WO2016148283A1 - Manganese oxide and method for producing same, and lithium secondary battery using same - Google Patents

Manganese oxide and method for producing same, and lithium secondary battery using same Download PDF

Info

Publication number
WO2016148283A1
WO2016148283A1 PCT/JP2016/058736 JP2016058736W WO2016148283A1 WO 2016148283 A1 WO2016148283 A1 WO 2016148283A1 JP 2016058736 W JP2016058736 W JP 2016058736W WO 2016148283 A1 WO2016148283 A1 WO 2016148283A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composition
manganese
charge
manganese oxide
Prior art date
Application number
PCT/JP2016/058736
Other languages
French (fr)
Japanese (ja)
Inventor
岡田昌樹
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016041520A external-priority patent/JP2016175825A/en
Priority claimed from JP2016041519A external-priority patent/JP6746961B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2016148283A1 publication Critical patent/WO2016148283A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a manganese oxide, a method for producing the same, a lithium secondary battery using the same, a manganese oxide mixture, a mixed positive electrode active material, and a lithium secondary battery using the same.
  • lithium secondary batteries have higher energy density than other storage batteries, they have been widely used as storage batteries for mobile terminals. Recently, application to a large-sized application requiring a large capacity such as a stationary one and an in-vehicle one has been promoted.
  • oxide materials containing a large amount of metal elements such as cobalt (Co) and nickel (Ni) are mainly studied. It is extremely difficult to reduce the cost of the positive electrode material containing a large amount of these rare metal elements. At present, there is no practical material that achieves both high energy density and low cost.
  • Manganese (Mn) is an inexpensive element with a large reserve in comparison with rare metal elements such as Co and Ni. Moreover, it is safer and less burden on the environment than Co and Ni.
  • Manganese positive electrode materials that do not contain rare metal elements have been studied for some time. Typical examples include LiMn 2 O 4 having a spinel structure that is easy to reversibly insert and desorb lithium (Li) and LiMnO 2 having a layered rock salt structure.
  • the 8a site of the cubic space group Fd3-m is occupied by Li and the 16d site is occupied by Mn.
  • the empty 16c site is located between the two lattices, which is one of the reasons for the high reversibility of Li insertion and desorption.
  • the usable electrochemical capacity is an oxide having a layered rock-salt structure containing Co or Ni, for example, LiCoO 2 , Li (Ni 1-X ⁇ Al X ) O 2 , Li (Ni 1/3 Co 1). / 3 Mn 1/3 ) O 2, which is about 285 mAh / g.
  • the electrochemical capacity of LiMnO 2 is 285 mAh / g, which is larger than LiMn 2 O 4 .
  • LiMnO 2 There are two types of LiMnO 2 , orthorhombic crystals that can be represented by the space group Pmnm and monoclinic crystals that can be represented by the space group C2 / m.
  • monoclinic LiMnO 2 has a layered rock salt structure, Mn and Li are regularly arranged in the (111) direction of the cubic rock salt structure to form a two-dimensional plane, and Li in the Li layer diffuses two-dimensionally. As a result, the battery reaction proceeds.
  • a common feature of Li-containing transition metal oxides with a layered rock-salt structure is that the transition metal tends to be irregularly arranged in the Li layer and Li in the transition metal layer during synthesis, which makes the charge / discharge reaction reversible. The properties are greatly impaired.
  • the irregular arrangement easily proceeds even in the process of repeating charge and discharge, and in LiMnO 2 , a part of the crystal structure undergoes a phase transition to a spinel-like structure and changes to a LiMn 2 O 4 -like composition (Non-Patent Document 1). .
  • the electrochemical capacity is greatly reduced to about half of the original capacity. If it is possible to suppress irregular arrangements, it is considered possible to prevent a decrease in capacity, but no method has been proposed at this time.
  • Li 2 MnO 3 is a high-capacity positive electrode material that can obtain a discharge capacity of 250 mAh / g for the first time by charging up to 4.8 V, but it has been reported that a sudden capacity drop occurs as the charge / discharge cycle progresses. (Non-patent document 2).
  • Li 2 MnO 3 has a structure similar to that of monoclinic LiMnO 2 , but has a Li-excess composition compared to LiMnO 2 , and on that composition, Li already occupied 1/3 of the Mn sites of the Mn layer. Take. For this reason, irregular arrangement of constituent elements during synthesis hardly occurs, and synthesis is easy.
  • Li 2 MnO 3 When Li 2 MnO 3 is used for the positive electrode of a lithium ion battery, its charging reaction is different from LiMn 2 O 4 and LiMnO 2 .
  • Li 2 MnO 3 has a Mn valence of +4, LiMn 2 O 4 has a +3.5 valence (a state in which +3 and +4 valence coexist at a ratio of 1: 1), and LiMnO 2 has a +3 valence. Is not included.
  • the valence of Mn which can exist stably in the current lithium ion battery, is considered to be +4. Therefore, in materials containing +3 valence of Mn such as LiMn 2 O 4 and LiMnO 2 , Mn is responsible for charge reaction, that is, oxidation reaction, whereas in Li 2 MnO 3 oxygen is considered to be responsible for oxidation reaction. Yes.
  • the inventor considers the oxidation reaction mode of Li 2 MnO 3 as follows.
  • the electrochemical capacity of this reaction is 458 mAh / g, which is very large.
  • Non-patent Documents 3 and 4 It has also been clarified that oxygen desorption occurs selectively from oxygen in the vicinity of Mn atoms (Non-patent Documents 3 and 4). As the desorption of oxygen proceeds, it is expected that the Mn atoms in the Mn layer become unstable due to the simultaneous desorption of Li. In particular, it is considered that the structure of the particle surface is more likely to undergo structural change due to oxygen desorption than the interior of the particle, resulting in a non-uniform structure.
  • MnO 2 produced by the oxidation reaction remains in the reduction to the LiMnO 2 composition in the discharge reaction.
  • the oxygen once desorbed is very unlikely to be taken into the crystal lattice as oxygen ions in the solid phase by the reduction reaction, and Mn is responsible for the reduction reaction as opposed to the oxidation reaction. Accordingly, the discharge capacity is smaller than the charge capacity.
  • LiMnO 2 produced by the reduction reaction it is difficult for LiMnO 2 produced by the reduction reaction to have the same structure as the original layered rock salt structure Li 2 MnO 3 . While Mn moves to an empty Li site or an empty oxygen desorption site triggered by a change in the size of Mn accompanying a reduction reaction from Mn 4+ to Mn 3+ , the introduction of Li + to the oxygen desorption site occurs. It is thought that the reduction reaction proceeds. At this time, the crystal structure is likely to change.
  • Non-Patent Document 5 reports that a part of the crystal structure undergoes a phase transition to a spinel-like structure in the same manner as LiMnO 2 described above to produce a composition similar to LiMn 2 O 4 . This means a reduction in capacity.
  • the spinel structure-like composition produced has low crystallinity and low reversibility of the redox reaction, that is, the charge / discharge reaction.
  • Patent Document 1 a material in which Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 having the same layered rock salt structure is dissolved is proposed.
  • Li 2 MnO 3 can be expressed as Li [Li 1/3 Mn 2/3 ] O 2 and has the same layered structure as described above. Therefore, Li (Co 1/3 Ni 1 / 3 Mn 1/3 ) O 2 can be dissolved.
  • Li 4 Mn 5 O 12 was restricted to use from a reduction reaction for inserting Li, that is, a discharge reaction, as described in Patent Document 2 and Non-Patent Document 7. This is because the valence of manganese is all +4 as described above, and it was thought that further oxidation, that is, charging could not be performed, so that the capacity obtained by discharging remained at about 140 mAh / g. It has been considered that charging and discharging can be repeated below this capacity.
  • a mixed cathode active material consisting of an oxide material rich in Co and Ni and a spinel-type lithium manganate oxide material (LiMn 2 O 4 ) is proposed as an effort to realize a cathode material that achieves both high energy density and low cost. And some have been put to practical use.
  • the reason why the manganese (Mn) -based material is selected is based on the fact that it is an element that has a large reserve and is inexpensive and is safer and less burdened on the environment than Co and Ni.
  • Patent Document 3 lithium cobaltate (LiCoO 2 ), in Patent Document 4, nickel / lithium manganate (LiNi 1/2 ⁇ Mn 1/2 O 2 ), and in Patent Document 5 nickel / cobalt acid to which aluminum (Al) is added.
  • Lithium LiNi 0.8 Co 0.15 Al 0.05 O 2 ; abbreviated NCA
  • in-vehicle storage batteries for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles it is essential to increase the energy density for the purpose of reducing the weight and extending the cruising distance.
  • LiMn 2 O 4 in exchange for the economics of the storage battery.
  • the use of a mixed positive electrode active material with a reduced mixing ratio has been made to increase the energy density.
  • An object of the present invention is to provide a manganese oxide that is a novel positive electrode material for a manganese-based lithium secondary battery that can achieve both high energy density and low cost.
  • An energy density lithium secondary battery is provided.
  • an object of the present invention is to provide an unprecedented new manganese oxide mixture and mixed positive electrode active material that can achieve both high energy density and low cost, and further, it is excellent in economic efficiency using this as a positive electrode.
  • a high energy density lithium secondary battery is provided.
  • the inventor has conducted intensive studies on manganese oxide, which is a positive electrode material for high-energy density manganese-based lithium secondary batteries.
  • the lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 ⁇ X ⁇ 1 is satisfied) things, the general formula [Li 2 MnO 3] 1- E ⁇ [Li 4 Mn 5 O 12] E ( where, 0 ⁇ E satisfy ⁇ 1.) lithium-containing manganese composition represented by the general formula Li ( 4/3)-(4X / 5) Mn 2 / 3-Z M Z O 2- (2X / 5) (where 0 ⁇ X ⁇ 1, 0 ⁇ Z ⁇ 1/3 is satisfied, M is Li, It is one or more elements selected from elements other than Mn and O.)
  • Manganese oxide obtained by electrochemically oxidizing is charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials. Can be used for the
  • the present inventor conducted extensive studies on a manganese oxide and a positive electrode active material that can achieve both high energy density and low cost.
  • the lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 ⁇ X ⁇ 1 is satisfied) things, the formula [Li 2 MnO 3] 1- E ⁇ [Li 4 Mn 5 O 12] E ( where, 0 ⁇ E satisfy ⁇ 1.) lithium-containing manganese composition represented by the general formula Li ( 4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 ⁇ X ⁇ 1, 0 ⁇ Z ⁇ 1/3, where M is A manganese oxide mixture based on one or more elements selected from elements other than Li, Mn, and O) is used as a positive electrode material of a mixed positive electrode active material, thereby using conventional LiMn 2 O 4 .
  • a manganese oxide mixture
  • the gist of the present invention is as follows. [1] General formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ Manufactured by (4/3)-(4X / 5)).
  • a manganese oxide mixture characterized by containing a lithium-containing manganese composition and a positive electrode material.
  • a mixed positive electrode active material comprising the manganese oxide mixture according to any one of [10] to [13].
  • a lithium secondary battery comprising a positive electrode containing the manganese oxide according to any one of [1] to [4] or the mixed positive electrode active material according to [14]. .
  • the manganese oxide of the present invention can be charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials, and by using this for the positive electrode of a lithium secondary battery, both high energy density and low cost are achieved. It is possible to provide a rechargeable lithium secondary battery. Furthermore, the manganese oxide mixture and the mixed positive electrode active material of the present invention can be charged and discharged at a very high capacity compared to the conventional mixed positive electrode active material, and this can be used for the positive electrode of a lithium secondary battery. It is possible to provide a lithium secondary battery that can achieve both high energy density and low cost.
  • FIG. 2 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 1 to 11.
  • FIG. 3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Comparative Examples 1 and 2.
  • FIG. It is an example (Example 1, comparative example 1) of the powder X-ray-diffraction pattern before and behind a charging / discharging test.
  • 4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 12 to 14.
  • FIG. 3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 15 to 18.
  • FIG. 4 is a powder X-ray diffraction pattern of a lithium-containing manganese composition of Comparative Example 3.
  • Example 12 It is an example (Example 12, comparative example 3) of the powder X-ray-diffraction pattern before and behind a charging / discharging test. It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 19 and Example 20.
  • FIG. It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 21 and Example 22.
  • 4 is a powder X-ray diffraction pattern of NCA used in Example 19, Example 21, and Comparative Example 4.
  • FIG. 4 is a powder X-ray diffraction pattern of NMC used in Example 20, Example 22, and Comparative Example 5.
  • FIG. 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Examples 4 and 5.
  • FIG. 3 is a powder X-ray diffraction pattern of the lithium-containing manganese composition used in Examples 23 to 28.
  • FIG. It is a powder X-ray diffraction pattern of NCA used in Example 23 and Comparative Example 6.
  • 4 is a powder X-ray diffraction pattern of NMC used in Example 24 and Comparative Example 7.
  • FIG. 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Example 6 and Comparative Example 7.
  • 3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 29 to 31 and Comparative Example 11.
  • FIG. 4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 32 to 35.
  • 3 is a powder X-ray diffraction pattern before and after the charge / discharge test of Examples 29 to 30.
  • FIG. It is a charging / discharging profile of Example 31 and Comparative Example 11.
  • 3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 36 to 40 and Comparative Example 19.
  • 4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 41 to 44.
  • FIG. 3 is a powder X-ray diffraction pattern before and after the charge / discharge test of Examples 36 to 38.
  • FIG. It is a charging / discharging profile of Example 38 and Comparative Example 19.
  • FIG. 4 is a powder X-ray diffraction pattern of a lithium-containing manganese composition used in Examples 45 to 49.
  • FIG. 3 is a powder X-ray diffraction pattern of the lithium-containing manganese composition used in Examples 50 to 54.
  • FIG. 4 is a powder X-ray diffraction pattern of NMC used in Examples 45 to 49 and Comparative Example 24.
  • FIG. 4 is an NCA powder X-ray diffraction pattern used in Examples 50 to 54 and Comparative Example 25.
  • FIG. 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Example 24 and Comparative Example 25.
  • the manganese oxide of the present invention has the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ (4/3) ⁇ (4X / 5) is satisfied).
  • E which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula [Li 2 MnO 3 ] 1-E ⁇ [Li 4 Mn 5 O 12 ] E.
  • composition analysis examples include dielectric coupled plasma emission analysis and atomic absorption analysis.
  • the manganese oxide of the present invention has the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (here 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ (4/3) ⁇ (4X / 5), 0 ⁇ Z ⁇ 1/3, and M is one or more elements selected from elements other than Li, Mn, and O It is an element.)
  • composition analysis examples include dielectric coupled plasma emission analysis and atomic absorption analysis.
  • M of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention
  • One or more elements selected from elements other than Li, Mn, and O can be used.
  • Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.
  • the Mn valence of the manganese composition of the present invention can be obtained by a general transition metal valence evaluation method.
  • a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
  • the manganese oxide of the present invention reversibly inserts and desorbs lithium, a two-phase coexistence state in which a layered rock salt structure and a spinel structure coexist is preferable, and in order to develop higher reversibility, these Are more preferably a twin structure in which a domain of a layered rock salt structure and a domain of a spinel structure are combined with a specific crystal plane or crystal axis in common in the same crystalline solid.
  • the inventor has the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) , which is the manganese oxide of the present invention.
  • [Li 4-C Mn 5 O 12-D ] E general formula Li (4/3)-(4X / 5) -Y Mn (2/3)
  • the reason why -Z M Z O 2- (2X / 5)-(Y / 2) can be charged and discharged with a high capacity is considered as follows.
  • Li 2 MnO 3 releases oxygen and Li by charging as shown in Formula 1. It is thought that oxygen is responsible for the oxidation reaction, and the valence of Mn remains +4, and the valence does not change. In the process in which oxidation proceeds to the MnO 2 composition while the valence of Mn remains +4, there is a possibility that the composition passes through the composition of Li 4 Mn 5 O 12 or Li 2 Mn 4 O 9 . These all have a spinel structure.
  • Li 4 Mn 5 O 12 is similar in composition to Li 2 MnO 3 compared to Li 2 Mn 4 O 9 , and as represented by Li [Li 1/3 Mn 5/3 ] O 4 , It can be regarded as a layered structure in which 1/3 of Mn is replaced with Li, and although the arrangement pattern of oxygen is slightly different, it can be regarded as a composition having a crystal structure similar to Li 2 MnO 3 .
  • Li 4 Mn 5 O 12 having a spinel structure can be regarded as a composition obtained by removing a part of Li and oxygen from Li 2 MnO 3 . Therefore, it has a structure with a movement path of Li and oxygen from the beginning. Therefore, when the Li 2 MnO 3 and Li 4 Mn 5 O 12 coexist in the same particle, the diffusion of oxygen and Li is easier as compared to Li 2 MnO 3, the composition in a prone particles with Li 2 MnO 3 It is considered that non-uniformity of the structure is difficult to occur.
  • Li 4 Mn 5 O 12 has better crystallinity than a composition produced by charging and discharging Li 2 MnO 3 , it is considered that a decrease in capacity associated with charging and discharging cycles is suppressed.
  • the present inventor considers the reason why charging and discharging can be performed with a high capacity by substituting a part of Mn with an element other than Li, Mn, and O as follows.
  • Li 2 MnO 3 has a part of the crystal structure that changes from a layered structure to a spinel-like structure due to charge / discharge, but the present inventors have a structure triggered by the elimination of Li, which accounts for 1/3 of the Mn layer. We believe that changes are likely to occur.
  • Li is desorbed from Li 2 MnO 3
  • O is also desorbed at the same time, but it is considered that O in the vicinity of Mn is preferentially desorbed in order to maintain the valence of Mn at +4. It is done.
  • Mn moves from an Mn site to an empty Li site generated by Li desorption through an oxygen vacancy site generated by O desorption, and Mn moves to another adjacent empty Li site to spinel. It changes to a similar structure.
  • the manganese oxide of the present invention is represented by the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ (4/3)-(4X / 5) is satisfied.)
  • the lithium-containing manganese composition represented by 0 ⁇ X ⁇ 1 is satisfied) by electrochemical oxidation.
  • the manganese oxide of the present invention is represented by the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (here 0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ (4/3) ⁇ (4X / 5), 0 ⁇ Z ⁇ 1/3, and M is one or more elements selected from elements other than Li, Mn, and O Is an element of the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 ⁇ X ⁇ 1, 0 ⁇ Z ⁇ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) obtained by electrochemically oxidizing a lithium-containing manganese composition represented by: .
  • the reason for electrochemical oxidation is to remove Li 2 O from the lithium-containing manganese composition.
  • Li and O cannot be removed at the same time while the valence of Mn remains +4.
  • Examples of the electrochemical oxidation method include a method of producing a battery and charging in the battery, a method of using an oxidizing agent, and the like.
  • the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) which is the lithium-containing manganese composition of the present invention, the general formula [Li 2 MnO 3 ] 1 -E. [Li 4 Mn 5 O 12 ] E or lithium using the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5)
  • the method include charging a battery by constituting a constant current, a constant voltage, or a combination of a constant current and a constant voltage.
  • a structure of a lithium battery the structure which can be used as a lithium secondary battery as it is is preferable.
  • an oxidizing agent for example, in a solution of an oxidizing agent NO 2 BF 4 dissolved in a solvent acetonitrile, the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , general formula [Li 2 MnO 3 ] 1-E ⁇ [Li 4 Mn 5 O 12 ] E , or general formula Li (4/3)-(4X / 5)
  • a method of stirring Mn (2/3) -Z M Z O 2- (2X / 5) is exemplified.
  • the oxidation potential of the oxidant NO 2 BF 4 is 5.1 V on the basis of lithium, and Li and O can be removed while maintaining the valence of Mn at +4.
  • the method of electrochemical oxidation is preferably a method of producing a battery and charging it in the battery.
  • the manganese oxide of the present invention having a layered rock salt structure and a spinel structure can be obtained by electrochemically oxidizing a lithium-containing manganese composition having a layered rock salt type structure and a spinel type structure.
  • the value of X in the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is the composition, can be determined from the composition analysis of the lithium-containing manganese composition. .
  • the value of E in the formula [Li 2 MnO 3 ] 1-E ⁇ [Li 4 Mn 5 O 12 ] E can be determined from composition analysis of the lithium-containing manganese composition.
  • composition analysis examples include dielectric coupled plasma emission analysis and atomic absorption analysis.
  • the composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , the manganese oxide of the present invention represented by the general formula [Li 2-A MnO 3-B ] 1-E ⁇ [Li 4 -C Mn 5 O 12-D] formula is a lithium-containing manganese composition used in the production of E [Li 2 MnO 3] 1 -E ⁇ [Li 4 Mn 5 O 12]
  • E : Mn raw material and Li raw material molar ratio (Li / Mn ratio) is 0.8 ⁇ Li / Mn ratio ⁇ 2.0
  • Mn raw material and Li raw material are solid phase, liquid phase, or a combination of both Can be prepared by firing the mixture.
  • Mn +4 In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air.
  • the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • composition analysis examples include dielectric coupled plasma emission analysis and atomic absorption analysis.
  • Mn +4 can be prepared by firing a mixture of a Mn raw material, an M raw material, and a Li raw material in a solid phase, a liquid phase, or a combination of both at a / (Mn + M) ratio ⁇ 1/2.
  • Mn +4 it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air.
  • the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • Mn raw material used in the production of the lithium-containing manganese composition there is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used.
  • manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials
  • a processed material etc. are illustrated, it is not restrict
  • Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials.
  • the Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
  • the configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like.
  • the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials.
  • the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
  • the manganese oxide mixture of the present invention is represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 ⁇ X ⁇ 1 is satisfied).
  • the lithium-containing manganese composition and the positive electrode material are contained.
  • the manganese oxide mixture of the present invention is a lithium represented by the general formula [Li 2 MnO 3 ] 1-E ⁇ [Li 4 Mn 5 O 12 ] E (where 0 ⁇ E ⁇ 1 is satisfied). It contains a manganese composition and a positive electrode material.
  • the manganese oxide mixture of the present invention has the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 ⁇ X ⁇ 1, 0 ⁇ Z ⁇ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) It is.
  • the lithium-containing manganese composition contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 ⁇ Mn 1 / Compared with 2 O 2 , NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), it has the characteristics of high energy density regardless of the mixing ratio. There is no loss. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.
  • the value of X in the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) which is a lithium-containing manganese composition, is determined from the composition analysis of the lithium-containing manganese composition. be able to.
  • E in the general formula [Li 2 MnO 3 ] 1-E ⁇ [Li 4 Mn 5 O 12 ] E , which is a lithium-containing manganese composition, can be determined from the composition analysis of the lithium-containing manganese composition.
  • composition analysis examples include dielectric coupled plasma emission analysis and atomic absorption analysis.
  • the Mn valence of the lithium-containing manganese composition can be obtained by a general transition metal valence evaluation method.
  • JIS Japanese Industrial Standard
  • the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
  • the lithium-containing manganese composition reversibly inserts and desorbs lithium, a two-phase coexistence state in which a layered rock salt type structure and a spinel type structure coexist is preferable.
  • a twin structure in which a domain of a layered rock salt structure and a domain of a spinel structure are combined with a specific crystal plane or crystal axis in common in the same crystal solid is more preferable.
  • the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) which is a lithium-containing manganese composition is (Mn raw material + M raw material) and Li raw material
  • the molar ratio [Li / (Mn + M) ratio] of 0.8 ⁇ Li / (Mn + M) ratio ⁇ 2.0, and the molar ratio [M / (Mn + M) ratio] of Mn raw material to M raw material is 0 ⁇ M / (Mn + M). It can be prepared by firing a mixture of a Mn raw material, an M raw material and a Li raw material in a solid phase, a liquid phase, or a combination of both at a ratio ⁇ 1/2.
  • Mn +4 In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air.
  • the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • Mn raw material used in the production of the lithium-containing manganese composition there is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used.
  • manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials
  • a processed material etc. are illustrated, it is not restrict
  • Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials.
  • the Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
  • the positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation.
  • NCA lithium / nickel
  • NMC lithium / nickel / manganese / cobalt composite oxide
  • lithium cobaltate LiCoO 2
  • LiNiO 2 lithium nickelate
  • LiNi 1 lithium nickelate
  • LiNi 1 lithium nickel / manganese composite oxide
  • LiNi 1 lithium / nickel / manganese composite oxide
  • LiNi 1 lithium / nickel / manganese composite oxide
  • LiNi 1/2 O 2 lithium / nickel / manganese spinel composite oxide
  • solid solution material LiMnPO 4 , olivine type LiFePO 4 and the like.
  • the manganese oxide mixture of the present invention can be produced by mixing a lithium-containing manganese composition and a positive electrode material.
  • the mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.
  • the manganese oxide mixture of the present invention as a mixed positive electrode active material, it is possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.
  • a positive electrode can be obtained by mixing the mixed positive electrode active material with a conductive additive, a binder, and the like.
  • the configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li
  • the material that forms an alloy include Li-based alloys
  • examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials.
  • the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
  • the manganese oxide of the present invention has a general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) (where 0 ⁇ X ⁇ 8/9 , 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.
  • X in the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention, is determined by the electrochemical oxidation of Li and O. Can be calculated from the quantity of electricity during electrochemical oxidation using Coulomb's law.
  • the value of Z in the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula Li 8/9 Mn (16/9) -Z M Z O 4 . Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
  • the manganese oxide of the present invention has a general formula of Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) (where 0 ⁇ X ⁇ 4/3 , 0 ⁇ Z ⁇ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.)
  • X in the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention, is determined by the electrochemical oxidation of Li and O. Can be calculated from the quantity of electricity during electrochemical oxidation using Coulomb's law.
  • the value of Z in the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula Li 4/3 Mn (5/3) -Z M Z O 4 . Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
  • One or more elements selected from elements other than Li, Mn, and O can be used for M in —Z M Z O 4- (X / 2) .
  • Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.
  • the Mn valence of the manganese composition of the present invention can be obtained by a general transition metal valence evaluation method.
  • a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
  • the manganese oxide of the present invention preferably has a spinel structure in order to reversibly insert and desorb lithium.
  • the spinel structure has a structure having a Li movement path. Therefore, it is considered that the composition and structure non-uniformity within the particles hardly occur, and it is considered that the decrease in capacity accompanying the charge / discharge cycle is suppressed.
  • the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 ⁇ X ⁇ 8/9 , 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) is represented by the general formula Li 8/9 Mn (16/9) -Z M Z O 4 ( Here, 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O). Can be obtained.
  • Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 ⁇ X ⁇ 4/3 , 0 ⁇ Z ⁇ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) is represented by the general formula Li 4/3 Mn (5/3 ) —Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O). Obtained by oxidation.
  • the reason for electrochemical oxidation is to remove Li 2 O from the lithium-containing manganese composition.
  • Li and O cannot be removed at the same time while the valence of Mn remains +4.
  • the manganese oxide of the present invention can maintain the spinel structure of the lithium-containing manganese composition.
  • Examples of the electrochemical oxidation method include a method of producing a battery and charging in the battery, a method of using an oxidizing agent, and the like.
  • a general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9, where M is one or more elements selected from elements other than Li, Mn, and O), or the general formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6, and M is one or more elements selected from elements other than Li, Mn, and O.) is used as a positive electrode material, and a lithium battery is manufactured and charged in the battery A method is illustrated.
  • the general formula Li 8/9 Mn (16/9) -Z M Z O 4 or the general formula Li 4/3 Mn (5/3) -Z M Z which is the lithium-containing manganese composition of the present invention is used.
  • Examples include a method in which a lithium battery using O 4 is configured and charged with a constant current, a constant voltage, or a combination of a constant current and a constant voltage.
  • a structure of a lithium battery the structure which can be used as a lithium secondary battery as it is is preferable.
  • an oxidizing agent for example, in a solution in which NO 2 BF 4 as an oxidizing agent is dissolved in acetonitrile as a solvent, the general formula Li 8/9 Mn (16/9 ) that is the lithium-containing manganese composition of the present invention is used. ) -Z M Z O 4, or the general formula Li 4/3 Mn (5/3) -Z M Z O 4 method of stirring and the like.
  • the oxidation potential of the oxidant NO 2 BF 4 is 5.1 V on the basis of lithium, and Li and O can be removed while maintaining the valence of Mn at +4.
  • the method of electrochemical oxidation is preferably a method of producing a battery and charging it in the battery.
  • the manganese oxide of the present invention having a spinel structure can be obtained by electrochemically oxidizing a lithium-containing manganese composition having a spinel structure.
  • Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention, where 0 ⁇ X ⁇ 8/9 , 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn and O.
  • Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is ( ⁇ 1/9 Li 8/9 ) 8a [ ⁇ 2/9 Mn (16/9) -Z M Z ] 16d (O 4 ) 32e (where ⁇ represents an empty site), and LiMn 2 O 4 8a 1/9 of the site Li and 2/9 of the 16d site Mn have an empty spinel structure.
  • the composition of Li 8/9 Mn (16/9) -Z M Z O 4 can be determined from composition analysis. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
  • General formula Li 4/3 Mn ( 5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn and O) is LiMn 2 O (Li) 8a [Li 1/3 Mn 5/3 ] 16d (O 4 ) 32e, in which 1/3 of 4 Mn is replaced by Li, has a spinel crystal structure.
  • the composition of Li 4/3 Mn (5/3) -Z M Z O 4 can be determined from composition analysis. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
  • General formula Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is (Mn raw material + M
  • the molar ratio of the raw material) to the Li raw material [Li / (Mn + M) ratio] is 1/2
  • the molar ratio of the Mn raw material to the M raw material [M / (Mn + M) ratio] is 0 ⁇ M / (Mn + M) ratio ⁇ 1/2.
  • Mn raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. It can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • Li 4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 ⁇ X ⁇ 4/3 , 0 ⁇ Z ⁇ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.
  • General formula Li 4/3 Mn ( 5/3) -Z M Z O 4 has a molar ratio (Li / (Mn + M) ratio) of (Mn raw material + M raw material) to Li raw material of 4/5, and a molar ratio of Mn raw material to M raw material [M / (Mn + M ) Ratio] is 0 ⁇ M / (Mn + M) ratio ⁇ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both.
  • Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • Mn raw material used in the production of the lithium-containing manganese composition there is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition. Is preferably used.
  • manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict
  • Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials.
  • the Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
  • the configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like.
  • the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials.
  • the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
  • the manganese oxide mixture of the present invention has the general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is other than Li, Mn, and O).
  • the manganese oxide mixture of the present invention has the general formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6, where M is Li, Mn, O One or more elements selected from the other elements.) And a positive electrode material.
  • the lithium-containing manganese composition contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 ⁇ Mn 1 / Compared with 2 O 2 , NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), it has the characteristics of high energy density regardless of the mixing ratio. There is no loss. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.
  • Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition One or more elements selected.)
  • General formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6, where M is Li, Mn, O
  • the value of Z of the lithium-containing manganese composition represented by the above can be determined from the composition analysis of the lithium-containing manganese composition. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
  • Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition One or more elements selected.),
  • General formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6, where M is Li, Mn, O
  • elements other than Li, Mn, and O can be used for M in the lithium-containing manganese composition represented by:
  • Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe,
  • the Mn valence of the lithium-containing manganese composition of the present invention can be determined by a general transition metal valence evaluation method. For example, a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
  • the manganese oxide of the present invention preferably has a spinel structure in order to reversibly insert and desorb lithium.
  • the spinel structure has a structure having a Li movement path. Therefore, it is considered that the composition and structure non-uniformity within the particles hardly occur, and it is considered that the decrease in capacity accompanying the charge / discharge cycle is suppressed.
  • Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ⁇ Z ⁇ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition Is one or more elements selected.) Is (Mn raw material + M raw material) and Li raw material molar ratio [Li / (Mn + M) ratio] 1/2, Mn raw material and M raw material molar ratio [M / (Mn + M ) Ratio] is 0 ⁇ M / (Mn + M) ratio ⁇ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. Can be prepared by firing.
  • Mn +4 In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air.
  • the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
  • Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ⁇ Z ⁇ 5/6 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition Is one or more elements selected.) Is a molar ratio of [Mn raw material + M raw material] to Li raw material [Li / (Mn + M) ratio] of 4/5, and a molar ratio of Mn raw material to M raw material [M / (Mn + M).
  • Ratio] is 0 ⁇ M / (Mn + M) ratio ⁇ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both.
  • Mn raw material used in the production of the lithium-containing manganese composition there is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used.
  • manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials
  • a processed material etc. are illustrated, it is not restrict
  • Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials.
  • the Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
  • the positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation.
  • NCA lithium / nickel
  • NMC lithium / nickel / manganese / cobalt composite oxide
  • lithium cobaltate LiCoO 2
  • LiNiO 2 lithium nickelate
  • LiNi 1 lithium nickelate
  • LiNi 1 lithium nickel / manganese composite oxide
  • LiNi 1 lithium / nickel / manganese composite oxide
  • LiNi 1 lithium / nickel / manganese composite oxide
  • LiNi 1/2 O 2 lithium / nickel / manganese spinel composite oxide
  • solid solution material LiMnPO 4 , olivine type LiFePO 4 and the like.
  • the manganese oxide mixture of the present invention can be produced by mixing a lithium-containing manganese composition and a positive electrode material.
  • the mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.
  • the manganese oxide mixture of the present invention as a mixed positive electrode active material, it is possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.
  • a positive electrode can be obtained by mixing the mixed positive electrode active material with a conductive additive, a binder, and the like.
  • the configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like.
  • the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials.
  • the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
  • composition analysis> The composition of lithium and manganese in the prepared lithium-containing manganese composition, or the composition of lithium, manganese and M (one or more elements selected from elements other than lithium, manganese and oxygen) in the prepared lithium-containing manganese composition is dielectric. Analysis was performed with a coupled plasma emission analyzer (trade name: ICP-AES, manufactured by PerkinElmer Japan Co., Ltd.).
  • the measurement conditions were as follows.
  • the measurement conditions were as follows.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled at 150 ° C. or lower.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 ⁇ [Li 4 Mn 5 O 12 ] 0.10 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.66, and it was found that a manganese oxide of Li 0.56 Mn 2/3 O 1.61 was obtained.
  • Example 2 A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that the preparation temperature was 375 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. Moreover, the value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 ⁇ [Li 4 Mn 5 O 12 ] 0.10 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.60, and it was found that a manganese oxide of Li 0.45 Mn 2/3 O 1.56 was obtained.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 7/4. From this value, it was found that the value of X was 0.21, and a lithium-containing manganese composition of Li 1.17 Mn 2/3 O 1.92 was obtained.
  • the value of E is 0.05, it was found that a lithium-containing manganese composition [Li 2 MnO 3] 0.95 ⁇ [Li 4 Mn 5 O 12] 0.05.
  • the value of Y obtained from the charge capacity at the first cycle was 0.61, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
  • Example 4 A lithium-containing manganese composition was prepared in the same manner as in Example 2 except that the preparation temperature was 550 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 ⁇ [Li 4 Mn 5 O 12 ] 0.10 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.50, and it was found that a manganese oxide of Li 0.55 Mn 2/3 O 1.61 was obtained.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained.
  • the value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 ⁇ [Li 4 Mn 5 O 12 ] 0.20 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.53, and it was found that a manganese oxide of Li 0.36 Mn 2/3 O 1.51 was obtained.
  • Example 6 A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 400 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained.
  • the value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 ⁇ [Li 4 Mn 5 O 12 ] 0.20 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.50, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
  • Example 7 A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 450 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained.
  • the value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 ⁇ [Li 4 Mn 5 O 12 ] 0.20 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.41, and it was found that a manganese oxide of Li 0.48 Mn 2/3 O 1.57 was obtained.
  • Example 8 A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 500 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained.
  • the value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 ⁇ [Li 4 Mn 5 O 12 ] 0.20 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.33, and it was found that a manganese oxide of Li 0.56 Mn 2/3 O 1.61 was obtained.
  • Example 9 Manganese dioxide (Mn content: 60.3 wt%) obtained by treating sulfuric acid with trimanganese tetroxide ⁇ chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation)
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained.
  • the value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 ⁇ [Li 4 Mn 5 O 12 ] 0.50 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.59, and it was found that a manganese oxide of Li 0.08 Mn 2/3 O 1.38 was obtained.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 13/11. From this value, it was found that the value of X was 0.68, and a lithium-containing manganese composition of Li 0.79 Mn 2/3 O 1.73 was obtained. The value of E was 0.30, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.70 ⁇ [Li 4 Mn 5 O 12 ] 0.30 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.56, and it was found that a manganese oxide of Li 0.23 Mn 2/3 O 1.45 was obtained.
  • Example 11 A lithium-containing manganese composition was prepared in the same manner as in Example 9 except that the firing temperature was 500 ° C.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained.
  • the value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 ⁇ [Li 4 Mn 5 O 12 ] 0.50 .
  • the value of Y obtained from the charge capacity at the first cycle was 0.57, and it was found that a manganese oxide of Li 0.10 Mn 2/3 O 1.39 was obtained.
  • the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained with both the value of X and the value of E being 0.
  • Table 1 shows the results of the charge / discharge test. From the result, it was found that the capacity retention rate was lower than that of the manganese oxide of the example.
  • the value of Y obtained from the charge capacity at the first cycle was 0.94, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
  • the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained with both the value of X and the value of E being 0.
  • Table 1 shows the results of the charge / discharge test. From the result, it was found that the capacity retention rate was lower than that of the manganese oxide of the example.
  • the value of Y obtained from the charge capacity at the first cycle was 0.97, and it was found that a manganese oxide of Li 0.36 Mn 2/3 O 1.52 was obtained.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 450 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled at 150 ° C. or lower.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.70, and it was found that a manganese oxide of Li 0.35 Mn 19/30 Mg 1/30 O 1.51 was obtained.
  • Example 13 A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the preparation temperature was 500 ° C.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.65, and it was found that a manganese oxide of Li 0.40 Mn 19/30 Mg 1/30 O 1.53 was obtained.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 4/3.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.56, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.89 Mn 19/30 Mg 1/30 O 1.78 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.58, and it was found that a manganese oxide of Li 0.31 Mn 19/30 Mg 1/30 O 1.49 was obtained.
  • Example 15 Example except that 2.85 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.12 g of magnesium hydroxide (special grade reagent) and 1.73 g of lithium hydroxide monohydrate (special grade reagent) were used. In the same manner as in No. 12, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 18/11.
  • the (Mn + Mg) ratio was 0.08. From this value, it was found that the value of X was 0.30, the value of Z was 4/75, and a lithium-containing manganese composition of Li 1.09 Mn 46/75 Mg 4/75 O 1.88 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.57, and it was found that a manganese oxide of Li 0.52 Mn 46/75 Mg 4/75 O 1.60 was obtained.
  • Example 16 Using manganese carbonate 0.5 hydrate (special grade reagent) 6.17 g, sodium carbonate (special grade reagent) 0.10 g and lithium hydroxide monohydrate (special grade reagent) 3.90 g, the preparation temperature was adjusted. A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the temperature was 600 ° C.
  • the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Na) ratio is 47/25.
  • the (Mn + Na) ratio was 0.04. From this value, it was found that the value of X was 0.10, the value of Z was 1/39, and a lithium-containing manganese composition of Li 1.25 Mn 25/39 Na 1/39 O 1.96 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • CMO registered trademark
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/1, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.83, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.67 Mn 19/30 Mg 1/30 O 1.67 was obtained. It was.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.46, and it was found that a manganese oxide of Li 0.21 Mn 19/30 Mg 1/30 O 1.44 was obtained.
  • Example 18 Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.29 g, sodium carbonate (special grade reagent) 0.45 g and lithium hydroxide monohydrate (special grade reagent)
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg + Na) ratio is 19/10.
  • the (Mn + Mg + Na) ratio was 0.05, and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, the value of X is 0.08, the value of Z is 1/12, and a lithium-containing manganese composition of Li 1.27 Mn 179/300 Mg 1/20 Na 1/50 O 1.97 is obtained. I found out.
  • Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
  • the value of Y obtained from the charge capacity at the first cycle was 0.82, and it was found that a manganese oxide of Li 0.45 Mn 179/300 Mg 1/20 Na 1/50 O 1.56 was obtained. .
  • the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that the value of X was 0, and a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained.
  • Table 2 shows the results of the charge / discharge test. From the results, it was found that both the first cycle and the tenth cycle were smaller than the discharge capacities of the manganese oxides of Examples 12 to 18.
  • the value of Y obtained from the charge capacity at the first cycle was 0.94, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
  • the crystallinity of the manganese oxide is reduced as compared with the lithium-containing manganese composition of Example 12 from the comparison of the X-ray diffraction patterns before and after the charge / discharge test. I understood.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled at 150 ° C. or lower.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 ⁇ [Li 4 Mn 5 O 12 ] 0.10 .
  • the obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 4 and the same performance as that of NCA alone was exhibited.
  • Example 20 A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 19 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 5, and the same performance as that of only NMC (111) was exhibited.
  • Example 21 Manganese tetraoxide ⁇ Chemical formula: Mn 3 O 4 > (trade name; CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment
  • a lithium-containing manganese composition was prepared in the same manner as in Example 19 except that 4.66 g of monohydrate of lithium hydroxide (special grade reagent) was used.
  • the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained.
  • the value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 ⁇ [Li 4 Mn 5 O 12 ] 0.50 .
  • the obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 4 and the same performance as that of NCA alone was exhibited.
  • Example 22 A manganese oxide mixture (mixed positive electrode active) was obtained in the same manner as in Example 21 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
  • NMC 111
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 manufactured by Toyoshima Seisakusho Co., Ltd.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 5, and the same performance as that of only NMC (111) was exhibited.
  • the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
  • a manganese oxide mixture (mixed cathode active material) was prepared in the same manner as in Example 19 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed cathode active material) of Example 19 and Example 21.
  • Comparative Example 5 A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 20 except that LiMn 2 O 4 obtained in Comparative Example 4 was used as the lithium-containing manganese composition.
  • Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed positive electrode active material) of Example 20 and Example 22.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 450 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled at 150 ° C. or lower.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
  • the obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
  • Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 6, and the same performance as that of NCA alone was exhibited.
  • Example 24 A manganese oxide mixture (mixed positive electrode active material) was obtained in the same manner as in Example 23 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
  • Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 7, and the same performance as that of only NMC (111) was exhibited.
  • Example 25 Example except that 2.85 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.12 g of magnesium hydroxide (special grade reagent) and 1.73 g of lithium hydroxide monohydrate (special grade reagent) were used. In the same manner as in No. 23, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 18/11.
  • the (Mn + Mg) ratio was 0.08. From this value, it was found that the value of X was 0.30, the value of Z was 4/75, and a lithium-containing manganese composition of Li 1.09 Mn 46/75 Mg 4/75 O 1.88 was obtained. It was.
  • a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed.
  • LiMn 2 O 4 of Comparative Example 6 LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
  • Example 26 Using manganese carbonate 0.5 hydrate (special grade reagent) 6.17 g, sodium carbonate (special grade reagent) 0.10 g and lithium hydroxide monohydrate (special grade reagent) 3.90 g, the preparation temperature was adjusted. A lithium-containing manganese composition was prepared in the same manner as in Example 23 except that the temperature was 600 ° C.
  • the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Na) ratio is 47/25.
  • the (Mn + Na) ratio was 0.04. From this value, it was found that the value of X was 0.10, the value of Z was 1/39, and a lithium-containing manganese composition of Li 1.25 Mn 25/39 Na 1/39 O 1.96 was obtained. It was.
  • a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed.
  • LiMn 2 O 4 of Comparative Example 6 LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
  • CMO registered trademark
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/1, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.83, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.67 Mn 19/30 Mg 1/30 O 1.67 was obtained. It was.
  • a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed.
  • LiMn 2 O 4 of Comparative Example 6 LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
  • Example 28 Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.29 g, sodium carbonate (special grade reagent) 0.45 g and lithium hydroxide monohydrate (special grade reagent)
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg + Na) ratio is 19/10.
  • the (Mn + Mg + Na) ratio was 0.05, and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, the value of X is 0.08, the value of Z is 1/12, and a lithium-containing manganese composition of Li 1.27 Mn 179/300 Mg 1/20 Na 1/50 O 1.97 is obtained. I found out.
  • a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 24, and a charge / discharge test was performed.
  • LiMn 2 O 4 of Comparative Example 7 LiMn 2 O 4 of Comparative Example 7 and It was found that the capacity was larger than that of the mixed positive electrode of NMC (111), and the same performance as that of NMC (111) alone was exhibited.
  • the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
  • a manganese oxide mixture (mixed cathode active material) was prepared in the same manner as in Example 23 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
  • Table 4 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Example 23 and Examples 25 to 27.
  • Comparative Example 7 A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 24 except that LiMn 2 O 4 obtained in Comparative Example 6 was used as the lithium-containing manganese composition.
  • Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed positive electrode active material) of Example 24 and Example 28.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled below 150 ° C.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.70, and the composition of the manganese oxide was Li 0.19 Mn 16/9 O 3.65 .
  • Example 30 A lithium-containing manganese composition was prepared in the same manner as in Example 29 except that the preparation temperature was 600 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 16/9 O 3.60 .
  • Example 31 A lithium-containing manganese composition was prepared in the same manner as in Example 29 except that the preparation temperature was 800 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .
  • Comparative Example 8 A coin cell was prepared using the sample prepared in Example 29, and charging and discharging were repeated at a constant current of 10 mA / g at room temperature (22 to 27 ° C.) and a battery voltage between 2.0 V and 3.3 V. A charge / discharge test was conducted.
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 29 (the manganese oxide obtained in Example 29 had a larger discharge capacity).
  • Comparative Example 9 A coin cell was manufactured using the sample prepared in Example 30, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 30 (the manganese oxide obtained in Example 30 had a larger discharge capacity).
  • Comparative Example 10 A coin cell was prepared using the sample prepared in Example 31, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 31 (the manganese oxide obtained in Example 31 had a larger discharge capacity).
  • Comparative Example 11 20.00 g of electrolytic manganese dioxide (manufactured by Tosoh Hinata Co., Ltd.) and 4.58 g of lithium carbonate (special grade reagent) were dry-mixed for 30 minutes using a mortar, and then pulverized until all of the mesh passed through a 150 ⁇ m mesh .
  • a lithium-containing manganese composition was prepared under the same conditions as in Example 31 except that 2 g of the obtained mixed powder was put in a baking dish and an open air box furnace was used.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 2.81 / 5, and Li 1.08 Mn 1.92. It was O 4 (Li 25/81 Mn 144/25 O 12 ). The valence of Mn was +3.6.
  • Table 5 shows the results of the charge / discharge test. From the results, compared with Example 31 prepared under the same conditions, the discharge capacity is small and the capacity retention rate is also small (the manganese oxide obtained in Example 31 has both a large discharge capacity and capacity retention rate). I understood that.
  • CMO registered trademark
  • lithium hydroxide monohydrate special grade reagent
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .
  • Example 33 Example except that 3.04 g of manganese carbonate hemihydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.53 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in Example 29, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 1 ⁇ 2, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 8/225, and a lithium-containing manganese composition of Li 8/9 Mn 392/225 Mg 8/225 O 4 was obtained.
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 392/225 Mg 8/225 O 3.60 .
  • Example 34 Manganese tetraoxide ⁇ Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment
  • a lithium-containing manganese composition was prepared in the same manner as in Example 29 except that 0.34 g of magnesium hydroxide (special grade reagent) and 2.45 g of monohydrate of lithium hydroxide (special grade reagent) were used.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/2, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 4/45, and a lithium-containing manganese composition of Li 8/9 Mn 76/45 Mg 4/45 O 4 was obtained.
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.80, and the composition of the manganese oxide was Li 0.09 Mn 76/45 Mg 4/45 O 3.60 .
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 1/2, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 28/225, and a lithium-containing manganese composition of Li 8/9 Mn 372/225 Mg 4/45 Na 8/225 O 4 was obtained.
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.79, and the composition of the manganese oxide was Li 0.10 Mn 372/225 Mg 4/45 Na 8/225 O 3.61 .
  • Comparative Example 12 A coin cell was prepared using the sample prepared in Example 32, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 32 (the manganese oxide obtained in Example 32 had a larger discharge capacity).
  • Comparative Example 13 A coin cell was prepared using the sample prepared in Example 33, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 33 (the manganese oxide obtained in Example 33 had a larger discharge capacity).
  • Comparative Example 14 A coin cell was prepared using the sample prepared in Example 34, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 34 (the manganese oxide obtained in Example 34 had a larger discharge capacity).
  • Comparative Example 15 A coin cell was prepared using the sample prepared in Example 35, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
  • Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 35 (the manganese oxide obtained in Example 35 had a higher discharge capacity).
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled below 150 ° C.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the capacity retention rate was higher than that of the manganese oxides of Comparative Examples 16 to 18.
  • the value of X calculated from the charge capacity at the first cycle was 0.77, and the composition of the manganese oxide was Li 0.56 Mn 5/3 O 3.62 .
  • Example 37 A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 600 ° C.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
  • the value of X calculated from the charge capacity at the first cycle was 0.52, and the composition of the manganese oxide was Li 0.81 Mn 5/3 O 3.74 .
  • Example 38 A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 800 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
  • the value of X calculated from the charge capacity at the first cycle was 0.53, and the composition of the manganese oxide was Li 0.80 Mn 5/3 O 3.74 .
  • Example 39 A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 425 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
  • the value of X calculated from the charge capacity at the first cycle was 0.60, and the composition of the manganese oxide was Li 0.73 Mn 5/3 O 3.70 .
  • Example 40 A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 375 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
  • the value of X calculated from the charge capacity at the first cycle was 0.68, and the composition of the manganese oxide was Li 0.65 Mn 5/3 O 3.66 .
  • Comparative Example 16 A coin cell was prepared using the sample prepared in Example 36, and charging and discharging were repeated at a constant current of 10 mA / g at room temperature (22 to 27 ° C.) and a battery voltage of 2.0 V and 3.3 V. A charge / discharge test was conducted.
  • Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
  • Comparative Example 17 A coin cell was prepared using the sample prepared in Example 37, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
  • Comparative Example 18 A coin cell was produced using the sample prepared in Example 38, and a charge / discharge test was conducted in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
  • Comparative Example 19 20.00 g of electrolytic manganese dioxide (manufactured by Tosoh Hinata Co., Ltd.) and 4.58 g of lithium carbonate (special grade reagent) were dry-mixed for 30 minutes using a mortar, and then pulverized until all of the mesh passed through a 150 ⁇ m mesh .
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 2.81 / 5, and Li 1.08 Mn 1.92. It was O 4 (Li 25/81 Mn 144/25 O 12 ). The valence of Mn was +3.6.
  • Table 6 shows the results of the charge / discharge test. From the results, compared with Example 38 prepared under the same conditions, although the charge / discharge capacity in the first cycle was large, the capacity retention rate was smaller (the manganese oxide obtained in Example 38 was the capacity retention rate). Is great).
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.73, and the composition of the manganese oxide was Li 0.60 Mn 5/3 O 3.64 .
  • Example 42 Example except that 3.04 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.84 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in Example 36, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 4/5, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 1/30, and a lithium-containing manganese composition of Li 4/5 Mn 49/30 Mg 1/30 O 4 was obtained.
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.56, and the composition of the manganese oxide was Li 0.77 Mn 49/30 Mg 1/30 O 3.72 .
  • Example 43 Manganese tetraoxide ⁇ Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment
  • a lithium-containing manganese composition was prepared in the same manner as in Example 36 except that 0.34 g of magnesium hydroxide (special grade reagent) and 3.92 g of monohydrate of lithium hydroxide (special grade reagent) were used.
  • the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Mg) ratio is 4/5.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 1/12, and a lithium-containing manganese composition of Li 4/5 Mn 95/60 Mg 1/12 O 4 was obtained.
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.52, and the composition of the manganese oxide was Li 0.81 Mn 95/60 Mg 1/12 O 3.74 .
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 4/5, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 7/60, and a lithium-containing manganese composition of Li 4/5 Mn 31/21 Mg 1/12 Na 1/30 O 4 was obtained.
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
  • the value of X calculated from the charge capacity at the first cycle was 0.48, and the composition of the manganese oxide was Li 0.85 Mn 31/21 Mg 1/12 Na 1/30 O 3.76 .
  • Comparative Example 20 A coin cell was prepared using the sample prepared in Example 41, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than the manganese oxide of Example 41 (the manganese oxide obtained in Example 41 had a larger discharge capacity).
  • Comparative Example 21 A coin cell was prepared using the sample prepared in Example 42, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 42 (the manganese oxide obtained in Example 42 had a larger discharge capacity).
  • Comparative Example 22 A coin cell was prepared using the sample prepared in Example 43, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 43 (the manganese oxide obtained in Example 43 had a larger discharge capacity).
  • Comparative Example 23 A coin cell was prepared using the sample prepared in Example 44, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
  • Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than the manganese oxide of Example 44 (the manganese oxide obtained in Example 44 had a larger discharge capacity).
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled below 150 ° C.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
  • the obtained lithium-containing manganese composition and the positive electrode material NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were used in an agate mortar at a weight ratio of 1: 1. Then, a manganese oxide mixture (mixed cathode active material) was prepared.
  • Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 24, and the same performance as that of NMC (111) alone was exhibited.
  • Example 47 Example except that 3.04 g of manganese carbonate hemihydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.53 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in No. 45, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 1 ⁇ 2, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 8/225, and a lithium-containing manganese composition of Li 8/9 Mn 392/225 Mg 8/225 O 4 was obtained.
  • Example 48 Manganese tetraoxide ⁇ Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment
  • a lithium-containing manganese composition was prepared in the same manner as in Example 45 except that 0.34 g of magnesium hydroxide (special grade reagent) and 2.45 g of monohydrate of lithium hydroxide (special grade reagent) were used.
  • the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/2, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 4/45, and a lithium-containing manganese composition of Li 8/9 Mn 380/225 Mg 4/45 O 4 was obtained.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 1/2, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 28/225, and a lithium-containing manganese composition of Li 8/9 Mn 372/225 Mg 4/45 Na 8/225 O 4 was obtained.
  • 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out.
  • the temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively.
  • the furnace was cooled below 150 ° C.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
  • the obtained lithium-containing manganese composition and the positive electrode material NCA (LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
  • Table 7 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 25, and the same performance as that of the case of only NCA was exhibited.
  • Example 52 Example except that 3.04 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.84 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in No. 50, a lithium-containing manganese composition was prepared.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 4/5, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 1/30, and a lithium-containing manganese composition of Li 4/5 Mn 49/30 Mg 1/30 O 4 was obtained.
  • Example 53 Manganese tetraoxide ⁇ Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment
  • a lithium-containing manganese composition was prepared in the same manner as in Example 50 except that 0.34 g of magnesium hydroxide (special grade reagent) and 3.92 g of monohydrate of lithium hydroxide (special grade reagent) were used.
  • the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Mg) ratio is 4/5.
  • the (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 1/12, and a lithium-containing manganese composition of Li 4/5 Mn 95/60 Mg 1/12 O 4 was obtained.
  • the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 4/5, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 7/60, and a lithium-containing manganese composition of Li 4/5 Mn 31/21 Mg 1/12 Na 1/30 O 4 was obtained.
  • the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
  • a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 45 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
  • Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Examples 45 to 49.
  • Comparative Example 25 A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 50 except that LiMn 2 O 4 obtained in Comparative Example 24 was used as the lithium-containing manganese composition.
  • Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Examples 50 to 54.
  • the manganese oxide, manganese oxide mixture, and mixed positive electrode active material of the present invention can be used for a positive electrode of a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided are manganese oxide which is a positive electrode material for a new manganese-based lithium secondary battery capable of reconciling high energy density and low cost, a manganese oxide mixture, a mixed positive electrode active material, and a lithium secondary battery. This manganese oxide is represented by any of the general formula Li(4/3)-(4X/5)-YMn2/32-(2X/ 5)-(Y/2)(In this formula, 0<X<1、0<Y<(4/3)-(4X/5) are satisfied.), general formula [Li2-AMnO3-B]1-E・[Li4-CMn12-D (In this formula, 0<E<1、0≤A≤2、0≤B≤A/2、0≤C≤4, and 0≤D≤C/2 are satisfied, but A=C=O is excluded.), or general formula Li(4/3)-(4X/ 5)-YMn(2/3)-Z2-(2X/5)-(Y/2)(In this formula, 0<X<1、0<Y< (4/3)-(4X/5)、0<Z≤1/3 are satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.).

