WO2016149884A1 - 一种资源调度方法及设备 - Google Patents

一种资源调度方法及设备 Download PDF

Info

Publication number
WO2016149884A1
WO2016149884A1 PCT/CN2015/074763 CN2015074763W WO2016149884A1 WO 2016149884 A1 WO2016149884 A1 WO 2016149884A1 CN 2015074763 W CN2015074763 W CN 2015074763W WO 2016149884 A1 WO2016149884 A1 WO 2016149884A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
user
resource
resource allocation
resource block
Prior art date
Application number
PCT/CN2015/074763
Other languages
English (en)
French (fr)
Inventor
林梅露
郭宇宸
杨讯
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/074763 priority Critical patent/WO2016149884A1/zh
Priority to CN201580077156.2A priority patent/CN107409385B/zh
Publication of WO2016149884A1 publication Critical patent/WO2016149884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource scheduling method and device.
  • Embodiments of the invention relate to the application of the following techniques in a wireless local area network:
  • Orthogonal Frequency Division Multiple Access OFDMA
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA technology supports multiple nodes to simultaneously send and receive data.
  • the resource allocation is performed based on the RB or the RB group; different channel resources are allocated to different stations (STA, Station) at the same time, so that multiple STAs access the channel efficiently, and the channel is enhanced. Utilization rate.
  • MU-MIMO Multiple User-MIMO
  • MIMO Multiple Input Multiple Output
  • MIMO technology can provide transmit (receive) beamforming to effectively improve transmit (receive) power and effectively improve the reliability of communication systems; on the other hand, MIMO technology can Generate additional spatial freedom Thereby multiplying the throughput of the system and effectively increasing the speed of the communication system. Because of these advantages of MIMO technology, MIMO technology has become one of the key technologies of the 802.11n and 802.11ac standard protocols.
  • the transmitting end can send data to multiple users through multiple spatial streams, and can also receive data sent from multiple users on different spatial streams, thereby realizing parallel transmission of multi-user data and improving
  • the concurrency of data transmission is called MU-MIMO transmission.
  • the embodiments of the present invention provide a resource scheduling method and device, which are used to provide a solution for how to schedule users in 802.11ax.
  • a resource scheduling method where a receiving end receives a preamble sent by a sending end device, where the preamble includes a traditional preamble and an efficient preamble, where the high-performance preamble carries resource allocation mode indication information and a user.
  • Group and user scheduling indication information determining, according to the user group and the user scheduling indication information, a scheduling order of the scheduled user and the receiving end in the scheduled user, according to the scheduling order of the receiving end in the scheduled user
  • the resource allocation mode indication information determines resources that are scheduled to be received by the receiving end.
  • a resource scheduling method where a transmitting end generates a preamble, where the preamble includes a traditional preamble and an efficient preamble, and the high-efficiency preamble carries a resource allocation module. Expression information, a user group, and user scheduling indication information; and transmitting the preamble.
  • a receiving end device and a transmitting end device that can be used to perform the aforementioned method are provided in other aspects.
  • the user can be scheduled by using the information carried in the preamble in 802.11ax, and the overall cost is reduced.
  • 1 is a schematic diagram of a packet structure of 802.11ax
  • FIG. 2 is a schematic diagram of resource block distribution of a 20M bandwidth
  • 3a is a schematic diagram of a WLAN system according to an embodiment of the present invention.
  • 3b is a schematic flowchart of a method for performing resource scheduling according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of analyzing resource indication mode indication information according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of resource block combination division according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another resource allocation mode indication information analysis according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of resource block combination allocation according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an efficient signaling field B according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a preamble according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another high-efficiency signaling field B according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another high-efficiency signaling field B according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another high-efficiency signaling field B according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another preamble according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of user group and user scheduling indication information according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of another user group and user scheduling indication information according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of resource allocation mode indication information, a user group, and user scheduling indication information according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another device at a transmitting end according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a receiving end device according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of another receiving end device according to an embodiment of the present invention.
  • the preamble portion includes a legacy preamble (L-preamble).
  • High Efficient (HE) preamble includes a Legacy Shorting Training Field (L-STF), a Legacy Long Training Field (L-LTF), and a Signaling Field (Legacy Signal Field, L-SIG).
  • the high-efficiency preamble includes a signaling field, High Efficient Signal Field A (HE-SIGA), High Efficient Signal Field B (HE-SIGB), and High Efficient Shorting (High Efficient Shorting).
  • the efficient preamble includes a High Efficient Signal Field C (HE-SIGC).
  • HE-SIGA and HE-SIGB are broadcasted to all users to carry the signaling information in the 802.11ax packet structure.
  • the specific content they contain is still under discussion.
  • the basic content currently determined includes: HE-SIGA carrying transmission Information such as bandwidth, number of symbols of HE-SIGB, and Modulation and Coding Scheme (MCS);
  • HE-SIGB carries the number of symbols of HE-LTF, indication of resource allocation, and multiple scheduled users Identity indication and corresponding transmission parameters. Since the number of users per schedule is variable, the number of symbols of the HE-SIGB is also variable.
  • the rule currently determined by 802.11ax for resource block size partitioning is to use 26 subcarriers as one resource block.
  • 802.11ax taking 20 megabytes (M) of bandwidth as an example, 802.11ax is in the data symbol portion.
  • the discrete Fourier transform/inverse discrete Fourier transform (DFT/IDFT) points are 256, that is, there are 256 subcarriers, where the subcarriers -1, 0, and 1 are direct current (DC), and the left sideband Carrier-122 to subcarrier-2 and rightband subcarrier 2 to subcarrier 122 are used to carry data information, that is, 242 subcarriers are used to carry data information.
  • Subcarrier-128 to subcarrier-123 and subcarrier 123 to subcarrier 128 are guard bands.
  • the 242 subcarriers carrying the data information are divided into 9 resource blocks, and each resource block includes 26 subcarriers, and then 8 unused subcarriers remain.
  • An Access Point which can also be called a wireless access point or bridge or hotspot, can access a server or a communication network.
  • a site also referred to as a user, can be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with wireless communication capabilities.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with wireless communication capabilities.
  • it may be a portable, pocket-sized, hand-held, computer-integrated, wearable, or in-vehicle wireless communication device that exchanges voice, data, and the like communication data with a wireless access network.
  • FIG. 3a is a schematic diagram of a WLAN system according to an embodiment of the present invention.
  • the WLAN system includes one or more access points AP31, and further includes one or more stations STA32. Data transmission is performed between the access point and the station, wherein the station determines the resource scheduled to be based on the preamble sent by the access point, and performs data transmission between the resource and the access point.
  • resource scheduling is performed in units of resource blocks (RBs).
  • the rule for resource block size partitioning currently determined according to 802.11ax 26 subcarriers are used as one resource block.
  • the method for performing resource scheduling is as follows:
  • the transmitting end AP sends a preamble, where the preamble includes a traditional preamble and an efficient preamble, where the high-performance preamble includes resource allocation mode indication information, a user group, and user scheduling indication information;
  • the preamble conforming to the next generation Wifi standard, such as 802.11ax, may have a different name without affecting its technical essence.
  • the resource allocation mode indication information is used to indicate resources of the scheduled user in the current scheduling.
  • the allocation information such as the resource allocation mode indication information, indicates the number of users scheduled, and how many resource blocks are allocated for each scheduled user allocation.
  • the resource allocation information of all scheduled users in one scheduling is defined as the resource allocation mode.
  • a user group is used to indicate a group of users of resources arranged in a predetermined order.
  • the user scheduling indication information is used to indicate the scheduling order of the scheduled users in the user group and the scheduled users.
  • Step 301 The receiving end receives the preamble sent by the AP.
  • Step 302 The receiving end determines, according to the user group and the user scheduling indication information, a scheduling order of the scheduled user and the receiving end in the scheduled user, according to the scheduling order of the receiving end in the scheduled user, and the resource.
  • the allocation mode indication information determines the resources that are scheduled to the receiving end.
  • Step 303 The receiving end and the AP perform data transmission on the resource scheduled to be received by the AP.
  • the high-efficiency preamble includes an efficient signaling field B, where the high-efficiency signaling field B carries resource allocation mode indication information.
  • the efficient preamble also includes an efficient signaling field A.
  • the bandwidth indication information corresponding to the resource allocation mode indication information may be carried in the high-efficiency signaling field A.
  • the high-efficiency signaling field B includes a plurality of the resource allocation mode indication information
  • the high-efficiency signaling field B further includes the bandwidth indication information corresponding to each of the resource allocation mode indication information
  • the high-efficiency signaling field B includes only one resource allocation mode indication information
  • the high-efficiency signaling field A or the high-efficiency signaling field B further includes the bandwidth indication information corresponding to the resource allocation mode indication information.
  • Each resource allocation table includes a preset plurality of resource allocation modes, and the resource allocation mode in the resource allocation table is identified by an index number, and each resource allocation mode in the same resource allocation table has a different index number.
  • the resource allocation mode indication information is at least one index number.
  • the receiving end and the sending end may agree on a correspondence between the bandwidth and the resource allocation table by using a protocol or by an information interaction process.
  • the receiving end and the transmitting end can mutually agree a resource allocation table corresponding to the specified bandwidth, the transmission bandwidth corresponding to the resource allocation table is not greater than the minimum bandwidth corresponding to the resource allocation indication information, and the bandwidth corresponding to the resource allocation indication information is the transmission.
  • the receiving end and the transmitting end may mutually agree on the correspondence between the multiple bandwidths and the resource allocation table.
  • the transmission bandwidth corresponding to each resource allocation table is different, and the transmission bandwidth corresponding to the resource allocation table is equal to the bandwidth corresponding to the resource allocation indication information.
  • the bandwidth corresponding to the resource allocation indication information is divided into multiple sub-bands according to the specified bandwidth.
  • the bandwidth allocation mode of each sub-bandwidth corresponds to an index number
  • the resource allocation indication information of the high-efficiency preamble of the transmitted preamble carries an index number corresponding to each of the multiple sub-bandwidths;
  • the resource allocation indication information in the high-performance preamble of the preamble received by the receiving end carries a plurality of index numbers, and obtains a resource allocation mode corresponding to each of the plurality of index numbers according to the resource allocation table corresponding to the specified bandwidth, where the multiple index numbers are respectively
  • the combination of the corresponding resource allocation modes is the resource allocation mode of the bandwidth corresponding to the resource allocation indication information.
  • the resource allocation indication information includes three index numbers. If the specified bandwidth is 20M, and the bandwidth corresponding to the resource allocation indication information is 80M, the resource allocation indication is used.
  • the information includes 4 index numbers.
  • the receiving end determines the resource allocation mode indicated by the resource allocation indication information, as follows:
  • the resource allocation table has the following two specific implementation methods:
  • the communication resources in the resource allocation mode in the resource allocation table are allocated based on the scheduling user, as shown in Table 1:
  • Index represents an index number
  • STAi indicates the i-th user ID of all the scheduled users, and n_xy indicates the number of RBs allocated by the yth scheduled user under the index number x.
  • the resource allocation allocation table corresponding to the 20M bandwidth is shown in Table 2:
  • the sender obtains the index number corresponding to the resource allocation mode in the resource allocation table corresponding to the 20M bandwidth, that is, the index number 1.
  • the receiving end receives the preamble sent by the sending end, and obtains the resource allocation mode identified by the index number 1 from the resource allocation table corresponding to the 20M bandwidth according to the index number 1 in the high-efficiency preamble in the preamble, so that the scheduled resource is allocated.
  • User's resource allocation mode
  • the number of bits occupied by the transmission of one index number is expressed as: ceiling(log2(N)), N represents an index number to be transmitted, and “ceiling()” represents an rounding operation.
  • N represents an index number to be transmitted
  • ceiling() represents an rounding operation.
  • the communication resources in the resource allocation mode in the resource allocation table are allocated based on the resource blocks, as shown in Table 3:
  • Index represents the index number
  • N represents the maximum index number of the resource allocation mode supported on the bandwidth corresponding to the resource allocation table
  • H represents the total number of resource blocks included in the bandwidth corresponding to the resource allocation table.
  • RBi represents the i-th resource block in the bandwidth corresponding to the resource allocation table.
  • N_xy indicates the user identifier of the user allocated to the yth resource block corresponding to the index number x. Specifically, the identity of the user may be identified in the order in which the sites are scheduled.
  • the sender dispatches 4 users on the 20M
  • the scheduled first user STA1 allocates 2 RBs
  • the scheduled second user STA2 allocates 4 RBs
  • the scheduled third user STA3 allocates 2 RBs
  • the scheduled fourth user STA4 allocates 1 RB
  • the sender looks up the index number corresponding to the resource allocation mode in the resource allocation table corresponding to the 20M bandwidth, and obtains the index number 1, in the preamble of the transmission.
  • the index number 1 is carried in the efficient preamble of the code.
  • the receiving end receives the preamble, obtains the index number 1 from the efficient preamble of the preamble, and obtains the resource allocation mode corresponding to the index number 1 from the resource allocation table corresponding to the 20M bandwidth, so as to obtain the resource allocation mode of the scheduled user.
  • the number of bits occupied by the transmission of one index number is expressed as: ceiling(log2(N)), and N represents an index number to be transmitted.
  • N represents an index number to be transmitted.
  • the resource allocation mode indication information is a bit sequence.
  • the length of the bit sequence is less than or equal to the number of resource blocks included in the bandwidth corresponding to the resource allocation mode indication information.
  • the receiving end determines the resource allocation mode indicated by the resource allocation mode indication information, where the bandwidth indication information corresponding to the resource allocation indication information is obtained from the high-efficiency preamble according to the bandwidth indication information.
  • the bandwidth and the switching between 0 and 1 in the bit sequence determines the resource allocation pattern. The switching between 0 and 1 indicates that the resource block indicated by the bit before the handover and the resource block indicated by the switched bit are allocated to different users.
  • Each bit in the bit sequence corresponds to an allocation of one resource block.
  • the disadvantage of this implementation is that when the number of resource blocks is large, the corresponding bit overhead is large.
  • the length of the bit sequence is equal to the number of resource blocks included in the bandwidth corresponding to the resource allocation mode indication information
  • the length of the bit sequence is equal to the difference between the number of resource blocks included in the bandwidth corresponding to the resource allocation mode indication information minus one, and the bit sequence is used to indicate the allocation of the resource blocks except the first resource block in the bandwidth, first.
  • the resource blocks are configured for the first scheduled user.
  • One bit of overhead can be saved compared to the way each resource block occupies one bit.
  • bit sequence indicates that the user of the corresponding resource block allocation remains unchanged, and 1 in the bit sequence indicates that the corresponding resource block is allocated to the next scheduled user.
  • a 1 in the bit sequence indicates that the user of the corresponding resource block allocation remains unchanged, and a 0 in the bit sequence indicates that the corresponding resource block is allocated to the next scheduled user.
  • switching from 0 to 1 in the bit sequence, or switching from 1 to 0, indicates that the corresponding resource block is allocated to the next scheduled user after the handover, and consecutive 0 or 1 of the bit sequence indicates that the corresponding resource block is allocated to the scheduling. The same user.
  • the scheduled first user STA1 allocates 2 RBs
  • the scheduled second user STA2 allocates 4 RBs
  • the scheduled third user STA3 Two RBs are allocated
  • the scheduled fourth user STA4 allocates one RB. Since there are a total of 9 RB resource blocks on the 20M, since the first resource block is necessarily allocated to the first user to be scheduled, the bit indicating the allocation of the first resource block can be omitted, and the bit can be performed with 8 bits 01000101.
  • An indication of the RB allocation on the 20M as shown in FIG. 4, where 1 indicates that the corresponding resource block is switched to the next scheduled user, and 0 indicates that the allocation of the corresponding RB is consistent with the allocation of the previous RB, and the corresponding scheduled The user does not change.
  • Each successive combination of 0 or 1 in the bit sequence corresponds to an allocation of one resource block combination, and the lengths of consecutive 0s or 1 are different according to the size of the corresponding resource block combination, and the resource block combination includes at least one resource block.
  • the bandwidth allocated by the resource allocation mode indication information is different, and the correspondence between the length of the preset consecutive 0 or 1 and the size of the resource block combination is different.
  • the length of the consecutive 0 or 1 corresponding to the resource block combination with a higher frequency of use is set to a smaller value, and the length of the consecutive 0 or 1 corresponding to the resource block combination with a lower frequency of use is set to a larger value.
  • the bit overhead can be significantly reduced.
  • the correspondence between the resource block combinations under different bandwidths and the lengths of consecutive 0s or 1s is different, which can improve flexibility and further reduce bit overhead.
  • the corresponding bandwidth is different, and the correspondence between the preset continuous 0 or 1 length and the size of the resource block combination is different, which improves flexibility.
  • the correspondence between the preset consecutive 0 or 1 length and the size of the resource block combination is:
  • the correspondence between the preset consecutive 0 or 1 length and the size of the resource block combination is:
  • the resource allocation mode is determined according to the bandwidth indicated by the bandwidth indication information and the handover between 0 and 1 in the bit sequence, specifically:
  • the resource allocation mode indication information is a bit sequence.
  • the bit sequence is composed of a reference bit sequence for indicating a size of a resource block combination, and an allocation indication bit sequence, where the allocation indication bit sequence is used to indicate allocation information of a corresponding resource block combination.
  • the reference bit sequence included in the bit sequence is arranged in descending order of the indicated resource block combinations.
  • the number of bits occupied by the bit sequence is determined according to the number of types of resource block combinations to be allocated, or the number of bits occupied by the bit sequence is determined according to the number of types of resource block combinations.
  • the reference bit sequence of the smallest resource block combination and the corresponding allocation indication bit sequence are not indicated in the bit sequence, or the allocation indication bit sequence of the bit sequence does not indicate the smallest resource block combination.
  • a minimum bit resource sequence and/or a minimum resource block can be saved The combined allocation indicates the overhead occupied by the bit sequence.
  • the resource allocation mode indicated by the resource allocation mode indication information is determined, specifically:
  • the following processing may also be performed:
  • the second finger bit sequence having fewer bits than the first finger bit sequence is used for indication, which further reduces overhead.
  • bit sequence After the bit sequence is parsed, if it is determined that the bit sequence does not include the first bit sequence corresponding to the resource block combination and the corresponding allocation indicator bit sequence, or the bit sequence is determined not to be And an allocation indication bit sequence including a minimum of the resource block combination, determining remaining resource blocks according to the bandwidth indication information and allocation information of resource block combinations indicated by the bit sequence; determining corresponding to the remaining resource blocks
  • the allocation information is assigned to each of the scheduled different users in turn.
  • the limited resource block combination on 20M only includes four cases of 1*26, 2*26, 4*26, and 242 (9*26), so it can be distinguished by 2 bits, such as “00”. Representing 1*26, "01” means 2*26, “10” means 4*26, "11” means 242 (9*26); when the remaining "00” and "01" resource block combinations are to be allocated, It can be distinguished by 1 bit, such as "0" for 1*26 and "1" for 2*26.
  • Example 1 as shown in FIG. 5, it is assumed that the 20M bandwidth includes 9 resource blocks, the size of one resource block is 26 subcarriers, and the maximum resource block combination is 4*26, and two resource blocks of 4*26 size are preset.
