WO2016148173A1 - Method for manufacturing expandable microspheres, and expandable microspheres - Google Patents

Method for manufacturing expandable microspheres, and expandable microspheres Download PDF

Info

Publication number
WO2016148173A1
WO2016148173A1 PCT/JP2016/058263 JP2016058263W WO2016148173A1 WO 2016148173 A1 WO2016148173 A1 WO 2016148173A1 JP 2016058263 W JP2016058263 W JP 2016058263W WO 2016148173 A1 WO2016148173 A1 WO 2016148173A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polymerization
polymerization inhibitor
mass
soluble
Prior art date
Application number
PCT/JP2016/058263
Other languages
French (fr)
Japanese (ja)
Inventor
俊蔵 遠藤
哲男 江尻
義克 佐竹
修作 柴田
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015053502A external-priority patent/JP2016172820A/en
Priority claimed from JP2015053504A external-priority patent/JP2016172228A/en
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2016148173A1 publication Critical patent/WO2016148173A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/40Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using retarding agents

Definitions

  • the present invention relates to a method for producing foamable microspheres and foamable microspheres. More specifically, the start of a polymerization reaction at an undesired time such as during preparation of a dispersion or before the start of polymerization is sufficiently suppressed. , A method for producing foamable microspheres, in which the polymerization reaction in the oil phase is not hindered when suspension polymerization for producing foamable microspheres is performed, and physical properties such as foaming magnification are excellent, and foamable microspheres Regarding fairs.
  • Expandable microspheres are used in various fields such as paints and plastic fillers for weight reduction, including applications in foamed inks. Applications are being developed.
  • the foamable microspheres are usually obtained by encapsulating a volatile liquid foaming agent (sometimes referred to as “physical foaming agent” or “volatile swelling agent”) with a polymer and microencapsulating it.
  • a volatile liquid foaming agent sometimes referred to as “physical foaming agent” or “volatile swelling agent”
  • the foaming agent a chemical foaming agent that decomposes when heated to generate gas may be used as desired.
  • the foamable microspheres can be produced by a suspension polymerization of a polymerizable mixture containing at least a foaming agent and a polymerizable monomer in an aqueous medium. As the polymerization reaction proceeds, an outer shell is formed by the produced polymer, and a foamable microsphere having a structure in which the foaming agent is enclosed in the outer shell is obtained.
  • the polymer forming the outer shell of the foamable microsphere As the polymer forming the outer shell of the foamable microsphere, a thermoplastic resin having a good gas barrier property is generally used.
  • the polymer forming the outer shell softens when heated.
  • the foaming agent one that is gaseous at a temperature below the softening point of the polymer is selected.
  • the foaming agent vaporizes and expands and acts on the outer shell, and the elastic modulus of the polymer forming the outer shell decreases rapidly. Therefore, the expansion of the foamable microsphere occurs at a certain temperature. This temperature is called the foaming start temperature.
  • the foamable microspheres When the foamable microspheres are heated to a temperature higher than the foaming start temperature, that is, the foaming temperature, the foamable microspheres expand themselves to form closed cells (such as “foam particles”, “hollow particles” or “hollow plastic balloon”). Sometimes).
  • a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is generally added to an aqueous dispersion medium containing a dispersion stabilizer.
  • the mixture is stirred and mixed to granulate fine droplets of the polymerizable mixture, and then heated to perform suspension polymerization. Since most of the polymerizable mixture is usually insoluble in water, an oil phase is formed in an aqueous dispersion medium, and thus, it is granulated into fine droplets by stirring and mixing.
  • Suspension polymerization forms foamable microspheres with approximately the same particle size as these fine droplets.
  • various additives such as a dispersion stabilizer, a stabilizer (sometimes referred to as “auxiliary stabilizer”), a polymerization initiator (sometimes called “catalyst”), and a polymerization assistant.
  • a dispersion stabilizer sometimes referred to as “auxiliary stabilizer”
  • a stabilizer sometimes referred to as “auxiliary stabilizer”
  • a polymerization initiator sometimes called “catalyst”
  • a polymerization assistant e.g., a polymerization initiator, and a polymerization assistant.
  • the polymerizable monomer may initiate a polymerization reaction at an undesired early stage (such as during the preparation of a polymerizable mixture or a dispersion), the resulting foamable microspheres are homogeneous.
  • the desired foaming characteristics may not be achieved, and the productivity and foamed microspheres may be deteriorated.
  • an undesired polymerization reaction may start.
  • preparation of a polymerizable mixture and preparation of a dispersion take time. The reaction may start.
  • a polymerization inhibitor that suppresses the polymerization of vinyl compounds such as acrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid, quinone compounds (benzoquinone, etc.), hydroquinone compounds (called “hydroquinone”)
  • vinyl compounds such as acrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid, quinone compounds (benzoquinone, etc.), hydroquinone compounds (called “hydroquinone”)
  • phenolic compounds methoquinone, tocopherol, etc.
  • hindered amine compounds amine compounds
  • amine compounds phosphorus compounds
  • manganese salt compounds copper diphenyldithiocarbamate
  • nitroso compounds such as nitroso compounds, N-oxyl compounds, etc.
  • polymerization inhibitors are used in the distillation step for the synthesis of the vinyl compound monomer and for purification after the synthesis, and are also used in a very small amount during the storage and storage of the monomer. Typically, there is a step of removing the polymerization inhibitor prior to producing the polymer from the monomer.
  • Patent Document 1 includes suspension polymerization of a polymerizable mixture containing at least a foaming agent and a polymerizable monomer in an aqueous dispersion medium, and encapsulating the foaming agent in the outer shell of the resulting polymer.
  • Patent Document 2 discloses that in the method for producing hollow resin particles, an aqueous polymerization inhibitor is contained in a liquid phase (aqueous phase) in which a monomer component is insoluble.
  • Patent Document 3 discloses that a polymerization aid (polymerization inhibitor) is generally used for suppressing the generation of an emulsion polymer in an aqueous system in suspension polymerization and preventing scale, and ascorbic acids. And alkali metal nitrites are used as polymerization inhibitors, the physical properties such as expansion ratio (synonymous with foaming ratio) are not sufficiently improved, or the thermal stability is low and the polymer decomposes during the polymerization reaction. It is disclosed that there is a problem that the property as an inhibitor is lost or the physical properties of the resulting heat-expandable microcapsules (expandable microspheres) and the hollow microparticles obtained by thermal expansion cannot be improved sufficiently. Has been.
  • the polymerization inhibitor has an effect of sufficiently suppressing the initiation of the polymerization reaction of the polymerizable monomer at an undesired time (such as during the preparation of the polymerizable mixture or the preparation of the dispersion). At the same time, it is essential to have as little addition as possible so as not to inhibit the polymerization reaction rate in the subsequent polymerization reaction such as suspension polymerization that forms the outer shell of the foamable microsphere. It is required to be.
  • a polymerization inhibitor used in a method for producing foamable microspheres in which a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is suspended in an aqueous dispersion medium
  • a polymerization inhibitor is used as a product polymer. It is required that the foamable microspheres can be easily transferred to an aqueous dispersion medium without being included, and that the resulting foamable microspheres can have excellent physical properties.
  • a polymerizable mixture is subjected to suspension polymerization in an aqueous dispersion medium to produce foamable microspheres in which a foaming agent is enclosed in the outer shell of the resulting polymer.
  • a sufficient amount of polymerization suppression effect for example, a temperature of 25 ° C.
  • a polymerization inhibiting effect for 1 hour or longer, preferably 2 hours or longer, and further 4 hours or longer is desired), and a polymerization reaction in an oil phase by suspension polymerization to obtain foamable microspheres.
  • a suspension of a polymerizable mixture containing at least a blowing agent, a polymerizable monomer, and a polymerization inhibitor forms an oil phase in the aqueous dispersion medium, for example, during preparation of the dispersion or before the start of polymerization.
  • the problem of the present invention is that the start of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of polymerization is suppressed, and the polymerization reaction in the desired oil phase is not inhibited, such as the expansion ratio. It is an object of the present invention to provide a method for producing foamable microspheres having excellent physical properties; and to provide foamable microspheres having excellent physical properties.
  • the present inventors have found that the problem can be solved by using a specific polymerization inhibitor in the oil phase, and the present invention has been completed.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium. Thereafter, suspension polymerization is performed in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and the maximum expansion ratio in which the foaming agent is enclosed in the outer shell of the produced polymer is 5 times or more.
  • a method of making certain foamable microspheres is provided.
  • the following methods (1) to (6) for producing foamable microspheres are provided as specific embodiments of the invention relating to the method for producing foamable microspheres.
  • the water-soluble polymerization inhibitor contains at least one compound selected from the group consisting of hydroquinone compounds, naphthohydroquinone compounds and N-nitroso compounds.
  • the water-insoluble polymerization inhibitor contains an oil-soluble aromatic compound having at least one selected from the group consisting of vitamin E, hydroxy group, quinone group and alkoxy group.
  • the polymerizable monomer is at least 30 to 95% by weight of vinylidene chloride and at least selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate.
  • the method for producing foamable microspheres as described above which is a monomer mixture containing 5 to 70% by mass of one kind of monomer.
  • the polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid,
  • the process for producing foamable microspheres as described above which is a monomer mixture containing 0 to 75% by mass of at least one monomer selected from the group consisting of methacrylic acid and vinyl acetate.
  • the aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids.
  • the method for producing foamable microspheres, wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium.
  • a foamable microsphere having a maximum foaming ratio of 5 times or more obtained by enclosing a foaming agent in the outer shell of the resulting polymer obtained by suspension polymerization in the presence of a water-soluble polymerization inhibitor is provided.
  • the above-mentioned foamable microsphere having an average particle size of 0.5 to 150 ⁇ m is provided.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor is suspended in an aqueous dispersion medium, and then a water-soluble polymerization inhibitor.
  • a foamable microsphere having a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the resulting polymer obtained by suspension polymerization in the presence of a water-insoluble polymerization inhibitor is provided.
  • the production method of the foamable microsphere of the present invention (hereinafter sometimes referred to as “the production method of the present invention”) is at least a foaming agent and a polymerizable monomer in an aqueous dispersion medium. Suspend a polymerizable mixture containing a monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and then suspension polymerization in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor A method for producing foamable microspheres having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in an outer shell of a produced polymer.
  • the foaming agent, the polymerizable monomer, and other additives described later are not particularly limited, and conventionally known ones can be used. That is, the production method of the present invention can be applied to the production of all types of expandable microspheres.
  • Foaming agent used in the method for producing foamable microspheres of the present invention is usually a substance that becomes gaseous at a temperature below the softening point of the polymer forming the outer shell.
  • a foaming agent a low-boiling organic solvent is suitable.
  • ethane ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, n-hexane, heptane , n- octane, isooctane, isododecane, petroleum ether, hydrocarbons such as isoparaffin mixture; CCl 3 F, CCl 2 F 2, CClF 3, chlorofluorocarbons such as CClF 2 -CClF 2; tetramethylsilane, trimethylethyl silane, trimethyl And tetraalkylsilanes such as isopropylsilane and trimethyl-n-propylsilane.
  • isobutane, n-butane, n-pentane, isopentane, n-hexane, petroleum ether, isooctane, isododecane, and a mixture of two or more thereof are preferable.
  • a compound which is thermally decomposed by heating and becomes gaseous may be used.
  • the content of the foaming agent is usually 10 to 40 parts by weight, preferably 12 to 35 parts by weight, more preferably 15 to 32 parts by weight with respect to 100 parts by weight of the total amount of polymerizable monomers described below. It is a range.
  • the polymerizable monomer is a foamable microsphere in which a foaming agent is encapsulated in the outer shell of a product polymer obtained by suspension polymerization in an aqueous dispersion medium. As long as it can be formed, it is not particularly limited.
  • the outer shell of the produced polymer has gas barrier properties, solvent resistance and heat resistance, and can produce a polymer having good foamability and, if desired, foamability at high temperature.
  • the polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile (the monomers may be collectively referred to as “(meth) acrylonitrile”), and / or.
  • Examples of polymerizable monomers other than (meth) acrylonitrile and / or vinylidene chloride include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and dicyclopentenyl acrylate; methyl methacrylate, ethyl methacrylate Methacrylic acid esters such as butyl methacrylate and isobornyl methacrylate; acrylic acid, methacrylic acid, vinyl chloride, styrene, vinyl acetate, ⁇ -methylstyrene, chloroprene, neoprene, butadiene and the like.
  • polymerizable monomers can be used alone or in combination of two or more.
  • a preferred polymerizable monomer is a monomer mixture containing (meth) acrylonitrile and / or vinylidene chloride.
  • the polymerizable monomer is (meth) acrylonitrile (at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile) in a range of 25 to 100% by mass.
  • At least one monomer selected from the group consisting of vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate hereinafter referred to as "monomer other than (meth) acrylonitrile”
  • a monomer mixture containing 0 to 75% by mass is preferable.
  • the polymerizable monomer contains 100% by mass of (meth) acrylonitrile, it is not strictly a monomer mixture, but in the present invention, the monomer including this case is included. It is called a mixture.
  • Microsphere foaming temperature tends to be low. Further, the foaming temperature, the maximum foaming ratio, etc. of the foamable microsphere to be formed can be adjusted also by the type and composition of the monomer other than (meth) acrylonitrile. Therefore, desired foamable microspheres can be formed by adjusting the ratio of (meth) acrylonitrile and monomers other than (meth) acrylonitrile, and the type and composition of monomers other than (meth) acrylonitrile. can do.
  • Preferred combinations of (meth) acrylonitrile and monomers other than (meth) acrylonitrile are (meth) acrylonitrile 25 to 99.5% by mass, preferably 30 to 99% by mass, and monomers other than (meth) acrylonitrile It is 0.5 to 75% by mass, preferably 1 to 70% by mass (the total amount is 100% by mass), and as a monomer other than (meth) acrylonitrile, particularly preferred is methyl methacrylate.
  • the content ratio of (meth) acrylonitrile is too low, the foaming temperature of the foamable microspheres formed may be low, or the gas barrier property may be insufficient.
  • the polymerizable monomer is 30 to 95% by mass of vinylidene chloride, acrylonitrile, methacrylonitrile, acrylic ester, methacrylic ester, styrene, acrylic acid, methacrylic acid and A monomer mixture containing 5 to 70% by mass of at least one monomer selected from the group consisting of vinyl acetate (hereinafter sometimes referred to as “monomer other than vinylidene chloride”) is preferable. .
  • the gas barrier property tends to be low.
  • the foaming temperature, the maximum foaming ratio, etc. of the foamable microspheres to be formed can also be adjusted by the type and composition of monomers other than vinylidene chloride. Therefore, desired foamable microspheres can be formed by adjusting the ratio of vinylidene chloride and monomers other than vinylidene chloride, and the type and composition of monomers other than vinylidene chloride.
  • Preferred combinations of vinylidene chloride and monomers other than vinylidene chloride are 35 to 90% by mass, preferably 40 to 80% by mass, and monomers other than vinylidene chloride 10 to 65% by mass, preferably 20 to It is 60% by mass (the total amount is 100% by mass), and as a monomer other than vinylidene chloride, (meth) acrylonitrile and methyl methacrylate are preferable, and a monomer mixture containing vinylidene chloride is preferable.
  • the combination is 45 to 75% by mass of vinylidene chloride, 20 to 50% by mass of (meth) acrylonitrile, and 3 to 10% by mass of methyl methacrylate (the total amount is 100% by mass). If the content ratio of vinylidene chloride is too low, the gas barrier property of the foamable microspheres to be formed may be insufficient, or the desired maximum foaming ratio may not be obtained.
  • Crosslinkable monomer A crosslinkable monomer can be used in combination with the polymerizable monomer described above in order to improve foaming characteristics and heat resistance.
  • the crosslinkable monomer a compound having two or more carbon-carbon double bonds is usually used. More specifically, as the crosslinkable monomer, for example, divinylbenzene, ethylene glycol di (meth) acrylate [ethylene glycol di (meth) acrylate], diethylene glycol di (meth) acrylate [diethylene glycol di (meth) acrylate] ] Triethylene glycol di (meth) acrylate, allyl (meth) acrylate, triallyl isocyanate, triacryl formal, trimethylolpropane tri (meth) acrylate, 1,3-butyl glycol di (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate.
  • the proportion of the crosslinkable monomer used is usually 0.01 to 5% by mass of the polymerizable monomer, preferably 0.05 to 2% by mass, more preferably 0.1 to 1.5% by mass, still more preferably. Is 0.15 to 1% by mass.
  • Polymerization initiator The polymerizable monomer is polymerized by contact with the polymerization initiator in a predetermined temperature environment.
  • the polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator soluble in the polymerizable monomer to be used is preferable.
  • Examples of the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxy ester, peroxy dicarbonate, and azo compound.
  • dialkyl peroxides such as methyl ethyl peroxide, di-t-butyl peroxide, dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 3, 5, Diacyl peroxide such as 5-trimethylhexanoyl peroxide; t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, 1 -Cyclohexyl-1-methylethylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, cumylperoxyneodecanoate, ( ⁇ , ⁇ -bis-neodecanoyl Peroxy) peroxy such as diisopropylbenzene Esters; bis (4-
  • Dispersion stabilizer, auxiliary stabilizer and the like Suspension polymerization is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer (suspension agent).
  • a dispersion stabilizer include silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, barium carbonate, magnesium carbonate and the like. be able to.
  • the dispersion stabilizer is usually used at a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • auxiliary stabilizers such as condensation products of diethanolamine and aliphatic dicarboxylic acids, condensation products of urea and formaldehyde, polyvinylpyrrolidone, polyethylene oxide, polyethyleneimine, tetramethylammonium hydroxide, gelatin, Methyl cellulose, polyvinyl alcohol, dioctyl sulfosuccinate, sorbitan ester, various emulsifiers and the like can be used.
  • One preferred combination is a combination of colloidal silica and a condensation product.
  • the condensation product a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and a condensation product of diethanolamine and adipic acid or a condensation product of diethanolamine and itaconic acid is particularly preferable.
  • the condensate is defined by its acid value.
  • the acid value is 60 mgKOH / g or more and less than 95 mgKOH / g.
  • Particularly preferred is a condensate having an acid value of 65 mgKOH / g or more and 90 mgKOH / g or less.
  • inorganic salts such as sodium chloride and sodium sulfate are added, expandable microspheres having a more uniform particle shape are easily obtained.
  • sodium chloride is preferably used.
  • the amount of colloidal silica used varies depending on the particle size, but is usually 1-20 parts by weight, preferably 1.5-10 parts by weight, based on 100 parts by weight of the polymerizable monomer. .
  • the condensation product is usually used at a ratio of 0.05 to 2 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • the inorganic salt is used in a proportion of about 0 to 100 parts by mass, and in many cases about 0.5 to 50 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • a combination of colloidal silica and a water-soluble nitrogen-containing compound examples include polyvinyl pyrrolidone, polyethyleneimine, polyoxyethylene alkylamine, polydialkylaminoalkyl (meth) acrylate represented by polydimethylaminoethyl methacrylate and polydimethylaminoethyl acrylate, and polydimethylaminopropyl.
  • examples thereof include polydialkylaminoalkyl (meth) acrylamides represented by acrylamide and polydimethylaminopropylmethacrylamide, polyacrylamide, polycationic acrylamide, polyamine sulfone, and polyallylamine.
  • a combination of colloidal silica and polyvinylpyrrolidone is preferably used.
  • Another preferred combination is a combination of magnesium hydroxide and / or calcium phosphate and an emulsifier.
  • a poorly water-soluble metal hydroxide obtained by reaction in a water phase of a water-soluble polyvalent metal compound (for example, magnesium chloride) and an alkali metal hydroxide salt (for example, sodium hydroxide) for example, a colloid of magnesium hydroxide
  • a colloid of magnesium hydroxide for example, a colloid of magnesium hydroxide
  • a reaction product in an aqueous phase of sodium phosphate and calcium chloride can be used.
  • an anionic surfactant for example, dialkyl sulfosuccinate or polyoxyethylene alkyl (allyl) ether phosphate ester may be used.
  • An emulsifier is not generally used, but an anionic surfactant such as a dialkyl sulfosuccinate or a polyoxyethylene alkyl (allyl) ether phosphate may be used if desired.
  • an anionic surfactant such as a dialkyl sulfosuccinate or a polyoxyethylene alkyl (allyl) ether phosphate may be used if desired.
  • aqueous dispersion medium from dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids (vitamin C, etc.)
  • the polymerizable mixture containing a polymerizable monomer contains a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and at least one of the above-mentioned compounds, particularly alkali metal nitrite, in an aqueous dispersion medium.
  • a process for producing expandable microspheres containing sulfur is preferred.
  • the alkali metal nitrites sodium nitrite and potassium nitrite are preferable in terms of availability and price. These compounds are generally used in a proportion of 0.001 to 1 part by mass, preferably 0.01 to 0.1 part by mass, with respect to 100 parts by mass of the polymerizable monomer.
  • Water-soluble polymerization inhibitor The method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention comprises at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization in an aqueous dispersion medium. It is characterized in that a polymerizable mixture containing an inhibitor is suspended and then subjected to suspension polymerization in the presence of a water-soluble polymerization inhibitor.
  • the water-soluble polymerization inhibitor is a polymerization inhibitor having solubility in water, and means a polymerization inhibitor having a solubility in water of 1% by mass at a normal temperature of 20 ° C.
  • solubility in water at a temperature of 20 ° C. means the mass (unit: mass%) of the polymerization inhibitor dissolved in 100 g of water at a temperature of 20 ° C. (under a pressure condition of 760 torr).
  • the solubility in water at a temperature of 20 ° C. is 5% by mass or more from the viewpoint of uniformity of foaming, and the solubility in water at a temperature of 20 ° C. It is more preferable that it is 8 mass% or more.
  • Water-insoluble polymerization inhibitor The method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention comprises at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-insoluble solution in an aqueous dispersion medium. A polymerizable mixture containing a water-soluble polymerization inhibitor is suspended, and then suspension polymerization is performed in the presence of a water-insoluble polymerization inhibitor.
  • the water-insoluble polymerization inhibitor is a polymerization inhibitor that is not soluble in water, and means a polymerization inhibitor having a solubility in water of 1% by mass or less at a normal temperature of 20 ° C.
  • the solubility in water at a temperature of 20 ° C. means the mass (unit: mass%) of the polymerization inhibitor dissolved in 100 g of water at a temperature of 20 ° C. (under a pressure condition of 760 torr).
  • the solubility in water at a temperature of 20 ° C. is preferably 0.5% by mass or less from the viewpoint of uniformity of foaming, and the water at a temperature of 20 ° C. More preferably, the solubility in is 0.3 mass% or less.
  • a foaming agent i) at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium.
  • the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is first dissolved in the oil phase formed by the polymerizable monomer.
  • the initiation of undesired polymerization reaction in particular, the occurrence of polymerization in the polymerizable mixture such as at the time of preparing the polymerizable mixture or the preparation of the dispersion is sufficiently suppressed, and ii) the water-soluble polymerization inhibitor or During the polymerization reaction in which the outer shell of the resulting polymer encapsulating the foaming agent is formed by suspension polymerization in the presence of a water-insoluble polymerization inhibitor, a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is added.
  • the polymerization reaction is not hindered by at least part of the transition to the aqueous phase, and iii) Furthermore, the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor migrates from the oil phase to the water phase due to its hydrophilicity. As a result, in the polymerization reaction, generation of new particles due to polymerization in a place other than the droplet (oil phase) containing the polymerizable mixture containing the polymerizable monomer, that is, in the aqueous dispersion medium (aqueous phase) is suppressed.
  • the physical properties such as the maximum expansion ratio are excellent by a mechanism such that the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is less likely to suppress the polymerization, and the particle size is within a predetermined range if desired. It is presumed that foamable microspheres having a maximum foaming ratio of 5 times or more can be obtained.
  • a water-soluble polymerization inhibitor that can be used in the method for producing foamable microspheres of the present invention, as long as it has solubility in water at a predetermined temperature of 20 ° C. and can exhibit the action described above.
  • it preferably contains at least one compound selected from the group consisting of a hydroquinone compound, a naphthohydroquinone compound and an N-nitroso compound, and further, the desired effect is sufficiently obtained even in the absence of oxygen. Since it can be exhibited, naphthohydroquinonesulfonic acid or a salt thereof, or a water-soluble aromatic N-nitroso compound is more preferable.
  • the oxygen concentration in the reaction system or in the space of the container is determined by substituting the reaction system or the container with an inert gas such as nitrogen, helium, argon, or carbon dioxide. It refers to a sufficiently lowered condition, for example, a condition such that the oxygen concentration in the reaction system or in the space of the container is usually 1 vol% or less, preferably 0.1 vol% or less.
  • hydroquinone Compounds of the hydroquinone compound that is a water-soluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention include hydroquinone, methoquinone (p-methoxyphenol), catechol, resorcinol and the like. Hydroquinone and methoquinone are more preferably used. Note that tert-butyl hydroquinone does not normally correspond to the water-soluble polymerization inhibitor used in the present invention because its solubility in water at a temperature of 20 ° C. is 0.5% by mass or less.
  • a naphthohydroquinone compound which is a water-soluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention is a hydroquinone compound having a naphthalene ring which is an aromatic complex ring, and oxygen. From the viewpoint of inhibiting polymerization in the absence or from the viewpoint of water solubility, a compound having a sulfonic acid group or a carboxylic acid group in the molecule or a salt thereof may be used. More preferred naphthohydroquinone compounds include naphthohydroquinone sulfonic acid or a salt thereof.
  • ammonium naphthohydroquinonesulfonate sodium naphthohydroquinonesulfonate, potassium naphthohydroquinonesulfonate, monomethylammonium naphthohydroquinonesulfonate, monoethylammonium naphthohydroquinonesulfonate, dimethylammonium naphthohydroquinonesulfonate, trimethyl naphthohydroquinonesulfonate
  • ammonium naphthohydroquinonesulfonate monomethylammonium naphthohydroquinonesulfonate, monoethylammonium naphthohydroquinonesulfonate, dimethylammonium naphthohydroquinonesulfonate, trimethylammonium naphthohydroquinonesulfonate, and tetramethylammonium naphthohydroquinonesulfonate.
  • ammonium naphthohydroquinonesulfonate particularly preferred.
  • the method for producing foamable microspheres of the present invention further comprises a water-soluble aromatic N-nitroso compound having an aromatic group in the molecule. Preferably mentioned.