Description

マンガン酸化物及びその製造方法並びにこれを用いるリチウム二次電池Manganese oxide, method for producing the same, and lithium secondary battery using the same
 本発明は、マンガン酸化物及びその製造方法並びにこれを用いるリチウム二次電池、さらに、マンガン酸化物混合物、混合正極活物質及びこれを用いるリチウム二次電池に関する。 The present invention relates to a manganese oxide, a method for producing the same, a lithium secondary battery using the same, a manganese oxide mixture, a mixed positive electrode active material, and a lithium secondary battery using the same.
 リチウム二次電池は他の蓄電池に比べてエネルギー密度が高いことから、携帯端末用の蓄電池として幅広く使用されてきた。最近では、定置用や車載用といった大型で大容量が必要とされる用途への適用も進められている。 Since lithium secondary batteries have higher energy density than other storage batteries, they have been widely used as storage batteries for mobile terminals. Recently, application to a large-sized application requiring a large capacity such as a stationary one and an in-vehicle one has been promoted.
 大容量が必要とされる用途では高エネルギー密度化の要望が強く、コストダウンに対する要求が特に厳しい。 Demand for high energy density is strong in applications that require large capacity, and the demand for cost reduction is particularly severe.
 高エネルギー密度化を目指して現在開発中のリチウム二次電池の正極材料には、コバルト(Co)やニッケル(Ni)などの金属元素を多く含む酸化物材料が主に検討されている。これら希少金属元素を多く含む正極材料のコストダウンは極めて難しく、現時点では高エネルギー密度と低コストを両立する実用材料はない。 As the positive electrode material of the lithium secondary battery currently being developed with the aim of increasing the energy density, oxide materials containing a large amount of metal elements such as cobalt (Co) and nickel (Ni) are mainly studied. It is extremely difficult to reduce the cost of the positive electrode material containing a large amount of these rare metal elements. At present, there is no practical material that achieves both high energy density and low cost.
 マンガン(Mn)は、CoやNiなどの希少金属元素に比べて埋蔵量が多く、安価な元素である。また、CoやNiに比べて安全性が高く環境への負荷も小さい。 Manganese (Mn) is an inexpensive element with a large reserve in comparison with rare metal elements such as Co and Ni. Moreover, it is safer and less burden on the environment than Co and Ni.
 高エネルギー密度のマンガン系正極材料を実用化できればコストとの両立が可能になり、大型で大容量のリチウム二次電池市場の拡大が後押される。特に、希少金属元素を全く使用しないマンガン系正極材料を開発することができれば、車載用を中心にリチウム二次電池市場が飛躍的に拡大するものと思われる。 ・ Practical use of high-energy density manganese-based positive electrode materials will make it possible to achieve both cost and expansion of the large-capacity lithium secondary battery market. In particular, if a manganese-based positive electrode material that does not use any rare metal element can be developed, the lithium secondary battery market, especially for in-vehicle use, is expected to expand dramatically.
 希少金属元素を含まないマンガン系正極材料は以前から検討が進められてきた。リチウム(Li)の可逆的な挿入脱離が容易で安定なスピネル型構造のLiMnや層状岩塩型構造のLiMnOがその代表格である。 Manganese positive electrode materials that do not contain rare metal elements have been studied for some time. Typical examples include LiMn 2 O 4 having a spinel structure that is easy to reversibly insert and desorb lithium (Li) and LiMnO 2 having a layered rock salt structure.
 スピネル型構造のLiMnは、リチウム二次電池の正極材料として実用化されている。安全性が高く環境への影響が小さいことから、電動工具、電動自転車、電気自動車用等を中心に使用が広がっている。 Spinel-type LiMn 2 O 4 has been put into practical use as a positive electrode material for lithium secondary batteries. Because it is highly safe and has little impact on the environment, its use is spreading mainly for electric tools, electric bicycles, electric vehicles and the like.
 スピネル型構造のLiMnは、立方晶の空間群Fd3-mの8aサイトをLi、16dサイトをMnが占めている。空の16cサイトは両者の格子間に位置しており、Liの挿入脱離に対する高い可逆性を示す理由のひとつとされている。 In the spinel type LiMn 2 O 4 , the 8a site of the cubic space group Fd3-m is occupied by Li and the 16d site is occupied by Mn. The empty 16c site is located between the two lattices, which is one of the reasons for the high reversibility of Li insertion and desorption.
 空の16cサイトにLiを満たすことも可能で、原理的にはLiMn組成までLiを挿入することが可能である。この場合、利用可能な電気化学容量は、CoやNiを含む層状岩塩型構造の酸化物、例えば、LiCoO、Li(Ni1-X・Al)O、Li(Ni1/3Co1/3Mn1/3)Oと同程度の285mAh/gになる。 It is also possible to fill the empty 16c site with Li, and in principle it is possible to insert Li up to the Li 2 Mn 2 O 4 composition. In this case, the usable electrochemical capacity is an oxide having a layered rock-salt structure containing Co or Ni, for example, LiCoO 2 , Li (Ni 1-X · Al X ) O 2 , Li (Ni 1/3 Co 1). / 3 Mn 1/3 ) O 2, which is about 285 mAh / g.
 しかし、16cサイトへのLi挿入は結晶構造の立方晶から正方晶への変化や電子伝導性の低下を招き、充放電サイクルを重ねる度に微結晶化とそれに伴う不活性化が進み充放電容量が低下する。このため可逆的な16cサイトへのLi挿入は難しい。加えて、既存リチウムイオン電池は、そのほとんどの場合、正極材料に含まれるLiのみが充放電反応を担うために空の16cサイトに予めLiを挿入しておくことが望ましいが、スピネル型構造のLiMn組成物は水と容易に反応してLiMn組成に戻り易く、取り扱いが極めて煩雑である。従って、スピネル型構造のLiMnの実用的な電気化学容量は100mAh/g程度に留まり、小さい電気化学容量がゆえに一部の用途への適用に留まっている。 However, the insertion of Li into the 16c site leads to a change in crystal structure from cubic to tetragonal and a decrease in electronic conductivity, and as the charge / discharge cycle is repeated, microcrystallization and accompanying deactivation advance and charge / discharge capacity. Decreases. For this reason, it is difficult to insert Li into the reversible 16c site. In addition, in most of the existing lithium ion batteries, it is desirable to insert Li into the empty 16c site in advance because only Li contained in the positive electrode material is responsible for charge / discharge reaction. The Li 2 Mn 2 O 4 composition easily reacts with water and easily returns to the LiMn 2 O 4 composition, and handling is extremely complicated. Therefore, the practical electrochemical capacity of LiMn 2 O 4 having a spinel structure is limited to about 100 mAh / g, and is only applicable to some applications because of its small electrochemical capacity.
 LiMnOの電気化学容量は285mAh/gで、LiMnよりも大きい。 The electrochemical capacity of LiMnO 2 is 285 mAh / g, which is larger than LiMn 2 O 4 .
 LiMnOには、空間群Pmnmで表せる斜方晶と空間群C2/mで表せる単斜晶の2つが存在する。このうち単斜晶のLiMnOは層状岩塩型構造を有し、立方晶岩塩構造の(111)方向にMnとLiが規則配列して二次元平面を形成、Li層のLiが二次元拡散することで電池反応が進行する。 There are two types of LiMnO 2 , orthorhombic crystals that can be represented by the space group Pmnm and monoclinic crystals that can be represented by the space group C2 / m. Among them, monoclinic LiMnO 2 has a layered rock salt structure, Mn and Li are regularly arranged in the (111) direction of the cubic rock salt structure to form a two-dimensional plane, and Li in the Li layer diffuses two-dimensionally. As a result, the battery reaction proceeds.
 層状岩塩型構造を持つLi含有遷移金属酸化物に共通の特徴は、合成の際にLi層に遷移金属が、遷移金属層にLiが不規則配列し易いことで、これにより充放電反応の可逆性が大きく損なわれる。加えて充放電を繰り返す過程でも不規則配列が進み易く、LiMnOでは結晶構造の一部がスピネル類似構造に相転移してLiMn類似の組成物へと変化する(非特許文献1)。その結果、電気化学容量は元の半分程度まで大きく低下する。不規則配列を抑制することができれば容量低下を防ぐことが可能と考えられるが、現時点では抑制する手立ては提案されていない。 A common feature of Li-containing transition metal oxides with a layered rock-salt structure is that the transition metal tends to be irregularly arranged in the Li layer and Li in the transition metal layer during synthesis, which makes the charge / discharge reaction reversible. The properties are greatly impaired. In addition, the irregular arrangement easily proceeds even in the process of repeating charge and discharge, and in LiMnO 2 , a part of the crystal structure undergoes a phase transition to a spinel-like structure and changes to a LiMn 2 O 4 -like composition (Non-Patent Document 1). . As a result, the electrochemical capacity is greatly reduced to about half of the original capacity. If it is possible to suppress irregular arrangements, it is considered possible to prevent a decrease in capacity, but no method has been proposed at this time.
 最近、層状岩塩型構造のLiMnOを利用する検討が進められている。LiMnOは、4.8Vまでの充電によって初回250mAh/gの放電容量が得られる高容量な正極材料であるが、充放電サイクルが進むにつれて急激な容量低下が起こることが報告されている(非特許文献2)。 Recently, studies using Li 2 MnO 3 having a layered rock-salt structure are underway. Li 2 MnO 3 is a high-capacity positive electrode material that can obtain a discharge capacity of 250 mAh / g for the first time by charging up to 4.8 V, but it has been reported that a sudden capacity drop occurs as the charge / discharge cycle progresses. (Non-patent document 2).
 LiMnOは単斜晶LiMnOと同様の構造を持つが、LiMnOに比べてLi過剰組成であり、その組成上、Mn層のMnサイトの1/3をLiが既に占有した構造をとる。このため、合成時の構成元素の不規則配列は起こり難く、合成は容易である。 Li 2 MnO 3 has a structure similar to that of monoclinic LiMnO 2 , but has a Li-excess composition compared to LiMnO 2 , and on that composition, Li already occupied 1/3 of the Mn sites of the Mn layer. Take. For this reason, irregular arrangement of constituent elements during synthesis hardly occurs, and synthesis is easy.
 LiMnOをリチウムイオン電池の正極に使用した場合、その充電反応はLiMnやLiMnOとは異なる。 When Li 2 MnO 3 is used for the positive electrode of a lithium ion battery, its charging reaction is different from LiMn 2 O 4 and LiMnO 2 .
 LiMnOのMn原子価は+4価で、LiMnの+3.5価(+3価と+4価が1:1の割合で共存する状態)、LiMnOの+3価と異なり、+3価を含んでいない。現状のリチウムイオン電池で安定に存在し得るMnの原子価は+4価が最高と考えられている。従って、LiMnやLiMnOのようにMnの+3価を含む材料ではMnが充電反応、即ち酸化反応を担うのに対して、LiMnOでは酸素が酸化反応を担うと考えられている。 Li 2 MnO 3 has a Mn valence of +4, LiMn 2 O 4 has a +3.5 valence (a state in which +3 and +4 valence coexist at a ratio of 1: 1), and LiMnO 2 has a +3 valence. Is not included. The valence of Mn, which can exist stably in the current lithium ion battery, is considered to be +4. Therefore, in materials containing +3 valence of Mn such as LiMn 2 O 4 and LiMnO 2 , Mn is responsible for charge reaction, that is, oxidation reaction, whereas in Li 2 MnO 3 oxygen is considered to be responsible for oxidation reaction. Yes.
 本発明者は、LiMnOの酸化反応様式を下記のように考えている。この反応の電気化学容量は458mAh/gで、極めて大きい。 The inventor considers the oxidation reaction mode of Li 2 MnO 3 as follows. The electrochemical capacity of this reaction is 458 mAh / g, which is very large.
 LiMn4+ → Mn4+ + 2Li + 2e + 1/2O … (式1)
 酸素イオンのO2-は、過酸化状態のO 2-を経て、Oまで酸化され得ることが知られており、酸素の脱離を伴う上記の式1は妥当なものと考えられる。従って、LiMnOからの酸素の脱離が多いほど充電容量は大きくなる。
Li 2 Mn 4+ O 3 → Mn 4+ O 2 + 2Li + + 2e + 1 / 2O 2 (Formula 1)
It is known that the oxygen ion O 2− can be oxidized to O 2 through the peroxidized state O 2 2− , and the above equation 1 accompanied by desorption of oxygen is considered appropriate. Therefore, the more the oxygen is desorbed from Li 2 MnO 3 , the larger the charge capacity.
 酸化物イオンはそのサイズが大きいことから、酸素の脱離はLiMnO粒子の内部からよりも粒子の表面で起こり易いことは想像に難くない。このため、粒子の表面と粒子の内部とでは異なる組成になり易い傾向があり、粒子表面ではMnOの状態が、粒子内部ではLiMnOのままの状態が多く存在している可能性が高く、不均一な組成になり易いと考えられる。 Since oxide ions are large in size, it is not difficult to imagine that oxygen desorption occurs more easily on the surface of the particles than from the inside of the Li 2 MnO 3 particles. Therefore, there is a tendency becomes different composition between the inside surface and the particles of the particle, the state of the MnO 2 in the particle surface, possibly at the grain inside that there are many remains of Li 2 MnO 3 It is considered that the composition tends to be high and uneven.
 また、酸素の脱離はMn原子近傍の酸素から選択的に起こることが明らかにされている(非特許文献3、非特許文献4)。酸素の脱離が進むと、同時に起こるLiの脱離と相まってMn層のMn原子は不安定な状態になることが予想される。特に、粒子表面の方が粒子内部よりも酸素脱離に伴う構造変化が起こり易く、不均一な構造になり易いと考えられる。 It has also been clarified that oxygen desorption occurs selectively from oxygen in the vicinity of Mn atoms (Non-patent Documents 3 and 4). As the desorption of oxygen proceeds, it is expected that the Mn atoms in the Mn layer become unstable due to the simultaneous desorption of Li. In particular, it is considered that the structure of the particle surface is more likely to undergo structural change due to oxygen desorption than the interior of the particle, resulting in a non-uniform structure.
 酸化反応で生成したMnOは、放電反応ではLiMnO組成までの還元に留まる。一旦脱離した酸素は還元反応によって固相内に酸素イオンとして結晶格子中に取り込まれる可能性は極めて低く、酸化反応とは対照的にMnが還元反応を担う。従って、放電容量は充電容量よりも小さくなる。 MnO 2 produced by the oxidation reaction remains in the reduction to the LiMnO 2 composition in the discharge reaction. The oxygen once desorbed is very unlikely to be taken into the crystal lattice as oxygen ions in the solid phase by the reduction reaction, and Mn is responsible for the reduction reaction as opposed to the oxidation reaction. Accordingly, the discharge capacity is smaller than the charge capacity.
 現時点では詳細は不明であるが、本発明者はMnOの還元反応様式を下記のように考えている。 Although details are unknown at the present time, the present inventor considers the reduction reaction mode of MnO 2 as follows.
  Mn4+ + Li + e → LiMn3+ … (式2)
 還元反応で生成するLiMnOは、元の層状岩塩型構造LiMnOと同じ構造を取ることは難しい。Mn4+からMn3+への還元反応に伴うMnのサイズ変化を引き金とした空のLiサイトや空の酸素脱離サイトへのMnの移動や、酸素脱離サイトへのLiの導入が起こりながら、還元反応が進むと考えられる。このとき結晶構造は変化し易い。
Mn 4+ O 2 + Li + + e → LiMn 3+ O 2 (Formula 2)
It is difficult for LiMnO 2 produced by the reduction reaction to have the same structure as the original layered rock salt structure Li 2 MnO 3 . While Mn moves to an empty Li site or an empty oxygen desorption site triggered by a change in the size of Mn accompanying a reduction reaction from Mn 4+ to Mn 3+ , the introduction of Li + to the oxygen desorption site occurs. It is thought that the reduction reaction proceeds. At this time, the crystal structure is likely to change.
 非特許文献5では、前述のLiMnOと同様に結晶構造の一部がスピネル類似構造に相転移してLiMn類似の組成物が生成することが報告されている。これは容量の低下を意味する。加えて、生成したスピネル構造類似の組成物は結晶性が低く、酸化還元反応、すなわち充放電反応の可逆性は低い。 Non-Patent Document 5 reports that a part of the crystal structure undergoes a phase transition to a spinel-like structure in the same manner as LiMnO 2 described above to produce a composition similar to LiMn 2 O 4 . This means a reduction in capacity. In addition, the spinel structure-like composition produced has low crystallinity and low reversibility of the redox reaction, that is, the charge / discharge reaction.
 以上のように、LiMnOは、高容量発現に必要な酸素の脱離が起こるために、1)充電容量に比べて放電容量が小さい、2)充放電によって組成や構造が不均一になり易い、3)新たに生成するスピネル構造類似の組成物の結晶性が低いことから充放電サイクルに対する容量低下を避けることができないために、本来の性能を十分に発揮できていない。 As described above, since Li 2 MnO 3 causes desorption of oxygen necessary for high capacity development, 1) the discharge capacity is smaller than the charge capacity, and 2) the composition and structure are not uniform due to charge / discharge. 3) Since the crystallinity of a spinel structure-like composition that is newly generated is low, a decrease in capacity with respect to the charge / discharge cycle cannot be avoided, so that the original performance cannot be sufficiently exhibited.
 このようなLiMnOの課題を解決するアプローチとして、同じ層状岩塩型構造のLi(Co1/3Ni1/3Mn1/3)Oを固溶させた材料が提案されている(特許文献1、非特許文献6)。 As an approach for solving such a problem of Li 2 MnO 3 , a material in which Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 having the same layered rock salt structure is dissolved is proposed ( Patent Document 1, Non-Patent Document 6).
 LiMnOは、Li[Li1/3Mn2/3]Oと標記することが可能で、先に述べたように同じ層状型構造であることから、Li(Co1/3Ni1/3Mn1/3)Oと固溶させることができる。 Li 2 MnO 3 can be expressed as Li [Li 1/3 Mn 2/3 ] O 2 and has the same layered structure as described above. Therefore, Li (Co 1/3 Ni 1 / 3 Mn 1/3 ) O 2 can be dissolved.
 LiMnOの高容量を生かしつつ、Li(Co1/3Ni1/3Mn1/3)Oの高い可逆性を備えた材料を狙った提案であるが、300mAh/gに近い初回放電容量が得られるものの、充放電サイクルに対する容量低下は依然大きい。加えて、CoやNiなどの希少金属元素を含むために、Mn本来の低コストの特徴を生かすことができない。 It is a proposal aimed at a material with high reversibility of Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 while making use of the high capacity of Li 2 MnO 3 , but the first time close to 300 mAh / g Although a discharge capacity can be obtained, the capacity reduction with respect to the charge / discharge cycle is still large. In addition, since rare metal elements such as Co and Ni are included, it is not possible to take advantage of the low-cost characteristics inherent in Mn.
 一方、LiMn12は、特許文献2、非特許文献7に記載されているように、Liを挿入する還元反応、すなわち放電反応からの使用に制限されていた。これは、先に述べたようにマンガンの原子価が全て+4価で、これ以上の酸化、すなわち充電はできないと考えられていたためで、放電で得られる容量は140mAh/g程度に留まり、以後、この容量以下で充放電を繰り返すことが可能と考えられてきた。 On the other hand, Li 4 Mn 5 O 12 was restricted to use from a reduction reaction for inserting Li, that is, a discharge reaction, as described in Patent Document 2 and Non-Patent Document 7. This is because the valence of manganese is all +4 as described above, and it was thought that further oxidation, that is, charging could not be performed, so that the capacity obtained by discharging remained at about 140 mAh / g. It has been considered that charging and discharging can be repeated below this capacity.
 一方、高エネルギー密度と低コストを両立する正極材料実現の取り組みとして、CoやNiを多く含む酸化物材料とスピネル型マンガン酸リチウム酸化物材料(LiMn)との混合正極活物質が提案され、一部で実用化されている。マンガン(Mn)系材料が選ばれる理由は、埋蔵量が多く安価な元素でありCoやNiに比べて安全性が高く環境への負荷も小さいことに基づいている。 On the other hand, a mixed cathode active material consisting of an oxide material rich in Co and Ni and a spinel-type lithium manganate oxide material (LiMn 2 O 4 ) is proposed as an effort to realize a cathode material that achieves both high energy density and low cost. And some have been put to practical use. The reason why the manganese (Mn) -based material is selected is based on the fact that it is an element that has a large reserve and is inexpensive and is safer and less burdened on the environment than Co and Ni.
 特許文献3ではコバルト酸リチウム(LiCoO)、特許文献4ではニッケル・マンガン酸リチウム(LiNi1/2・Mn1/2)、特許文献5ではアルミニウム(Al)を添加したニッケル・コバルト酸リチウム(LiNi0.8Co0.15Al0.05;略称NCA)、特許文献6では固溶体材料(LiMnO-LiMeO,Me=Ni,Mn,Co;略称/LiMnO-NMC)との混合正極活物質が提案されている。 In Patent Document 3, lithium cobaltate (LiCoO 2 ), in Patent Document 4, nickel / lithium manganate (LiNi 1/2 · Mn 1/2 O 2 ), and in Patent Document 5 nickel / cobalt acid to which aluminum (Al) is added. Lithium (LiNi 0.8 Co 0.15 Al 0.05 O 2 ; abbreviated NCA), in Patent Document 6, solid solution material (Li 2 MnO 3 —LiMeO 2 , Me = Ni, Mn, Co; abbreviated / Li 2 MnO 3 -NMC) and mixed cathode active materials have been proposed.
 しかし、LiMnの実用容量が100mAh/g程度と小さいことから、その混合割合は高エネルギー密度の特徴を損なわない程度に抑えられ、これまでの混合正極活物質では低コスト化に限界があった。 However, since the practical capacity of LiMn 2 O 4 is as small as about 100 mAh / g, the mixing ratio is suppressed to such an extent that the characteristics of high energy density are not impaired, and there is a limit to cost reduction with the conventional mixed positive electrode active material. there were.
 また、ハイブリッド自動車、プラグインハイブリッド自動車および電気自動車用の車載蓄電池では、軽量化や航続距離の延伸を目的に高エネルギー密度化が必須とされ、最近では蓄電池の経済性と引き換えにLiMnの混合割合を少なくした混合正極活物質の使用によって高エネルギー密度化を図る対応が成されている。 In addition, in-vehicle storage batteries for hybrid vehicles, plug-in hybrid vehicles, and electric vehicles, it is essential to increase the energy density for the purpose of reducing the weight and extending the cruising distance. Recently, LiMn 2 O 4 in exchange for the economics of the storage battery. The use of a mixed positive electrode active material with a reduced mixing ratio has been made to increase the energy density.
 LiMnに代わる高容量なMn系正極材料との混合正極活物質の実現が望まれていた。 Realization of a mixed positive electrode active material with a high-capacity Mn-based positive electrode material instead of LiMn 2 O 4 has been desired.
日本国特表2004-528691号公報Japanese National Special Publication 2004-528691 日本国特開2000‐243449号公報Japanese Unexamined Patent Publication No. 2000-243449 日本国特許第3754218号公報Japanese Patent No. 3754218 日本国特開2003‐168430号公報Japanese Unexamined Patent Publication No. 2003-168430 日本国特開2010‐262914号公報Japanese Unexamined Patent Publication No. 2010-262914 日本国特表2013‐520782号公報Japanese National Table 2013-520882
 本発明の目的は、高エネルギー密度と低コストを両立できる従来にはない新しいマンガン系リチウム二次電池用正極材料であるマンガン酸化物を提供するものであり、さらに、これを正極に用いた高エネルギー密度のリチウム二次電池を提供するものである。さらに、本発明の目的は、高エネルギー密度と低コストを両立できる従来にはない新しいマンガン酸化物混合物と混合正極活物質を提供するものであり、さらに、これを正極に用いた経済性に優れる高エネルギー密度のリチウム二次電池を提供するものである。 An object of the present invention is to provide a manganese oxide that is a novel positive electrode material for a manganese-based lithium secondary battery that can achieve both high energy density and low cost. An energy density lithium secondary battery is provided. Furthermore, an object of the present invention is to provide an unprecedented new manganese oxide mixture and mixed positive electrode active material that can achieve both high energy density and low cost, and further, it is excellent in economic efficiency using this as a positive electrode. A high energy density lithium secondary battery is provided.
 本発明者は、高エネルギー密度のマンガン系リチウム二次電池用正極材料であるマンガン酸化物について鋭意検討を重ねた。その結果、一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物、一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物、一般式Li(4/3)-(4X/5)Mn2/3-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)を電気化学的に酸化することで得られるマンガン酸化物が、従来のマンガン系正極材料に比べて極めて高い容量で充放電することが可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度のリチウム二次電池が構成できることを見出し、本発明を完成するに至った。 The inventor has conducted intensive studies on manganese oxide, which is a positive electrode material for high-energy density manganese-based lithium secondary batteries. As a result, the lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) things, the general formula [Li 2 MnO 3] 1- E · [Li 4 Mn 5 O 12] E ( where, 0 <E satisfy <1.) lithium-containing manganese composition represented by the general formula Li ( 4/3)-(4X / 5) Mn 2 / 3-Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3 is satisfied, M is Li, It is one or more elements selected from elements other than Mn and O.) Manganese oxide obtained by electrochemically oxidizing is charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials. Can be used for the positive electrode of a lithium secondary battery. It found that the secondary battery can be constituted, and have completed the present invention.
 さらに、本発明者は、高エネルギー密度と低コストを両立できるマンガン酸化物と正極活物質について鋭意検討を重ねた。その結果、一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物、一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物、一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)を基にしたマンガン酸化物混合物を、混合正極活物質の正極材料に用いることで、従来のLiMnを用いた混合正極活物質に比べて極めて高い容量で充放電することが可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度かつ低コストのリチウム二次電池が構成できることを見出し、本発明を完成するに至った。 Furthermore, the present inventor conducted extensive studies on a manganese oxide and a positive electrode active material that can achieve both high energy density and low cost. As a result, the lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) things, the formula [Li 2 MnO 3] 1- E · [Li 4 Mn 5 O 12] E ( where, 0 <E satisfy <1.) lithium-containing manganese composition represented by the general formula Li ( 4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3, where M is A manganese oxide mixture based on one or more elements selected from elements other than Li, Mn, and O) is used as a positive electrode material of a mixed positive electrode active material, thereby using conventional LiMn 2 O 4 . Compared to the mixed positive electrode active material, it becomes possible to charge and discharge at an extremely high capacity. Found that can be constructed a high energy density, low-cost lithium secondary battery by using the electrode, thereby completing the present invention.
 すなわち、本発明の要旨は以下の通りである。
[1] 一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)を満たす。)で表されることを特徴とするマンガン酸化物。
[2] 一般式[Li2-AMnO3-B1-E・[Li4-CMn12-D(ここで、0<E<1、0≦A≦2、0≦B≦A/2、0≦C≦4および0≦D≦C/2を満たすが、A=C=0を除く。)で表されることを特徴とするマンガン酸化物。
[3] 一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されることを特徴とするマンガン酸化物。
[4] 層状岩塩型構造とスピネル型構造とを有することを特徴とする上記[1]~[3]のいずれかの項に記載のマンガン酸化物。
[5] 一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする上記[1]又は[4]に記載のマンガン酸化物の製造方法。
[6] 一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする上記[2]又は[4]に記載のマンガン酸化物の製造方法。
[7] 一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする上記[3]又は[4]に記載のマンガン酸化物の製造方法。
[8] リチウム含有マンガン組成物が、層状岩塩型構造とスピネル型構造とを有することを特徴とする上記[5]~[7]のいずれかの項に記載のマンガン酸化物の製造方法。
[9] 電気化学的に酸化することが、電池内で充電することを特徴とする上記[5]~[8]のいずれかの項に記載のマンガン酸化物の製造方法。
[10] 一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。
[11] 一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。
[12] 一般式Li(4/3)-(4X/5)Mn2/3-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。
[13] リチウム含有マンガン組成物が、層状岩塩型構造とスピネル型構造とを有することを特徴とする上記[10]~[12]のいずれかの項に記載のマンガン酸化物混合物。
[14] 上記[10]~[13]のいずれかの項に記載のマンガン酸化物混合物を含むことを特徴とする混合正極活物質。
[15] 上記[1]~[4]のいずれかの項に記載のマンガン酸化物、又は上記[14]に記載の混合正極活物質を含有する正極を備えることを特徴とするリチウム二次電池。
That is, the gist of the present invention is as follows.
[1] General formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 <X <1, 0 <Y <Manufactured by (4/3)-(4X / 5)).
[2] General formula [Li 2-A MnO 3-B ] 1-E · [Li 4-C Mn 5 O 12-D ] E (where 0 <E <1, 0 ≦ A ≦ 2, 0 ≦ B ≦ A / 2, 0 ≦ C ≦ 4 and 0 ≦ D ≦ C / 2, except A = C = 0.) Manganese oxides
[3] General formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (where 0 <X <1, 0 <Y <(4/3) − (4X / 5), 0 <Z ≦ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) The manganese oxide characterized by these.
[4] The manganese oxide as described in any one of [1] to [3] above, which has a layered rock salt structure and a spinel structure.
[5] Lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) The method for producing a manganese oxide according to the above [1] or [4], wherein the product is electrochemically oxidized.
[6] A lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) The method for producing a manganese oxide according to the above [2] or [4], wherein the manganese oxide is oxidized to.
[7] General formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1 / 3, and M is one or more elements selected from elements other than Li, Mn, and O.) The lithium-containing manganese composition represented by [3] is electrochemically oxidized [3 ] Or the manufacturing method of the manganese oxide as described in [4].
[8] The method for producing a manganese oxide according to any one of [5] to [7] above, wherein the lithium-containing manganese composition has a layered rock salt structure and a spinel structure.
[9] The method for producing a manganese oxide according to any one of [5] to [8] above, wherein the electrochemical oxidation is performed in the battery.
[10] Lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) And a manganese oxide mixture containing a cathode material.
[11] A lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) and a positive electrode material A manganese oxide mixture characterized by containing.
[12] General formula Li (4/3)-(4X / 5) Mn 2 / 3-Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3) M is one or more elements selected from elements other than Li, Mn, and O.) A manganese oxide mixture characterized by containing a lithium-containing manganese composition and a positive electrode material.
[13] The manganese oxide mixture as described in any one of [10] to [12] above, wherein the lithium-containing manganese composition has a layered rock salt structure and a spinel structure.
[14] A mixed positive electrode active material comprising the manganese oxide mixture according to any one of [10] to [13].
[15] A lithium secondary battery comprising a positive electrode containing the manganese oxide according to any one of [1] to [4] or the mixed positive electrode active material according to [14]. .
 本発明のマンガン酸化物は、従来のマンガン系正極材料に比べて極めて高い容量での充放電が可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度と低コストを両立できるリチウム二次電池の提供が可能になる。さらに、本発明のマンガン酸化物混合物、混合正極活物質は、従来の混合正極活物質に比べて極めて高い容量での充放電が可能になり、これをリチウム二次電池の正極に使用することで高エネルギー密度と低コストを両立できるリチウム二次電池の提供が可能になる。 The manganese oxide of the present invention can be charged and discharged at a very high capacity compared to conventional manganese-based positive electrode materials, and by using this for the positive electrode of a lithium secondary battery, both high energy density and low cost are achieved. It is possible to provide a rechargeable lithium secondary battery. Furthermore, the manganese oxide mixture and the mixed positive electrode active material of the present invention can be charged and discharged at a very high capacity compared to the conventional mixed positive electrode active material, and this can be used for the positive electrode of a lithium secondary battery. It is possible to provide a lithium secondary battery that can achieve both high energy density and low cost.
実施例1~実施例11のリチウム含有マンガン組成物の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 1 to 11. FIG. 比較例1~比較例2のリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Comparative Examples 1 and 2. FIG. 充放電試験前後の粉末X線回折パターンの一例(実施例1、比較例1)である。It is an example (Example 1, comparative example 1) of the powder X-ray-diffraction pattern before and behind a charging / discharging test. 実施例12~実施例14のリチウム含有マンガン組成物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 12 to 14. FIG. 実施例15~実施例18のリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 15 to 18. FIG. 比較例3のリチウム含有マンガン組成物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of a lithium-containing manganese composition of Comparative Example 3. 充放電試験前後の粉末X線回折パターンの一例(実施例12、比較例3)である。It is an example (Example 12, comparative example 3) of the powder X-ray-diffraction pattern before and behind a charging / discharging test. 実施例19、実施例20で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 19 and Example 20. FIG. 実施例21、実施例22で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the lithium containing manganese composition used in Example 21 and Example 22. 実施例19、実施例21、比較例4で使用したNCAの粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of NCA used in Example 19, Example 21, and Comparative Example 4. FIG. 実施例20、実施例22、比較例5で使用したNMCの粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of NMC used in Example 20, Example 22, and Comparative Example 5. FIG. 比較例4、比較例5で使用したLiMnの粉末X線回折パターンである。 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Examples 4 and 5. FIG. 実施例23~実施例28で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the lithium-containing manganese composition used in Examples 23 to 28. FIG. 実施例23、比較例6で使用したNCAの粉末X線回折パターンである。It is a powder X-ray diffraction pattern of NCA used in Example 23 and Comparative Example 6. 実施例24、比較例7で使用したNMCの粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of NMC used in Example 24 and Comparative Example 7. FIG. 比較例6、比較例7で使用したLiMnの粉末X線回折パターンである。 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Example 6 and Comparative Example 7. 実施例29~実施例31と比較例11のリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 29 to 31 and Comparative Example 11. FIG. 実施例32~実施例35のリチウム含有マンガン組成物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 32 to 35. FIG. 実施例29~実施例30の充放電試験前後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before and after the charge / discharge test of Examples 29 to 30. FIG. 実施例31と比較例11の充放電プロファイルである。It is a charging / discharging profile of Example 31 and Comparative Example 11. 実施例36~実施例40と比較例19のリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 36 to 40 and Comparative Example 19. 実施例41~実施例44のリチウム含有マンガン組成物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of lithium-containing manganese compositions of Examples 41 to 44. FIG. 実施例36~実施例38の充放電試験前後の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern before and after the charge / discharge test of Examples 36 to 38. FIG. 実施例38と比較例19の充放電プロファイルである。It is a charging / discharging profile of Example 38 and Comparative Example 19. 実施例45~実施例49で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of a lithium-containing manganese composition used in Examples 45 to 49. FIG. 実施例50~実施例54で使用したリチウム含有マンガン組成物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the lithium-containing manganese composition used in Examples 50 to 54. FIG. 実施例45~実施例49、比較例24で使用したNMCの粉末X線回折パターンである。4 is a powder X-ray diffraction pattern of NMC used in Examples 45 to 49 and Comparative Example 24. FIG. 実施例50~実施例54、比較例25で使用したNCA粉末X線回折パターンである。4 is an NCA powder X-ray diffraction pattern used in Examples 50 to 54 and Comparative Example 25. FIG. 比較例24、比較例25で使用したLiMnの粉末X線回折パターンである。 3 is a powder X-ray diffraction pattern of LiMn 2 O 4 used in Comparative Example 24 and Comparative Example 25. FIG.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明のマンガン酸化物は、一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)を満たす。)で表されるものである。 The manganese oxide of the present invention has the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 <X < 1, 0 <Y <(4/3) − (4X / 5) is satisfied).
 本発明のマンガン酸化物は、一般式[Li2-AMnO3-B1-E・[Li4-CMn12-D(ここで、0<E<1、0≦A≦2、0≦B≦A/2、0≦C≦4および0≦D≦C/2を満たすが、A=C=0を除く。)で表されるものである。 The manganese oxide of the present invention has a general formula [Li 2-A MnO 3-B ] 1-E. [Li 4-C Mn 5 O 12-D ] E (where 0 <E <1, 0 ≦ A ≦ 2, 0 ≦ B ≦ A / 2, 0 ≦ C ≦ 4 and 0 ≦ D ≦ C / 2, except A = C = 0.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)のXの値は、本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)の組成分析から求めることができる。 The value of X in the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) , which is the manganese oxide of the present invention, It can be determined from a composition analysis of the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is a lithium-containing manganese composition.
 本発明のマンガン酸化物である一般式[Li2-AMnO3-B1-E・[Li4-CMn12-DのEの値は、本発明のリチウム含有マンガン組成物である一般式[LiMnO1-E・[LiMn12の組成分析から求めることができる。 The value of E in the general formula [Li 2-A MnO 3-B ] 1-E · [Li 4-C Mn 5 O 12-D ] E , which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E.
 組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Examples of the method obtained from composition analysis include dielectric coupled plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)のYの値は、電気化学的酸化によるLiとOの脱離に対応することから、電気化学的酸化の際の電気量からクーロンの法則を用いて算出することができる。 The value of Y in the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention is Since it corresponds to the desorption of Li and O by chemical oxidation, it can be calculated from the quantity of electricity at the time of electrochemical oxidation using Coulomb's law.
