WO2016147957A1 - Imaging device and imaging method - Google Patents

Imaging device and imaging method Download PDF

Info

Publication number
WO2016147957A1
WO2016147957A1 PCT/JP2016/057191 JP2016057191W WO2016147957A1 WO 2016147957 A1 WO2016147957 A1 WO 2016147957A1 JP 2016057191 W JP2016057191 W JP 2016057191W WO 2016147957 A1 WO2016147957 A1 WO 2016147957A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
difference
subject
subject image
Prior art date
Application number
PCT/JP2016/057191
Other languages
French (fr)
Japanese (ja)
Inventor
啓志 宮城
村松 功一
Original Assignee
リコーイメージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リコーイメージング株式会社 filed Critical リコーイメージング株式会社
Publication of WO2016147957A1 publication Critical patent/WO2016147957A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Definitions

  • the present invention relates to image processing based on a plurality of images.
  • image processing is performed based on multiple images, so that high-resolution images that exceed the resolution (number of pixels) of the image sensor and reproducibility of hues, etc.
  • shooting is performed while the image sensor is moved relative to the subject image under a condition in which the positional relationship between the subject and the camera or the state of the subject is fixed.
  • a plurality of images are synthesized by performing sampling point interpolation processing, color information interpolation, and the like on a plurality of images having different relative positions between the subject image and the pixel position. Thereby, a high-quality image can be obtained for the number of pixels of the image sensor.
  • An imaging apparatus of the present invention includes a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element, an image processing unit that performs image processing based on the acquired plurality of images, A detection unit that detects a difference in the subject image in at least a part between at least two acquired images, and the control unit acquires the image again or notifies the difference in the subject image according to the difference in the subject image. I do. For shooting to acquire a plurality of images, the image sensor can be shifted with respect to the subject image, or vice versa.
  • Such an imaging apparatus can be applied to, for example, a camera capable of performing a shooting operation for generating a high-quality image such as super-resolution shooting, and can improve resolution (number of pixels) and accurately.
  • a camera capable of performing a shooting operation for generating a high-quality image such as super-resolution shooting, and can improve resolution (number of pixels) and accurately.
  • image quality improvement such as color interpolation
  • control unit can notify the difference in the subject image by displaying an image in which the portion in which the subject image difference occurs is identified.
  • a light emitting unit may be provided, and the control unit may cause the light emitting unit to emit light so as to notify the difference between the subject images.
  • the “subject image difference” is caused by a change including subject movement, brightness, hue, and the like. If there is a difference in at least part of the subject image between a plurality of images, the subject image has a difference. Suppose it has occurred.
  • the detection unit detects at least one of the movement of the subject image, the change in the brightness of the subject image, and the change in the color of the subject image as a difference between the subject images.
  • “Re-acquisition of image” is based on image processing, such as re-shooting (exposure to image sensor and acquisition of image (data)) so as to obtain a plurality of images with no difference in subject images.
  • the image acquisition operation is controlled to complete the acquisition of a plurality of images.
  • the detecting unit can detect a difference between subject images based on a difference between at least two images. For example, the detection unit obtains a difference in luminance or color information between corresponding pixels between at least two images, and detects a difference in subject images based on the obtained difference. The detection unit can obtain a difference between luminance histograms or color information histograms of at least two images, and can detect a difference between subject images based on the obtained difference. Further, the detection unit can obtain a difference between an average value of luminance or an average value of color information of at least two images and detect a difference between subject images based on the obtained difference.
  • the detection unit can detect at least one of a change in the position of the subject image between at least two images, a change in the brightness of the subject image, and a change in the color of the subject image as a difference between the subject images. It is. For example, the detection unit detects the difference between the subject images before completion of all the acquisition of the plurality of images based on the image processing, and when the difference between the subject images is detected, the control unit detects the plurality of images from the beginning. Re-acquisition may be executed.
  • the control unit can execute re-acquisition from the last acquired image among the plurality of already acquired images.
  • the detection unit detects the difference between the subject image of the reference image and the subject image of the other image after completing the acquisition of the plurality of images based on the image processing, and detects the difference between the subject images. It is also possible to execute re-acquisition for the image generated at that time.
  • the detection unit detects a difference between the subject images before completion of all acquisition of the plurality of images based on the image processing or after completion of all acquisition of the plurality of images based on the image processing, and the control unit detects the difference between the subject images.
  • the control unit detects the difference between the subject images.
  • the detection unit can also detect a difference in the subject image after image processing based on a plurality of images, and the control unit can notify the difference in the subject image when the difference in the subject image is detected.
  • a difference in the subject image even before shooting (before operating the release button) such as a through image display period.
  • the difference between the subject images is detected with a pre-shooting detection unit that detects a difference in the subject images between the plurality of images obtained by the image sensor while changing the relative positions.
  • a pre-shooting control unit for notifying the difference between the subject images.
  • the pre-shooting detection unit and the detection unit, and the pre-shooting control unit and the control unit may be separate, or substantially the same, or may be included in the detection unit and the control unit.
  • Such a configuration related to photographing can be configured regardless of the above-described acquisition of a plurality of images, difference detection, image re-acquisition, or notification.
  • An imaging method executes acquisition of a plurality of images while changing a relative position between a subject image and an imaging device, and executes image processing based on the acquired plurality of images to perform another processing.
  • An image is generated, a difference in at least a part of the subject image between at least two acquired images is detected, and an image acquisition or notification of the difference in the subject image is performed again according to the difference in the subject image.
  • a program recorded on a computer-readable medium is acquired by a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element.
  • An image processing unit that executes image processing based on the plurality of images and generates another image, and a detection unit that detects a difference in at least a part of the subject image between the acquired two images. Then, according to the difference between the subject images, the control unit is caused to function so as to acquire an image again or notify the difference between the subject images.
  • An image processing apparatus performs image processing based on a plurality of images obtained by acquiring a plurality of images while changing a relative position between a subject image and an imaging element, An image processing unit that generates a difference, a detection unit that detects a difference in at least a portion of the subject image between at least two images, and a notification unit that notifies the difference in the subject image when a difference in the subject image is detected With.
  • An imaging apparatus includes a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element, and image processing that performs image processing based on the acquired plurality of images. And a detection unit that detects a difference in at least a part of the subject image between at least two images, and the control unit changes the number of acquisition times of the plurality of images according to the difference in the subject image.
  • the number of acquisitions is increased by acquiring images again so that a plurality of images without differences are obtained.
  • image generation failure in image processing based on a plurality of images can be prevented.
  • 5 is a flowchart of super-resolution imaging and super-resolution processing in the present embodiment.
  • 10 is a flowchart of super-resolution imaging and super-resolution processing in the second embodiment.
  • 10 is a flowchart of super-resolution imaging and super-resolution processing in the third embodiment.
  • 14 is a flowchart of super-resolution imaging and processing in the fourth embodiment.
  • 10 is a flowchart of super-resolution imaging and processing in the fifth embodiment. It is the figure which showed the display screen which notifies a to-be-photographed image change.
  • 14 is a flowchart of super-resolution imaging and processing in the sixth embodiment.
  • FIG. 1 is a block diagram of a digital camera according to the first embodiment.
  • FIG. 2 is a schematic perspective view of the image blur correction mechanism.
  • the digital camera 10 includes a camera body 20 and a photographic lens 30 (lens barrel) that can be attached to and detached from the camera body 20, and an LCD 24 is provided on the back of the camera body 20 as a display device. Further, in accordance with an input operation to the release button 15 or a mode dial, a cross button, an execution button (none of which are shown), a shooting operation, a mode setting, and the like are performed.
  • a controller 40 constituted by a CPU, a DSP, etc., outputs a control signal to the aperture / shutter drive circuit 23, the image sensor drive circuit 60, etc., and a signal sent from the photographing operation switch 26 etc. that detects a release button operation or the like. Accordingly, operation control of the entire camera such as exposure control, shooting / recording operation, playback operation, function setting processing is performed.
  • a camera operation control program is stored in advance in a recording medium such as a ROM (not shown).
  • the communication memory 33 stores data such as lens resolving power and is read out by the controller 40 when the photographing lens 30 is attached.
  • the light emitting unit 90 can emit light in a predetermined shooting operation mode, and notifies the user and the like of shooting conditions.
  • the imaging optical system 31 including a focusing lens or the like causes light to be imaged on the image sensor 22 when light from the subject is incident, thereby forming a subject image on the image sensor 22.
  • the image sensor 22 can be constituted by a CCD, a CMOS, or the like, and a color filter array (not shown) is disposed oppositely on the light receiving surface of the image sensor 22.
  • the color filter array has a configuration in which R, G, and B color filter elements are arranged (for example, a Bayer arrangement).
  • pixel signals for one field or one frame are sequentially read out from the image sensor 22 at a predetermined time interval (1/60 seconds or the like).
  • the read R, G, and B pixel signals are sent to the controller 40 via an AFE circuit (not shown).
  • the controller 40 performs gain processing, color conversion processing, white balance adjustment, and the like on the input series of pixel signals, and generates R, G, and B color image signals. Then, the controller 40 drives and controls the LCD 24 based on the generated R, G, B color image signals, whereby a real-time moving image is displayed on the LCD 24.
  • the AF driving circuit 62 drives the focusing lens based on the pixel signal read from the image sensor 22 according to the contrast method. Further, the controller 40 detects the brightness of the subject image based on the pixel signal read from the image sensor 22 and calculates the exposure value.
  • the drive control unit 41 of the controller 40 When the release button 15 is fully pressed, the drive control unit 41 of the controller 40 outputs a control signal to the aperture / shutter drive circuit 23 to perform exposure control. Thereby, a pixel signal for one frame is read from the image sensor 22. In the controller 40, still image data is generated based on the read pixel signal for one frame. Then, compressed image data or uncompressed image data is acquired and recorded in the image memory 25.
  • the image sensor 22 is mounted on the image blur correction mechanism 50 and is relatively movable along the x and y axis directions orthogonal to the optical axis (z axis) of the photographing optical system 31.
  • the image blur correction mechanism 50 includes a plate-like support portion 51 fixed to the camera body 20 and a movable stage 52 that can move relative to the support portion 51.
  • the magnets M1, M2, and M3 are arranged to face the movable stage 52.
  • the yokes Y1, Y2, and Y3 are disposed so as to face the magnets M1, M2, and M3, respectively.
  • the movable stage 52 is provided with driving coils C1, C2, and C3. By passing an AC driving signal through the driving coils C1, C2, and C3 in the magnetic field, the movable stage 52 is moved along the plane orthogonal to the optical axis. It moves relative to the support portion 51.
  • the drive control unit 41 of the controller 40 controls the drive signal generation unit 61 of the image sensor drive circuit 60, and thereby an AC drive signal is output from the drive signal generation unit 61.
  • Hall sensors H1, H2, and H3 are disposed in the vicinity of the driving coils C1, C2, and C3 of the support 51, and the hall sensors H1, H2, and H3 are movable by detecting the magnetic force of the magnets M1, M2, and M3.
  • the position of the stage 52 (image sensor 22) in the plane orthogonal to the optical axis is detected.
  • the gyro sensor 28 provided in the camera body 20 detects a shake of the camera body 20, that is, a change in posture based on an inclination angle or an angular velocity.
  • the controller 40 drives and controls the image blur correction mechanism 50 along the plane orthogonal to the optical axis according to the shake of the camera body 20 detected by the gyro sensor 28 and the position of the image sensor 22 by the hall sensors H1, H2, and H3.
  • the imaging area of the subject image is shifted so as to cancel the image displacement.
  • a high-quality image an image with higher image quality (hereinafter referred to as a high-quality image) using the image blur correction mechanism 50.
  • a plurality of shootings (hereinafter referred to as super-resolution shooting) are performed while shifting the shooting target area.
  • the user shoots with the camera 10 fixed, such as by setting the camera 10 on a tripod.
  • image processing (synthesizing processing) is executed based on the obtained plurality of images (hereinafter referred to as captured images), and the obtained images are recorded / displayed.
  • the super-resolution operation switch 27 detects ON / OFF of the super-resolution processing and the user's setting operation regarding the super-resolution processing.
  • FIG. 3 is a diagram showing a flow of super-resolution processing.
  • FIG. 4 is a diagram illustrating the shift position of the image sensor during super-resolution imaging.
  • FIG. 5 is a diagram partially showing a high-quality image.
  • the flow of FIG. 3 is a flow for explaining the super-resolution processing, and in this embodiment, the operation of the camera 10 is controlled by the flow described later.
  • the image sensor 22 moves to the first imaging position and performs imaging. That is, exposure to the image sensor 22 and acquisition of an image are performed (S101, S102). Then, the position of the image sensor 22 at the time of shooting the first image is used as a reference position, and the shooting position of the image sensor 22 is shifted to a different position at the time of shooting the second, third, and fourth images. (S103 to S107). The first to fourth images are automatically taken after the first release button 15 is pressed. Note that during super-resolution imaging, the camera shake correction function may be temporarily set to OFF regardless of the settings so far, and after super-resolution imaging is completed, the original settings may be restored.
  • FIG. 4 shows the position of the image sensor 22 at the time of shooting, and the horizontal and vertical directions of the image are represented by X and Y coordinates, respectively.
  • the image region IR is configured by a 6 ⁇ 6 pixel array.
  • the image sensor 22 shifts at every photographing, that is, the image sensor 22 is formed in the image region IR by moving the position (pixel position) of the image sensor 22 relative to the subject image formed by the photographing optical system 31. The image varies with each shot.
  • the image sensor 22 moves to a position shifted by +1 pixel in the X direction when the first image is taken as a reference position.
  • the image sensor 22 moves to a position shifted by +1 pixel and ⁇ 1 pixel in the X and Y directions with respect to the reference position, and in the fourth shooting in the Y direction with respect to the reference position.
  • the image sensor 22 moves to a position shifted by ⁇ 1 pixel.
  • a Bayer array color filter array is disposed on the light receiving surface of the image sensor 22, and any one of R, G, and B color elements is disposed to face each pixel. Therefore, if attention is paid to one piece of image data before the color interpolation process, the pixel signal output from each pixel includes only R, G, or B color information.
  • the symbols of the respective pixels are represented as “11R, 12G, 13R,.
  • the light receiving area IR of the image sensor 22 is sequentially relatively moved by one pixel, so that the same portion is imaged by adjacent pixels having other color filter elements. Thereby, all the R, G, and B color information are included in the pixel signal of each pixel.