  • alkali metal salts, alkaline earth metal salts, ammonium salts and the like of naphthol particularly preferably N-nitroso-N-phenylhydroxylamine salt, that is, alkali metal salt of N-nitroso-N-phenylhydroxylamine, alkali An earth metal salt, an ammonium salt, and the like, more preferably an ammonium salt of N-nitroso-N-phenylhydroxylamine, and the like.
  • a water-insoluble polymerization inhibitor that can be used in the method for producing foamable microspheres of the present invention, it has a low solubility in water at a predetermined temperature of 20 ° C., and has the effects described above. Although it is not particularly limited as long as possible, the balance between the suppression effect of the polymerization reaction at an undesired time and the rapid progress of the polymerization reaction at the desired time, and the physical properties of the resulting foamable microspheres are excellent. From the viewpoint, those containing an oil-soluble aromatic compound having at least one selected from the group consisting of vitamin E, hydroxy group, quinone group and alkoxy group are preferable.
  • Vitamin E Vitamin E which is a water-insoluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention, is a kind of fat-soluble vitamin and has tocol and tocotrienol as long as it has the physiological activity of ⁇ -tocopherol.
  • These are phenol compounds having an antioxidant action due to the OH group in the aromatic ring of the chroman ring, generally referred to as all the derivatives of
  • Natural vitamin E is d- ⁇ -tocopherol, and it is more preferable to use natural vitamin E as a water-insoluble polymerization inhibitor in the method for producing foamable microspheres of the present invention.
  • Vitamin E belonging to the fat-soluble vitamin has a solubility in water at a temperature of 20 ° C. of less than 0.1% by mass.
  • An oil-soluble aromatic compound having at least one selected from the group consisting of a hydroxy group, a quinone group and an alkoxy group In addition, a water-insoluble polymerization preferably used in the method for producing foamable microspheres of the present invention
  • oil-soluble aromatic compound is usually 1 mass. % Or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
  • oil-soluble aromatic compound include (i) an oil-soluble aromatic compound having a hydroxy group, such as phenols or naphthols such as t-butylhydroquinone, t-butylcatechol, butylhydroxyanisole, 4-methoxynaphthol and the like; (ii) oil-soluble aromatic compounds having a quinone group are benzoquinones, naphthoquinones, or anthraquinones such as benzoquinone, 1,4-naphthoquinone, 1,2-naphthoquinone, 2-hydroxy -1,4-naphthoquinone, anthraquinone, etc .; or (iii) an oil-soluble aromatic compound having an alkoxy group is a benzene derivative or a
  • oil-soluble aromatic compounds are 4-methoxynaphthol (solubility: less than 0.1% by mass), 2-hydroxy-1,4-naphthoquinone (solubility: 0.2% by mass), 1,4 -Naphthoquinone (solubility: less than 0.1% by weight), t-butylcatechol (solubility: 0.2% by weight), butylhydroxyanisole (solubility: less than 0.1% by weight), t-butylhydroquinone (solubility: 1% by weight) %) And the like.
  • an oil-soluble aromatic compound having a hydroxy group is a naphthol, or an oil-soluble aromatic compound having a quinone group
  • Naphthoquinones and anthraquinones and naphthalene derivatives which are oil-soluble aromatic compounds having an alkoxy group are more preferred.
  • these compounds include 4-methoxynaphthol, 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 1,4-dimethoxynaphthalene, 1,4-diethoxynaphthalene and the like.
  • the oxygen concentration in the reaction system or in the space of the container is determined by substituting the reaction system or the container with an inert gas such as nitrogen, helium, argon, or carbon dioxide. It refers to a sufficiently lowered condition, for example, a condition such that the oxygen concentration in the reaction system or in the space of the container is usually 1 vol% or less, preferably 0.1 vol% or less.
  • the amount of the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used in the method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention is particularly limited as long as it meets the purpose of the present invention. Although not limited, it is usually 0.0005 to 0.5% by mass (5 to 5000 ppm), preferably 0.001 to 0.1% by mass (10 to 1000 ppm), and more based on the total amount of polymerizable monomers. Preferably 0.002 to 0.07 mass% (20 to 700 ppm), more preferably 0.003 to 0.05 mass% (30 to 500 ppm), particularly preferably 0.005 to 0.04 mass% (50 to 700 ppm). 400 ppm).
  • the polymerizable monomer used in the method for producing foamable microspheres of the present invention does not start unintentional polymerization during transfer or storage of the polymerizable monomer, so that a polymerization inhibitor is added in advance. May be contained. At that time, when the polymerization inhibitor corresponds to the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor in the present invention, the water-soluble polymerization inhibitor or the water-soluble polymerization inhibitor in the method for producing foamable microspheres of the present invention described above.
  • the amount of the water-insoluble polymerization inhibitor used is a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium.
  • the usage corresponding to the shortage or excess is offset. Thus, what is necessary is just to adjust the usage-amount of a water-soluble polymerization inhibitor.
  • the amount of the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used is usually 0.002 to 0.5% by mass (20 to 5000 ppm), preferably 0.005 to 0.1% by mass (50 to 50%). 1000 ppm), more preferably 0.006 to 0.05 mass% (60 to 500 ppm), and particularly preferably 0.007 to 0.05 mass% (70 to 500 ppm).
  • a dichromate or alkali metal nitrite as a polymerization aid is further contained in an aqueous dispersion medium (aqueous phase).
  • aqueous phase Containing at least one compound selected from stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, suspending the polymerizable mixture, and then water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor Suspension polymerization may be carried out in the presence.
  • the foamable microscopic material containing at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids in an aqueous dispersion medium.
  • a method for producing a sphere in particular, by producing a foamable microsphere in which the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt, The combination of the composition and / or the type and content of the foaming agent is preferable because the maximum foaming ratio and uniformity of the foamable microsphere can be adjusted.
  • polymerization inhibition time Elapsed time until the white turbidity is observed by visually observing the presence or absence of white turbidity caused by the content of the ampoule being started to polymerize.
  • polymerization inhibition time Elapsed time until the white turbidity is observed by visually observing the presence or absence of white turbidity caused by the content of the ampoule being started to polymerize.
  • the polymerization inhibition time is usually 1 hour or longer, preferably 2 hours or longer, more preferably 3 hours or longer, particularly preferably 4 hours or longer. If the polymerization suppression time is too long, the initiation and progress of the polymerization reaction for producing foamable microspheres having a maximum expansion ratio of 5 times or more may be hindered. It is preferable to set the time within the range of 8 hours or less.
  • Aqueous Dispersion Medium In the method for producing foamable microspheres of the present invention, suspension polymerization is carried out in an aqueous dispersion medium.
  • aqueous dispersion medium water can be used, and specifically, deionized water or distilled water can be used.
  • the amount of the aqueous dispersion medium used relative to the total amount of the polymerizable monomers is not particularly limited, but is usually 0.5 to 10 times, and in many cases 1 to 7 times (mass ratio).
  • a foaming agent for producing foamable microspheres of the present invention, at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or non-suspended in an aqueous dispersion medium prior to suspension polymerization.
  • the preparation method of the polymerizable mixture containing the water-soluble polymerization inhibitor is not particularly limited.
  • an aqueous dispersion medium (aqueous phase) containing a dispersion stabilizer by adding a dispersion stabilizer (suspension agent) to the aqueous dispersion medium such as water and, if necessary, an auxiliary stabilizer or a polymerization aid.
  • the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used in the method for producing foamable microspheres of the present invention is added to the oil phase (a mixture containing at least a foaming agent and a polymerizable monomer). And contained in the polymerizable mixture.
  • the polymerization initiator can be added to the polymerizable monomer in advance, but if it is necessary to avoid early polymerization, a mixture containing at least a foaming agent and a polymerizable monomer When (oil phase) is added to the aqueous dispersion medium containing the previous dispersion stabilizer and stirred and mixed, a polymerization initiator may be added and integrated in the aqueous dispersion medium.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor can be obtained.
  • the polymerizable mixture containing at least the foaming agent, the polymerizable monomer, the polymerization initiator, and the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is contained in an aqueous dispersion medium at a temperature of 25 ° C.
  • the polymerization reaction is usually suppressed for 1 hour or longer, preferably 2 hours or longer, more preferably 3 hours or longer, particularly preferably 4 hours or longer. Polymerization can be performed.
  • the obtained polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended by a method such as stirring and mixing.
  • a method such as stirring and mixing.
  • an oil phase containing at least a foaming agent, a polymerizable monomer, and a polymerization initiator forms droplets in an aqueous phase containing an aqueous dispersion medium.
  • By selecting the conditions of stirring and mixing performed for suspending the polymerizable mixture it can be granulated into fine droplets of a desired size.
  • the average particle diameter of the droplets is preferably substantially the same as the average particle diameter of the target foamable microsphere, and is usually in the range of 0.2 to 500 ⁇ m, preferably about 0.5 to 150 ⁇ m. preferable.
  • conditions such as the type of the stirrer and the number of rotations are set according to the desired particle size of the foamable microsphere. At this time, the conditions are selected in consideration of the size and shape of the polymerization can and the presence or absence of baffles.
  • a homogenizer having a high shearing force is preferable.
  • an aqueous dispersion medium and a polymerizable mixture are fed into a continuous high-speed rotation high shear type agitator / disperser, and both are continuously fed in the agitator / disperser.
  • a method in which the obtained dispersion is poured into a polymerization tank and suspension polymerization is performed in the polymerization tank.
  • a batch-type high-speed rotation high shear disperser can also be used.
  • a water-soluble polymerization inhibitor or Suspension polymerization After suspending a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium, a water-soluble polymerization inhibitor or Suspension polymerization is performed in the presence of a water-insoluble polymerization inhibitor.
  • the suspension polymerization is carried out in an aqueous dispersion medium, and is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer (suspension agent).
  • the dispersion stabilizer In carrying out the suspension polymerization, it is preferable to select optimum pH conditions depending on the type of dispersion stabilizer and auxiliary stabilizer used. For example, when silica such as colloidal silica is used as the dispersion stabilizer, it is preferable to carry out the polymerization in an acidic environment, so that the aqueous dispersion containing the dispersion stabilizer in advance prior to the suspension of the polymerizable mixture described above.
  • the pH of the system may be adjusted to about 3 to 4 by adding an acid to the medium.
  • magnesium hydroxide or calcium phosphate is used as the dispersion stabilizer, the polymerization is performed in an alkaline environment.
  • the polymerization (suspension polymerization) reaction is carried out in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, usually in the absence of oxygen, for example, degassed or replaced with an inert gas such as nitrogen gas.
  • the polymerization can is carried out at 40 to 80 ° C., preferably 50 to 70 ° C. with stirring for 1 to 40 hours, preferably 3 to 30 hours. Since the foamable microspheres formed by polymerization form a fine particle solid, the aqueous phase containing the aqueous dispersion medium is separated from the foamable microsphere by a known separation method such as filtration, centrifugation, sedimentation, or the like. Separated and removed from the fair.
  • the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor easily shifts to the aqueous phase at the beginning of the polymerization, so that the polymerization is less likely to be suppressed, and as a result, the maximum foaming that has excellent physical properties such as foaming characteristics.
  • a foamable microsphere having a magnification of 5 times or more is obtained.
  • the resulting foamable microsphere is dried at a relatively low temperature so that the foaming agent is not gasified, if necessary.
  • Foamable microspheres According to the present invention, at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor are produced in an aqueous dispersion medium by the method for producing foamable microspheres described above. Or in the outer shell of the resulting polymer obtained by suspending a polymerizable mixture containing a water-insoluble polymerization inhibitor and then subjecting it to suspension polymerization in the presence of a water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor. A foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed is provided.
  • EVA ethylene / vinyl acetate copolymer
  • the coating thickness after foaming is measured, the foaming ratio at each predetermined temperature is determined from the coating pressure ratio before and after foaming, and the measured maximum foaming ratio is taken as the maximum foaming ratio of the foamable microsphere.
  • the maximum expansion ratio of the foamable microsphere of the present invention having a maximum expansion ratio of 5 times or more is preferably 6 times or more, more preferably 7 times or more.
  • the maximum expansion ratio has no particular upper limit, but is usually 30 times or less, and in most cases 20 times or less, from the viewpoint of the strength of foam particles or expandable microspheres, the uniformity or stability of foaming, and the like. is there.
  • the average particle diameter of the foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention is preferably 0.5 to 150 ⁇ m from the viewpoint of handleability, foaming uniformity or stability. More preferably, it is 1 to 120 ⁇ m.
  • the average particle size of the foamable microspheres is measured using a laser diffraction particle size distribution measuring device (such as SALD series manufactured by Shimadzu Corporation), and is an integrated percentage of the particle size (sphere equivalent diameter). 50% particle diameter (sometimes referred to as “median diameter”, sometimes referred to as “average particle diameter (D50)”) obtained based on a particle size distribution curve (volume basis and logarithmic scale). Unit: ⁇ m). If the average particle size is too small, the cushioning property and weight reduction may be insufficient. If the average particle size is too large, the foamed foam has too large bubbles, resulting in fatigue resistance or strength against repeated compression. May be insufficient.
  • the foamable microspheres having a maximum foaming ratio of 5 times or more obtained by the present invention are used in various fields after being foamed (expanded) or unfoamed.
  • the foamable microspheres are used, for example, as paint fillers for automobiles, foaming inks for foaming inks (wallpaper, relief patterns such as T-shirts), anti-shrinkage agents, etc. Is done.
  • foamable microspheres use the volume increase caused by foaming to make plastics, paints, various materials lighter and more porous, and to provide various functions (for example, slip, heat insulation, cushion, sound insulation) Used for the purpose of sex.
  • the foamable microspheres according to the present invention can be suitably used for paints and ink fields that require surface properties and smoothness, and weight reduction of plastic molded products (for example, interior materials).
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer and a polymerization initiator is suspended in an aqueous dispersion medium without containing a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor.
  • the foamable microspheres which are turbid and then obtained by suspension polymerization in the absence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, in which the foaming agent is encapsulated in the outer shell of the resulting polymer.
  • the maximum expansion ratio may be less than 5 times, or the particle size, the maximum expansion ratio, and the foaming start temperature may vary, which may not meet the purpose of use.
  • the progress of the polymerization reaction may be too slow, an uncontrollable abnormal reaction may occur, or a large amount of deposits may be generated in the polymerization vessel. .
  • the form for implementing this invention can also take the following structures.
  • [1] Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium, and then suspension polymerize in the presence of the water-soluble polymerization inhibitor. It is characterized by A method for producing foamable microspheres, wherein the foaming agent is enclosed in the outer shell of the resulting polymer and the maximum foaming ratio is 5 times or more.
  • [2] The method for producing foamable microspheres according to [1], wherein the water-soluble polymerization inhibitor has a solubility in water at a temperature of 20 ° C. of more than 1% by mass.
  • the water-soluble polymerization inhibitor contains at least one compound selected from the group consisting of a hydroquinone compound, a naphthohydroquinone compound, and an N-nitroso compound, and the foamable microinjector according to any one of [1] to [3] A method for producing a sphere.
  • the polymerizable monomer is 30 to 95% by mass of vinylidene chloride, and at least one kind selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate.
  • the polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid, methacrylic acid and
  • the foamable microsphere according to any one of [1] to [6], which is a monomer mixture containing 0 to 75% by mass of at least one monomer selected from the group consisting of vinyl acetate. Manufacturing method.
  • the aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, [1] to [1] to [8] The method for producing a foamable microsphere according to any one of [8]. [10] The method for producing foamable microspheres according to [9], wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite.
  • the form for implementing this invention can also take the following structures.
  • [1] Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-insoluble polymerization inhibitor in an aqueous dispersion medium, and then suspend in the presence of a water-insoluble polymerization inhibitor.
  • Characterized by polymerization A method for producing foamable microspheres, wherein the foaming agent is enclosed in the outer shell of the resulting polymer and the maximum foaming ratio is 5 times or more.
  • the water-insoluble polymerization inhibitor is a method for producing foamable microspheres according to [1], wherein the solubility in water at a temperature of 20 ° C.
  • the water-insoluble polymerization inhibitor includes any one of [1] to [3], which contains an oil-soluble aromatic compound having at least one selected from the group consisting of a hydroxy group, a quinone group, and an alkoxy group. A process for producing the expandable microspheres as described.
  • the method for producing foamable microspheres according to [4], wherein the oil-soluble aromatic compound having a hydroxy group is phenols or naphthols.
  • the polymerizable monomer is 30 to 95% by mass of vinylidene chloride, and at least one kind selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate.
  • the polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid, methacrylic acid and
  • the aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, [1] to [1] to [8] The method for producing a foamable microsphere according to any one of [8]. [11] The method for producing foamable microspheres according to [10], wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt.
  • a method for measuring the characteristics of the foamable microsphere according to the present invention is as follows.
  • the maximum expansion ratio of the foamable microsphere is determined by measuring the expansion ratio (coating method) described above by foaming for 2 minutes in an oven at each temperature in increments of 5 ° C from 100 ° C. Asked.
  • the average particle size (D50) of the foamable microspheres was measured using a laser diffraction particle size distribution analyzer SALD-3000J manufactured by Shimadzu Corporation.
  • the polymerization inhibiting effect that suppresses the initiation of an undesirable polymerization reaction was confirmed by the following method. That is, 0.02 parts by mass (corresponding to 200 ppm) with respect to a total amount of 100 parts by mass of a desired combination of polymerizable monomers, a polymerization initiator, and a polymerizable monomer in a glass ampule (volume 50 mL). The water-soluble polymerization inhibitor was added and purged with nitrogen, and the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C.
  • the polymerization inhibition time (unit: hours) was measured by visually observing the presence or absence of white turbidity caused by the content of the ampoule starting polymerization. When no cloudiness was observed after 4 hours, the polymerization inhibition time was determined to exceed 4 hours.
  • Example 1 Glass ampule filled with nitrogen gas (volume 50 mL), polymerizable monomer vinylidene chloride / acrylonitrile / methyl methacrylate (mass ratio 65/30/5), and total amount of polymerizable monomer 100 0.02 parts by mass of N-nitroso-N-phenylhydroxylamine ammonium salt (Q-1300 manufactured by Wako Pure Chemical Industries, Ltd., hereinafter referred to as “NPHAA”) The solubility in water at a temperature of 20 ° C.
  • NPHAA N-nitroso-N-phenylhydroxylamine ammonium salt
  • Example 2 instead of NPHAA, 1,4-naphthohydroquinone-2-sulfonic acid ammonium (prepared by the method described in Example 3 of JP-A-8-59600. The solubility in water at a temperature of 20 ° C. was 10% by mass. The ampoule is placed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 part by mass is enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by dipping, the polymerization inhibition time exceeded 4 hours.
  • Example 3 Instead of NPHAA, 0.02 part by mass of hydroquinone (solubility in water at a temperature of 20 ° C. is 5.9% by mass) is added to 100 parts by mass of the total amount of polymerizable monomers. Except for this, the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1, and the polymerization inhibition time was measured. As a result, the polymerization inhibition time exceeded 4 hours.
  • Example 4 In place of NPHAA, the ampoule was kept at a temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 parts by mass of methoquinone was enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by immersing the film in the solution, the polymerization inhibition time was more than 4 hours.
  • Example 5 In place of NPHAA, the ampoule was kept at a constant temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 part by mass of natural vitamin E was enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by dipping in a water tank, the polymerization inhibition time was more than 2 hours.
  • Example 6 Except that 0.02 parts by mass of t-butylhydroquinone (hereinafter sometimes referred to as “t-BuHQ”) was enclosed instead of NPHAA with respect to 100 parts by mass of the total amount of polymerizable monomers.
  • t-BuHQ t-butylhydroquinone
  • the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1, and the polymerization inhibition time was measured. As a result, the polymerization inhibition time exceeded 2 hours.
  • Example 7 (Suspension of polymerizable mixture) 65 g of polymerization monomer vinylidene chloride (hereinafter sometimes referred to as “VD”), 30 g of acrylonitrile (hereinafter sometimes referred to as “AN”) and methyl methacrylate (hereinafter sometimes referred to as “MMA”).
  • VD polymerization monomer vinylidene chloride
  • AN acrylonitrile
  • MMA methyl methacrylate
  • the purchased polymerizable monomer previously contains methoquinone which is a polymerization inhibitor, and the content thereof is 0.0013 parts by mass with respect to 100 parts by mass of the total polymerizable monomers, that is, It was 13 ppm.
  • colloidal silica supplied as a 20 mass% colloidal silica dispersion
  • hydrochloric acid 5 mass% aqueous solution
  • the polymerizable mixture stored at a temperature of 25 ° C. for 3 hours with the aqueous dispersion medium, and stirring and mixing with a homogenizer, at least a foaming agent, a polymerizable monomer, and a polymer in the aqueous dispersion medium.
  • a polymerizable mixture containing an initiator and a water-soluble polymerization inhibitor was suspended, and fine droplets of the polymerizable mixture were granulated in an aqueous dispersion medium.
  • aqueous dispersion medium containing fine droplets of a polymerizable mixture is charged into a polymerization can (1.5 L) equipped with a stirrer and heated at a temperature of 50 ° C. for 22 hours using a hot water bath, thereby inhibiting a water-soluble polymerization inhibitor.
  • a polymerization can 1.5 L equipped with a stirrer and heated at a temperature of 50 ° C. for 22 hours using a hot water bath, thereby inhibiting a water-soluble polymerization inhibitor.
  • Example 8 By performing suspension polymerization and suspension polymerization of the polymerizable mixture in the same manner as in Example 5 except that hydroquinone was used instead of NPHAA as a water-soluble polymerization inhibitor, foamable microspheres were obtained. Obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
  • Example 9 By performing suspension polymerization and suspension polymerization of the polymerizable mixture in the same manner as in Example 5 except that methoquinone was used instead of NPHAA as a water-soluble polymerization inhibitor, foamable microspheres were obtained. Obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
  • Example 10 (Suspension of polymerizable mixture) 65 g of polymerization monomer vinylidene chloride (hereinafter sometimes referred to as “VD”), 30 g of acrylonitrile (hereinafter sometimes referred to as “AN”) and methyl methacrylate (hereinafter sometimes referred to as “MMA”).
  • VD polymerization monomer vinylidene chloride
  • AN acrylonitrile
  • MMA methyl methacrylate
  • the purchased polymerizable monomer previously contains methoquinone which is a polymerization inhibitor, and the content thereof is 0.0013 parts by mass with respect to 100 parts by mass of the total polymerizable monomers, that is, It was 13 ppm.
  • silica supplied as a 20% by mass colloidal silica dispersion
  • hydrochloric acid 5 mass% aqueous solution
  • the polymerizable mixture stored at a temperature of 25 ° C. for 2 hours with the aqueous dispersion medium and stirring and mixing with a homogenizer, at least a foaming agent, a polymerizable monomer, and a polymer in the aqueous dispersion medium.
  • a polymerizable mixture containing an initiator and a water-insoluble polymerization inhibitor was suspended, and fine droplets of the polymerizable mixture were granulated in an aqueous dispersion medium.
  • a water-based dispersion medium containing minute droplets of a polymerizable mixture is charged into a polymerization can equipped with a stirrer (1.5 L) and heated at a temperature of 50 ° C. for 22 hours using a hot water bath to inhibit water-insoluble polymerization.
  • Suspension polymerization was performed in the presence of an agent (natural vitamin E). After the polymerization, the slurry containing the foamable microspheres produced was filtered, washed with water, and dried to obtain foamable microspheres.
  • Example 11 By performing suspension and suspension polymerization of the polymerizable mixture in the same manner as in Example 11 except that t-BuHQ was used in place of natural vitamin E as the water-insoluble polymerization inhibitor, foaming was performed. Sex microspheres were obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium, and then a water-insoluble polymerization inhibitor is used.
  • suspension polymerization is carried out in the presence of an oil phase or an aqueous phase at an undesired time such as during the preparation of the dispersion or before the start of polymerization.
  • NPHAA water-soluble polymerization inhibitor
  • Example 10 according to the method for producing effervescent microspheres of Example 10 using a water-insoluble polymerization inhibitor (natural vitamin E) having a solubility in water at a temperature of 20 ° C. of less than 0.1% by mass, Since the average particle size (D50) is 13.0 ⁇ m and a fine foamable microsphere, and the maximum foaming ratio determined by measurement of the foaming ratio (coating method) is 10.2 times, Compared with Example 11 using a water-insoluble polymerization inhibitor (t-BuHQ) having a solubility of 1% by mass, foamable microspheres having particularly excellent physical properties such as expansion ratio can be obtained. I understood.
  • a water-insoluble polymerization inhibitor natural vitamin E having a solubility in water at a temperature of 20 ° C. of less than 0.1% by mass
  • a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, and a polymerization initiator in an aqueous dispersion medium without containing a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor.
  • the present invention suspends a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium, and then water-soluble.
  • Suspension polymerization is carried out in the presence of a polymerization inhibitor or a water-insoluble polymerization inhibitor, and the foaming micro has a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the produced polymer.
  • the start of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of the polymerization is suppressed, and the intended process for obtaining foamable microspheres is performed. Since the polymerization reaction in the oil phase is not inhibited and a method for producing foamable microspheres having excellent physical properties such as foaming ratio can be provided, the industrial applicability is high.
  • the present invention suspends a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium,
  • a foaming micro that is obtained by suspension polymerization in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor and has a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the resulting polymer. Since it is a sphere, it is possible to provide a foamable microsphere having excellent physical properties such as a foaming ratio, so that the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

