUSCH送信リソース)のヌメロロジーは、RRC接続再設定メッセージで提供される情報とPDCCHで提供される情報との組み合わせによって導出されてもよい。例えば、PDCCHで前述のパラメータセットの識別子が通知されてもよい。また、PDCCHでSCSに関する情報が通知されてもよい。
 また、上りリンクグラントによって割り当てられた上りリンクリソース(PUCCH送信リソースおよび/またはPUSCH送信リソース)のヌメロロジーは、PDCCHのヌメロロジーから一意に導出されてもよい。例えば、PDCCHとPDCCHで示されるPUSCHのヌメロロジーは同一であってもよい。また、PDCCHとPDCCHで示されるPUSCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。また、PDCCHとPUCCHのヌメロロジーは同一であってもよい。また、PDCCHとPUCCHのヌメロロジーの組み合わせが予め規定(あるいはRRC接続再設定メッセージで設定)されてもよい。
 上りリンク送信に関する処理の一例を示す。端末装置2の物理層は、上りリンクグラントを示すDCIをPDCCHで受信することによって、自局に割り当てられた上りリンクリソースのサイズとTTIの長さとを導出し、端末装置2のMAC層に通知する。端末装置2のMAC層は、少なくとも論理チャネルにアサインされているTTIの長さ、および論理チャネルの優先度(LCP:Logical Channel Priority)に基づいて、送信するMAC PDUを生成する。このとき、LCPによる論理チャネル間の優先度の導出は、割り当てられた上りリンクリソースのTTIの長さに紐づけられた論理チャネルのみの間で行われてよい。また、割り当てられた上りリンクリソースのTTIの長さが、論理チャネルの何れにも紐づけられていない場合に、割り当てられた上りリンクリソースを無効とみなしてもよい。また、割り当てられた上りリンクリソースのTTIの長さが、論理チャネルの何れにも紐づけられていない場合に、割り当てられた上りリンクリソースがすべての論理チャネルに紐づけられているとみなしてもよい。
 次に、ヌメロロジーの追加および修正の手順の一例について図13を用いて説明する。
 ヌメロロジーの設定は、第2層(PDCP層、RLC層および/またはMAC層)の一部のリセットまたは再確立(Re-establishment)を伴わなくてよい。また、ヌメロロジーの設定は、ランダムアクセスの実行を伴わなくてよい。また、マスターセルグループの設定は、第2層のリセットおよび/または再確立を含まないマスターセルグループ再設定プロシージャ(ランダムアクセスを伴わないプロシージャ)であってよい。また、セカンダリセルグループの設定は、第2層の一部のリセットおよび/または再確立を含まないセカンダリセルグループ再設定プロシージャ(ランダムアクセスを伴わないプロシージャ)であってよい。端末装置2は、セカンダリセルグループに対するモビリティ制御情報(mobilityControlInfoSCG)を含むRRC接続再設定メッセージを受信することでセカンダリセルグループの設定に関連する動作を実行してもよい。
 コネクティッド状態ではネットワークが端末装置2のモビリティを制御する。また、不活動状態でネットワークが端末装置2のモビリティを制御してもよい。ネットワーク制御のモビリティにおいて、モビリティ制御情報を含むRRC接続再設定メッセージを用いてPCellが変更されてもよい。また、ネットワーク制御のモビリティにおいて、モビリティ制御情報を含む(または含まない)RRC接続再設定メッセージを用いて(PSCellを含む)SCellが変更されてもよい。
 また、セカンダリセルグループのモビリティ制御情報を含む(または含まない)RRC接続再設定メッセージを用いてセカンダリセルグループが確立、再設定、または解放されてもよい。また、マスターセルグループの再設定において、PCellへのランダムアクセスが必要な場合、マスターセルグループの変更プロシージャ(すなわち、mobilityControlInfoを含むRRC接続再設定メッセージ)が用いられてもよい。また、セカンダリセルグループの再設定において、PSCellへのランダムアクセスが必要な場合、セカンダリセルグループの変更プロシージャ(すなわち、mobilityControlInfoSCGを含むRRC接続再設定メッセージ)が用いられてもよい。
 基地局装置3は、端末装置2に対して、前記端末装置2に対する設定を含むRRC接続再設定メッセージ(RRCConnectionReconfiguration)を通知することによって、ヌメロロジー情報の追加および/または修正および/または削除を伴う設定を端末装置2に指示する(ステップS131)。
 RRC接続再設定メッセージを受け取り、そのRRC接続再設定メッセージを含む設定に従うことができる端末装置2は、RRC接続再設定完了メッセージ(RRCConnectionReconfigurationComplete)を基地局装置3に送信する(ステップS132)。さらにRRC接続再設定メッセージの情報に基づいて、以下の再設定処理を開始する(ステップS133)。
 ステップS133の再設定処理において、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合、設定に基づきセカンダリセルグループのMAC層の機能をリセットしてよい。RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合であっても、PCellとPSCellが同じセルである場合(あるいは、RRC接続再設定メッセージで同一セルへの設定を指示された場合)、端末装置2は、PDCP層を再確立またはデータリカバリーしなくてよい。ただし、例えば、既にPSCellにPCellと異なるセルが設定された状態から、PSCellがPCellと同じセルに変更された状況などにおいて、MCGとSCGの両方に分けられた(Splitされた)DRB(Split DRB)および/またはSCGのみのDRB(SCG DRB)が存在していた場合、PDCP層のデータリカバリーを実行してよい。また、例えば、既にPSCellにPCellと同じセルが設定された状態から、PSCellがPCellと異なるセルに変更された状況などにおいて、RRC接続再設定メッセージに、MCGとSCGの両方に分けられる(Splitされた)DRB(Split DRB)が存在する場合、端末装置2は、PDCP層のデータリカバリーを実行してよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれる場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合に、マスターセルグループのRLC層および/またはセカンダリセルグループのRLC層を再確立してよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのモビリティ制御情報が含まれ、マスターセルグループのモビリティ制御情報が含まれない(ハンドオーバではない)場合、あるいはRRC接続再設定メッセージに含まれるセカンダリセルグループの設定が解放するよう設定されている場合に、セカンダリセルグループのSCellのうち、PSCellを除く他のセルを不活性状態としてよい。
 また、ステップS133の再設定処理において、端末装置2は、受信したセカンダリセルグループの設定が解放するように設定されている場合、DRB設定を除くセカンダリセルグループの設定を解放して、セカンダリセルグループに関するタイマーを停止してよい。