  • the image PA formed by the pixel 33R is shifted by one pixel of the image sensor 22, and in the second, third, and fourth shooting, the pixels 32G, 22B, 23G is formed. Since the pixel signals output from the pixels 32G, 22B, and 23G include G or B color information, it is possible to obtain a pixel signal that includes all the R, G, and B color information for the image PA. it can. For the G component, the average value of the pixel signals output from 32G and 23G is calculated here as the G component pixel value.
  • FIG. 5 is a diagram illustrating a high-quality image.
  • the image area IR ′ of the high-quality image IH is composed of a 5 ⁇ 5 pixel array excluding the right end column that does not include all the R, G, and B information in the 6 ⁇ 6 pixel array shown in FIG. Yes.
  • Each pixel has R, G, and B pixel values.
  • the image PA 'of the pixel 22 corresponding to the image PA in FIG. 4 includes R, G, and B color information.
  • the generation of a high-quality image that is realized by super-resolution imaging by performing super-resolution imaging a plurality of times by such movement of the image sensor 22 accompanied by the imaging region overlap does not change the subject (image). It is assumed that there is no difference in subject images between the images. Since it is assumed that the image sensor 22 is moved and photographed in a state where there is no movement / blur, brightness, hue change or the like in the subject image, the high-quality image has the same subject portion, the same brightness, and color. Must be made up of pixels with a based image.
  • the pixels of the high-quality image are images based on the same shooting conditions. do not become. As a result, an image in which an inappropriate image appears partially or entirely is generated.
  • a change (difference) in the subject image occurs, complementary shooting is performed. That is, the image is acquired again. Specifically, when movement occurs in the subject image, when the brightness of the subject image changes, or when the hue of the subject image changes, shooting is performed again, based on a plurality of shot images that are not different with respect to the subject image. High quality images.
  • three detection methods are prepared as methods for detecting a change in the subject image, and detection is possible based on a difference in pixel value, a difference in histogram, and a difference in average value.
  • each detection method will be described with reference to FIGS.
  • FIG. 6 is a diagram showing a difference between pixel values.
  • a difference in luminance value is calculated between corresponding pixels, and pixels whose difference is greater than or equal to the threshold T1 are counted. Then, when the count number of the pixels that are equal to or greater than the threshold T1 among the total number of pixels is equal to or greater than the threshold T2, it is determined that a change in the subject image has occurred.
  • the threshold values T1 and T2 are determined in consideration of shooting conditions and the like, and are stored in advance in a ROM or the like.
  • the images of the pixels PX are not based on the same subject in the captured images I ⁇ b> 1 and I ⁇ b> 2 obtained at the time of the first image capturing and the second image capturing.
  • FIG. 7 is a diagram showing the difference between the average values of the entire image. An average luminance value is calculated for each of the two captured images I1 and I2 obtained by the first and second images. Then, a difference between the luminance average values is obtained, and when the difference amount is equal to or greater than the threshold value T3, it is determined that the subject image has changed. *
  • FIG. 8 is a diagram showing a histogram difference of the entire image. Histogram calculations are performed on the two captured images I1 and I2 obtained by the first and second images. Then, the difference between the histograms HG1 and HG2 obtained by the histogram calculation (see the hatched portion in FIG. 8) is obtained. If the difference amount is equal to or greater than the threshold value T4, it is determined that the subject image has changed.
  • the user can set any one detection method in mode setting or the like, or two or more detection methods can be combined and detected.
  • the pixel difference value, the histogram difference value, and the average difference value each difference based on the color information may be calculated instead of the luminance value, and those values may be calculated, or the luminance value and the color information may be used together. Also good.
  • FIG. 9 is a flowchart of super-resolution imaging and super-resolution processing in the present embodiment.
  • the image sensor 22 is moved to a predetermined position at the time of photographing the first image and the second image, and photographing is performed (S201 to S204). Then, it is detected whether or not a subject image change has occurred between the first photographed image and the second photographed image (S205). If the subject image has changed, the process returns to step S201, the image sensor 22 is moved to the first position, and the first image is taken again (that is, the first image is taken for the second time).
  • the process shifts to the third photograph (S206, S207) and the first and third photographed images. Whether or not the subject image has changed is determined (S208). If there is a change in the subject image, the process returns to step S201 and starts again from the first image.
  • step S208 If it is determined in step S208 that the subject image has not changed, the process proceeds to the fourth shooting (S209, S210), and the subject image changes between the first and fourth shot images. It is determined whether or not it has occurred (S211). If there is a change in the subject image, the process returns to step S201 and starts again from the first image.
  • step S211 If it is determined in step S211 that the subject image has not changed, super-resolution processing is executed based on the four captured images that have been acquired, and high-quality images are stored and displayed (S212 to S214).
  • the change in the subject image is detected based on the first photographed image, if the subject image has moved due to shooting of a moving subject or the like, it can be detected appropriately.
  • a limit is set on the number of repeated shooting (re-acquisition of images). If the limit is exceeded, the super-resolution shooting process is forcibly terminated once. If it is done, it is more efficient.
  • FIG. 10 is a flowchart of super-resolution imaging and super-resolution processing in the second embodiment.
  • the first and second images After the first and second images are taken, it is detected whether or not a subject image change has occurred between the first and second shot images (S301 to S305). If there is a change in the subject image, the second shot, the detection of the change in the subject image are performed for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained.
  • step S305 If no change in the subject image has occurred in step S305, the third image is shot, and it is detected whether or not the subject image has changed between the second and third shot images. (S306 to 308). If there is a change in the subject image, the third shot and the change detection of the subject image are performed for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained.
  • step S308 If it is determined in step S308 that there is no change in the subject image, the fourth image is taken, and whether there is a change in the subject image between the third image and the fourth image. Whether or not is detected (S309 to S311). If it is determined that a change in the subject image has occurred, the fourth shot and the detection of the change in the subject image are detected for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained. And do.
  • step S311 If it is determined in step S311 that the subject image has not changed, super-resolution processing is executed based on the four captured images obtained, and a high-quality image is stored and displayed (S312 to S314).
  • a captured image obtained by imaging of the N ⁇ 1th image (N is an integer of 2, 3, or 4 here), Whether or not there is a change in the subject image with the shot image obtained in the Nth shooting is detected every time shooting is performed, and if there is a change in the subject image, shooting without change in the subject image The Nth image is taken until an image is obtained.
  • a limit may be set for the number of repetitions of shooting.
  • N N is an integer of any one of 1, 2, 3, and 4) sheets
  • the shooting of four images is performed first and then the subject image changes after that. Retry only the "eye”.
  • the shooting of four images is performed first and then the subject image changes after that. Retry only the "eye”.
  • the shooting of four images is performed first and then the subject image changes after that. Retry only the "eye”.
  • the shooting of four images is performed first and then the subject image changes after that. Retry only the "eye”.
  • it is substantially the same as 1st Embodiment.
  • FIG. 11 is a flowchart of super-resolution imaging and super-resolution processing in the third embodiment.
  • 4 images are taken continuously with the movement of the image sensor 22 to obtain 4 images and temporarily stored in a memory such as a RAM (S401 to S408). Then, after the super-resolution shooting is finished, for example, it is determined whether or not the subject image has changed in the second, third, and fourth shot images with reference to the first shot image (see FIG. S409). If the change in the subject image has occurred, the shooting for obtaining the shot image is retried (S413 to S421). When the subject image has not changed, a high-quality image is stored and displayed by super-resolution processing based on the four images (S410 to S412).
  • super-resolution imaging multiple imaging
  • a change in the subject image is detected and imaging is performed again.
  • changes in the subject image are detected by extracting two consecutively photographed images or the second and subsequent photographed images based on the first photographed image.
  • the present invention is not limited to this, and a change in the subject image may be detected based on a photographed image by another combination. Alternatively, a change in the subject image may be detected based on three or more captured images. Further, the present invention is not limited to shooting four images, and super-resolution shooting over a plurality of images may be performed.
  • the complementary shooting as in the first to third embodiments is not performed, the user is notified that the subject image has changed, and the super-resolution processing is not performed.
  • FIG. 12 is a flowchart of super-resolution imaging and processing in the fourth embodiment.
  • each time the second, third, and fourth shots are taken whether or not the subject image has changed is determined based on the first shot image ( S501 to S511). If the subject image has not changed, a high-quality image is generated by super-resolution processing and displayed / recorded (S512 to S514).
  • the controller 40 does not execute the super-resolution process, stores each of the four captured images, and displays the first or other captured images on the LCD 24. (S515, S516). Then, the user is notified that the subject image has changed (S517).
  • a warning text for example, “the subject image has changed!” Etc. notifying the LCD 24 of the subject image change is displayed together with the first photographed image or only the warning text.
  • the super-resolution processing when a change in the subject image is detected, the super-resolution processing is not performed, the user is notified of the subject image change, and each captured image is stored. The captured image of is displayed. This prevents unnecessary super-resolution processing that fails as a result from being executed, displayed, and recorded. Also, by detecting a change in the subject image for each shooting, it is possible to immediately stop super-resolution shooting and prompt the user to review the shooting environment. Since super-resolution processing is not performed even when the subject image changes that cannot be recognized by the user during shooting, unnecessary image processing, image recording, and image display are avoided. In addition, since each captured image is stored individually, it can be diverted to another purpose even if it is not suitable for super-resolution processing.
  • the light emission part 90 (refer FIG. 1) provided in the camera main body 20 can be light-emitted.
  • a predetermined sound or message such as a buzzer sound may be emitted.
  • FIG. 13 is a flowchart of super-resolution imaging and processing in the fifth embodiment.
  • FIG. 14 is a view showing a display screen for informing a subject image change.
  • Continuous super-resolution imaging is performed for four images, and the first to fourth captured images are temporarily stored in the memory, while an image is generated, displayed, and stored by super-resolution processing (S601 ⁇ ). S611).
  • FIG. 14 shows a high-quality image obtained by super-resolution imaging of two subjects SI and MI. Since movement or the like has occurred in the subject MI, image editing processing is performed on the image area of the subject MI so that the subject MI can be identified from the subject SI. Here, the subject image change is notified to the user by painting the subject MI with the same color.
  • the user when a change in the subject image is detected, the user can know the changed portion from the image obtained by the super-resolution processing. Even in an image in which the subject image change is difficult to recognize, the user can know the part of the change.
  • An arbitrary captured image may be displayed and displayed so that a portion where the subject image has changed in the image can be identified. Further, the outline of the image area where the change has occurred may be highlighted. According to this, although a high-quality image including an error due to a change in the subject image is strictly generated, the position and range of the error can be clearly recognized by the user. If it is a narrow part of the outermost peripheral part of the screen, it may be possible to cope by trimming that part. As a result, it is possible to prevent a situation in which the user does not notice an image with an error and releases or delivers the image.
  • a subject image change is detected in a through image display state before super-resolution imaging.
  • FIG. 15 is a flowchart of super-resolution imaging and processing in the sixth embodiment. If the super-resolution processing mode is set under the through image display mode, the processing is started. Alternatively, the processing may be started after an autofocus operation or the like is performed by half-pressing the release button 15 under the through image display mode or the super-resolution processing mode setting.
  • step S701 it is determined whether or not the subject image has changed based on the pixel signal for one field / frame read at a predetermined time interval during the through image (preceding image) display.
  • the threshold value used when detecting the subject image change described above is set to a value smaller than the threshold value described above.
  • a warning message is displayed to notify that change, or the light emitting unit 90 emits light (S702).
  • the subject image change is not detected and the release button 15 is fully pressed, super-resolution shooting and super-resolution processing are executed, and a high-quality image is displayed and stored (S703 to S715).
  • the sixth embodiment when a change in the subject image is detected before the super-resolution imaging is started, the user is notified of the change. As a result, it is possible to prevent unnecessary super-resolution imaging that is unsuccessful even when image processing is performed.
  • the change in the subject image may be detected from the pre-photographing images with four or other numbers, or the change in the subject image may be detected by motion vector detection or the like.
  • the present embodiment may be configured not to perform subject image change detection and complementary shooting or user notification in super-resolution shooting. Note that as a modification of the sixth embodiment, even when the release button 15 is fully pressed, the exposure operation is not performed immediately, and a change in the subject image is detected for a certain period. Super-resolution processing may be started and a high-quality image may be displayed and stored.
  • super-resolution imaging by moving the image sensor by one pixel is performed to realize a high-quality image with improved color reproducibility.
  • the movement amount of the image sensor is 1
  • the super-resolution processing may be performed by moving the image sensor with an amount of movement larger than that or a sub-pixel (1 pixel or less) accuracy. That is, it may be applied to super-resolution processing based on a plurality of captured images.
  • the subject image may be moved relative to the image sensor by driving the optical element eccentrically, and super-resolution imaging may be performed.
  • An image processing unit may be provided separately from the controller.
  • Digital cameras can be applied to both single-lens reflex cameras with a detachable lens (including so-called “mirrorless single-lens cameras”) and compact cameras with a built-in lens.
  • the present invention can also be applied to an imaging device.
  • super-resolution processing can also be executed by image editing software or an image processing apparatus that reads out a captured image recorded by a camera or the like and performs image editing processing.
  • image editing software or an image processing apparatus that reads out a captured image recorded by a camera or the like and performs image editing processing.
  • a plurality of sets of captured image information and the presence / absence of changes in the subject image are recorded, and a plurality of sets of captured images captured by the image editing software or the image processing apparatus are recorded.
  • the user can recognize that the subject image has changed by notifying the user of that fact.
  • Digital camera (imaging device) 22 Image sensor (image sensor) 40 controller (image processing unit, control unit, detection unit, pre-shooting detection unit, pre-shooting control unit)

Abstract

An imaging device according to the present invention is provided with: a control unit for controlling acquisition of a plurality of images while changing the relative position between a subject image and an imaging element; an image processing unit for performing image processing on the basis of the acquired plurality of images; and a detection unit for detecting differences of the subject image in at least parts of at least two of the acquired images. According to differences of the subject image, the control unit performs reacquisition of images or notification of the differences of the subject image.