To provide: a method for manufacturing expandable microspheres with which the start of a polymerization reaction in an oil phase at an unintended time such as while a dispersion is being prepared or prior to the start of polymerization is suppressed, the intended polymerization reaction in an oil phase is not hindered, and properties such as expansion ratio are exceptional; and expandable microspheres having excellent properties. A method for manufacturing expandable microspheres in which a foaming agent is sealed in the outer shell of a produced polymer and in which the maximum expansion ratio is 5 or higher, the method being characterized in that at least the foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a non-water-soluble polymerization inhibitor are suspended in an aqueous dispersion medium whereupon suspension polymerization is performed in the presence of the water-soluble polymerization inhibitor or the non-water-soluble polymerization inhibitor.

Description

発泡性マイクロスフェアーの製造方法、及び発泡性マイクロスフェアーMethod for producing foamable microsphere, and foamable microsphere
 本発明は、発泡性マイクロスフェアーの製造方法、及び発泡性マイクロスフェアーに関し、更に詳しくは、分散液調製中や重合開始前等、所望しない時期における重合反応の開始が十分に抑制されるとともに、発泡性マイクロスフェアーを製造するための懸濁重合を行うときに油相での重合反応が阻害されず、発泡倍率等の物性が優れる発泡性マイクロスフェアーの製造方法、及び発泡性マイクロスフェアーに関する。 The present invention relates to a method for producing foamable microspheres and foamable microspheres. More specifically, the start of a polymerization reaction at an undesired time such as during preparation of a dispersion or before the start of polymerization is sufficiently suppressed. , A method for producing foamable microspheres, in which the polymerization reaction in the oil phase is not hindered when suspension polymerization for producing foamable microspheres is performed, and physical properties such as foaming magnification are excellent, and foamable microspheres Regarding fairs.
 発泡性マイクロスフェアー(「熱膨張性マイクロカプセル」といわれることもある。)は、発泡インクでの用途をはじめとして、軽量化を目的とした塗料やプラスチックの充填剤など、種々の分野への用途展開が図られている。発泡性マイクロスフェアーは、通常、揮発性の液体発泡剤(「物理的発泡剤」または「揮発性膨張剤」等ということもある。)を重合体で包摂しマイクロカプセル化したものである。発泡剤としては、所望により、加熱時に分解してガスを発生する化学発泡剤が用いられることもある。発泡性マイクロスフェアーは、一般に、水系媒体中で、少なくとも発泡剤と重合性単量体とを含有する重合性混合物を懸濁重合する方法により製造することができる。重合反応が進むにつれて、生成する重合体により外殻が形成され、その外殻内に発泡剤が包み込まれるようにして封入された構造をもつ発泡性マイクロスフェアーが得られる。 Expandable microspheres (sometimes called "thermally expandable microcapsules") are used in various fields such as paints and plastic fillers for weight reduction, including applications in foamed inks. Applications are being developed. The foamable microspheres are usually obtained by encapsulating a volatile liquid foaming agent (sometimes referred to as “physical foaming agent” or “volatile swelling agent”) with a polymer and microencapsulating it. As the foaming agent, a chemical foaming agent that decomposes when heated to generate gas may be used as desired. In general, the foamable microspheres can be produced by a suspension polymerization of a polymerizable mixture containing at least a foaming agent and a polymerizable monomer in an aqueous medium. As the polymerization reaction proceeds, an outer shell is formed by the produced polymer, and a foamable microsphere having a structure in which the foaming agent is enclosed in the outer shell is obtained.
 発泡性マイクロスフェアーの外殻を形成する重合体としては、一般に、ガスバリア性が良好な熱可塑性樹脂が用いられる。外殻を形成する重合体は、加熱すると軟化する。発泡剤としては、該重合体の軟化点以下の温度でガス状になるものを選択する。発泡性マイクロスフェアーを加熱すると、発泡剤が気化して膨脹する力が外殻に働くとともに、外殻を形成する重合体の弾性率が急激に減少する。そのため、ある温度を境にして、発泡性マイクロスフェアーの急激な膨脹が起きる。この温度を発泡開始温度という。発泡性マイクロスフェアーは、発泡開始温度より高い温度、すなわち、発泡温度に加熱すると、それ自体が膨脹して、独立気泡体(「発泡体粒子」、「中空粒子」または「中空プラスチックバルーン」等ということがある。)を形成する。 As the polymer forming the outer shell of the foamable microsphere, a thermoplastic resin having a good gas barrier property is generally used. The polymer forming the outer shell softens when heated. As the foaming agent, one that is gaseous at a temperature below the softening point of the polymer is selected. When the foamable microspheres are heated, the foaming agent vaporizes and expands and acts on the outer shell, and the elastic modulus of the polymer forming the outer shell decreases rapidly. Therefore, the expansion of the foamable microsphere occurs at a certain temperature. This temperature is called the foaming start temperature. When the foamable microspheres are heated to a temperature higher than the foaming start temperature, that is, the foaming temperature, the foamable microspheres expand themselves to form closed cells (such as “foam particles”, “hollow particles” or “hollow plastic balloon”). Sometimes).
 発泡性マイクロスフェアーを形成するために行われる懸濁重合では、一般に、分散安定剤を含有する水系分散媒体中に、少なくとも発泡剤と重合性単量体とを含有する重合性混合物を添加し、攪拌混合して、重合性混合物の微細な液滴を造粒し、次いで、昇温して懸濁重合を行う。重合性混合物の多くは、通常水に不溶性であるため、水系分散媒体中で油相を形成するので、攪拌混合することにより、微細な液滴に造粒される。懸濁重合により、この微細な液滴とほぼ同じ粒径の発泡性マイクロスフェアーが形成される。懸濁重合法においては、分散安定剤、安定助剤(「補助安定剤」ということもある。)、重合開始剤(「触媒」ということもある。)、重合助剤などの種々の添加剤の種類と含有量を適切に選択して組み合わせ、また、攪拌混合条件や重合条件等を適切に選択して組み合わせることによって、粒子形状や粒径分布を調整することが可能である。 In suspension polymerization performed to form foamable microspheres, a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is generally added to an aqueous dispersion medium containing a dispersion stabilizer. The mixture is stirred and mixed to granulate fine droplets of the polymerizable mixture, and then heated to perform suspension polymerization. Since most of the polymerizable mixture is usually insoluble in water, an oil phase is formed in an aqueous dispersion medium, and thus, it is granulated into fine droplets by stirring and mixing. Suspension polymerization forms foamable microspheres with approximately the same particle size as these fine droplets. In the suspension polymerization method, various additives such as a dispersion stabilizer, a stabilizer (sometimes referred to as “auxiliary stabilizer”), a polymerization initiator (sometimes called “catalyst”), and a polymerization assistant. The particle shape and the particle size distribution can be adjusted by appropriately selecting and combining the types and contents, and appropriately selecting and combining the stirring and mixing conditions and the polymerization conditions.
 また、重合性単量体が、所望しない早期の段階(重合性混合物の調製や分散液の調製中等)で重合反応を開始してしまうことがあると、得られる発泡性マイクロスフェアーが均質な所期の発泡特性を有しなかったり、生産性の低下や発泡性マイクロスフェアーの品質低下が起きたりする。例えば、外気温が高いときには、所望しない重合反応が開始するおそれがあり、特に、大規模生産を行う場合は、重合性混合物の調製や分散液の調製に時間がかかるため、その間に所望しない重合反応が開始するおそれがある。このため、発泡性マイクロスフェアーの製造方法にあっては、温度25℃において1時間以上、好ましくは2時間以上、更には4時間以上の重合抑制効果が求められる。 In addition, if the polymerizable monomer may initiate a polymerization reaction at an undesired early stage (such as during the preparation of a polymerizable mixture or a dispersion), the resulting foamable microspheres are homogeneous. The desired foaming characteristics may not be achieved, and the productivity and foamed microspheres may be deteriorated. For example, when the outside air temperature is high, an undesired polymerization reaction may start. In particular, when large-scale production is performed, preparation of a polymerizable mixture and preparation of a dispersion take time. The reaction may start. For this reason, in the manufacturing method of an expandable microsphere, the polymerization inhibitory effect for 1 hour or more at the temperature of 25 degreeC, Preferably it is 2 hours or more, Furthermore, 4 hours or more is calculated | required.
 一般に、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸等のビニル化合物の重合を抑制する重合禁止剤としては、キノン系化合物(ベンゾキノン等)、ハイドロキノン系化合物(「ヒドロキノン」ということもある。)、フェノール系化合物(メトキノン、トコフェロール等)、ヒンダードアミン系化合物、アミン系化合物、リン系化合物、マンガン塩化合物、ジフェニルジチオカルバミン酸銅、ニトロソ化合物、N-オキシル化合物など多くの化合物群が知られている。これらの重合禁止剤の多くは、ビニル化合物モノマーの合成時や合成後の精製のための蒸留工程で使用され、また、該モノマーの保存や保管時にもごく少量使用される。通例、該モノマーから重合体を製造するのに先だって重合禁止剤を除去する工程がおかれる。 In general, as a polymerization inhibitor that suppresses the polymerization of vinyl compounds such as acrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid, quinone compounds (benzoquinone, etc.), hydroquinone compounds (called “hydroquinone”) Many compounds such as phenolic compounds (methoquinone, tocopherol, etc.), hindered amine compounds, amine compounds, phosphorus compounds, manganese salt compounds, copper diphenyldithiocarbamate, nitroso compounds, N-oxyl compounds, etc. Are known. Many of these polymerization inhibitors are used in the distillation step for the synthesis of the vinyl compound monomer and for purification after the synthesis, and are also used in a very small amount during the storage and storage of the monomer. Typically, there is a step of removing the polymerization inhibitor prior to producing the polymer from the monomer.
 発泡性マイクロスフェアーを製造するに当たっては、水系分散媒体中に重合禁止剤を使用することが知られている。その理由は望ましくない水相中での重合を抑制することにより、重合性混合物を水系分散媒体中で撹拌・重合するときに液粘度の上昇、液滴の反応容器への付着や液滴の凝集などの発生を抑制して、生産性の低下や発泡性マイクロスフェアーの品質低下が起きたりすることを防止することにある。例えば特許文献1には、水系分散媒体中で、少なくとも発泡剤及び重合性単量体を含有する重合性混合物を懸濁重合して、生成重合体の外殻中に発泡剤を包み込んで含有する発泡性マイクロスフェアーを製造する方法において、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、水可溶性アスコルビン酸類、または硼酸の存在下に、重合性混合物の懸濁重合を行うことにより、重合時における生成重合体粒子の凝集や重合缶壁へのスケールの付着を防止することが開示されている。特許文献2には、中空樹脂粒子の製造方法において、モノマー成分が不溶である液体相(水相)に、水性重合禁止剤を含有することが開示されている。特許文献3には、重合助剤(重合禁止剤)は、一般に、懸濁重合における水系での乳化重合物の発生抑制やスケール防止のために用いられていることが開示され、また、アスコルビン酸類や亜硝酸アルカリ金属塩類等を重合禁止剤として使用すると、膨張倍率(発泡倍率と同義である。)等の物性の向上が十分でなかったり、熱安定性が低く重合反応中に分解して重合禁止剤としての性質が失われ、または得られる熱膨張性マイクロカプセル(発泡性マイクロスフェアー)や熱膨張して得られる中空微粒子の物性改善が十分とはいえない、という問題のあることが開示されている。 In manufacturing foamable microspheres, it is known to use a polymerization inhibitor in an aqueous dispersion medium. The reason is that by suppressing polymerization in an undesired aqueous phase, the liquid viscosity increases when the polymerizable mixture is stirred and polymerized in an aqueous dispersion medium, the droplets adhere to the reaction vessel, and the droplets aggregate. Is to prevent the productivity from being lowered and the quality of the foamable microspheres from being lowered. For example, Patent Document 1 includes suspension polymerization of a polymerizable mixture containing at least a foaming agent and a polymerizable monomer in an aqueous dispersion medium, and encapsulating the foaming agent in the outer shell of the resulting polymer. In a method for producing foamable microspheres, by subjecting a polymerizable mixture to suspension polymerization in the presence of alkali metal nitrite, stannous chloride, stannic chloride, water-soluble ascorbic acid, or boric acid. In addition, it is disclosed that aggregation of the generated polymer particles during polymerization and adhesion of scale to the polymerization can wall are prevented. Patent Document 2 discloses that in the method for producing hollow resin particles, an aqueous polymerization inhibitor is contained in a liquid phase (aqueous phase) in which a monomer component is insoluble. Patent Document 3 discloses that a polymerization aid (polymerization inhibitor) is generally used for suppressing the generation of an emulsion polymer in an aqueous system in suspension polymerization and preventing scale, and ascorbic acids. And alkali metal nitrites are used as polymerization inhibitors, the physical properties such as expansion ratio (synonymous with foaming ratio) are not sufficiently improved, or the thermal stability is low and the polymer decomposes during the polymerization reaction. It is disclosed that there is a problem that the property as an inhibitor is lost or the physical properties of the resulting heat-expandable microcapsules (expandable microspheres) and the hollow microparticles obtained by thermal expansion cannot be improved sufficiently. Has been.
 発泡性マイクロスフェアーの製造方法において、重合禁止剤としては、所望しない時期(重合性混合物の調製や分散液の調製中等)における重合性単量体の重合反応の開始を十分に抑制する効果を有することが不可欠であると同時に、その後に行う発泡性マイクロスフェアーの外殻を形成する懸濁重合等の重合反応において、重合反応速度などを阻害しないためにできるだけ少量の添加で効果を奏するものであることが求められる。また、水系分散媒体中で、少なくとも発泡剤と重合性単量体とを含有する重合性混合物を懸濁重合する発泡性マイクロスフェアーの製造方法において使用する重合禁止剤としては、生成重合体に包摂されず容易に水系分散媒体に移行しやすいものであって、かつ、得られる発泡性マイクロスフェアーの物性を優れたものにできることが求められる。 In the method for producing foamable microspheres, the polymerization inhibitor has an effect of sufficiently suppressing the initiation of the polymerization reaction of the polymerizable monomer at an undesired time (such as during the preparation of the polymerizable mixture or the preparation of the dispersion). At the same time, it is essential to have as little addition as possible so as not to inhibit the polymerization reaction rate in the subsequent polymerization reaction such as suspension polymerization that forms the outer shell of the foamable microsphere. It is required to be. In addition, as a polymerization inhibitor used in a method for producing foamable microspheres in which a polymerizable mixture containing at least a foaming agent and a polymerizable monomer is suspended in an aqueous dispersion medium, a polymerization inhibitor is used as a product polymer. It is required that the foamable microspheres can be easily transferred to an aqueous dispersion medium without being included, and that the resulting foamable microspheres can have excellent physical properties.
 すなわち、水系分散媒体中で、重合性混合物を懸濁重合して、生成重合体の外殻中に発泡剤が封入された発泡性マイクロスフェアーを製造する発泡性マイクロスフェアーの製造方法において、少なくとも重合性単量体と重合開始剤を含有する重合性混合物(油相を形成する)を含む液滴を形成する造粒時に、油相において少量で十分な重合抑制効果(例えば、温度25℃において1時間以上、好ましくは2時間以上、更には4時間以上の重合禁止効果等が望まれる。)を有するとともに、発泡性マイクロスフェアーを得るための懸濁重合による油相での重合反応を阻害せず、油相での重合反応を安定的に行うことができ、かつ、生成重合体に包摂されるおそれがなく、発泡倍率等の発泡性マイクロスフェアーの物性に優れる適切な重合禁止剤及びその用法は見いだされていなかった。 That is, in a method for producing foamable microspheres, in which a polymerizable mixture is subjected to suspension polymerization in an aqueous dispersion medium to produce foamable microspheres in which a foaming agent is enclosed in the outer shell of the resulting polymer. At the time of granulation for forming droplets containing a polymerizable mixture (forms an oil phase) containing at least a polymerizable monomer and a polymerization initiator, a sufficient amount of polymerization suppression effect (for example, a temperature of 25 ° C.) in the oil phase is small. In addition, a polymerization inhibiting effect for 1 hour or longer, preferably 2 hours or longer, and further 4 hours or longer is desired), and a polymerization reaction in an oil phase by suspension polymerization to obtain foamable microspheres. Appropriate polymerization prohibition that does not hinder, can stably carry out the polymerization reaction in the oil phase, is not likely to be included in the produced polymer, and has excellent physical properties of expandable microspheres such as expansion ratio And its use has not been found.
 したがって、分散液調製中や重合開始前等、すなわち、水系分散媒体中で少なくとも発泡剤と重合性単量体と重合禁止剤(油相を形成する。)とを含有する重合性混合物を懸濁重合する以前である、所望しない時期における油相での重合反応の開始が十分に抑制されるとともに、重合性混合物を懸濁重合して発泡性マイクロスフェアーを得るために行う油相での重合反応が阻害されることがなく、発泡倍率等の物性が優れる発泡性マイクロスフェアーを製造する方法、並びに、発泡倍率等の物性が優れる発泡性マイクロスフェアーを提供することが求められていた。 Therefore, a suspension of a polymerizable mixture containing at least a blowing agent, a polymerizable monomer, and a polymerization inhibitor (forms an oil phase) in the aqueous dispersion medium, for example, during preparation of the dispersion or before the start of polymerization. Prior to polymerization, the initiation of the polymerization reaction in the oil phase at an undesired time is sufficiently suppressed, and the polymerization in the oil phase is performed to obtain a foamable microsphere by suspension polymerization of the polymerizable mixture There has been a demand for a method for producing foamable microspheres that are excellent in physical properties such as foaming magnification, and foamable microspheres that are excellent in physical properties such as foaming magnification without being hindered by reaction.
特開平11-209504号公報JP-A-11-209504 特開2005-146223号公報JP 2005-146223 A 国際公開第2008-142849号International Publication No. 2008-142849
 本発明の課題は、分散液調製中や重合開始前等所望しない時期における油相での重合反応の開始が抑制され、かつ、所期の油相での重合反応が阻害されず、発泡倍率等の物性が優れる発泡性マイクロスフェアーの製造方法;並びに、物性が優れる発泡性マイクロスフェアーを提供することにある。 The problem of the present invention is that the start of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of polymerization is suppressed, and the polymerization reaction in the desired oil phase is not inhibited, such as the expansion ratio. It is an object of the present invention to provide a method for producing foamable microspheres having excellent physical properties; and to provide foamable microspheres having excellent physical properties.
 本発明者らは、課題を解決するために鋭意研究した結果、特定の重合禁止剤を油相において使用することにより、課題を解決することができることを見いだし、本発明を完成した。 As a result of intensive studies to solve the problem, the present inventors have found that the problem can be solved by using a specific polymerization inhibitor in the oil phase, and the present invention has been completed.
 すなわち、本発明によれば、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法が提供される。 That is, according to the present invention, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium. Thereafter, suspension polymerization is performed in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and the maximum expansion ratio in which the foaming agent is enclosed in the outer shell of the produced polymer is 5 times or more. A method of making certain foamable microspheres is provided.
 また、本発明によれば、発泡性マイクロスフェアーの製造方法に関する発明の具体的態様として、以下(1)~(6)の発泡性マイクロスフェアーの製造方法が提供される。
(1)水溶性重合禁止剤は、ハイドロキノン化合物、ナフトヒドロキノン化合物及びN-ニトロソ化合物からなる群より選ばれる少なくとも一種の化合物を含有する前記の発泡性マイクロスフェアーの製造方法。
(2)非水溶性重合禁止剤は、ビタミンE、ヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物を含有する請求項1に記載の発泡性マイクロスフェアーの製造方法。
(3)重合性単量体が、塩化ビニリデン30~95質量%と、アクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体5~70質量%とを含有する単量体混合物である前記の発泡性マイクロスフェアーの製造方法。
(4)重合性単量体が、アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体25~100質量%と、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体0~75質量%とを含有する単量体混合物である前記の発泡性マイクロスフェアーの製造方法。
(5)水系分散媒体中に重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類からなる群より選ばれる少なくとも一種の化合物を含有する前記の発泡性マイクロスフェアーの製造方法。
(6)水系分散媒体中に含有される前記の化合物が亜硝酸アルカリ金属塩である前記の発泡性マイクロスフェアーの製造方法。
Further, according to the present invention, the following methods (1) to (6) for producing foamable microspheres are provided as specific embodiments of the invention relating to the method for producing foamable microspheres.
(1) The method for producing foamable microspheres, wherein the water-soluble polymerization inhibitor contains at least one compound selected from the group consisting of hydroquinone compounds, naphthohydroquinone compounds and N-nitroso compounds.
(2) The foaming property according to claim 1, wherein the water-insoluble polymerization inhibitor contains an oil-soluble aromatic compound having at least one selected from the group consisting of vitamin E, hydroxy group, quinone group and alkoxy group. Microsphere manufacturing method.
(3) The polymerizable monomer is at least 30 to 95% by weight of vinylidene chloride and at least selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate. The method for producing foamable microspheres as described above, which is a monomer mixture containing 5 to 70% by mass of one kind of monomer.
(4) The polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid, The process for producing foamable microspheres as described above, which is a monomer mixture containing 0 to 75% by mass of at least one monomer selected from the group consisting of methacrylic acid and vinyl acetate.
(5) The aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids. A method for producing foamable microspheres.
(6) The method for producing foamable microspheres, wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt.
 さらに、本発明によれば、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーが提供され、その具体的態様として、平均粒径が0.5~150μmである前記の発泡性マイクロスフェアーが提供される。 Furthermore, according to the present invention, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium. Thereafter, a foamable microsphere having a maximum foaming ratio of 5 times or more obtained by enclosing a foaming agent in the outer shell of the resulting polymer obtained by suspension polymerization in the presence of a water-soluble polymerization inhibitor is provided. As a specific embodiment thereof, the above-mentioned foamable microsphere having an average particle size of 0.5 to 150 μm is provided.
 本発明によれば、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法であることにより、分散液調製中や重合開始前等所望しない時期における油相での重合反応の開始が抑制され、かつ、発泡性マイクロスフェアーを得るために行う所期の油相での重合反応が阻害されず、発泡倍率等の物性が優れる発泡性マイクロスフェアーの製造方法が提供されるという効果が奏される。 According to the present invention, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium. Suspension polymerization in the presence of a water-soluble polymerization inhibitor, and a method for producing a foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in the outer shell of the produced polymer As a result, the start of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of the polymerization is suppressed, and the polymerization in the intended oil phase is performed to obtain foamable microspheres. The reaction is not hindered, and an effect is provided that a method for producing foamable microspheres having excellent physical properties such as foaming ratio is provided.
 また、本発明によれば、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーであることにより、発泡倍率等の物性が優れる発泡性マイクロスフェアーが提供されるという効果が奏される。 Further, according to the present invention, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor is suspended in an aqueous dispersion medium, and then a water-soluble polymerization inhibitor. Or a foamable microsphere having a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the resulting polymer obtained by suspension polymerization in the presence of a water-insoluble polymerization inhibitor. Thus, an effect is provided that a foamable microsphere having excellent physical properties such as a foaming ratio is provided.
I.発泡性マイクロスフェアーの製造方法
 本発明の発泡性マイクロスフェアーの製造方法(以下、「本発明の製造方法」ということがある。)は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法である。本発明の製造方法においては、発泡剤、重合性単量体、その他後に説明する諸添加剤等は、特に限定されるものではなく、従来公知のものが使用できる。すなわち、本発明の製造方法は、あらゆるタイプの発泡性マイクロスフェアーの製造に適用することができる。
I. Production method of foamable microsphere The production method of the foamable microsphere of the present invention (hereinafter sometimes referred to as “the production method of the present invention”) is at least a foaming agent and a polymerizable monomer in an aqueous dispersion medium. Suspend a polymerizable mixture containing a monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and then suspension polymerization in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor A method for producing foamable microspheres having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in an outer shell of a produced polymer. In the production method of the present invention, the foaming agent, the polymerizable monomer, and other additives described later are not particularly limited, and conventionally known ones can be used. That is, the production method of the present invention can be applied to the production of all types of expandable microspheres.
1.発泡剤
 本発明の発泡性マイクロスフェアーの製造方法において使用する発泡剤は、通常、外殻を形成する重合体の軟化点以下の温度でガス状になる物質である。このような発泡剤としては、低沸点有機溶剤が好適であり、例えば、エタン、エチレン、プロパン、プロペン、n-ブタン、イソブタン、ブテン、イソブテン、n-ペンタン、イソペンタン、ネオペンタン、n-ヘキサン、ヘプタン、n-オクタン、イソオクタン、イソドデカン、石油エーテル、イソパラフィン混合物等の炭化水素;CClF、CCl、CClF、CClF-CClF等のクロロフルオロカーボン;テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル-n-プロピルシラン等のテトラアルキルシラン;などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、イソブタン、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、石油エーテル、イソオクタン、イソドデカン、及びこれらの2種以上の混合物が好ましい。また、所望により、加熱により熱分解してガス状になる化合物を使用してもよい。発泡剤の含有量は、以下に説明する重合性単量体の合計量100質量部に対して、通常10~40質量部、好ましくは12~35質量部、より好ましくは15~32質量部の範囲である。
1. Foaming agent The foaming agent used in the method for producing foamable microspheres of the present invention is usually a substance that becomes gaseous at a temperature below the softening point of the polymer forming the outer shell. As such a foaming agent, a low-boiling organic solvent is suitable. For example, ethane, ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, n-hexane, heptane , n- octane, isooctane, isododecane, petroleum ether, hydrocarbons such as isoparaffin mixture; CCl 3 F, CCl 2 F 2, CClF 3, chlorofluorocarbons such as CClF 2 -CClF 2; tetramethylsilane, trimethylethyl silane, trimethyl And tetraalkylsilanes such as isopropylsilane and trimethyl-n-propylsilane. These can be used alone or in combination of two or more. Among these, isobutane, n-butane, n-pentane, isopentane, n-hexane, petroleum ether, isooctane, isododecane, and a mixture of two or more thereof are preferable. Further, if desired, a compound which is thermally decomposed by heating and becomes gaseous may be used. The content of the foaming agent is usually 10 to 40 parts by weight, preferably 12 to 35 parts by weight, more preferably 15 to 32 parts by weight with respect to 100 parts by weight of the total amount of polymerizable monomers described below. It is a range.