 本発明のマンガン酸化物である一般式[Li2-AMnO3-B1-E・[Li4-CMn12-DのA、B、C、Dの値は、電気化学的酸化、すなわち充電による酸素とLiの脱離に対応することから、1サイクル目の充電電気量からクーロンの法則を用いて算出することができる。 The values of A, B, C, and D of the general formula [Li 2-A MnO 3-B ] 1-E · [Li 4-C Mn 5 O 12-D ] E , which is the manganese oxide of the present invention, Since it corresponds to chemical oxidation, that is, desorption of oxygen and Li due to charging, it can be calculated from the amount of charged electricity in the first cycle using Coulomb's law.
 本発明のマンガン酸化物は、一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるものである。 The manganese oxide of the present invention has the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (here 0 <X <1, 0 <Y <(4/3) − (4X / 5), 0 <Z ≦ 1/3, and M is one or more elements selected from elements other than Li, Mn, and O It is an element.)
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)のXの値は、本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)の組成分析から求めることができる。 X of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention From the composition analysis of the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is the lithium-containing manganese composition of the present invention. Can be sought.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)のZの値は、本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)の組成分析から求めることができる。 Z of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention From the composition analysis of the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is the lithium-containing manganese composition of the present invention. Can be sought.
 組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Examples of the method obtained from composition analysis include dielectric coupled plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)のYの値は、電気化学的酸化によるLiとOの脱離に対応することから、電気化学的酸化の際の電気量、すなわち1サイクル目の充電電気量からクーロンの法則を用いて算出することができる。 Y of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention Since this value corresponds to the desorption of Li and O by electrochemical oxidation, it can be calculated from the amount of electricity at the time of electrochemical oxidation, that is, the amount of charged electricity in the first cycle, using Coulomb's law. it can.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)のMには、Li、Mn、O以外の元素から選ばれるひとつ以上の元素を用いることができる。Li、Mn、O以外の元素から選ばれるひとつ以上の元素としては、例えば、Ia族元素のH、Na、K、Rb、Cs、Ib族元素のCu、Ag、Au、IIa族元素のBe、Mg、Ca、Sr、Ba、IIb族元素のZn、Cd、IIIa族元素のSc、Y、IIIb族元素のB、Al、Ge、In、Mn以外の遷移金属としては、Mnを除く第一遷移系列元素のTi、V、Cr、Fe、Co、Ni、第二および第三遷移系列元素のZr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt、Au等が例示される。正極としての重量あたりの容量を維持するため、H、Na、K、Mg、Ca、Al、Zn、Ga,Ti、V、Cr、Fe、Co、Niが好ましい。 M of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention One or more elements selected from elements other than Li, Mn, and O can be used. Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.
 本発明のマンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X-ray photoelectron spectroscopy)、XAFS測定(X-ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。 The Mn valence of the manganese composition of the present invention can be obtained by a general transition metal valence evaluation method. For example, a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
 本発明のマンガン酸化物は、可逆的にリチウムを挿入脱離させるため、層状岩塩型構造とスピネル型構造が共存している2相共存の状態が好ましく、より高い可逆性を発現させるため、これらが同一の結晶固体の中で特定の結晶面や結晶軸を共通にして層状岩塩型構造のドメインとスピネル型構造のドメインが結合した状態の双晶構造がより好ましい。 Since the manganese oxide of the present invention reversibly inserts and desorbs lithium, a two-phase coexistence state in which a layered rock salt structure and a spinel structure coexist is preferable, and in order to develop higher reversibility, these Are more preferably a twin structure in which a domain of a layered rock salt structure and a domain of a spinel structure are combined with a specific crystal plane or crystal axis in common in the same crystalline solid.
 本発明者は、本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)、一般式[Li2-AMnO3-B1-E・[Li4-CMn12-D、一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)が高い容量で充放電が可能になる理由を次のように考えている。 The inventor has the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) , which is the manganese oxide of the present invention. [Li 2-A MnO 3-B ] 1-E. [Li 4-C Mn 5 O 12-D ] E , general formula Li (4/3)-(4X / 5) -Y Mn (2/3) The reason why -Z M Z O 2- (2X / 5)-(Y / 2) can be charged and discharged with a high capacity is considered as follows.
 本発明者の検討では、LiMnOを電気化学的に酸化還元、つまり充放電を繰り返した場合、1)LiMnOの結晶構造の一部が層状構造からスピネル類似構造へと変化し、生成したスピネル類似構造は充放電反応に寄与する、2)充放電で生成したスピネル類似構造の結晶性は低く、充放電サイクルを繰り返すと、さらに結晶性が低下して充放電容量が低下することが分かっている。 According to the study of the present inventors, when Li 2 MnO 3 is electrochemically oxidized and reduced, that is, charging and discharging are repeated, 1) a part of the crystal structure of Li 2 MnO 3 changes from a layered structure to a spinel-like structure. The generated spinel-like structure contributes to the charge / discharge reaction. 2) The crystallinity of the spinel-like structure produced by charging / discharging is low, and when the charge / discharge cycle is repeated, the crystallinity further decreases and the charge / discharge capacity decreases. I know that.
 そこで、LiMnOの層状岩塩型構造に予め結晶性の良いスピネル型構造を共存させることができれば容量低下が抑えられて、充放電を繰り返しても高容量が維持できると考えた。 Therefore, it was considered that if a spinel structure with good crystallinity can coexist in advance with the layered rock salt structure of Li 2 MnO 3, the capacity decrease can be suppressed and high capacity can be maintained even after repeated charge and discharge.
 ところで、LiMnOは式1に示したように充電によって酸素とLiを放出する。酸素が酸化反応を担い、Mnの原子価は+4価のままで価数変化しないと考えている。Mnの原子価が+4価のままでMnO組成まで酸化を進める過程では、LiMn12やLiMnの組成を経由する可能性がある。これらはいずれもスピネル型構造を持つ。 By the way, Li 2 MnO 3 releases oxygen and Li by charging as shown in Formula 1. It is thought that oxygen is responsible for the oxidation reaction, and the valence of Mn remains +4, and the valence does not change. In the process in which oxidation proceeds to the MnO 2 composition while the valence of Mn remains +4, there is a possibility that the composition passes through the composition of Li 4 Mn 5 O 12 or Li 2 Mn 4 O 9 . These all have a spinel structure.
 特に、LiMn12はLiMnに比べてLiMnOに組成が近く、Li[Li1/3Mn5/3]Oで標記されるように、Mn層の1/3のMnをLiで置き換えた層状型構造とみなすことが可能で、酸素の配列様式は若干異なるが、LiMnOに類似の結晶構造を持つ組成物とみなせる。 In particular, Li 4 Mn 5 O 12 is similar in composition to Li 2 MnO 3 compared to Li 2 Mn 4 O 9 , and as represented by Li [Li 1/3 Mn 5/3 ] O 4 , It can be regarded as a layered structure in which 1/3 of Mn is replaced with Li, and although the arrangement pattern of oxygen is slightly different, it can be regarded as a composition having a crystal structure similar to Li 2 MnO 3 .
 結晶構造が異なるために、LiMnOとLiMn12の固溶体を調製することは困難であるが、単なる混合状態ではなく極めて微小な状態で共存している状態にすることが容易と考えられる。さらに、同一の結晶固体の中で特定の結晶面や結晶軸を共通にしてLiMnOのドメインとLiMn12のドメインが結合した双晶構造の状態をつくることも容易と考えられる。 Due to the difference in crystal structure, it is difficult to prepare a solid solution of Li 2 MnO 3 and Li 4 Mn 5 O 12 , but it is easy to make it coexist in a very small state, not just a mixed state it is conceivable that. Furthermore, it is considered that it is easy to create a twin structure state in which the domain of Li 2 MnO 3 and the domain of Li 4 Mn 5 O 12 are combined in the same crystalline solid with a specific crystal plane and crystal axis in common. It is done.
 また、スピネル型構造のLiMn12は、LiMnOから一部のLiと酸素を取り除いた組成物とみなせる。従って、最初からLiや酸素の移動経路を備えた構造を持つ。そのため、同一粒子内にLiMnOとLiMn12が共存すると、酸素やLiの拡散がLiMnOに比べて容易になり、LiMnOで生じやすい粒子内での組成や構造の不均一性が起き難いと考えられる。加えて、LiMn12はLiMnOの充放電で生成する組成物に比べて結晶性が良いことから、充放放電サイクルに伴う容量の低下が抑制されるものと考えられる。 Further, Li 4 Mn 5 O 12 having a spinel structure can be regarded as a composition obtained by removing a part of Li and oxygen from Li 2 MnO 3 . Therefore, it has a structure with a movement path of Li and oxygen from the beginning. Therefore, when the Li 2 MnO 3 and Li 4 Mn 5 O 12 coexist in the same particle, the diffusion of oxygen and Li is easier as compared to Li 2 MnO 3, the composition in a prone particles with Li 2 MnO 3 It is considered that non-uniformity of the structure is difficult to occur. In addition, since Li 4 Mn 5 O 12 has better crystallinity than a composition produced by charging and discharging Li 2 MnO 3 , it is considered that a decrease in capacity associated with charging and discharging cycles is suppressed.
 また、本発明者は、Mnの一部をLi、Mn、O以外の元素で置換することで高い容量で充放電が可能になる理由を次のように考えている。 Further, the present inventor considers the reason why charging and discharging can be performed with a high capacity by substituting a part of Mn with an element other than Li, Mn, and O as follows.
 LiMnOは充放電によって結晶構造の一部が層状構造からスピネル類似構造へと変化するが、本発明者はMn層の1/3を占めているLiの脱離が引き金となって構造変化が生じ易くなるものと考えている。LiMnOからLiを脱離させるとOも同時に脱離するが、Mnの原子価が+4価のままの状態を維持するために、Mn近傍のOが優先的に脱離するとものと考えられる。O脱離で生じた酸素欠損箇所を介して、MnがMnサイトからLiが脱離して生成した空のLiサイトに移動して、さらに隣接する別の空のLiサイトにMnが移動してスピネル類似構造に変化する。Mnの一部を他の元素で置換すれば、Mn近傍のO脱離が抑制され、取り除くことが可能なLi量すなわち容量は減少するもののそれを上回る構造変化抑制効果が得られて、充放電を繰り返しても高容量が維持できると考えている。 Li 2 MnO 3 has a part of the crystal structure that changes from a layered structure to a spinel-like structure due to charge / discharge, but the present inventors have a structure triggered by the elimination of Li, which accounts for 1/3 of the Mn layer. We believe that changes are likely to occur. When Li is desorbed from Li 2 MnO 3 , O is also desorbed at the same time, but it is considered that O in the vicinity of Mn is preferentially desorbed in order to maintain the valence of Mn at +4. It is done. Mn moves from an Mn site to an empty Li site generated by Li desorption through an oxygen vacancy site generated by O desorption, and Mn moves to another adjacent empty Li site to spinel. It changes to a similar structure. If a part of Mn is replaced with other elements, O desorption in the vicinity of Mn is suppressed, and although the amount of Li that can be removed, that is, the capacity is reduced, the structure change suppressing effect is obtained, which is superior to that, and charge / discharge It is thought that high capacity can be maintained even if the above is repeated.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)を満たす。)は、一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 The manganese oxide of the present invention is represented by the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 <X < 1, 0 <Y <(4/3)-(4X / 5) is satisfied.) Is represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) ( Here, the lithium-containing manganese composition represented by 0 <X <1 is satisfied) by electrochemical oxidation.
 本発明のマンガン酸化物である一般式[Li2-AMnO3-B1-E・[Li4-CMn12-D(ここで、0<E<1、0≦A≦2、0≦B≦A/2、0≦C≦4および0≦D≦C/2を満たすが、A=C=0を除く。)は、一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 The manganese oxide of the present invention is represented by the general formula [Li 2-A MnO 3-B ] 1-E. [Li 4-C Mn 5 O 12-D ] E (where 0 <E <1, 0 ≦ A ≦ 2, 0 ≦ B ≦ A / 2, 0 ≦ C ≦ 4 and 0 ≦ D ≦ C / 2, except A = C = 0.) Is represented by the general formula [Li 2 MnO 3 ] 1-E * Obtained by electrochemically oxidizing a lithium-containing manganese composition represented by [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied).
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 The manganese oxide of the present invention is represented by the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (here 0 <X <1, 0 <Y <(4/3) − (4X / 5), 0 <Z ≦ 1/3, and M is one or more elements selected from elements other than Li, Mn, and O Is an element of the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) obtained by electrochemically oxidizing a lithium-containing manganese composition represented by: .
 電気化学的に酸化するのは、リチウム含有マンガン組成物からLiOを取り除くためである。電気化学的に酸化する以外の方法では、Mnの価数を+4価のままでLiとOを同時に取り除くことはできない。 The reason for electrochemical oxidation is to remove Li 2 O from the lithium-containing manganese composition. By methods other than electrochemical oxidation, Li and O cannot be removed at the same time while the valence of Mn remains +4.
 電気化学的に酸化する方法としては、例えば、電池を作製して電池内で充電する方法や酸化剤を使用する方法等が例示される。 Examples of the electrochemical oxidation method include a method of producing a battery and charging in the battery, a method of using an oxidizing agent, and the like.
 電池を作製して電池内で充電する方法としては、本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)、一般式[LiMnO1-E・[LiMn12、又は一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)を正極材料に用いて、リチウム電池を作製して電池内で充電する方法が例示される。例えば、正極に本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)、一般式[LiMnO1-E・[LiMn12、又は一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)を使用したリチウム電池を構成して、定電流、定電圧、または定電流と定電圧を組み合わせて充電する方法が例示される。リチウム電池の構成としては、そのままリチウム二次電池として使用できる構成が好ましい。 As a method for producing a battery and charging in the battery, a general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) which is the lithium-containing manganese composition of the present invention is used. , [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E , or general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2 -A method of producing a lithium battery using (2X / 5) as a positive electrode material and charging in the battery is exemplified. For example, for the positive electrode, the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is the lithium-containing manganese composition of the present invention, the general formula [Li 2 MnO 3 ] 1 -E. [Li 4 Mn 5 O 12 ] E or lithium using the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) Examples of the method include charging a battery by constituting a constant current, a constant voltage, or a combination of a constant current and a constant voltage. As a structure of a lithium battery, the structure which can be used as a lithium secondary battery as it is is preferable.
 酸化剤を使用する方法としては、例えば、溶媒のアセトニトリルに酸化剤のNOBFを溶解した溶液中で、本発明のリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)、一般式[LiMnO1-E・[LiMn12、又は一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)を撹拌する方法が例示される。酸化剤のNOBFの酸化電位はリチウム基準で5.1Vにあり、Mnの価数を+4価に保った状態でLiとOを取り除くことが可能である。 As a method of using an oxidizing agent, for example, in a solution of an oxidizing agent NO 2 BF 4 dissolved in a solvent acetonitrile, the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E , or general formula Li (4/3)-(4X / 5) A method of stirring Mn (2/3) -Z M Z O 2- (2X / 5) is exemplified. The oxidation potential of the oxidant NO 2 BF 4 is 5.1 V on the basis of lithium, and Li and O can be removed while maintaining the valence of Mn at +4.
 そのまま電池として使用できることから、電気化学的に酸化する方法は、電池を作製して電池内で充電する方法が好ましい。 Since it can be used as a battery as it is, the method of electrochemical oxidation is preferably a method of producing a battery and charging it in the battery.
 層状岩塩型構造とスピネル型構造とを有するリチウム含有マンガン組成物を電気化学的に酸化することで、層状岩塩構造とスピネル構造とを有する本発明のマンガン酸化物が得られる。 The manganese oxide of the present invention having a layered rock salt structure and a spinel structure can be obtained by electrochemically oxidizing a lithium-containing manganese composition having a layered rock salt type structure and a spinel type structure.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)の製造で使用するリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)のXの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 Lithium-containing manganese used in the production of the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention The value of X in the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is the composition, can be determined from the composition analysis of the lithium-containing manganese composition. .
 本発明のマンガン酸化物である一般式[Li2-AMnO3-B1-E・[Li4-CMn12-Dの製造で使用するリチウム含有マンガン組成物である一般式[LiMnO1-E・[LiMn12のEの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 Lithium-containing manganese composition used in the production of the general formula [Li 2-A MnO 3-B ] 1-E · [Li 4-C Mn 5 O 12-D ] E which is the manganese oxide of the present invention The value of E in the formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E can be determined from composition analysis of the lithium-containing manganese composition.
 組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Examples of the method obtained from composition analysis include dielectric coupled plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)の製造で使用するリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)、本発明のマンガン酸化物である一般式[Li2-AMnO3-B1-E・[Li4-CMn12-Dの製造で使用するリチウム含有マンガン組成物である一般式[LiMnO1-E・[LiMn12は、Mn原料とLi原料のモル比(Li/Mn比)を、0.8<Li/Mn比<2.0として、Mn原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 Lithium-containing manganese used in the production of the general formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention The composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , the manganese oxide of the present invention represented by the general formula [Li 2-A MnO 3-B ] 1-E · [Li 4 -C Mn 5 O 12-D] formula is a lithium-containing manganese composition used in the production of E [Li 2 MnO 3] 1 -E · [Li 4 Mn 5 O 12] E : Mn raw material and Li raw material molar ratio (Li / Mn ratio) is 0.8 <Li / Mn ratio <2.0, Mn raw material and Li raw material are solid phase, liquid phase, or a combination of both Can be prepared by firing the mixture. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)の製造で使用するリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)のXの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 Production of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention The value of X in the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is a lithium-containing manganese composition used in It can obtain | require from a composition analysis of a containing manganese composition.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)の製造で使用するリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)のZの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 Production of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention The value of Z in the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is a lithium-containing manganese composition used in It can obtain | require from a composition analysis of a containing manganese composition.
 組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Examples of the method obtained from composition analysis include dielectric coupled plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)の製造で使用するリチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を0.8<Li/(Mn+M)比<2.0、Mn原料とM原料のモル比[M/(Mn+M)比]を0<M/(Mn+M)比≦1/2で、Mn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 Production of the general formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) which is the manganese oxide of the present invention Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is a lithium-containing manganese composition used in (Mn raw material + M raw material) And the molar ratio of Li raw material [Li / (Mn + M) ratio] is 0.8 <Li / (Mn + M) ratio <2.0, and the molar ratio of Mn raw material to M raw material [M / (Mn + M) ratio] is 0 <M. It can be prepared by firing a mixture of a Mn raw material, an M raw material, and a Li raw material in a solid phase, a liquid phase, or a combination of both at a / (Mn + M) ratio ≦ 1/2. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
 リチウム含有マンガン組成物の製造で使用するM原料に制限はないが、用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。 Although there is no restriction | limiting in the M raw material used by manufacture of a lithium containing manganese composition, Although the carbonate, nitrate, oxalate, chloride, oxide, etc. of M element to be used are illustrated, it is not restrict | limited to these.
 本発明のマンガン酸化物をリチウム二次電池の正極に使用することで、従来では得ることができなかった高容量のリチウム二次電池を構成することが可能になる。 </ RTI> By using the manganese oxide of the present invention for the positive electrode of a lithium secondary battery, it becomes possible to constitute a high-capacity lithium secondary battery that could not be obtained conventionally.
 正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like. Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
 次に、本発明のマンガン酸化物混合物、混合正極活物質について説明する。 Next, the manganese oxide mixture and mixed cathode active material of the present invention will be described.
 本発明のマンガン酸化物混合物は、一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 The manganese oxide mixture of the present invention is represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied). The lithium-containing manganese composition and the positive electrode material are contained.
 また、本発明のマンガン酸化物混合物は、一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 Further, the manganese oxide mixture of the present invention is a lithium represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied). It contains a manganese composition and a positive electrode material.
 さらに、本発明のマンガン酸化物混合物は、一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 Further, the manganese oxide mixture of the present invention has the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) It is.
 本発明のマンガン酸化物混合物が含有するリチウム含有マンガン組成物は、LiMnに比べて高容量であり、その容量は130~170mAh/gであるLiCoO、LiNi1/2・Mn1/2、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)と比較しても遜色なく、混合割合によらず高エネルギー密度の特徴を損なうことはない。このため、混合正極活物質において、高エネルギー密度と低コストが両立可能になる。 The lithium-containing manganese composition contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 · Mn 1 / Compared with 2 O 2 , NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), it has the characteristics of high energy density regardless of the mixing ratio. There is no loss. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.
 リチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)のXの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of X in the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) , which is a lithium-containing manganese composition, is determined from the composition analysis of the lithium-containing manganese composition. be able to.
 リチウム含有マンガン組成物である一般式[LiMnO1-E・[LiMn12のEの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of E in the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E , which is a lithium-containing manganese composition, can be determined from the composition analysis of the lithium-containing manganese composition.
 リチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)のXの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of X in the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is a lithium-containing manganese composition, It can obtain | require from the composition analysis of a thing.
 リチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)のZの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。 The value of Z in the general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) , which is a lithium-containing manganese composition, It can obtain | require from the composition analysis of a thing.
 組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Examples of the method obtained from composition analysis include dielectric coupled plasma emission analysis and atomic absorption analysis.
 リチウム含有マンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X-ray photoelectron spectroscopy)、XAFS測定(X-ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。 The Mn valence of the lithium-containing manganese composition can be obtained by a general transition metal valence evaluation method. For example, a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
 リチウム含有マンガン組成物は、可逆的にリチウムを挿入脱離させるため、層状岩塩型構造とスピネル型構造が共存している2相共存の状態が好ましく、より高い可逆性を発現させるため、これらが同一の結晶固体の中で特定の結晶面や結晶軸を共通にして層状岩塩型構造のドメインとスピネル型構造のドメインが結合した状態の双晶構造がより好ましい。 Since the lithium-containing manganese composition reversibly inserts and desorbs lithium, a two-phase coexistence state in which a layered rock salt type structure and a spinel type structure coexist is preferable. A twin structure in which a domain of a layered rock salt structure and a domain of a spinel structure are combined with a specific crystal plane or crystal axis in common in the same crystal solid is more preferable.
 リチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)、リチウム含有マンガン組成物である一般式[LiMnO1-E・[LiMn12は、Mn原料とLi原料のモル比(Li/Mn比)を、0.8<Li/Mn比<2.0として、Mn原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 General formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) which is a lithium-containing manganese composition, general formula [Li 2 MnO 3 ] 1 which is a lithium-containing manganese composition -E · [Li 4 Mn 5 O 12 ] E is a molar ratio of Mn raw material to Li raw material (Li / Mn ratio) with 0.8 <Li / Mn ratio <2.0. Can be prepared by baking a solid phase, a liquid phase, or a combination of both. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物である一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を0.8<Li/(Mn+M)比<2.0、Mn原料とM原料のモル比[M/(Mn+M)比]を0<M/(Mn+M)比≦1/2で、Mn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 The general formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) which is a lithium-containing manganese composition is (Mn raw material + M raw material) and Li raw material The molar ratio [Li / (Mn + M) ratio] of 0.8 <Li / (Mn + M) ratio <2.0, and the molar ratio [M / (Mn + M) ratio] of Mn raw material to M raw material is 0 <M / (Mn + M). It can be prepared by firing a mixture of a Mn raw material, an M raw material and a Li raw material in a solid phase, a liquid phase, or a combination of both at a ratio ≦ 1/2. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
 リチウム含有マンガン組成物の製造で使用するM原料に制限はないが、用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。 Although there is no restriction | limiting in the M raw material used by manufacture of a lithium containing manganese composition, Although the carbonate, nitrate, oxalate, chloride, oxide, etc. of M element to be used are illustrated, it is not restrict | limited to these.
 本発明のマンガン酸化物混合物が含有する正極材料は、リチウムを含有してそのリチウムが電気化学的酸化により放出することができる材料であれば、特に制限がないが、例えば、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウム・ニッケル・マンガン複合酸化物(LiNi1/2Mn1/2)、リチウム・ニッケル・マンガンスピネル複合酸化物(LiNi1/2・Mn3/2)、固溶体材料、オリビン型LiMnPO、オリビン型LiFePO等が例示される。 The positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation. For example, NCA (lithium / nickel) Cobalt / aluminum composite oxide), NMC (lithium / nickel / manganese / cobalt composite oxide), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium / nickel / manganese composite oxide (LiNi 1) / 2Mn 1/2 O 2 ), lithium / nickel / manganese spinel composite oxide (LiNi 1/2 · Mn 3/2 O 4 ), solid solution material, olivine type LiMnPO 4 , olivine type LiFePO 4 and the like. .
 本発明のマンガン酸化物混合物は、リチウム含有マンガン組成物と正極材料を混合することにより、製造することができる。混合の方法は均一に混合できる方法であれば制限はない。例えば、乳鉢による混合、ミキサーによる混合等が例示される。 The manganese oxide mixture of the present invention can be produced by mixing a lithium-containing manganese composition and a positive electrode material. The mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.
 本発明のマンガン酸化物混合物を混合正極活物質として使用することで、従来では得ることができなかった高容量で低コストのリチウム二次電池を提供することが可能になる。 By using the manganese oxide mixture of the present invention as a mixed positive electrode active material, it is possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.
 混合正極活物質を導電助剤、バインダー等と混合することで、正極とすることができる。 A positive electrode can be obtained by mixing the mixed positive electrode active material with a conductive additive, a binder, and the like.
 正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
 次に、別のマンガン酸化物について説明する。 Next, another manganese oxide will be described.
 本発明のマンガン酸化物は、一般式Li(8/9)-XMn(16/9)-Z4-(X/2)(ここで、0<X≦8/9、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるものである。 The manganese oxide of the present invention has a general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) (where 0 <X ≦ 8/9 , 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)のXの値は、電気化学的酸化によるLiとOの脱離に対応することから、電気化学的酸化の際の電気量からクーロンの法則を用いて算出することができる。 The value of X in the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, is determined by the electrochemical oxidation of Li and O. Can be calculated from the quantity of electricity during electrochemical oxidation using Coulomb's law.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)のZの値は、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Zの組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 The value of Z in the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula Li 8/9 Mn (16/9) -Z M Z O 4 . Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
 また、本発明のマンガン酸化物は、一般式Li(4/3)-XMn(5/3)-Z4-(X/2)(ここで、0<X≦4/3、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるものである。 The manganese oxide of the present invention has a general formula of Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) (where 0 <X ≦ 4/3 , 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.)
 本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)のXの値は、電気化学的酸化によるLiとOの脱離に対応することから、電気化学的酸化の際の電気量からクーロンの法則を用いて算出することができる。 The value of X in the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, is determined by the electrochemical oxidation of Li and O. Can be calculated from the quantity of electricity during electrochemical oxidation using Coulomb's law.
 本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)のZの値は、本発明のリチウム含有マンガン組成物である一般式Li4/3Mn(5/3)-Zの組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 The value of Z in the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, is the lithium-containing manganese composition of the present invention. It can be determined from the composition analysis of the general formula Li 4/3 Mn (5/3) -Z M Z O 4 . Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)、一般式Li(4/3)-XMn(5/3)-Z4-(X/2)のMには、Li、Mn、O以外の元素から選ばれるひとつ以上の元素を用いることができる。Li、Mn、O以外の元素から選ばれるひとつ以上の元素としては、例えば、Ia族元素のH、Na、K、Rb、Cs、Ib族元素のCu、Ag、Au、IIa族元素のBe、Mg、Ca、Sr、Ba、IIb族元素のZn、Cd、IIIa族元素のSc、Y、IIIb族元素のB、Al、Ge、In、Mn以外の遷移金属としては、Mnを除く第一遷移系列元素のTi、V、Cr、Fe、Co、Ni、第二および第三遷移系列元素のZr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt、Au等が例示される。正極としての重量あたりの容量を維持するため、H、Na、K、Mg、Ca、Al、Zn、Ga,Ti、V、Cr、Fe、Co、Niが好ましい。 The general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) , the general formula Li (4/3) -X Mn (5 / 3) One or more elements selected from elements other than Li, Mn, and O can be used for M in —Z M Z O 4- (X / 2) . Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.
 本発明のマンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X-ray photoelectron spectroscopy)、XAFS測定(X-ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。 The Mn valence of the manganese composition of the present invention can be obtained by a general transition metal valence evaluation method. For example, a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
 本発明のマンガン酸化物は、可逆的にリチウムを挿入脱離させるため、スピネル型構造が好ましい。スピネル型構造はLiの移動経路を備えた構造を持つ。そのため、粒子内での組成や構造の不均一性が起き難いと考えられ、充放放電サイクルに伴う容量の低下が抑制されるものと考えられる。 The manganese oxide of the present invention preferably has a spinel structure in order to reversibly insert and desorb lithium. The spinel structure has a structure having a Li movement path. Therefore, it is considered that the composition and structure non-uniformity within the particles hardly occur, and it is considered that the decrease in capacity accompanying the charge / discharge cycle is suppressed.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)(ここで、0<X≦8/9、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、一般式Li8/9Mn(16/9)-Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 The general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 <X ≦ 8/9 , 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) is represented by the general formula Li 8/9 Mn (16/9) -Z M Z O 4 ( Here, 0 ≦ Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O). Can be obtained.
 また、本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)(ここで、0<X≦4/3、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、一般式Li4/3Mn(5/3-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することで得られる。 Further, the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 <X ≦ 4/3 , 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) is represented by the general formula Li 4/3 Mn (5/3 ) —Z M Z O 4 (where 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O). Obtained by oxidation.
 電気化学的に酸化するのは、リチウム含有マンガン組成物からLiOを取り除くためである。電気化学的に酸化する以外の方法では、Mnの価数を+4価のままでLiとOを同時に取り除くことはできない。電気化学的にLiとOを同時に取り除くことで、本発明のマンガン酸化物はリチウム含有マンガン組成物のスピネル型構造を維持できる。 The reason for electrochemical oxidation is to remove Li 2 O from the lithium-containing manganese composition. By methods other than electrochemical oxidation, Li and O cannot be removed at the same time while the valence of Mn remains +4. By simultaneously removing Li and O electrochemically, the manganese oxide of the present invention can maintain the spinel structure of the lithium-containing manganese composition.
 電気化学的に酸化する方法としては、例えば、電池を作製して電池内で充電する方法や酸化剤を使用する方法等が例示される。 Examples of the electrochemical oxidation method include a method of producing a battery and charging in the battery, a method of using an oxidizing agent, and the like.