Description

撮像装置および撮像方法Imaging apparatus and imaging method
 本発明は、複数の画像に基づく画像処理に関する。 The present invention relates to image processing based on a plurality of images.
 ビデオカメラ、テレビジョンシステムなどでは、複数の画像に基づいて画像処理(いわゆる超解像処理)を行うことで、撮像素子の解像度(画素数)を超える高解像度の画像や、色合いなどの再現性が優れた高画質の画像を得ることができる。そこでは、被写体とカメラとの位置関係、あるいは被写体の状態を固定した条件下で、撮像素子を被写体像に対して相対的に移動させながら撮影を行う。そして、被写体像と画素位置との相対位置が異なる複数枚の画像に対し、サンプリング点の補間処理、色情報の補間などを行って複数枚の画像を合成する。これにより、撮像素子の画素数の割に高画質の画像を得ることができる。 In video cameras and television systems, image processing (so-called super-resolution processing) is performed based on multiple images, so that high-resolution images that exceed the resolution (number of pixels) of the image sensor and reproducibility of hues, etc. However, it is possible to obtain an excellent high-quality image. In this case, shooting is performed while the image sensor is moved relative to the subject image under a condition in which the positional relationship between the subject and the camera or the state of the subject is fixed. Then, a plurality of images are synthesized by performing sampling point interpolation processing, color information interpolation, and the like on a plurality of images having different relative positions between the subject image and the pixel position. Thereby, a high-quality image can be obtained for the number of pixels of the image sensor.
 複数枚の画像を撮影中、被写体とカメラとの位置関係、あるいは被写体の状態に変化(動き)があると、その動きを推定し、補正した上で複数枚の画像を合成しなければならない。そのため、テレビジョンシステムなどでは、誤った動きの推定があると、生成される合成画像が乱れる。これを防ぐため、例えば、前後のフレーム間で異常な動きベクトルがあるか否かを1フレームごとに検出し、映像の一部に異常な動きベクトルが生じている場合、その部分については超解像処理を実行しない(特許文献1参照)。 When shooting multiple images, if there is a change (motion) in the positional relationship between the subject and the camera or the state of the subject, the motion must be estimated and corrected before being combined. Therefore, in a television system or the like, if there is an erroneous motion estimation, the generated composite image is disturbed. In order to prevent this, for example, whether or not there is an abnormal motion vector between the previous and next frames is detected for each frame. Image processing is not executed (see Patent Document 1).
特開2009-140393号公報JP 2009-140393 A
 しかしながら、動きベクトル検出による超解像処理の修正だけでは、様々な撮影状況に対応できない。例えば、撮影時に超解像処理を行う場合、撮影者は生成された画像を詳細に見なければ、超画像処理が成功したか否かを判断できず、失敗だった場合には無駄な画像処理を行ったことになる。また、撮影者がその場では失敗に気づかずに編集作業等において失敗したことに気付く事態が生じる。したがって、超解像処理におけるこのような不便を改善することが必要とされる。 However, it is not possible to deal with various shooting situations only by correcting the super-resolution processing by motion vector detection. For example, when super-resolution processing is performed at the time of shooting, the photographer cannot determine whether or not the super-image processing has succeeded unless the generated image is viewed in detail. It has been done. In addition, a situation occurs in which the photographer notices that the photographer has failed in the editing work without noticing the failure on the spot. Therefore, it is necessary to improve such inconvenience in the super-resolution processing.
 本発明の撮像装置は、被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御部と、取得された複数の画像に基づいて画像処理をする画像処理部と、取得された少なくとも2枚の画像間の少なくとも一部における被写体像の差異を検出する検出部とを備え、制御部が、被写体像の差異に応じて、再度画像の取得もしくは被写体像の差異の報知を行う。複数の画像を取得する撮影に関しては、被写体像に対して撮像素子をシフトさせ、あるいは、その逆も可能である。 An imaging apparatus of the present invention includes a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element, an image processing unit that performs image processing based on the acquired plurality of images, A detection unit that detects a difference in the subject image in at least a part between at least two acquired images, and the control unit acquires the image again or notifies the difference in the subject image according to the difference in the subject image. I do. For shooting to acquire a plurality of images, the image sensor can be shifted with respect to the subject image, or vice versa.
 このような撮像装置は、例えば、超解像撮影など高画質の画像を生成するための撮影動作を実行可能なカメラなどに適用することが可能であり、解像度(画素数)の向上、正確な色補間など、画質向上に関連する複数の画像取得に対し、被写体像の差異検出そして再度画像の取得や差異の報知を行うことが可能である。すなわち、被写体像の差異が生じなければ、そのまま複数の画像から1枚の画像を生成できるような撮影に対して適用可能である。 Such an imaging apparatus can be applied to, for example, a camera capable of performing a shooting operation for generating a high-quality image such as super-resolution shooting, and can improve resolution (number of pixels) and accurately. For a plurality of image acquisitions related to image quality improvement such as color interpolation, it is possible to detect a difference in the subject image, acquire an image again, and notify the difference. That is, if there is no difference in subject images, the present invention can be applied to shooting that can generate one image as it is from a plurality of images.
 例えば制御部は、被写体像の差異が発生する部分を識別化させた画像を表示することで被写体像の差異を報知することが可能である。また、発光部を設け、制御部が、発光部を発光させることで、被写体像の差異を報知することも可能である。 For example, the control unit can notify the difference in the subject image by displaying an image in which the portion in which the subject image difference occurs is identified. In addition, a light emitting unit may be provided, and the control unit may cause the light emitting unit to emit light so as to notify the difference between the subject images.
 ここで、「被写体像の差異」は、被写体の動き、明るさ、色合いなどを含む変化によって発生し、複数の画像間において、少なくとも一部において被写体像に関する相違がある場合、被写体像に差異が生じているとする。例えば、検出部は、被写体像の動き、被写体像の明るさの変化、被写体像の色の変化のうち少なくともいずれか1つを、被写体像の差異として検出する。また、「再度画像の取得」とは、被写体像の差異のない複数の画像を得るように、撮影(撮像素子に対する露光および画像(データ)の取得)を再度行うなど、画像処理の基にする複数の画像の全取得を完了させるように画像の取得動作を制御することを示す。 Here, the “subject image difference” is caused by a change including subject movement, brightness, hue, and the like. If there is a difference in at least part of the subject image between a plurality of images, the subject image has a difference. Suppose it has occurred. For example, the detection unit detects at least one of the movement of the subject image, the change in the brightness of the subject image, and the change in the color of the subject image as a difference between the subject images. “Re-acquisition of image” is based on image processing, such as re-shooting (exposure to image sensor and acquisition of image (data)) so as to obtain a plurality of images with no difference in subject images. The image acquisition operation is controlled to complete the acquisition of a plurality of images.
 検出部は、少なくとも2枚の画像間の差分に基づいて、被写体像の差異を検出することが可能である。例えば、検出部は、少なくとも2枚の画像間の対応する画素間の輝度または色情報の差分を求め、求められた差分に基づいて被写体像の差異を検出する。また、検出部は、少なくとも2枚の画像の輝度ヒストグラムまたは色情報ヒストグラムの差分を求め、求められた差分に基づいて被写体像の差異を検出することが可能である。さらに検出部は、少なくとも2枚の画像の輝度の平均値または色情報の平均値の差分を求め、求められた差分に基づいて被写体像の差異を検出することも可能である。 The detecting unit can detect a difference between subject images based on a difference between at least two images. For example, the detection unit obtains a difference in luminance or color information between corresponding pixels between at least two images, and detects a difference in subject images based on the obtained difference. The detection unit can obtain a difference between luminance histograms or color information histograms of at least two images, and can detect a difference between subject images based on the obtained difference. Further, the detection unit can obtain a difference between an average value of luminance or an average value of color information of at least two images and detect a difference between subject images based on the obtained difference.
 検出部は、少なくとも2枚の画像間の被写体像の位置変化、被写体像の明るさの変化、被写体像の色の変化のうち少なくともいずれか1つを、被写体像の差異として検出することが可能である。例えば、検出部は、画像処理の基とする複数の画像の全取得完了前に被写体像の差異を検出し、制御部が、被写体像の差異が検出されると、始めから、複数の画像の再取得を実行すればよい。 The detection unit can detect at least one of a change in the position of the subject image between at least two images, a change in the brightness of the subject image, and a change in the color of the subject image as a difference between the subject images. It is. For example, the detection unit detects the difference between the subject images before completion of all the acquisition of the plurality of images based on the image processing, and when the difference between the subject images is detected, the control unit detects the plurality of images from the beginning. Re-acquisition may be executed.
 あるいは、制御部は、被写体像の差異が検出されると、既に取得された複数の画像のうち最後に取得された画像から、再取得を実行することも可能である。一方、検出部は、画像処理の基とする複数の画像の全取得完了後に、基準となる画像の被写体像と他の画像の被写体像の差異を検出し、被写体像の差異が検出されると、その際の生じた画像について再取得を実行することも可能である。 Alternatively, when the difference between the subject images is detected, the control unit can execute re-acquisition from the last acquired image among the plurality of already acquired images. On the other hand, the detection unit detects the difference between the subject image of the reference image and the subject image of the other image after completing the acquisition of the plurality of images based on the image processing, and detects the difference between the subject images. It is also possible to execute re-acquisition for the image generated at that time.
 検出部は、画像処理の基とする複数の画像の全取得完了前もしくは画像処理の基とする複数の画像の全取得完了後に被写体像の差異を検出し、制御部が、被写体像の差異が検出されると、既に取得された少なくともいずれかの画像の保存と、既に取得された少なくともいずれかの画像の表示の、少なくともいずれかを実行することも可能である。また、検出部は、複数の画像に基づく画像処理後に被写体像の差異を検出し、制御部が、被写体像の差異が検出されると、該被写体像の差異を報知することも可能である。 The detection unit detects a difference between the subject images before completion of all acquisition of the plurality of images based on the image processing or after completion of all acquisition of the plurality of images based on the image processing, and the control unit detects the difference between the subject images. When detected, it is also possible to execute storage of at least one of the already acquired images and display of at least one of the already acquired images. The detection unit can also detect a difference in the subject image after image processing based on a plurality of images, and the control unit can notify the difference in the subject image when the difference in the subject image is detected.
 一方、スルー画像表示期間といった撮影前(レリーズボタン操作前)などにおいても被写体像の差異を検出することも可能である。例えば、複数の画像の取得の開始前に、相対位置を変更しながら、撮像素子によって得られる複数の画像間で被写体像の差異を検出する撮影前検出部と、被写体像の差異が検出されると、該被写体像の差異を報知する撮影前制御部とを設けることが可能である。撮影前検出部と上記検出部、撮影前制御部と上記制御部は、別々であってもよく、あるいは実質的同一、あるいは上記検出部、制御部の中に含まれる構成であってもよい。このような撮影前に関係する構成は、上述した複数の画像の取得、差異検出、画像再取得あるいは報知とは関係なく構成することが可能である。 On the other hand, it is also possible to detect a difference in the subject image even before shooting (before operating the release button) such as a through image display period. For example, before starting the acquisition of a plurality of images, the difference between the subject images is detected with a pre-shooting detection unit that detects a difference in the subject images between the plurality of images obtained by the image sensor while changing the relative positions. And a pre-shooting control unit for notifying the difference between the subject images. The pre-shooting detection unit and the detection unit, and the pre-shooting control unit and the control unit may be separate, or substantially the same, or may be included in the detection unit and the control unit. Such a configuration related to photographing can be configured regardless of the above-described acquisition of a plurality of images, difference detection, image re-acquisition, or notification.
 本発明の他の態様による撮像方法は、被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を実行し、取得された複数の画像に基づいて画像処理を実行して別の画像を生成し、取得された少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出し、該被写体像の差異に応じて、再度画像の取得もしくは被写体像の差異の報知を行う。 An imaging method according to another aspect of the present invention executes acquisition of a plurality of images while changing a relative position between a subject image and an imaging device, and executes image processing based on the acquired plurality of images to perform another processing. An image is generated, a difference in at least a part of the subject image between at least two acquired images is detected, and an image acquisition or notification of the difference in the subject image is performed again according to the difference in the subject image.
 本発明の他の態様におけるコンピュータ読み取り可能な媒体に記録されたプログラムは、撮像装置を、被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御手段と、取得された複数の画像に基づいて画像処理を実行し、別の画像を生成する画像処理手段と、取得された少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出手段として機能させ、該被写体像の差異に応じて、再度画像の取得もしくは該被写体像の差異の報知を行うように、制御手段として機能させる。 According to another aspect of the present invention, a program recorded on a computer-readable medium is acquired by a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element. An image processing unit that executes image processing based on the plurality of images and generates another image, and a detection unit that detects a difference in at least a part of the subject image between the acquired two images. Then, according to the difference between the subject images, the control unit is caused to function so as to acquire an image again or notify the difference between the subject images.
 本発明の他の態様における画像処理装置は、被写体像と撮像素子との相対位置を変更しながら複数の画像を取得することによって得られる複数の画像に基づいて画像処理を実行し、別の画像を生成する画像処理部と、少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出部と、被写体像の差異が検出されると、該被写体像の差異を報知する報知部とを備える。 An image processing apparatus according to another aspect of the present invention performs image processing based on a plurality of images obtained by acquiring a plurality of images while changing a relative position between a subject image and an imaging element, An image processing unit that generates a difference, a detection unit that detects a difference in at least a portion of the subject image between at least two images, and a notification unit that notifies the difference in the subject image when a difference in the subject image is detected With.
 本発明の他の態様における撮像装置は、被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御部と、取得された複数の画像に基づいて画像処理する画像処理部と、少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出部とを備え、制御部が、被写体像の差異に応じて、複数の画像の取得回数の変更を行う。 An imaging apparatus according to another aspect of the present invention includes a control unit that controls acquisition of a plurality of images while changing a relative position between a subject image and an imaging element, and image processing that performs image processing based on the acquired plurality of images. And a detection unit that detects a difference in at least a part of the subject image between at least two images, and the control unit changes the number of acquisition times of the plurality of images according to the difference in the subject image.
 例えば、被写体像の差異が検出されると、差異が生じていない複数の画像が得られるように、再度画像を取得して取得回数を増やす。あるいは、被写体像の差異が生じたことによって最終的に1枚の画像を生成することができないような場合には、途中で画像取得を終了し、取得回数を減らすことも可能である。 For example, when a difference between subject images is detected, the number of acquisitions is increased by acquiring images again so that a plurality of images without differences are obtained. Alternatively, when it is impossible to finally generate one image due to the difference in the subject image, it is possible to end the image acquisition halfway and reduce the number of acquisitions.
 本発明によれば、複数の画像に基づく画像処理における画像生成の失敗を防ぐことができる。 According to the present invention, image generation failure in image processing based on a plurality of images can be prevented.
第1の実施形態であるデジタルカメラのブロック図である。It is a block diagram of the digital camera which is 1st Embodiment. 像ブレ補正機構の概略的斜視図である。It is a schematic perspective view of an image blur correction mechanism. 超解像処理のフローを示した図である。It is the figure which showed the flow of the super-resolution process. 超解像撮影時のイメージセンサのシフト位置を示した図である。It is the figure which showed the shift position of the image sensor at the time of super-resolution imaging | photography. 高画質画像を部分的に示した図である。It is the figure which showed the high quality image partially. 画素値の差分を示した図であるIt is the figure which showed the difference of a pixel value 画像全体の平均値の差分を示した図である。It is the figure which showed the difference of the average value of the whole image. 画像全体のヒストグラム差分を示した図である。It is the figure which showed the histogram difference of the whole image. 本実施形態における超解像撮影および超解像処理のフローチャートである。5 is a flowchart of super-resolution imaging and super-resolution processing in the present embodiment. 第2の実施形態における超解像撮影および超解像処理のフローチャートである。10 is a flowchart of super-resolution imaging and super-resolution processing in the second embodiment. 第3の実施形態における超解像撮影および超解像処理のフローチャートである。10 is a flowchart of super-resolution imaging and super-resolution processing in the third embodiment. 第4の実施形態における超解像撮影および処理のフローチャートである。14 is a flowchart of super-resolution imaging and processing in the fourth embodiment. 第5の実施形態における超解像撮影および処理のフローチャートである。10 is a flowchart of super-resolution imaging and processing in the fifth embodiment. 被写体像変化を知らせる表示画面を示した図である。It is the figure which showed the display screen which notifies a to-be-photographed image change. 第6の実施形態における超解像撮影および処理のフローチャートである。14 is a flowchart of super-resolution imaging and processing in the sixth embodiment.