2.重合性単量体
 重合性単量体としては、後に説明するように、水系分散媒体中で懸濁重合して得られる生成重合体の外殻中に発泡剤が封入された発泡性マイクロスフェアーを形成することができる限り、特に限定されない。好ましくは、生成重合体の外殻がガスバリア性、耐溶剤性や耐熱性を有し、また、良好な発泡性、所望によっては高温での発泡性を有する重合体を生成することができる観点から、重合性単量体が、アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体(該単量体を総称して、「(メタ)アクリロニトリル」ということがある。)、及び/または、塩化ビニリデンを含有することが好ましい。
2. Polymerizable monomer As described below, the polymerizable monomer is a foamable microsphere in which a foaming agent is encapsulated in the outer shell of a product polymer obtained by suspension polymerization in an aqueous dispersion medium. As long as it can be formed, it is not particularly limited. Preferably, from the viewpoint that the outer shell of the produced polymer has gas barrier properties, solvent resistance and heat resistance, and can produce a polymer having good foamability and, if desired, foamability at high temperature. The polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile (the monomers may be collectively referred to as “(meth) acrylonitrile”), and / or. Alternatively, it is preferable to contain vinylidene chloride.
 (メタ)アクリロニトリル、及び/または、塩化ビニリデン以外の重合性単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ジシクロペンテニルアクリレート等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、イソボルニルメタクリレート等のメタクリル酸エステル;アクリル酸、メタクリル酸、塩化ビニル、スチレン、酢酸ビニル、α-メチルスチレン、クロロプレン、ネオプレン、ブタジエンなどが挙げられる。 Examples of polymerizable monomers other than (meth) acrylonitrile and / or vinylidene chloride include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and dicyclopentenyl acrylate; methyl methacrylate, ethyl methacrylate Methacrylic acid esters such as butyl methacrylate and isobornyl methacrylate; acrylic acid, methacrylic acid, vinyl chloride, styrene, vinyl acetate, α-methylstyrene, chloroprene, neoprene, butadiene and the like.
 これらの重合性単量体は、それぞれ単独で、または2種以上を組み合わせて使用することができる。好ましい重合性単量体は、(メタ)アクリロニトリル、及び/または、塩化ビニリデンを含有する単量体混合物である。 These polymerizable monomers can be used alone or in combination of two or more. A preferred polymerizable monomer is a monomer mixture containing (meth) acrylonitrile and / or vinylidene chloride.
〔(メタ)アクリロニトリルを含有する単量体混合物〕
 (メタ)アクリロニトリルを含有する単量体混合物としては、重合性単量体が、(メタ)アクリロニトリル(アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体)25~100質量%と、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体(以下、「(メタ)アクリロニトリル以外の単量体」ということがある。)0~75質量%とを含有する単量体混合物であることが好ましい。なお、重合性単量体が、(メタ)アクリロニトリル100質量%を含有する場合は、厳密には単量体混合物に該当するものではないが、本発明においては、この場合を含めて単量体混合物という。
[Monomer mixture containing (meth) acrylonitrile]
As the monomer mixture containing (meth) acrylonitrile, the polymerizable monomer is (meth) acrylonitrile (at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile) in a range of 25 to 100% by mass. , At least one monomer selected from the group consisting of vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate (hereinafter referred to as "monomer other than (meth) acrylonitrile") A monomer mixture containing 0 to 75% by mass is preferable. In the case where the polymerizable monomer contains 100% by mass of (meth) acrylonitrile, it is not strictly a monomer mixture, but in the present invention, the monomer including this case is included. It is called a mixture.
 (メタ)アクリロニトリルを含有する単量体混合物は、(メタ)アクリロニトリルの含有比率が高いほど、形成される発泡性マイクロスフェアーの発泡温度が高く、その含有比率が低いほど、形成される発泡性マイクロスフェアーの発泡温度が低くなる傾向がある。また、(メタ)アクリロニトリル以外の単量体の種類及び組成によっても、形成される発泡性マイクロスフェアーの発泡温度や最大発泡倍率等を調整することが可能である。したがって、(メタ)アクリロニトリルと(メタ)アクリロニトリル以外の単量体との割合、及び、(メタ)アクリロニトリル以外の単量体の種類及び組成を調整することにより、所望の発泡性マイクロスフェアーを形成することができる。(メタ)アクリロニトリルと(メタ)アクリロニトリル以外の単量体との好ましい組み合わせは、(メタ)アクリロニトリル25~99.5質量%、好ましくは30~99質量%、及び(メタ)アクリロニトリル以外の単量体0.5~75質量%、好ましくは1~70質量%(合計量を100質量%とする。)であり、(メタ)アクリロニトリル以外の単量体として、特に好ましくはメタクリル酸メチルである。(メタ)アクリロニトリルの含有比率が低すぎると、形成される発泡性マイクロスフェアーの発泡温度が低くなったり、ガスバリア性が不足したりすることがある。 The higher the (meth) acrylonitrile content ratio, the higher the foaming temperature of the foamable microspheres formed, and the lower the content ratio, the higher the (meth) acrylonitrile-containing monomer mixture, the lower the content ratio. Microsphere foaming temperature tends to be low. Further, the foaming temperature, the maximum foaming ratio, etc. of the foamable microsphere to be formed can be adjusted also by the type and composition of the monomer other than (meth) acrylonitrile. Therefore, desired foamable microspheres can be formed by adjusting the ratio of (meth) acrylonitrile and monomers other than (meth) acrylonitrile, and the type and composition of monomers other than (meth) acrylonitrile. can do. Preferred combinations of (meth) acrylonitrile and monomers other than (meth) acrylonitrile are (meth) acrylonitrile 25 to 99.5% by mass, preferably 30 to 99% by mass, and monomers other than (meth) acrylonitrile It is 0.5 to 75% by mass, preferably 1 to 70% by mass (the total amount is 100% by mass), and as a monomer other than (meth) acrylonitrile, particularly preferred is methyl methacrylate. When the content ratio of (meth) acrylonitrile is too low, the foaming temperature of the foamable microspheres formed may be low, or the gas barrier property may be insufficient.
〔塩化ビニリデンを含有する単量体混合物〕
 塩化ビニリデンを含有する単量体混合物としては、重合性単量体が、塩化ビニリデン30~95質量%と、アクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体(以下、「塩化ビニリデン以外の単量体」ということがある。)5~70質量%とを含有する単量体混合物であることが好ましい。
[Monomer mixture containing vinylidene chloride]
As the monomer mixture containing vinylidene chloride, the polymerizable monomer is 30 to 95% by mass of vinylidene chloride, acrylonitrile, methacrylonitrile, acrylic ester, methacrylic ester, styrene, acrylic acid, methacrylic acid and A monomer mixture containing 5 to 70% by mass of at least one monomer selected from the group consisting of vinyl acetate (hereinafter sometimes referred to as “monomer other than vinylidene chloride”) is preferable. .
 塩化ビニリデンを含有する単量体混合物は、塩化ビニリデンの含有比率が高いほど、形成される発泡性マイクロスフェアーのガスバリア性が高く、その含有比率が低いほど、形成される発泡性マイクロスフェアーのガスバリア性が低くなる傾向がある。また、塩化ビニリデン以外の単量体の種類及び組成によっても、形成される発泡性マイクロスフェアーの発泡温度や最大発泡倍率等を調整することが可能である。したがって、塩化ビニリデンと塩化ビニリデン以外の単量体との割合、及び、塩化ビニリデン以外の単量体の種類及び組成を調整することにより、所望の発泡性マイクロスフェアーを形成することができる。塩化ビニリデンと塩化ビニリデン以外の単量体との好ましい組み合わせは、塩化ビニリデン35~90質量%、好ましくは40~80質量%、及び塩化ビニリデン以外の単量体10~65質量%、好ましくは20~60質量%(合計量を100質量%とする。)であり、塩化ビニリデン以外の単量体として、好ましくは(メタ)アクリロニトリル及びメタクリル酸メチルであり、塩化ビニリデンを含有する単量体混合物の好ましい組み合わせとしては、塩化ビニリデン45~75質量%、(メタ)アクリロニトリル20~50質量%、及びメタクリル酸メチル3~10質量%(合計量を100質量%とする。)である。塩化ビニリデンの含有比率が低すぎると、形成される発泡性マイクロスフェアーのガスバリア性が不足したり、所望の最大発泡倍率が得られなかったりすることがある。 In the monomer mixture containing vinylidene chloride, the higher the content ratio of vinylidene chloride, the higher the gas barrier property of the foamable microspheres formed, and the lower the content ratio, the lower the content of the foamable microspheres formed. The gas barrier property tends to be low. Further, the foaming temperature, the maximum foaming ratio, etc. of the foamable microspheres to be formed can also be adjusted by the type and composition of monomers other than vinylidene chloride. Therefore, desired foamable microspheres can be formed by adjusting the ratio of vinylidene chloride and monomers other than vinylidene chloride, and the type and composition of monomers other than vinylidene chloride. Preferred combinations of vinylidene chloride and monomers other than vinylidene chloride are 35 to 90% by mass, preferably 40 to 80% by mass, and monomers other than vinylidene chloride 10 to 65% by mass, preferably 20 to It is 60% by mass (the total amount is 100% by mass), and as a monomer other than vinylidene chloride, (meth) acrylonitrile and methyl methacrylate are preferable, and a monomer mixture containing vinylidene chloride is preferable. The combination is 45 to 75% by mass of vinylidene chloride, 20 to 50% by mass of (meth) acrylonitrile, and 3 to 10% by mass of methyl methacrylate (the total amount is 100% by mass). If the content ratio of vinylidene chloride is too low, the gas barrier property of the foamable microspheres to be formed may be insufficient, or the desired maximum foaming ratio may not be obtained.
3.架橋性単量体
 先に説明した重合性単量体とともに、発泡特性及び耐熱性等を改良するために、架橋性単量体を併用することができる。架橋性単量体としては、通常、2以上の炭素-炭素二重結合を有する化合物が用いられる。より具体的には、架橋性単量体として、例えば、ジビニルベンゼン、ジ(メタ)アクリル酸エチレングリコール〔エチレングリコールジ(メタ)アクリレート〕、ジ(メタ)アクリル酸ジエチレングリコール〔ジエチレングリコールジ(メタ)アクリレート〕、ジ(メタ)アクリル酸トリエチレングリコール、(メタ)アクリル酸アリル、イソシアン酸トリアリル、トリアクリルホルマール、トリ(メタ)アクリル酸トリメチロールプロパン、ジ(メタ)アクリル酸1,3-ブチルグリコール、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。架橋性単量体の使用割合は、重合性単量体の通常0.01~5質量%、好ましくは0.05~2質量%、より好ましくは0.1~1.5質量%、更に好ましくは0.15~1質量%である。
3. Crosslinkable monomer A crosslinkable monomer can be used in combination with the polymerizable monomer described above in order to improve foaming characteristics and heat resistance. As the crosslinkable monomer, a compound having two or more carbon-carbon double bonds is usually used. More specifically, as the crosslinkable monomer, for example, divinylbenzene, ethylene glycol di (meth) acrylate [ethylene glycol di (meth) acrylate], diethylene glycol di (meth) acrylate [diethylene glycol di (meth) acrylate] ] Triethylene glycol di (meth) acrylate, allyl (meth) acrylate, triallyl isocyanate, triacryl formal, trimethylolpropane tri (meth) acrylate, 1,3-butyl glycol di (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate. The proportion of the crosslinkable monomer used is usually 0.01 to 5% by mass of the polymerizable monomer, preferably 0.05 to 2% by mass, more preferably 0.1 to 1.5% by mass, still more preferably. Is 0.15 to 1% by mass.
4.重合開始剤
 重合性単量体は、所定温度環境において重合開始剤と接触することにより重合する。重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使用することができるが、使用する重合性単量体に可溶の油溶性重合開始剤が好ましい。重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシシエステル、パーオキシジカーボネート、及びアゾ化合物が挙げられる。より具体的には、メチルエチルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイドなどの過酸化ジアルキル;イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイドなどの過酸化ジアシル;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α,α-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼンなどのパーオキシエステル;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピル-オキシジカーボネート、ジ-イソプロピルパーオキシジカーボネート(以下、「IPP」ということがある。)、ジ(2-エチルエチルパーオキシ)ジカーボネート、ジ-メトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートなどのパーオキシジカーボネート;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)などのアゾ化合物;などが挙げられる。重合開始剤は、重合性単量体基準で、通常0.01~7質量%、好ましくは0.1~3質量%、より好ましくは0.3~2質量%の割合で使用される。
4). Polymerization initiator The polymerizable monomer is polymerized by contact with the polymerization initiator in a predetermined temperature environment. The polymerization initiator is not particularly limited, and those generally used in this field can be used, but an oil-soluble polymerization initiator soluble in the polymerizable monomer to be used is preferable. Examples of the polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxy ester, peroxy dicarbonate, and azo compound. More specifically, dialkyl peroxides such as methyl ethyl peroxide, di-t-butyl peroxide, dicumyl peroxide; isobutyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, 3, 5, Diacyl peroxide such as 5-trimethylhexanoyl peroxide; t-butyl peroxypivalate, t-hexyl peroxypivalate, t-butyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, 1 -Cyclohexyl-1-methylethylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, cumylperoxyneodecanoate, (α, α-bis-neodecanoyl Peroxy) peroxy such as diisopropylbenzene Esters; bis (4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyl-oxydicarbonate, di-isopropylperoxydicarbonate (hereinafter sometimes referred to as “IPP”), di (2- Peroxydicarbonates such as ethylethylperoxy) dicarbonate, di-methoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate; 2,2′-azobisisobutyronitrile 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis (1-cyclohexanecarbonitrile), etc. The polymerization initiator is usually 0.01 to on a polymerizable monomer basis. It is used in a proportion of 7% by mass, preferably 0.1-3% by mass, more preferably 0.3-2% by mass.
5.分散安定剤及び補助安定剤等
 懸濁重合は、通常、分散安定剤(懸濁剤)を含有する水系分散媒体中で行われる。分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、シュウ酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウムなどを挙げることができる。分散安定剤は、重合性単量体100質量部に対して、通常、0.1~20質量部の割合で使用される。
5. Dispersion stabilizer, auxiliary stabilizer and the like Suspension polymerization is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer (suspension agent). Examples of the dispersion stabilizer include silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, barium carbonate, magnesium carbonate and the like. be able to. The dispersion stabilizer is usually used at a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
 分散安定剤に加えて、補助安定剤、例えば、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、テトラメチルアンモニウムヒドロキシド、ゼラチン、メチルセルロース、ポリビニルアルコール、ジオクチルスルホサクシネート、ソルビタンエステル、各種乳化剤等を使用することができる。 In addition to dispersion stabilizers, auxiliary stabilizers such as condensation products of diethanolamine and aliphatic dicarboxylic acids, condensation products of urea and formaldehyde, polyvinylpyrrolidone, polyethylene oxide, polyethyleneimine, tetramethylammonium hydroxide, gelatin, Methyl cellulose, polyvinyl alcohol, dioctyl sulfosuccinate, sorbitan ester, various emulsifiers and the like can be used.
 好ましい組み合わせの一つとして、コロイダルシリカと縮合生成物の組み合わせがある。縮合生成物としては、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物が好ましく、特にジエタノールアミンとアジピン酸の縮合物やジエタノールアミンとイタコン酸の縮合生成物が好ましい。縮合物は、その酸価によって規定される。好ましくは、酸価が60mgKOH/g以上95mgKOH/g未満のものである。特に好ましくは、酸価が65mgKOH/g以上90mgKOH/g以下の縮合物である。さらに、塩化ナトリウム、硫酸ナトリウム等の無機塩を添加すると、より均一な粒子形状を有する発泡性マイクロスフェアーが得られやすくなる。無機塩としては、食塩が好適に用いられる。コロイダルシリカの使用量は、その粒子径によっても変わるが、通常、重合性単量体100質量部に対して、1~20質量部、好ましくは1.5~10質量部の割合で使用される。縮合生成物は、重合性単量体100質量部に対して、通常0.05~2質量部の割合で使用される。無機塩は、重合性単量体100質量部に対して、0~100質量部程度、多くの場合0.5~50質量部程度の割合で使用する。 One preferred combination is a combination of colloidal silica and a condensation product. As the condensation product, a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and a condensation product of diethanolamine and adipic acid or a condensation product of diethanolamine and itaconic acid is particularly preferable. The condensate is defined by its acid value. Preferably, the acid value is 60 mgKOH / g or more and less than 95 mgKOH / g. Particularly preferred is a condensate having an acid value of 65 mgKOH / g or more and 90 mgKOH / g or less. Furthermore, when inorganic salts such as sodium chloride and sodium sulfate are added, expandable microspheres having a more uniform particle shape are easily obtained. As the inorganic salt, sodium chloride is preferably used. The amount of colloidal silica used varies depending on the particle size, but is usually 1-20 parts by weight, preferably 1.5-10 parts by weight, based on 100 parts by weight of the polymerizable monomer. . The condensation product is usually used at a ratio of 0.05 to 2 parts by mass with respect to 100 parts by mass of the polymerizable monomer. The inorganic salt is used in a proportion of about 0 to 100 parts by mass, and in many cases about 0.5 to 50 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
 他の好ましい組み合わせは、コロイダルシリカと水溶性窒素含有化合物の組み合わせが挙げられる。水溶性窒素含有化合物の例としては、ポリビニルピロリドン、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、ポリジメチルアミノエチルメタクリレートやポリジメチルアミノエチルアクリレートに代表されるポリジアルキルアミノアルキル(メタ)アクリレート、ポリジメチルアミノプロピルアクリルアミドやポリジメチルアミノプロピルメタクリルアミドに代表されるポリジアルキルアミノアルキル(メタ)アクリルアミド、ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミンが挙げられる。これらの中でも、コロイダルシリカとポリビニルピロリドンの組み合わせが好適に用いられる。他の好ましい組み合わせには、水酸化マグネシウム及び/またはリン酸カルシウムと乳化剤との組み合わせがある。 Other preferred combinations include a combination of colloidal silica and a water-soluble nitrogen-containing compound. Examples of water-soluble nitrogen-containing compounds include polyvinyl pyrrolidone, polyethyleneimine, polyoxyethylene alkylamine, polydialkylaminoalkyl (meth) acrylate represented by polydimethylaminoethyl methacrylate and polydimethylaminoethyl acrylate, and polydimethylaminopropyl. Examples thereof include polydialkylaminoalkyl (meth) acrylamides represented by acrylamide and polydimethylaminopropylmethacrylamide, polyacrylamide, polycationic acrylamide, polyamine sulfone, and polyallylamine. Among these, a combination of colloidal silica and polyvinylpyrrolidone is preferably used. Another preferred combination is a combination of magnesium hydroxide and / or calcium phosphate and an emulsifier.
 分散安定剤としては、水溶性多価金属化合物(例えば、塩化マグネシウム)と水酸化アルカリ金属塩(例えば、水酸化ナトリウム)との水相中での反応により得られる難水溶性金属水酸化物(例えば、水酸化マグネシウム)のコロイドを用いることができる。また、リン酸カルシウムは、リン酸ナトリウムと塩化カルシウムとの水相中での反応生成物を使用することが可能である。乳化剤として、陰イオン性界面活性剤、例えば、ジアルキルスルホコハク酸塩やポリオキシエチレンアルキル(アリル)エーテルのリン酸エステル等を用いてもよい。 As the dispersion stabilizer, a poorly water-soluble metal hydroxide obtained by reaction in a water phase of a water-soluble polyvalent metal compound (for example, magnesium chloride) and an alkali metal hydroxide salt (for example, sodium hydroxide) ( For example, a colloid of magnesium hydroxide can be used. In addition, as the calcium phosphate, a reaction product in an aqueous phase of sodium phosphate and calcium chloride can be used. As the emulsifier, an anionic surfactant, for example, dialkyl sulfosuccinate or polyoxyethylene alkyl (allyl) ether phosphate ester may be used.
 乳化剤は、一般に使用しないが、所望により陰イオン性界面活性剤、例えば、ジアルキルスルホコハク酸塩やポリオキシエチレンアルキル(アリル)エーテルのリン酸エステル等を用いてもよい。 An emulsifier is not generally used, but an anionic surfactant such as a dialkyl sulfosuccinate or a polyoxyethylene alkyl (allyl) ether phosphate may be used if desired.
 さらに、重合助剤として、水系分散媒体(水相)中に、重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類(ビタミンC等)からなる群より選ばれる少なくとも一種の化合物を含有させることができる。これらの化合物の存在下に懸濁重合を行うと、重合時に、水相での重合粒子同士の凝集が起こらず、重合物が重合缶壁に付着することがなく、重合による発熱を効率的に除去しながら安定して発泡性マイクロスフェアーを製造することができる。特に、重合性単量体を含有する重合性混合物が、水溶性重合禁止剤または非水溶性重合禁止剤を含有するとともに、水系分散媒体中に前記の少なくとも一種の化合物、中でも亜硝酸アルカリ金属塩を含有する発泡性マイクロスフェアーの製造方法が好ましい。亜硝酸アルカリ金属塩の中では、亜硝酸ナトリウム及び亜硝酸カリウムが入手の容易性や価格の点で好ましい。これらの化合物は、重合性単量体100質量部に対して、通常、0.001~1質量部、好ましくは0.01~0.1質量部の割合で使用される。 Further, as a polymerization aid, in an aqueous dispersion medium (aqueous phase), from dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids (vitamin C, etc.) At least one compound selected from the group consisting of: When suspension polymerization is performed in the presence of these compounds, the polymerization particles in the aqueous phase do not aggregate during polymerization, and the polymer does not adhere to the polymerization can wall, thus efficiently generating heat due to polymerization. A foamable microsphere can be produced stably while removing. In particular, the polymerizable mixture containing a polymerizable monomer contains a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and at least one of the above-mentioned compounds, particularly alkali metal nitrite, in an aqueous dispersion medium. A process for producing expandable microspheres containing sulfur is preferred. Among the alkali metal nitrites, sodium nitrite and potassium nitrite are preferable in terms of availability and price. These compounds are generally used in a proportion of 0.001 to 1 part by mass, preferably 0.01 to 0.1 part by mass, with respect to 100 parts by mass of the polymerizable monomer.
6.水溶性重合禁止剤
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合することを特徴とする。水溶性重合禁止剤とは、水に対して溶解性を有する重合禁止剤であり、通常温度20℃での水に対する溶解度が1質量%超過である重合禁止剤を意味する。ここで、温度20℃での水に対する溶解度とは、温度20℃(760torrの圧力条件下)の水100gに溶解する重合禁止剤の質量(単位:質量%とする。)をいうが、また、日本薬局方(第16改正)通則29に定める「溶解性」、すなわち、溶質1g又は1mLを溶かす(具体的には、温度20±5℃で5分ごとに強く30秒間振り混ぜるとき、30分以内に溶ける度合をいうものとされる。)に要する溶媒量(単位:mL)としても求めることができる。本発明において使用する水溶性重合禁止剤としては、発泡の均一性等の観点から、温度20℃での水に対する溶解度が5質量%以上であることが好ましく、温度20℃での水に対する溶解度が8質量%以上であることがより好ましい。
6). Water-soluble polymerization inhibitor The method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention comprises at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization in an aqueous dispersion medium. It is characterized in that a polymerizable mixture containing an inhibitor is suspended and then subjected to suspension polymerization in the presence of a water-soluble polymerization inhibitor. The water-soluble polymerization inhibitor is a polymerization inhibitor having solubility in water, and means a polymerization inhibitor having a solubility in water of 1% by mass at a normal temperature of 20 ° C. Here, the solubility in water at a temperature of 20 ° C. means the mass (unit: mass%) of the polymerization inhibitor dissolved in 100 g of water at a temperature of 20 ° C. (under a pressure condition of 760 torr). “Solubility” as defined in Japanese Pharmacopoeia (16th revision) General Rules 29, ie, dissolve 1 g or 1 mL of solute (specifically, 30 minutes when shaking vigorously for 30 seconds every 5 minutes at a temperature of 20 ± 5 ° C.) It can also be determined as the amount of solvent required (unit: mL). As the water-soluble polymerization inhibitor used in the present invention, it is preferable that the solubility in water at a temperature of 20 ° C. is 5% by mass or more from the viewpoint of uniformity of foaming, and the solubility in water at a temperature of 20 ° C. It is more preferable that it is 8 mass% or more.
7.非水溶性重合禁止剤
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする。非水溶性重合禁止剤とは、水に対して溶解性を有しない重合禁止剤であり、通常温度20℃での水に対する溶解度が1質量%以下である重合禁止剤を意味する。ここで、温度20℃での水に対する溶解度とは、温度20℃(760torrの圧力条件下)の水100gに溶解する重合禁止剤の質量(単位:質量%とする。)をいうが、また、日本薬局方(第16改正)通則29に定める「溶解性」、すなわち、溶質1g又は1mLを溶かす(具体的には、温度20±5℃で5分ごとに強く30秒間振り混ぜるとき、30分以内に溶ける度合をいうものとされる。)に要する溶媒量(単位:mL)としても求めることができる。本発明において使用する非水溶性重合禁止剤としては、発泡の均一性等の観点から、温度20℃での水に対する溶解度が0.5質量%以下であることが好ましく、温度20℃での水に対する溶解度が0.3質量%以下であることがより好ましい。
7). Water-insoluble polymerization inhibitor The method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention comprises at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-insoluble solution in an aqueous dispersion medium. A polymerizable mixture containing a water-soluble polymerization inhibitor is suspended, and then suspension polymerization is performed in the presence of a water-insoluble polymerization inhibitor. The water-insoluble polymerization inhibitor is a polymerization inhibitor that is not soluble in water, and means a polymerization inhibitor having a solubility in water of 1% by mass or less at a normal temperature of 20 ° C. Here, the solubility in water at a temperature of 20 ° C. means the mass (unit: mass%) of the polymerization inhibitor dissolved in 100 g of water at a temperature of 20 ° C. (under a pressure condition of 760 torr). “Solubility” as defined in Japanese Pharmacopoeia (16th revision) General Rules 29, ie, dissolve 1 g or 1 mL of solute (specifically, 30 minutes when shaking vigorously for 30 seconds every 5 minutes at a temperature of 20 ± 5 ° C.) It can also be determined as the amount of solvent required (unit: mL). As the water-insoluble polymerization inhibitor used in the present invention, the solubility in water at a temperature of 20 ° C. is preferably 0.5% by mass or less from the viewpoint of uniformity of foaming, and the water at a temperature of 20 ° C. More preferably, the solubility in is 0.3 mass% or less.