 電池を作製して電池内で充電する方法としては、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)、又は一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)を正極材料に用いて、リチウム電池を作製して電池内で充電する方法が例示される。例えば、正極に本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z、又は一般式Li4/3Mn(5/3)-Zを使用したリチウム電池を構成して、定電流、定電圧、または定電流と定電圧を組み合わせて充電する方法が例示される。リチウム電池の構成としては、そのままリチウム二次電池として使用できる構成が好ましい。 As a method for producing a battery and charging in the battery, a general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 <Z ≦ 8/9, where M is one or more elements selected from elements other than Li, Mn, and O), or the general formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6, and M is one or more elements selected from elements other than Li, Mn, and O.) is used as a positive electrode material, and a lithium battery is manufactured and charged in the battery A method is illustrated. For example, for the positive electrode, the general formula Li 8/9 Mn (16/9) -Z M Z O 4 or the general formula Li 4/3 Mn (5/3) -Z M Z which is the lithium-containing manganese composition of the present invention is used. Examples include a method in which a lithium battery using O 4 is configured and charged with a constant current, a constant voltage, or a combination of a constant current and a constant voltage. As a structure of a lithium battery, the structure which can be used as a lithium secondary battery as it is is preferable.
 酸化剤を使用する方法としては、例えば、溶媒のアセトニトリルに酸化剤のNOBFを溶解した溶液中で、本発明のリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z、又は一般式Li4/3Mn(5/3)-Zを撹拌する方法が例示される。酸化剤のNOBFの酸化電位はリチウム基準で5.1Vにあり、Mnの価数を+4価に保った状態でLiとOを取り除くことが可能である。 As a method of using an oxidizing agent, for example, in a solution in which NO 2 BF 4 as an oxidizing agent is dissolved in acetonitrile as a solvent, the general formula Li 8/9 Mn (16/9 ) that is the lithium-containing manganese composition of the present invention is used. ) -Z M Z O 4, or the general formula Li 4/3 Mn (5/3) -Z M Z O 4 method of stirring and the like. The oxidation potential of the oxidant NO 2 BF 4 is 5.1 V on the basis of lithium, and Li and O can be removed while maintaining the valence of Mn at +4.
 そのまま電池として使用できることから、電気化学的に酸化する方法は、電池を作製して電池内で充電する方法が好ましい。 Since it can be used as a battery as it is, the method of electrochemical oxidation is preferably a method of producing a battery and charging it in the battery.
 スピネル型構造を有するリチウム含有マンガン組成物を電気化学的に酸化することで、スピネル構造を有する本発明のマンガン酸化物が得られる。 The manganese oxide of the present invention having a spinel structure can be obtained by electrochemically oxidizing a lithium-containing manganese composition having a spinel structure.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)(ここで、0<X≦8/9、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物の一般式Li8/9Mn(16/9)-Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(□1/9Li8/98a[□2/9Mn(16/9)-Z16d(O32e(ここで□は空のサイトを表す。)と標記され、LiMnの8aサイトLiの1/9と16dサイトMnの2/9が空のスピネル型構造を持つ。 The general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, where 0 <X ≦ 8/9 , 0 < Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn and O. General formula Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is (□ 1/9 Li 8/9 ) 8a [□ 2/9 Mn (16/9) -Z M Z ] 16d (O 4 ) 32e (where □ represents an empty site), and LiMn 2 O 4 8a 1/9 of the site Li and 2/9 of the 16d site Mn have an empty spinel structure.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)の製造で使用するリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Zの組成は、組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Lithium-containing manganese composition used in the production of the general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention The composition of Li 8/9 Mn (16/9) -Z M Z O 4 can be determined from composition analysis. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
 また、本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)(ここで、0<X≦4/3、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物の一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、LiMnのMnの1/3をLiで置き換えた(Li)8a[Li1/3Mn5/316d(O32eと標記されるスピネル型結晶構造を持つ。 Further, the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 <X ≦ 4/3 , 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) General formula Li 4/3 Mn ( 5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn and O) is LiMn 2 O (Li) 8a [Li 1/3 Mn 5/3 ] 16d (O 4 ) 32e, in which 1/3 of 4 Mn is replaced by Li, has a spinel crystal structure.
 本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)の製造で使用するリチウム含有マンガン組成物である一般式Li4/3Mn(5/3)-Zの組成は、組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 The lithium-containing manganese composition used in the production of the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention The composition of Li 4/3 Mn (5/3) -Z M Z O 4 can be determined from composition analysis. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
 本発明のマンガン酸化物である一般式Li(8/9)-XMn(16/9)-Z4-(X/2)(ここで、0<X≦8/9、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を1/2、Mn原料とM原料のモル比[M/(Mn+M)比]を0≦M/(Mn+M)比≦1/2にして、Mn原料とLi原料、又はMn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 The general formula Li (8/9) -X Mn (16/9) -Z M Z O 4- (X / 2) , which is the manganese oxide of the present invention, where 0 <X ≦ 8/9 , 0 < Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) General formula Li 8/9 Mn (16 / 9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O) is (Mn raw material + M The molar ratio of the raw material) to the Li raw material [Li / (Mn + M) ratio] is 1/2, and the molar ratio of the Mn raw material to the M raw material [M / (Mn + M) ratio] is 0 ≦ M / (Mn + M) ratio ≦ 1/2. Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. It can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 また、本発明のマンガン酸化物である一般式Li(4/3)-XMn(5/3)-Z4-(X/2)(ここで、0<X≦4/3、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)の製造で使用するリチウム含有マンガン組成物の一般式Li4/3Mn(5/3)-Zは、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を4/5、Mn原料とM原料のモル比[M/(Mn+M)比]を0≦M/(Mn+M)比≦1/2にして、Mn原料とLi原料、又はMn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 Further, the general formula Li (4/3) -X Mn (5/3) -Z M Z O 4- (X / 2) which is the manganese oxide of the present invention (where 0 <X ≦ 4/3 , 0 ≦ Z ≦ 5/6 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O.) General formula Li 4/3 Mn ( 5/3) -Z M Z O 4 has a molar ratio (Li / (Mn + M) ratio) of (Mn raw material + M raw material) to Li raw material of 4/5, and a molar ratio of Mn raw material to M raw material [M / (Mn + M ) Ratio] is 0 ≦ M / (Mn + M) ratio ≦ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. Can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition. Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
 リチウム含有マンガン組成物の製造で使用するM原料に制限はないが、用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。 Although there is no restriction | limiting in the M raw material used by manufacture of a lithium containing manganese composition, Although the carbonate, nitrate, oxalate, chloride, oxide, etc. of M element to be used are illustrated, it is not restrict | limited to these.
 本発明のマンガン酸化物をリチウム二次電池の正極に使用することで、従来では得ることができなかった高容量のリチウム二次電池を構成することが可能になる。 </ RTI> By using the manganese oxide of the present invention for the positive electrode of a lithium secondary battery, it becomes possible to constitute a high-capacity lithium secondary battery that could not be obtained conventionally.
 正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like. Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
 次に、別のマンガン酸化物混合物、混合正極活物質について説明する。 Next, another manganese oxide mixture and mixed cathode active material will be described.
 本発明のマンガン酸化物混合物は、一般式Li8/9Mn(16/9)-Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 The manganese oxide mixture of the present invention has the general formula Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is other than Li, Mn, and O). One or more elements selected from the elements)) and a lithium-containing manganese composition and a positive electrode material.
 また、本発明のマンガン酸化物混合物は、一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物と正極材料を含有するものである。 Further, the manganese oxide mixture of the present invention has the general formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6, where M is Li, Mn, O One or more elements selected from the other elements.) And a positive electrode material.
 本発明のマンガン酸化物混合物が含有するリチウム含有マンガン組成物は、LiMnに比べて高容量であり、その容量は130~170mAh/gであるLiCoO、LiNi1/2・Mn1/2、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)と比較しても遜色なく、混合割合によらず高エネルギー密度の特徴を損なうことはない。このため、混合正極活物質において、高エネルギー密度と低コストが両立可能になる。 The lithium-containing manganese composition contained in the manganese oxide mixture of the present invention has a higher capacity than LiMn 2 O 4 , and its capacity is 130 to 170 mAh / g. LiCoO 2 , LiNi 1/2 · Mn 1 / Compared with 2 O 2 , NCA (lithium / nickel / cobalt / aluminum composite oxide) and NMC (lithium / nickel / manganese / cobalt composite oxide), it has the characteristics of high energy density regardless of the mixing ratio. There is no loss. For this reason, in the mixed positive electrode active material, both high energy density and low cost can be achieved.
 リチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)、一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物のZの値は、当該リチウム含有マンガン組成物の組成分析から求めることができる。組成分析から求める方法としては、例えば、誘電結合プラズマ発光分析、原子吸光分析等が例示される。 Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition One or more elements selected.), General formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6, where M is Li, Mn, O The value of Z of the lithium-containing manganese composition represented by the above can be determined from the composition analysis of the lithium-containing manganese composition. Examples of the method obtained from the composition analysis include dielectric coupling plasma emission analysis and atomic absorption analysis.
 リチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z(ここで、0≦Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)、一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物のMには、Li、Mn、O以外の元素から選ばれるひとつ以上の元素を用いることができる。Li、Mn、O以外の元素から選ばれるひとつ以上の元素としては、例えば、Ia族元素のH、Na、K、Rb、Cs、Ib族元素のCu、Ag、Au、IIa族元素のBe、Mg、Ca、Sr、Ba、IIb族元素のZn、Cd、IIIa族元素のSc、Y、IIIb族元素のB、Al、Ge、In、Mn以外の遷移金属としては、Mnを除く第一遷移系列元素のTi、V、Cr、Fe、Co、Ni、第二および第三遷移系列元素のZr、Nb、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt、Au等が例示される。正極としての重量あたりの容量を維持するため、H、Na、K、Mg、Ca、Al、Zn、Ga,Ti、V、Cr、Fe、Co、Niが好ましい。 Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 ≦ Z ≦ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition One or more elements selected.), General formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6, where M is Li, Mn, O One or more elements selected from elements other than Li, Mn, and O can be used for M in the lithium-containing manganese composition represented by: Examples of one or more elements selected from elements other than Li, Mn, and O include, for example, H, Na, K, Rb, Cs, Ib group element Cu, Ag, Au, and IIa group element Be, Mg, Ca, Sr, Ba, IIb group element Zn, Cd, IIIa group element Sc, Y, IIIb group element B, Al, Ge, In, Mn transition metals other than Mn, the first transition except Mn Series elements Ti, V, Cr, Fe, Co, Ni, second and third transition series elements Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, Au, etc. are illustrated. In order to maintain the capacity per weight as the positive electrode, H, Na, K, Mg, Ca, Al, Zn, Ga, Ti, V, Cr, Fe, Co, and Ni are preferable.
 本発明のリチウム含有マンガン組成物のMn原子価は、一般的な遷移金属の原子価評価手法で求めることができる。例えば、XPS測定(X-ray photoelectron spectroscopy)、XAFS測定(X-ray adsorption fine structure)、PES測定(Photoelectron spectroscopy)で得られる各スペクトルから見積もる方法、JIS(日本工業規格)に記載のMnの定量分析手法(G 1311‐1)とJISに記載の二酸化マンガン分析手法(K 1467)を組み合わせた方法等が例示されるが、これらに制限されない。 The Mn valence of the lithium-containing manganese composition of the present invention can be determined by a general transition metal valence evaluation method. For example, a method of estimating from each spectrum obtained by XPS measurement (X-ray photoelectron spectroscopy), XAFS measurement (X-ray adsorption fine structure), PES measurement (Photoelectron spectroscopy), described in JIS (Japanese Industrial Standard) Although the method etc. which combined the analysis method (G1311-1) and the manganese dioxide analysis method (K1467) as described in JIS are illustrated, it is not restricted to these.
 本発明のマンガン酸化物は、可逆的にリチウムを挿入脱離させるため、スピネル型構造が好ましい。スピネル型構造はLiの移動経路を備えた構造を持つ。そのため、粒子内での組成や構造の不均一性が起き難いと考えられ、充放放電サイクルに伴う容量の低下が抑制されるものと考えられる。 The manganese oxide of the present invention preferably has a spinel structure in order to reversibly insert and desorb lithium. The spinel structure has a structure having a Li movement path. Therefore, it is considered that the composition and structure non-uniformity within the particles hardly occur, and it is considered that the decrease in capacity accompanying the charge / discharge cycle is suppressed.
 リチウム含有マンガン組成物である一般式Li8/9Mn(16/9)-Z(ここで、0<Z≦8/9を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を1/2、Mn原料とM原料のモル比[M/(Mn+M)比]を0≦M/(Mn+M)比≦1/2にして、Mn原料とLi原料、又はMn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 Li 8/9 Mn (16/9) -Z M Z O 4 (where 0 <Z ≦ 8/9 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition Is one or more elements selected.) Is (Mn raw material + M raw material) and Li raw material molar ratio [Li / (Mn + M) ratio] 1/2, Mn raw material and M raw material molar ratio [M / (Mn + M ) Ratio] is 0 ≦ M / (Mn + M) ratio ≦ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. Can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物である一般式Li4/3Mn(5/3)-Z(ここで、0≦Z≦5/6を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)は、(Mn原料+M原料)とLi原料のモル比[Li/(Mn+M)比]を4/5、Mn原料とM原料のモル比[M/(Mn+M)比]を0≦M/(Mn+M)比≦1/2にして、Mn原料とLi原料、又はMn原料とM原料とLi原料とを固相、液相、または両者を組み合わせて混合したものを焼成することで調製することができる。Mnの価数を+4価とするために、大気流通下や大気以上の酸素含有量の雰囲気下で、300~800℃で焼成することが好ましい。焼成時の昇温および降温条件としては、一定速度での昇温や降温、段階的な昇温や降温が例示されるが、これらに制限されない。 General formula Li 4/3 Mn (5/3) -Z M Z O 4 (where 0 ≦ Z ≦ 5/6 is satisfied, and M is an element other than Li, Mn, and O, which is a lithium-containing manganese composition Is one or more elements selected.) Is a molar ratio of [Mn raw material + M raw material] to Li raw material [Li / (Mn + M) ratio] of 4/5, and a molar ratio of Mn raw material to M raw material [M / (Mn + M). ) Ratio] is 0 ≦ M / (Mn + M) ratio ≦ 1/2, and Mn raw material and Li raw material, or Mn raw material and M raw material and Li raw material are mixed in solid phase, liquid phase, or a combination of both. Can be prepared by firing. In order to make the valence of Mn +4, it is preferably fired at 300 to 800 ° C. in an air circulation or an atmosphere having an oxygen content higher than the air. Examples of the temperature increase and temperature decrease conditions during firing include, but are not limited to, temperature increase and decrease at a constant rate and stepwise temperature increase and decrease.
 リチウム含有マンガン組成物の製造で使用するMn原料に特に制限はないが、層状岩塩型構造とスピネル型構造を含有するためには、+2価のマンガンを含むマンガン原料および/又は単斜晶マンガン原料を使用することが好ましい。+2価のマンガンを含むマンガン原料としては、例えば、硫酸マンガン、炭酸マンガン、硝酸マンガン、塩化マンガン、四三酸化マンガン(Mn)、MnO、Mn(OH)、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。単斜晶マンガン原料としては、例えば、Birnessite、Hollandite、Manganite、Romanechite、Todorokite、これらに類似の構造を持つマンガン酸化物、これらのマンガン原料の酸処理物等が例示されるが、これらに制限されない。リチウム含有マンガン組成物の製造で使用するLi原料に特に制限はないが、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、ヨウ化リチウム、蓚酸リチウム、硫酸リチウム、酸化リチウム等が例示されるが、これらに制限されない。 There is no particular limitation on the Mn raw material used in the production of the lithium-containing manganese composition, but in order to contain a layered rock salt type structure and a spinel type structure, a manganese raw material containing + 2-valent manganese and / or a monoclinic manganese raw material Is preferably used. Examples of manganese raw materials containing divalent manganese include manganese sulfate, manganese carbonate, manganese nitrate, manganese chloride, trimanganese tetraoxide (Mn 3 O 4 ), MnO, Mn (OH) 2 , and acids of these manganese raw materials Although a processed material etc. are illustrated, it is not restrict | limited to these. Examples of the monoclinic manganese raw material include, but are not limited to, birnessite, hollandite, manganite, romanite, todokeite, manganese oxides having similar structures to these, and acid-treated products of these manganese raw materials. . The Li raw material used in the production of the lithium-containing manganese composition is not particularly limited, and examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride, lithium iodide, lithium oxalate, lithium sulfate, and lithium oxide. However, it is not limited to these.
 リチウム含有マンガン組成物の製造で使用するM原料に制限はないが、用いるM元素の炭酸塩、硝酸塩、蓚酸塩、塩化物、酸化物等が例示されるが、これらに制限されない。 Although there is no restriction | limiting in the M raw material used by manufacture of a lithium containing manganese composition, Although the carbonate, nitrate, oxalate, chloride, oxide, etc. of M element to be used are illustrated, it is not restrict | limited to these.
 本発明のマンガン酸化物混合物が含有する正極材料は、リチウムを含有してそのリチウムが電気化学的酸化により放出することができる材料であれば、特に制限がないが、例えば、NCA(リチウム・ニッケル・コバルト・アルミニウム複合酸化物)、NMC(リチウム・ニッケル・マンガン・コバルト複合酸化物)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウム・ニッケル・マンガン複合酸化物(LiNi1/2Mn1/2)、リチウム・ニッケル・マンガンスピネル複合酸化物(LiNi1/2・Mn3/2)、固溶体材料、オリビン型LiMnPO、オリビン型LiFePO等が例示される。 The positive electrode material contained in the manganese oxide mixture of the present invention is not particularly limited as long as it contains lithium and the lithium can be released by electrochemical oxidation. For example, NCA (lithium / nickel) Cobalt / aluminum composite oxide), NMC (lithium / nickel / manganese / cobalt composite oxide), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium / nickel / manganese composite oxide (LiNi 1) / 2Mn 1/2 O 2 ), lithium / nickel / manganese spinel composite oxide (LiNi 1/2 · Mn 3/2 O 4 ), solid solution material, olivine type LiMnPO 4 , olivine type LiFePO 4 and the like. .
 本発明のマンガン酸化物混合物は、リチウム含有マンガン組成物と正極材料を混合することにより、製造することができる。混合の方法は均一に混合できる方法であれば制限はない。例えば、乳鉢による混合、ミキサーによる混合等が例示される。 The manganese oxide mixture of the present invention can be produced by mixing a lithium-containing manganese composition and a positive electrode material. The mixing method is not limited as long as it can be uniformly mixed. For example, mixing with a mortar, mixing with a mixer, etc. are illustrated.
 本発明のマンガン酸化物混合物を混合正極活物質として使用することで、従来では得ることができなかった高容量で低コストのリチウム二次電池を提供することが可能になる。 By using the manganese oxide mixture of the present invention as a mixed positive electrode active material, it is possible to provide a high-capacity and low-cost lithium secondary battery that could not be obtained conventionally.
 混合正極活物質を導電助剤、バインダー等と混合することで、正極とすることができる。 A positive electrode can be obtained by mixing the mixed positive electrode active material with a conductive additive, a binder, and the like.
 正極以外のリチウム二次電池の構成としては、特に制限はないが、負極にはLiを吸蔵放出する材料、例えば、炭素系材料、酸化錫系材料、LiTi12、SiO、Liと合金を形成する材料等が例示され、Liと合金を形成する材料としては、例えば、シリコン系材料やアルミニウム系材料等が例示される。電解質には、例えば、有機溶媒にLi塩や各種添加剤を溶解した有機電解液や、Liイオン伝導性の固体電解質、これらを組み合わせたもの等が例示される。 The configuration of the lithium secondary battery other than the positive electrode is not particularly limited, but the negative electrode is a material that occludes and releases Li, for example, a carbon-based material, a tin oxide-based material, Li 4 Ti 5 O 12 , SiO, Li, and the like. Examples of the material that forms an alloy include Li-based alloys, and examples of the material that forms an alloy with Li include silicon-based materials and aluminum-based materials. Examples of the electrolyte include an organic electrolytic solution in which a Li salt and various additives are dissolved in an organic solvent, a Li ion conductive solid electrolyte, and a combination thereof.
 次に、本発明を具体的な実施例で説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be described with specific examples, but the present invention is not limited to these examples.
 <電池の作製>
 得られたリチウム含有マンガン組成物と導電性バインダー(商品名:TAB-2,宝泉株式会社製)、又は得られたマンガン酸化物混合物(混合正極活物質)と導電性バインダー(商品名:TAB-2,宝泉株式会社製)を重量比2:1でメノウ乳鉢を使用して混合を行い、13mmφのSUSメッシュ(SUS316)に1ton/cmで一軸プレスしてペレット状にした後に、150℃で2時間、減圧乾燥して正極とした。
<Production of battery>
Obtained lithium-containing manganese composition and conductive binder (trade name: TAB-2, manufactured by Hosen Co., Ltd.), or obtained manganese oxide mixture (mixed positive electrode active material) and conductive binder (trade name: TAB) -2, manufactured by Hosen Co., Ltd.) using an agate mortar at a weight ratio of 2: 1, uniaxially pressed into a 13 mmφ SUS mesh (SUS316) at 1 ton / cm 2 and then pelletized. It dried under reduced pressure at 2 degreeC for 2 hours, and was set as the positive electrode.
 負極に金属リチウムを、エチレンカーボネートとジメチルカーボネートの体積比1:2の溶媒にLiPFを1mol/dm溶解したものを電解液に、セパレータにポリエチレンシート(商品名:セルガード,ポリポア株式会社製)を使用して2032型コインセルを作製した。 Metallic lithium for the negative electrode, 1 mol / dm 3 of LiPF 6 dissolved in a 1: 2 volume ratio solvent of ethylene carbonate and dimethyl carbonate in the electrolyte, polyethylene sheet in the separator (trade name: Celgard, manufactured by Polypore Corporation) A 2032 type coin cell was prepared using
 <充放電試験>
 1)実施例1~実施例54、比較例11、比較例19の試験条件
 作製したコインセルを用いて、室温条件下(22~27℃)、10mA/gの定電流でセル電圧が4.8Vと2.0Vの間で、最初に充電を行い、次に放電を行い、以後充電・放電を繰り返し、1サイクル目の充電容量(mAh/g)、1サイクル目の放電容量(mAh/g)、10サイクル目の放電容量(mAh/g)を測定した。また、50サイクル目の放電容量(mAh/g)を測定し、容量維持率(1サイクル目の放電容量に対する10サイクル目の放電容量の割合(%))を求めた。
<Charge / discharge test>
1) Test conditions of Examples 1 to 54, Comparative Example 11 and Comparative Example 19 Using the produced coin cells, the cell voltage was 4.8 V at room temperature (22 to 27 ° C.) and a constant current of 10 mA / g. Between 1 and 2.0 V, charge first, then discharge, and then repeat charge and discharge, charge capacity at the first cycle (mAh / g), discharge capacity at the first cycle (mAh / g) The discharge capacity (mAh / g) at the 10th cycle was measured. Further, the discharge capacity (mAh / g) at the 50th cycle was measured, and the capacity retention rate (ratio (%) of the discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle) was determined.
 2)比較例8~比較例10、比較例12~比較例18、比較例20~23の試験条件
 作製したコインセルを用いて、室温条件下(22~27℃)、10mA/gの定電流でセル電圧が2.0Vと3.3Vの間で、最初に放電を行い、次に充電を行い、以後放電・充電を繰り返して、1サイクル目の放電容量(mAh/g)、1サイクル目の充電容量(mAh/g)、10サイクル目の放電容量(mAh/g)を測定し、容量維持率(1サイクル目の放電容量に対する10サイクル目の放電容量の割合(%))を求めた。
2) Test conditions of Comparative Examples 8 to 10, Comparative Examples 12 to 18, and Comparative Examples 20 to 23 Using the produced coin cells, room temperature conditions (22 to 27 ° C.) at a constant current of 10 mA / g When the cell voltage is between 2.0 V and 3.3 V, discharge is performed first, then charging is performed, and then the discharge and charging are repeated, so that the discharge capacity (mAh / g) in the first cycle and the first cycle The charge capacity (mAh / g) and the discharge capacity (mAh / g) at the 10th cycle were measured, and the capacity retention ratio (ratio (%) of the discharge capacity at the 10th cycle to the discharge capacity at the 1st cycle) was determined.
 <組成分析>
 調製したリチウム含有マンガン組成物のリチウムとマンガンの組成、又は調製したリチウム含有マンガン組成物のリチウムとマンガンとM(リチウム、マンガン、酸素以外の元素から選ばれるひとつ以上の元素)の組成は、誘電結合プラズマ発光分析装置(商品名:ICP-AES,株式会社パーキンエルマージャパン製)で分析した。
<Composition analysis>
The composition of lithium and manganese in the prepared lithium-containing manganese composition, or the composition of lithium, manganese and M (one or more elements selected from elements other than lithium, manganese and oxygen) in the prepared lithium-containing manganese composition is dielectric. Analysis was performed with a coupled plasma emission analyzer (trade name: ICP-AES, manufactured by PerkinElmer Japan Co., Ltd.).
 <結晶性の評価>
 調製したリチウム含有マンガン組成物の結晶構造の同定を粉末X線回折測定装置(商品名:MXP3,マックサイエンス製)で行った。
<Evaluation of crystallinity>
The crystal structure of the prepared lithium-containing manganese composition was identified with a powder X-ray diffraction measurement device (trade name: MXP3, manufactured by Mac Science).
 計測条件は、以下の通りとした。 The measurement conditions were as follows.
  ターゲット:Cu
  出力:1.2kW(30mA-40kV)
  ステップスキャン:0.04°(2θ/θ)
  計測時間:3秒
 <充放電試験前後の結晶性の変化>
 充放電試験後のコインセルを解体して正極を取り出し、マンガン酸化物の結晶性の評価を粉末X線回折測定装置(商品名:MXP3,マックサイエンス製)で行った。
Target: Cu
Output: 1.2kW (30mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 3 seconds <Change in crystallinity before and after the charge / discharge test>
The coin cell after the charge / discharge test was disassembled, the positive electrode was taken out, and the crystallinity of the manganese oxide was evaluated with a powder X-ray diffractometer (trade name: MXP3, manufactured by Mac Science).
 計測条件は、以下の通りとした。 The measurement conditions were as follows.
  ターゲット:Cu
  出力:1.2kW(30mA-40kV)
  ステップスキャン:0.04°(2θ/θ)
  計測時間:3秒
 実施例1
 炭酸マンガンの0.5水和物(特級試薬)12.35gと水酸化リチウムの1水和物(特級試薬)6.66g(Li/Mn比=11/7)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Target: Cu
Output: 1.2kW (30mA-40kV)
Step scan: 0.04 ° (2θ / θ)
Measurement time: 3 seconds Example 1
Manganese carbonate 0.5 hydrate (special grade reagent) 12.35 g and lithium hydroxide monohydrate (special grade reagent) 6.66 g (Li / Mn ratio = 11/7) using a mortar 30 After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は11/7であった。この値から、Xの値は0.36で、Li1.05Mn2/31.86のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.10で、[LiMnO0.90・[LiMn120.10のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 · [Li 4 Mn 5 O 12 ] 0.10 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1サイクル目の充電容量から求めたYの値は0.66で、Li0.56Mn2/31.61のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.66, and it was found that a manganese oxide of Li 0.56 Mn 2/3 O 1.61 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例2
 調製温度を375℃とした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した。
Example 2
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that the preparation temperature was 375 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は11/7であった。この値から、Xの値は0.36で、Li1.05Mn2/31.86のリチウム含有マンガン組成物が得られたことが分かった。また、Eの値は0.10で、[LiMnO0.90・[LiMn120.10のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. Moreover, the value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 · [Li 4 Mn 5 O 12 ] 0.10 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.60で、Li0.45Mn2/31.56のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.60, and it was found that a manganese oxide of Li 0.45 Mn 2/3 O 1.56 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例3
 水酸化リチウムの1水和物(特級試薬)を7.42g、調製温度を600℃とした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=7/4)。
Example 3
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that 7.42 g of lithium hydroxide monohydrate (special grade reagent) and the preparation temperature were 600 ° C. (Li / Mn ratio = 7/4). ).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は7/4であった。この値から、Xの値は0.21で、Li1.17Mn2/31.92のリチウム含有マンガン組成物が得られたことが分かった。また、Eの値は0.05で、[LiMnO0.95・[LiMn120.05のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 7/4. From this value, it was found that the value of X was 0.21, and a lithium-containing manganese composition of Li 1.17 Mn 2/3 O 1.92 was obtained. The value of E is 0.05, it was found that a lithium-containing manganese composition [Li 2 MnO 3] 0.95 · [Li 4 Mn 5 O 12] 0.05.
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.61で、Li0.39Mn2/31.53のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.61, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例4
 調製温度を550℃とした以外は実施例2と同様にしてリチウム含有マンガン組成物を調製した。
Example 4
A lithium-containing manganese composition was prepared in the same manner as in Example 2 except that the preparation temperature was 550 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は11/7であった。この値から、Xの値は0.36で、Li1.05Mn2/31.86のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.10で、[LiMnO0.90・[LiMn120.10のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 · [Li 4 Mn 5 O 12 ] 0.10 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.50で、Li0.55Mn2/31.61のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.50, and it was found that a manganese oxide of Li 0.55 Mn 2/3 O 1.61 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例5
 水酸化リチウムの1水和物(特級試薬)を5.65g、調製温度を375℃とした以外は実施例3と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=4/3)。
Example 5
A lithium-containing manganese composition was prepared in the same manner as in Example 3 except that 5.65 g of lithium hydroxide monohydrate (special grade reagent) and the preparation temperature were 375 ° C. (Li / Mn ratio = 4/3). ).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は4/3であった。この値から、Xの値は0.56で、Li0.89Mn2/31.78のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.20で、[LiMnO0.80・[LiMn120.20のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained. The value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 · [Li 4 Mn 5 O 12 ] 0.20 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.53で、Li0.36Mn2/31.51のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.53, and it was found that a manganese oxide of Li 0.36 Mn 2/3 O 1.51 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例6
 調製温度を400℃とした以外は実施例5と同様にしてリチウム含有マンガン組成物を調製した。
Example 6
A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 400 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は4/3であった。この値から、Xの値は0.56で、Li0.89Mn2/31.78のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.20で、[LiMnO0.80・[LiMn120.20のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained. The value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 · [Li 4 Mn 5 O 12 ] 0.20 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.50で、Li0.39Mn2/31.53のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.50, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例7
 調製温度を450℃とした以外は実施例5と同様にしてリチウム含有マンガン組成物を調製した。
Example 7
A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 450 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は4/3であった。この値から、Xの値は0.56で、Li0.89Mn2/31.78のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.20で、[LiMnO0.80・[LiMn120.20のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained. The value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 · [Li 4 Mn 5 O 12 ] 0.20 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.41で、Li0.48Mn2/31.57のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.41, and it was found that a manganese oxide of Li 0.48 Mn 2/3 O 1.57 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例8
 調製温度を500℃とした以外は実施例5と同様にしてリチウム含有マンガン組成物を調製した。
Example 8
A lithium-containing manganese composition was prepared in the same manner as in Example 5 except that the preparation temperature was 500 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は4/3であった。この値から、Xの値は0.56で、Li0.89Mn2/31.78のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.20で、[LiMnO0.80・[LiMn120.20のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 4/3. From this value, it was found that the value of X was 0.56, and a lithium-containing manganese composition of Li 0.89 Mn 2/3 O 1.78 was obtained. The value of E was 0.20, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.80 · [Li 4 Mn 5 O 12 ] 0.20 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3より容量維持率が高いことが分かった。 The results of the charge / discharge test are shown in Table 1. From the result, it was found that the capacity retention rate was higher than that of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.33で、Li0.56Mn2/31.61のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.33, and it was found that a manganese oxide of Li 0.56 Mn 2/3 O 1.61 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例9
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)を10.0gと水酸化リチウムの1水和物(特級試薬)を4.66gとした以外は実施例7と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=1/1)。
Example 9
10. Manganese dioxide (Mn content: 60.3 wt%) obtained by treating sulfuric acid with trimanganese tetroxide <chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) A lithium-containing manganese composition was prepared in the same manner as in Example 7 except that 4.66 g of monohydrate (special grade reagent) of 0 g and lithium hydroxide was used (Li / Mn ratio = 1/1).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は1/1であった。この値から、Xの値は0.83で、Li0.67Mn2/31.67のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.50で、[LiMnO0.50・[LiMn120.50のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained. The value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 · [Li 4 Mn 5 O 12 ] 0.50 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 The results of the charge / discharge test are shown in Table 1. From the results, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.59で、Li0.08Mn2/31.38のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.59, and it was found that a manganese oxide of Li 0.08 Mn 2/3 O 1.38 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例10
 水酸化リチウムの1水和物(特級試薬)を5.10gとした以外は実施例9と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=13/11)。
Example 10