 また、ステップS133の再設定処理において、端末装置2は、RRC接続再設定メッセージに端末装置2固有の無線リソース設定が含まれる場合、固有の無線リソース設定を再設定してよい。また、端末装置2は、RRC接続再設定メッセージにPSCellとなるセルの追加/変更情報が含まれる場合、PSCellの追加または変更を実行する。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのSCellとなるセルの追加/変更情報が含まれる場合、セカンダリセルグループのSCellの追加または変更を実行してよい。また、端末装置2は、RRC接続再設定メッセージにセカンダリセルグループのSCellを解放するための情報が含まれる場合、セカンダリセルグループのSCellの解放を実行してよい。
 端末装置2は、RRC接続再設定完了メッセージ(RRCConnectionReconfigurationComplete)を基地局装置3に送信してもよい。なお、この場合、RRC接続再設定完了メッセージは、(SRBの送信リソースが割り当てられる)Cellで送信してよい。
 このように、RRC接続再設定メッセージのMCGの設定およびSCGの設定(例えば、(8E)radioResourceConfigDedicatedと、(12A)radioResourceConfigDedicatedSCGの各MAC層の設定情報)にヌメロロジーの情報を含めることにより、セルで用いられる複数のヌメロロジーを指定することができる。
 ここで、NR-PDCCHで送信されるDCI(Downlink Control Information)の一例を示す。
 例えば、DCI Format 0として、PUSCHのスケジューリング情報が定義される例を示す。DCI Format 0には、スケジュールされるコンポーネントキャリアを示す複数ビットの情報(Carrier Indicator)が含まれてよい。また、DCI Format 0には、同じ長さの別のフォーマットとこのフォーマットとを識別するための1または複数ビットのフラグが含まれてもよい。また、DCI Format 0には、スケジュールされるPUSCHのリソース位置を示す情報ビットが含まれてよい。また、DCI Format 0には、リソース位置のホッピングを行うための情報が含まれてよい。また、DCI Format 0には、変調方式(Modulation)および符号スキーム(Coding Scheme)およびリダンダンシーバージョン(Redundancy Version)を示す情報が含まれてよい。また、DCI Format 0には、New Dataであるかを示すNew Data Indicatorが含まれてよい。また、DCI Format 0には、スケジュールされたPUSCHの電力制御を行うための送信電力制御コマンド(TPC)が含まれてよい。また、DCI Format 0には、SRS送信を要求する情報(SRS Request)が含まれてよい。また、DCI Format 0には、スケジュールされるPUSCHのサブキャリア間隔に関する情報が含まれてよい。また、DCI Format 0には、その他必要な情報が含まれてよい。
 例えば、DCI Format 1として、PDSCHのスケジューリング情報が定義される例を示す。DCI Format 1には、PDSCHがスケジュールされるコンポーネントキャリアを示す複数ビットの情報(Carrier Indicator)が含まれてよい。また、DCI Format 1には、スケジュールされるPDSCHのリソース位置を示す情報ビットが含まれてよい。また、DCI Format 1には、変調方式(Modulation)および符号スキーム(Coding Scheme)およびリダンダンシーバージョン(Redundancy Version)を示す情報が含まれてよい。また、DCI Format 1には、HARQのプロセス番号(HARQ Process Number)が含まれてよい。また、DCI Format 1には、New Dataであるかを示すNew Data Indicatorが含まれてよい。また、DCI Format 1には、スケジュールされたPUCCHの電力制御を行うための送信電力制御コマンド(TPC)が含まれてよい。また、DCI Format 1には、スケジュールされるPDSCHのサブキャリア間隔に関する情報が含まれてよい。また、DCI Format 1には、スケジュールされるPUCCHのサブキャリア間隔に関する情報が含まれてよい。また、DCI Format 1には、その他必要な情報が含まれてよい。
 (14B)drb-ToAddModListに含まれる各drb-ToAddModの一例を示す。drb-ToAddModには、DRBをセットアップする際にはEPSベアラを識別する識別子が含まれてよい。また、drb-ToAddModには、PDCP層の設定情報が含まれてよい。また、drb-ToAddModには、RLC層の設定情報が含まれてよい。また、drb-ToAddModには、DRBをセットアップする際にはDRBに対応する論理チャネル識別子が含まれてよい。また、drb-ToAddModには論理チャネルの設定情報が含まれてよい。また、drb-ToAddModには、論理チャネルに紐づけられるTTI長を示す情報が含まれてよい。ここで、論理チャネルに紐づけられるTTI長を示す情報は、その論理チャネルの送信(および/または受信)に用いるTTI長を同定可能な情報(例えばTTI長そのもの(0.5msや1.0ms)、またはOFDMシンボル数(7シンボルや14シンボル)、または、標準TTIとの比率(1dTTIや0.5dTTI)、またはスロット情報(1Slotや2Slot、あるいはminiSlot(0.5dTTI)、Slot(1dTTI)、MultiSlot(2dTTI))など)であってもよい。また、drb-ToAddModには、その他の必要な情報が含まれてよい。
 (8E)radioResourceConfigDedicated、および/または(12A)radioResourceConfigDedicatedSCGに含まれるヌメロロジー情報の一例を示す。ヌメロロジー情報は、ヌメロロジーの追加/修正情報を含み、(12C)sCellToAddModListSCGと同様に、1つまたは複数のヌメロロジー設定のリストを含んでよい。また、(12D)sCellToReleaseListSCGと同様に、ヌメロロジー設定を削除するリストを含んでよい。また、(14E)physicalConfigDedicatedに含まれる情報に含まれる各チャネルや各信号の設定(例えばPDSCHの設定であるpdsch-ConfigDedicated、PDCCHの設定であるpdcch-ConfigDedicated、PUCCHの設定であるpucch―ConfigDedicated、PUSCHの設定であるpusch-ConfigDedicated、SRSの設定であるsoundingRS―UL―ConfigDedicated、スケジューリング要求(SR)の設定であるschedulingRequestConfig、など)毎に、ヌメロロジー情報が含まれてもよい。または、各チャネルに共通(または上りリンクのチャネルと下りリンクのチャネルのそれぞれで共通)に用いられるヌメロロジー情報が、(14E)physicalConfigDedicatedに含まれてもよい。