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法においては、i)水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁することによって、水溶性重合禁止剤または非水溶性重合禁止剤が、まず重合性単量体により形成される油相に溶解して、所望しない重合反応の開始、特に、重合性混合物の調製時や分散液の調製時等の重合性混合物中での重合の生起が十分に抑制され、ii)その後、該水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合を行うことによって、発泡剤を封入した生成重合体の外殻が形成される重合反応時には、水溶性重合禁止剤または非水溶性重合禁止剤が、その水溶性に起因して少なくとも一部が水相に移行することにより、重合反応が阻害されず、iii)更には該水溶性重合禁止剤または非水溶性重合禁止剤がその親水性ゆえに油相から水相に移行することにより、重合反応において、重合性単量体を含有する重合性混合物を含む液滴(油相)以外の場所、すなわち水系分散媒体中(水相)での重合による新粒子の生成が抑制され、iv)該水溶性重合禁止剤または非水溶性重合禁止剤が重合を抑制するおそれが少ない、などの機構により、最大発泡倍率等の物性が優れ、所望により粒径が所定の範囲内である最大発泡倍率が5倍以上である発泡性マイクロスフェアーが得られるものと推察される。 In the method for producing a foamable microsphere having a maximum foaming ratio of 5 times or more according to the present invention, i) at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium. Alternatively, by suspending the polymerizable mixture containing the water-insoluble polymerization inhibitor, the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is first dissolved in the oil phase formed by the polymerizable monomer. , The initiation of undesired polymerization reaction, in particular, the occurrence of polymerization in the polymerizable mixture such as at the time of preparing the polymerizable mixture or the preparation of the dispersion is sufficiently suppressed, and ii) the water-soluble polymerization inhibitor or During the polymerization reaction in which the outer shell of the resulting polymer encapsulating the foaming agent is formed by suspension polymerization in the presence of a water-insoluble polymerization inhibitor, a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is added. Due to its water solubility The polymerization reaction is not hindered by at least part of the transition to the aqueous phase, and iii) Furthermore, the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor migrates from the oil phase to the water phase due to its hydrophilicity. As a result, in the polymerization reaction, generation of new particles due to polymerization in a place other than the droplet (oil phase) containing the polymerizable mixture containing the polymerizable monomer, that is, in the aqueous dispersion medium (aqueous phase) is suppressed. Iv) The physical properties such as the maximum expansion ratio are excellent by a mechanism such that the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is less likely to suppress the polymerization, and the particle size is within a predetermined range if desired. It is presumed that foamable microspheres having a maximum foaming ratio of 5 times or more can be obtained.
 本発明の発泡性マイクロスフェアーの製造方法において使用することができる水溶性重合禁止剤としては、所定の温度20℃での水に対する溶解度を有し、先に説明した作用を奏することができる限り、特に限定されないが、好ましくはハイドロキノン化合物、ナフトヒドロキノン化合物及びN-ニトロソ化合物からなる群より選ばれる少なくとも一種の化合物を含有するものであり、更に、酸素不存在下でも、所期の効果を十分発揮することができることから、ナフトヒドロキノンスルホン酸またはその塩、あるいは水溶性芳香族N-ニトロソ化合物がより好ましい。なお、実質的に酸素不存在下とは、窒素、ヘリウム、アルゴン、炭酸ガス等の不活性ガスで反応系内や容器内を置換することにより、反応系内や容器の空間部の酸素濃度が充分に低下した条件をいい、例えば、反応系内や容器の空間部の酸素濃度が通常1vol%以下、好ましくは0.1vol%以下のような条件をいう。 As a water-soluble polymerization inhibitor that can be used in the method for producing foamable microspheres of the present invention, as long as it has solubility in water at a predetermined temperature of 20 ° C. and can exhibit the action described above. Although not particularly limited, it preferably contains at least one compound selected from the group consisting of a hydroquinone compound, a naphthohydroquinone compound and an N-nitroso compound, and further, the desired effect is sufficiently obtained even in the absence of oxygen. Since it can be exhibited, naphthohydroquinonesulfonic acid or a salt thereof, or a water-soluble aromatic N-nitroso compound is more preferable. In the absence of oxygen, the oxygen concentration in the reaction system or in the space of the container is determined by substituting the reaction system or the container with an inert gas such as nitrogen, helium, argon, or carbon dioxide. It refers to a sufficiently lowered condition, for example, a condition such that the oxygen concentration in the reaction system or in the space of the container is usually 1 vol% or less, preferably 0.1 vol% or less.
(1)ハイドロキノン化合物
 本発明の発泡性マイクロスフェアーの製造方法において好ましく使用される水溶性重合禁止剤であるハイドロキノン化合物としては、ハイドロキノン、メトキノン(p-メトキシフェノール)、カテコール、レゾルシノール等が挙げられ、ハイドロキノン、メトキノンがより好ましく使用される。なお、tert-ブチルハイドロキノンは、温度20℃の水に対する溶解度が、0.5質量%以下であるので、本発明において使用する水溶性重合禁止剤には通常該当しない。
(1) Hydroquinone Compound Examples of the hydroquinone compound that is a water-soluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention include hydroquinone, methoquinone (p-methoxyphenol), catechol, resorcinol and the like. Hydroquinone and methoquinone are more preferably used. Note that tert-butyl hydroquinone does not normally correspond to the water-soluble polymerization inhibitor used in the present invention because its solubility in water at a temperature of 20 ° C. is 0.5% by mass or less.
(2)ナフトヒドロキノン化合物
 本発明の発泡性マイクロスフェアーの製造方法において好ましく使用される水溶性重合禁止剤であるナフトヒドロキノン化合物は、芳香族複合環であるナフタレン環を有するヒドロキノン化合物であり、酸素不存在下における重合抑制の効果や水溶性の観点等から、分子中にスルホン酸基やカルボン酸基を有する化合物でもよく、またそれらの塩でもよい。より好ましいナフトヒドロキノン化合物としては、ナフトヒドロキノンスルホン酸またはその塩が挙げられる。より好ましくは、ナトリウム、カリウム、アンモニウム、アルキル置換アンモニウム塩である。具体的には、ナフトヒドロキノンスルホン酸アンモニウム、ナフトヒドロキノンスルホン酸ナトリウム、ナフトヒドロキノンスルホン酸カリウム、ナフトヒドロキノンスルホン酸モノメチルアンモニウム、ナフトヒドロキノンスルホン酸モノエチルアンモニウム、ナフトヒドロキノンスルホン酸ジメチルアンモニウム、ナフトヒドロキノンスルホン酸トリメチルアンモニウム、ナフトヒドロキノンスルホン酸テトラメチルアンモニウム等が挙げられる。更に好ましくはナフトヒドロキノンスルホン酸アンモニウム、ナフトヒドロキノンスルホン酸モノメチルアンモニウム、ナフトヒドロキノンスルホン酸モノエチルアンモニウム、ナフトヒドロキノンスルホン酸ジメチルアンモニウム、ナフトヒドロキノンスルホン酸トリメチルアンモニウム、ナフトヒドロキノンスルホン酸テトラメチルアンモニウムである。特に好ましくは、ナフトヒドロキノンスルホン酸アンモニウムである。
(2) Naphthohydroquinone Compound A naphthohydroquinone compound which is a water-soluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention is a hydroquinone compound having a naphthalene ring which is an aromatic complex ring, and oxygen. From the viewpoint of inhibiting polymerization in the absence or from the viewpoint of water solubility, a compound having a sulfonic acid group or a carboxylic acid group in the molecule or a salt thereof may be used. More preferred naphthohydroquinone compounds include naphthohydroquinone sulfonic acid or a salt thereof. More preferred are sodium, potassium, ammonium and alkyl-substituted ammonium salts. Specifically, ammonium naphthohydroquinonesulfonate, sodium naphthohydroquinonesulfonate, potassium naphthohydroquinonesulfonate, monomethylammonium naphthohydroquinonesulfonate, monoethylammonium naphthohydroquinonesulfonate, dimethylammonium naphthohydroquinonesulfonate, trimethyl naphthohydroquinonesulfonate Ammonium, naphthohydroquinonesulfonic acid tetramethylammonium, etc. More preferred are ammonium naphthohydroquinonesulfonate, monomethylammonium naphthohydroquinonesulfonate, monoethylammonium naphthohydroquinonesulfonate, dimethylammonium naphthohydroquinonesulfonate, trimethylammonium naphthohydroquinonesulfonate, and tetramethylammonium naphthohydroquinonesulfonate. Particularly preferred is ammonium naphthohydroquinonesulfonate.
(3)N-ニトロソ化合物
 本発明の発泡性マイクロスフェアーの製造方法において好ましく使用される水溶性重合禁止剤であるN-ニトロソ化合物は、分子中に(式)-N-N=Oで表されるN-ニトロソ基を有する水溶性の化合物である。したがって、ニトロソ化合物であるニトロソフェノールや亜硝酸イソアミル等は、N-ニトロソ化合物に該当しない。酸素不存在下における重合抑制の効果や水溶性の観点等から、本発明の発泡性マイクロスフェアーの製造方法においては、更に分子中に芳香族基を有する水溶性芳香族N-ニトロソ化合物がより好ましく挙げられる。更に具体的には、N-ニトロソジフェニルアミン、N-ニトロソ-N-フェニルヒドロキシルアミン、N,N’-ジニトロソフェニレンジアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、またはα-ニトロソ-β-ナフトールのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等が挙げられ、特に好ましくはN-ニトロソ-N-フェニルヒドロキシルアミン塩、すなわち、N-ニトロソ-N-フェニルヒドロキシルアミンのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等、より好ましくはN-ニトロソ-N-フェニルヒドロキシルアミンのアンモニウム塩等が挙げられる。
(3) N-nitroso compound The N-nitroso compound, which is a water-soluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention, is represented by (formula) -NN = O in the molecule. It is a water-soluble compound having an N-nitroso group. Therefore, nitrosophenol and isoamyl nitrite which are nitroso compounds do not correspond to N-nitroso compounds. In view of the effect of inhibiting polymerization in the absence of oxygen and the viewpoint of water solubility, the method for producing foamable microspheres of the present invention further comprises a water-soluble aromatic N-nitroso compound having an aromatic group in the molecule. Preferably mentioned. More specifically, N-nitrosodiphenylamine, N-nitroso-N-phenylhydroxylamine, N, N′-dinitrosophenylenediamine, N-nitrosophenylnaphthylamine, N-nitrosodinaphthylamine, or α-nitroso-β- Examples thereof include alkali metal salts, alkaline earth metal salts, ammonium salts and the like of naphthol, particularly preferably N-nitroso-N-phenylhydroxylamine salt, that is, alkali metal salt of N-nitroso-N-phenylhydroxylamine, alkali An earth metal salt, an ammonium salt, and the like, more preferably an ammonium salt of N-nitroso-N-phenylhydroxylamine, and the like.
 本発明の発泡性マイクロスフェアーの製造方法において使用することができる非水溶性重合禁止剤としては、所定の温度20℃での水に対する低い溶解度を有し、先に説明した作用を奏することができる限り、特に限定されないが、所望しない時期の重合反応の抑制効果と所望する時期での重合反応の速やかな進行とのバランスや、得られる発泡性マイクロスフェアーの物性が優れていること等の観点から、好ましくはビタミンEやヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物を含有するものが挙げられる。 As a water-insoluble polymerization inhibitor that can be used in the method for producing foamable microspheres of the present invention, it has a low solubility in water at a predetermined temperature of 20 ° C., and has the effects described above. Although it is not particularly limited as long as possible, the balance between the suppression effect of the polymerization reaction at an undesired time and the rapid progress of the polymerization reaction at the desired time, and the physical properties of the resulting foamable microspheres are excellent. From the viewpoint, those containing an oil-soluble aromatic compound having at least one selected from the group consisting of vitamin E, hydroxy group, quinone group and alkoxy group are preferable.
(1)ビタミンE
 本発明の発泡性マイクロスフェアーの製造方法において好ましく使用される非水溶性重合禁止剤であるビタミンEは、脂溶性ビタミンの一種であって、α-トコフェロールの生理活性をもつ限り、トコールとトコトリエノールのすべての誘導体を一般的に指すとされる、クロマン環の芳香族環に有するOH基により抗酸化作用を有するフェノール化合物である。ビタミンEには、α-、β-、γ-、δ-トコフェロールとα-、β-、γ-、δ-トコトリエノールとの8種類が存在し、それぞれ光学異性体がある。天然ビタミンEは、d-α-トコフェロールであり、本発明の発泡性マイクロスフェアーの製造方法においては、非水溶性重合禁止剤として、天然ビタミンEを使用することがより好ましい。なお、脂溶性ビタミンに属するビタミンEは、温度20℃の水に対する溶解度が、0.1質量%未満である。
(1) Vitamin E
Vitamin E, which is a water-insoluble polymerization inhibitor preferably used in the method for producing foamable microspheres of the present invention, is a kind of fat-soluble vitamin and has tocol and tocotrienol as long as it has the physiological activity of α-tocopherol. These are phenol compounds having an antioxidant action due to the OH group in the aromatic ring of the chroman ring, generally referred to as all the derivatives of There are eight types of vitamin E, α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol, each having an optical isomer. Natural vitamin E is d-α-tocopherol, and it is more preferable to use natural vitamin E as a water-insoluble polymerization inhibitor in the method for producing foamable microspheres of the present invention. Vitamin E belonging to the fat-soluble vitamin has a solubility in water at a temperature of 20 ° C. of less than 0.1% by mass.
(2)ヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物
 また、本発明の発泡性マイクロスフェアーの製造方法において好ましく使用される非水溶性重合禁止剤であるヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物は、ベンゼン環、ナフタレン環、アントラセン環等の芳香族環に、ヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを置換基として有する油溶性の化合物であり、温度20℃の水に対する溶解度(以下、単に「溶解度」ということがある。)が、通常1質量%以下、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である非水溶性の化合物である。より好ましい前記の油溶性の芳香族化合物としては、(i)ヒドロキシ基を有する油溶性の芳香族化合物が、フェノール類またはナフトール類、例えば、t-ブチルヒドロキノン、t-ブチルカテコール、ブチルヒドロキシアニソール、4-メトキシナフトール等;(ii)キノン基を有する油溶性の芳香族化合物が、ベンゾキノン類、ナフトキノン類、またはアントラキノン類、例えば、ベンゾキノン、1,4-ナフトキノン、1,2-ナフトキノン、2-ヒドロキシ-1,4-ナフトキノン、アントラキノン等;あるいは、(iii)アルコキシ基を有する油溶性の芳香族化合物が、ベンゼン誘導体またはナフタレン誘導体、例えば、1,4-ジメトキシナフタレン、1,4-ジエトキシナフタレン等;などを挙げることができる。特に好ましい前記の油溶性の芳香族化合物としては、4-メトキシナフトール(溶解度:0.1質量%未満)、2-ヒドロキシ-1,4-ナフトキノン(溶解度:0.2質量%)、1,4-ナフトキノン(溶解度:0.1質量%未満)、t-ブチルカテコール(溶解度:0.2質量%)、ブチルヒドロキシアニソール(溶解度:0.1質量%未満)、t-ブチルヒドロキノン(溶解度:1質量%)等が挙げられる。
(2) An oil-soluble aromatic compound having at least one selected from the group consisting of a hydroxy group, a quinone group and an alkoxy group In addition, a water-insoluble polymerization preferably used in the method for producing foamable microspheres of the present invention The oil-soluble aromatic compound having at least one selected from the group consisting of a hydroxy group, a quinone group, and an alkoxy group, which is an inhibitor, has an aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, a hydroxy group, a quinone It is an oil-soluble compound having at least one selected from the group consisting of a group and an alkoxy group as a substituent, and its solubility in water at 20 ° C. (hereinafter sometimes simply referred to as “solubility”) is usually 1 mass. % Or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less. More preferable examples of the oil-soluble aromatic compound include (i) an oil-soluble aromatic compound having a hydroxy group, such as phenols or naphthols such as t-butylhydroquinone, t-butylcatechol, butylhydroxyanisole, 4-methoxynaphthol and the like; (ii) oil-soluble aromatic compounds having a quinone group are benzoquinones, naphthoquinones, or anthraquinones such as benzoquinone, 1,4-naphthoquinone, 1,2-naphthoquinone, 2-hydroxy -1,4-naphthoquinone, anthraquinone, etc .; or (iii) an oil-soluble aromatic compound having an alkoxy group is a benzene derivative or a naphthalene derivative such as 1,4-dimethoxynaphthalene, 1,4-diethoxynaphthalene, etc. And the like. Particularly preferable oil-soluble aromatic compounds are 4-methoxynaphthol (solubility: less than 0.1% by mass), 2-hydroxy-1,4-naphthoquinone (solubility: 0.2% by mass), 1,4 -Naphthoquinone (solubility: less than 0.1% by weight), t-butylcatechol (solubility: 0.2% by weight), butylhydroxyanisole (solubility: less than 0.1% by weight), t-butylhydroquinone (solubility: 1% by weight) %) And the like.
 さらに、酸素不存在下でも、所期の効果を十分発揮することができることから、ビタミンE、ヒドロキシ基を有する油溶性の芳香族化合物がナフトール類、またはキノン基を有する油溶性の芳香族化合物がナフトキノン類やアントラキノン類、及びアルコキシ基を有する油溶性の芳香族化合物であるナフタレン誘導体がより好ましい。これらの化合物としては、4-メトキシナフトール、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、1,4-ジメトキシナフタレン、1,4-ジエトキシナフタレン等が挙げられる。なお、実質的に酸素不存在下とは、窒素、ヘリウム、アルゴン、炭酸ガス等の不活性ガスで反応系内や容器内を置換することにより、反応系内や容器の空間部の酸素濃度が充分に低下した条件をいい、例えば、反応系内や容器の空間部の酸素濃度が通常1vol%以下、好ましくは0.1vol%以下のような条件をいう。 Furthermore, since the desired effect can be sufficiently exhibited even in the absence of oxygen, vitamin E, an oil-soluble aromatic compound having a hydroxy group is a naphthol, or an oil-soluble aromatic compound having a quinone group Naphthoquinones and anthraquinones and naphthalene derivatives which are oil-soluble aromatic compounds having an alkoxy group are more preferred. Examples of these compounds include 4-methoxynaphthol, 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 1,4-dimethoxynaphthalene, 1,4-diethoxynaphthalene and the like. In the absence of oxygen, the oxygen concentration in the reaction system or in the space of the container is determined by substituting the reaction system or the container with an inert gas such as nitrogen, helium, argon, or carbon dioxide. It refers to a sufficiently lowered condition, for example, a condition such that the oxygen concentration in the reaction system or in the space of the container is usually 1 vol% or less, preferably 0.1 vol% or less.
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法において使用される水溶性重合禁止剤または非水溶性重合禁止剤の使用量は、本発明の目的に適合する限り特に限定されないが、重合性単量体の合計量に対して、通常0.0005~0.5質量%(5~5000ppm)、好ましくは0.001~0.1質量%(10~1000ppm)、より好ましくは0.002~0.07質量%(20~700ppm)、更に好ましくは0.003~0.05質量%(30~500ppm)、特に好ましくは0.005~0.04質量%(50~400ppm)の割合である。なお、本発明の発泡性マイクロスフェアーの製造方法において使用される重合性単量体には、重合性単量体の移送中や保管中に意図しない重合を開始させないため、あらかじめ重合禁止剤が含有されていることがある。その際、該重合禁止剤が本発明における水溶性重合禁止剤または非水溶性重合禁止剤に該当する場合には、前記した本発明の発泡性マイクロスフェアーの製造方法における水溶性重合禁止剤または非水溶性重合禁止剤の使用量は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁するときに残存するあらかじめ含有されていた重合禁止剤(水溶性重合禁止剤または非水溶性重合禁止剤)の含有量を考慮して、不足分または過剰分に該当する使用量を相殺するように、水溶性重合禁止剤の使用量を調整すればよい。この場合における水溶性重合禁止剤または非水溶性重合禁止剤の使用量は、通常0.002~0.5質量%(20~5000ppm)、好ましくは0.005~0.1質量%(50~1000ppm)、より好ましくは0.006~0.05質量%(60~500ppm)、特に好ましくは0.007~0.05質量%(70~500ppm)の割合である。 The amount of the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used in the method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention is particularly limited as long as it meets the purpose of the present invention. Although not limited, it is usually 0.0005 to 0.5% by mass (5 to 5000 ppm), preferably 0.001 to 0.1% by mass (10 to 1000 ppm), and more based on the total amount of polymerizable monomers. Preferably 0.002 to 0.07 mass% (20 to 700 ppm), more preferably 0.003 to 0.05 mass% (30 to 500 ppm), particularly preferably 0.005 to 0.04 mass% (50 to 700 ppm). 400 ppm). The polymerizable monomer used in the method for producing foamable microspheres of the present invention does not start unintentional polymerization during transfer or storage of the polymerizable monomer, so that a polymerization inhibitor is added in advance. May be contained. At that time, when the polymerization inhibitor corresponds to the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor in the present invention, the water-soluble polymerization inhibitor or the water-soluble polymerization inhibitor in the method for producing foamable microspheres of the present invention described above. The amount of the water-insoluble polymerization inhibitor used is a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium. In consideration of the content of the polymerization inhibitor (water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor) that remains in advance when suspended, the usage corresponding to the shortage or excess is offset. Thus, what is necessary is just to adjust the usage-amount of a water-soluble polymerization inhibitor. In this case, the amount of the water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used is usually 0.002 to 0.5% by mass (20 to 5000 ppm), preferably 0.005 to 0.1% by mass (50 to 50%). 1000 ppm), more preferably 0.006 to 0.05 mass% (60 to 500 ppm), and particularly preferably 0.007 to 0.05 mass% (70 to 500 ppm).
 また、本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法においては、更に水系分散媒体(水相)中に重合助剤である重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類から選ばれる少なくとも一種の化合物を含有させ、重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合をしてもよい。すなわち、水系分散媒体中に重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類からなる群より選ばれる少なくとも一種の化合物を含有する発泡性マイクロスフェアーの製造方法とすることによって、特に、水系分散媒体中に含有される前記の化合物が亜硝酸アルカリ金属塩である発泡性マイクロスフェアーの製造方法とすることによって、重合性単量体の組成及び/または発泡剤の種類や含有量との組み合わせにより、発泡性マイクロスフェアーの最大発泡倍率の大きさや均一性等を調整することができるので好ましい。 In the method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention, a dichromate or alkali metal nitrite as a polymerization aid is further contained in an aqueous dispersion medium (aqueous phase). , Containing at least one compound selected from stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, suspending the polymerizable mixture, and then water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor Suspension polymerization may be carried out in the presence. That is, the foamable microscopic material containing at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids in an aqueous dispersion medium. By using a method for producing a sphere, in particular, by producing a foamable microsphere in which the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt, The combination of the composition and / or the type and content of the foaming agent is preferable because the maximum foaming ratio and uniformity of the foamable microsphere can be adjusted.
〔重合抑制効果〕
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法において、水溶性重合禁止剤または非水溶性重合禁止剤を油相中で使用することによる所望しない重合反応の開始を抑制する効果は、以下の方法によっても確認することができる。すなわち、窒素ガスを充填したガラス製アンプル(容積50mL)に、所望の重合性単量体の組み合わせ及び重合開始剤、並びに、重合性単量体の合計量100質量部に対して0.02質量部(200ppmに相当する。)の水溶性重合禁止剤または非水溶性重合禁止剤を封入して、該アンプルを温度25℃の恒温水槽に浸漬する。該アンプルの内容物が重合を開始することに伴い生じる白濁の有無を目視で観察し、白濁が観察されるまでの経過時間(単位:時間。以下、「重合抑制時間」ということがある。)を測定する。例えば、該重合抑制時間が1時間以上であれば、温度25℃において1時間以上の重合抑制効果があるといえるので、外気温が高いとき、特に、大規模生産を行う場合にも、重合性混合物の調製時や分散液の調製時中等において所望しない油相での重合反応が開始するおそれがない。重合抑制時間は、通常1時間以上、好ましくは2時間以上、より好ましくは3時間以上、特に好ましくは4時間以上である。なお、重合抑制時間が長すぎると、最大発泡倍率が5倍以上である発泡性マイクロスフェアーを製造するための重合反応の開始と進行が妨げられるおそれがあるので、重合抑制時間は、通常10時間以下、多くの場合8時間以内の範囲とすることが好ましい。
(Polymerization inhibitory effect)
In the method for producing a foamable microsphere having a maximum foaming ratio of 5 times or more according to the present invention, an undesirable polymerization reaction is initiated by using a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an oil phase. The suppressing effect can also be confirmed by the following method. That is, in a glass ampule filled with nitrogen gas (volume: 50 mL), 0.02 mass relative to a total amount of 100 mass parts of the desired combination of polymerizable monomers and polymerization initiator, and polymerizable monomers. Part (corresponding to 200 ppm) of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is sealed, and the ampoule is immersed in a constant temperature water bath at a temperature of 25 ° C. Elapsed time until the white turbidity is observed by visually observing the presence or absence of white turbidity caused by the content of the ampoule being started to polymerize (hereinafter referred to as “polymerization inhibition time”). Measure. For example, if the polymerization inhibition time is 1 hour or more, it can be said that there is a polymerization inhibition effect for 1 hour or more at a temperature of 25 ° C. Therefore, when the outside air temperature is high, especially when large-scale production is performed, the polymerization property There is no possibility of starting a polymerization reaction in an undesired oil phase during the preparation of the mixture or during the preparation of the dispersion. The polymerization inhibition time is usually 1 hour or longer, preferably 2 hours or longer, more preferably 3 hours or longer, particularly preferably 4 hours or longer. If the polymerization suppression time is too long, the initiation and progress of the polymerization reaction for producing foamable microspheres having a maximum expansion ratio of 5 times or more may be hindered. It is preferable to set the time within the range of 8 hours or less.
7.水系分散媒体
 本発明の発泡性マイクロスフェアーの製造方法において、懸濁重合は水系分散媒体中で行われる。水系分散媒体としては、水を使用することができ、具体的には脱イオン水や蒸留水を使用することができる。重合性単量体の合計量に対する水系分散媒体の使用量は、特に限定されないが、通常0.5~10倍、多くの場合1~7倍(質量比)である。
7). Aqueous Dispersion Medium In the method for producing foamable microspheres of the present invention, suspension polymerization is carried out in an aqueous dispersion medium. As the aqueous dispersion medium, water can be used, and specifically, deionized water or distilled water can be used. The amount of the aqueous dispersion medium used relative to the total amount of the polymerizable monomers is not particularly limited, but is usually 0.5 to 10 times, and in many cases 1 to 7 times (mass ratio).
8.重合性混合物の懸濁、及び懸濁重合
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法においては、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤、及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする。
8). Suspension of polymerizable mixture, and suspension polymerization In the method for producing foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention, in an aqueous dispersion medium, at least a foaming agent, a polymerizable monomer, Suspending a polymerization mixture containing a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and then performing suspension polymerization in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor. It is characterized by.
〔重合性混合物の懸濁〕
 本発明の発泡性マイクロスフェアーの製造方法において、懸濁重合に先立って、水系分散媒体中で懸濁する、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物は、その調製方法が特に限定されない。通常は、水等の水系分散媒体に、分散安定剤(懸濁剤)、更に必要に応じて補助安定剤や重合助剤等を加えて、分散安定剤を含有する水系分散媒体(水相)を調製する。後に説明するように、懸濁重合を行うに当たっては、使用する分散安定剤や補助安定剤の種類によって、最適のpH条件を選定することが好ましいので、必要に応じて系のpHを調整してもよい。なお、分散安定剤として水酸化マグネシウムまたはリン酸カルシウムを使用する場合は、アルカリ性環境の中で重合させる。他方、別途、発泡剤、重合性単量体、及び必要に応じて架橋性単量体等を混合して、少なくとも発泡剤と重合性単量体とを含有する混合物(油相)を調製し、次いで、前記の水相と油相とを混合する。なお、本発明の目的を阻害しない限り、先の分散安定剤を含有する水系分散媒体に、発泡剤、重合性単量体、及び架橋性単量体等を加えてもよい。
(Suspension of polymerizable mixture)