A lithium-containing manganese composition was prepared in the same manner as in Example 9 except that 5.10 g of lithium hydroxide monohydrate (special grade reagent) was used (Li / Mn ratio = 13/11).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は13/11であった。この値から、Xの値は0.68で、Li0.79Mn2/31.73のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.30で、[LiMnO0.70・[LiMn120.30のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 13/11. From this value, it was found that the value of X was 0.68, and a lithium-containing manganese composition of Li 0.79 Mn 2/3 O 1.73 was obtained. The value of E was 0.30, and it was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.70 · [Li 4 Mn 5 O 12 ] 0.30 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 The results of the charge / discharge test are shown in Table 1. From the results, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.56で、Li0.23Mn2/31.45のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.56, and it was found that a manganese oxide of Li 0.23 Mn 2/3 O 1.45 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例11
 焼成温度を500℃とした以外は実施例9と同様にしてリチウム含有マンガン組成物を調製した。
Example 11
A lithium-containing manganese composition was prepared in the same manner as in Example 9 except that the firing temperature was 500 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は1/1であった。この値から、Xの値は0.83で、Li0.67Mn2/31.67のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.50で、[LiMnO0.50・[LiMn120.50のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained. The value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 · [Li 4 Mn 5 O 12 ] 0.50 .
 充放電試験の結果を表1に示す。その結果から、比較例のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 The results of the charge / discharge test are shown in Table 1. From the results, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of the comparative example.
 1サイクル目の充電容量から求めたYの値は0.57で、Li0.10Mn2/31.39のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.57, and it was found that a manganese oxide of Li 0.10 Mn 2/3 O 1.39 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 比較例1
 水酸化リチウムの1水和物(特級試薬)を7.81gとした以外は実施例1と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=2/1)。
Comparative Example 1
A lithium-containing manganese composition was prepared in the same manner as in Example 1 except that 7.81 g of lithium hydroxide monohydrate (special grade reagent) was used (Li / Mn ratio = 2/1).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造のみを有しており、Li/Mn比は2/1であった。この値から、Xの値、Eの値とも0で、Li4/3Mn2/3のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis of the prepared sample and the evaluation of crystallinity, the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained with both the value of X and the value of E being 0.
 充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物に比べて容量維持率が低いことが分かった。 Table 1 shows the results of the charge / discharge test. From the result, it was found that the capacity retention rate was lower than that of the manganese oxide of the example.
 1サイクル目の充電容量から求めたYの値は0.94で、Li0.39Mn2/31.53のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.94, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物に比べて、マンガン酸化物の結晶性が低下していることが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the manganese oxide was lower than that of the lithium-containing manganese composition.
 比較例2
 水酸化リチウムの1水和物(特級試薬)を7.81gとした以外は実施例3と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=2/1)。
Comparative Example 2
A lithium-containing manganese composition was prepared in the same manner as in Example 3 except that 7.81 g of lithium hydroxide monohydrate (special grade reagent) was used (Li / Mn ratio = 2/1).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造のみを有しており、Li/Mn比は2/1であった。この値から、Xの値、Eの値とも0で、Li4/3Mn2/3のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis of the prepared sample and the evaluation of crystallinity, the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained with both the value of X and the value of E being 0.
 充放電試験の結果を表1に示す。その結果から、実施例のマンガン酸化物に比べて容量維持率が低いことが分かった。 Table 1 shows the results of the charge / discharge test. From the result, it was found that the capacity retention rate was lower than that of the manganese oxide of the example.
 1サイクル目の充電容量から求めたYの値は0.97で、Li0.36Mn2/31.52のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.97, and it was found that a manganese oxide of Li 0.36 Mn 2/3 O 1.52 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物に比べて、マンガン酸化物の結晶性が低下していることが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the manganese oxide was lower than that of the lithium-containing manganese composition.
 実施例12
 炭酸マンガンの0.5水和物(特級試薬)5.87gと水酸化マグネシウム(特級試薬)0.16gと水酸化リチウムの1水和物(特級試薬)3.33g(Li/(Mn+Mg)比=11/7、Mg/(Mn+Mg)比=0.05)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 12
Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.16 g and lithium hydroxide monohydrate (special grade reagent) 3.33 g (Li / (Mn + Mg) ratio) = 11/7, Mg / (Mn + Mg) ratio = 0.05) using a mortar for 30 minutes, and then pulverized until all of the mesh passed through a 150 µm mesh.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、450℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 450 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は11/7で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.36、Zの値は1/30で、Li1.05Mn19/30Mg1/301.86のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1サイクル目の充電容量から求めたYの値は0.70で、Li0.35Mn19/30Mg1/301.51のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.70, and it was found that a manganese oxide of Li 0.35 Mn 19/30 Mg 1/30 O 1.51 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例13
 調製温度を500℃とした以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した。
Example 13
A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the preparation temperature was 500 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は11/7で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.36、Zの値は1/30で、Li1.05Mn19/30Mg1/301.86のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は0.65で、Li0.40Mn19/30Mg1/301.53のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.65, and it was found that a manganese oxide of Li 0.40 Mn 19/30 Mg 1/30 O 1.53 was obtained.
 実施例14
 炭酸マンガンの0.5水和物(特級試薬)5.87gと水酸化マグネシウム(特級試薬)0.15gと水酸化リチウムの1水和物(特級試薬)2.83g(Li/(Mn+Mg)比=4/3、Mg/(Mn+Mg)比=0.05)を使用して、調製温度を400℃とした以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した。
Example 14
Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.15 g and lithium hydroxide monohydrate (special grade reagent) 2.83 g (Li / (Mn + Mg) ratio) = 4/3, Mg / (Mn + Mg) ratio = 0.05), and a lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the preparation temperature was 400 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は4/3で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.56、Zの値は1/30で、Li0.89Mn19/30Mg1/301.78のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 4/3. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.56, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.89 Mn 19/30 Mg 1/30 O 1.78 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は0.58で、Li0.31Mn19/30Mg1/301.49のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.58, and it was found that a manganese oxide of Li 0.31 Mn 19/30 Mg 1/30 O 1.49 was obtained.
 実施例15
 炭酸マンガンの0.5水和物(特級試薬)2.85gと水酸化マグネシウム(特級試薬)0.12gと水酸化リチウムの1水和物(特級試薬)1.73gを使用した以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した。
Example 15
Example except that 2.85 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.12 g of magnesium hydroxide (special grade reagent) and 1.73 g of lithium hydroxide monohydrate (special grade reagent) were used. In the same manner as in No. 12, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は18/11で、Mg/(Mn+Mg)比は0.08であった。この値から、Xの値は0.30、Zの値は4/75で、Li1.09Mn46/75Mg4/751.88のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 18/11. The (Mn + Mg) ratio was 0.08. From this value, it was found that the value of X was 0.30, the value of Z was 4/75, and a lithium-containing manganese composition of Li 1.09 Mn 46/75 Mg 4/75 O 1.88 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は0.57で、Li0.52Mn46/75Mg4/751.60のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.57, and it was found that a manganese oxide of Li 0.52 Mn 46/75 Mg 4/75 O 1.60 was obtained.
 実施例16
 炭酸マンガンの0.5水和物(特級試薬)6.17gと炭酸ナトリウム(特級試薬)0.10gと水酸化リチウムの1水和物(特級試薬)3.90gを使用して、調製温度を600℃とした以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した。
Example 16
Using manganese carbonate 0.5 hydrate (special grade reagent) 6.17 g, sodium carbonate (special grade reagent) 0.10 g and lithium hydroxide monohydrate (special grade reagent) 3.90 g, the preparation temperature was adjusted. A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the temperature was 600 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Na)比は47/25で、Na/(Mn+Na)比は0.04であった。この値から、Xの値は0.10、Zの値は1/39で、Li1.25Mn25/39Na1/391.96のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Na) ratio is 47/25. The (Mn + Na) ratio was 0.04. From this value, it was found that the value of X was 0.10, the value of Z was 1/39, and a lithium-containing manganese composition of Li 1.25 Mn 25/39 Na 1/39 O 1.96 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は1.11で、Li0.14Mn25/39Na1/391.41のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 1.11. It was found that a manganese oxide of Li 0.14 Mn 25/39 Na 1/39 O 1.41 was obtained.
 実施例17
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)4.91g(Li/(Mn+Mg)比=1/1、Mg/(Mn+Mg)比=0.05)を使用した以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した。
Example 17
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And magnesium hydroxide (special grade reagent) 0.34 g and lithium hydroxide monohydrate (special grade reagent) 4.91 g (Li / (Mn + Mg) ratio = 1/1, Mg / (Mn + Mg) ratio = 0.05) A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that was used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は1/1で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.83、Zの値は1/30で、Li0.67Mn19/30Mg1/301.67のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/1, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.83, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.67 Mn 19/30 Mg 1/30 O 1.67 was obtained. It was.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は0.46で、Li0.21Mn19/30Mg1/301.44のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.46, and it was found that a manganese oxide of Li 0.21 Mn 19/30 Mg 1/30 O 1.44 was obtained.
 実施例18
 炭酸マンガンの0.5水和物(特級試薬)5.87gと水酸化マグネシウム(特級試薬)0.29gと炭酸ナトリウム(特級試薬)0.45gと水酸化リチウムの1水和物(特級試薬)11.73gを使用して、調製温度を600℃とした以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=19/10、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 18
Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.29 g, sodium carbonate (special grade reagent) 0.45 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that 11.73 g was used and the preparation temperature was 600 ° C. (Li / (Mn + Mg + Na) ratio = 19/10, Mg / (Mn + Mg + Na) ratio) = 0.05, Na / (Mn + Mg + Na) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg+Na)比は19/10で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Xの値は0.08、Zの値は1/12で、Li1.27Mn179/300Mg1/20Na1/501.97のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg + Na) ratio is 19/10. The (Mn + Mg + Na) ratio was 0.05, and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, the value of X is 0.08, the value of Z is 1/12, and a lithium-containing manganese composition of Li 1.27 Mn 179/300 Mg 1/20 Na 1/50 O 1.97 is obtained. I found out.
 充放電試験の結果を表2に示す。その結果から、比較例3のLi4/3Mn2/3の放電容量よりも、1サイクル目および10サイクル目とも大きいことが分かった。 Table 2 shows the results of the charge / discharge test. From the result, it was found that both the first cycle and the tenth cycle were larger than the discharge capacity of Li 4/3 Mn 2/3 O 2 of Comparative Example 3.
 1サイクル目の充電容量から求めたYの値は0.82で、Li0.45Mn179/300Mg1/20Na1/501.56のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.82, and it was found that a manganese oxide of Li 0.45 Mn 179/300 Mg 1/20 Na 1/50 O 1.56 was obtained. .
 比較例3
 水酸化リチウムの1水和物(特級試薬)を7.81gとし、水酸化マグネシウム(特級試薬)を使用しなかった以外は実施例12と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=2/1)。
Comparative Example 3
A lithium-containing manganese composition was prepared in the same manner as in Example 12 except that the monohydrate of lithium hydroxide (special grade reagent) was 7.81 g and magnesium hydroxide (special grade reagent) was not used (Li / Mn ratio = 2/1).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造のみを有しており、Li/Mn比は2/1であった。この値から、Xの値は0で、Li4/3Mn2/3のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis of the prepared sample and the evaluation of crystallinity, the obtained lithium-containing manganese composition had only a layered rock salt structure, and the Li / Mn ratio was 2/1. From this value, it was found that the value of X was 0, and a lithium-containing manganese composition of Li 4/3 Mn 2/3 O 2 was obtained.
 充放電試験の結果を表2に示す。その結果から、実施例12~実施例18のマンガン酸化物の放電容量に比べて、1サイクル目および10サイクル目とも小さいことが分かった。 Table 2 shows the results of the charge / discharge test. From the results, it was found that both the first cycle and the tenth cycle were smaller than the discharge capacities of the manganese oxides of Examples 12 to 18.
 1サイクル目の充電容量から求めたYの値は0.94で、Li0.39Mn2/31.53のマンガン酸化物が得られたことが分かった。 The value of Y obtained from the charge capacity at the first cycle was 0.94, and it was found that a manganese oxide of Li 0.39 Mn 2/3 O 1.53 was obtained.
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、実施例12のリチウム含有マンガン組成物に比べて、マンガン酸化物の結晶性が低下していることが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, the crystallinity of the manganese oxide is reduced as compared with the lithium-containing manganese composition of Example 12 from the comparison of the X-ray diffraction patterns before and after the charge / discharge test. I understood.
 実施例19
 炭酸マンガンの0.5水和物(特級試薬)12.35gと水酸化リチウムの1水和物(特級試薬)6.66g(Li/Mn比=11/7)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 19
Manganese carbonate 0.5 hydrate (special grade reagent) 12.35 g and lithium hydroxide monohydrate (special grade reagent) 6.66 g (Li / Mn ratio = 11/7) using a mortar 30 After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は11/7であった。この値から、Xの値は0.36で、Li1.05Mn2/31.86のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.10で、[LiMnO0.90・[LiMn120.10のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 11/7. From this value, it was found that the value of X was 0.36, and a lithium-containing manganese composition of Li 1.05 Mn 2/3 O 1.86 was obtained. The value of E was 0.10, and it was found to be a lithium-containing manganese composition of [Li 2 MnO 3 ] 0.90 · [Li 4 Mn 5 O 12 ] 0.10 .
 得られたリチウム含有マンガン組成物と正極材料(NCA:LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
 充放電試験の結果を表3に示す。その結果から、比較例4のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 4 and the same performance as that of NCA alone was exhibited.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例20
 正極材料として、NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を用いた以外は実施例19と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Example 20
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 19 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
 充放電試験の結果を表3に示す。その結果から、比較例5のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 5, and the same performance as that of only NMC (111) was exhibited.
 実施例21
 四三酸化マンガン<化学式:Mn>(商品名;CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)4.66gを用いた以外は実施例19と同様にしてリチウム含有マンガン組成物を調製した。
Example 21
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name; CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 19 except that 4.66 g of monohydrate of lithium hydroxide (special grade reagent) was used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/Mn比は1/1であった。この値から、Xの値は0.83で、Li0.67Mn2/31.67のリチウム含有マンガン組成物が得られたことが分かった。Eの値は0.50で、[LiMnO0.50・[LiMn120.50のリチウム含有マンガン組成物であることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition had a layered rock salt structure and a spinel structure, and the Li / Mn ratio was 1/1. From this value, it was found that the value of X was 0.83, and a lithium-containing manganese composition of Li 0.67 Mn 2/3 O 1.67 was obtained. The value of E was 0.50, which was found to be a lithium-containing manganese composition having [Li 2 MnO 3 ] 0.50 · [Li 4 Mn 5 O 12 ] 0.50 .
 得られたリチウム含有マンガン組成物と正極材料(NCA:LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
 充放電試験の結果を表3に示す。その結果から、比較例4のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 4 and the same performance as that of NCA alone was exhibited.
 実施例22
 正極材料として、NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を用いた以外は実施例21と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Example 22
A manganese oxide mixture (mixed positive electrode active) was obtained in the same manner as in Example 21 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
 充放電試験の結果を表3に示す。その結果から、比較例5のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 5, and the same performance as that of only NMC (111) was exhibited.
 比較例4
 水酸化リチウムの1水和物(特級試薬)を2.12g、加熱処理温度を800℃とした以外は実施例19と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=1/2)。
Comparative Example 4
A lithium-containing manganese composition was prepared in the same manner as in Example 19 except that 2.12 g of lithium hydroxide monohydrate (special grade reagent) and the heat treatment temperature were 800 ° C. (Li / Mn ratio = 1 / 2).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、LiMnであることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, it was found that the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
 リチウム含有マンガン組成物として、得られたLiMnを使用した以外は実施例19と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。 A manganese oxide mixture (mixed cathode active material) was prepared in the same manner as in Example 19 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
 充放電試験の結果を表3に示す。その結果から、実施例19、実施例21のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed cathode active material) of Example 19 and Example 21.
 比較例5
 リチウム含有マンガン組成物として、比較例4で得られたLiMnを使用した以外は実施例20と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Comparative Example 5
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 20 except that LiMn 2 O 4 obtained in Comparative Example 4 was used as the lithium-containing manganese composition.
 充放電試験の結果を表3に示す。その結果から、実施例20、実施例22のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 3 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed positive electrode active material) of Example 20 and Example 22.
 実施例23
 炭酸マンガンの0.5水和物(特級試薬)5.87gと水酸化マグネシウム(特級試薬)0.16gと水酸化リチウムの1水和物(特級試薬)3.33g(Li/(Mn+Mg)比=11/7、Mg/(Mn+Mg)比=0.05)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 23
Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.16 g and lithium hydroxide monohydrate (special grade reagent) 3.33 g (Li / (Mn + Mg) ratio) = 11/7, Mg / (Mn + Mg) ratio = 0.05) using a mortar for 30 minutes, and then pulverized until all of the mesh passed through a 150 µm mesh.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、450℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態であった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 450 ° C. for 32 hours under a 1-liter air aeration condition in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled at 150 ° C. or lower.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は11/7で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.36、Zの値は1/30で、Li1.05Mn19/30Mg1/301.86のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 11/7. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.36, the value of Z was 1/30, and a lithium-containing manganese composition of Li 1.05 Mn 19/30 Mg 1/30 O 1.86 was obtained. It was.
 得られたリチウム含有マンガン組成物と正極材料(NCA:LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material (NCA: LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
 充放電試験の結果を表4に示す。その結果から、比較例6のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみ場合と同等な性能を示すことが分かった。 Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 6, and the same performance as that of NCA alone was exhibited.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例24
 正極材料として、NMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を用いた以外は実施例23と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Example 24
A manganese oxide mixture (mixed positive electrode active material) was obtained in the same manner as in Example 23 except that NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toyoshima Seisakusho Co., Ltd.) was used as the positive electrode material. Material) was prepared.
 充放電試験の結果を表4に示す。その結果から、比較例7のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 7, and the same performance as that of only NMC (111) was exhibited.
 実施例25
 炭酸マンガンの0.5水和物(特級試薬)2.85gと水酸化マグネシウム(特級試薬)0.12gと水酸化リチウムの1水和物(特級試薬)1.73gを使用した以外は実施例23と同様にしてリチウム含有マンガン組成物を調製した。
Example 25
Example except that 2.85 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.12 g of magnesium hydroxide (special grade reagent) and 1.73 g of lithium hydroxide monohydrate (special grade reagent) were used. In the same manner as in No. 23, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は18/11で、Mg/(Mn+Mg)比は0.08であった。この値から、Xの値は0.30、Zの値は4/75で、Li1.09Mn46/75Mg4/751.88のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg) ratio is 18/11. The (Mn + Mg) ratio was 0.08. From this value, it was found that the value of X was 0.30, the value of Z was 4/75, and a lithium-containing manganese composition of Li 1.09 Mn 46/75 Mg 4/75 O 1.88 was obtained. It was.
 得られたリチウム含有マンガン組成物を用いて、実施例23と同様にしてマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例6のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Using the obtained lithium-containing manganese composition, a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed. As a result, LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
 実施例26
 炭酸マンガンの0.5水和物(特級試薬)6.17gと炭酸ナトリウム(特級試薬)0.10gと水酸化リチウムの1水和物(特級試薬)3.90gを使用して、調製温度を600℃とした以外は実施例23と同様にしてリチウム含有マンガン組成物を調製した。
Example 26
Using manganese carbonate 0.5 hydrate (special grade reagent) 6.17 g, sodium carbonate (special grade reagent) 0.10 g and lithium hydroxide monohydrate (special grade reagent) 3.90 g, the preparation temperature was adjusted. A lithium-containing manganese composition was prepared in the same manner as in Example 23 except that the temperature was 600 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Na)比は47/25で、Na/(Mn+Na)比は0.04であった。この値から、Xの値は0.10、Zの値は1/39で、Li1.25Mn25/39Na1/391.96のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Na) ratio is 47/25. The (Mn + Na) ratio was 0.04. From this value, it was found that the value of X was 0.10, the value of Z was 1/39, and a lithium-containing manganese composition of Li 1.25 Mn 25/39 Na 1/39 O 1.96 was obtained. It was.
 得られたリチウム含有マンガン組成物を用いて、実施例23と同様にしてマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例6のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Using the obtained lithium-containing manganese composition, a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed. As a result, LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
 実施例27
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)4.91g(Li/(Mn+Mg)比=1/1、Mg/(Mn+Mg)比=0.05)を使用した以外は実施例23と同様にしてリチウム含有マンガン組成物を調製した。
Example 27
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And magnesium hydroxide (special grade reagent) 0.34 g and lithium hydroxide monohydrate (special grade reagent) 4.91 g (Li / (Mn + Mg) ratio = 1/1, Mg / (Mn + Mg) ratio = 0.05) A lithium-containing manganese composition was prepared in the same manner as in Example 23 except that was used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は1/1で、Mg/(Mn+Mg)比は0.05であった。この値から、Xの値は0.83、Zの値は1/30で、Li0.67Mn19/30Mg1/301.67のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/1, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of X was 0.83, the value of Z was 1/30, and a lithium-containing manganese composition of Li 0.67 Mn 19/30 Mg 1/30 O 1.67 was obtained. It was.
 得られたリチウム含有マンガン組成物を用いて、実施例23と同様にしてマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例6のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Using the obtained lithium-containing manganese composition, a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 23, and the charge / discharge test was performed. As a result, LiMn 2 O 4 of Comparative Example 6 and It was found that the capacity was larger than that of the NCA mixed positive electrode, and the same performance as that of the NCA alone was exhibited.
 実施例28
 炭酸マンガンの0.5水和物(特級試薬)5.87gと水酸化マグネシウム(特級試薬)0.29gと炭酸ナトリウム(特級試薬)0.45gと水酸化リチウムの1水和物(特級試薬)11.73gを使用して、調製温度を600℃とした以外は実施例23と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=19/10、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 28
Manganese carbonate hemihydrate (special grade reagent) 5.87 g, magnesium hydroxide (special grade reagent) 0.29 g, sodium carbonate (special grade reagent) 0.45 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 23 except that 11.73 g was used and the preparation temperature was 600 ° C. (Li / (Mn + Mg + Na) ratio = 19/10, Mg / (Mn + Mg + Na) ratio) = 0.05, Na / (Mn + Mg + Na) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg+Na)比は19/10で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Xの値は0.08、Zの値は1/12で、Li1.27Mn179/300Mg1/20Na1/501.97のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, and the Li / (Mn + Mg + Na) ratio is 19/10. The (Mn + Mg + Na) ratio was 0.05, and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, the value of X is 0.08, the value of Z is 1/12, and a lithium-containing manganese composition of Li 1.27 Mn 179/300 Mg 1/20 Na 1/50 O 1.97 is obtained. I found out.
 得られたリチウム含有マンガン組成物を用いて、実施例24と同様にしてマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例7のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 Using the obtained lithium-containing manganese composition, a manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 24, and a charge / discharge test was performed. As a result, LiMn 2 O 4 of Comparative Example 7 and It was found that the capacity was larger than that of the mixed positive electrode of NMC (111), and the same performance as that of NMC (111) alone was exhibited.
 比較例6
 水酸化リチウムの1水和物(特級試薬)を2.12g、加熱処理温度を800℃とした以外は実施例23と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=1/2)。
Comparative Example 6
A lithium-containing manganese composition was prepared in the same manner as in Example 23 except that 2.12 g of lithium hydroxide monohydrate (special grade reagent) and the heat treatment temperature were set to 800 ° C. (Li / Mn ratio = 1 / 2).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、LiMnであることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, it was found that the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
 リチウム含有マンガン組成物として、得られたLiMnを使用した以外は実施例23と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。 A manganese oxide mixture (mixed cathode active material) was prepared in the same manner as in Example 23 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
 充放電試験の結果を表4に示す。その結果から、実施例23、実施例25~実施例27のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 4 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Example 23 and Examples 25 to 27.
 比較例7
 リチウム含有マンガン組成物として、比較例6で得られたLiMnを使用した以外は実施例24と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Comparative Example 7
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 24 except that LiMn 2 O 4 obtained in Comparative Example 6 was used as the lithium-containing manganese composition.
 充放電試験の結果を表4に示す。その結果から、実施例24、実施例28のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 4 shows the results of the charge / discharge test. From the result, it was found that the capacity was smaller than the manganese oxide mixture (mixed positive electrode active material) of Example 24 and Example 28.
 実施例29
 炭酸マンガンの0.5水和物(特級試薬)6.05gと水酸化リチウムの1水和物(特級試薬)1.06g(Li/Mn比=1/2)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 29
30 mg of manganese carbonate hemihydrate (special grade reagent) 6.05 g and lithium hydroxide monohydrate (special grade reagent) 1.06 g (Li / Mn ratio = 1/2) using a mortar After dry-mixing for a minute, it was pulverized until it passed through a mesh with a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態となった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled below 150 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1サイクル目の充電容量から算出したXの値は0.70で、マンガン酸化物の組成はLi0.19Mn16/93.65であった。 The value of X calculated from the charge capacity at the first cycle was 0.70, and the composition of the manganese oxide was Li 0.19 Mn 16/9 O 3.65 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例30
 調製温度を600℃とした以外は実施例29と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。
Example 30
A lithium-containing manganese composition was prepared in the same manner as in Example 29 except that the preparation temperature was 600 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.81で、マンガン酸化物の組成はLi0.08Mn16/93.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 16/9 O 3.60 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例31
 調製温度を800℃とした以外は実施例29と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。
Example 31
A lithium-containing manganese composition was prepared in the same manner as in Example 29 except that the preparation temperature was 800 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.88で、マンガン酸化物の組成はLi0.01Mn16/93.56であった。 The value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 比較例8
 実施例29で調製した試料を用いてコインセルを作製して、室温条件下(22~27℃)、10mA/gの定電流で電池電圧が2.0Vと3.3Vの間で充放電を繰り返す充放電試験を実施した。
Comparative Example 8
A coin cell was prepared using the sample prepared in Example 29, and charging and discharging were repeated at a constant current of 10 mA / g at room temperature (22 to 27 ° C.) and a battery voltage between 2.0 V and 3.3 V. A charge / discharge test was conducted.
 充放電試験の結果を表5に示す。その結果から、実施例29のマンガン酸化物よりも放電容量が小さい(実施例29で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 29 (the manganese oxide obtained in Example 29 had a larger discharge capacity).
 比較例9
 実施例30で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 9
A coin cell was manufactured using the sample prepared in Example 30, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例30のマンガン酸化物よりも放電容量が小さい(実施例30で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 30 (the manganese oxide obtained in Example 30 had a larger discharge capacity).
 比較例10
 実施例31で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 10
A coin cell was prepared using the sample prepared in Example 31, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例31のマンガン酸化物よりも放電容量が小さい(実施例31で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 31 (the manganese oxide obtained in Example 31 had a larger discharge capacity).
 比較例11
 電解二酸化マンガン(東ソー日向株式会社製)の20.00gと炭酸リチウム(特級試薬)の4.58gとを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Comparative Example 11
20.00 g of electrolytic manganese dioxide (manufactured by Tosoh Hinata Co., Ltd.) and 4.58 g of lithium carbonate (special grade reagent) were dry-mixed for 30 minutes using a mortar, and then pulverized until all of the mesh passed through a 150 μm mesh .
 得られた混合粉の2gを焼成皿に入れて、大気開放箱型炉を用いた以外は実施例31と同条件でリチウム含有マンガン組成物を調製した。 A lithium-containing manganese composition was prepared under the same conditions as in Example 31 except that 2 g of the obtained mixed powder was put in a baking dish and an open air box furnace was used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は2.81/5で、Li1.08Mn1.92(Li25/81Mn144/2512)であった。Mnの価数は+3.6であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 2.81 / 5, and Li 1.08 Mn 1.92. It was O 4 (Li 25/81 Mn 144/25 O 12 ). The valence of Mn was +3.6.
 充放電試験の結果を表5に示す。その結果から、同条件で調製した実施例31と比較して、放電容量は小さく、容量維持率も小さい(実施例31で得られたマンガン酸化物の方が放電容量、容量維持率とも大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, compared with Example 31 prepared under the same conditions, the discharge capacity is small and the capacity retention rate is also small (the manganese oxide obtained in Example 31 has both a large discharge capacity and capacity retention rate). I understood that.
 実施例32
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)2.33g(Li/Mn比=1/2)を使用した以外は実施例29と同様にしてリチウム含有マンガン組成物を調製した。
Example 32
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And lithium hydroxide monohydrate (special grade reagent) 2.33 g (Li / Mn ratio = 1/2) was used to prepare a lithium-containing manganese composition in the same manner as in Example 29.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.88で、マンガン酸化物の組成はLi0.01Mn16/93.56であった。 The value of X calculated from the charge capacity at the first cycle was 0.88, and the composition of the manganese oxide was Li 0.01 Mn 16/9 O 3.56 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例33
 炭酸マンガンの0.5水和物(特級試薬)3.04gと水酸化マグネシウム(特級試薬)0.03gと水酸化リチウムの1水和物(特級試薬)0.53gを使用した以外は実施例29と同様にしてリチウム含有マンガン組成物を調製した。
Example 33
Example except that 3.04 g of manganese carbonate hemihydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.53 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in Example 29, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.02であった。この値から、Zの値は8/225で、Li8/9Mn392/225Mg8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is ½, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 8/225, and a lithium-containing manganese composition of Li 8/9 Mn 392/225 Mg 8/225 O 4 was obtained.