 また、各チャネルおよび各信号のヌメロロジーの設定情報が1または複数のセットとして構成されてもよい。例えば、プライマリヌメロロジー(またはプライマリヌメロロジーセット)として各チャネルおよび各信号のヌメロロジーが設定され、セカンダリヌメロロジー(またはセカンダリヌメロロジーセット)として各チャネルおよび各信号に別のヌメロロジーが設定されてもよい。例えば、プライマリヌメロロジーおよび/またはセカンダリヌメロロジーの設定情報は、各物理チャネルに共通となる上りリンクのヌメロロジーと下りリンクのヌメロロジーの設定が含まれてよい。あるいは、プライマリヌメロロジーおよび/またはセカンダリヌメロロジーの設定情報は、物理チャネル毎のヌメロロジーの設定が含まれてよい。例えばプライマリヌメロロジーおよび/またはセカンダリヌメロロジーの設定情報に(14E)physicalConfigDedicatedが含まれてもよいし、(14E)physicalConfigDedicatedにプライマリヌメロロジーおよび/またはセカンダリヌメロロジーの設定情報が含まれてもよい。
 また、プライマリヌメロロジーを変更する場合にはモビリティ制御情報を含むRRC接続再設定メッセージが用いられ、セカンダリヌメロロジーを変更する場合にはモビリティ制御情報を含まないRRC接続再設定メッセージが用いられてもよい。また、コンポーネントキャリアごと、またはセルグループごとにプライマリヌメロロジーが使用されるかセカンダリヌメロロジーが使用されるかが規定あるいは通知されてもよい。また、プライマリヌメロロジーとセカンダリヌメロロジーの切り替えがRRC層またはMAC層または物理層のシグナリング(例えば、RRC接続再設定メッセージまたはMAC制御要素またはDCI)によって通知されてもよい。また、セカンダリヌメロロジーは複数設定されてもよい。この場合、各セカンダリヌメロロジーを識別するための識別子が設定されてもよい。また、プライマリヌメロロジーはマスターヌメロロジーと呼称してもよい。
 また、プライマリヌメロロジーの設定がモビリティ制御情報に含まれ、セカンダリヌメロロジーの設定がモビリティ制御情報以外のRRC接続再設定メッセージの要素に含まれてもよい。また、プライマリヌメロロジーの設定とセカンダリヌメロロジーの設定の両方がモビリティ制御情報以外のRRC接続再設定メッセージの要素に含まれてもよい。また、プライマリヌメロロジーおよび/またはセカンダリヌメロロジーは、上りリンクと下りリンクとで分離された設定であってもよい。すなわち、上りリンクプライマリヌメロロジーと下りリンクプライマリヌメロロジーが定義されてもよい。また、SCellおよび/またはPSCellを追加/修正するRRC接続再設定メッセージにそのセルに設定されるヌメロロジーの情報が含まれてよい。また、SCellおよび/またはPSCellを追加するRRC接続再設定メッセージの要素(例えば(8J)sCellToAddModListの各セル情報や(12B)pSCellToAddMod)に何れのヌメロロジーを適用するかを判断可能な情報が含まれてもよい。例えば、SCellおよび/またはPSCellを追加するRRC接続再設定メッセージの要素(例えば(8J)sCellToAddModListの各セル情報や(12B)pSCellToAddMod)にプライマリヌメロロジーが適用されるかセカンダリヌメロロジーが適用されるかを示す情報(例えば1ビットの情報)が含まれてもよい。例えば、SCellおよび/またはPSCellを追加するRRC接続再設定メッセージの要素(例えば(8J)sCellToAddModListの各セル情報や(12B)pSCellToAddMod)に適用するヌメロロジーの情報が含まれない場合、既定のヌメロロジー(例えばプライマリヌメロロジー)が適用されてもよい。
 また、プライマリヌメロロジーおよび/またはセカンダリヌメロロジーのヌメロロジーの設定には複数のヌメロロジー設定が含まれてもよい。この場合、プライマリヌメロロジーおよび/またはセカンダリヌメロロジーのヌメロロジーの設定に含まれるヌメロロジーの種類に最大数(例えば最大2つまで)が設定されてもよい。また、セカンダリヌメロロジーにプライマリヌメロロジーと同じ設定が含まれてもよい。
 また、下りリンクのヌメロロジー設定はPUCCHグループごとおよび/または物理チャネルごとに設定されてもよい。複数のサービングセルに対して共通のPUCCHリソースが用いられるとき、それらの複数のサービングセルを1つのPUCCHグループとしてよい。例えば、PCellを含む複数のサービングセルのPUCCHシグナリングが、PCellのPUCCHに対応づけられている場合に、このPUCCHグループをPrimary PUCCH groupとしてよい。例えば、SCellを含む複数のサービングセルのPUCCHシグナリングが、PUCCHが設定されたあるSCellのPUCCHに対応づけられている場合に、このPUCCHグループをSecondary PUCCH groupとしてよい。1つのPUCCHグループに対して共通となる下りリンクのヌメロロジーが設定されてよい。PUCCHグループが複数ある場合、そのPUCCHグループごとに共通となる下りリンクのヌメロロジーが設定されてよい。このとき、PUCCHグループごとに共通となる下りリンクのヌメロロジーには、物理チャネルごとに独立したヌメロロジーが含まれてもよい。
 また、PUCCHグループはセルグループごとに最大数(例えば最大2つまで)が設定されてもよい。また、上りリンクおよび/または下りリンクの各物理チャネルに対して設定されるヌメロロジーの種類に最大数(例えば最大2つまで)が設定されてもよい。
 また、プライマリヌメロロジーとセカンダリヌメロロジーの設定の何れか、またはそれぞれにPUCCHグループごとのヌメロロジーの設定が含まれてもよい。また、PUCCHグループごとのヌメロロジーの設定の何れか、またはそれぞれにプライマリヌメロロジーとセカンダリヌメロロジーの設定が含まれてもよい。
 また、RRC接続再設定メッセージに含まれる情報要素(例えば(8E)radioResourceConfigDedicated、(12A)radioResourceConfigDedicatedSCG、RRM測定のための測定対象(Measurement Object)など)にCSI-RSの設定情報が含まれてよい。また、この設定情報に各CSI-RSのヌメロロジーを示す情報、またはCSI-RSのセット毎のヌメロロジーを示す情報が含まれてよい。また、CSI-RS間で異なるヌメロロジーが設定されている場合、端末装置2は、すべてのCSI-RSの設定を有効とみなしてもよい。また、端末装置2は、PDSCHの受信に設定されているヌメロロジーのCSI-RSの設定のみを有効とみなしてもよい。