  • the combination is a resource block combination composed of the first to fourth resource blocks and a resource block combination composed of the sixth to the ninth resource blocks; and four resource block combinations of 2*26 size are preset, respectively, being the first And a resource block combination composed of a second resource block, a resource block combination composed of a third and a fourth resource block, a resource block combination composed of a sixth and a seventh resource block, and an eighth and a ninth resource block Resource block combination; there are also 9 independent resource blocks, that is, the 9 smallest resource block combinations.
  • Example 2 the first example, based on the resource block combination preset in FIG. 5, as shown in FIG. 6, in the bit sequence "10010111", the combination of the first and second bits, and the combination of the fifth and sixth bits refer to The bite sequence, the combination of the 3rd and 4th bits, and the combination of the 7th and 8th bits are the allocation indication bit sequence, assuming that the bit sequence "10" indicates a resource block combination of 4*26 size, referring to the bit sequence " The corresponding allocation indication bit sequence "01” indicates that the first 4*26 size resource block combination on the 20M bandwidth is unoccupied, and the second 4*26 size resource block combination is occupied; referring to the bit sequence " 01” indicates a resource block combination of 2*26 size, and the allocation indication bit sequence "11” corresponding to the bit sequence "01” indicates that the first 2*26 size resource block combination remaining on the 20M bandwidth is occupied, and the 20M bandwidth is occupied.
  • the remaining 2*26 size resource block combination is occupied; since the 4*26 size resource block combination and the 2*26 size resource block combination have been allocated, according to the allocation order of the resource block combination from large to small, Only one resource block of 1*26 size is left, no need to be in the bit sequence Shown, the remaining resource blocks are allocated to a next scheduled user.
  • Example 3 In the first example, after the resource block combination of "10", that is, 4*26 size is indicated, only two resource block combinations of 2*26 and 1*26 are left, and the two can be performed with only one bit. The distinction between resource block combinations.
  • Example 4 assuming that the bit sequence is "100100", the first two bits “10” indicate that the maximum resource block allocation allocated on the current 20M is 4*26, and the next "01” indicates that the second 4*26 is occupied. The first 4*26 is idle. When reading to "00”, it is known that the resource block indication is currently 1*26 size, and there is no need to perform subsequent indications. All remaining resource block allocations are allocated to the scheduled users according to the size of 1*26, as shown in the figure. 7 is shown.
  • the first to third solutions given above are all for the scenario of scheduling multiple users to share a frequency band.
  • the high-performance preamble can also carry the transmission mode indication information, and the embodiment of the present invention further provides a solution for the combination of the transmission mode indication information and the resource allocation mode indication information.
  • the transmission mode indicated by the transmission mode indication information includes, but is not limited to, any one of a single user (SU), a multi-user multiple input multiple output (MU-MIMO), an OFDMA, and a mixed (Mix) transmission mode.
  • SU single user
  • MU-MIMO multi-user multiple input multiple output
  • OFDMA OFDMA
  • Mix mixed
  • the transmission mode indication information is carried in the high-efficiency signaling field A or the high-efficiency signaling field B, and one bit is occupied in the high-efficiency signaling field A or the high-efficiency signaling field B to indicate the type of the Mix transmission mode.
  • the receiving end After receiving the preamble, the receiving end first obtains the transmission mode indication information from the high-efficiency preamble, and determines, according to the transmission mode indication information, how to obtain the resource allocation mode indication information from the high-efficiency signaling field B.
  • the receiving end determines that the transmission mode indicated by the transmission mode indication information acquired from the high-efficiency preamble is the SU or the MU-MIMO transmission mode, it is determined that the resource allocation mode indication information is not included in the efficient preamble, and the current transmission is performed.
  • the entire bandwidth is allocated to the same user or to the same group of users.
  • the resource allocation mode is determined according to the first to third solutions given above.
  • the receiving end determines that the transmission mode indicated by the transmission mode indication information acquired from the efficient preamble is the Mix transmission mode, the type of the Mix transmission mode is further obtained from the efficient preamble, and the efficient transmission is based on the type of the Mix transmission mode.
  • the resource allocation mode indication information is obtained in the code.
  • the type of the Mix transmission mode is OFDMA+MU-MIMO or OFDMA+SU or MU-MIMO+OFDMA.
  • the receiving end obtains a bit value indicating the type of the Mix transmission mode from the efficient preamble, if the bit value is 1, it indicates that the type of the Mix transmission mode is OFDMA+MU-MIMO or OFDMA+SU, if the bit A value of 0 indicates that the type of the Mix transmission mode is MU-MIMO+OFDMA; or, if the bit value is 1, it indicates that the type of the Mix transmission mode is MU-MIMO+OFDMA, and if the bit value is 0, it indicates the Mix transmission mode.
  • the type is OFDMA+MU-MIMO or OFDMA+SU.
  • the structure of the corresponding efficient signaling field B is different.
  • the content of the efficient signaling field B for each specified bandwidth is the same.
  • the structure of the high-efficiency signaling field B of each specified bandwidth is as shown in FIG. 8.
  • the entire transmission bandwidth is divided into multiple sub-bandwidths, BW1, BW2, ..., and each sub-bandwidth corresponds to transmission mode indication information, which is indicated by the transmission mode indication information.
  • the transmission mode is OFDMA or MU-MIMO or SU. If the transmission mode indicated by the transmission mode indication information is OFDMA, each sub-bandwidth also corresponds to resource allocation mode indication information.
  • the structure of the preamble corresponding to the entire transmission bandwidth of the multiple specified bandwidths is as shown in FIG. 9.
  • the content of the high-efficiency signaling field B corresponding to each specified bandwidth in the preamble is the same, and is the scheduling information of the entire transmission bandwidth.
  • the efficient signaling field B corresponding to each specified bandwidth contains the same number of symbols, and the number of symbols included in the efficient signaling field B varies with the number of scheduled users and the entire transmission.
  • the bandwidth is changed and the High Efficiency Signaling Field C (HE-SIGC) is optional.
  • HE-SIGC High Efficiency Signaling Field C
  • the content of the efficient signaling field B for each specified bandwidth is different.
  • the high-efficiency signaling field B corresponding to the specified bandwidth carries the transmission mode indication information corresponding to the specified bandwidth. If the transmission mode indicated by the transmission mode indication information is OFDMA, the high-efficiency signaling field B corresponding to the specified bandwidth is also carried.
  • the resource allocation mode indication information corresponding to the specified bandwidth For example, the specified bandwidth is 20M, and the entire transmission bandwidth is 80M. The entire transmission bandwidth can be divided into four 20M bandwidths.
  • the structure of the high-efficiency signaling field B corresponding to each specified bandwidth is shown in Figure 10.
  • the length of the high-efficiency signaling field B corresponding to each specified bandwidth is fixed, and the indications for the transmission mode indication information and the resource allocation mode are instructed in the embodiment of the present invention.
  • the information before the information is transmitted through the efficient signaling field C in the case where the efficient signaling field B cannot be accommodated.
  • the transmission mode indicated by the transmission mode indication information is OFDMA
  • the user transmission parameters such as the modulation mode and the number of spatial streams are transmitted in the high efficiency signaling field C
  • the transmission mode indicated by the transmission mode indication information is MU-MIMO or
  • part of the user transmission parameters such as modulation mode and coding mode are transmitted in the high efficiency signaling field C.
  • the high-efficiency signaling field C may include only one high-efficiency signaling field C, and the high-efficiency signaling field C includes a user transmission parameter corresponding to each specified bandwidth, or may be a specified bandwidth corresponding to an efficient signaling field C, each of which is highly efficient.
  • the content of the signaling field C is the same, the user transmission parameter corresponding to each specified bandwidth, or the content of each high-efficiency signaling field C is different, and the user transmits parameters for the corresponding specified bandwidth.
  • the high-efficiency signaling field B includes a spatial stream and transmission mode indication information corresponding to the spatial stream. If the transmission mode indicated by the transmission mode indication information is OFDMA, the high-efficiency signaling field B is further The resource allocation mode indication information corresponding to the spatial stream is included.
  • the indication information of the total number of spatial streams is also carried in the high-efficiency signaling field A or the high-efficiency signaling field B.
  • the total number of spatial streams indicated in the efficient signaling field B namely steam1+steam2+...
  • the high-efficiency signaling field B includes a transmission mode indication sequence for indicating a transmission mode corresponding to each spatial stream, where the transmission mode indicates that one bit of the sequence corresponds to a transmission mode indication information of a spatial stream.
  • the transmission mode indicated by the transmission mode indication information is OFDMA, and otherwise, the transmission mode indicated by the transmission mode indication information is MU-MIMO.
  • the high-efficiency signaling field B further carries: the resource allocation mode indication information corresponding to each spatial stream of the OFDMA indicated by the transmission mode indication sequence.
  • the transmission mode indication sequence of n bits is carried in the high-efficiency signaling field B.
  • 1 indicates that the corresponding spatial stream adopts a transmission mode of OFDMA
  • 0 indicates that the corresponding spatial stream uses transmission.
  • the mode is MU-MIMO.
  • the content of the high-efficiency signaling field B corresponding to each specified bandwidth is the same, which is the scheduling information of the entire transmission bandwidth, and therefore, the high-efficiency letter corresponding to each specified bandwidth.
  • the length of the field B be the same, and the number of symbols included in the efficient signaling field B varies with the number of scheduling users and the entire transmission bandwidth, and the efficient signaling field C (HE-SIGC) may or may not be available.
  • the receiving end determines the resource allocation mode indicated by the resource allocation mode indication information, acquiring the transmission mode indication information corresponding to the resource allocation mode indication information And determining, according to the transmission mode indication information, that the transmission mode corresponding to the resource allocation mode indication information is an OFDMA transmission mode.
  • the following solutions are proposed according to how to determine the scheduling order of each user scheduled and each user scheduled according to the user group carried in the efficient preamble and the user scheduling indication information.
  • the user group is composed of the identity of multiple users arranged in a preset order.
  • the preset order of the identity of the user in the user group is independent of the scheduling order of the user. This method can avoid storing multiple combinations in a user group due to different order of arrangement, resulting in a large amount of data. Not conducive to management issues.
  • the solution mainly provides the following two ways to determine the user's scheduling order.
  • the user scheduling indication information includes a user scheduling indication sequence and scheduling order indication information
  • the length of the user scheduling indication sequence is the same as the number of users in the user group, and each bit in the user scheduling indication sequence is used to indicate whether the user in the corresponding location in the user group is scheduled.
  • the scheduling order indication information is used to indicate the scheduling order of the scheduled users.
  • the process of determining the scheduling order of the scheduled users and the scheduled users is as follows:
  • the identity of the user corresponding to the bit that is a preset value in the sequence of the user scheduling indicator, according to the obtained user The identity identifies a collection of scheduled users
  • the user group includes the identity of multiple users, and the user scheduling indication sequence is a set of 0/1 sequences, and the length of the user scheduling indication sequence is equal to the number of users in the user group, and the user scheduling indication sequence is A 0 indicates that the user is not scheduled, and 1 indicates that the user is scheduled.
  • the scheduling order indication information represents the scheduling order of the scheduled users in the current transmission.
  • the scheduling order indication information includes but is not limited to the following two indication manners:
  • the scheduling order indication information is composed of the sequence numbers of each scheduled user in the set of scheduled users.
  • the scheduling order indication information is an identifier corresponding to one of the permutation combinations of the sequence numbers of the scheduled users in the scheduled user set. It should be noted that the indication mode needs to preset the scheduled user. The identification number corresponding to each permutation combination of the serial numbers of all scheduled users in the collection.
  • the user group includes the identity STAs of the nine users, which are STA1 to STA9 in sequence, wherein four users STA1, STA4, STA6, and STA7 are scheduled, and the four scheduled users are scheduled in the order of STA7, STA4, and STA1. , STA6.
  • the user scheduling indication sequence is a 9-bit 0/1 sequence: 100101100, where 0 indicates that it is not called, and 1 indicates that it is called. According to the sequence, four users STA1, STA4, STA6, and STA7 are scheduled to be scheduled, and the scheduled user is obtained. Collection.
  • the scheduling order indication information is a 4/2 bit 0/1 sequence, wherein each two bits represent a sequence number of a scheduled user in the set of scheduled users, where "00" indicates that the sequence is scheduled.
  • the first user in the user set "01” represents the second user in the set of scheduled users, "10” represents the third user in the scheduled user set, and "11" represents the set of scheduled users.
  • the scheduling order indication information is: 11010010, and the scheduling order of the scheduled users is: STA7, STA4, STA1, and STA6.
  • the scheduling order indication information is an identification number
  • the receiving end searches for the identification number corresponding to each permutation combination of the sequence numbers of all scheduled users in the preset set of scheduled users, and obtains scheduling order indication information.
  • the arrangement combination corresponding to the indicated identification numbers, and the permutation combination is “4213”, and the scheduling order of the scheduled users may be determined to be STA7, STA4, STA1, and STA6.
  • the user scheduling indication information is used to indicate an arrangement order of the scheduled users and the scheduled users in the user group;
  • the user scheduling indication information is composed of the sequence numbers of some users in the user group, and the sequence number is used to indicate the order of the users in the user group, and the order of the sequence numbers in the user scheduling indication information indicates the scheduling order of the corresponding users.
  • the process of determining the scheduling order of the scheduled users and the scheduled users is as follows:
  • Determining the scheduled use according to an order in which the sequence number is in the user scheduling indication information The scheduling order of each user in the set of users, and determines the scheduling order of the receiving end in the scheduled users.
  • the user group includes identity identifiers of multiple users, and the user scheduling indication information is composed of the sequence number of the scheduled users in the user group.
  • the user group includes the identity STAs of the nine users, which are STA1 to STA9 in sequence, wherein four users STA1, STA4, STA6, and STA7 are scheduled, and the four scheduled users are scheduled in the order of STA7, STA4, and STA1.
  • STA6, which uses 4 bits to indicate the sequence number of the user in the user group STA1 is represented as "0001"
  • STA2 is represented as "0010”
  • STA3 is represented as "0011”
  • STA4 is represented as "0100”
  • STA5 is represented as "0101”.
  • the STA6 indicates "0110" and the STA7 indicates "0111".
  • the user scheduling indication information can be expressed as: 0111010000010110.
  • the resource allocation mode indication information, the user group, and the user scheduling indication information may adopt a structure as shown in FIG. 16 in the high efficiency signaling field.
  • the receiving end reads the resource allocation mode indication information, the user group, and the user scheduling indication information according to the structure of the high-efficiency signaling field, and determines the resource allocation mode and the scheduling order of the scheduled user, according to the resource allocation mode and the scheduling order of the scheduled users. Get the resources assigned to itself.
  • the STA4 determines the resource allocation mode according to the obtained resource allocation mode indication information, and divides the 20M bandwidth into four parts.
  • the first part is a 2*26 resource block combination
  • the second part is also a 2 part. *26 resource block combination
  • the third part is a 1*26 resource block
  • the last part is a 4*26 resource block combination.
  • the STA4 determines that it belongs to the user group, and the sequence number corresponding to the user group is the fourth one, which is represented as “0100”.
  • the STA4 determines that it is the second scheduled user according to the user scheduling indication information: 0111010000010110.
  • the STA4 is scheduled to be a resource block combination of 2*26 subcarriers, and can be learned according to the resource allocation mode. The location of the resource block combination of the 2*26 subcarriers.
  • the STA4 If the STA4 is scheduled to be in a plurality of discontinuous resource block combinations, the STA4 appears in the user scheduling indication information multiple times, each time corresponding to the scheduling of one resource block combination.
  • a resource block for contention or a resource block for broadcasting may also be indicated, as follows:
  • the user scheduling indication information includes a specific indication sequence that does not belong to the sequence number of the user group
  • the resource corresponding to the scheduling order of the specific indication sequence is determined according to the resource allocation mode, and the resource corresponding to the scheduling order of the specific indication sequence is determined as a contention resource or a broadcast resource.
  • the number of bits occupied by the specific indication sequence is equal to the number of bits occupied by one permutation sequence number of the user group. For example, if a sorting sequence occupies 4 bits, the specific indicator sequence also occupies 4 bits.
  • the user scheduling indication information sets a specific indication sequence, such as “0000”, and the resource block corresponding to the specific indication sequence is a competitive resource or a broadcast resource.
  • the embodiment of the present invention further provides a sending end device, where the sending end device is an AP.
  • the sending end device is an AP.
  • the sender device mainly includes:
  • the processing module 1701 is configured to generate a preamble, where the preamble includes a traditional preamble and an efficient preamble, where the high-performance preamble carries resource allocation mode indication information, a user group, and user scheduling indication information;
  • the sending module 1702 is configured to send the preamble.
  • the embodiment of the present invention further provides a sending end device, where the sending end device is an AP.
  • the sending end device refers to the descriptions about the AP and the sending end, and the repeated description is not repeated, as shown in FIG. 18 .
  • the source device primarily includes a processor 1801 and a transmitter 1802.
  • the processor 1801 is configured to generate a preamble and instruct the transmitter 1802 to send the preamble.
  • the specific structure of the preamble refer to the method described in the foregoing embodiments, and details are not described herein again.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, and may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the embodiment of the present invention further provides a receiving end device, where the receiving end device is a site, and the specific implementation of the receiving end device can refer to the descriptions of the foregoing site and the receiving end, and the repeated description is not repeated, as shown in FIG. 19 .
  • the receiving device mainly includes:
  • the receiving module 1901 is configured to receive a preamble sent by the sending end device, where the preamble includes a traditional preamble and an efficient preamble, where the high-performance preamble carries resource allocation mode indication information, a user group, and user scheduling indication information;
  • the processing module 1902 is configured to determine, according to the user group and the user scheduling indication information, a scheduling order of the scheduled user and the receiving end in the scheduled user, according to a scheduling order of the receiving end in the scheduled user, and the The resource allocation mode indication information determines the resources that are scheduled to the receiving end.
  • the method for determining the scheduling order of the scheduled user and the receiving end in the scheduled users disclosed in the foregoing embodiments may be applied to the processing module 1902 or implemented by the processing module 1902, and details are not described herein again.
  • the methods for determining the resource allocation mode according to the resource allocation mode indication information disclosed in the foregoing embodiments may also be applied to the processing module 1902 or implemented by the processing module 1902, and details are not described herein again.
  • the embodiment of the present invention further provides a receiving end device, where the receiving end device is a site, and the specific implementation of the receiving end device can refer to the descriptions of the foregoing station and the receiving end, and the repeated description is not repeated, as shown in FIG. 20 .
  • the receiving device mainly includes a receiver 2001 and a processor 2002, wherein the receiver 2001 receives a preamble transmitted by the transmitting device, where the preamble includes a legacy preamble and an efficient preamble, and the high efficiency preamble And carrying the resource allocation mode indication information, the user group, and the user scheduling indication information; the processor 2002 determines, according to the user group and the user scheduling indication information, a scheduling order of the scheduled user and the receiving end in the scheduled user, according to the The scheduling order of the receiving end in the scheduled users and the resource allocation mode indication information are determined to be scheduled to The resource at the receiving end.
  • the method for determining the scheduling order of the scheduled user and the receiving end in the scheduled users disclosed in the foregoing embodiments may be applied to the processor 2002 or implemented by the processor 2002, and details are not described herein again.
  • the methods for determining the resource allocation mode according to the resource allocation mode indication information disclosed in the above embodiments may also be applied to the processor 2002 or implemented by the processor 2002, and details are not described herein again.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, a discrete hardware component, and may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising an instruction device implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本发明公开了一种资源调度方法及设备,接收端接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。针对802.11ax中如何对用户进行调度给出解决方案,在整体上节约了开销。