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.81で、マンガン酸化物の組成はLi0.08Mn392/225Mg8/2253.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.81, and the composition of the manganese oxide was Li 0.08 Mn 392/225 Mg 8/225 O 3.60 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例34
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)2.45gを使用した以外は実施例29と同様にしてリチウム含有マンガン組成物を調製した。
Example 34
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 29 except that 0.34 g of magnesium hydroxide (special grade reagent) and 2.45 g of monohydrate of lithium hydroxide (special grade reagent) were used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.05であった。この値から、Zの値は4/45で、Li8/9Mn76/45Mg4/45のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/2, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 4/45, and a lithium-containing manganese composition of Li 8/9 Mn 76/45 Mg 4/45 O 4 was obtained.
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.80で、マンガン酸化物の組成はLi0.09Mn76/45Mg4/453.60であった。 The value of X calculated from the charge capacity at the first cycle was 0.80, and the composition of the manganese oxide was Li 0.09 Mn 76/45 Mg 4/45 O 3.60 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例35
 炭酸マンガンの0.5水和物(特級試薬)5.76gと水酸化マグネシウム(特級試薬)0.15gと炭酸ナトリウム(特級試薬)0.11gと水酸化リチウムの1水和物(特級試薬)1.06gを使用して、実施例29と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=1/2、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 35
Manganese carbonate hemihydrate (special grade reagent) 5.76 g, magnesium hydroxide (special grade reagent) 0.15 g, sodium carbonate (special grade reagent) 0.11 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 29 using 1.06 g (Li / (Mn + Mg + Na) ratio = 1/2, Mg / (Mn + Mg + Na) ratio = 0.05, Na / (Mn + Mg + Na). ) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg+Na)比は1/2で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Zの値は28/225で、Li8/9Mn372/225Mg4/45Na8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 1/2, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 28/225, and a lithium-containing manganese composition of Li 8/9 Mn 372/225 Mg 4/45 Na 8/225 O 4 was obtained.
 充放電試験の結果を表5に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.79で、マンガン酸化物の組成はLi0.10Mn372/225Mg4/45Na8/2253.61であった。 The value of X calculated from the charge capacity at the first cycle was 0.79, and the composition of the manganese oxide was Li 0.10 Mn 372/225 Mg 4/45 Na 8/225 O 3.61 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 比較例12
 実施例32で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 12
A coin cell was prepared using the sample prepared in Example 32, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例32のマンガン酸化物よりも放電容量が小さい(実施例32で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 32 (the manganese oxide obtained in Example 32 had a larger discharge capacity).
 比較例13
 実施例33で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 13
A coin cell was prepared using the sample prepared in Example 33, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例33のマンガン酸化物よりも放電容量が小さい(実施例33で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 33 (the manganese oxide obtained in Example 33 had a larger discharge capacity).
 比較例14
 実施例34で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 14
A coin cell was prepared using the sample prepared in Example 34, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例34のマンガン酸化物よりも放電容量が小さい(実施例34で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 34 (the manganese oxide obtained in Example 34 had a larger discharge capacity).
 比較例15
 実施例35で調製した試料を用いてコインセルを作製して、比較例8と同様にして充放電試験を行った。
Comparative Example 15
A coin cell was prepared using the sample prepared in Example 35, and a charge / discharge test was performed in the same manner as in Comparative Example 8.
 充放電試験の結果を表5に示す。その結果から、実施例35のマンガン酸化物よりも放電容量が小さい(実施例35で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 5 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 35 (the manganese oxide obtained in Example 35 had a higher discharge capacity).
 実施例36
 炭酸マンガンの0.5水和物(特級試薬)6.05gと水酸化リチウムの1水和物(特級試薬)1.70g(Li/Mn比=4/5)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 36
Manganese carbonate 0.5 hydrate (special grade reagent) 6.05 g and lithium hydroxide monohydrate (special grade reagent) 1.70 g (Li / Mn ratio = 4/5) using a mortar 30 After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態となった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled below 150 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、比較例16~比較例18のマンガン酸化物より容量維持率が高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the capacity retention rate was higher than that of the manganese oxides of Comparative Examples 16 to 18.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1サイクル目の充電容量から算出したXの値は0.77で、マンガン酸化物の組成は、Li0.56Mn5/33.62であった。 The value of X calculated from the charge capacity at the first cycle was 0.77, and the composition of the manganese oxide was Li 0.56 Mn 5/3 O 3.62 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例37
 調製温度を600℃とした以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。
Example 37
A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 600 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、高い放電容量と高い容量維持率を示し、比較例16~比較例18のマンガン酸化物より放電容量、容量維持率が高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
 1サイクル目の充電容量から算出したXの値は0.52で、マンガン酸化物の組成は、Li0.81Mn5/33.74であった。 The value of X calculated from the charge capacity at the first cycle was 0.52, and the composition of the manganese oxide was Li 0.81 Mn 5/3 O 3.74 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例38
 調製温度を800℃とした以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
Example 38
A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 800 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、高い放電容量と高い容量維持率を示し、比較例16~比較例18のマンガン酸化物より放電容量、容量維持率が高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
 1サイクル目の充電容量から算出したXの値は0.53で、マンガン酸化物の組成は、Li0.80Mn5/33.74であった。 The value of X calculated from the charge capacity at the first cycle was 0.53, and the composition of the manganese oxide was Li 0.80 Mn 5/3 O 3.74 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例39
 調製温度を425℃とした以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
Example 39
A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 425 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、高い放電容量と高い容量維持率を示し、比較例16~比較例18のマンガン酸化物より放電容量、容量維持率が高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
 1サイクル目の充電容量から算出したXの値は0.60で、マンガン酸化物の組成は、Li0.73Mn5/33.70であった。 The value of X calculated from the charge capacity at the first cycle was 0.60, and the composition of the manganese oxide was Li 0.73 Mn 5/3 O 3.70 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例40
 調製温度を375℃とした以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
Example 40
A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that the preparation temperature was 375 ° C. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、高い放電容量と高い容量維持率を示し、比較例16~比較例18のマンガン酸化物より放電容量、容量維持率が高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity and capacity retention ratio were higher, and the discharge capacity and capacity retention ratio were higher than those of the manganese oxides of Comparative Examples 16 to 18.
 1サイクル目の充電容量から算出したXの値は0.68で、マンガン酸化物の組成は、Li0.65Mn5/33.66であった。 The value of X calculated from the charge capacity at the first cycle was 0.68, and the composition of the manganese oxide was Li 0.65 Mn 5/3 O 3.66 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 比較例16
 実施例36で調製した試料を用いてコインセルを作製して、室温条件下(22~27℃)、10mA/gの定電流で電池電圧が2.0Vと3.3Vの間で充放電を繰り返す充放電試験を実施した。
Comparative Example 16
A coin cell was prepared using the sample prepared in Example 36, and charging and discharging were repeated at a constant current of 10 mA / g at room temperature (22 to 27 ° C.) and a battery voltage of 2.0 V and 3.3 V. A charge / discharge test was conducted.
 充放電試験の結果を表6に示す。その結果から、実施例36~実施例40のマンガン酸化物よりも放電容量、容量維持率とも小さい(実施例36~実施例40で得られたマンガン酸化物の方が放電容量、容量維持率とも大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
 比較例17
 実施例37で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 17
A coin cell was prepared using the sample prepared in Example 37, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例36~実施例40のマンガン酸化物よりも放電容量、容量維持率とも小さい(実施例36~実施例40で得られたマンガン酸化物の方が放電容量、容量維持率とも大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
 比較例18
 実施例38で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 18
A coin cell was produced using the sample prepared in Example 38, and a charge / discharge test was conducted in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例36~実施例40のマンガン酸化物よりも放電容量、容量維持率とも小さい(実施例36~実施例40で得られたマンガン酸化物の方が放電容量、容量維持率とも大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. As a result, both the discharge capacity and capacity retention rate were smaller than the manganese oxides of Examples 36 to 40 (the manganese oxides obtained in Examples 36 to 40 were both discharge capacity and capacity retention rates). It was great)
 比較例19
 電解二酸化マンガン(東ソー日向株式会社製)の20.00gと炭酸リチウム(特級試薬)の4.58gとを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Comparative Example 19
20.00 g of electrolytic manganese dioxide (manufactured by Tosoh Hinata Co., Ltd.) and 4.58 g of lithium carbonate (special grade reagent) were dry-mixed for 30 minutes using a mortar, and then pulverized until all of the mesh passed through a 150 μm mesh .
 得られた混合粉の2gを焼成皿に入れて、大気開放箱型炉を用いた以外は実施例38と同条件でリチウム含有マンガン組成物を調製した。 2 g of the obtained mixed powder was put into a baking dish, and a lithium-containing manganese composition was prepared under the same conditions as in Example 38 except that an atmospheric open box furnace was used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は2.81/5で、Li1.08Mn1.92(Li25/81Mn144/2512)であった。Mnの価数は+3.6であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 2.81 / 5, and Li 1.08 Mn 1.92. It was O 4 (Li 25/81 Mn 144/25 O 12 ). The valence of Mn was +3.6.
 充放電試験の結果を表6に示す。その結果から、同条件で調製した実施例38と比較して、1サイクル目の充放電容量は大きいものの、容量維持率は小さい(実施例38で得られたマンガン酸化物の方が容量維持率が大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, compared with Example 38 prepared under the same conditions, although the charge / discharge capacity in the first cycle was large, the capacity retention rate was smaller (the manganese oxide obtained in Example 38 was the capacity retention rate). Is great).
 実施例41
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)3.72g(Li/Mn比=4/5)を使用した以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
Example 41
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And lithium hydroxide monohydrate (special grade reagent) 3.72 g (Li / Mn ratio = 4/5) was used to prepare a lithium-containing manganese composition in the same manner as in Example 36. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 充放電試験の結果を表6に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.73で、マンガン酸化物の組成はLi0.60Mn5/33.64であった。 The value of X calculated from the charge capacity at the first cycle was 0.73, and the composition of the manganese oxide was Li 0.60 Mn 5/3 O 3.64 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例42
 炭酸マンガンの0.5水和物(特級試薬)3.04gと水酸化マグネシウム(特級試薬)0.03gと水酸化リチウムの1水和物(特級試薬)0.84gを使用した以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。
Example 42
Example except that 3.04 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.84 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in Example 36, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg)比は4/5で、Mg/(Mn+Mg)比は0.02であった。この値から、Zの値は1/30で、Li4/5Mn49/30Mg1/30のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 4/5, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 1/30, and a lithium-containing manganese composition of Li 4/5 Mn 49/30 Mg 1/30 O 4 was obtained.
 充放電試験の結果を表6に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.56で、マンガン酸化物の組成はLi0.77Mn49/30Mg1/303.72であった。 The value of X calculated from the charge capacity at the first cycle was 0.56, and the composition of the manganese oxide was Li 0.77 Mn 49/30 Mg 1/30 O 3.72 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例43
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)3.92gを使用した以外は実施例36と同様にしてリチウム含有マンガン組成物を調製した。
Example 43
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 36 except that 0.34 g of magnesium hydroxide (special grade reagent) and 3.92 g of monohydrate of lithium hydroxide (special grade reagent) were used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は4/5で、Mg/(Mn+Mg)比は0.05であった。この値から、Zの値は1/12で、Li4/5Mn95/60Mg1/12のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Mg) ratio is 4/5. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 1/12, and a lithium-containing manganese composition of Li 4/5 Mn 95/60 Mg 1/12 O 4 was obtained.
 充放電試験の結果を表6に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.52で、マンガン酸化物の組成はLi0.81Mn95/60Mg1/123.74であった。 The value of X calculated from the charge capacity at the first cycle was 0.52, and the composition of the manganese oxide was Li 0.81 Mn 95/60 Mg 1/12 O 3.74 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 実施例44
 炭酸マンガンの0.5水和物(特級試薬)5.76gと水酸化マグネシウム(特級試薬)0.15gと炭酸ナトリウム(特級試薬)0.11gと水酸化リチウムの1水和物(特級試薬)1.70gを使用して、実施例36と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=4/5、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 44
Manganese carbonate hemihydrate (special grade reagent) 5.76 g, magnesium hydroxide (special grade reagent) 0.15 g, sodium carbonate (special grade reagent) 0.11 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 36 using 1.70 g (Li / (Mn + Mg + Na) ratio = 4/5, Mg / (Mn + Mg + Na) ratio = 0.05, Na / (Mn + Mg + Na) ) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg+Na)比は4/5で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Zの値は7/60で、Li4/5Mn31/21Mg1/12Na1/30のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 4/5, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 7/60, and a lithium-containing manganese composition of Li 4/5 Mn 31/21 Mg 1/12 Na 1/30 O 4 was obtained.
 充放電試験の結果を表6に示す。その結果から、放電容量が高く、容量維持率も高いことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was high and the capacity retention rate was also high.
 1サイクル目の充電容量から算出したXの値は0.48で、マンガン酸化物の組成はLi0.85Mn31/21Mg1/12Na1/303.76であった。 The value of X calculated from the charge capacity at the first cycle was 0.48, and the composition of the manganese oxide was Li 0.85 Mn 31/21 Mg 1/12 Na 1/30 O 3.76 .
 充放電試験前後の結晶性の変化については、充放電試験前後のX線回折パターンの比較から、リチウム含有マンガン組成物とマンガン酸化物の結晶性が変化していないことが分かった。 Regarding the change in crystallinity before and after the charge / discharge test, it was found from the comparison of the X-ray diffraction patterns before and after the charge / discharge test that the crystallinity of the lithium-containing manganese composition and the manganese oxide was not changed.
 比較例20
 実施例41で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 20
A coin cell was prepared using the sample prepared in Example 41, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例41のマンガン酸化物よりも放電容量が小さい(実施例41で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than the manganese oxide of Example 41 (the manganese oxide obtained in Example 41 had a larger discharge capacity).
 比較例21
 実施例42で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 21
A coin cell was prepared using the sample prepared in Example 42, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例42のマンガン酸化物よりも放電容量が小さい(実施例42で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 42 (the manganese oxide obtained in Example 42 had a larger discharge capacity).
 比較例22
 実施例43で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 22
A coin cell was prepared using the sample prepared in Example 43, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例43のマンガン酸化物よりも放電容量が小さい(実施例43で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. From the result, it was found that the discharge capacity was smaller than that of the manganese oxide of Example 43 (the manganese oxide obtained in Example 43 had a larger discharge capacity).
 比較例23
 実施例44で調製した試料を用いてコインセルを作製して、比較例16と同様にして充放電試験を行った。
Comparative Example 23
A coin cell was prepared using the sample prepared in Example 44, and a charge / discharge test was performed in the same manner as in Comparative Example 16.
 充放電試験の結果を表6に示す。その結果から、実施例44のマンガン酸化物よりも放電容量が小さい(実施例44で得られたマンガン酸化物の方が放電容量が大きい)ことが分かった。 Table 6 shows the results of the charge / discharge test. From the results, it was found that the discharge capacity was smaller than the manganese oxide of Example 44 (the manganese oxide obtained in Example 44 had a larger discharge capacity).
 実施例45
 炭酸マンガンの0.5水和物(特級試薬)6.05gと水酸化リチウムの1水和物(特級試薬)1.06g(Li/Mn比=1/2)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 45
30 mg of manganese carbonate hemihydrate (special grade reagent) 6.05 g and lithium hydroxide monohydrate (special grade reagent) 1.06 g (Li / Mn ratio = 1/2) using a mortar After dry-mixing for a minute, it was pulverized until it passed through a mesh with a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態となった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled below 150 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 得られたリチウム含有マンガン組成物と正極材料のNMC(111)(LiNi1/3Mn1/3Co1/3,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。 The obtained lithium-containing manganese composition and the positive electrode material NMC (111) (LiNi 1/3 Mn 1/3 Co 1/3 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were used in an agate mortar at a weight ratio of 1: 1. Then, a manganese oxide mixture (mixed cathode active material) was prepared.
 充放電試験の結果を表7に示す。その結果から、比較例24のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NMC (111) of Comparative Example 24, and the same performance as that of NMC (111) alone was exhibited.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例46
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)2.33g(Li/Mn比=1/2)を使用した以外は実施例45と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は1/2で、Li8/9Mn16/9(LiMn)であった。
Example 46
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And lithium hydroxide monohydrate (special grade reagent) 2.33 g (Li / Mn ratio = 1/2) was used to prepare a lithium-containing manganese composition in the same manner as in Example 45. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 1/2, and Li 8/9 Mn 16/9 O 4. (Li 2 Mn 4 O 9 ).
 得られたリチウム含有マンガン組成物を用いて実施例45と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例24のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed cathode active material) in the same manner as in Example 45 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, LiMn 2 O 4 and NMC (Comparative Example 24) It was found that the capacity was larger than that of the 111) mixed positive electrode, and the same performance as that of the NMC (111) alone was exhibited.
 実施例47
 炭酸マンガンの0.5水和物(特級試薬)3.04gと水酸化マグネシウム(特級試薬)0.03gと水酸化リチウムの1水和物(特級試薬)0.53gを使用した以外は実施例45と同様にしてリチウム含有マンガン組成物を調製した。
Example 47
Example except that 3.04 g of manganese carbonate hemihydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.53 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in No. 45, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.02であった。この値から、Zの値は8/225で、Li8/9Mn392/225Mg8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is ½, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 8/225, and a lithium-containing manganese composition of Li 8/9 Mn 392/225 Mg 8/225 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例45と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例24のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed cathode active material) in the same manner as in Example 45 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, LiMn 2 O 4 and NMC (Comparative Example 24) It was found that the capacity was larger than that of the 111) mixed positive electrode, and the same performance as that of the NMC (111) alone was exhibited.
 実施例48
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)2.45gを使用した以外は実施例45と同様にしてリチウム含有マンガン組成物を調製した。
Example 48
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 45 except that 0.34 g of magnesium hydroxide (special grade reagent) and 2.45 g of monohydrate of lithium hydroxide (special grade reagent) were used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は1/2で、Mg/(Mn+Mg)比は0.05であった。この値から、Zの値は4/45で、Li8/9Mn380/225Mg4/45のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt type structure and a spinel type structure, the Li / (Mn + Mg) ratio is 1/2, and the Mg / The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 4/45, and a lithium-containing manganese composition of Li 8/9 Mn 380/225 Mg 4/45 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例45と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例24のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed cathode active material) in the same manner as in Example 45 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, LiMn 2 O 4 and NMC (Comparative Example 24) It was found that the capacity was larger than that of the 111) mixed positive electrode, and the same performance as that of the NMC (111) alone was exhibited.
 実施例49
 炭酸マンガンの0.5水和物(特級試薬)5.76gと水酸化マグネシウム(特級試薬)0.15gと炭酸ナトリウム(特級試薬)0.11gと水酸化リチウムの1水和物(特級試薬)1.06gを使用した以外は実施例45と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=1/2、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 49
Manganese carbonate hemihydrate (special grade reagent) 5.76 g, magnesium hydroxide (special grade reagent) 0.15 g, sodium carbonate (special grade reagent) 0.11 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 45 except that 1.06 g was used (Li / (Mn + Mg + Na) ratio = 1/2, Mg / (Mn + Mg + Na) ratio = 0.05, Na / (Mn + Mg + Na). ) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg+Na)比は1/2で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Zの値は28/225で、Li8/9Mn372/225Mg4/45Na8/225のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 1/2, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 28/225, and a lithium-containing manganese composition of Li 8/9 Mn 372/225 Mg 4/45 Na 8/225 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例45と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例24のLiMnとNMC(111)の混合正極に比べて容量が大きく、NMC(111)のみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed cathode active material) in the same manner as in Example 45 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, LiMn 2 O 4 and NMC (Comparative Example 24) It was found that the capacity was larger than that of the 111) mixed positive electrode, and the same performance as that of the NMC (111) alone was exhibited.
 実施例50
 炭酸マンガンの0.5水和物(特級試薬)6.05gと水酸化リチウムの1水和物(特級試薬)1.70g(Li/Mn比=4/5)とを乳鉢を使用して30分間乾式混合した後、目開き150μmのメッシュを全量通るまで粉砕した。
Example 50
Manganese carbonate 0.5 hydrate (special grade reagent) 6.05 g and lithium hydroxide monohydrate (special grade reagent) 1.70 g (Li / Mn ratio = 4/5) using a mortar 30 After dry-mixing for a minute, the mixture was pulverized until it passed through a mesh having a mesh size of 150 μm.
 得られた混合粉の2gを焼成皿に入れて、管状炉にて1分間に1リットルの空気通気条件下、400℃で32時間加熱処理を行い、室温まで冷却して試料を取り出した。昇温速度と降温速度はそれぞれ、50℃/hr、100℃/hrとした。降温の際、150℃以下では炉冷状態となった。 2 g of the obtained mixed powder was put in a baking dish, subjected to heat treatment at 400 ° C. for 32 hours under an air aeration condition of 1 liter per minute in a tubular furnace, cooled to room temperature, and a sample was taken out. The temperature increase rate and the temperature decrease rate were 50 ° C./hr and 100 ° C./hr, respectively. When the temperature was lowered, the furnace was cooled below 150 ° C.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
得られたリチウム含有マンガン組成物と正極材料のNCA(LiNi0.8Co0.15Al0.05,株式会社豊島製作所製)を重量比1:1でメノウ乳鉢を使用して混合を行い、マンガン酸化物混合物(混合正極活物質)を調製した。
From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
The obtained lithium-containing manganese composition and the positive electrode material NCA (LiNi 0.8 Co 0.15 Al 0.05 O 2 , manufactured by Toshima Seisakusho Co., Ltd.) were mixed at a weight ratio of 1: 1 using an agate mortar. And a manganese oxide mixture (mixed cathode active material) was prepared.
 充放電試験の結果を表7に示す。その結果から、比較例25のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 Table 7 shows the results of the charge / discharge test. From the result, it was found that the capacity was larger than that of the mixed positive electrode of LiMn 2 O 4 and NCA of Comparative Example 25, and the same performance as that of the case of only NCA was exhibited.
 実施例51
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化リチウムの1水和物(特級試薬)3.72g(Li/Mn比=4/5)を使用した以外は実施例50と同様にしてリチウム含有マンガン組成物を調製した。調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル構造を有しており、Li/Mn比は4/5で、Li4/3Mn5/3(LiMn12)であった。
Example 51
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment And lithium hydroxide monohydrate (special grade reagent) 3.72 g (Li / Mn ratio = 4/5) was used, and a lithium-containing manganese composition was prepared in the same manner as in Example 50. From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / Mn ratio is 4/5, and Li 4/3 Mn 5/3 O 4. (Li 4 Mn 5 O 12 ).
 得られたリチウム含有マンガン組成物を用いて実施例50と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例25のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed positive electrode active material) in the same manner as in Example 50 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, the results of LiMn 2 O 4 and NCA of Comparative Example 25 were obtained. It was found that the capacity was larger than that of the mixed positive electrode and the same performance as that of the NCA alone was exhibited.
 実施例52
 炭酸マンガンの0.5水和物(特級試薬)3.04gと水酸化マグネシウム(特級試薬)0.03gと水酸化リチウムの1水和物(特級試薬)0.84gを使用した以外は実施例50と同様にしてリチウム含有マンガン組成物を調製した。
Example 52
Example except that 3.04 g of manganese carbonate 0.5 hydrate (special grade reagent), 0.03 g of magnesium hydroxide (special grade reagent) and 0.84 g of monohydrate of lithium hydroxide (special grade reagent) were used. In the same manner as in No. 50, a lithium-containing manganese composition was prepared.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg)比は4/5で、Mg/(Mn+Mg)比は0.02であった。この値から、Zの値は1/30で、Li4/5Mn49/30Mg1/30のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg) ratio is 4/5, and the Mg / (Mn + Mg) ratio is 0.02. From this value, it was found that the value of Z was 1/30, and a lithium-containing manganese composition of Li 4/5 Mn 49/30 Mg 1/30 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例50と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例25のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed positive electrode active material) in the same manner as in Example 50 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, the results of LiMn 2 O 4 and NCA of Comparative Example 25 were obtained. It was found that the capacity was larger than that of the mixed positive electrode and the same performance as that of the NCA alone was exhibited.
 実施例53
 四三酸化マンガン<化学式:Mn>(商品名:CMO(登録商標),東ソー株式会社製)を硫酸処理して得られた二酸化マンガン(Mn含有量:60.3wt%)10.0gと水酸化マグネシウム(特級試薬)0.34gと水酸化リチウムの1水和物(特級試薬)3.92gを使用した以外は実施例50と同様にしてリチウム含有マンガン組成物を調製した。
Example 53
Manganese tetraoxide <Chemical formula: Mn 3 O 4 > (trade name: CMO (registered trademark), manufactured by Tosoh Corporation) and 10.0 g of manganese dioxide (Mn content: 60.3 wt%) obtained by sulfuric acid treatment A lithium-containing manganese composition was prepared in the same manner as in Example 50 except that 0.34 g of magnesium hydroxide (special grade reagent) and 3.92 g of monohydrate of lithium hydroxide (special grade reagent) were used.
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物は層状岩塩型構造とスピネル型構造を有しており、Li/(Mn+Mg)比は4/5で、Mg/(Mn+Mg)比は0.05であった。この値から、Zの値は1/12で、Li4/5Mn95/60Mg1/12のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a layered rock salt structure and a spinel structure, and the Li / (Mn + Mg) ratio is 4/5. The (Mn + Mg) ratio was 0.05. From this value, it was found that the value of Z was 1/12, and a lithium-containing manganese composition of Li 4/5 Mn 95/60 Mg 1/12 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例50と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例25のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed positive electrode active material) in the same manner as in Example 50 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, the results of LiMn 2 O 4 and NCA of Comparative Example 25 were obtained. It was found that the capacity was larger than that of the mixed positive electrode and the same performance as that of the NCA alone was exhibited.
 実施例54
 炭酸マンガンの0.5水和物(特級試薬)5.76gと水酸化マグネシウム(特級試薬)0.15gと炭酸ナトリウム(特級試薬)0.11gと水酸化リチウムの1水和物(特級試薬)1.70gを使用して、実施例50と同様にしてリチウム含有マンガン組成物を調製した(Li/(Mn+Mg+Na)比=4/5、Mg/(Mn+Mg+Na)比=0.05、Na/(Mn+Mg+Na)=0.02)。
Example 54
Manganese carbonate hemihydrate (special grade reagent) 5.76 g, magnesium hydroxide (special grade reagent) 0.15 g, sodium carbonate (special grade reagent) 0.11 g and lithium hydroxide monohydrate (special grade reagent) A lithium-containing manganese composition was prepared in the same manner as in Example 50 using 1.70 g (Li / (Mn + Mg + Na) ratio = 4/5, Mg / (Mn + Mg + Na) ratio = 0.05, Na / (Mn + Mg + Na) ) = 0.02).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、Li/(Mn+Mg+Na)比は4/5で、Mg/(Mn+Mg+Na)比は0.05、Na/(Mn+Mg+Na)比は0.02であった。この値から、Zの値は7/60で、Li4/5Mn31/21Mg1/12Na1/30のリチウム含有マンガン組成物が得られたことが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, the obtained lithium-containing manganese composition has a spinel structure, the Li / (Mn + Mg + Na) ratio is 4/5, and the Mg / (Mn + Mg + Na) ratio is 0.05 and the Na / (Mn + Mg + Na) ratio was 0.02. From this value, it was found that the value of Z was 7/60, and a lithium-containing manganese composition of Li 4/5 Mn 31/21 Mg 1/12 Na 1/30 O 4 was obtained.
 得られたリチウム含有マンガン組成物を用いて実施例50と同様にマンガン酸化物混合物(混合正極活物質)を調製して充放電試験を行った結果、比較例25のLiMnとNCAの混合正極に比べて容量が大きく、NCAのみの場合と同等な性能を示すことが分かった。 As a result of preparing a manganese oxide mixture (mixed positive electrode active material) in the same manner as in Example 50 using the obtained lithium-containing manganese composition and conducting a charge / discharge test, the results of LiMn 2 O 4 and NCA of Comparative Example 25 were obtained. It was found that the capacity was larger than that of the mixed positive electrode and the same performance as that of the NCA alone was exhibited.
 比較例24
 水酸化リチウムの1水和物(特級試薬)を2.12g、加熱処理温度を800℃とした以外は実施例45と同様にしてリチウム含有マンガン組成物を調製した(Li/Mn比=1/2)。
Comparative Example 24
A lithium-containing manganese composition was prepared in the same manner as in Example 45 except that 2.12 g of lithium hydroxide monohydrate (special grade reagent) and the heat treatment temperature were 800 ° C. (Li / Mn ratio = 1 / 2).
 調製した試料の組成分析と結晶性の評価から、得られたリチウム含有マンガン組成物はスピネル型構造を有しており、LiMnであることが分かった。 From the composition analysis and crystallinity evaluation of the prepared sample, it was found that the obtained lithium-containing manganese composition had a spinel structure and was LiMn 2 O 4 .
 リチウム含有マンガン組成物として、得られたLiMnを使用した以外は実施例45と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。 A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 45 except that the obtained LiMn 2 O 4 was used as the lithium-containing manganese composition.
 充放電試験の結果を表7に示す。その結果から、実施例45~実施例49のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Examples 45 to 49.
 比較例25
 リチウム含有マンガン組成物として、比較例24で得られたLiMnを使用した以外は実施例50と同様にしてマンガン酸化物混合物(混合正極活物質)を調製した。
Comparative Example 25
A manganese oxide mixture (mixed positive electrode active material) was prepared in the same manner as in Example 50 except that LiMn 2 O 4 obtained in Comparative Example 24 was used as the lithium-containing manganese composition.
 充放電試験の結果を表7に示す。その結果から、実施例50~実施例54のマンガン酸化物混合物(混合正極活物質)に比べて容量が小さいことが分かった。 Table 7 shows the results of the charge / discharge test. From the results, it was found that the capacity was smaller than the manganese oxide mixtures (mixed positive electrode active materials) of Examples 50 to 54.
 なお、2015年3月19日に出願された日本特許出願2015-56647号、日本特許出願2015-56648号及び日本特許出願2015-56649号、2015年3月30日に出願された日本特許出願2015-69564号、並びに2016年3月3日に出願された日本特許出願2016-41519号及び日本特許出願2016-41520号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として。取り入れるものである。 Note that Japanese Patent Application No. 2015-56647, Japanese Patent Application No. 2015-56648 and Japanese Patent Application No. 2015-56649 filed on March 19, 2015, Japanese Patent Application No. 2015 filed on March 30, 2015, are filed. -69564 and the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-41519 and Japanese Patent Application No. 2016-41520 filed on March 3, 2016 are cited herein. And as the disclosure of the specification of the present invention. Incorporated.
 本発明のマンガン酸化物、マンガン酸化物混合物、混合正極活物質は、リチウム二次電池の正極に使用することができる。 The manganese oxide, manganese oxide mixture, and mixed positive electrode active material of the present invention can be used for a positive electrode of a lithium secondary battery.