In the method for producing foamable microspheres of the present invention, at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or non-suspended in an aqueous dispersion medium prior to suspension polymerization. The preparation method of the polymerizable mixture containing the water-soluble polymerization inhibitor is not particularly limited. Usually, an aqueous dispersion medium (aqueous phase) containing a dispersion stabilizer by adding a dispersion stabilizer (suspension agent) to the aqueous dispersion medium such as water and, if necessary, an auxiliary stabilizer or a polymerization aid. To prepare. As will be described later, when suspension polymerization is performed, it is preferable to select the optimum pH condition depending on the type of dispersion stabilizer and auxiliary stabilizer used, so the pH of the system is adjusted as necessary. Also good. In addition, when using magnesium hydroxide or calcium phosphate as a dispersion stabilizer, it polymerizes in an alkaline environment. On the other hand, separately, a foaming agent, a polymerizable monomer, and a crosslinkable monomer as necessary are mixed to prepare a mixture (oil phase) containing at least the foaming agent and the polymerizable monomer. Then, the aqueous phase and the oil phase are mixed. As long as the object of the present invention is not impaired, a foaming agent, a polymerizable monomer, a crosslinkable monomer, and the like may be added to the aqueous dispersion medium containing the above dispersion stabilizer.
 本発明の発泡性マイクロスフェアーの製造方法において使用する水溶性重合禁止剤または非水溶性重合禁止剤は、前記の油相(少なくとも発泡剤と重合性単量体とを含有する混合物)に添加して、重合性混合物に含有される。また、重合開始剤は、あらかじめ重合性単量体に添加して使用することができるが、早期の重合を避ける必要がある場合には、少なくとも発泡剤と重合性単量体とを含有する混合物(油相)を、先の分散安定剤を含有する水系分散媒体に、添加し攪拌混合するときに、重合開始剤を加え、水系分散媒体中で一体化してもよい。これらの調製方法により、少なくとも発泡剤、重合性単量体、重合開始剤、及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を得ることができる。本発明によれば、前記の少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物は、温度25℃の水系分散媒体中において、通常1時間以上、好ましくは2時間以上、より好ましくは3時間以上、特に好ましくは4時間以上保存・保持しても、予期しない重合反応が抑制されているので、所望のときに懸濁重合を行うことができる。 The water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor used in the method for producing foamable microspheres of the present invention is added to the oil phase (a mixture containing at least a foaming agent and a polymerizable monomer). And contained in the polymerizable mixture. In addition, the polymerization initiator can be added to the polymerizable monomer in advance, but if it is necessary to avoid early polymerization, a mixture containing at least a foaming agent and a polymerizable monomer When (oil phase) is added to the aqueous dispersion medium containing the previous dispersion stabilizer and stirred and mixed, a polymerization initiator may be added and integrated in the aqueous dispersion medium. By these preparation methods, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor can be obtained. According to the present invention, the polymerizable mixture containing at least the foaming agent, the polymerizable monomer, the polymerization initiator, and the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor is contained in an aqueous dispersion medium at a temperature of 25 ° C. In this case, the polymerization reaction is usually suppressed for 1 hour or longer, preferably 2 hours or longer, more preferably 3 hours or longer, particularly preferably 4 hours or longer. Polymerization can be performed.
 次いで、得られた少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を、通常は攪拌混合等の方法によって、懸濁する。重合性混合物を、攪拌混合等により懸濁することにより、水系分散媒体を含有する水相中において、少なくとも発泡剤、重合性単量体、重合開始剤を含有する油相が液滴を形成する。重合性混合物を懸濁するために行う攪拌混合の条件を選択することにより、所望の大きさの微細な液滴に造粒することができる。液滴の平均粒径は、目的とする発泡性マイクロスフェアーの平均粒径とほぼ一致させることが好ましく、通常、0.2~500μmの範囲であり、0.5~150μm程度とすることが好ましい。攪拌混合に際しては、発泡性マイクロスフェアーの所望の粒径に応じて、攪拌機の種類や回転数などの条件設定を行う。この際、重合缶の大きさと形状、バッフルの有無等をも勘案して条件を選択する。攪拌機としては、高せん断力を有するホモジナイザーが好ましい。粒径分布が極めてシャープな発泡性マイクロスフェアーを得るには、水系分散媒体及び重合性混合物を連続式高速回転高せん断型攪拌分散機内に供給し、該攪拌分散機中で両者を連続的に攪拌分散させた後、得られた分散液を重合槽内に注入し、該重合槽内で懸濁重合を行う方法を採用することが好ましい。また、回分式高速回転高せん断分散機を用いることもできる。 Next, the obtained polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended by a method such as stirring and mixing. To do. By suspending the polymerizable mixture by stirring and mixing, an oil phase containing at least a foaming agent, a polymerizable monomer, and a polymerization initiator forms droplets in an aqueous phase containing an aqueous dispersion medium. . By selecting the conditions of stirring and mixing performed for suspending the polymerizable mixture, it can be granulated into fine droplets of a desired size. The average particle diameter of the droplets is preferably substantially the same as the average particle diameter of the target foamable microsphere, and is usually in the range of 0.2 to 500 μm, preferably about 0.5 to 150 μm. preferable. At the time of stirring and mixing, conditions such as the type of the stirrer and the number of rotations are set according to the desired particle size of the foamable microsphere. At this time, the conditions are selected in consideration of the size and shape of the polymerization can and the presence or absence of baffles. As the stirrer, a homogenizer having a high shearing force is preferable. In order to obtain foamable microspheres having an extremely sharp particle size distribution, an aqueous dispersion medium and a polymerizable mixture are fed into a continuous high-speed rotation high shear type agitator / disperser, and both are continuously fed in the agitator / disperser. After stirring and dispersing, it is preferable to employ a method in which the obtained dispersion is poured into a polymerization tank and suspension polymerization is performed in the polymerization tank. A batch-type high-speed rotation high shear disperser can also be used.
〔懸濁重合〕
 水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁した後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合する。懸濁重合は、水系分散媒体中で行われ、通常、分散安定剤(懸濁剤)を含有する水系分散媒体中で行われる。懸濁重合を行うに当たっては、使用する分散安定剤や補助安定剤の種類によって、最適のpH条件を選定することが好ましい。例えば、分散安定剤としてコロイダルシリカなどのシリカを使用する場合は、酸性環境で重合が行うことが好ましいので、先に説明した重合性混合物の懸濁に先立ち、あらかじめ分散安定剤を含有する水系分散媒体に、酸を加えて、系のpHを約3~4に調整しておいてもよい。また、分散安定剤として水酸化マグネシウムまたはリン酸カルシウムを使用する場合は、アルカリ性環境の中で重合させる。
(Suspension polymerization)
After suspending a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium, a water-soluble polymerization inhibitor or Suspension polymerization is performed in the presence of a water-insoluble polymerization inhibitor. The suspension polymerization is carried out in an aqueous dispersion medium, and is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer (suspension agent). In carrying out the suspension polymerization, it is preferable to select optimum pH conditions depending on the type of dispersion stabilizer and auxiliary stabilizer used. For example, when silica such as colloidal silica is used as the dispersion stabilizer, it is preferable to carry out the polymerization in an acidic environment, so that the aqueous dispersion containing the dispersion stabilizer in advance prior to the suspension of the polymerizable mixture described above. The pH of the system may be adjusted to about 3 to 4 by adding an acid to the medium. When magnesium hydroxide or calcium phosphate is used as the dispersion stabilizer, the polymerization is performed in an alkaline environment.
 重合(懸濁重合)反応は、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に、通常酸素不存在下で、例えば、脱気して、または窒素ガス等の不活性ガスで置換した重合缶内において、温度40~80℃、好ましくは50~70℃で、1~40時間、好ましくは3~30時間攪拌しながら行う。重合により生成する発泡性マイクロスフェアーは、微粒子固体を形成するので、水系分散媒体を含有する水相は、例えば、ろ過、遠心分離、沈降等のそれ自体公知の分離方法によって、発泡性マイクロスフェアーから分離除去される。その際、水溶性重合禁止剤または非水溶性重合禁止剤は、重合開始初期に水相に移行しやすいので、重合が抑制されるおそれが少なく、その結果、発泡特性等の物性が優れる最大発泡倍率が5倍以上である発泡性マイクロスフェアーが得られる。得られる発泡性マイクロスフェアーは、必要に応じて、発泡剤がガス化しない程度の比較的低温で乾燥される。 The polymerization (suspension polymerization) reaction is carried out in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, usually in the absence of oxygen, for example, degassed or replaced with an inert gas such as nitrogen gas. The polymerization can is carried out at 40 to 80 ° C., preferably 50 to 70 ° C. with stirring for 1 to 40 hours, preferably 3 to 30 hours. Since the foamable microspheres formed by polymerization form a fine particle solid, the aqueous phase containing the aqueous dispersion medium is separated from the foamable microsphere by a known separation method such as filtration, centrifugation, sedimentation, or the like. Separated and removed from the fair. At that time, the water-soluble polymerization inhibitor or the water-insoluble polymerization inhibitor easily shifts to the aqueous phase at the beginning of the polymerization, so that the polymerization is less likely to be suppressed, and as a result, the maximum foaming that has excellent physical properties such as foaming characteristics. A foamable microsphere having a magnification of 5 times or more is obtained. The resulting foamable microsphere is dried at a relatively low temperature so that the foaming agent is not gasified, if necessary.
II.発泡性マイクロスフェアー
 本発明によれば、先に説明した発泡性マイクロスフェアーの製造方法によって、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーが提供される。
II. Foamable microspheres According to the present invention, at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor are produced in an aqueous dispersion medium by the method for producing foamable microspheres described above. Or in the outer shell of the resulting polymer obtained by suspending a polymerizable mixture containing a water-insoluble polymerization inhibitor and then subjecting it to suspension polymerization in the presence of a water-soluble polymerization inhibitor or water-insoluble polymerization inhibitor. A foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed is provided.
〔最大発泡倍率〕
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの最大発泡倍率は、以下の方法によって測定する発泡倍率(塗膜法)により求めるものである。すなわち、エチレン・酢酸ビニル共重合体(EVA;エチレン/酢酸ビニル=30/70質量%)を含有するEVA系水性エマルジョン(濃度55重量%)に対して、発泡性マイクロスフェアーが固形分換算で5:1となるように添加して塗工液を調整する。この塗工液を両面アート紙に200μmのギャップを有するコーターで塗布した後、オーブンに入れ温度90℃で5分間乾燥する。乾燥後の塗膜厚みを計測した後、発泡開始温度の近傍からより高い温度までの複数の所定温度のオーブンに入れて、2分間加熱して発泡させる。発泡後の塗膜厚みを測定し、発泡前後の塗膜圧比から、各々の所定温度における発泡倍率を求め、測定された最大の発泡倍率を、発泡性マイクロスフェアーの最大発泡倍率とする。本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの最大発泡倍率は、好ましくは6倍以上、より好ましくは7倍以上である。前記最大発泡倍率は、上限値が特にないが、発泡体粒子または発泡性マイクロスフェアーの強度や、発泡の均一性または安定性の観点等から、通常30倍以下、多くの場合20倍以下である。
[Maximum foaming ratio]
The maximum expansion ratio of the expandable microsphere having a maximum expansion ratio of 5 or more according to the present invention is determined by the expansion ratio (coating method) measured by the following method. That is, the foamable microspheres in terms of solid content are converted to EVA aqueous emulsion (concentration 55% by weight) containing an ethylene / vinyl acetate copolymer (EVA; ethylene / vinyl acetate = 30/70 mass%). Add 5: 1 to adjust the coating solution. This coating solution is applied to double-sided art paper with a coater having a gap of 200 μm, and then placed in an oven and dried at a temperature of 90 ° C. for 5 minutes. After measuring the thickness of the coating film after drying, it is placed in a plurality of ovens at a predetermined temperature from the vicinity of the foaming start temperature to a higher temperature, and heated for 2 minutes for foaming. The coating thickness after foaming is measured, the foaming ratio at each predetermined temperature is determined from the coating pressure ratio before and after foaming, and the measured maximum foaming ratio is taken as the maximum foaming ratio of the foamable microsphere. The maximum expansion ratio of the foamable microsphere of the present invention having a maximum expansion ratio of 5 times or more is preferably 6 times or more, more preferably 7 times or more. The maximum expansion ratio has no particular upper limit, but is usually 30 times or less, and in most cases 20 times or less, from the viewpoint of the strength of foam particles or expandable microspheres, the uniformity or stability of foaming, and the like. is there.
〔平均粒径〕
 本発明の最大発泡倍率が5倍以上である発泡性マイクロスフェアーの平均粒径は、取扱い性や発泡の均一性または安定性の観点等から、好ましくは平均粒径が0.5~150μmであり、より好ましくは1~120μmである。発泡性マイクロスフェアーの平均粒径は、レーザー回折式粒子径分布測定装置(株式会社島津製作所製のSALDシリーズ等)を使用して測定するものであり、粒子径(球相当径)の積算%(体積基準及び対数スケール)の粒径分布曲線に基づいて得られる50%粒子径(「メディアン径」ということもある。以下、「平均粒径(D50)」ということがある。)をいう(単位:μm)。平均粒径が小さすぎると、クッション性、軽量化が不十分となるおそれがあり、平均粒径が大きすぎると、発泡成形体の気泡が大きすぎ、繰り返し圧縮に対する耐疲労性、または、強度が不十分となるおそれがある。
[Average particle size]
The average particle diameter of the foamable microspheres having a maximum foaming ratio of 5 times or more according to the present invention is preferably 0.5 to 150 μm from the viewpoint of handleability, foaming uniformity or stability. More preferably, it is 1 to 120 μm. The average particle size of the foamable microspheres is measured using a laser diffraction particle size distribution measuring device (such as SALD series manufactured by Shimadzu Corporation), and is an integrated percentage of the particle size (sphere equivalent diameter). 50% particle diameter (sometimes referred to as “median diameter”, sometimes referred to as “average particle diameter (D50)”) obtained based on a particle size distribution curve (volume basis and logarithmic scale). Unit: μm). If the average particle size is too small, the cushioning property and weight reduction may be insufficient. If the average particle size is too large, the foamed foam has too large bubbles, resulting in fatigue resistance or strength against repeated compression. May be insufficient.
 本発明により得られる最大発泡倍率が5倍以上である発泡性マイクロスフェアーは、発泡(膨張)させて、または未発泡のままで、各種分野に使用される。該発泡性マイクロスフェアーは、例えば、その膨張性を利用して、自動車等の塗料の充填剤、発泡インク(壁紙、T-シャツ等のレリーフ模様付け)の発泡剤、収縮防止剤などに使用される。また、発泡性マイクロスフェアーは、発泡による体積増加を利用して、プラスチック、塗料、各種資材などの軽量化や多孔質化、各種機能性付与(例えば、スリップ性、断熱性、クッション性、遮音性等)の目的で使用される。特に、本発明による発泡性マイクロスフェアーは、表面性や平滑性が要求される塗料、インク分野や、プラスチック成形品(例えば内装材等)の軽量化などに好適に用いることができる。 The foamable microspheres having a maximum foaming ratio of 5 times or more obtained by the present invention are used in various fields after being foamed (expanded) or unfoamed. The foamable microspheres are used, for example, as paint fillers for automobiles, foaming inks for foaming inks (wallpaper, relief patterns such as T-shirts), anti-shrinkage agents, etc. Is done. In addition, foamable microspheres use the volume increase caused by foaming to make plastics, paints, various materials lighter and more porous, and to provide various functions (for example, slip, heat insulation, cushion, sound insulation) Used for the purpose of sex. In particular, the foamable microspheres according to the present invention can be suitably used for paints and ink fields that require surface properties and smoothness, and weight reduction of plastic molded products (for example, interior materials).
 これに対して、水溶性重合禁止剤または非水溶性重合禁止剤を含有することなく、水系分散媒体中で、少なくとも発泡剤、重合性単量体及び重合開始剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の不存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された発泡性マイクロスフェアーは、最大発泡倍率が5倍に満たなかったり、粒径や最大発泡倍率や発泡開始温度にバラツキがあったりすることがあるため、使用目的に合致しないことがある。更には、発泡性マイクロスフェアーを製造するときに、重合反応の進行が遅すぎたり、または制御できない異常反応が生じたり、重合容器に付着物が多量に発生するなどの問題が生じることがある。 In contrast, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer and a polymerization initiator is suspended in an aqueous dispersion medium without containing a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor. The foamable microspheres, which are turbid and then obtained by suspension polymerization in the absence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, in which the foaming agent is encapsulated in the outer shell of the resulting polymer, The maximum expansion ratio may be less than 5 times, or the particle size, the maximum expansion ratio, and the foaming start temperature may vary, which may not meet the purpose of use. Furthermore, when producing foamable microspheres, the progress of the polymerization reaction may be too slow, an uncontrollable abnormal reaction may occur, or a large amount of deposits may be generated in the polymerization vessel. .
 本発明を実施するための形態は、以下のような構成をとることもできる。
[1]
 水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、
生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である、発泡性マイクロスフェアーの製造方法。
[2]
 水溶性重合禁止剤は、温度20℃での水に対する溶解度が1質量%超過である、[1]に記載の発泡性マイクロスフェアーの製造方法。
[3]
 水溶性重合禁止剤は、温度20℃での水に対する溶解度が5質量%以上である、[2]に記載の発泡性マイクロスフェアーの製造方法。
[4]
 水溶性重合禁止剤は、ハイドロキノン化合物、ナフトヒドロキノン化合物及びN-ニトロソ化合物からなる群より選ばれる少なくとも一種の化合物を含有する、[1]乃至[3]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[5]
 水溶性重合禁止剤は、ナフトヒドロキノンスルホン酸またはその塩を含有する、[4]に記載の発泡性マイクロスフェアーの製造方法。
[6]
 水溶性重合禁止剤は、水溶性芳香族N-ニトロソ化合物を含有する、[4]に記載の発泡性マイクロスフェアーの製造方法。
[7]
 重合性単量体が、塩化ビニリデン30~95質量%と、アクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体5~70質量%とを含有する単量体混合物である、[1]乃至[6]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[8]
 重合性単量体が、アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体25~100質量%と、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体0~75質量%とを含有する単量体混合物である、[1]乃至[6]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[9]
 水系分散媒体中に重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類からなる群より選ばれる少なくとも一種の化合物を含有する、[1]乃至[8]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[10]
 水系分散媒体中に含有される前記の化合物が亜硝酸アルカリ金属塩である、[9]に記載の発泡性マイクロスフェアーの製造方法。
[11]
 水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアー。
[12]
 平均粒径が0.5~150μmである、[11]に記載の発泡性マイクロスフェアー。
The form for implementing this invention can also take the following structures.
[1]
Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium, and then suspension polymerize in the presence of the water-soluble polymerization inhibitor. It is characterized by
A method for producing foamable microspheres, wherein the foaming agent is enclosed in the outer shell of the resulting polymer and the maximum foaming ratio is 5 times or more.
[2]
The method for producing foamable microspheres according to [1], wherein the water-soluble polymerization inhibitor has a solubility in water at a temperature of 20 ° C. of more than 1% by mass.
[3]
The method for producing foamable microspheres according to [2], wherein the water-soluble polymerization inhibitor has a solubility in water at a temperature of 20 ° C. of 5% by mass or more.
[4]
The water-soluble polymerization inhibitor contains at least one compound selected from the group consisting of a hydroquinone compound, a naphthohydroquinone compound, and an N-nitroso compound, and the foamable microinjector according to any one of [1] to [3] A method for producing a sphere.
[5]
The method for producing foamable microspheres according to [4], wherein the water-soluble polymerization inhibitor contains naphthohydroquinonesulfonic acid or a salt thereof.
[6]
The method for producing foamable microspheres according to [4], wherein the water-soluble polymerization inhibitor contains a water-soluble aromatic N-nitroso compound.
[7]
The polymerizable monomer is 30 to 95% by mass of vinylidene chloride, and at least one kind selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate. The method for producing expandable microspheres according to any one of [1] to [6], which is a monomer mixture containing 5 to 70% by mass of a monomer.
[8]
The polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid, methacrylic acid and The foamable microsphere according to any one of [1] to [6], which is a monomer mixture containing 0 to 75% by mass of at least one monomer selected from the group consisting of vinyl acetate. Manufacturing method.
[9]
The aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, [1] to [1] to [8] The method for producing a foamable microsphere according to any one of [8].
[10]
The method for producing foamable microspheres according to [9], wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite.
[11]
Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium, and then perform suspension polymerization in the presence of the water-soluble polymerization inhibitor. A foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in the outer shell of the resulting polymer.
[12]
The foamable microsphere according to [11], having an average particle size of 0.5 to 150 μm.
 さらに、本発明を実施するための形態は、以下のような構成をとることもできる。
[1]
 水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、
生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である、発泡性マイクロスフェアーの製造方法。
[2]
 非水溶性重合禁止剤は、温度20℃での水に対する溶解度が1質量%以下である、[1]に記載の発泡性マイクロスフェアーの製造方法。
[3]
 非水溶性重合禁止剤は、ビタミンEを含有する、[1]または[2]に記載の発泡性マイクロスフェアーの製造方法。
[4]
 非水溶性重合禁止剤は、ヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物を含有する、[1]乃至[3]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[5]
 ヒドロキシ基を有する油溶性の芳香族化合物が、フェノール類またはナフトール類である、[4]に記載の発泡性マイクロスフェアーの製造方法。
[6]
 キノン基を有する油溶性の芳香族化合物が、ベンゾキノン類、ナフトキノン類、またはアントラキノン類である、[4]に記載の発泡性マイクロスフェアーの製造方法。
[7]
 アルコキシ基を有する油溶性の芳香族化合物が、ベンゼン誘導体またはナフタレン誘導体である、[4]に記載の発泡性マイクロスフェアーの製造方法。
[8]
 重合性単量体が、塩化ビニリデン30~95質量%と、アクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体5~70質量%とを含有する単量体混合物である、[1]乃至[7]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[9]
 重合性単量体が、アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体25~100質量%と、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体0~75質量%とを含有する単量体混合物である、[1]乃至[7]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[10]
 水系分散媒体中に重クロム酸塩、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、硼酸及び水可溶性アスコルビン酸類からなる群より選ばれる少なくとも一種の化合物を含有する、[1]乃至[8]のいずれか1つに記載の発泡性マイクロスフェアーの製造方法。
[11]
 水系分散媒体中に含有される前記の化合物が亜硝酸アルカリ金属塩である、[10]に記載の発泡性マイクロスフェアーの製造方法。
[12]
 水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、非水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である、発泡性マイクロスフェアー。
[13]
 平均粒径が0.5~150μmである、[12]に記載の発泡性マイクロスフェアー。
Furthermore, the form for implementing this invention can also take the following structures.
[1]
Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-insoluble polymerization inhibitor in an aqueous dispersion medium, and then suspend in the presence of a water-insoluble polymerization inhibitor. Characterized by polymerization,
A method for producing foamable microspheres, wherein the foaming agent is enclosed in the outer shell of the resulting polymer and the maximum foaming ratio is 5 times or more.
[2]
The water-insoluble polymerization inhibitor is a method for producing foamable microspheres according to [1], wherein the solubility in water at a temperature of 20 ° C. is 1% by mass or less.
[3]
The method for producing foamable microspheres according to [1] or [2], wherein the water-insoluble polymerization inhibitor contains vitamin E.
[4]
The water-insoluble polymerization inhibitor includes any one of [1] to [3], which contains an oil-soluble aromatic compound having at least one selected from the group consisting of a hydroxy group, a quinone group, and an alkoxy group. A process for producing the expandable microspheres as described.
[5]
The method for producing foamable microspheres according to [4], wherein the oil-soluble aromatic compound having a hydroxy group is phenols or naphthols.
[6]
The method for producing foamable microspheres according to [4], wherein the oil-soluble aromatic compound having a quinone group is benzoquinones, naphthoquinones, or anthraquinones.
[7]
The method for producing foamable microspheres according to [4], wherein the oil-soluble aromatic compound having an alkoxy group is a benzene derivative or a naphthalene derivative.
[8]
The polymerizable monomer is 30 to 95% by mass of vinylidene chloride, and at least one kind selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate. The method for producing expandable microspheres according to any one of [1] to [7], which is a monomer mixture containing 5 to 70% by mass of a monomer.
[9]
The polymerizable monomer is at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, 25 to 100% by mass, vinylidene chloride, acrylate ester, methacrylate ester, styrene, acrylic acid, methacrylic acid and The foamable microsphere according to any one of [1] to [7], which is a monomer mixture containing 0 to 75% by mass of at least one monomer selected from the group consisting of vinyl acetate. Manufacturing method.
[10]
The aqueous dispersion medium contains at least one compound selected from the group consisting of dichromate, alkali metal nitrite, stannous chloride, stannic chloride, boric acid and water-soluble ascorbic acids, [1] to [1] to [8] The method for producing a foamable microsphere according to any one of [8].
[11]
The method for producing foamable microspheres according to [10], wherein the compound contained in the aqueous dispersion medium is an alkali metal nitrite salt.
[12]
Suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-insoluble polymerization inhibitor in an aqueous dispersion medium, and then suspend in the presence of a water-insoluble polymerization inhibitor. A foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in an outer shell of a product polymer obtained by polymerization.