Description

一种资源调度方法及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种资源调度方法及设备。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长。无线局域网(WLAN,Wireless Local Area Network)凭借高速率和低成本方面的优势,成为主流的移动宽带接入技术之一。本发明各实施方式涉及在无线局域网中应用如下技术:
正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)传输技术
为了大幅提升WLAN系统的业务传输速率,下一代电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)802.11ax标准将会在现有正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术的基础上,进一步采用OFDMA技术。OFDMA技术将空口无线信道时频资源划分成多个正交的时频资源块(RB,Resource Block),RB之间在时间上可以是共享的,而在频域上是正交的。
OFDMA技术支持多个节点同时发送和接收数据。当接入点需要与站点传输数据时,基于RB或RB组进行资源分配;在同一时刻为不同的站点(STA,Station)分配不同的信道资源,使多个STA高效地接入信道,提升信道利用率。
MU-MIMO(Multiple User-MIMO,多用户输入输出)传输技术
众所周知,MIMO(Multiple Input Multiple Output,多输入多输出)技术能够提供发射(接收)波束成形从而有效地提高发射(接收)功率,有效地提高了通信系统的可靠性;另一方面,MIMO技术能够产生额外的空间自由度 从而成倍地提高系统的吞吐量,有效地提高了通信系统的速率。正因为MIMO技术的这些优点,MIMO技术已经成为802.11n和802.11ac标准协议的关键技术之一。
另外,由于采用了波束成形技术,发送端可以通过多个空间流向多个用户进行数据发送,也可以接收来自多个用户在不同空间流上发送的数据,从而实现多用户数据的并行传输,提高数据传输的并发性,称为MU-MIMO传输。
OFDMA与MU-MIMO混合传输技术
结合OFDMA与MU-MIMO的传输方式,即在OFDMA划分的不同子信道或者资源块上,进一步利用多个空间流进行多用户数据的传输,进一步增加同时传输的用户的数量。
对于多用户传输(包括OFDMA方式,MU-MIMO方式或者OFDMA与MU-MIMO混合传输方式),需要针对如何对多个用户进行调度给出解决方案,这是本发明方案需要解决的问题。
发明内容
本发明实施例提供一种资源调度方法及设备,用以针对802.11ax中如何对用户进行调度给出解决方案。
本发明实施例提供的具体技术方案如下:
一方面,提供了一种资源调度方法,接收端接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。
相应地另一方面,提供了一种资源调度方法,发送端生成前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模 式指示信息、用户组以及用户调度指示信息;并发送所述前导码。
相应地,在其它方面提供了可用于执行前述方法的接收端设备和发送端设备。
以上各个方面,可以实现在802.11ax中通过前导码中携带的信息对用户进行调度,整体上降低了开销。
附图说明
图1为802.11ax的分组结构示意图;
图2为20M带宽的资源块分布示意图;
图3a为本发明实施例中WLAN系统示意图;
图3b为本发明实施例中进行资源调度的方法流程示意图;
图4为本发明实施例中资源分配模式指示信息解析示意图;
图5为本发明实施例中资源块组合划分示意图;
图6为本发明实施例中另一资源分配模式指示信息解析示意图;
图7为本发明实施例中资源块组合分配示意图;
图8为本发明实施例中高效信令字段B的结构示意图;
图9为本发明实施例中前导码结构示意图;
图10为本发明实施例中另一高效信令字段B的结构示意图;
图11为本发明实施例中另一高效信令字段B的结构示意图;
图12为本发明实施例中另一高效信令字段B的结构示意图;
图13为本发明实施例中另一前导码结构示意图;
图14为本发明实施例中用户组和用户调度指示信息的结构示意图;
图15为本发明实施例中另一用户组和用户调度指示信息的结构示意图;
图16为本发明实施例中资源分配模式指示信息、用户组以及用户调度指示信息的结构示意图;
图17为本发明实施例中发送端设备结构示意图;
图18为本发明实施例中另一发送端设备结构示意图;
图19为本发明实施例中接收端设备结构示意图;
图20为本发明实施例中另一接收端设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
关于下一代无线局域网络(Wireless Local Area Networks,WLAN)标准的讨论中,达成一致意见的802.11ax的分组结构如图1所示,其中,前导码部分包括传统前导码(Legacy preamble,L-preamble)及紧接着的高效(High Efficient,HE)前导码。传统前导码包括短训练字段(Legacy Shorting Training Field,L-STF)、长训练字段(Legacy Long Training Field,L-LTF)和信令字段(Legacy Signal Field,L-SIG)。高效前导码包括信令字段、高效信令字段A(High Efficient Signal Field A,HE-SIGA)、高效信令字段B(High Efficient Signal Field B,HE-SIGB)、高效短训练字段(High Efficient Shorting Training Field,HE-STF)、高效长训练字段(High Efficient Long Training Field,HE-LTF)。可选地,高效前导码包括高效信令字段C(High Efficient Signal Field C,HE-SIGC)。
HE-SIGA和HE-SIGB是广播给所有用户的,用来承载802.11ax分组结构中的信令信息,他们包含的具体内容还在讨论中,目前基本确定下来的内容包括:HE-SIGA携带传输带宽、HE-SIGB的符号个数及采用的调制预编码策略(Modulation and Coding Scheme,MCS)等信息;HE-SIGB携带HE-LTF的符号个数、资源分配的指示、多个被调度用户的身份指示和相应传输参数。由于每次调度的用户数是可变的,因而HE-SIGB的符号个数也是可变的。
802.11ax目前确定的关于资源块大小划分的规则为:以26个子载波为一个资源块。如图2所示,以20兆(M)带宽为例,802.11ax在数据符号部分 的离散傅里叶变换/离散傅里叶逆变换(DFT/IDFT)点数为256,也就是存在256个子载波,其中子载波-1、0、1为直流分量(Direct current,DC),左边带子载波-122到子载波-2以及右边带子载波2到子载波122用于承载数据信息,也就是有242个子载波用于承载数据信息。子载波-128到子载波-123以及子载波123到子载波128为保护带。承载数据信息的242个子载波分成9个资源块,每个资源块包括26个子载波,则剩余8个未使用的子载波。
802.11ax中,对于如何通过HE-SIGA和HE-SIGB对用户进行调度,没有给出具体的解决方案。
接入点(AP,Access Point),也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。
站点,还可以称为用户,可以是无线传感器、无线通信终端或移动终端,如移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。
图3a所示为本发明实施例所应用的WLAN系统示意图,该WLAN系统包括一个或多个接入点AP31,还包括一个或多个站点STA32。接入点和站点之间进行数据传输,其中站点根据接入点发送的前导码确定被调度给自身的资源,基于该资源与接入点之间进行数据传输。
本发明各实施例中,资源调度是以资源块(RB)为单位进行的。
根据802.11ax目前确定的关于资源块大小划分的规则:以26个子载波为一个资源块。
本发明实施例中,如图3b所示,进行资源调度的方法流程如下:
300:发送端AP发送前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中包括资源分配模式指示信息、用户组以及用户调度指示信息;所述高效前导码为符合下一代Wifi标准例如802.11ax的前导码,其名称可以不同,不影响其技术实质。
其中,资源分配模式指示信息用于指示本次调度中被调度的用户的资源 分配信息,例如资源分配模式指示信息指示被调度的用户的个数,以及每个被调度的用户分配分配多少资源块。
本文中定义一次调度中所有被调度的用户的资源分配信息为资源分配模式。
用户组用于指示按照预定次序排列的资源一组用户。
用户调度指示信息用于指示用户组中被调度的用户以及被调度的用户的调度次序。
步骤301:接收端接收AP发送的前导码。
步骤302:接收端根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。
步骤303:接收端与AP在所述被调度给接收端的资源上进行数据传输。
具体实施中,高效前导码中包括高效信令字段B,该高效信令字段B中携带资源分配模式指示信息。
具体地,高效前导码中还包括高效信令字段A。
具体实施中可以在高效信令字段A中,也可以是在高效信令字段B中携带资源分配模式指示信息对应的带宽指示信息。
具体地,若高效信令字段B中包括多个所述资源分配模式指示信息,则所述高效信令字段B中还包括每个所述资源分配模式指示信息对应的所述带宽指示信息;
若所述高效信令字段B中仅包括一个资源分配模式指示信息,所述高效信令字段A或高效信令字段B中还包括所述资源分配模式指示信息对应的所述带宽指示信息。
针对以上的技术方案,如何高效的根据资源分配模式指示信息确定接收端的被调度资源,本发明实施例中给出了多种解决方案。
第一种解决方案:
接收端和发送端预先保存相互约定的带宽与资源分配表格的对应关系, 其中,每个资源分配表格中包括预设的多个资源分配模式,资源分配表格中的资源分配模式以索引号为标识,同一资源分配表格中每个资源分配模式各自对应的索引号不同。该解决方案中,资源分配模式指示信息为至少一个索引号。
具体地,接收端和发送端可以通过协议,也可以是通过信息交互过程,约定带宽与资源分配表格的对应关系。
具体地,接收端和发送端可以相互约定一个对应指定带宽的资源分配表格,该资源分配表格对应的传输带宽不大于资源分配指示信息对应的最小带宽,且资源分配指示信息对应的带宽为该传输带宽的整数倍;
接收端和发送端也可以相互约定多个带宽与资源分配表格的对应关系,每个资源分配表格对应的传输带宽不同,资源分配表格对应的传输带宽等于资源分配指示信息对应的带宽。
其中,若发送端与接收端仅约定一个指定带宽的资源分配表格,且确定资源分配指示信息对应的带宽大于该指定带宽,则将该资源分配指示信息对应的带宽按照指定带宽进行划分为多个子带宽,每个子带宽的资源分配模式对应一个索引号,在发送的前导码的高效前导码的资源分配指示信息中携带该多个子带宽各自对应的索引号;
接收端接收的前导码的高效前导码中的资源分配指示信息中携带多个索引号,根据指定带宽对应的资源分配表格获取该多个索引号各自对应的资源分配模式,该多个索引号各自对应的资源分配模式的组合即为资源分配指示信息对应的带宽的资源分配模式。
例如,若指定带宽为20M,资源分配指示信息对应的带宽为60M,则资源分配指示信息中包括3个索引号;若指定带宽为20M,资源分配指示信息对应的带宽为80M,则资源分配指示信息中包括4个索引号。
该解决方案中,接收端确定所述资源分配指示信息所指示的资源分配模式,具体如下:
从高效前导码中获取与所述资源分配指示信息对应的带宽指示信息;
根据所述带宽指示信息获取对应预设的资源分配表格,该资源分配表格中包括多个资源分配模式,每个所述资源分配模式对应的索引号不同;
从所述资源分配模式指示信息中获取所述至少一个索引号,从所述资源分配表格获取每个所述索引号各自对应的资源分配模式;
根据每个所述索引号各自对应的所述资源分配模式,确定所述资源分配模式指示信息所指示的资源分配模式。
具体实施中,资源分配表格有以下两种具体实现方式:
第一种实现方式,资源分配表格中的资源分配模式下的通信资源为基于调度用户进行分配的,具体如表1所示:
表1
Index STA1 STA2 STA3 STA4 STA5 STA6 STA7 STAM
1 n_11 n_12 n_13 n_14 n_15 n_16 n_17   n_1M
                 