Claims (15)

  1. 一般式Li(4/3)-(4X/5)-YMn2/32-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)を満たす。)で表されることを特徴とするマンガン酸化物。 General formula Li (4/3)-(4X / 5) -Y Mn 2/3 O 2- (2X / 5)-(Y / 2) (where 0 <X <1, 0 <Y <(4 / 3)-(4X / 5))).
  2. 一般式[Li2-AMnO3-B1-E・[Li4-CMn12-D(ここで、0<E<1、0≦A≦2、0≦B≦A/2、0≦C≦4および0≦D≦C/2を満たすが、A=C=0を除く。)で表されることを特徴とするマンガン酸化物。 [Li 2-A MnO 3-B ] 1-E · [Li 4-C Mn 5 O 12-D ] E (where 0 <E <1, 0 ≦ A ≦ 2, 0 ≦ B ≦ A / 2, 0 ≦ C ≦ 4 and 0 ≦ D ≦ C / 2, except A = C = 0.)
  3. 一般式Li(4/3)-(4X/5)-YMn(2/3)-Z2-(2X/5)-(Y/2)(ここで、0<X<1、0<Y<(4/3)-(4X/5)、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されることを特徴とするマンガン酸化物。 General formula Li (4/3)-(4X / 5) -Y Mn (2/3) -Z M Z O 2- (2X / 5)-(Y / 2) (where 0 <X <1, 0 <Y <(4/3) − (4X / 5), 0 <Z ≦ 1/3 is satisfied, and M is one or more elements selected from elements other than Li, Mn, and O. Manganese oxide characterized by that.
  4. 層状岩塩型構造とスピネル型構造とを有することを特徴とする請求項1~請求項3のいずれかの項に記載のマンガン酸化物。 The manganese oxide according to any one of claims 1 to 3, wherein the manganese oxide has a layered rock salt structure and a spinel structure.
  5. 一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする請求項1又は請求項4に記載のマンガン酸化物の製造方法。 The lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) The method for producing manganese oxide according to claim 1 or 4, wherein the manganese oxide is chemically oxidized.
  6. 一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする請求項2又は請求項4に記載のマンガン酸化物の製造方法。 The lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) is electrochemically oxidized. The manufacturing method of the manganese oxide of Claim 2 or Claim 4 characterized by the above-mentioned.
  7. 一般式Li(4/3)-(4X/5)Mn(2/3)-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物を電気化学的に酸化することを特徴とする請求項3又は請求項4に記載のマンガン酸化物の製造方法。 General formula Li (4/3)-(4X / 5) Mn (2/3) -Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3 And M is one or more elements selected from elements other than Li, Mn, and O. The lithium-containing manganese composition represented by the following formula is electrochemically oxidized: 4. The method for producing manganese oxide according to 4.
  8. リチウム含有マンガン組成物が、層状岩塩型構造とスピネル型構造とを有することを特徴とする請求項5~請求項7のいずれかの項に記載のマンガン酸化物の製造方法。 The method for producing a manganese oxide according to any one of claims 5 to 7, wherein the lithium-containing manganese composition has a layered rock salt structure and a spinel structure.
  9. 電気化学的に酸化することが、電池内で充電することを特徴とする請求項5~請求項8のいずれかの項に記載のマンガン酸化物の製造方法。 The method for producing manganese oxide according to any one of claims 5 to 8, wherein the electrochemical oxidation is charged in the battery.
  10. 一般式Li(4/3)-(4X/5)Mn2/32-(2X/5)(ここで、0<X<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。 Lithium-containing manganese composition represented by the general formula Li (4/3)-(4X / 5) Mn 2/3 O 2- (2X / 5) (where 0 <X <1 is satisfied) and positive electrode A manganese oxide mixture comprising a material.
  11. 一般式[LiMnO1-E・[LiMn12(ここで、0<E<1を満たす。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。 A lithium-containing manganese composition represented by the general formula [Li 2 MnO 3 ] 1-E · [Li 4 Mn 5 O 12 ] E (where 0 <E <1 is satisfied) and a positive electrode material. Manganese oxide mixture characterized by
  12. 一般式Li(4/3)-(4X/5)Mn2/3-Z2-(2X/5)(ここで、0<X<1、0<Z≦1/3を満たし、MはLi、Mn、O以外の元素から選ばれるひとつ以上の元素である。)で表されるリチウム含有マンガン組成物と正極材料を含有することを特徴とするマンガン酸化物混合物。 General formula Li (4/3)-(4X / 5) Mn 2 / 3-Z M Z O 2- (2X / 5) (where 0 <X <1, 0 <Z ≦ 1/3 is satisfied, M is one or more elements selected from elements other than Li, Mn, and O.) A manganese oxide mixture comprising a lithium-containing manganese composition represented by the following formula: and a positive electrode material.
  13. リチウム含有マンガン組成物が、層状岩塩型構造とスピネル型構造とを有することを特徴とする請求項10~請求項12のいずれかの項に記載のマンガン酸化物混合物。 13. The manganese oxide mixture according to claim 10, wherein the lithium-containing manganese composition has a layered rock salt structure and a spinel structure.
  14. 請求項10~請求項13のいずれかの項に記載のマンガン酸化物混合物を含むことを特徴とする混合正極活物質。 A mixed positive electrode active material comprising the manganese oxide mixture according to any one of claims 10 to 13.
  15. 請求項1~請求項4のいずれかの項に記載のマンガン酸化物、又は請求項14に記載の混合正極活物質を含有する正極を備えることを特徴とするリチウム二次電池。 A lithium secondary battery comprising a positive electrode containing the manganese oxide according to any one of claims 1 to 4 or the mixed positive electrode active material according to claim 14.
PCT/JP2016/058736 2015-03-19 2016-03-18 Manganese oxide and method for producing same, and lithium secondary battery using same WO2016148283A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2015-056649 2015-03-19
JP2015056649 2015-03-19
JP2015-056647 2015-03-19
JP2015-056648 2015-03-19
JP2015056647 2015-03-19
JP2015056648 2015-03-19
JP2015-069564 2015-03-30
JP2015069564 2015-03-30
JP2016-041520 2016-03-03
JP2016041520A JP2016175825A (en) 2015-03-19 2016-03-03 Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
JP2016041519A JP6746961B2 (en) 2015-03-30 2016-03-03 Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP2016-041519 2016-03-03