 以下では、図面を参照して本実施形態であるデジタルカメラについて説明する。 Hereinafter, the digital camera according to the present embodiment will be described with reference to the drawings.
 図1は、第1の実施形態であるデジタルカメラのブロック図である。図2は、像ブレ補正機構の概略的斜視図である。 FIG. 1 is a block diagram of a digital camera according to the first embodiment. FIG. 2 is a schematic perspective view of the image blur correction mechanism.
 デジタルカメラ10は、カメラ本体20と、カメラ本体20に着脱可能な撮影レンズ30(鏡筒)とを備え、カメラ本体20の背面には、表示装置としてLCD24が設けられている。また、レリーズボタン15、あるいはモードダイヤル、十字ボタン、実行ボタン(いずれも図示せず)などに対する入力操作に従い、撮影動作、モード設定などが行われる。 The digital camera 10 includes a camera body 20 and a photographic lens 30 (lens barrel) that can be attached to and detached from the camera body 20, and an LCD 24 is provided on the back of the camera body 20 as a display device. Further, in accordance with an input operation to the release button 15 or a mode dial, a cross button, an execution button (none of which are shown), a shooting operation, a mode setting, and the like are performed.
 CPU、DSPなどによって構成されるコントローラ40は、絞り/シャッタ駆動回路23、イメージセンサ駆動回路60などに制御信号を出力し、レリーズボタン操作などを検出する撮影操作スイッチ26などから送られてくる信号に従い、露出制御、撮影/記録動作、再生動作、機能設定処理などカメラ全体の動作制御を行う。カメラ動作制御のプログラムは、図示しないROMなどの記録媒体にあらかじめ記憶されている。 A controller 40 constituted by a CPU, a DSP, etc., outputs a control signal to the aperture / shutter drive circuit 23, the image sensor drive circuit 60, etc., and a signal sent from the photographing operation switch 26 etc. that detects a release button operation or the like. Accordingly, operation control of the entire camera such as exposure control, shooting / recording operation, playback operation, function setting processing is performed. A camera operation control program is stored in advance in a recording medium such as a ROM (not shown).
 通信用メモリ33には、レンズ解像力などのデータが記憶されており、撮影レンズ30が装着されるとコントローラ40によって読み出される。発光部90は、所定の撮影動作モードで発光可能であり、ユーザなどに撮影状況などを知らせる。 The communication memory 33 stores data such as lens resolving power and is read out by the controller 40 when the photographing lens 30 is attached. The light emitting unit 90 can emit light in a predetermined shooting operation mode, and notifies the user and the like of shooting conditions.
 フォーカシングレンズなどを含む撮影光学系31は、被写体からの光が入射するとイメージセンサ22に光を結像させ、これによって被写体像がイメージセンサ22に形成される。イメージセンサ22は、CCD、CMOSなどによって構成可能であり、カラーフィルタアレイ(図示せず)がイメージセンサ22の受光面上に対向配置されている。カラーフィルタアレイは、ここではR,G,Bのカラーフィルタエレメントを配列させた構成(例えばベイヤー配列)になっている。 The imaging optical system 31 including a focusing lens or the like causes light to be imaged on the image sensor 22 when light from the subject is incident, thereby forming a subject image on the image sensor 22. The image sensor 22 can be constituted by a CCD, a CMOS, or the like, and a color filter array (not shown) is disposed oppositely on the light receiving surface of the image sensor 22. Here, the color filter array has a configuration in which R, G, and B color filter elements are arranged (for example, a Bayer arrangement).
 撮影モードにおいてスルー画像(先行画像)をLCD24に表示する間、1フィールド又は1フレーム分の画素信号が所定の時間間隔(1/60秒など)でイメージセンサ22から順次読み出される。読み出されたR,G,Bの画素信号は、AFE回路(図示せず)を経由してコントローラ40に送られる。 In the shooting mode, while displaying a through image (preceding image) on the LCD 24, pixel signals for one field or one frame are sequentially read out from the image sensor 22 at a predetermined time interval (1/60 seconds or the like). The read R, G, and B pixel signals are sent to the controller 40 via an AFE circuit (not shown).
 コントローラ40は、入力された一連の画素信号に対してゲイン処理、色変換処理、ホワイトバランス調整などを施し、R,G,Bのカラー画像信号を生成する。そして、コントローラ40は、生成されたR,G,Bカラー画像信号に基づいてLCD24を駆動制御し、これによってリアルタイムの動画像がLCD24に表示される。 The controller 40 performs gain processing, color conversion processing, white balance adjustment, and the like on the input series of pixel signals, and generates R, G, and B color image signals. Then, the controller 40 drives and controls the LCD 24 based on the generated R, G, B color image signals, whereby a real-time moving image is displayed on the LCD 24.
 レリーズボタン15が半押しされると、AF駆動回路62は、コントラスト方式に従い、イメージセンサ22から読み出される画素信号に基づいてフォーカシングレンズを駆動する。また、コントローラ40では、イメージセンサ22から読み出される画素信号に基づいて被写体像の明るさが検出され、露出値が演算される。 When the release button 15 is half-pressed, the AF driving circuit 62 drives the focusing lens based on the pixel signal read from the image sensor 22 according to the contrast method. Further, the controller 40 detects the brightness of the subject image based on the pixel signal read from the image sensor 22 and calculates the exposure value.
 レリーズボタン15が全押しされると、コントローラ40の駆動制御部41は、絞り/シャッタ駆動回路23へ制御信号を出力し、露出制御する。これにより、1フレーム分の画素信号がイメージセンサ22から読み出される。コントローラ40では、読み出された1フレーム分の画素信号に基づいて静止画像データが生成される。そして、圧縮画像データあるいは非圧縮画像データが取得され、画像メモリ25に記録される。 When the release button 15 is fully pressed, the drive control unit 41 of the controller 40 outputs a control signal to the aperture / shutter drive circuit 23 to perform exposure control. Thereby, a pixel signal for one frame is read from the image sensor 22. In the controller 40, still image data is generated based on the read pixel signal for one frame. Then, compressed image data or uncompressed image data is acquired and recorded in the image memory 25.
 イメージセンサ22は、像ブレ補正機構50に搭載されており、撮影光学系31の光軸(z軸)と直交するx、y軸方向に沿って相対移動可能である。像ブレ補正機構50は、図2に示すように、カメラ本体20に固定されるプレート状支持部51と、支持部51に対して相対的に移動可能な可動ステージ52とを備え、支持部51には、磁石M1、M2、M3が可動ステージ52と対向するように配置されている。また、可動ステージ52には、ヨークY1、Y2、Y3が磁石M1、M2、M3とそれぞれ対向するように配置されている。 The image sensor 22 is mounted on the image blur correction mechanism 50 and is relatively movable along the x and y axis directions orthogonal to the optical axis (z axis) of the photographing optical system 31. As shown in FIG. 2, the image blur correction mechanism 50 includes a plate-like support portion 51 fixed to the camera body 20 and a movable stage 52 that can move relative to the support portion 51. The magnets M1, M2, and M3 are arranged to face the movable stage 52. On the movable stage 52, the yokes Y1, Y2, and Y3 are disposed so as to face the magnets M1, M2, and M3, respectively.
 可動ステージ52には駆動用コイルC1、C2、C3が設けられており、磁界内において交流駆動信号を駆動用コイルC1、C2、C3に流すことにより、可動ステージ52が光軸直交平面に沿って支持部51に対し相対移動する。コントローラ40の駆動制御部41は、イメージセンサ駆動回路60の駆動信号生成部61を制御し、これによって交流駆動信号が駆動信号生成部61から出力される。 The movable stage 52 is provided with driving coils C1, C2, and C3. By passing an AC driving signal through the driving coils C1, C2, and C3 in the magnetic field, the movable stage 52 is moved along the plane orthogonal to the optical axis. It moves relative to the support portion 51. The drive control unit 41 of the controller 40 controls the drive signal generation unit 61 of the image sensor drive circuit 60, and thereby an AC drive signal is output from the drive signal generation unit 61.
 支持部51の駆動用コイルC1、C2、C3近傍にはホールセンサH1、H2、H3がそれぞれ配置されており、ホールセンサH1、H2、H3は磁石M1、M2、M3の磁力を検出して可動ステージ52(イメージセンサ22)の光軸直交面内における位置を検出する。また、カメラ本体20に設けられたジャイロセンサ28は、カメラ本体20のブレ、すなわち姿勢変化を、傾斜角あるいは角速度によって検出する。 Hall sensors H1, H2, and H3 are disposed in the vicinity of the driving coils C1, C2, and C3 of the support 51, and the hall sensors H1, H2, and H3 are movable by detecting the magnetic force of the magnets M1, M2, and M3. The position of the stage 52 (image sensor 22) in the plane orthogonal to the optical axis is detected. Further, the gyro sensor 28 provided in the camera body 20 detects a shake of the camera body 20, that is, a change in posture based on an inclination angle or an angular velocity.
 ジャイロセンサ28によって検出されるカメラ本体20のブレおよびホールセンサH1、H2、H3によるイメージセンサ22の位置に従い、コントローラ40は像ブレ補正機構50を光軸直交面に沿って駆動制御し、手振れによる像変位を相殺するように被写体像の結像エリアをシフトさせる。この手振れ補正動作により、像ブレが生じていない被写体像を得ることができる。 The controller 40 drives and controls the image blur correction mechanism 50 along the plane orthogonal to the optical axis according to the shake of the camera body 20 detected by the gyro sensor 28 and the position of the image sensor 22 by the hall sensors H1, H2, and H3. The imaging area of the subject image is shifted so as to cancel the image displacement. By this camera shake correction operation, it is possible to obtain a subject image without image blurring.
 本実施形態では、像ブレ補正機構50を利用して画質のより優れた画像(以下、高画質画像という)を取得することが可能である。具体的には、撮影対象エリアをシフトさせながら複数回の撮影(以下、超解像撮影という)を行う。この時、ユーザは三脚にカメラ10を設置するなど、カメラ10を固定して撮影を行う。そして、得られた複数の画像(以下、撮影画像という)に基づいて画像処理(合成処理)を実行し、得られた画像を記録/表示する。 In this embodiment, it is possible to acquire an image with higher image quality (hereinafter referred to as a high-quality image) using the image blur correction mechanism 50. Specifically, a plurality of shootings (hereinafter referred to as super-resolution shooting) are performed while shifting the shooting target area. At this time, the user shoots with the camera 10 fixed, such as by setting the camera 10 on a tripod. Then, image processing (synthesizing processing) is executed based on the obtained plurality of images (hereinafter referred to as captured images), and the obtained images are recorded / displayed.
 超解像撮影する場合、ここでは4枚の画像を順次取得する。超解像操作スイッチ27は、超解像処理のON/OFF、および超解像処理に関するユーザの設定操作を検出する。 In the case of super-resolution shooting, four images are acquired sequentially here. The super-resolution operation switch 27 detects ON / OFF of the super-resolution processing and the user's setting operation regarding the super-resolution processing.
 以下、図3~5を用いて、超解像撮影について説明する。 Hereinafter, super-resolution imaging will be described with reference to FIGS.
 図3は、超解像処理のフローを示した図である。図4は、超解像撮影時のイメージセンサのシフト位置を示した図である。図5は、高画質画像を部分的に示した図である。ただし、図3のフローは、超解像処理を説明するためのフローであり、本実施形態では、後述するフローによってカメラ10は動作制御される。 FIG. 3 is a diagram showing a flow of super-resolution processing. FIG. 4 is a diagram illustrating the shift position of the image sensor during super-resolution imaging. FIG. 5 is a diagram partially showing a high-quality image. However, the flow of FIG. 3 is a flow for explaining the super-resolution processing, and in this embodiment, the operation of the camera 10 is controlled by the flow described later.
 レリーズボタン15が押下され、超解像撮影が開始されると、イメージセンサ22が1枚目の撮影位置へ移動して撮影を行う。すなわち、イメージセンサ22に対する露光と画像の取得を行う(S101、S102)。そして、1枚目撮影時におけるイメージセンサ22の位置を基準位置とし、2枚目、3枚目、4枚目の撮影時には、イメージセンサ22の撮影位置をそれぞれ異なる位置へシフトさせ、撮影を行う(S103~S107)。1枚目~4枚目の撮影は、最初のレリーズボタン15押下後、続けて自動的に行われる。なお、超解像撮影時においては、それまでの設定に関わらず一時的に手振れ補正機能をOFFに設定し、超解像撮影終了後、元の設定に戻してもよい。 When the release button 15 is pressed and super-resolution imaging is started, the image sensor 22 moves to the first imaging position and performs imaging. That is, exposure to the image sensor 22 and acquisition of an image are performed (S101, S102). Then, the position of the image sensor 22 at the time of shooting the first image is used as a reference position, and the shooting position of the image sensor 22 is shifted to a different position at the time of shooting the second, third, and fourth images. (S103 to S107). The first to fourth images are automatically taken after the first release button 15 is pressed. Note that during super-resolution imaging, the camera shake correction function may be temporarily set to OFF regardless of the settings so far, and after super-resolution imaging is completed, the original settings may be restored.
 図4には、イメージセンサ22の各撮影時における位置を示しており、画像の横方向、縦方向をそれぞれX、Y座標で表している。また、説明上、6×6の画素配列によって画像領域IRが構成されるものとする。イメージセンサ22が撮影ごとにシフトする、すなわち、撮影光学系31によって形成される被写体像に対してイメージセンサ22の位置(画素位置)が相対的に移動することにより、画像領域IRに形成される像は撮影ごとに異なる。 FIG. 4 shows the position of the image sensor 22 at the time of shooting, and the horizontal and vertical directions of the image are represented by X and Y coordinates, respectively. For the sake of explanation, it is assumed that the image region IR is configured by a 6 × 6 pixel array. The image sensor 22 shifts at every photographing, that is, the image sensor 22 is formed in the image region IR by moving the position (pixel position) of the image sensor 22 relative to the subject image formed by the photographing optical system 31. The image varies with each shot.
 ここでは、1枚目を基準位置とし、2枚目の撮影時にX方向に+1ピクセル分だけずれた位置にイメージセンサ22が移動する。3枚目の撮影では、基準位置に対してX,Y方向にそれぞれ+1ピクセル、-1ピクセルずれた位置にイメージセンサ22が移動し、4枚目の撮影では、基準位置に対してY方向に-1ピクセル分ずれた位置にイメージセンサ22が移動する。これにより、被写体像に対し画像領域IRの位置がそれぞれ異なる撮影画像I1~I4が生成される。 Here, the image sensor 22 moves to a position shifted by +1 pixel in the X direction when the first image is taken as a reference position. In the third shooting, the image sensor 22 moves to a position shifted by +1 pixel and −1 pixel in the X and Y directions with respect to the reference position, and in the fourth shooting in the Y direction with respect to the reference position. The image sensor 22 moves to a position shifted by −1 pixel. As a result, captured images I1 to I4 having different image region IR positions with respect to the subject image are generated.
 上述したように、イメージセンサ22の受光面にはベイヤー配列のカラーフィルタアレイが配置されており、R,G,Bいずれかのカラーエレメントが各画素に対して対向配置されている。したがって、色補間処理前の1枚の画像データに着目すれば各画素から出力される画素信号は、R,G,Bいずれかの色情報しか含まれていない。図4では、対向するカラーフィルタエレメントの色に合わせて、各画素の符号を「11R、12G、13R、・・」と表している。 As described above, a Bayer array color filter array is disposed on the light receiving surface of the image sensor 22, and any one of R, G, and B color elements is disposed to face each pixel. Therefore, if attention is paid to one piece of image data before the color interpolation process, the pixel signal output from each pixel includes only R, G, or B color information. In FIG. 4, the symbols of the respective pixels are represented as “11R, 12G, 13R,.
 一方、超解像撮影を行うと、1画素分だけイメージセンサ22の受光領域IRを順次相対移動させることから、隣接する他色のカラーフィルタエレメントを備える画素によって同一箇所が撮影される。これにより、各画素の画素信号には、R,G,Bの色情報すべてが含まれている。 On the other hand, when super-resolution imaging is performed, the light receiving area IR of the image sensor 22 is sequentially relatively moved by one pixel, so that the same portion is imaged by adjacent pixels having other color filter elements. Thereby, all the R, G, and B color information are included in the pixel signal of each pixel.
 例えば、1枚目の撮影において、画素33Rによって形成されるイメージPAは、イメージセンサ22の1ピクセル分のシフトにより、2枚目、3枚目、4枚目の撮影ではそれぞれ画素32G、22B、23Gに形成される。画素32G、22B、23Gから出力される画素信号には、GもしくはBの色情報が含まれることから、イメージPAに対してR,G,Bすべての色情報が含まれる画素信号を得ることができる。なお、G成分については、32G、23Gから出力される画素信号の平均値をここではG成分の画素値として算出する。 For example, in the first shooting, the image PA formed by the pixel 33R is shifted by one pixel of the image sensor 22, and in the second, third, and fourth shooting, the pixels 32G, 22B, 23G is formed. Since the pixel signals output from the pixels 32G, 22B, and 23G include G or B color information, it is possible to obtain a pixel signal that includes all the R, G, and B color information for the image PA. it can. For the G component, the average value of the pixel signals output from 32G and 23G is calculated here as the G component pixel value.
 4枚の撮影画像I1~I4が得られると、撮影画像I1~I4を合成する超解像処理が実行され、4枚の撮影画像I1~I4とは別の高画質画像が生成される。すなわち、各画素のR,G,Bの画素値に基づいた撮影画像データが形成される。生成された高画質画像はLCD24に表示されるとともに、画像メモリ25に記録される(S108~S110)。 When four captured images I1 to I4 are obtained, super-resolution processing is performed to synthesize the captured images I1 to I4, and high-quality images different from the four captured images I1 to I4 are generated. That is, photographed image data based on the R, G, and B pixel values of each pixel is formed. The generated high-quality image is displayed on the LCD 24 and recorded in the image memory 25 (S108 to S110).
 図5は、高画質画像を例示した図である。高画質画像IHの画像領域IR’は、図4に示した6×6画素配列の中でR,G,Bすべての情報が含まれない右端縦列を除いた5×5画素配列で構成されている。各画素は、R,G,Bそれぞれの画素値を有し、例えば、図4のイメージPAに相当する画素22のイメージPA’は、R,G,Bの色情報が含まれている。 FIG. 5 is a diagram illustrating a high-quality image. The image area IR ′ of the high-quality image IH is composed of a 5 × 5 pixel array excluding the right end column that does not include all the R, G, and B information in the 6 × 6 pixel array shown in FIG. Yes. Each pixel has R, G, and B pixel values. For example, the image PA 'of the pixel 22 corresponding to the image PA in FIG. 4 includes R, G, and B color information.