N n_N1 n_N2 n_N3 n_N4 n_N5 n_N6 n_N7   n_NM
其中,Index表示索引号,STAi表示被调度用户i的用户标识,其中,i=1,…,M,M表示该资源分配表格对应的带宽上支持调度的最大用户数,N表示该资源分配表格对应的带宽上支持的资源分配模式的最大索引号。STAi表示本次所有被调度用户中的第i个用户标识,n_xy表示对应索引号x下,第y个被调度用户分得的RB的个数。
例如,20M带宽对应的资源分配分配表格如表2所示:
表2
Index STA1 STA2 STA3 STA4 STA5 STA6 STA7 STAM
1 2 4 2 1 0 0 0 0
2 1 1 1 1 1 4 0 0
               
N 1 1 1 1 1 1 1 1
假设在20M带宽上调度了4个用户,被调度的第一个用户STA1分配了2个 RB,被调度的第二个用户STA2分配了4个RB,被调度的第三个用户STA3分配了2个RB,被调度的第四个用户STA4分配了1个RB。那么发送端就在20M带宽对应的资源分配表格中获取该资源分配模式对应的索引号,即为索引号1。
接收端接收发送端发送的前导码,根据该前导码中的高效前导码中的索引号1,从20M带宽对应的资源分配表格中获取索引号1所标识的资源分配模式,即可获知被调度用户的资源分配模式。
具体地,上述方案中,一个索引号的传输所占用的比特数表示为:ceiling(log2(N)),N表示待传输的索引号,“ceiling()”表示向上取整运算。该实现方式中,仅需要在前导码中占用指示索引号的比特数即可指示本次调度的资源分配信息,相比较于每个资源块占用一个比特指示资源分配信息的方式,在很大程度上节省了开销。
第二种实现方式,资源分配表格中的资源分配模式下的通信资源为基于资源块进行分配的,具体如表3所示:
表3
Index RB1 RB2 RB3 RB4 RB5 RB6 RB7 RBH
1 n_11 n_12 n_13 n_14 n_15 n_16 n_17 n_1H
                 
N n_N1 n_N2 n_N3 n_N4 n_N5 n_N6 n_N7 n_NH
其中,Index表示索引号,N表示该资源分配表格对应的带宽上支持的资源分配模式的最大索引号,H表示资源分配表格对应的带宽所包含的资源块的总数。RBi表示资源分配表格对应的带宽中第i个资源块。n_xy表示对应索引号x下第y个资源块分配用户的用户标识。具体的,该用户的标识可以是以站点被调度的顺序标识的。
例如,假设20M带宽包括9个资源块,20M带宽对应的资源分配表格如表4所示:
表4
Index RB1 RB2 RB3 RB4 RB5 RB6 RB7 RB8 RB9
1 1 1 2 2 2 2 3 3 4
2 1 1 1 1 1 2 2 3 3
                 