Publications (1)

Publication Number Publication Date
WO2016148283A1 true WO2016148283A1 (en) 2016-09-22

Family

ID=56918809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058736 WO2016148283A1 (en) 2015-03-19 2016-03-18 Manganese oxide and method for producing same, and lithium secondary battery using same

Country Status (1)

Country Link
WO (1) WO2016148283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213058A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
WO2011111364A1 (en) * 2010-03-09 2011-09-15 株式会社豊田自動織機 Method for producing composite oxide, positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2012084257A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Complex oxide manufacturing method, lithium ion secondary battery cathode active material, and lithium ion secondary battery
CN103219507A (en) * 2013-03-28 2013-07-24 浙江大学 Composite material with tubular structure as well as preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511960A (en) * 2004-09-03 2008-04-17 ユーシカゴ・アーゴン・リミテッド・ライアビリティ・カンパニー Manganese oxide composite electrode for lithium battery
WO2011111364A1 (en) * 2010-03-09 2011-09-15 株式会社豊田自動織機 Method for producing composite oxide, positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2012084257A (en) * 2010-10-07 2012-04-26 Toyota Industries Corp Complex oxide manufacturing method, lithium ion secondary battery cathode active material, and lithium ion secondary battery
CN103219507A (en) * 2013-03-28 2013-07-24 浙江大学 Composite material with tubular structure as well as preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUMMOW, R. J. ET AL.: "An Investigation of Spinel-Related and Orthorhombic LiMn02 Cathodes for Rechargeable Lithium Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 141, no. 5, May 1994 (1994-05-01), pages 1178 - 1182, XP055312040 *
KELLERMAN, D. G. ET AL.: "Structure, Properties, and Application of Lithium-Manganese Spinels", RUSSIAN JOURNAL OF ELECTROCHEMISTRY, vol. 37, no. 12, December 2001 (2001-12-01), pages 1227 - 1236, XP055312048 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213058A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
KR101989632B1 (en) Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
EP2872450B1 (en) Doped nickelate compounds
TWI423508B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
KR101450421B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR102129689B1 (en) Lithium-rich nickel-manganese-cobalt cathode powder for lithium ion batteries
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
KR20170100534A (en) Lithium Rich Nickel Manganese Cobalt Oxide (LR-NMC)
WO2011108595A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP2021520333A (en) O3 / P2 mixed phase sodium-containing dope layered oxide material
JP2013543219A (en) Metal halide coating on lithium ion battery cathode material and corresponding battery
TW201339098A (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP2017084674A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015166291A (en) lithium composite oxide
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6746961B2 (en) Manganese oxide, method for producing the same, and lithium secondary battery using the same
JP2016175825A (en) Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
US10305103B2 (en) Stabilized electrodes for lithium batteries
JP2017162614A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
JP2022504835A (en) Lithium transition metal composite oxide and its manufacturing method
WO2022138702A1 (en) Spinel-type lithium manganese, method for producing same, and use of same
WO2016148283A1 (en) Manganese oxide and method for producing same, and lithium secondary battery using same
Fang et al. Layered iron orthovanadate microrods as cathode for lithium ion batteries with enhanced cycle performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765112

Country of ref document: EP

Kind code of ref document: A1