 また、端末装置2はTTIのバンドル(TTI bundling)をサポートしてもよい。TTI bundlingとは、例えばセル端などの無線品質の悪い状況において、1つのPDCCHを用いて複数TTIのPUSCHリソースをスケジューリングし、各TTIのリソースに対して、HARQ処理のIncremental redundancy法を適用するために、Redundancy version(RV)を変更したデータ(RV cyclingしたデータ)を配置したり、Chase combining法を適用するために、同じデータの繰り返し(Repetitionしたデータ)を配置したりして送信するものである。例えば、RRC接続再設定メッセージにTTI bundlingを有効にするか否かを示す情報が含まれてよい。また、バンドリングのサイズが、既定値(例えば4つ)と設定されてもよい。または、バンドリングのサイズがRRC層またはMAC層または物理層のメッセージや信号で通知されてもよい。例えば、(A)端末装置2の物理層機能において、スロット集約によって、0.5msのスロットが4つ集約された2msTTIのPUSCHがアサインされる。(B)端末装置2のMAC層機能は、2msのTTIで送信するように設定されている論理チャネルのデータを含めたMAC PDUを生成して物理層に与える。(C)端末装置2の物理層機能は、TTI bundlingが有効な場合、例えばバンドリングのサイズが4であれば、(Incremental redundancy法を適用する場合)4つの異なるRVのデータを生成して、4つのPUSCHリソースを用いて生成したデータを送信する。すなわち(A)では0.5msの長さのスロットがスロット集約によって、4つのスロットを用いた2msのTTIを形成する。これにより2ms単位でのスケジュールが行われる。そして(B)では、2msTTIでの送信が許可された論理チャネルのデータがPUSCHにアサインされる。次に(C)では、TTI bundlingによって2msTTIのPUSCHにアサインされるデータが、Incremental redundancy法を適用する場合、異なるRVの4つのデータとして、4つのPUSCHリソースを用いて(8msに渡って)送信される。また(C)において、Chase combining法を適用する場合、複製された4つのデータが4つのPUSCHリソースを用いて(8msに渡って)送信される。
 上記実施形態ではチャネルごとにヌメロロジーを設定する例を示したが、それ以外にも、RRC接続再設定メッセージ、および/またはMAC制御要素および/またはDCIを用いて、時間リソースとヌメロロジーの対応が通知されてもよい。例えば、ある時間長を単位とする時間区間(例えばフレームやスーパーフレームやハイパーフレーム、またはある基準フレームの先頭から40msや80msの範囲など)を構成する部分区間(スロットやサブフレームやフレーム、あるいはその組み合わせなど)の位置を示す情報と(上りリンクおよび/または下りリンクの)ヌメロロジーを示す情報とが通知されてもよい。これにより、チャネルごとに個別に情報を通知することなく複数のヌメロロジーを用いて通信することができる。
 なお、前記説明において、便宜上、「ヌメロロジー」という単語を使用して説明してきたが、システムで使用される以下のパラメータ(A)から(G)の一部あるいは全部がヌメロロジーである。(A)サンプリングレート(B)サブキャリア間隔(C)サブフレーム長(D)スケジューリングに用いられる時間の単位(送信時間間隔、TTI:Transmission Time Interval)(E)OFDMシンボル長(F)1サブフレームに含まれるOFDMシンボル数(G)シグナルおよび/またはチャネルが送信されるアンテナポート
 上記実施例において、MAC層の設定(例えば、上記各mac-MainConfigやDRB-ToAddModなど)に送信時間間隔(TTI)の情報が含まれてもよい。また、物理層のチャネル設定(例えば、radioResourceConfigDedicatedや、physicalConfigDedicated)に(信号および/またはチャネル毎の)サブキャリア間隔の情報および/または1サブフレームに含まれるOFDMシンボル数の情報が含まれてもよい。また、端末装置2の物理層から端末装置2のMAC層に対して、受信した下りリンクデータの送信時間間隔、および/または取得した上りリンク送信リソースの送信時間間隔の情報が通知されてもよい。これにより、端末装置2のMAC層において、送信時間間隔に基づいた適切なスケジューリングを行うことができる。
 上記実施形態では、送信時間間隔(TTI)がヌメロロジーに含まれる例を説明した箇所があるが、これに限らず別のパラメータとして設定されてもよい。この場合であっても、あるメッセージにヌメロロジー情報が含まれる場合に、そのメッセージに送信時間間隔(TTI)が含まれてもよい。
 また、上記説明で使用した「TTI」は「送信継続期間(Transmission Duration、TransDuration)」と呼称してもよい。
 本発明の実施形態における装置の構成について説明する。
 図2は、本実施形態の端末装置2の構成を示す概略ブロック図である。図示するように、端末装置2は、無線送受信部20、および、上位層処理部24を含んで構成される。無線送受信部20は、アンテナ部21、RF(Radio Frequency)部22、および、ベースバンド部23を含んで構成される。上位層処理部24は、媒体アクセス制御層処理部25、および、無線リソース制御層処理部26を含んで構成される。無線送受信部20を送信部、受信部、または、物理層処理部とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。
 上位層処理部24は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部20に出力する。上位層処理部24は、媒体アクセス制御(MAC:Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol:PDCP)層、無線リンク制御(Radio Link Control:RLC)層、無線リソース制御(Radio Resource Control:RRC)層の一部あるいはすべての処理を行なう。
 上位層処理部24が備える媒体アクセス制御層処理部25は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部25は、無線リソース制御層処理部26によって管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストの伝送の制御を行う。
 上位層処理部24が備える無線リソース制御層処理部26は、無線リソース制御層の処理を行う。無線リソース制御層処理部26は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部26は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部26は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。
 無線送受信部20は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部20は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部24に出力する。無線送受信部20は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。
 RF部22は、アンテナ部21を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部22は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部23は、RF部22から入力されたアナログ信号を、アナログ信号をデジタル信号に変換する。ベースバンド部23は、変換したデジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform:FFT)を行い、周波数領域の信号を抽出する。
 ベースバンド部23は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform:IFFT)して、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換する。ベースバンド部23は、変換したアナログ信号をRF部22に出力する。