N 1 2 3 4 5 6 7 8 9
假设发送端在20M上调度了4个用户,被调度的第一个用户STA1分配了2个RB,被调度的第二个用户STA2分配了4个RB,被调度的第三个用户STA3分配了2个RB,被调度的第四个用户STA4分配了1个RB,那么,发送端在20M带宽对应的资源分配表格中查找该资源分配模式对应的索引号,获得索引号1,在发送的前导码的高效前导码中携带该索引号1。
接收端接收前导码,从前导码的高效前导码中获取索引号1,从20M带宽对应的资源分配表格中获取索引号1对应的资源分配模式,即可获知被调度用户的资源分配模式。
具体地,一个索引号的传输所占用的比特数表示为:ceiling(log2(N)),N表示待传输的索引号。该实现方式中,仅需要在前导码中占用指示索引号的比特数即可指示本次调度的资源分配信息,相比较于每个资源块占用一个比特指示资源分配信息的方式,在很大程度上节省了开销。
第二种解决方案:
与前一种解决方案不一样的是,本解决方案中,资源分配模式指示信息为比特序列。其中,比特序列的长度小于或等于资源分配模式指示信息对应的带宽所包含的资源块数目。
该解决方案中,接收端确定资源分配模式指示信息所指示的资源分配模式,具体为:从高效前导码中获取与所述资源分配指示信息对应的带宽指示信息根据所述带宽指示信息所指示的带宽以及所述比特序列中0和1之间的切换确定所述资源分配模式。其中,0和1之间的切换表示切换前的比特指示的资源块与切换后的比特指示的资源块分配给不同的用户。
根据资源块的指示方式的不同,有以下几种实现方式:
第一种实现方式:
比特序列中的每个比特各自对应一个资源块的分配。该实现方式的不足之处在于:在资源块数目较多时,相应的比特开销较大。
该实现方式中,比特序列的长度等于资源分配模式指示信息对应的带宽所包含的资源块数目;
或者,比特序列的长度等于资源分配模式指示信息对应的带宽所包含的资源块数目减1所得的差,比特序列用于指示带宽中除第一个资源块之外的资源块的分配,第一个资源块配置给第一个调度的用户。相较于每个资源块占用一个比特的方式,可以节省一个比特的开销。
根据0和1之间的切换方式的不同有以下两种实施方式:
第一,比特序列中0表示对应的资源块分配的用户保持不变,比特序列中1表示对应的资源块分配给下一个调度的用户。
或者,
比特序列中的1表示对应的资源块分配的用户保持不变,比特序列中的0表示对应的资源块分配给下一个调度的用户。
第二,比特序列中从0切换到1,或者从1切换到0,表示切换后对应的资源块分配给下一个调度的用户,比特序列的连续的0或1表示对应的资源块分配给调度的同一个用户。
例如,假设发送端在20M上调度了4个用户,被调度的第一个用户STA1分配了2个RB,被调度的第二个用户STA2分配了4个RB,被调度的第三个用户STA3分配了2个RB,被调度的第四个用户STA4分配了1个RB。由于20M上总共有9个RB资源块,由于第一个资源块必然分配给被调度的第一个用户,则可省略指示第一个资源块分配的比特,用8个比特01000101就可以进行该20M上的RB分配的指示,如图4所示,其中1表示对应的资源块切换到下一个被调度的用户,0表示对应的RB的分配和上一个RB的分配一致,对应的被调度的用户不变。
需要说明的是,这里仅是以20M带宽为例,对于其它带宽可以采用类似 的处理,此处不再一一列举。
第二种实现方式:
比特序列中的每连续的0或1的组合各自对应一个资源块组合的分配,连续的0或1的长度不同对应的资源块组合的大小不同,资源块组合包括至少一个资源块。
具体地,资源分配模式指示信息对应的带宽不同,预设的连续的0或1的长度与资源块组合的大小之间的对应关系不同。
具体实施中,设置使用频率较高的资源块组合对应的连续的0或1的长度为较小值,设置使用频率较低的资源块组合对应的连续的0或1的长度为较大值。
该解决方案中,为了进一步节省开销,在资源分配模式指示信息对应的带宽较大时,相对较大的资源块组合的使用频率较高;在资源分配模式指示信息对应的带宽较小时,相对较小的资源块组合的使用频率较高。
相较于第一种实现方式,在资源块数目较多时,可以显著降低比特开销。并且,不同的带宽下资源块组合与连续的0或1的长度之间的对应关系不同,可以提高灵活性,进一步降低比特开销。并且,对应的带宽不同,预设的连续的0或1的长度与资源块组合的大小之间的对应关系不同,提高了灵活性。
例如,对于20M的带宽,预设的连续的0或1的长度与资源块组合的大小之间的对应关系为:
“1”或“0”表示1*26,“11”或“00”表示2*26,“111”或“000”表示4*26,“1111”或“0000”表示242(~9*26)。
对于40M的带宽,预设的连续的0或1的长度与资源块组合的大小之间的对应关系为:
“1”或“0”表示2*26,“11”或“00”表示1*26,“111”或“000”表示4*26,“1111”或“0000”表示242(~9*26);
对于80M的带宽,预设的连续的0或1的长度与资源块组合的大小之间的对应关系为:
“1”或“0”表示4*26,“11”或“00”表示2*26,“111”或“000”表示1*26,“1111”或“0000”表示242(~9*26)。
该实现方式中,根据所述带宽指示信息所指示的带宽以及所述比特序列中0和1之间的切换确定所述资源分配模式,具体为:
获取所述带宽指示信息所指示的带宽对应的资源块组合与连续的0或1的长度之间的映射关系;
确定比特序列中每组连续的0或1的长度,分别从所述映射关系中获取每组所述连续的0或1的长度各自对应的资源块组合的大小;
根据每组所述连续的0或1的长度各自对应的资源块组合的大小、所述比特序列中0和1之间的切换以及所述带宽指示信息所指示的带宽,确定资源分配模式指示信息对应的资源分配模式。
第三种解决方案:
资源分配模式指示信息为比特序列。
其中,所述比特序列由指代比特序列和分配指示比特序列组成,所述指代比特序列用于指示资源块组合的大小,所述分配指示比特序列用于指示对应的资源块组合的分配信息。
该解决方案中,资源块的组合方式预先设定。
其中,所述比特序列中包含的所述指代比特序列按照所指示的资源块组合从大到小的顺序排列。
具体地,指代比特序列所占用的比特数是根据待分配的资源块组合的种类数确定,或者,指代比特序列所占用的比特数根据资源块组合的种类数确定。
其中,接收端预设带宽、资源块组合的种类数、资源块组合对应的指代比特序列、预设的资源块组合方式之间的映射关系。
可选地,比特序列中不指示最小的资源块组合的指代比特序列以及对应的分配指示比特序列,或者,比特序列中不指示最小的资源块组合的分配指示比特序列。可以节省最小的资源块组合的指代比特序列和/或最小的资源块 组合的分配指示比特序列所占用的开销。
具体地,确定所述资源分配模式指示信息所指示的资源分配模式,具体为:
从所述高效前导码中获取所述资源分配指示信息对应的带宽指示信息;
根据预设的带宽、资源块组合的种类数、资源块组合对应的第一指代比特序列、预设的资源块组合方式之间的映射关系,获取所述带宽指示信息所指示的带宽对应的资源块组合的种类数、预设的资源块组合方式以及所述预设的资源块组合对应的第一指代比特序列;
根据所述资源块组合的种类数、所述预设的资源块组合方式以及所述预设的资源块组合对应的第一指代比特序列,解析所述比特序列,获得每个所述资源块组合的分配信息;
根据每个所述资源块组合的分配信息确定所述资源分配模式指示信息所指示的资源分配模式。
可选地,解析比特序列的过程中,还可以进行以下处理:
根据所述资源块组合的种类数、已经解析获得的资源块组合的种类数,确定待分配的资源块组合的种类数,获取所述待分配的资源块组合对应预设的第二指代比特序列,所述第二指代比特序列占用的比特数小于所述第一指代比特序列;根据所述资源块组合的种类数、预设的资源块组合方式以及所述待分配的资源块组合对应预设的第二指代比特序列,解析所述比特序列中未解析部分。在待分配的资源块组合的种类数较少时,采用比特数少于第一指代比特序列的第二指代比特序列进行指示,进一步降低了开销。
其中,解析所述比特序列后,若确定所述比特序列中不包含最小的所述资源块组合对应的第一指代比特序列以及对应的分配指示比特序列,或者,确定所述比特序列中不包含最小的所述资源块组合的分配指示比特序列,根据所述带宽指示信息以及所述比特序列所指示的资源块组合的分配信息,确定剩余的资源块;确定所述剩余的资源块对应的分配信息为每个资源块依次分配给被调度的不同用户。
举例说明如下,假设20M上有限的资源块组合仅包含1*26、2*26、4*26和242(9*26)这四种情况,因此用2个bit就可以区分,如“00”表示1*26,“01”表示2*26,“10”表示4*26,“11”表示242(9*26);在剩余“00”和“01”两种资源块组合待分配时,可以用1个bit进行区分,如“0”表示1*26,“1”表示2*26。
例1,如图5所示,假设20M带宽包括9个资源块,1个资源块的大小为26个子载波,最大资源块组合为4*26,预先设定2个4*26大小的资源块组合,分别为第1至第4个资源块组成的资源块组合和第6至第9个资源块组成的资源块组合;预先设定4个2*26大小的资源块组合,分别为第1和第2个资源块组成的资源块组合、第3和第4个资源块组成的资源块组合、第6和第7个资源块组成的资源块组合、第8和第9个资源块组成的资源块组合;还预设有9个独立的资源块,即9个最小的资源块组合。
例2,接例1,基于图5所预设的资源块组合,如图6所示,比特序列“10010111”中,第1和第2比特的组合、第5和第6比特的组合为指代比特序列,第3和第4比特的组合、第7和第8比特的组合为分配指示比特序列,假设指代比特序列“10”表示4*26大小的资源块组合,指代比特序列“10”对应的分配指示比特序列“01”表示20M带宽上的第一个4*26大小的资源块组合未被占用,第二个4*26大小的资源块组合被占用;指代比特序列“01”表示2*26大小的资源块组合,指代比特序列“01”对应的分配指示比特序列“11”表示20M带宽上剩余的第一个2*26大小的资源块组合被占用,20M带宽上剩余的第二个2*26大小的资源块组合被占用;由于已经分配4*26大小的资源块组合和2*26大小的资源块组合,按照资源块组合从大到小的分配顺序,仅剩下一个1*26大小的资源块,无需在比特序列中指示,剩下的1个资源块分配给下一个调度的用户。
例3,接例1,当指示完“10”,即4*26大小的资源块组合之后,仅剩下2*26和1*26两种资源块组合,可以仅用1个bit进行该两种资源块组合的区分。
例4,假设比特序列为“100100”中,前两个比特“10”表示当前20M上分配的最大资源块组合为4*26,接下来的“01”表示第二个4*26被占用,第1个4*26空闲。继续读取到“00”时,得知当前是1*26大小的资源块指示,后续无需再进行指示,剩下的所有资源块分配均按照1*26大小分配给被调度的用户,如图7所示。
需要说明的是,该实施例中仅是以20M带宽为例进行说明,对于其它带宽可以采用类似的方式处理,此处不再一一赘述。
以上给出的第一种至第三种解决方案均是针对调度多个用户共享频带的场景。
本发明实施例中,高效前导码中还可以携带传输模式指示信息,本发明实施例还针对传输模式指示信息和资源分配模式指示信息的结合提供了解决方案。
其中,传输模式指示信息所指示的传输模式包括但不限于:单用户(SU)、多用户多输入多输出(MU-MIMO)、OFDMA和混合(Mix)传输模式中的任意一种。
其中,混合传输模式有两种类型:一种为OFDMA+MU-MIMO或OFDMA+SU,另一为MU-MIMO+OFDMA。
一个具体实施中,在高效信令字段A或高效信令字段B中携带传输模式指示信息,在高效信令字段A或高效信令字段B中占有一个比特用以指示Mix传输模式的类型。
接收端在接收前导码后,首先从高效前导码中获取传输模式指示信息,根据传输模式指示信息确定如何从高效信令字段B获取资源分配模式指示信息。
具体地,若接收端确定从高效前导码中获取的传输模式指示信息所指示的传输模式为SU或MU-MIMO传输模式,则确定高效前导码中不包含资源分配模式指示信息,将当前传输的整个带宽分配给同一个用户或分配给同一组用户共享。
具体地,若接收端确定从高效前导码中获取的传输模式指示信息所指示的传输模式为OFDMA传输模式,则按照以上给出的第一种至第三种解决方案确定资源分配模式。
具体地,若接收端确定从高效前导码中获取的传输模式指示信息所指示的传输模式为Mix传输模式,进一步从高效前导码中获取Mix传输模式的类型,根据Mix传输模式的类型从高效前导码中获取资源分配模式指示信息。
其中,Mix传输模式的类型为OFDMA+MU-MIMO或者OFDMA+SU或者MU-MIMO+OFDMA。
例如,若接收端从高效前导码中获取用于指示Mix传输模式的类型的比特值,若该比特值为1,表示Mix传输模式的类型为OFDMA+MU-MIMO或OFDMA+SU,若该比特值为0,表示Mix传输模式的类型为MU-MIMO+OFDMA;或者,若该比特值为1,表示Mix传输模式的类型为MU-MIMO+OFDMA,若该比特值为0,表示Mix传输模式的类型为OFDMA+MU-MIMO或OFDMA+SU。
分别对应两种Mix传输模式的类型,对应的高效信令字段B的结构不同。
对于OFDMA+MU-MIMO或OFDMA+SU传输模式,有以下两种高效信令字段B的结构:
第一,每个指定带宽的高效信令字段B的内容相同。