[13]
The foamable microsphere according to [12], which has an average particle size of 0.5 to 150 μm.
 以下、実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は実施例に限定されるものではない。本発明に係る発泡性マイクロスフェアー等の特性の測定方法は、以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples. A method for measuring the characteristics of the foamable microsphere according to the present invention is as follows.
〔最大発泡倍率〕
 発泡性マイクロスフェアーの最大発泡倍率は、先に説明した発泡倍率(塗膜法)を、温度100℃から5℃刻みとした各温度のオーブン内で2分間発泡させることにより測定することによって、求めた。
[Maximum foaming ratio]
The maximum expansion ratio of the foamable microsphere is determined by measuring the expansion ratio (coating method) described above by foaming for 2 minutes in an oven at each temperature in increments of 5 ° C from 100 ° C. Asked.
〔平均粒径(D50)〕
 発泡性マイクロスフェアーの平均粒径(D50)は、株式会社島津製作所製のレーザー回折式粒子径分布測定装置SALD-3000Jを使用して測定した。
[Average particle diameter (D50)]
The average particle size (D50) of the foamable microspheres was measured using a laser diffraction particle size distribution analyzer SALD-3000J manufactured by Shimadzu Corporation.
〔重合抑制効果〕
 発泡性マイクロスフェアーの製造方法において、所望しない重合反応の開始を抑制する重合抑制効果は、以下の方法によって確認した。すなわち、ガラス製アンプル(容積50mL)に、所望の重合性単量体の組み合わせ及び重合開始剤、並びに、重合性単量体の合計量100質量部に対して0.02質量部(200ppmに相当する。)の水溶性重合禁止剤を添加し窒素置換して封入し、該アンプルを温度25℃の恒温水槽に浸漬した。該アンプルの内容物が重合を開始することに伴い生じる白濁の有無を目視で観察することにより、重合抑制時間(単位:時間)を測定した。4時間経過後に白濁がみられないときは、重合抑制時間は、4時間を超えるものと判定した。
(Polymerization inhibitory effect)
In the method for producing foamable microspheres, the polymerization inhibiting effect that suppresses the initiation of an undesirable polymerization reaction was confirmed by the following method. That is, 0.02 parts by mass (corresponding to 200 ppm) with respect to a total amount of 100 parts by mass of a desired combination of polymerizable monomers, a polymerization initiator, and a polymerizable monomer in a glass ampule (volume 50 mL). The water-soluble polymerization inhibitor was added and purged with nitrogen, and the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. The polymerization inhibition time (unit: hours) was measured by visually observing the presence or absence of white turbidity caused by the content of the ampoule starting polymerization. When no cloudiness was observed after 4 hours, the polymerization inhibition time was determined to exceed 4 hours.
〔I〕重合抑制効果の確認
[実施例1]
 窒素ガスを充填したガラス製アンプル(容積50mL)に、重合性単量体である塩化ビニリデン/アクリロニトリル/メタクリル酸メチル(質量比65/30/5)、並びに、重合性単量体の合計量100質量部に対して0.02質量部の水溶性芳香族N-ニトロソ化合物であるN-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩(和光純薬工業株式会社製のQ-1300、以下「NPHAA」と表記することがある。温度20℃の水に対する溶解度は、9.2質量%である。)、及び、重合開始剤であるIPP1質量部を封入して、該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、4時間を超えるものであった。なお、これら購入した重合性単量体には、重合禁止剤であるメトキノン(温度20℃の水に対する溶解度は、3.8質量%である。)が予め含有されており、その含有量は、重合性単量体合計量100質量部に対して0.0013質量部、すなわち13ppmであった。
[I] Confirmation of polymerization inhibitory effect [Example 1]
Glass ampule filled with nitrogen gas (volume 50 mL), polymerizable monomer vinylidene chloride / acrylonitrile / methyl methacrylate (mass ratio 65/30/5), and total amount of polymerizable monomer 100 0.02 parts by mass of N-nitroso-N-phenylhydroxylamine ammonium salt (Q-1300 manufactured by Wako Pure Chemical Industries, Ltd., hereinafter referred to as “NPHAA”) The solubility in water at a temperature of 20 ° C. is 9.2 mass%), and 1 part by mass of IPP as a polymerization initiator is enclosed, and the ampoule is placed in a constant temperature water bath at a temperature of 25 ° C. When the polymerization inhibition time was measured by dipping, the polymerization inhibition time exceeded 4 hours. In addition, these purchased polymerizable monomers contain in advance methoquinone (solubility in water at a temperature of 20 ° C. is 3.8% by mass), which is a polymerization inhibitor, It was 0.0013 mass part with respect to 100 mass parts of polymerizable monomers total amount, ie, 13 ppm.
[実施例2]
 NPHAAに代えて、1,4-ナフトヒドロキノン-2-スルホン酸アンモニウム(特開平8-59600号公報の実施例3に記載される方法によって調製した。温度20℃の水に対する溶解度は、10質量%以上である。)を、重合性単量体の合計量100質量部に対して0.02質量部封入したことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、4時間を超えるものであった。
[Example 2]
Instead of NPHAA, 1,4-naphthohydroquinone-2-sulfonic acid ammonium (prepared by the method described in Example 3 of JP-A-8-59600. The solubility in water at a temperature of 20 ° C. was 10% by mass. The ampoule is placed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 part by mass is enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by dipping, the polymerization inhibition time exceeded 4 hours.
[実施例3]
 NPHAAに代えて、ハイドロキノン(温度20℃の水に対する溶解度は、5.9質量%である。)を、重合性単量体の合計量100質量部に対して0.02質量部封入したことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、4時間を超えるものであった。
[Example 3]
Instead of NPHAA, 0.02 part by mass of hydroquinone (solubility in water at a temperature of 20 ° C. is 5.9% by mass) is added to 100 parts by mass of the total amount of polymerizable monomers. Except for this, the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1, and the polymerization inhibition time was measured. As a result, the polymerization inhibition time exceeded 4 hours.
[実施例4]
 NPHAAに代えて、メトキノンを、重合性単量体の合計量100質量部に対して0.02質量部封入したことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、4時間を超えるものであった。
[Example 4]
In place of NPHAA, the ampoule was kept at a temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 parts by mass of methoquinone was enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by immersing the film in the solution, the polymerization inhibition time was more than 4 hours.
[実施例5]
 NPHAAに代えて、天然ビタミンEを重合性単量体の合計量100質量部に対して0.02質量部封入したことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、重合抑制時間は、2時間を超えるものであった。
[Example 5]
In place of NPHAA, the ampoule was kept at a constant temperature of 25 ° C. in the same manner as in Example 1 except that 0.02 part by mass of natural vitamin E was enclosed with respect to 100 parts by mass of the total amount of polymerizable monomers. When the polymerization inhibition time was measured by dipping in a water tank, the polymerization inhibition time was more than 2 hours.
[実施例6]
 NPHAAに代えて、t-ブチルヒドロキノン(以下、「t-BuHQ」ということがある。)を、重合性単量体の合計量100質量部に対して0.02質量部封入したことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、2時間を超えるものであった。
[Example 6]
Except that 0.02 parts by mass of t-butylhydroquinone (hereinafter sometimes referred to as “t-BuHQ”) was enclosed instead of NPHAA with respect to 100 parts by mass of the total amount of polymerizable monomers. The ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. in the same manner as in Example 1, and the polymerization inhibition time was measured. As a result, the polymerization inhibition time exceeded 2 hours.
[比較例1]
 NPHAAを封入しなかったことを除いて、実施例1と同様にして該アンプルを温度25℃の恒温水槽に浸漬して重合抑制時間を測定したところ、重合抑制時間は、5分間未満であった。
[Comparative Example 1]
When the ampoule was immersed in a constant temperature water bath at a temperature of 25 ° C. and the polymerization inhibition time was measured in the same manner as in Example 1 except that NPHAA was not enclosed, the polymerization inhibition time was less than 5 minutes. .
〔II〕発泡性マイクロスフェアーの製造
[実施例7]
〔重合性混合物の懸濁〕
 重合単量体である塩化ビニリデン(以下、「VD」ということがある。)65g、アクリロニトリル(以下、「AN」ということがある。)30g及びメタクリル酸メチル(以下、「MMA」ということがある。)5g(質量比:VD/AN/MMA=65/30/5)と、架橋性単量体であるエチレングリコールジメタクリレート(EDMA)0.2gと、水溶性重合禁止剤であるNPHAA0.02g(重合性単量体の合計量100質量部に対して0.02質量部。以下、「対モノマー0.02質量%」ということがある。)と、発泡剤であるイソブタン16g、及び重合開始剤であるIPP1gを混合して、重合性混合物(油相)を調製し、重合性混合物を温度25℃で保存した。なお、購入した重合性単量体には、重合禁止剤であるメトキノンが予め含有されており、その含有量は、重合性単量体合計量100質量部に対して0.0013質量部、すなわち13ppmであった。他方、コロイダルシリカ2.0g(20質量%コロイダルシリカ分散液として供給した。)、ジエタノールアミン-アジピン酸縮合生成物(酸価=78mgKOH/g)0.375g(50質量%水溶液として供給した。)、亜硝酸ナトリウム0.06g、及び水240gを混合した後、塩酸(5質量%水溶液)を添加してpHが3.2になるように調整し、分散安定剤を含有する水系分散媒体を調製した。
[II] Production of foamable microspheres [Example 7]
(Suspension of polymerizable mixture)
65 g of polymerization monomer vinylidene chloride (hereinafter sometimes referred to as “VD”), 30 g of acrylonitrile (hereinafter sometimes referred to as “AN”) and methyl methacrylate (hereinafter sometimes referred to as “MMA”). .) 5 g (mass ratio: VD / AN / MMA = 65/30/5), 0.2 g of ethylene glycol dimethacrylate (EDMA) as a crosslinkable monomer, and 0.02 g of NPHAA as a water-soluble polymerization inhibitor (0.02 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers; hereinafter referred to as “0.02% by mass of monomer”), 16 g of isobutane as a foaming agent, and polymerization initiation A polymerizable mixture (oil phase) was prepared by mixing 1 g of IPP as an agent, and the polymerizable mixture was stored at a temperature of 25 ° C. In addition, the purchased polymerizable monomer previously contains methoquinone which is a polymerization inhibitor, and the content thereof is 0.0013 parts by mass with respect to 100 parts by mass of the total polymerizable monomers, that is, It was 13 ppm. On the other hand, 2.0 g of colloidal silica (supplied as a 20 mass% colloidal silica dispersion), 0.375 g of diethanolamine-adipic acid condensation product (acid value = 78 mg KOH / g) (supplied as a 50 mass% aqueous solution), After mixing 0.06 g of sodium nitrite and 240 g of water, hydrochloric acid (5 mass% aqueous solution) was added to adjust the pH to 3.2 to prepare an aqueous dispersion medium containing a dispersion stabilizer. .
 温度25℃で3時間保存した前記の重合性混合物と前記の水系分散媒体とを混合して、ホモジナイザーで攪拌混合することにより、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁して、水系分散媒体中に重合性混合物の微小な液滴を造粒した。 By mixing the polymerizable mixture stored at a temperature of 25 ° C. for 3 hours with the aqueous dispersion medium, and stirring and mixing with a homogenizer, at least a foaming agent, a polymerizable monomer, and a polymer in the aqueous dispersion medium. A polymerizable mixture containing an initiator and a water-soluble polymerization inhibitor was suspended, and fine droplets of the polymerizable mixture were granulated in an aqueous dispersion medium.
〔懸濁重合〕
 重合性混合物の微小な液滴を含有する水系分散媒体を、攪拌機付きの重合缶(1.5L)に仕込み、温水バスを用いて温度50℃で22時間加熱することにより、水溶性重合禁止剤の存在下に懸濁重合した。重合後、生成した発泡性マイクロスフェアーを含有するスラリーを濾過・水洗し、乾燥して、発泡性マイクロスフェアーを得た。得られた発泡性マイクロスフェアーについて、発泡倍率(塗膜法)を測定した結果(温度120、130、140及び150℃について表示)と最大発泡倍率、並びに平均粒径(D50)(以下、単に「平均粒径」と表記することがある。)を測定した結果(以下、総称して「発泡倍率と平均粒径の測定結果」ということがある。)を、表1に示す。
(Suspension polymerization)
An aqueous dispersion medium containing fine droplets of a polymerizable mixture is charged into a polymerization can (1.5 L) equipped with a stirrer and heated at a temperature of 50 ° C. for 22 hours using a hot water bath, thereby inhibiting a water-soluble polymerization inhibitor. Suspension polymerization in the presence of After the polymerization, the slurry containing the foamable microspheres produced was filtered, washed with water, and dried to obtain foamable microspheres. About the obtained foamable microsphere, the result (displayed for temperatures 120, 130, 140 and 150 ° C.), the maximum foaming ratio, and the average particle size (D50) (hereinafter simply referred to as the coating method) were measured. Table 1 shows the results of measurement of “sometimes referred to as“ average particle size ”” (hereinafter collectively referred to as “measurement results of expansion ratio and average particle size”).
[実施例8]
 水溶性重合禁止剤として、NPHAAに代えて、ハイドロキノンを使用したことを除いて、実施例5と同様にして、重合性混合物の懸濁と懸濁重合を行うことにより、発泡性マイクロスフェアーを得た。得られた発泡性マイクロスフェアーについて、発泡倍率と平均粒径の測定結果を、表1に示す。
[Example 8]
By performing suspension polymerization and suspension polymerization of the polymerizable mixture in the same manner as in Example 5 except that hydroquinone was used instead of NPHAA as a water-soluble polymerization inhibitor, foamable microspheres were obtained. Obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
[実施例9]
 水溶性重合禁止剤として、NPHAAに代えて、メトキノンを使用したことを除いて、実施例5と同様にして、重合性混合物の懸濁と懸濁重合を行うことにより、発泡性マイクロスフェアーを得た。得られた発泡性マイクロスフェアーについて、発泡倍率と平均粒径の測定結果を、表1に示す。
[Example 9]
By performing suspension polymerization and suspension polymerization of the polymerizable mixture in the same manner as in Example 5 except that methoquinone was used instead of NPHAA as a water-soluble polymerization inhibitor, foamable microspheres were obtained. Obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
[実施例10]
〔重合性混合物の懸濁〕
 重合単量体である塩化ビニリデン(以下、「VD」ということがある。)65g、アクリロニトリル(以下、「AN」ということがある。)30g及びメタクリル酸メチル(以下、「MMA」ということがある。)5g(質量比:VD/AN/MMA=65/30/5)と、架橋性単量体であるエチレングリコールジメタクリレート(EDMA)0.2gと、非水溶性重合禁止剤である天然ビタミンE0.02g(重合性単量体の合計量100質量部に対して0.02質量部。以下、「対モノマー0.02質量%」ということがある。)と、発泡剤であるイソブタン16g、及び重合開始剤であるIPP1gを混合して、重合性混合物(油相)を調製し、重合性混合物を温度25℃で保存した。なお、購入した重合性単量体には、重合禁止剤であるメトキノンが予め含有されており、その含有量は、重合性単量体合計量100質量部に対して0.0013質量部、すなわち13ppmであった。他方、シリカ2.0g(20質量%コロイダルシリカ分散液として供給した。)、ジエタノールアミン-アジピン酸縮合生成物(酸価=78mgKOH/g)0.375g(50質量%水溶液として供給した。)、亜硝酸ナトリウム0.06g、及び水240gを混合した後、塩酸(5質量%水溶液)を添加してpHが3.2になるように調整し、分散安定剤を含有する水系分散媒体を調製した。
[Example 10]
(Suspension of polymerizable mixture)
65 g of polymerization monomer vinylidene chloride (hereinafter sometimes referred to as “VD”), 30 g of acrylonitrile (hereinafter sometimes referred to as “AN”) and methyl methacrylate (hereinafter sometimes referred to as “MMA”). .) 5 g (mass ratio: VD / AN / MMA = 65/30/5), 0.2 g of ethylene glycol dimethacrylate (EDMA) which is a crosslinkable monomer, and natural vitamin which is a water-insoluble polymerization inhibitor E0.02 g (0.02 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers; hereinafter, sometimes referred to as “0.02% by mass of monomer”), 16 g of isobutane as a foaming agent, Then, 1 g of IPP as a polymerization initiator was mixed to prepare a polymerizable mixture (oil phase), and the polymerizable mixture was stored at a temperature of 25 ° C. In addition, the purchased polymerizable monomer previously contains methoquinone which is a polymerization inhibitor, and the content thereof is 0.0013 parts by mass with respect to 100 parts by mass of the total polymerizable monomers, that is, It was 13 ppm. On the other hand, 2.0 g of silica (supplied as a 20% by mass colloidal silica dispersion), 0.375 g of diethanolamine-adipic acid condensation product (acid value = 78 mg KOH / g) (supplied as a 50% by mass aqueous solution), After mixing 0.06 g of sodium nitrate and 240 g of water, hydrochloric acid (5 mass% aqueous solution) was added to adjust the pH to 3.2 to prepare an aqueous dispersion medium containing a dispersion stabilizer.
 温度25℃で2時間保存した前記の重合性混合物と前記の水系分散媒体とを混合して、ホモジナイザーで攪拌混合することにより、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び非水溶性重合禁止剤を含有する重合性混合物を懸濁して、水系分散媒体中に重合性混合物の微小な液滴を造粒した。 By mixing the polymerizable mixture stored at a temperature of 25 ° C. for 2 hours with the aqueous dispersion medium and stirring and mixing with a homogenizer, at least a foaming agent, a polymerizable monomer, and a polymer in the aqueous dispersion medium. A polymerizable mixture containing an initiator and a water-insoluble polymerization inhibitor was suspended, and fine droplets of the polymerizable mixture were granulated in an aqueous dispersion medium.
〔懸濁重合〕
 重合性混合物の微小な液滴を含有する水系分散媒体を、攪拌機付きの重合缶(1.5L)に仕込み、温水バスを用いて温度50℃で22時間加熱することにより、非水溶性重合禁止剤(天然ビタミンE)の存在下に懸濁重合した。重合後、生成した発泡性マイクロスフェアーを含有するスラリーを濾過・水洗し、乾燥して、発泡性マイクロスフェアーを得た。得られた発泡性マイクロスフェアーについて、発泡倍率(塗膜法)を測定した結果(温度120、130、140及び150℃について表示)と最大発泡倍率、並びに平均粒径(D50)(以下、単に「平均粒径」と表記することがある。)を測定した結果(以下、総称して「発泡倍率と平均粒径の測定結果」ということがある。)を、表1に示す。
(Suspension polymerization)
A water-based dispersion medium containing minute droplets of a polymerizable mixture is charged into a polymerization can equipped with a stirrer (1.5 L) and heated at a temperature of 50 ° C. for 22 hours using a hot water bath to inhibit water-insoluble polymerization. Suspension polymerization was performed in the presence of an agent (natural vitamin E). After the polymerization, the slurry containing the foamable microspheres produced was filtered, washed with water, and dried to obtain foamable microspheres. About the obtained foamable microsphere, the result (displayed for temperatures 120, 130, 140 and 150 ° C.), the maximum foaming ratio, and the average particle size (D50) (hereinafter simply referred to as the coating method) were measured. Table 1 shows the results of measurement of “sometimes referred to as“ average particle size ”” (hereinafter collectively referred to as “measurement results of expansion ratio and average particle size”).
[実施例11]
 非水溶性重合禁止剤として、天然ビタミンEに代えて、t-BuHQを使用したことを除いて、実施例11と同様にして、重合性混合物の懸濁と懸濁重合を行うことにより、発泡性マイクロスフェアーを得た。得られた発泡性マイクロスフェアーについて、発泡倍率と平均粒径の測定結果を、表1に示す。
[Example 11]
By performing suspension and suspension polymerization of the polymerizable mixture in the same manner as in Example 11 except that t-BuHQ was used in place of natural vitamin E as the water-insoluble polymerization inhibitor, foaming was performed. Sex microspheres were obtained. Table 1 shows the measurement results of the expansion ratio and average particle size of the obtained foamable microspheres.
[比較例2]
 水溶性重合禁止剤であるNPHAAを使用しなかったことを除いて、実施例7と同様にして、重合性混合物を懸濁した後に懸濁重合を開始したところ、短時間で沈殿物が発生して、発泡性マイクロスフェアーを得ることができなかった(発泡性マイクロスフェアーの発泡倍率と平均粒径の測定結果を取得できなかった。)。
[Comparative Example 2]
When suspension polymerization was started after suspending the polymerizable mixture in the same manner as in Example 7 except that NPHAA which is a water-soluble polymerization inhibitor was not used, a precipitate was generated in a short time. Thus, foamable microspheres could not be obtained (measurement results of foaming magnification and average particle diameter of the foamable microspheres could not be obtained).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、実施例7~9の発泡性マイクロスフェアーの製造方法によれば、分散液調製中や重合開始前等所望しない時期における油相での重合反応の開始が抑制され、かつ、所期の油相での重合反応が阻害されず、発泡倍率(塗膜法)の測定により求めた最大発泡倍率が5倍以上、具体的には8.8倍、7.3倍または7.2倍である、発泡倍率等の物性が優れる発泡性マイクロスフェアーを得られることが分かった。 From Table 1, suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor in an aqueous dispersion medium, and then in the presence of the water-soluble polymerization inhibitor. According to the method for producing foamable microspheres of Examples 7 to 9, which is characterized by suspension polymerization, the initiation of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of polymerization. In addition, the polymerization reaction in the desired oil phase is not inhibited, and the maximum foaming ratio obtained by measurement of the foaming ratio (coating method) is 5 times or more, specifically 8.8 times, 7. It was found that expandable microspheres having excellent physical properties such as expansion ratio, which are 3 times or 7.2 times, can be obtained.
 また、表1から、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、実施例10及び11の発泡性マイクロスフェアーの製造方法によれば、分散液調製中や重合開始前等所望しない時期における油相や水相での重合反応の開始が抑制され、かつ、所期の油相での重合反応が阻害されず、発泡倍率(塗膜法)の測定により求めた最大発泡倍率が5倍以上、具体的には10.2倍または7.8倍である、発泡倍率等の物性が優れる発泡性マイクロスフェアーを得られることが分かった。 In addition, from Table 1, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-insoluble polymerization inhibitor is suspended in an aqueous dispersion medium, and then a water-insoluble polymerization inhibitor is used. According to the method for producing foamable microspheres of Examples 10 and 11, characterized in that suspension polymerization is carried out in the presence of an oil phase or an aqueous phase at an undesired time such as during the preparation of the dispersion or before the start of polymerization. Initiation of the polymerization reaction in the oil phase is suppressed, the polymerization reaction in the desired oil phase is not inhibited, and the maximum foaming ratio determined by measurement of foaming ratio (coating method) is 5 times or more, specifically It was found that a foamable microsphere having excellent physical properties such as a foaming ratio of 10.2 times or 7.8 times can be obtained.
 特に、温度20℃の水に対する溶解度が5質量%以上、具体的には8質量%以上である水溶性重合禁止剤(NPHAA)を使用する実施例7の発泡性マイクロスフェアーの製造方法によれば、平均粒径(D50)が11.7μmと微小の発泡性マイクロスフェアーであって、しかも、発泡倍率(塗膜法)の測定により求めた最大発泡倍率が8.8倍であることから、実施例8及び9と比較しても、発泡倍率等の物性が特に優れた発泡性マイクロスフェアーが得られることが分かった。また温度20℃の水に対する溶解度が5質量%以上である実施例8のハイドロキノンは、溶解度が5質量%未満である実施例9のメトキノンより粒子径〔平均粒径(D50)〕が小さいにもかかわらず、発泡倍率等の物性が優れた発泡性マイクロスフェアーが得られることが分かった。 In particular, according to the method for producing foamable microspheres of Example 7 using a water-soluble polymerization inhibitor (NPHAA) having a solubility in water at 20 ° C. of 5% by mass or more, specifically 8% by mass or more. For example, since the average particle diameter (D50) is 11.7 μm and a fine foamable microsphere, and the maximum foaming ratio obtained by measuring the foaming ratio (coating method) is 8.8 times. Even when compared with Examples 8 and 9, it was found that foamable microspheres having particularly excellent physical properties such as foaming ratio were obtained. Further, the hydroquinone of Example 8 having a solubility in water at a temperature of 20 ° C. of 5% by mass or more has a smaller particle diameter [average particle diameter (D50)] than that of the methoquinone of Example 9 having a solubility of less than 5% by mass. Regardless, it was found that foamable microspheres having excellent physical properties such as expansion ratio can be obtained.
 また、特に、温度20℃の水に対する溶解度が0.1質量%未満である非水溶性重合禁止剤(天然ビタミンE)を使用する実施例10の発泡性マイクロスフェアーの製造方法によれば、平均粒径(D50)が13.0μmと微小の発泡性マイクロスフェアーであって、しかも、発泡倍率(塗膜法)の測定により求めた最大発泡倍率が10.2倍であることから、前記の溶解度が1質量%である非水溶性重合禁止剤(t-BuHQ)を使用する実施例11と比較しても、発泡倍率等の物性が特に優れた発泡性マイクロスフェアーが得られることが分かった。 In particular, according to the method for producing effervescent microspheres of Example 10 using a water-insoluble polymerization inhibitor (natural vitamin E) having a solubility in water at a temperature of 20 ° C. of less than 0.1% by mass, Since the average particle size (D50) is 13.0 μm and a fine foamable microsphere, and the maximum foaming ratio determined by measurement of the foaming ratio (coating method) is 10.2 times, Compared with Example 11 using a water-insoluble polymerization inhibitor (t-BuHQ) having a solubility of 1% by mass, foamable microspheres having particularly excellent physical properties such as expansion ratio can be obtained. I understood.
 これに対して、水溶性重合禁止剤または非水溶性重合禁止剤を含有することなく、水系分散媒体中で、少なくとも発泡剤、重合性単量体、及び重合開始剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の不存在下に懸濁重合する比較例2の発泡性マイクロスフェアーの製造方法によれば、分散液調製中や重合開始前等所望しない時期における油相での重合反応の開始を抑制し、かつ、所期の油相での重合反応を阻害することなく、発泡倍率等の物性が優れる発泡性マイクロスフェアーを得られないことが分かった。 On the other hand, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, and a polymerization initiator in an aqueous dispersion medium without containing a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor. According to the method for producing the foamable microspheres of Comparative Example 2, which is suspended and then suspension-polymerized in the absence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, during the preparation of the dispersion or before the start of the polymerization It is impossible to obtain foamable microspheres with excellent physical properties such as expansion ratio without inhibiting the initiation of the polymerization reaction in the oil phase at undesired times and without inhibiting the polymerization reaction in the desired oil phase. I understood that.
 本発明は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法であることによって、分散液調製中や重合開始前等所望しない時期における油相での重合反応の開始が抑制され、かつ、発泡性マイクロスフェアーを得るために行う所期の油相での重合反応が阻害されず、発泡倍率等の物性が優れる発泡性マイクロスフェアーの製造方法を提供することができるので、産業上の利用可能性が高い。 The present invention suspends a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium, and then water-soluble. Suspension polymerization is carried out in the presence of a polymerization inhibitor or a water-insoluble polymerization inhibitor, and the foaming micro has a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the produced polymer. By the sphere manufacturing method, the start of the polymerization reaction in the oil phase at an undesired time such as during the preparation of the dispersion or before the start of the polymerization is suppressed, and the intended process for obtaining foamable microspheres is performed. Since the polymerization reaction in the oil phase is not inhibited and a method for producing foamable microspheres having excellent physical properties such as foaming ratio can be provided, the industrial applicability is high.
 また、本発明は、水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤または非水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーであることによって、発泡倍率等の物性が優れる発泡性マイクロスフェアーを提供することができるので、産業上の利用可能性が高い。
 