 RF部22は、ローパスフィルタを用いてベースバンド部23から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部21を介して送信する。また、RF部22は、電力を増幅する。また、RF部22は送信電力を制御する機能を備えてもよい。RF部22を送信電力制御部とも称する。
 なお、端末装置2は、複数の周波数(周波数帯、周波数帯域幅)またはセルの同一サブフレーム内での送受信処理をサポートするために各部の一部あるいはすべてを複数備える構成であってもよい。
 図3は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol:PDCP)層、無線リンク制御(Radio Link Control:RLC)層、無線リソース制御(Radio Resource Control:RRC)層の一部あるいはすべての処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、媒体アクセス制御層の処理を行う。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストに関する処理を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、無線リソース制御層の処理を行う。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置2各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置2各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。
 無線送受信部30の機能は、無線送受信部20と同様であるため説明を省略する。なお、基地局装置3が1または複数の送受信点4と接続している場合、無線送受信部30の機能の一部あるいは全部が、各送受信点4に含まれてもよい。
 また、上位層処理部34は、基地局装置3間あるいは上位のネットワーク装置(MME、S-GW(Serving-GW))と基地局装置3との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図3において、その他の基地局装置3の構成要素や、構成要素間のデータ(制御情報)の伝送経路については省略してあるが、基地局装置3として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。例えば、無線リソース制御層処理部36の上位には、無線リソース管理(Radio Resource Management)層処理部や、アプリケーション層処理部が存在している。
 なお、図中の「部」とは、セクション、回路、構成装置、デバイス、ユニットなど用語によっても表現される、端末装置2および基地局装置3の機能および各手順を実現する要素である。
 端末装置2が備える符号20から符号26が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。
 本発明の実施形態における、端末装置2および基地局装置3の種々の態様について説明する。
 (1)本発明の第1の態様は、端末装置であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を受信する受信部と、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補を特定する制御部とを備える。
 (2)本発明の第1の態様において、前記受信部はさらに1または複数の論理チャネルの各々と送信時間間隔の紐付けを示す第2の情報を受信し、前記第1の情報に基づいて特定される送信時間間隔と、前記第2の情報に基づいて、MAC層プロトコルデータユニット(MAC-PDU)を生成する媒体アクセス制御層処理部を備える。
 (3)本発明の第1の態様において、前記第1の情報はRRC接続再設定メッセージで通知される。
 (4)本発明の第1の態様において、前記第1の情報は、前記組み合わせを別の組み合わせに切り替える場合には、RRC接続再設定メッセージにモビリティ制御情報(MCI)が含まれ、前記第1の情報は、前記組み合わせの候補を追加または変更する場合には、RRC接続再設定メッセージにモビリティ制御情報(MCI)が含まれない。
 (5)本発明の第1の態様において、物理下りリンク制御チャネルで通知される情報(第2の情報)と前記第1の情報とに基づき、対応する物理下りリンク共有チャネルの送信時間間隔を特定する。
 (6)本発明の第1の態様において、物理下りリンク制御チャネルで通知される情報(第3の情報)と前記第1の情報とに基づき、割り当てられる物理上りリンク共有チャネルの送信時間間隔を特定する。
 (7)本発明の第2の態様は、基地局装置であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を生成する制御部と、前記第1の情報を送信し、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補の何れかを用いて物理チャネルを送信する送信部を備える。
 (8)本発明の第3の態様は、端末装置に適用される通信方法であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を受信するステップと、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補を特定するステップとを含む。
 (9)本発明の第4の態様は、端末装置に実装される集積回路であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を受信する機能と、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補を特定する機能とを前記端末装置に対して発揮させる。
 (10)本発明の第5の態様は、基地局装置に適用される通信方法であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を生成するステップと、前記第1の情報を送信し、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補の何れかを用いて物理チャネルを送信するステップとを備える。
 (11)本発明の第6の態様は、基地局装置に実装される集積回路であって、サブキャリア間隔、スロット数、OFDMシンボル数、送信時間間隔の何れかの組み合わせまたは組み合わせの1または複数の候補を示す第1の情報を生成する機能と、前記第1の情報を送信し、少なくとも前記第1の情報に基づいて、ある物理チャネルに対して設定される少なくともサブキャリア間隔(SCS)と送信時間間隔(TTI)との組み合わせ、または前記組み合わせの1または複数の候補の何れかを用いて物理チャネルを送信する機能とを前記基地局装置に対して発揮させる。
 これにより、端末装置 2および基地局装置3は、効率的に通信を行うことができる。
 なお、以上説明した実施形態は単なる例示に過ぎず、様々な変形例、置換例を用いて実現することができる。例えば、上りリンク送信方式は、FDD(周波数分割復信)方式とTDD(時分割復信)方式のどちらの通信システムに対しても適用可能である。また、実施形態で示される各パラメータや各イベントの名称は、説明の便宜上呼称しているものであって、実際に適用される名称と本発明の実施形態の名称とが異なっていても、本発明の実施形態において主張する発明の趣旨に影響するものではない。