每个指定带宽的高效信令字段B的结构如图8所示,整个传输带宽划分为多个子带宽,BW1、BW2……,每个子带宽对应有传输模式指示信息,传输模式指示信息所指示的传输模式为OFDMA或MU-MIMO或SU。若传输模式指示信息所指示的传输模式为OFDMA,则每个子带宽还对应有资源分配模式指示信息。
多个指定带宽组成的整个传输带宽对应的前导码的结构如图9所示,该前导码中每个指定带宽对应的高效信令字段B的内容相同,均为整个传输带宽的调度信息,因此每个指定带宽对应的高效信令字段B包含的符号个数相同,并且,高效信令字段B包含的符号个数随着调度用户的多少和整个传输 带宽的变化而变化,高效信令字段C(HE-SIGC)可有可无。
第二,每个指定带宽的高效信令字段B的内容不相同。
每个指定带宽对应的高效信令字段B中携带该指定带宽对应的传输模式指示信息,若该传输模式指示信息所指示的传输模式为OFDMA,该指定带宽对应的高效信令字段B中还携带该指定带宽对应的资源分配模式指示信息。以指定带宽为20M,整个传输带宽为80M为例,整个传输带宽可划分为4个20M带宽,每个指定带宽对应的高效信令字段B的结构如图10所示。
由于每个指定带宽对应的高效信令字段B中携带的内容不同,本发明实施例中,每个指定带宽对应的高效信令字段B的长度固定,对于除传输模式指示信息和资源分配模式指示信息之前的信息,在高效信令字段B无法容纳的情况下,通过高效信令字段C传输。
例如,在传输模式指示信息所指示的传输模式为OFDMA时,将调制方式、空间流数目等用户传输参数在高效信令字段C传输;在传输模式指示信息所指示的传输模式为MU-MIMO或SU时,将调制方式、编码方式等部分用户传输参数在高效信令字段C传输。
其中,高效前导码中可以仅传输一个高效信令字段C,该高效信令字段C包括每个指定带宽对应的用户传输参数;也可以是一个指定带宽对应一个高效信令字段C,每个高效信令字段C的内容相同,为每个指定带宽对应的用户传输参数,或者,每个高效信令字段C的内容不相同,为对应的指定带宽的用户传输参数。
对于MU-MIMO+OFDMA传输模式,有以下两种高效信令字段B的结构:
第一,如图11所示,高效信令字段B中包括空间流以及该空间流对应的传输模式指示信息,若该传输模式指示信息所指示的传输模式为OFDMA,该高效信令字段B还包括该空间流对应的资源分配模式指示信息。
其中,在高效信令字段A或高效信令字段B中还携带空间流总数的指示信息。
其中,高效信令字段B中所指示的空间流的总数,即steam1+steam2+…, 为空间流总数的指示信息所指示的空间流总数。
第二,如图12所示,高效信令字段B中包括用于指示每个空间流对应的传输模式的传输模式指示序列,该传输模式指示序列中一个比特对应一个空间流的传输模式指示信息,该比特为特定值时,传输模式指示信息所指示的传输模式为OFDMA,否则,传输模式指示信息所指示的传输模式为MU-MIMO。
高效信令字段B中还携带:传输模式指示序列所指示的传输模式为OFDMA的每个空间流对应的资源分配模式指示信息。
例如,有n个空间流,则在高效信令字段B中携带n比特的传输模式指示序列,该序列中1表示对应的空间流采用的传输模式为OFDMA,0表示对应的空间流采用的传输模式为MU-MIMO。
在MU-MIMO+OFDMA传输模式中,如图13所示,每个指定带宽对应的高效信令字段B传输的内容相同,为整个传输带宽的调度信息,因此,每个指定带宽对应的高效信令字段B的长度相同,并且,高效信令字段B包含的符号个数随着调度用户的多少和整个传输带宽的变化而变化,高效信令字段C(HE-SIGC)可有可无。
基于以上定义的高效前导码的结构,本发明实施例中,接收端确定所述资源分配模式指示信息所指示的资源分配模式之前,获取所述资源分配模式指示信息对应的所述传输模式指示信息;根据所述传输模式指示信息确定所述资源分配模式指示信息对应的传输模式为OFDMA传输模式。
本发明实施例中,针对如何根据高效前导码中携带的用户组以及用户调度指示信息,确定调度的各用户以及调度的各用户的调度次序,提出了如下解决方案。
该解决方案中,为了降低用户组的管理难度,用户组由按照预设次序排列的多个用户的身份标识组成。
其中,用户组中用户的身份标识的预设次序与用户的调度次序无关。该方式可以避免由于排列顺序不同在用户组中保存多个组合,导致数据量大, 不利于管理的问题。
该解决方案主要提供了以下两种确定用户调度次序的方式。
方式一:
用户调度指示信息包括用户调度指示序列以及调度次序指示信息;
用户调度指示序列的长度与用户组中用户的个数相同,用户调度指示序列中的每个比特用于指示用户组中对应位置的用户是否被调度;
调度次序指示信息用于指示被调度用户的调度次序。
具体地,确定调度被调度用户以及被调度用户的调度次序的过程如下:
获取组成所述用户组的多个用户的身份标识;
根据所述用户调度指示序列与所述多个用户的身份标识的对应关系,获取所述用户调度指示序列中取值为预设值的比特对应的用户的身份标识,根据获取的所述用户的身份标识确定被调度用户的集合;
根据所述调度次序指示信息确定所述被调度用户的集合中各用户的调度顺序,并确定所述接收端在所述被调度用户中的调度次序。
具体地,如图14所示,用户组包括多个用户的身份标识,用户调度指示序列为一组0/1序列,用户调度指示序列的长度等于用户组中用户的个数,用户调度指示序列中0表示该用户没有被调度,1表示该用户被调度。
实际应用中也预设为用户调度指示序列中1表示该用户没有被调度,0表示该用户被调度。
调度次序指示信息表示被调度用户在当前传输中的调度次序。
调度次序指示信息包括但不限于以下两种指示方式:
第一种指示方式,调度次序指示信息由每个被调度用户在被调度用户的集合中的序号组成。
第二种指示方式,调度次序指示信息为被调度用户集合中每个被调度用户的序号的排列组合中的一种所对应的标识号,需要说明的是,该指示方式需要预设被调度用户集合中所有被调度用户的序号的每种排列组合所对应的标识号。
假设用户组包括9个用户的身份标识STA,依次为STA1至STA9,其中,STA1、STA4、STA6和STA7四个用户被调度,且该四个被调度用户被调度的顺序为STA7、STA4、STA1、STA6。
用户调度指示序列为9bit的0/1序列:100101100,其中,0表示未被调用,1表示被调用,则根据该序列可获知STA1、STA4、STA6和STA7四个用户被调度,得到被调度用户的集合。
按照第一种指示方式,调度次序指示信息为4*2比特的0/1序列,其中每两个比特代表一个被调度用户在被调度用户的集合中的序号,其中,“00”表示被调度用户集合中的第一个用户,“01”表示被调度用户的集合中的第二个用户,“10”表示被调度用户集合中的第三个用户,“11”表示被调度用户的集合中的第四个用户。该调度次序指示信息为:11010010,则可知被调度用户的调度次序为:STA7、STA4、STA1、STA6。
按照第二种指示方式,调度次序指示信息为一个标识号,接收端查找预设的被调度用户的集合中的所有被调度用户的序号的每种排列组合对应的标识号,获得调度次序指示信息所指示的标识号对应的排列组合,该排列组合为“4213”,则可确定被调度用户的调度次序为STA7、STA4、STA1、STA6。
方式二:
用户调度指示信息用于指示用户组中被调度用户以及被调度用户的排列次序;
用户调度指示信息由用户组中部分用户的排列序号组成,排列序号用于指示用户在用户组中的排列次序,排列序号在用户调度指示信息中的次序表示对应的用户的调度次序。
具体地,确定被调度用户以及被调度用户的调度次序的过程如下:
确定所述用户调度指示信息中包含的各用户在所述用户组中的排列序号,根据所述排列序号在所述用户组中对应的用户的身份标识确定被调度用户的集合;
根据所述排列序号在所述用户调度指示信息中的次序确定所述被调度用 户的集合中各用户的调度顺序,并确定所述接收端在所述被调度用户中的调度次序。
具体地,如图15所示,用户组包括多个用户的身份标识,用户调度指示信息由被调度的用户在用户组中的排列序号组成。
假设用户组包括9个用户的身份标识STA,依次为STA1至STA9,其中,STA1、STA4、STA6和STA7四个用户被调度,且该四个被调度用户被调度的顺序为STA7、STA4、STA1、STA6,采用4个比特表示用户在用户组中的排列序号,STA1表示为“0001”,STA2表示为“0010”,STA3表示为“0011”,STA4表示为“0100”,STA5表示为“0101”,STA6表示为“0110”,STA7表示为“0111”,则用户调度指示信息可表示为:0111010000010110。
本发明实施例中,资源分配模式指示信息、用户组以及用户调度指示信息在高效信令字段中可采用如图16所示的结构。
接收端按照高效信令字段的结构读取资源分配模式指示信息、用户组以及用户调度指示信息,确定资源分配模式以及被调度用户的调度次序,根据该资源分配模式以及被调度用户的调度次序,获取分配给自身的资源。
例如,假设接收端为STA4,STA4根据获取的资源分配模式指示信息确定资源分配模式为,将20M带宽划分为4个部分,第一部分是一个2*26的资源块组合,第二部分也是一个2*26的资源块组合,第三部分是一个1*26的资源块,最后一部分是一个4*26的资源块组合。STA4确定自身属于用户组,且在用户组对应的排列序号为第4个,表示为“0100”。STA4根据用户调度指示信息:0111010000010110,确定自身为第二个被调度的用户,结合资源分配模式可知,STA4被调度在一个大小为2*26个子载波的资源块组合上,根据资源分配模式可获知该2*26个子载波的资源块组合所在的位置。
如果STA4为调度在多个不连续的资源块组合上,则STA4在用户调度指示信息先后出现多次,每次对应一个资源块组合的调度。
本发明实施例中,还可以指示用于竞争的资源块或用于广播的资源块,具体如下:
确定所述用户调度指示信息中包含不属于所述用户组的排列序号的特定指示序列;
根据所述特定指示序列在所述用户调度指示信息中的次序确定对应的被调度次序;
根据所述资源分配模式确定所述特定指示序列的调度次序对应的资源,将所述特定指示序列的调度次序对应的资源确定为竞争资源或广播资源。
其中,特定指示序列占用的比特数等于用户组的一个排列序号所占用的比特数。比如,一个排序序号占用4比特,则特定指示序列也占用4比特。
例如,在用户调度指示信息设置特定指示序列,如“0000”,该特定指示序列对应的资源块组合为竞争资源或广播资源,
相应地,本发明实施例还提供了一种发送端设备,该发送端设备为AP,该发送端设备的具体实施可参见上述关于AP和发送端的描述,重复之处不再赘述,如图17所示,该发送端设备主要包括:
处理模块1701,用于生成前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
发送模块1702,用于发送所述前导码。
其中,前导码的具体结构可参考前述各实施方式中所述的方法,此处不再赘述。
相应地,本发明实施例还提供了一种发送端设备,该发送端设备为AP,该发送端设备的具体实施可参见上述关于AP和发送端的描述,重复之处不再赘述,如图18所示,该发送端设备主要包括处理器1801和发送机1802。其中,处理器1801用于生成前导码,并指示发送机1802发送所述前导码。其中,前导码的具体结构可参考前述各实施方式中所述的方法,此处不再赘述。其中处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。 通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
相应地,本发明实施例还提供了一种接收端设备,该接收端设备为站点,该接收端设备的具体实施可参见上述关于站点和接收端的描述,重复之处不再赘述,如图19所示,该接收端设备主要包括:
接收模块1901,用于接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
处理模块1902,用于根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。
其中,前导码的具体结构可参考前述各实施方式中所述的方法,此处不再赘述。上述各实施例中所揭示的确定被调度用户以及接收端在被调度用户中的调度次序的方法可应用于处理模块1902中,或者由处理模块1902实现,此处不再赘述。并且,上述各实施中所揭示的根据资源分配模式指示信息确定资源分配模式的各方法也可应用于处理模块1902中,或者由处理模块1902实现,此处不再赘述。
相应地,本发明实施例还提供了一种接收端设备,该接收端设备为站点,该接收端设备的具体实施可参见上述关于站点和接收端的描述,重复之处不再赘述,如图20所示,该接收端设备主要包括接收机2001和处理器2002,其中,接收机2001接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;处理器2002根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给 接收端的资源。
其中,前导码的具体结构可参考前述各实施方式中所述的方法,此处不再赘述。上述各实施例中所揭示的确定被调度用户以及接收端在被调度用户中的调度次序的方法可应用于处理器2002中,或者由处理器2002实现,此处不再赘述。并且,上述各实施中所揭示的根据资源分配模式指示信息确定资源分配模式的各方法也可应用于处理器2002中,或者由处理器2002实现,此处不再赘述。
其中处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (49)