Further, the present invention suspends a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor in an aqueous dispersion medium, A foaming micro that is obtained by suspension polymerization in the presence of a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor and has a maximum foaming ratio of 5 times or more in which the foaming agent is enclosed in the outer shell of the resulting polymer. Since it is a sphere, it is possible to provide a foamable microsphere having excellent physical properties such as a foaming ratio, so that the industrial applicability is high.

Claims (6)

  1.  水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合することを特徴とする、
     生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である発泡性マイクロスフェアーの製造方法。
    In a water-based dispersion medium, suspend a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator, and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor, and then suspend the water-soluble polymerization inhibitor. Suspension polymerization in the presence,
    A method for producing foamable microspheres having a maximum foaming ratio of 5 times or more in which a foaming agent is enclosed in an outer shell of a produced polymer.
  2. 前記水溶性重合禁止剤が、ハイドロキノン化合物、ナフトヒドロキノン化合物及びN-ニトロソ化合物からなる群より選ばれる少なくとも一種の化合物を含有する、請求項1乃至3のいずれか1項に記載の発泡性マイクロスフェアーの製造方法。 The foamable micros of any one of claims 1 to 3, wherein the water-soluble polymerization inhibitor contains at least one compound selected from the group consisting of hydroquinone compounds, naphthohydroquinone compounds and N-nitroso compounds. The manufacturing method of a fair.
  3. 前記非水溶性重合禁止剤が、ビタミンE、ヒドロキシ基、キノン基及びアルコキシ基からなる群より選ばれる少なくとも1つを有する油溶性の芳香族化合物を含有する、請求項1に記載の発泡性マイクロスフェアーの製造方法。 2. The foamable micro of claim 1, wherein the water-insoluble polymerization inhibitor contains an oil-soluble aromatic compound having at least one selected from the group consisting of vitamin E, hydroxy group, quinone group and alkoxy group. A method for producing a sphere.
  4. 前記重合性単量体が、塩化ビニリデン30~95質量%と、アクリロニトリル、メタクリロニトリル、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体5~70質量%とを含有する単量体混合物である、請求項1から3のいずれか1項に記載の発泡性マイクロスフェアーの製造方法。 The polymerizable monomer is 30 to 95% by mass of vinylidene chloride and at least one selected from the group consisting of acrylonitrile, methacrylonitrile, acrylic acid ester, methacrylic acid ester, styrene, acrylic acid, methacrylic acid and vinyl acetate. The process for producing expandable microspheres according to any one of claims 1 to 3, which is a monomer mixture containing 5 to 70% by mass of monomers.
  5. 前記重合性単量体が、アクリロニトリル及びメタクリロニトリルからなる群より選ばれる少なくとも一種の単量体25~100質量%と、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、アクリル酸、メタクリル酸及び酢酸ビニルからなる群より選ばれる少なくとも一種の単量体0~75質量%とを含有する単量体混合物である、請求項1から3のいずれか1項に記載の発泡性マイクロスフェアーの製造方法。 The polymerizable monomer is 25 to 100% by mass of at least one monomer selected from the group consisting of acrylonitrile and methacrylonitrile, vinylidene chloride, acrylic ester, methacrylic ester, styrene, acrylic acid, methacrylic acid. The foamable microsphere according to any one of claims 1 to 3, which is a monomer mixture containing 0 to 75 mass% of at least one monomer selected from the group consisting of vinyl acetate and vinyl acetate. Production method.
  6.  前記水系分散媒体中で、少なくとも発泡剤、重合性単量体、重合開始剤及び水溶性重合禁止剤または非水溶性重合禁止剤を含有する重合性混合物を懸濁し、その後、水溶性重合禁止剤の存在下に懸濁重合して得られる、生成重合体の外殻中に発泡剤が封入された最大発泡倍率が5倍以上である、発泡性マイクロスフェアー。
     
    In the aqueous dispersion medium, a polymerizable mixture containing at least a foaming agent, a polymerizable monomer, a polymerization initiator and a water-soluble polymerization inhibitor or a water-insoluble polymerization inhibitor is suspended, and then a water-soluble polymerization inhibitor. A foamable microsphere having a maximum foaming ratio of 5 times or more in which a foaming agent is encapsulated in the outer shell of the resulting polymer, obtained by suspension polymerization in the presence of.
PCT/JP2016/058263 2015-03-17 2016-03-16 Method for manufacturing expandable microspheres, and expandable microspheres WO2016148173A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-053504 2015-03-17
JP2015-053502 2015-03-17
JP2015053502A JP2016172820A (en) 2015-03-17 2015-03-17 Production method of expandable microsphere, and expandable microsphere
JP2015053504A JP2016172228A (en) 2015-03-17 2015-03-17 Production method of expandable microsphere, and expandable microsphere

Publications (1)

Publication Number Publication Date
WO2016148173A1 true WO2016148173A1 (en) 2016-09-22

Family

ID=56920053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058263 WO2016148173A1 (en) 2015-03-17 2016-03-16 Method for manufacturing expandable microspheres, and expandable microspheres

Country Status (1)

Country Link
WO (1) WO2016148173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995792A (en) * 2020-09-04 2020-11-27 陶光明 High-performance physical foaming agent and preparation method thereof
CN116903923A (en) * 2023-09-12 2023-10-20 潍坊裕凯化工有限公司 Method for synthesizing thermal expansion foaming agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102391A (en) * 1976-02-23 1977-08-27 Goodrich Co B F Suspension polymerization of vinyl chloride being poor in polymer deposition layer
JPH03258807A (en) * 1990-01-11 1991-11-19 Hitachi Chem Co Ltd Production of vinylic polymer particle and expandable vinylic polymer particle
JPH0673106A (en) * 1992-06-16 1994-03-15 Nippon Shokubai Co Ltd Resin particle its production and use
JPH11209504A (en) * 1998-01-26 1999-08-03 Kureha Chem Ind Co Ltd Production of expandable microsphere
JP2003048915A (en) * 2001-05-31 2003-02-21 Kao Corp Method for producing acrylic acid-based polymer
JP2011016884A (en) * 2009-07-08 2011-01-27 Kureha Corp Thermally expandable microsphere and method for producing the same, additive, and molding
JP2011074282A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Thermally expandable microcapsule

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102391A (en) * 1976-02-23 1977-08-27 Goodrich Co B F Suspension polymerization of vinyl chloride being poor in polymer deposition layer
JPH03258807A (en) * 1990-01-11 1991-11-19 Hitachi Chem Co Ltd Production of vinylic polymer particle and expandable vinylic polymer particle
JPH0673106A (en) * 1992-06-16 1994-03-15 Nippon Shokubai Co Ltd Resin particle its production and use
JPH11209504A (en) * 1998-01-26 1999-08-03 Kureha Chem Ind Co Ltd Production of expandable microsphere
JP2003048915A (en) * 2001-05-31 2003-02-21 Kao Corp Method for producing acrylic acid-based polymer
JP2011016884A (en) * 2009-07-08 2011-01-27 Kureha Corp Thermally expandable microsphere and method for producing the same, additive, and molding
JP2011074282A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Thermally expandable microcapsule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995792A (en) * 2020-09-04 2020-11-27 陶光明 High-performance physical foaming agent and preparation method thereof
CN111995792B (en) * 2020-09-04 2022-08-23 陶光明 High-performance physical foaming agent and preparation method thereof
CN116903923A (en) * 2023-09-12 2023-10-20 潍坊裕凯化工有限公司 Method for synthesizing thermal expansion foaming agent
CN116903923B (en) * 2023-09-12 2023-11-21 潍坊裕凯化工有限公司 Method for synthesizing thermal expansion foaming agent

Similar Documents

Publication Publication Date Title
EP1811007B1 (en) Thermally foaming microsphere, method for production thereof, use thereof, composition containing the same, and article
EP1054034B2 (en) Expandable microspheres and process for producing the same
JP2016172820A (en) Production method of expandable microsphere, and expandable microsphere
JP4620812B2 (en) Method for producing foamable microspheres
JP4903924B2 (en) Foamable microsphere and method for producing the same
WO2016148173A1 (en) Method for manufacturing expandable microspheres, and expandable microspheres
US20090137691A1 (en) Thermally Foamable Microsphere, Production Process Thereof, and Composition
JP2016172228A (en) Production method of expandable microsphere, and expandable microsphere
US6617363B2 (en) Method of producing thermally expansive microcapsule
JP5345307B2 (en) Thermally expandable microsphere and method for producing the same
JP4189155B2 (en) Method for producing thermally expandable microcapsules
JP5991851B2 (en) Thermally expandable microcapsules
JP2005232274A (en) Thermally expandable microcapsule of high heat resistance and method for producing the same
US20180258248A1 (en) Large-diameter heat-expanding microspheres and method for producing same
EP0569234B1 (en) Thermoexpandable microcapsules having small particle size and production thereof
JP4027100B2 (en) Method for producing thermally expandable microcapsules
JP2005103469A (en) Method of manufacturing heat-expansible microcapsule
JP5727184B2 (en) Thermally expandable microcapsule, resin composition and foamed sheet
JP2003001098A (en) Method of manufacturing thermally expandable microcapsule
JP4575023B2 (en) Thermally expandable microcapsule and method for producing the same
JP2004105858A (en) Thermally expandable microcapsule
EP3231850A1 (en) Thermally-expandable microspheres, and composition and molded article containing same
JP2017113654A (en) Microsphere, thermally expandable resin composition containing the same, structural member, and molded body
JP2003251170A (en) Method for producing thermally expandable microcapsule
JP5766418B2 (en) Method for producing thermally expandable microcapsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765002

Country of ref document: EP

Kind code of ref document: A1