 また、各実施形態で用いた「接続」とは、ある装置と別のある装置とを、物理的な回線を用いて直接接続される構成にだけ限定されるわけではなく、論理的に接続される構成や、無線技術を用いて無線接続される構成を含む。
 端末装置2は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(NodeB)、eNB(evolved NodeB)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR NodeB)、NNB、TRP(Transmission and Reception Point)、gNB(next generation Node B)とも称される。
 本発明の一態様に関わる基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置2は、集合体としての基地局装置3と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよいし、あるいは次世代コアネットワーク(NextGen Core)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明の一態様に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
2 端末装置
3 基地局装置
20、30 無線送受信部
21、31 アンテナ部
22、32 RF部
23、33 ベースバンド部
24、34 上位層処理部
25、35 媒体アクセス制御層処理部
26、36 無線リソース制御層処理部
4 送受信点

Claims (6)

  1.  基地局装置とセルを介して通信する端末装置であって、
     前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信する受信部と、
     前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行ない、
     前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択する処理部とを備え、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる端末装置。
  2.  端末装置とセルを介して通信する基地局装置であって、
     前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信する送信部と、
     前記無線リソース制御の再設定メッセージにパラメータを含める処理部を備え、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる基地局装置。
  3.  基地局装置とセルを介して通信する端末装置に適用される通信方法であって、
     前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信するステップと、
     前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行なうステップと、
     前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択するステップとを含み、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる通信方法。
  4.  端末装置とセルを介して通信する基地局装置に適用される通信方法であって、
     前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信するステップと、
     前記無線リソース制御の再設定メッセージにパラメータを含めるステップとを含み、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる通信方法。
  5.  基地局装置とセルを介して通信する端末装置に実装される集積回路であって、
     前記基地局装置から無線リソース制御(RRC)の再設定メッセージを受信する機能と、
     前記無線リソース制御の再設定メッセージに含まれるパラメータに基づき、パラメータの設定を行なう機能と、
     前記パラメータの設定と、物理層から受け取った、送信継続時間に関する情報を含む上りリンク送信の情報に基づき、送信する論理チャネルを選択する機能とを前記端末装置に対して発揮させ、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる集積回路。
  6.  端末装置とセルを介して通信する基地局装置に実装される集積回路であって、
     前記端末装置に無線リソース制御(RRC)の再設定メッセージを送信する機能と、
     前記無線リソース制御の再設定メッセージにパラメータを含める機能とを前記基地局装置に対して発揮させ、
     前記パラメータは、論理チャネルに対応付けられた送信継続期間に関する情報を含み、
     前記論理チャネルはデータ無線ベアラと対応付けられる集積回路。
PCT/JP2018/016583 2017-04-27 2018-04-24 端末装置、基地局装置、通信方法、および、集積回路 WO2018199079A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-088203 2017-04-27
JP2017088203A JP2020109883A (ja) 2017-04-27 2017-04-27 端末装置、基地局装置、通信方法、および、集積回路

Publications (1)

Publication Number Publication Date
WO2018199079A1 true WO2018199079A1 (ja) 2018-11-01

Family

ID=63918349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016583 WO2018199079A1 (ja) 2017-04-27 2018-04-24 端末装置、基地局装置、通信方法、および、集積回路

Country Status (2)

Country Link
JP (1) JP2020109883A (ja)
WO (1) WO2018199079A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660063B2 (en) 2017-11-16 2020-05-19 Comcast Cable Communications, Llc Beam paging assistance
US10798622B2 (en) 2018-02-09 2020-10-06 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US10855359B2 (en) 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US10863570B2 (en) 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US10904940B2 (en) 2018-03-30 2021-01-26 Comcast Cable Communications, Llc Configuration for beam failure recovery