 このようなイメージセンサ22の撮像領域オーバラップを伴う移動によって複数回の超解像撮影を行い、超解像処理によって実現される高画質画像の生成は、被写体(像)が変化しない、すなわち複数の画像間で被写体像に差異がないことを前提としている。被写体像に動き/ブレ、明るさ、色合い変化等がない状態でイメージセンサ22の移動および撮影を行うことを前提としているため、高画質画像は、同一の被写体部分、同一の明るさ、色に基づいたイメージをもつ画素によって構成されなければならない。 The generation of a high-quality image that is realized by super-resolution imaging by performing super-resolution imaging a plurality of times by such movement of the image sensor 22 accompanied by the imaging region overlap does not change the subject (image). It is assumed that there is no difference in subject images between the images. Since it is assumed that the image sensor 22 is moved and photographed in a state where there is no movement / blur, brightness, hue change or the like in the subject image, the high-quality image has the same subject portion, the same brightness, and color. Must be made up of pixels with a based image.
 しかしながら、超解像撮影の間、被写体に動きが生じ、あるいは被写体の明るさ、色合いなどが変化して被写体像に差異が発生すると、高画質画像の画素は、同一の撮影条件に基づいたイメージにならない。その結果、不適切なイメージが部分的、あるいは全体的に現れた画像を生成することになる。 However, during super-resolution shooting, if the subject moves or the subject's brightness, hue, etc. change to cause a difference in the subject image, the pixels of the high-quality image are images based on the same shooting conditions. do not become. As a result, an image in which an inappropriate image appears partially or entirely is generated.
 そこで本実施形態では、被写体像の変化(差異)が生じた場合、補完撮影を行う。すなわち、再度画像の取得を行う。具体的には、被写体像に動きが生じた場合、被写体像の明るさが変化した場合、あるいは被写体像の色合いが変化した場合、撮影をやり直し、被写体像に関して差異のない複数の撮影画像に基づいた高画質画像を生成する。 Therefore, in this embodiment, when a change (difference) in the subject image occurs, complementary shooting is performed. That is, the image is acquired again. Specifically, when movement occurs in the subject image, when the brightness of the subject image changes, or when the hue of the subject image changes, shooting is performed again, based on a plurality of shot images that are not different with respect to the subject image. High quality images.
 被写体像の変化を検出する方法として、ここでは3つの検出方法が用意されており、画素値の差分、ヒストグラム差分、平均値の差分に基づいて検出可能である。以下、図6~8を用いてそれぞれの検出方法を説明する。 Here, three detection methods are prepared as methods for detecting a change in the subject image, and detection is possible based on a difference in pixel value, a difference in histogram, and a difference in average value. Hereinafter, each detection method will be described with reference to FIGS.
 図6は、画素値の差分を示した図である。1枚目と2枚目の撮影によって得られる2枚の撮影画像I1、I2に関し、対応する画素間で輝度値の差分を算出し、差分が閾値T1以上の画素をカウントする。そして、全画素数のうち閾値T1以上であった画素のカウント数が閾値T2以上である場合、被写体像の変化が生じていると判断する。閾値T1、T2は、撮影条件等を考慮して定められ、ROMなどにあらかじめ記憶されている。 FIG. 6 is a diagram showing a difference between pixel values. For the two captured images I1 and I2 obtained by the first and second images, a difference in luminance value is calculated between corresponding pixels, and pixels whose difference is greater than or equal to the threshold T1 are counted. Then, when the count number of the pixels that are equal to or greater than the threshold T1 among the total number of pixels is equal to or greater than the threshold T2, it is determined that a change in the subject image has occurred. The threshold values T1 and T2 are determined in consideration of shooting conditions and the like, and are stored in advance in a ROM or the like.
 例えば、超解像撮影の間に被写体が移動している場合、得られる撮影画像の間で、同一被写体のイメージとならない画素が生じる。図6では、1枚目の撮影と2枚目の撮影時に得られる撮影画像I1、I2において、画素PXのイメージは同一被写体に基づいていない。 For example, when the subject is moving during super-resolution imaging, pixels that do not become the image of the same subject are generated between the obtained captured images. In FIG. 6, the images of the pixels PX are not based on the same subject in the captured images I <b> 1 and I <b> 2 obtained at the time of the first image capturing and the second image capturing.
 図7は、画像全体の平均値の差分を示した図である。1枚目と2枚目の撮影によって得られる2枚の撮影画像I1、I2に関し、それぞれ輝度平均値を算出する。そして、輝度平均値の差分を求め、差分量が閾値T3以上の場合、被写体像の変化が生じていると判断する。  FIG. 7 is a diagram showing the difference between the average values of the entire image. An average luminance value is calculated for each of the two captured images I1 and I2 obtained by the first and second images. Then, a difference between the luminance average values is obtained, and when the difference amount is equal to or greater than the threshold value T3, it is determined that the subject image has changed. *
 例えば、蛍光灯などのチラツキなどに起因する照明の変化、シャッタ、絞りの動作に起因する被写体像の明るさ変化などが超解像撮影中に生じた場合、被写体の動きは生じていない一方で、被写体像の明るさに関し、撮影画像I1、I2の間で相違が生じる。このような被写体像の変化を、平均値の差分を演算することによって検出することが可能である。 For example, if a change in illumination caused by flickering of a fluorescent lamp, etc., or a change in the brightness of the subject image caused by the operation of the shutter or aperture occurs during super-resolution shooting, the subject does not move. Regarding the brightness of the subject image, there is a difference between the captured images I1 and I2. Such a change in the subject image can be detected by calculating a difference between the average values.
 図8は、画像全体のヒストグラム差分を示した図である。1枚目と2枚目の撮影によって得られる2枚の撮影画像I1、I2に関し、それぞれヒストグラム演算を行う。そして、ヒストグラム演算によって得られたヒストグラムHG1、HG2の差分(図8斜線部分参照)を求め、差分量が閾値T4以上の場合、被写体像の変化が生じていると判断する。 FIG. 8 is a diagram showing a histogram difference of the entire image. Histogram calculations are performed on the two captured images I1 and I2 obtained by the first and second images. Then, the difference between the histograms HG1 and HG2 obtained by the histogram calculation (see the hatched portion in FIG. 8) is obtained. If the difference amount is equal to or greater than the threshold value T4, it is determined that the subject image has changed.
 例えば、超解像撮影中に予想外のもの(鳥など)が撮影範囲に一時的に入り込んだ場合、被写体像全体での動きの変化は比較的少ないが、明るさ、色合いなどに関し、撮影画像I1、I2の間で相違が生じる。また、雲に隠れた太陽が雲の僅かな移動によって日光が漏れるような場合でも、撮影画像間で相違が生じる。このような被写体像の変化を、ヒストグラム差分を演算することによって検出することが可能である。 For example, if something unexpected (such as a bird) temporarily enters the shooting range during super-resolution shooting, the movement of the entire subject image changes relatively little, but the brightness, color, etc. Differences occur between I1 and I2. Even when the sun hidden in the clouds leaks sunlight due to slight movement of the clouds, a difference occurs between the captured images. Such a change in the subject image can be detected by calculating a histogram difference.
 本実施形態では、ユーザがモード設定などにおいていずれか1つの検出方法を設定することも可能であり、あるいは、2つ以上組み合わせて検出することもできる。なお、画素差分値、ヒストグラム差分値、平均差分値については、輝度値の代わりに色情報に基づく各差分を求めてそれらの値を算出してもよいし、輝度値と色情報を併用しても良い。 In this embodiment, the user can set any one detection method in mode setting or the like, or two or more detection methods can be combined and detected. As for the pixel difference value, the histogram difference value, and the average difference value, each difference based on the color information may be calculated instead of the luminance value, and those values may be calculated, or the luminance value and the color information may be used together. Also good.
 図9は、本実施形態における超解像撮影および超解像処理のフローチャートである。 FIG. 9 is a flowchart of super-resolution imaging and super-resolution processing in the present embodiment.
 1枚目、2枚目の撮影時にイメージセンサ22を定められた位置に移動し、撮影を行う(S201~S204)。そして、1枚目の撮影画像と2枚目の撮影画像との間で、被写体像変化が生じているか否かを検出する(S205)。被写体像変化が生じている場合、ステップS201に戻り、イメージセンサ22を最初の位置に移動させ、1枚目の撮影からやり直す(つまり1枚目の2回目撮影をする)。 The image sensor 22 is moved to a predetermined position at the time of photographing the first image and the second image, and photographing is performed (S201 to S204). Then, it is detected whether or not a subject image change has occurred between the first photographed image and the second photographed image (S205). If the subject image has changed, the process returns to step S201, the image sensor 22 is moved to the first position, and the first image is taken again (that is, the first image is taken for the second time).
 一方、1枚目、2枚目の撮影画像の間で被写体像の変化が生じていない場合、3枚目の撮影に移行し(S206、S207)、1枚目と3枚目の撮影画像の間で、被写体像の変化が生じているか否かが判断される(S208)。被写体像の変化が生じている場合、ステップS201に戻り、1枚目の撮影からやり直す。 On the other hand, if there is no change in the subject image between the first and second photographed images, the process shifts to the third photograph (S206, S207) and the first and third photographed images. Whether or not the subject image has changed is determined (S208). If there is a change in the subject image, the process returns to step S201 and starts again from the first image.
 ステップS208において被写体像の変化が生じていないと判断されると、4枚目の撮影に移行し(S209、S210)、1枚目と4枚目の撮影画像の間で、被写体像の変化が生じているか否かが判断される(S211)。被写体像の変化が生じている場合、ステップS201に戻り、1枚目の撮影からやり直す。 If it is determined in step S208 that the subject image has not changed, the process proceeds to the fourth shooting (S209, S210), and the subject image changes between the first and fourth shot images. It is determined whether or not it has occurred (S211). If there is a change in the subject image, the process returns to step S201 and starts again from the first image.
 ステップS211において被写体像の変化が生じていないと判断されると、取得された4枚の撮影画像に基づいて超解像処理を実行し、高画質画像を保存、表示する(S212~S214)。 If it is determined in step S211 that the subject image has not changed, super-resolution processing is executed based on the four captured images that have been acquired, and high-quality images are stored and displayed (S212 to S214).
 このように本実施形態によれば、超解像撮影において、最初の撮影によって得られた撮影画像と、2枚目以降の撮影によって得られた撮影画像との間で被写体像の変化があるか否かを撮影が行われる度に検出し、被写体像変化が生じた場合、超解像撮影を最初からやり直す。 As described above, according to the present embodiment, in super-resolution imaging, is there a change in the subject image between the captured image obtained by the first imaging and the captured image obtained by the second and subsequent imaging? Is detected every time shooting is performed, and if the subject image changes, super-resolution shooting is restarted from the beginning.
 被写体像の動きがあった、すなわち被写体像に差異が発生した撮影画像を使用せず、被写体像の動きのない撮影画像のみから高画質画像を得るため、乱れがあったりカラーバランスの崩れる画像をわざわざ画像処理、表示、記録することがなく、効率よく高画質画像を撮影、表示、記録することが可能となる。 To obtain a high-quality image only from a photographic image with a subject image movement, that is, with a subject image difference, and without a subject image motion, an image that is disturbed or loses color balance It is possible to efficiently shoot, display and record a high quality image without bothering image processing, display and recording.
 また、1枚目の撮影画像を基準として被写体像の変化を検出するため、動きのある被写体の撮影などによって被写体像に動きが生じている場合、適切にそれを検出することができる。なお、超解像撮影については、長時間にわたって撮影が続くのを防ぐため、繰り返し撮影(再度画像の取得)を行う回数に制限を設け、制限回数を越えると超解像撮影処理を一旦強制終了させると更に効率がよい。 Also, since the change in the subject image is detected based on the first photographed image, if the subject image has moved due to shooting of a moving subject or the like, it can be detected appropriately. For super-resolution shooting, in order to prevent long-time shooting, a limit is set on the number of repeated shooting (re-acquisition of images). If the limit is exceeded, the super-resolution shooting process is forcibly terminated once. If it is done, it is more efficient.
 次に、図10を用いて、第2の実施形態であるデジタルカメラについて説明する。第2の実施形態では、被写体像の変化が生じると、直前に行われた撮影をやり直す。それ以外の構成については、第1の実施形態と実質的に同じである。 Next, a digital camera according to the second embodiment will be described with reference to FIG. In the second embodiment, when a change in the subject image occurs, the shooting performed immediately before is performed again. About another structure, it is substantially the same as 1st Embodiment.
 図10は、第2の実施形態における超解像撮影および超解像処理のフローチャートである。 FIG. 10 is a flowchart of super-resolution imaging and super-resolution processing in the second embodiment.
 1枚、2枚目の撮影後、1枚目の撮影画像と2枚目の撮影画像との間で、被写体像変化が生じているか否かを検出する(S301~S305)。被写体像の変化が生じている場合、被写体像の変化が実質的にない撮影画像を得られるまで、2枚目の撮影と被写体像の変化検出を2回目、3回目・・・と行う。 After the first and second images are taken, it is detected whether or not a subject image change has occurred between the first and second shot images (S301 to S305). If there is a change in the subject image, the second shot, the detection of the change in the subject image are performed for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained.
 ステップS305において被写体像の変化が生じていない場合、3枚目の撮影を行い、2枚目の撮影画像と3枚目の撮影画像との間で、被写体像変化が生じているか否かを検出する(S306~308)。被写体像の変化が生じている場合、被写体像の変化が実質的にない撮影画像を得られるまで、3枚目の撮影と被写体像の変化検出を2回目、3回目・・・と行う。 If no change in the subject image has occurred in step S305, the third image is shot, and it is detected whether or not the subject image has changed between the second and third shot images. (S306 to 308). If there is a change in the subject image, the third shot and the change detection of the subject image are performed for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained.
 ステップS308において被写体像の変化が生じていないと判断されると、4枚目の撮影を行い、3枚目の撮影画像と4枚目の撮影画像との間で、被写体像変化が生じているか否かを検出する(S309~S311)。被写体像の変化が生じていると判断されると、被写体像の変化が実質的にない撮影画像を得られるまで、4枚目の撮影と被写体像の変化検出を2回目、3回目・・・と行う。 If it is determined in step S308 that there is no change in the subject image, the fourth image is taken, and whether there is a change in the subject image between the third image and the fourth image. Whether or not is detected (S309 to S311). If it is determined that a change in the subject image has occurred, the fourth shot and the detection of the change in the subject image are detected for the second time, the third time, and so on until a captured image with substantially no change in the subject image is obtained. And do.
 ステップS311において被写体像の変化が生じていないと判断されると、得られた4枚の撮影画像に基づいて超解像処理を実行し、高画質画像を保存、表示する(S312~S314)。 If it is determined in step S311 that the subject image has not changed, super-resolution processing is executed based on the four captured images obtained, and a high-quality image is stored and displayed (S312 to S314).
 このように第2の実施形態によれば、超解像撮影において、N-1枚目(Nは、ここでは2、3、4のいずれかの整数)の撮影によって得られた撮影画像と、N枚目の撮影で得られた撮影画像との間で被写体像の変化があるか否かを、撮影が行われる度に検出し、被写体像変化が生じた場合、被写体像の変化のない撮影画像を得るまでN枚目の撮影を行う。 As described above, according to the second embodiment, in super-resolution imaging, a captured image obtained by imaging of the N−1th image (N is an integer of 2, 3, or 4 here), Whether or not there is a change in the subject image with the shot image obtained in the Nth shooting is detected every time shooting is performed, and if there is a change in the subject image, shooting without change in the subject image The Nth image is taken until an image is obtained.
 時系列的に隣り合う2枚の撮影画像間で被写体像の変化を検出するため、照明のチラツキ、あるいはシャッタ/絞り動作のバラツキなどに起因する明るさ、色合い変化を適切に検出することができる。また、最初から撮影を行わないことにより、被写体によっては超解像撮影を短時間で終了させることができる場合がある。 Since a change in the subject image is detected between two captured images that are adjacent in time series, it is possible to appropriately detect changes in brightness and hue caused by illumination flicker or shutter / aperture variation. . In addition, by not performing shooting from the beginning, depending on the subject, super-resolution shooting may be able to be completed in a short time.
 なお、撮影の繰り返し回数については制限回数を設けるようにしてもよい。 Note that a limit may be set for the number of repetitions of shooting.
 次に、図11を用いて、第3の実施形態について説明する。第3の実施形態では、4枚の撮影を連続して先に行い、その後被写体像の変化が生じている“N(Nは、ここでは1、2、3、4のいずれかの整数)枚目”の撮影のみ再試行する。それ以外の構成については、第1の実施形態と実質的に同じである。 Next, a third embodiment will be described with reference to FIG. In the third embodiment, “N (N is an integer of any one of 1, 2, 3, and 4) sheets” in which the shooting of four images is performed first and then the subject image changes after that. Retry only the "eye". About another structure, it is substantially the same as 1st Embodiment.
 図11は、第3の実施形態における超解像撮影および超解像処理のフローチャートである。 FIG. 11 is a flowchart of super-resolution imaging and super-resolution processing in the third embodiment.
 イメージセンサ22の移動を伴う4枚の撮影を続けて行って4枚の撮影画像を取得し、一時的にRAMなどのメモリに記憶する(S401~S408)。そして、超解像撮影終了後、例えば1枚目の撮影画像を基準として、2枚目、3枚目、4枚目の撮影画像に被写体像の変化が生じているか否かが判断される(S409)。被写体像の変化が生じている場合、その撮影画像を得た撮影を再試行する(S413~S421)。被写体像の変化が生じていない場合、4枚の画像に基づく超解像処理によって高画質画像が保存、表示される(S410~S412)。 4 images are taken continuously with the movement of the image sensor 22 to obtain 4 images and temporarily stored in a memory such as a RAM (S401 to S408). Then, after the super-resolution shooting is finished, for example, it is determined whether or not the subject image has changed in the second, third, and fourth shot images with reference to the first shot image (see FIG. S409). If the change in the subject image has occurred, the shooting for obtaining the shot image is retried (S413 to S421). When the subject image has not changed, a high-quality image is stored and displayed by super-resolution processing based on the four images (S410 to S412).