  1. 一种资源调度方法,其特征在于,包括:
    接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
    根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。
  2. 如权利要求1所述的方法,其特征在于,所述高效前导码中包括高效信令字段B,所述资源分配模式指示信息携带在所述高效信令字段B中。
  3. 如权利要求2所述的方法,其特征在于,所述高效前导码中还包括高效信令字段A;
    所述高效信令字段A或所述高效信令字段B中还包括所述资源分配模式指示信息对应的带宽指示信息。
  4. 如权利要求3所述的方法,其特征在于,
    若所述高效信令字段B中携带多个所述资源分配模式指示信息,所述高效信令字段B中还包括每个所述资源分配模式指示信息对应的所述带宽指示信息;
    若所述高效信令字段B仅携带一个资源分配模式指示信息,所述高效信令字段A或所述高效信令字段B中还包括所述资源分配模式指示信息对应的所述带宽指示信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源,包括:
    确定所述资源分配模式指示信息所指示的资源分配模式;
    根据所述接收端在被调度用户中的调度次序以及所述资源分配模式。
  6. 如权利要求5所述的方法,其特征在于,所述资源分配模式指示信息由至少一个索引号组成,所述索引号为预设的资源分配表格中的资源分配模式的标识。
  7. 如权利要求6所述的方法,其特征在于,确定所述资源分配模式指示信息所指示的资源分配模式,包括:
    从所述高效前导码中获取所述资源分配模式指示信息对应的带宽指示信息;
    根据所述带宽指示信息获取对应预设的资源分配表格,所述资源分配表格中包括多个资源分配模式,每个所述资源分配模式对应的索引号不同;
    从所述资源分配模式指示信息中获取所述至少一个索引号,从所述资源分配表格获取每个所述索引号各自对应的资源分配模式;
    根据每个所述索引号各自对应的所述资源分配模式,确定所述资源分配模式指示信息所指示的资源分配模式。
  8. 如权利要求7所述的方法,其特征在于,每个所述带宽指示信息对应预设的所述资源分配表格不相同,所述资源分配表格对应的传输带宽等于对应的所述带宽指示信息所指示的带宽;
    或者,
    每个所述带宽指示信息对应预设的所述资源分配表格相同,所述资源分配表格对应的传输带宽不大于所述带宽指示信息所指示的最小带宽,且所述带宽指示信息所指示的带宽为所述传输带宽的整数倍。
  9. 如权利要求5所述的方法,其特征在于,所述资源分配模式指示信息为比特序列。
  10. 如权利要求9所述的方法,其特征在于,确定所述资源分配模式指示信息所指示的资源分配模式,包括:
    从高效前导码中获取与所述资源分配指示信息对应的带宽指示信息;
    根据所述带宽指示信息所指示的带宽以及所述比特序列中0和1之间的切换确定所述资源分配模式,其中,0和1之间的切换表示切换前的比特指示 的资源块与切换后的比特指示的资源块分配给不同的用户。
  11. 如权利要求10所述的方法,其特征在于,所述比特序列中的每个比特各自对应一个资源块的分配;
    或者,
    所述比特序列中的每连续的0或1的组合各自对应一个资源块组合的分配,所述连续的0或1的长度不同对应的资源块组合的大小不同,所述资源块组合包括至少一个资源块。
  12. 如权利要求11所述的方法,其特征在于,若所述比特序列中的每个比特各自对应一个资源块的分配,
    所述比特序列包含的比特数等于所述资源块数目;
    或者,所述比特序列包含的比特数等于所述资源块数目减去1所得的差值,所述比特序列用于指示所述带宽指示信息所指示的带宽中,除第一个资源块之外的资源块的分配,所述第一个资源块配置给第一个调度的用户。
  13. 如权利要求10所述的方法,其特征在于,所述比特序列中1表示对应的资源块分配给下一个调度的用户,所述比特序列中的0表示对应的资源块分配的用户保持不变;
    或者,
    所述比特序列中0表示对应的资源块分配给下一个调度的用户,所述比特序列中的1表示对应的资源块分配的用户保持不变;
    或者,
    所述比特序列中从0切换到1,或者从1切换到0,切换后对应的资源块分配给下一个调度的用户,所述比特序列中连续的0或1表示对应的资源块分配给调度的同一用户。
  14. 如权利要求11所述的方法,其特征在于,若所述比特序列中的每连续的0或1的组合各自对应一个资源块组合的分配,所述连续的0或1的长度不同所指示的资源块组合的大小不同;
    根据所述带宽指示信息所指示的带宽以及所述比特序列中0和1之间的 切换确定所述资源分配模式,包括:
    获取所述带宽指示信息所指示的带宽对应的资源块组合与连续的0或1的长度之间的映射关系;
    确定所述比特序列中每组连续的0或1的长度,分别从所述映射关系中获取每组所述连续的0或1的长度各自对应的资源块组合的大小;
    根据每组所述连续的0或1的长度各自对应的所述资源块组合的大小、所述比特序列中0和1之间的切换以及所述带宽指示信息所指示的带宽,确定所述资源分配模式指示信息对应的所述资源分配模式。
  15. 如权利要求9所述的方法,其特征在于,所述比特序列由指代比特序列和分配指示比特序列组成,所述指代比特序列用于指示资源块组合的大小,所述分配指示比特序列用于指示对应的资源块组合的分配信息。
  16. 如权利要求15所述的方法,其特征在于,所述比特序列中包含的所述指代比特序列按照所指示的资源块组合从大到小的顺序排列。
  17. 如权利要求16所述的方法,其特征在于,确定所述资源分配模式指示信息所指示的资源分配模式,包括:
    从所述高效前导码中获取所述资源分配指示信息对应的带宽指示信息;
    根据预设的带宽、资源块组合的种类数、资源块组合对应的第一指代比特序列、预设的资源块组合方式之间的映射关系,获取所述带宽指示信息所指示的带宽对应的资源块组合的种类数、预设的资源块组合方式以及所述预设的资源块组合对应的第一指代比特序列;
    根据所述资源块组合的种类数、所述预设的资源块组合方式以及所述预设的资源块组合对应的第一指代比特序列,解析所述比特序列,获得每个所述资源块组合的分配信息;
    根据每个所述资源块组合的分配信息确定所述资源分配模式指示信息所指示的资源分配模式。
  18. 如权利要求17所述的方法,其特征在于,解析所述比特序列的过程中,所述方法还包括:
    根据所述资源块组合的种类数、已经解析获得的资源块组合的种类数,确定待分配的资源块组合的种类数,获取所述待分配的资源块组合对应预设的第二指代比特序列,所述第二指代比特序列占用的比特数小于所述第一指代比特序列;
    根据所述资源块组合的种类数、预设的资源块组合方式以及所述待分配的资源块组合对应预设的第二指代比特序列,解析所述比特序列中未解析部分。
  19. 如权利要求17所述的方法,其特征在于,解析所述比特序列后,若确定所述比特序列中不包含最小的所述资源块组合对应的第一指代比特序列以及对应的分配指示比特序列,或者,确定所述比特序列中不包含最小的所述资源块组合的分配指示比特序列,所述方法还包括:
    根据所述带宽指示信息以及所述比特序列所指示的资源块组合的分配信息,确定剩余的资源块;
    确定所述剩余的资源块对应的分配信息为每个资源块依次分配给被调度的不同用户。
  20. 如权利要求1-4任一项所述的方法,其特征在于,所述高效前导码中还携带传输模式指示信息。
  21. 如权利要求20所述的方法,其特征在于,所述传输模式指示信息所述指示的传输模式为单用户SU、多用户多输入多输出MU-MIMO、OFDMA和混合Mix传输模式中的任意一种;
    所述Mix传输模式包括OFDMA+MU-MIMO、OFDMA+SU和MU-MIMO+OFDMA。
  22. 如权利要求21所述的方法,其特征在于,所述高效前导码包括高效信令字段A和高效信令字段B;
    所述高效信令字段A或所述高效信令字段B中携带所述资源分配模式指示信息对应的所述传输模式指示信息。
  23. 如权利要求22所述的方法,其特征在于,根据所述接收端在被调度 用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源之前,所述方法还包括:
    获取所述资源分配模式指示信息对应的所述传输模式指示信息;
    根据所述传输模式指示信息确定所述资源分配模式指示信息对应的传输模式为OFDMA传输模式。
  24. 如权利要求1-4任一项所述的方法,其特征在于,所述用户组由按照预设次序排列的多个用户的身份标识组成。
  25. 如权利要求24所述的方法,其特征在于,所述用户调度指示信息包括用户调度指示序列以及调度次序指示信息;
    所述用户调度指示序列的长度与所述用户组中用户的个数相同,所述用户调度指示序列中的每个比特用于指示所述用户组中对应位置的用户是否被调度;
    所述调度次序指示信息用于指示被调度用户的调度次序。
  26. 如权利要求25所述的方法,其特征在于,根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,包括:
    获取组成所述用户组的多个用户的身份标识;
    根据所述用户调度指示序列与所述多个用户的身份标识的对应关系,获取所述用户调度指示序列中取值为预设值的比特对应的用户的身份标识,根据获取的所述用户的身份标识确定被调度用户的集合;
    根据所述调度次序指示信息确定所述被调度用户的集合中各用户的调度顺序,并确定所述接收端在所述被调度用户中的调度次序。
  27. 如权利要求24所述的方法,其特征在于,所述用户调度指示信息用于指示所述用户组中被调度用户以及所述被调度用户的排列次序;
    所述用户调度指示信息由所述用户组中部分用户的排列序号组成,所述排列序号用于指示所述用户在所述用户组中的排列次序,所述排列序号在所述用户调度指示信息中的次序表示对应的所述用户的调度次序。
  28. 如权利要求27所述的方法,其特征在于,根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,包括:
    确定所述用户调度指示信息中包含的各用户在所述用户组中的排列序号,根据所述排列序号在所述用户组中对应的用户的身份标识确定被调度用户的集合;
    根据所述排列序号在所述用户调度指示信息中的次序确定所述被调度用户的集合中各用户的调度顺序,并确定所述接收端在所述被调度用户中的调度次序。
  29. 如权利要求28所述的方法,其特征在于,所述方法还包括:
    确定所述用户调度指示信息中包含不属于所述用户组的排列序号的特定指示序列;
    根据所述特定指示序列在所述用户调度指示信息中的次序确定对应的被调度次序;
    根据所述资源分配模式确定所述特定指示序列的调度次序对应的资源,将所述特定指示序列的调度次序对应的资源确定为竞争资源或广播资源。
  30. 一种资源调度方法,其特征在于,包括:
    生成前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
    发送所述前导码。
  31. 如权利要求30所述的方法,其特征在于,所述高效前导码中包括高效信令字段B,所述资源分配模式指示信息携带在所述高效信令字段B中。
  32. 如权利要求31所述的方法,其特征在于,所述高效前导码中还包括高效信令字段A;
    所述高效信令字段A或所述高效信令字段B中还包括所述资源分配模式指示信息对应的带宽指示信息。
  33. 如权利要求32所述的方法,其特征在于,若所述高效信令字段B中 携带多个所述资源分配模式指示信息,所述高效信令字段B中还包括每个所述资源分配模式指示信息对应的所述带宽指示信息;
    若所述高效信令字段B仅携带一个资源分配模式指示信息,所述高效信令字段A或所述高效信令字段B中还包括所述资源分配模式指示信息对应的所述带宽指示信息。
  34. 如权利要求30-33任一项所述的方法,其特征在于,所述资源分配模式指示信息由至少一个索引号组成,所述索引号为预设的资源分配表格中的资源分配模式的标识。
  35. 如权利要求34所述的方法,其特征在于,每个所述带宽指示信息对应预设的所述资源分配表格不相同,所述资源分配表格对应的传输带宽等于对应的所述带宽指示信息所指示的带宽;
    或者,
    每个所述带宽指示信息对应预设的所述资源分配表格相同,所述资源分配表格对应的传输带宽不大于所述带宽指示信息所指示的最小带宽,且所述带宽指示信息所指示的带宽为所述传输带宽的整数倍。
  36. 如权利要求30-33任一项所述的方法,其特征在于,所述资源分配模式指示信息为比特序列。
  37. 如权利要求36所述的方法,其特征在于,所述比特序列中的每个比特各自对应一个资源块的分配;
    或者,
    所述比特序列中的每连续的0或1的组合各自对应一个资源块组合的分配,所述连续的0或1的长度不同对应的资源块组合的大小不同,所述资源块组合包括至少一个资源块。
  38. 如权利要求37所述的方法,其特征在于,若所述比特序列中的每个比特各自对应一个资源块的分配,
    所述比特序列包含的比特数等于所述资源块数目;
    或者,所述比特序列包含的比特数等于所述资源块数目减去1所得的差 值,所述比特序列用于指示所述带宽指示信息所指示的带宽中,除第一个资源块之外的资源块的分配,所述第一个资源块配置给第一个调度的用户。
  39. 如权利要求36所述的方法,其特征在于,所述比特序列中1表示对应的资源块分配给下一个调度的用户,所述比特序列中的0表示对应的资源块分配的用户保持不变;
    或者,
    所述比特序列中0表示对应的资源块分配给下一个调度的用户,所述比特序列中的1表示对应的资源块分配的用户保持不变;
    或者,
    所述比特序列中从0切换到1,或者从1切换到0,切换后对应的资源块分配给下一个调度的用户,所述比特序列中连续的0或1表示对应的资源块分配给调度的同一用户。
  40. 如权利要求36所述的方法,其特征在于,所述比特序列由指代比特序列和分配指示比特序列组成,所述指代比特序列用于指示资源块组合的大小,所述分配指示比特序列用于指示对应的资源块组合的分配信息。
  41. 如权利要求40所述的方法,其特征在于,所述比特序列中包含的所述指代比特序列按照所指示的资源块组合从大到小的顺序排列。
  42. 如权利要求30-33任一项所述的方法,其特征在于,所述高效前导码中还携带传输模式指示信息。
  43. 如权利要求42所述的方法,其特征在于,所述传输模式指示信息所述指示的传输模式为单用户SU、多用户多输入多输出MU-MIMO、OFDMA和混合Mix传输模式中的任意一种;
    所述Mix传输模式包括OFDMA+MU-MIMO、OFDMA+SU和MU-MIMO+OFDMA。
  44. 如权利要求43所述的方法,其特征在于,所述高效前导码包括高效信令字段A和高效信令字段B;
    所述高效信令字段A或所述高效信令字段B中携带所述资源分配模式指 示信息对应的所述传输模式指示信息。
  45. 如权利要求30-33任一项所述的方法,其特征在于,所述用户组由按照预设次序排列的多个用户的身份标识组成。
  46. 如权利要求45所述的方法,其特征在于,所述用户调度指示信息包括用户调度指示序列以及调度次序指示信息;
    所述用户调度指示序列的长度与所述用户组中用户的个数相同,所述用户调度指示序列中的每个比特用于指示所述用户组中对应位置的用户是否被调度;
    所述调度次序指示信息用于指示被调度用户的调度次序。
  47. 如权利要求45所述的方法,其特征在于,所述用户调度指示信息用于指示所述用户组中被调度用户以及所述被调度用户的排列次序;
    所述用户调度指示信息由所述用户组中部分用户的排列序号组成,所述排列序号用于指示所述用户在所述用户组中的排列次序,所述排列序号在所述用户调度指示信息中的次序表示对应的所述用户的调度次序。
  48. 一种接收端设备,其特征在于,包括:
    接收模块,用于接收发送端设备发送的前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
    处理模块,用于根据所述用户组以及所述用户调度指示信息确定被调度用户以及接收端在被调度用户中的调度次序,根据所述接收端在被调度用户中的调度次序以及所述资源分配模式指示信息确定被调度给接收端的资源。
  49. 一种发送端设备,其特征在于,包括:
    处理模块,用于生成前导码,所述前导码中包括传统前导码和高效前导码,所述高效前导码中携带资源分配模式指示信息、用户组以及用户调度指示信息;
    发送模块,用于发送所述前导码。
PCT/CN2015/074763 2015-03-20 2015-03-20 一种资源调度方法及设备 WO2016149884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/074763 WO2016149884A1 (zh) 2015-03-20 2015-03-20 一种资源调度方法及设备
CN201580077156.2A CN107409385B (zh) 2015-03-20 2015-03-20 一种资源调度方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074763 WO2016149884A1 (zh) 2015-03-20 2015-03-20 一种资源调度方法及设备