US11012137B2 (en) 2018-08-09 2021-05-18 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
US11039350B2 (en) 2018-04-02 2021-06-15 Comcast Cable Communications, Llc Beam failure recovery
CN113170311A (zh) * 2018-12-13 2021-07-23 株式会社Ntt都科摩 基站、无线装置以及通信控制方法
US11095355B2 (en) 2018-05-10 2021-08-17 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures
CN113330801A (zh) * 2019-01-24 2021-08-31 夏普株式会社 终端装置、基站装置以及通信方法
US11277301B2 (en) 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US11324064B2 (en) 2018-09-24 2022-05-03 Comcast Cable Communications, Llc Beam failure recovery procedures
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US11343735B2 (en) 2018-09-25 2022-05-24 Comcast Cable Communications, Llc Beam configuration for secondary cells
US11419066B2 (en) 2018-02-15 2022-08-16 Comcast Cable Communications, Llc Beam failure report
JP2022554221A (ja) * 2019-11-07 2022-12-28 維沃移動通信有限公司 情報伝送方法及び機器
US11611468B2 (en) 2017-09-28 2023-03-21 Comcast Cable Communications, Llc Beam management with DRX configuration
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US12034511B2 (en) 2021-07-06 2024-07-09 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115034A1 (en) * 2014-01-30 2015-08-06 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
WO2016021821A1 (en) * 2014-08-07 2016-02-11 Lg Electronics Inc. Method for deactivating scells during scg change procedure and a device therefor
JP2017505017A (ja) * 2014-01-21 2017-02-09 エルジー エレクトロニクス インコーポレイティド 複数のキャリアを有する端末がttiバンドリングを設定する方法及びその装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505017A (ja) * 2014-01-21 2017-02-09 エルジー エレクトロニクス インコーポレイティド 複数のキャリアを有する端末がttiバンドリングを設定する方法及びその装置
WO2015115034A1 (en) * 2014-01-30 2015-08-06 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
WO2016021821A1 (en) * 2014-08-07 2016-02-11 Lg Electronics Inc. Method for deactivating scells during scg change procedure and a device therefor

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165485B2 (en) 2017-08-10 2021-11-02 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11337265B2 (en) 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
US10855359B2 (en) 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11425774B2 (en) 2017-08-10 2022-08-23 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US10887939B2 (en) 2017-08-10 2021-01-05 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US11949487B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11950309B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Transmission power control for beam failure recovery requests
US11950287B2 (en) 2017-08-10 2024-04-02 Comcast Cable Communications, Llc Resource configuration of beam failure recovery request transmission
US11870724B2 (en) 2017-08-10 2024-01-09 Comcast Cable Communications, Llc Beam failure recovery request transmission
US11277301B2 (en) 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US11611468B2 (en) 2017-09-28 2023-03-21 Comcast Cable Communications, Llc Beam management with DRX configuration
US11696256B2 (en) 2017-11-16 2023-07-04 Comcast Cable Communications, Llc Beam selection for paging
US11240780B2 (en) 2017-11-16 2022-02-01 Comcast Cable Communications, Llc Beam paging assistance