 このように第3の実施形態によれば、超解像撮影(複数枚撮影)を先に終了し、その後に被写体像の変化を検出して撮影をやり直す。これにより、被写体によっては超解像撮影を短時間で終了させることが可能となる場合がある。また、動きがなく、明るさ変化だけが生じている場合に対し、効率よく処理することができる。 Thus, according to the third embodiment, super-resolution imaging (multiple imaging) is terminated first, and then a change in the subject image is detected and imaging is performed again. Thereby, depending on the subject, it may be possible to finish super-resolution shooting in a short time. Further, it is possible to efficiently process the case where there is no movement and only the brightness change occurs.
 第1~第3の実施形態では、連続して撮影した2枚の撮影画像、あるいは1枚目の撮影画像を基準とした2枚目以降の撮影画像を抽出して被写体像の変化を検出しているが、これに限定されず、他の組合せによる撮影画像に基づいて被写体像の変化を検出してもよい。あるいは、3枚以上の撮影画像に基づいて被写体像の変化を検出してもよい。また、4枚の撮影に限定されず、複数枚の撮影に渡る超解像撮影を行なえばよい。 In the first to third embodiments, changes in the subject image are detected by extracting two consecutively photographed images or the second and subsequent photographed images based on the first photographed image. However, the present invention is not limited to this, and a change in the subject image may be detected based on a photographed image by another combination. Alternatively, a change in the subject image may be detected based on three or more captured images. Further, the present invention is not limited to shooting four images, and super-resolution shooting over a plurality of images may be performed.
 次に、図12を用いて、第4の実施形態であるデジタルカメラについて説明する。第4の実施形態では、第1~第3の実施形態のような補完撮影は行わず、被写体像の変化があったことをユーザに通知するとともに、超解像処理を行わない。 Next, a digital camera according to the fourth embodiment will be described with reference to FIG. In the fourth embodiment, the complementary shooting as in the first to third embodiments is not performed, the user is notified that the subject image has changed, and the super-resolution processing is not performed.
 図12は、第4の実施形態における超解像撮影および処理のフローチャートである。 FIG. 12 is a flowchart of super-resolution imaging and processing in the fourth embodiment.
 第1の実施形態と同様、2枚目、3枚目、4枚目の撮影を行うたびに、被写体像の変化が生じているか否かを、1枚目の撮影画像を基準として判断する(S501~S511)。被写体像の変化が生じていない場合、超解像処理によって高画質画像を生成し、表示/記録する(S512~S514)。 As in the first embodiment, each time the second, third, and fourth shots are taken, whether or not the subject image has changed is determined based on the first shot image ( S501 to S511). If the subject image has not changed, a high-quality image is generated by super-resolution processing and displayed / recorded (S512 to S514).
 一方、被写体像の変化が生じている場合、コントローラ40は、超解像処理を実行せず、4枚の撮影画像それぞれを保存するとともに、1枚目、あるいはそれ以外の撮影画像をLCD24に表示する(S515、S516)。そして、被写体像が変化したことをユーザに報知する(S517)。ここでは、LCD24に被写体像変化を知らせる警告文(例えば、「被写体像が変化しました!」など)を、1枚目の撮影画像とともに、あるいは警告文のみ表示する。 On the other hand, when a change in the subject image occurs, the controller 40 does not execute the super-resolution process, stores each of the four captured images, and displays the first or other captured images on the LCD 24. (S515, S516). Then, the user is notified that the subject image has changed (S517). Here, a warning text (for example, “the subject image has changed!” Etc.) notifying the LCD 24 of the subject image change is displayed together with the first photographed image or only the warning text.
 このように第4の実施形態によれば、被写体像の変化が検出されると、超解像処理を実行せず、ユーザに被写体像変化を通知するとともに、各撮影画像を保存し、いずれかの撮影画像を表示する。これにより、結果として失敗する無駄な超解像処理が実行、表示、記録されることを防ぐ。また、撮影ごとに被写体像変化を検出することで、即座に超解像撮影を中止し、撮影環境の見直しをユーザに促すことができる。そして、撮影中にユーザが認識できないような被写体像変化においても超解像処理を行わないため、無駄な画像処理、画像記録、画像表示することが免れる。また、各撮影画像は個々に保存されるので、超解像処理には不向きでも別目的に転用することが可能である。 As described above, according to the fourth embodiment, when a change in the subject image is detected, the super-resolution processing is not performed, the user is notified of the subject image change, and each captured image is stored. The captured image of is displayed. This prevents unnecessary super-resolution processing that fails as a result from being executed, displayed, and recorded. Also, by detecting a change in the subject image for each shooting, it is possible to immediately stop super-resolution shooting and prompt the user to review the shooting environment. Since super-resolution processing is not performed even when the subject image changes that cannot be recognized by the user during shooting, unnecessary image processing, image recording, and image display are avoided. In addition, since each captured image is stored individually, it can be diverted to another purpose even if it is not suitable for super-resolution processing.
 なお、画面表示による被写体像変化のユーザへの通知については、表示以外の構成も可能であり、カメラ本体20に設けられた発光部90(図1参照)を発光させることが可能である。あるいは、ブザー音等、所定のサウンドやメッセージを発するようにしてもよい。 In addition, about the notification to the user of the subject image change by a screen display, structures other than a display are also possible, and the light emission part 90 (refer FIG. 1) provided in the camera main body 20 can be light-emitted. Alternatively, a predetermined sound or message such as a buzzer sound may be emitted.
 次に、図13、14を用いて、第5の実施形態であるデジタルカメラについて説明する。第5の実施形態では、被写体像の変化に関わらず超解像処理を行う一方、被写体像の変化が生じていた場合にはその旨をユーザに通知する。 Next, a digital camera according to the fifth embodiment will be described with reference to FIGS. In the fifth embodiment, super-resolution processing is performed regardless of the change in the subject image. On the other hand, if the subject image has changed, the user is notified of the change.
 図13は、第5の実施形態における超解像撮影および処理のフローチャートである。図14は、被写体像変化を知らせる表示画面を示した図である。 FIG. 13 is a flowchart of super-resolution imaging and processing in the fifth embodiment. FIG. 14 is a view showing a display screen for informing a subject image change.
 4枚に渡る超解像撮影を続けて行い、1枚目から4枚目の撮影画像を一時的にメモリに保存する一方、超解像処理によって画像を生成して表示、保存する(S601~S611)。その一方で、1枚目の撮影画像を基準として2枚目、3枚目、4枚目の撮影画像に被写体像変化が生じているか否かを判断する(S612)。被写体像の変化が生じている場合、生成された高画質画像を使ってユーザにその旨を知らせる(S613)。 Continuous super-resolution imaging is performed for four images, and the first to fourth captured images are temporarily stored in the memory, while an image is generated, displayed, and stored by super-resolution processing (S601˜). S611). On the other hand, it is determined whether or not a subject image change has occurred in the second, third, and fourth shot images with reference to the first shot image (S612). If a change in the subject image has occurred, the user is notified of this by using the generated high-quality image (S613).
 図14には、二人の被写体SI、MIを超解像撮影することによって得られた高画質画像を示している。被写体MIに動きなどが生じたため、被写体MIを被写体SIと識別できるように被写体MIの画像領域について画像編集処理する。ここでは、同色で被写体MIを塗りつぶすなどしてユーザに被写体像変化を知らせる。 FIG. 14 shows a high-quality image obtained by super-resolution imaging of two subjects SI and MI. Since movement or the like has occurred in the subject MI, image editing processing is performed on the image area of the subject MI so that the subject MI can be identified from the subject SI. Here, the subject image change is notified to the user by painting the subject MI with the same color.
 このように第5の実施形態によれば、被写体像の変化が検出されると、超解像処理によって得られた画像から、変化のあった部分をユーザが知ることができる。被写体像変化が認識しにくい画像においても、ユーザは変化の部分を知ることができる。なお、任意の撮影画像を表示し、その画像において被写体像変化があった部分を識別できるように表示してもよい。また、変化が発生した画像領域の輪郭を強調表示しても良い。これによると、厳密には被写体像の変化によるエラーが含まれる高画質画像が生成されてしまうことになるが、エラーの位置や範囲をユーザに明確に認識させることができるので、例えばエラー箇所が画面の最周辺部の狭い部分であれば、その部分をトリミングしてしまうことで対応できる場合もある。その結果、ユーザがエラーのある画像に気づかず、画像の公表や納品を行うという事態を防止することができる。 As described above, according to the fifth embodiment, when a change in the subject image is detected, the user can know the changed portion from the image obtained by the super-resolution processing. Even in an image in which the subject image change is difficult to recognize, the user can know the part of the change. An arbitrary captured image may be displayed and displayed so that a portion where the subject image has changed in the image can be identified. Further, the outline of the image area where the change has occurred may be highlighted. According to this, although a high-quality image including an error due to a change in the subject image is strictly generated, the position and range of the error can be clearly recognized by the user. If it is a narrow part of the outermost peripheral part of the screen, it may be possible to cope by trimming that part. As a result, it is possible to prevent a situation in which the user does not notice an image with an error and releases or delivers the image.
 次に、図15を用いて、第6の実施形態について説明する。第6の実施形態では、超解像撮影前のスルー画像表示状態において被写体像変化を検出する。 Next, the sixth embodiment will be described with reference to FIG. In the sixth embodiment, a subject image change is detected in a through image display state before super-resolution imaging.
 図15は、第6の実施形態における超解像撮影および処理のフローチャートである。スルー画表示モード下において超解像処理モードに設定されていると、処理が開始される。または、スルー画表示モード、超解像処理モード設定下において、レリーズボタン15の半押しによってオートフォーカス動作等がされた後、処理が開始されても良い。 FIG. 15 is a flowchart of super-resolution imaging and processing in the sixth embodiment. If the super-resolution processing mode is set under the through image display mode, the processing is started. Alternatively, the processing may be started after an autofocus operation or the like is performed by half-pressing the release button 15 under the through image display mode or the super-resolution processing mode setting.
 ステップS701では、スルー画像(先行画像)表示の間、所定の時間間隔で読み出される1フィールド/フレーム分の画素信号に基づいて、被写体像の変化が生じているか否かが判断される。ここでは、イメージセンサ22の位置は固定されていることから、連続する2フィールド/フレーム分の画素信号(撮影前画像)との間で、被写体像の変化を検出する。また、上述した被写体像変化検出時に使用される閾値が、上述した閾値よりも小さい値に設定される。 In step S701, it is determined whether or not the subject image has changed based on the pixel signal for one field / frame read at a predetermined time interval during the through image (preceding image) display. Here, since the position of the image sensor 22 is fixed, a change in the subject image is detected between pixel signals (pre-photographing images) for two consecutive fields / frames. Further, the threshold value used when detecting the subject image change described above is set to a value smaller than the threshold value described above.
 被写体像の変化がある場合、その旨を伝える警告文の表示、あるいは、発光部90の発光などが行われる(S702)。一方、被写体像変化が検出されず、レリーズボタン15が全押しされると、超解像撮影および超解像処理が実行され、高画質画像が表示、保存される(S703~S715)。 If there is a change in the subject image, a warning message is displayed to notify that change, or the light emitting unit 90 emits light (S702). On the other hand, if the subject image change is not detected and the release button 15 is fully pressed, super-resolution shooting and super-resolution processing are executed, and a high-quality image is displayed and stored (S703 to S715).
 このように第6の実施形態によれば、超解像撮影開始前に被写体像の変化を検出すると、ユーザにその旨を通知する。これにより、無駄な、すなわち画像処理しても失敗する超解像撮影を行ってしまうことを未然に防ぐ。なお、4枚あるいはそれ以外の枚数による撮影前画像によって被写体像変化を検出してもよく、動きベクトル検出などで被写体像変化を検出してもよい。また、本実施形態については、超解像撮影においては被写体像の変化検出、および補完撮影あるいはユーザ通知を行わないように構成してもよい。なお、第6の実施形態の変形として、レリーズボタン15が全押しされた後でも、直ちに露光動作をせず、一定期間被写体像変化を検出し、変化が検出されない場合に、超解像撮影および超解像処理が開始され、高画質画像が表示、保存されるようにしても良い。 As described above, according to the sixth embodiment, when a change in the subject image is detected before the super-resolution imaging is started, the user is notified of the change. As a result, it is possible to prevent unnecessary super-resolution imaging that is unsuccessful even when image processing is performed. It should be noted that the change in the subject image may be detected from the pre-photographing images with four or other numbers, or the change in the subject image may be detected by motion vector detection or the like. Further, the present embodiment may be configured not to perform subject image change detection and complementary shooting or user notification in super-resolution shooting. Note that as a modification of the sixth embodiment, even when the release button 15 is fully pressed, the exposure operation is not performed immediately, and a change in the subject image is detected for a certain period. Super-resolution processing may be started and a high-quality image may be displayed and stored.
 第1~第6の実施形態については、イメージセンサを1ピクセル分移動させる超解像撮影を行い、色再現性を向上させた高画質画像を実現しているが、イメージセンサの移動量は1ピクセル分に限定されず、それ以上の移動量、あるいはサブピクセル(1ピクセル以下)の精度でイメージセンサを移動させて超解像処理を実行する構成にしてもよい。すなわち、複数の撮影画像に基づいた超解像処理に適用すればよい。 In the first to sixth embodiments, super-resolution imaging by moving the image sensor by one pixel is performed to realize a high-quality image with improved color reproducibility. However, the movement amount of the image sensor is 1 The super-resolution processing may be performed by moving the image sensor with an amount of movement larger than that or a sub-pixel (1 pixel or less) accuracy. That is, it may be applied to super-resolution processing based on a plurality of captured images.
 超解像撮影については、被写体像に対してイメージセンサを移動させる代わりに光学素子を偏心駆動することでイメージセンサに対して被写体像を移動し、超解像撮影を行ってもよい。また、コントローラとは別に画像処理部を設けてもよい。デジタルカメラについては、レンズが着脱自在な一眼レフ型カメラ(いわゆる「ミラーレス一眼カメラ」を含む)、レンズ一体型のコンパクトカメラいずれにも適用可能であり、スマートフォンなど撮影機能を備えた携帯装置といった撮像装置にも、適用可能である。 For super-resolution imaging, instead of moving the image sensor relative to the subject image, the subject image may be moved relative to the image sensor by driving the optical element eccentrically, and super-resolution imaging may be performed. An image processing unit may be provided separately from the controller. Digital cameras can be applied to both single-lens reflex cameras with a detachable lens (including so-called “mirrorless single-lens cameras”) and compact cameras with a built-in lens. The present invention can also be applied to an imaging device.
 一方、カメラなどで記録された撮影画像を読み出し、画像編集処理を行う画像編集ソフトあるいは画像処理装置においても、超解像処理を実行することが可能である。この場合、各撮影画像データと関連付けて、組となる複数の撮影画像情報や被写体像の変化の有無を記録しておき、画像編集ソフトあるいは画像処理装置に取り込んだ複数枚一組の撮影画像間において被写体像に変化がある場合には、ユーザにその旨を通知することにより、ユーザは被写体像の変化があったことを認識することができる。 On the other hand, super-resolution processing can also be executed by image editing software or an image processing apparatus that reads out a captured image recorded by a camera or the like and performs image editing processing. In this case, in association with each captured image data, a plurality of sets of captured image information and the presence / absence of changes in the subject image are recorded, and a plurality of sets of captured images captured by the image editing software or the image processing apparatus are recorded. When there is a change in the subject image, the user can recognize that the subject image has changed by notifying the user of that fact.
 以上で説明したように、カメラなどを使って、複数の画像に基づいて超解像処理による画像を生成する為に、撮影時に画素位置(イメージセンサ位置)をずらしながら複数枚の撮影(露光と画像取得)を行う場合、従来は複数枚の撮影の間に被写体に動きが生じ、あるいは、照明やシャッタ、絞り動作に起因する撮影中の明るさ変化、色変化などが生じた場合に、ユーザにとって無駄な画像処理となり、失敗画像をそのまま記録、表示してしまう恐れがある。そして、超解像処理による高画質の画像生成に失敗した場合、撮影者は、構図、露出条件などを確認しながら、もう一度撮影を行わなければならない。しかしながら、本願実施形態によれば、そのような不便が解消され、効率よく撮影作業を遂行することができる。 As described above, in order to generate an image by super-resolution processing based on a plurality of images using a camera or the like, a plurality of images (exposure and exposure) are shifted while shifting the pixel position (image sensor position) at the time of shooting. When performing image acquisition), the user has conventionally experienced movement during shooting, or brightness, color change, etc. during shooting due to illumination, shutter, or aperture operation. Therefore, there is a possibility that the image processing is useless and the failed image is recorded and displayed as it is. If the high-resolution image generation by the super-resolution processing fails, the photographer must take another image while confirming the composition and the exposure condition. However, according to the embodiment of the present application, such inconvenience is eliminated, and the photographing operation can be performed efficiently.
 10 デジタルカメラ(撮像装置)
 22 イメージセンサ(撮像素子)
 40 コントローラ(画像処理部、制御部、検出部、撮影前検出部、撮影前制御部)
10 Digital camera (imaging device)
22 Image sensor (image sensor)
40 controller (image processing unit, control unit, detection unit, pre-shooting detection unit, pre-shooting control unit)

Claims (18)

  1.  被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御部と、
     取得された複数の画像に基づいて画像処理をする画像処理部と、
     取得された少なくとも2枚の画像間の少なくとも一部における被写体像の差異を検出する検出部とを備え、
     前記制御部が、前記被写体像の差異に応じて、再度画像の取得もしくは被写体像の差異の報知を行うことを特徴とする撮像装置。
    A control unit that controls the acquisition of a plurality of images while changing the relative position between the subject image and the image sensor;
    An image processing unit that performs image processing based on the plurality of acquired images;
    A detection unit that detects a difference in the subject image in at least a part between the acquired at least two images,
    An image pickup apparatus, wherein the control unit obtains an image again or notifies a subject image difference in accordance with the subject image difference.
  2.  前記検出部が、少なくとも2枚の画像間の差分に基づいて、前記被写体像の差異を検出することを特徴とする請求項1に記載の撮像装置。 2. The imaging apparatus according to claim 1, wherein the detection unit detects a difference between the subject images based on a difference between at least two images.
  3.  前記検出部が、少なくとも2枚の画像間の対応する画素間の輝度または色情報の差分を求め、求められた差分に基づいて前記被写体像の差異を検出することを特徴とする請求項1又は2のいずれかに記載の撮像装置。 The said detection part calculates | requires the difference of the brightness | luminance or color information between the corresponding pixels between at least two images, and detects the difference of the said subject image based on the calculated | required difference. 3. The imaging device according to any one of 2.
  4.  前記検出部が、少なくとも2枚の画像の輝度ヒストグラムまたは色情報ヒストグラムの差分を求め、求められた差分に基づいて前記被写体像の差異を検出することを特徴とする請求項1乃至3のいずれかに記載の撮像装置。 The said detection part calculates | requires the difference of the brightness | luminance histogram or color information histogram of at least 2 image, and detects the difference of the said to-be-photographed image based on the calculated | required difference. The imaging device described in 1.
  5.  前記検出部が、少なくとも2枚の画像の輝度の平均値または色情報の平均値の差分を求め、求められた差分に基づいて前記被写体像の差異を検出することを特徴とする請求項1乃至4のいずれかに記載の撮像装置。 The detection unit obtains a difference between an average value of luminance of at least two images or an average value of color information, and detects a difference between the subject images based on the obtained difference. 5. The imaging device according to any one of 4.
  6.  前記検出部が、少なくとも2枚の画像間の被写体像の位置変化、被写体像の明るさの変化、被写体像の色の変化のうち少なくともいずれか1つを、前記被写体像の差異として検出することを特徴とする請求項1乃至5のいずれかに記載の撮像装置。 The detection unit detects at least one of a change in position of a subject image between at least two images, a change in brightness of the subject image, and a change in color of the subject image as a difference between the subject images. The imaging apparatus according to claim 1, wherein:
  7.  前記検出部が、前記画像処理の基とする複数の画像の全取得完了前に前記被写体像の差異を検出し、
     前記制御部が、前記被写体像の差異が検出されると、始めから、複数の画像の再取得を実行することを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
    The detection unit detects a difference between the subject images before completion of all acquisition of a plurality of images based on the image processing,
    The imaging apparatus according to claim 1, wherein when the difference between the subject images is detected, the control unit executes re-acquisition of a plurality of images from the beginning.
  8.  前記検出部が、前記画像処理の基とする複数の画像の全取得完了前に前記被写体像の差異を検出し、
     前記制御部が、前記被写体像の差異が検出されると、既に取得された複数の画像のうち最後に取得された画像から、再取得を実行することを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
    The detection unit detects a difference between the subject images before completion of all acquisition of a plurality of images based on the image processing,
    The said control part performs reacquisition from the image acquired last among the some images already acquired, if the difference of the said to-be-photographed image is detected, Any one of Claim 1 thru | or 6 characterized by the above-mentioned. An imaging apparatus according to claim 1.
  9.  前記検出部が、前記画像処理の基とする複数の画像の全取得完了後に、基準となる画像の被写体像と他の画像の被写体像の差異を検出し、
     前記制御部が、被写体像の差異が検出されると、差異が生じた画像の再取得を実行することを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
    The detection unit detects a difference between a subject image of a reference image and a subject image of another image after completion of acquisition of a plurality of images based on the image processing,
    The imaging apparatus according to claim 1, wherein when the difference in the subject image is detected, the control unit executes re-acquisition of the image in which the difference has occurred.
  10.  前記検出部が、前記画像処理の基とする複数の画像の全取得完了前もしくは前記画像処理の基とする複数の画像の全取得完了後に前記被写体像の差異を検出し、
     前記制御部が、前記被写体像の差異が検出されると、既に取得された少なくともいずれかの画像の保存および表示の少なくともいずれか1つを実行することを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
    The detection unit detects a difference between the subject images before completion of all acquisition of a plurality of images based on the image processing or after completion of acquisition of a plurality of images based on the image processing,
    7. The control unit according to claim 1, wherein when the difference between the subject images is detected, the control unit executes at least one of storage and display of at least one acquired image. An imaging apparatus according to claim 1.
  11.  前記検出部が、前記複数の画像に基づく画像処理後に前記被写体像の差異を検出し、
     前記制御部が、前記被写体像の差異が検出されると、該被写体像の差異を報知することを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
    The detection unit detects a difference between the subject images after image processing based on the plurality of images;
    The imaging apparatus according to claim 1, wherein when the difference between the subject images is detected, the control unit notifies the difference between the subject images.
  12.  複数の画像の取得の開始前に、前記相対位置を変更しながら、撮像素子によって得られる複数の画像間で被写体像の差異を検出する撮影前検出部と、
     前記被写体像の差異が検出されると、該被写体像の差異を報知する撮影前制御部と
     をさらに備えることを特徴とする請求項1乃至11のいずれかに記載の撮像装置。
    A pre-shooting detection unit that detects a difference in a subject image between a plurality of images obtained by an image sensor while changing the relative position before starting the acquisition of a plurality of images;
    The imaging apparatus according to claim 1, further comprising: a pre-shooting control unit that notifies the difference between the subject images when the difference between the subject images is detected.
  13.  前記制御部が、前記被写体像の差異が発生する部分を識別化させた画像を表示することで前記被写体像の差異を報知することを特徴とする請求項1乃至12のいずれかに記載の撮像装置。 The imaging according to any one of claims 1 to 12, wherein the control unit notifies the difference between the subject images by displaying an image in which a portion where the difference between the subject images occurs is displayed. apparatus.
  14.  発光部をさらに有し
     前記制御部が、前記発光部を発光させることで、前記被写体像の差異を報知することを特徴とする請求項1乃至13のいずれかに記載の撮像装置。
    The imaging apparatus according to claim 1, further comprising: a light emitting unit, wherein the control unit notifies the difference between the subject images by causing the light emitting unit to emit light.
  15.  被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を実行し、
     取得された複数の画像に基づいて画像処理を実行して別の画像を生成し、
     取得された少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出し、
     該被写体像の差異に応じて、再度画像の取得もしくは前記被写体像の差異の報知を行うことを特徴とする撮像方法。
    Execute acquisition of multiple images while changing the relative position of the subject image and the image sensor,
    Perform image processing based on the acquired multiple images to generate another image,
    Detecting at least a portion of the subject image difference between the acquired at least two images,
    An imaging method comprising: acquiring an image again or notifying the subject image difference according to the subject image difference.
  16.  撮像装置を、
     被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御手段と、
     取得された複数の画像に基づいて画像処理を実行し、別の画像を生成する画像処理手段と、
     取得された少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出手段として機能させ、
     該被写体像の差異に応じて、再度画像の取得もしくは該被写体像の差異の報知を行うように、前記制御手段として機能させることを特徴とするプログラム。
    The imaging device
    Control means for controlling acquisition of a plurality of images while changing the relative position between the subject image and the image sensor;
    Image processing means for executing image processing based on the plurality of acquired images and generating another image;
    Function as detection means for detecting a difference in at least a portion of the subject image between at least two acquired images;
    A program that functions as the control unit so as to acquire an image again or notify the difference of the subject image in accordance with the difference of the subject image.
  17.  被写体像と撮像素子との相対位置を変更しながら複数の画像を取得することによって得られる複数の画像に基づいて画像処理を実行し、別の画像を生成する画像処理部と、
     少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出部と、
     前記被写体像の差異が検出されると、該被写体像の差異を報知する報知部と
     を備えたことを特徴とする画像処理装置。
    An image processing unit that executes image processing based on a plurality of images obtained by acquiring a plurality of images while changing a relative position between the subject image and the image sensor, and generates another image;
    A detection unit for detecting a difference in at least a part of the subject image between at least two images;
    An image processing apparatus comprising: a notifying unit that notifies the difference between the subject images when the difference between the subject images is detected.
  18.  被写体像と撮像素子との相対位置を変更しながら複数の画像の取得を制御する制御部と、
     取得された複数の画像に基づいて画像処理する画像処理部と、
     少なくとも2枚の画像間の少なくとも一部の被写体像の差異を検出する検出部とを備え、
     前記制御部が、前記被写体像の差異に応じて、前記複数の画像の取得回数の変更を行うことを特徴とする撮像装置。
    A control unit that controls the acquisition of a plurality of images while changing the relative position between the subject image and the image sensor;
    An image processing unit that performs image processing based on the plurality of acquired images;
    A detection unit that detects a difference in at least a part of the subject image between at least two images,
    The imaging apparatus, wherein the control unit changes the number of acquisition times of the plurality of images according to a difference between the subject images.
PCT/JP2016/057191 2015-03-13 2016-03-08 Imaging device and imaging method WO2016147957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051009 2015-03-13
JP2015051009A JP6606838B2 (en) 2015-03-13 2015-03-13 Imaging apparatus and imaging method

Publications (1)

Publication Number Publication Date
WO2016147957A1 true WO2016147957A1 (en) 2016-09-22

Family

ID=56918889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057191 WO2016147957A1 (en) 2015-03-13 2016-03-08 Imaging device and imaging method

Country Status (2)

Country Link
JP (1) JP6606838B2 (en)
WO (1) WO2016147957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264691A1 (en) * 2021-06-17 2022-12-22 富士フイルム株式会社 Image capture method and image capture device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770614B2 (en) 2020-03-31 2023-09-26 Sony Group Corporation Image processing device and method, and program
JPWO2022157880A1 (en) * 2021-01-21 2022-07-28

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191136A (en) * 1996-12-27 1998-07-21 Canon Inc Image pickup device and image synthesizer
JP2002218328A (en) * 2001-01-19 2002-08-02 Ricoh Co Ltd Image input device, image input method, and computer- readable/writable recording medium having stored program for implementing the method
JP2003259350A (en) * 2002-02-28 2003-09-12 Sharp Corp Omnidirectional monitor control system, omnidirectional monitor control method, and omnidirectional monitor control program
JP2008085380A (en) * 2006-09-25 2008-04-10 Toshiba Corp Imaging device
JP2008198082A (en) * 2007-02-15 2008-08-28 Nikon Corp Image processing method, image processing apparatus, and digital camera
JP2009152879A (en) * 2007-12-20 2009-07-09 Nikon Corp Imaging apparatus
JP2010011501A (en) * 2009-10-13 2010-01-14 Sony Corp Information processing apparatus, information processing method, program and recording medium
JP2011229008A (en) * 2010-04-21 2011-11-10 Canon Inc Image capturing apparatus and program
JP2012181406A (en) * 2011-03-02 2012-09-20 Canon Inc Imaging device
JP2014143613A (en) * 2013-01-24 2014-08-07 Fujitsu Semiconductor Ltd Image processor, image processing method, program and imaging apparatus
JP2014203428A (en) * 2013-04-10 2014-10-27 株式会社東芝 Electronic device and image processing method
WO2015005196A1 (en) * 2013-07-09 2015-01-15 株式会社日立国際電気 Image processing device and image processing method
JP2015042193A (en) * 2013-08-26 2015-03-05 Hoya株式会社 Electronic endoscope system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191136A (en) * 1996-12-27 1998-07-21 Canon Inc Image pickup device and image synthesizer
JP2002218328A (en) * 2001-01-19 2002-08-02 Ricoh Co Ltd Image input device, image input method, and computer- readable/writable recording medium having stored program for implementing the method
JP2003259350A (en) * 2002-02-28 2003-09-12 Sharp Corp Omnidirectional monitor control system, omnidirectional monitor control method, and omnidirectional monitor control program
JP2008085380A (en) * 2006-09-25 2008-04-10 Toshiba Corp Imaging device
JP2008198082A (en) * 2007-02-15 2008-08-28 Nikon Corp Image processing method, image processing apparatus, and digital camera
JP2009152879A (en) * 2007-12-20 2009-07-09 Nikon Corp Imaging apparatus
JP2010011501A (en) * 2009-10-13 2010-01-14 Sony Corp Information processing apparatus, information processing method, program and recording medium
JP2011229008A (en) * 2010-04-21 2011-11-10 Canon Inc Image capturing apparatus and program
JP2012181406A (en) * 2011-03-02 2012-09-20 Canon Inc Imaging device
JP2014143613A (en) * 2013-01-24 2014-08-07 Fujitsu Semiconductor Ltd Image processor, image processing method, program and imaging apparatus
JP2014203428A (en) * 2013-04-10 2014-10-27 株式会社東芝 Electronic device and image processing method
WO2015005196A1 (en) * 2013-07-09 2015-01-15 株式会社日立国際電気 Image processing device and image processing method
JP2015042193A (en) * 2013-08-26 2015-03-05 Hoya株式会社 Electronic endoscope system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264691A1 (en) * 2021-06-17 2022-12-22 富士フイルム株式会社 Image capture method and image capture device

Also Published As

Publication number Publication date
JP2016171511A (en) 2016-09-23
JP6606838B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
US8023811B2 (en) Image capturing apparatus, control method thereof, image processing apparatus, image processing method, image capturing system, and program
JP4501994B2 (en) Imaging device
JP5243666B2 (en) Imaging apparatus, imaging apparatus main body, and shading correction method
JP2006086978A (en) Camera system, camera body, and interchangeable lens
JP2019128362A (en) Imaging apparatus
JP6503907B2 (en) Imaging apparatus, imaging control apparatus, imaging control method, and imaging control program
US20140192167A1 (en) Stereoscopic imaging device
JP6296914B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND PROGRAM
WO2016147957A1 (en) Imaging device and imaging method
JP5011235B2 (en) Imaging apparatus and imaging method
US10057492B2 (en) Photographing apparatus and photographing control method to generate a low-pass filter effect
JP4865648B2 (en) Imaging device
JP7289055B2 (en) Imaging device
JP2015207809A (en) Imaging apparatus
JP6395401B2 (en) Image shake correction apparatus, control method therefor, optical apparatus, and imaging apparatus
JP6584259B2 (en) Image blur correction apparatus, imaging apparatus, and control method
JP7110078B2 (en) Imaging device, imaging method
JP2006157342A (en) Imaging apparatus
JP2008283477A (en) Image processor, and image processing method
US11653094B2 (en) Imaging apparatus with shaking state information display
JP6442231B2 (en) Image blur correction apparatus, control method therefor, program, and storage medium
JP2010204303A (en) Imaging apparatus
JP5160155B2 (en) Imaging device
WO2015182021A1 (en) Image pickup control apparatus, image pickup apparatus, and image pickup control method
JP2009260567A (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764787

Country of ref document: EP

Kind code of ref document: A1