Publications (1)

Publication Number Publication Date
WO2016149884A1 true WO2016149884A1 (zh) 2016-09-29

Family

ID=56976963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074763 WO2016149884A1 (zh) 2015-03-20 2015-03-20 一种资源调度方法及设备

Country Status (2)

Country Link
CN (1) CN107409385B (zh)
WO (1) WO2016149884A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616895B2 (en) 2015-06-16 2020-04-07 Huawei Technologies Co., Ltd. Resource scheduling method, apparatus, and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926787A (zh) * 2004-03-05 2007-03-07 三星电子株式会社 用于在正交频分多址系统中分配信道的方法及设备
US20140056249A1 (en) * 2011-03-04 2014-02-27 Lg Electronics Inc. Method and device for performing ranging in a wireless communication system
US8750912B2 (en) * 2008-08-29 2014-06-10 Lg Electronics Inc. Method of allocating uplink resources in wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527961B (zh) * 2008-03-07 2012-07-18 中兴通讯股份有限公司 一种下行资源分配指示方法
CN102404087B (zh) * 2010-09-16 2015-08-19 华为技术有限公司 多用户mimo系统发送数据的方法与装置
US9397805B2 (en) * 2013-04-15 2016-07-19 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
CN103763784B (zh) * 2014-01-22 2017-07-18 东南大学 用于td‑lte/td‑lte‑a系统区分用户优先级前导码分配的上行接入方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926787A (zh) * 2004-03-05 2007-03-07 三星电子株式会社 用于在正交频分多址系统中分配信道的方法及设备
US8750912B2 (en) * 2008-08-29 2014-06-10 Lg Electronics Inc. Method of allocating uplink resources in wireless communication system
US20140056249A1 (en) * 2011-03-04 2014-02-27 Lg Electronics Inc. Method and device for performing ranging in a wireless communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616895B2 (en) 2015-06-16 2020-04-07 Huawei Technologies Co., Ltd. Resource scheduling method, apparatus, and device
US10645697B2 (en) 2015-06-16 2020-05-05 Huawei Technologies Co., Ltd. Resource scheduling method, apparatus, and device
US10939435B2 (en) 2015-06-16 2021-03-02 Huawei Technologies Co., Ltd. Resource scheduling method, apparatus, and device
US11425716B2 (en) 2015-06-16 2022-08-23 Huawei Technologies Co., Ltd. Resource scheduling method, apparatus, and device

Also Published As

Publication number Publication date
CN107409385B (zh) 2020-09-11
CN107409385A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US11012202B2 (en) System and method for WLAN OFDMA design of subcarrier groups and frame format
CN108200000B (zh) 传输信息的方法、无线局域网装置
US20220256555A1 (en) Method and device for transmitting or receiving scheduling information
JP2018524898A (ja) リソーススケジューリング方法、装置、およびデバイス
CN102256339A (zh) 业务数据传输方法、接收机、移动终端、发射机以及基站
CN110267227A (zh) 一种数据传输方法、相关设备及系统
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
CN111465022A (zh) 一种信号发送、接收方法及设备
WO2016183842A1 (zh) 一种数据传输方法、装置、系统及接入点
EP3648527A1 (en) Method, device, and system for transmitting downlink control information
CN105553631B (zh) 一种基于ofdm的数据传输方法、发射站点和接收站点
WO2016149884A1 (zh) 一种资源调度方法及设备
CN105471567B (zh) 一种基于ofdm的数据传输方法、发射站点和接收站点
WO2022089553A1 (zh) Ppdu的上行带宽指示方法及相关装置
WO2016107315A1 (zh) 调度指示信息的发送、接收方法及装置
CN107534999A (zh) 一种数据传输方法及接入点、站点
CN108429609B (zh) 一种自组织网络下基于nc-ofdm的免握手信道接入方法
JP2020188499A (ja) データ送信方法および装置
JP2023531559A (ja) 情報伝送方法及び機器
WO2016065629A1 (zh) 一种网络设备、终端和数据传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885823

Country of ref document: EP

Kind code of ref document: A1