US10660063B2 (en) 2017-11-16 2020-05-19 Comcast Cable Communications, Llc Beam paging assistance
US10863570B2 (en) 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
US11490442B2 (en) 2018-01-09 2022-11-01 Comcast Cable Communications, Llc Downlink partial beam failure recovery
US11368996B2 (en) 2018-01-09 2022-06-21 Comcast Cable Communications, Llc Resource selection in beam failure recovery transmissions
US11678235B2 (en) 2018-02-09 2023-06-13 Comcast Cable Communications, Llc Beam failure recovery procedure in carrier aggregation
US10798622B2 (en) 2018-02-09 2020-10-06 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US11419066B2 (en) 2018-02-15 2022-08-16 Comcast Cable Communications, Llc Beam failure report
US11723103B2 (en) 2018-03-30 2023-08-08 Comcast Cable Communications, Llc Configuration for beam failure recovery
US11310859B2 (en) 2018-03-30 2022-04-19 Comcast Cable Communications, Llc Configuration for beam failure recovery
US10904940B2 (en) 2018-03-30 2021-01-26 Comcast Cable Communications, Llc Configuration for beam failure recovery
US11039350B2 (en) 2018-04-02 2021-06-15 Comcast Cable Communications, Llc Beam failure recovery
US11882488B2 (en) 2018-04-02 2024-01-23 Comcast Cable Communications, Llc Beam failure recovery
US11095355B2 (en) 2018-05-10 2021-08-17 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures
US11936459B2 (en) 2018-08-09 2024-03-19 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
US11012137B2 (en) 2018-08-09 2021-05-18 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
US11627627B2 (en) 2018-09-24 2023-04-11 Comcast Cable Communications, Llc Beam failure recovery procedures
US11324064B2 (en) 2018-09-24 2022-05-03 Comcast Cable Communications, Llc Beam failure recovery procedures
US11825364B2 (en) 2018-09-25 2023-11-21 Comcast Cable Communications, Llc Beam configuration for secondary cells
US11343735B2 (en) 2018-09-25 2022-05-24 Comcast Cable Communications, Llc Beam configuration for secondary cells
CN113170311A (zh) * 2018-12-13 2021-07-23 株式会社Ntt都科摩 基站、无线装置以及通信控制方法
CN113170311B (zh) * 2018-12-13 2024-02-06 株式会社Ntt都科摩 基站、无线装置以及通信控制方法
CN113330801A (zh) * 2019-01-24 2021-08-31 夏普株式会社 终端装置、基站装置以及通信方法
JP2022554221A (ja) * 2019-11-07 2022-12-28 維沃移動通信有限公司 情報伝送方法及び機器
US12034511B2 (en) 2021-07-06 2024-07-09 Comcast Cable Communications, Llc Prioritization in beam failure recovery procedures

Also Published As

Publication number Publication date
JP2020109883A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2018199079A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN109997385B (zh) 终端装置、基站装置、通信方法以及集成电路
US11283581B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
JPWO2018174058A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018123483A1 (ja) 端末装置、基地局装置、および、通信方法
WO2019194164A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018061675A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2019033420A (ja) 端末装置、通信方法、および、集積回路
IL265644A (en) Terminal device, base station device, communication method, and integrated circuit
US20220386381A1 (en) Methods for Balancing Resources Utilized in Random-Access Procedures
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
WO2019244609A1 (ja) 端末装置、基地局装置、方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP