WO2016147574A1 - Voltage stabilization device and power supply system using same - Google Patents

Voltage stabilization device and power supply system using same Download PDF

Info

Publication number
WO2016147574A1
WO2016147574A1 PCT/JP2016/000996 JP2016000996W WO2016147574A1 WO 2016147574 A1 WO2016147574 A1 WO 2016147574A1 JP 2016000996 W JP2016000996 W JP 2016000996W WO 2016147574 A1 WO2016147574 A1 WO 2016147574A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input
output
pair
value
Prior art date
Application number
PCT/JP2016/000996
Other languages
French (fr)
Japanese (ja)
Inventor
悠生 高田
寺澤 章
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016147574A1 publication Critical patent/WO2016147574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/14Regulating voltage or current wherein the variable actually regulated by the final control device is ac using tap transformers or tap changing inductors as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention generally relates to a voltage stabilizing device and a power supply system using the same, and more particularly to a voltage stabilizing device that stabilizes an output voltage and a power supply system using the same.
  • the voltage (hereinafter referred to as “system voltage”) supplied from the power system to the customer (facility) may not be stable and may fluctuate significantly.
  • a voltage stabilizing device so-called voltage stabilizer
  • the voltage stabilizer is electrically connected between the power system and the electrical equipment, and stabilizes the output voltage so that the voltage value of the output voltage supplied to the electrical equipment is within the rated range of the electrical equipment. Do. Thereby, it is possible to prevent a large voltage exceeding the upper limit of the rated range from being supplied to the electric device, and the electric device is protected even in an environment where the system voltage is not stable and varies greatly.
  • the system is configured to electrically disconnect the power system from the electrical equipment when the system voltage falls outside a specified range set between a predetermined upper limit and a lower limit.
  • An apparatus has been proposed (see, for example, Patent Document 1).
  • the device described in Patent Document 1 electrically reconnects the power system to the electrical device when the system voltage returns to within the specified range and a predetermined time has elapsed.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a voltage stabilizing device capable of reducing the frequency with which an electric device stops operating while protecting the electric device, and a power supply system using the same.
  • the voltage stabilizer of the present invention is electrically connected between a pair of input terminals and a pair of output terminals, and the pair of input terminals so that the output voltage output from the pair of output terminals is stabilized.
  • a transformer circuit that transforms an input voltage input to the output voltage into the output voltage, and when the voltage value of the input voltage deviates from a predetermined allowable range, between the pair of input terminals and the pair of output terminals.
  • the allowable range is a range in which only an upper limit is set.
  • a power supply system of the present invention includes the above-described voltage stabilization device and a power supply device having a pair of connection terminals to which the pair of output terminals are electrically connected, and the power supply device includes the pair of connection terminals. Is configured to be operable if the voltage value of the input voltage is within a predetermined voltage range, so that the voltage value of the output voltage of the voltage stabilizing device does not exceed the upper limit of the voltage range. In addition, an upper limit of the allowable range is set.
  • the voltage stabilization device of the present invention has an advantage that the frequency with which the electric device stops operating can be reduced while protecting the electric device.
  • the power supply system of the present invention has an advantage that the frequency with which an electric device stops operating can be reduced while protecting the electric device.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the power supply system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating the relationship between the input voltage and the output voltage of the voltage stabilization apparatus according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of the power supply device according to the first embodiment.
  • FIG. 5 is a block diagram showing a configuration of a voltage stabilizing device as a comparative example of the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the input voltage and the output voltage of the voltage stabilizing device as a comparative example of the first embodiment.
  • FIG. 1 is a block diagram illustrating a schematic configuration of the power supply system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating the relationship between the input voltage and the output
  • FIG. 7 is a perspective view showing the appearance of the wall-mounted voltage stabilizing device according to the first embodiment.
  • FIG. 8 is a perspective view showing an appearance of the table tap type voltage stabilizer according to the first embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the third embodiment.
  • FIG. 11 is a diagram illustrating the relationship between the input voltage and the output voltage and the relationship between the input voltage and the upper limit value of the output current of the voltage stabilizing device according to the third embodiment.
  • the voltage stabilizing device is used in an environment where the system voltage varies greatly.
  • the voltage stabilizer is electrically connected between the power system and the electrical equipment, and stabilizes the output voltage so that the voltage value of the output voltage supplied to the electrical equipment is within the rated range of the electrical equipment. Doing so protects electrical equipment.
  • stabilization of output voltage means a state in which the voltage value of the output voltage is suppressed so as not to fluctuate significantly, and is not limited to a state in which the output voltage is maintained at a constant voltage. Including states that fall within the range.
  • the voltage stabilization device is for a general house such as a detached house or a dwelling unit of an apartment house. Furthermore, in this embodiment, it is assumed that the power system is a single-phase two-wire system, and the rated value of the system voltage that is an AC voltage is 220 [V] in terms of effective value.
  • the voltage value voltage magnitude
  • the electrical equipment to which the voltage stabilizing device is electrically connected is, for example, a household electrical appliance such as a television receiver, a personal computer (PC), a washing machine, a refrigerator, or the like.
  • the voltage stabilizing device is used together with a power supply device corresponding to a so-called global voltage (so-called global power supply), and constitutes a power supply system together with the power supply device.
  • the “global voltage” here is a voltage range determined so as to correspond to a plurality of countries having different rated values of the system voltage, and is, for example, 100 [V] to 240 [V].
  • the power supply device is a power supply adapter (AC adapter) that is electrically connected between the voltage stabilizing device and the electric device, converts an alternating voltage into a direct current voltage, and outputs the converted voltage to the electric device.
  • AC adapter AC adapter
  • the voltage stabilizing device 1 of this embodiment includes a transformer circuit 2 and a cutoff circuit 3 as shown in FIG.
  • the transformer circuit 2 is electrically connected between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52.
  • the transformer circuit 2 transforms the input voltage V1 input to the pair of input terminals 41 and 42 into the output voltage V2 so that the output voltage V2 output from the pair of output terminals 51 and 52 is stabilized.
  • the shutoff circuit 3 electrically shuts off the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 when the voltage value of the input voltage V1 deviates from a predetermined allowable range.
  • the allowable range is a range in which only an upper limit is set.
  • “transforming the input voltage V1” includes the case where the transformation ratio is “1”, that is, the case where the voltage value is equal between the input voltage V1 and the output voltage V2.
  • the “terminal” in the present embodiment does not necessarily have an entity as a part for electrically connecting electric wires, for example, a lead of an electronic component or a part of a conductor included in a circuit board. There may be.
  • a pair of input terminals 41 and 42 are electrically connected to the system power supply 7 as shown in FIG.
  • the input voltage V ⁇ b> 1 is input from the system power supply 7 to the voltage stabilizing device 1.
  • the pair of output terminals 51 and 52 are electrically connected to the electrical device 8 through the power supply device 6.
  • electric power is supplied from the voltage stabilizing device 1 to the electric device 8 via the power supply device 6.
  • the voltage stabilizing device 1 stabilizes the output voltage V2 by transforming the input voltage V1 by the transformer circuit 2 for a certain degree of variation within the allowable range of the input voltage V1.
  • the voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52 in the cutoff circuit 3. And the output of the output voltage V2 is stopped.
  • the allowable range is a range in which only the upper limit is set without a lower limit
  • the output of the output voltage V2 is not stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. . Therefore, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
  • the power supply system 100 of the present embodiment includes the voltage stabilizing device 1 and the power supply device 6.
  • the power supply device 6 has a pair of connection terminals 61 and 62 (see FIG. 4) to which the pair of output terminals 51 and 52 are electrically connected.
  • the power supply device 6 is configured to be operable if the voltage value of the voltage input to the pair of connection terminals 61 and 62 is within a predetermined voltage range.
  • the upper limit of the allowable range of the input voltage V1 is set so that the voltage value of the output voltage V2 of the voltage stabilizing device 1 does not exceed the upper limit of the voltage range.
  • the “predetermined voltage range” is, for example, a range corresponding to a global voltage (for example, 100 [V] to 240 [V]), and the “power supply device 6” is a so-called global power supply corresponding to the global voltage. is there.
  • a “predetermined voltage range” in which the power supply device 6 can operate is referred to as an “adaptive range”.
  • the voltage stabilization device 1 and the power supply device 6 are electrically connected between the system power supply 7 and the electrical device 8 so that the voltage stabilization device 1 is on the system power supply 7 side and the power supply device 6 is on the electrical device 8 side. Connected to.
  • the input voltage V ⁇ b> 1 is input from the system power supply 7 to the voltage stabilizing device 1.
  • the output voltage V2 of the voltage stabilizing device 1 is input to the power supply device 6, and the voltage output from the power supply device 6 is supplied to the electric device 8.
  • the upper limit of the allowable range of the input voltage V1 is set so that the voltage value of the output voltage V2 of the voltage stabilizing device 1 does not exceed the upper limit of the adaptive range. Therefore, before the output voltage V2 applied to the pair of connection terminals 61 and 62 exceeds the upper limit of the adaptive range before the input voltage V1 of the voltage stabilizer 1 fluctuates significantly, the cutoff circuit 3 of the voltage stabilizer 1 Operates and the output of the output voltage V2 stops.
  • the output voltage V2 is stabilized by the transformation circuit 2 transforming the input voltage V1, and the power supply device 6 can operate. become.
  • the cutoff circuit 3 stops outputting the output voltage V2, and the power supply device 6 stops its operation.
  • the allowable range is a range in which only the upper limit is set without a lower limit
  • the output of the output voltage V2 is not stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. . Therefore, according to the power supply system 100, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
  • the voltage stabilizing device 1 according to the present embodiment and the power supply system 100 using the same will be described in detail.
  • the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not deviated from this embodiment.
  • Various changes can be made in accordance with the design or the like as long as they are not.
  • the voltage stabilization device 1 of the present embodiment includes a first detection unit in addition to the pair of input terminals 41 and 42, the pair of output terminals 51 and 52, the transformer circuit 2, and the cutoff circuit 3. 11, a second detection unit 12, a ground input terminal 43, and a ground feed terminal 53.
  • the pair of input terminals 41, 42 includes a first input terminal 41 and a second input terminal 42, and is electrically connected to the system power supply 7. Thereby, between the pair of input terminals 41 and 42, the system voltage applied from the system power supply 7 appears as the input voltage V1.
  • the ground input terminal 43 is a terminal for a ground electrode, and is electrically connected to a ground line.
  • the pair of output terminals 51 and 52 includes a first output terminal 51 corresponding to the first input terminal 41 and a second output terminal 52 corresponding to the second input terminal 42.
  • the first output terminal 51 is electrically connected to the first input terminal 41 via the transformer circuit 2 and the cutoff circuit 3.
  • the second output terminal 52 is electrically connected directly to the second input terminal 42.
  • a voltage based on the input voltage V1 appears between the pair of output terminals 51 and 52 as the output voltage V2.
  • the ground feed terminal 53 is a feed terminal for the ground electrode, and is electrically connected directly to the ground input terminal 43. Note that “direct connection” in the present embodiment means direct connection from an electrical point of view, that is, connection without passing through other circuit elements.
  • the first output terminal 51 is electrically connected to the first input terminal 41 via the transformer circuit 2, so that the first output terminal 51 is disconnected from the transformer circuit 2. This is synonymous with being electrically connected to the first input terminal 41 via the circuit 3.
  • the 1st detection part 11 is electrically connected between a pair of input terminals 41 and 42, and has a function which detects the voltage value of the input voltage V1.
  • the second detection unit 12 is electrically connected between the pair of output terminals 51 and 52 and has a function of detecting the voltage value of the output voltage V2.
  • Each of the first detection unit 11 and the second detection unit 12 is configured using, for example, a rectifying / smoothing circuit and a pair of voltage dividing resistors, and outputs a voltage corresponding to a detection value (the voltage value of the input voltage V1 or the output voltage V2). And output to the control unit 24.
  • the control unit 24 will be described in the section “Transformer circuit” below.
  • the detection values of the first detection unit 11 and the second detection unit 12 are assumed to be effective values of the input voltage V1 and the output voltage V2. .
  • the transformer circuit 2 includes a first switch 21, a second switch 22, a transformer 23, and a control unit 24.
  • the control unit 24 controls the first switch 21 and the second switch 22.
  • the first switch 21 and the second switch 22 are each composed of a contact of an electromagnetic relay.
  • the control unit 24 turns on / off each of the first switch 21 and the second switch 22 by giving a drive signal to the electromagnetic relay.
  • the “contact point” here means a pair of contact points that are close to each other.
  • the transformer 23 is a single-winding transformer (auto transformer) in which one winding is shared by the primary winding and the secondary winding. Therefore, the transformer 23 has one winding whose both ends are the first terminal 231 and the second terminal 232, and has a tap 233 in the middle of this winding.
  • the entire winding (between the first terminal 231 and the second terminal 232) is a primary winding
  • the portion of the winding between the second terminal 232 and the tap 233 is a secondary winding.
  • a portion of the winding between the second terminal 232 and the tap 233 is a shunt winding that is a shared portion of the primary winding and the secondary winding.
  • the transformer 23 has a core.
  • the first switch 21 is electrically connected between the first input terminal 41 and the primary winding of the transformer 23. Specifically, one end of the first switch 21 is electrically connected directly to the first input terminal 41, and the other end of the first switch 21 is electrically connected to one end (first terminal 231) of the primary winding of the transformer 23. Directly connected. The other end (second terminal 232) of the primary winding of the transformer 23 is electrically connected directly to the second input terminal 42. In other words, the first switch 21 and the primary winding of the transformer 23 are electrically connected in series between the pair of input terminals 41 and 42 such that the first switch 21 is on the first input terminal 41 side. Yes. However, the first switch 21 only needs to be electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23, and the second input terminal 42 and the primary winding of the transformer 23 are sufficient. It may be electrically connected between the wires.
  • the second switch 22 is electrically connected between the first input terminal 41 and the first output terminal 51. Specifically, one end of the second switch 22 is electrically connected directly to the first input terminal 41, and the other end of the second switch 22 is electrically connected directly to the first output terminal 51. However, the 2nd switch 22 should just be electrically connected between a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52, and the 2nd input terminal 42 and the 2nd output terminal And 52 may be electrically connected.
  • the secondary winding of the transformer 23 is electrically connected between the pair of output terminals 51 and 52. Specifically, one end (tap 233) of the secondary winding of the transformer 23 is electrically connected directly to the first output terminal 51, and the other end (second terminal 232) of the secondary winding of the transformer 23 is connected to the first output terminal 51. The second output terminal 52 is directly electrically connected. Thus, one end (tap 233) of the secondary winding of the transformer 23 is electrically connected to the first input terminal 41 via the second switch 22.
  • the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding, the second terminal 232 is connected to the second input terminal 42 and the second winding. Both the output terminal 52 and the output terminal 52 are electrically connected.
  • the transformer 23 includes a voltage applied to the primary winding (hereinafter also referred to as “primary side voltage”) and a voltage generated in the secondary winding (hereinafter also referred to as “secondary side voltage”).
  • the step-down transformer has a transformation ratio (primary side voltage / secondary side voltage) greater than “1”. Therefore, when an AC voltage as a primary voltage is applied to the primary winding of the transformer 23, the AC voltage is stepped down and output as a secondary voltage from the secondary winding of the transformer 23.
  • the transformation ratio between the primary side voltage and the secondary side voltage is substantially equal to the turn ratio (N1 / N2) between the number of turns N1 of the primary winding of the transformer 23 and the number of turns N2 of the secondary winding.
  • the transformer circuit 2 when the first switch 21 is on and the second switch 22 is off, the transformer circuit 2 is in a state where the primary winding of the transformer 23 is electrically connected between the pair of input terminals 41 and 42 (hereinafter, (Referred to as “second state”).
  • second state the first input terminal 41 and the first output terminal 51 are disconnected by the second switch 22, and the pair of input terminals 41 and 42 are connected to the pair of output terminals via the transformer 23. 51 and 52 are electrically connected. Therefore, in the second state, the transformer circuit 2 steps down the input voltage V1 and outputs it as the output voltage V2 (that is, V1> V2). That is, the transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2 in the second state is a value larger than “1”.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold set within the allowable range, the transformer circuit 2 has a transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2. ) To stabilize the output voltage V2. Furthermore, in the present embodiment, only one voltage threshold value “Vth1” (see FIG. 3) is set. Then, when the voltage value of the input voltage V1 is less than the voltage threshold Vth1, the transformer circuit 2 is configured to output the input voltage V1 as it is as the output voltage V2, that is, the first state described above.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the transformer circuit 2 is configured to step down the input voltage V1 and output it as the output voltage V2, that is, the second state described above. Yes. That is, the transformer circuit 2 switches the first state and the second state, thereby switching the transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2, thereby stabilizing the output voltage V2.
  • the transformer circuit 2 is configured to switch between the first state and the second state in accordance with the comparison result between the voltage value of the input voltage V1 and the voltage threshold value Vth1. Switching between the first state and the second state is performed by the control unit 24 as described below.
  • the control unit 24 includes a drive unit 241 and a monitoring unit 242.
  • the control unit 24 is configured using, for example, a microcomputer (microcomputer), and functions as the drive unit 241 and the monitoring unit 242 by executing a program stored in the memory of the microcomputer with a CPU (Central Processing Unit). Realize.
  • the program may be recorded in advance in a memory of a microcomputer, may be provided by being recorded on a recording medium such as a memory card, or may be provided through an electric communication line.
  • the drive unit 241 is configured to turn on and off the first switch 21 and the second switch 22 by giving a drive signal to the electromagnetic relay as described above.
  • the drive unit 241 determines on / off of each of the first switch 21 and the second switch 22 according to the input from the monitoring unit 242, and generates a drive signal.
  • the electromagnetic relay switches the first switch 21 and the second switch 22 on and off in accordance with a drive signal from the drive unit 241.
  • the monitoring unit 242 is configured to acquire a detection value (voltage value of the input voltage V1 or the output voltage V2) from each of the first detection unit 11 and the second detection unit 12. Furthermore, the monitoring unit 242 compares the acquired detection value (the voltage value of the input voltage V1 or the output voltage V2) with a predetermined value (for example, the voltage threshold value Vth1), and controls the driving unit 241 according to the comparison result. It is configured.
  • the “predetermined value” here includes the upper limit Vmax (see FIG. 3) of the allowable range in addition to the voltage threshold Vth1 used for switching between the first state and the second state of the transformer circuit 2. Yes.
  • the voltage threshold Vth1 is set within the allowable range, the voltage threshold Vth1 and the upper limit Vmax of the allowable range have a relationship of “Vth1 ⁇ Vmax”. Furthermore, the voltage threshold Vth1 is a value larger than the rated value of the system voltage (here, 220 [V]).
  • the control unit 24 turns off the first switch 21 and turns on the second switch 22 so that the transformer circuit 2 is in the first state. It is configured. Therefore, when the voltage value of the input voltage V1 is less than the voltage threshold Vth1, the transformer circuit 2 is in the first state and outputs the input voltage V1 as it is as the output voltage V2. Further, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the control unit 24 turns on the first switch 21 and turns off the second switch 22, thereby setting the transformer circuit 2 in the second state. It is configured as follows. Therefore, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the transformer circuit 2 enters the second state, and steps down the input voltage V1 and outputs it as the output voltage V2.
  • the threshold setting unit may be a memory that stores the voltage threshold Vth1 and the upper limit Vmax of the allowable range, or may be a constant voltage source that generates a reference voltage corresponding to the voltage threshold Vth1 and the upper limit Vmax of the allowable range. .
  • the cutoff circuit 3 includes a first switch 21, a second switch 22, and a control unit 24. That is, in this embodiment, a part of the transformer circuit 2 (the first switch 21, the second switch 22, and the control unit 24) is also used as the cutoff circuit 3.
  • the first switch 21 is electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23 as described above.
  • the second switch 22 is electrically connected between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 as described above. Accordingly, when both the first switch 21 and the second switch 22 are turned off, the blocking circuit 3 electrically disconnects (disconnects) the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52. )be able to.
  • the cutoff circuit 3 is configured to electrically cut off between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 when the voltage value of the input voltage V1 deviates from the allowable range.
  • the cutoff circuit 3 is in a state in which the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 are electrically connected (hereinafter, “ It is called “steady state”.
  • the cutoff circuit 3 electrically disconnects between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 (hereinafter, “ It is called “blocking state”.
  • the allowable range is a range where there is no lower limit and only the upper limit is set. Therefore, the voltage value being within the allowable range is synonymous with the voltage value being less than the upper limit of the allowable range, and the voltage value deviating from the allowable value is greater than or equal to the upper limit of the allowable range. It is synonymous with that. Therefore, the cutoff circuit 3 is configured to switch between the steady state and the cutoff state according to the comparison result between the voltage value of the input voltage V1 and the upper limit Vmax (see FIG. 3) of the allowable range. Switching between the steady state and the cutoff state is performed by the control unit 24 as described below.
  • the control unit 24 turns off both the first switch 21 and the second switch 22 when the voltage value of the input voltage V1 deviates from the allowable range. It has a function to turn off the circuit 3. Specifically, the control unit 24 compares the detection value (voltage value of the input voltage V1) acquired by the monitoring unit 242 with the upper limit Vmax of the allowable range, and if the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax. The drive unit 241 turns off both the first switch 21 and the second switch 22. Therefore, when the voltage value of the input voltage V1 deviates from the allowable range, the cutoff circuit 3 enters the cutoff state and stops outputting the output voltage V2.
  • the cutoff circuit 3 is in a steady state, so the control unit 24 turns on one of the first switch 21 and the second switch 22, The transformer circuit 2 is set to the first state or the second state.
  • control unit 24 is configured to receive power for operation from the pair of input terminals 41 and 42 rather than the cutoff circuit (first switch 21 and second switch 22) 3. As a result, even when the cutoff circuit 3 is in the cutoff state, power is supplied to the control unit 24, so that the control unit 24 can always operate.
  • the horizontal axis represents the input voltage V1 and the vertical axis represents the output voltage V2, and the relationship between the voltage value of the input voltage V1 and the voltage value of the output voltage V2 is represented (both are effective values).
  • the voltage threshold Vth1 is 240 [V]
  • the upper limit Vmax of the allowable range is 270 [V].
  • the allowable range is a range obtained by combining the first range Z1 that is less than the voltage threshold Vth1 and the second range Z2 that is greater than or equal to the voltage threshold Vth1 and less than the upper limit Vmax.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is within the first range Z1 less than the voltage threshold Vth1, the transformer circuit 2 is in the first state, and the cutoff circuit 3 is in the steady state. In this case, the input voltage V1 is output as it is as the output voltage V2. Therefore, in the first range Z1, the voltage value of the input voltage V1 is equal to the voltage value of the output voltage V2.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is within the second range Z2 that is equal to or higher than the voltage threshold Vth1 and less than the upper limit Vmax, the transformer circuit 2 is in the second state, and the cutoff circuit 3 is in the steady state. In this case, the input voltage V1 is stepped down by the transformer circuit 2 and output as the output voltage V2. Therefore, the voltage value of the output voltage V2 is smaller than the voltage value of the input voltage V1 within the second range Z2.
  • the transformation ratio of the transformer circuit 2 in the second state (that is, the transformation ratio of the transformer 23) is the upper limit Vmax (the output voltage V2 when the voltage value of the input voltage V1 is the maximum within the second range Z2). Is set to be equal to or lower than the voltage threshold Vth1 (240 [V] in this case).
  • the cutoff circuit 3 when the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax of the allowable range, the cutoff circuit 3 enters a cutoff state. In this case, the blocking circuit 3 electrically blocks between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52. Therefore, regardless of how much the voltage value of the input voltage V1 exceeds the upper limit Vmax, the output of the output voltage V2 is stopped and the voltage value of the output voltage V2 becomes 0 [V].
  • the voltage stabilizing device 1 transforms the input voltage V1 by the transformer circuit 2 and outputs the output voltage V2. Can be within a certain range (here, the voltage threshold Vth1 or less). Furthermore, when the voltage value of the input voltage V1 deviates from the allowable range (the first range Z1 and the second range Z2), the voltage stabilizing device 1 stops the output of the output voltage V2 in the cutoff circuit 3, and the output voltage V2 can be within a certain range (here, the threshold value Vth1 or less, for example, 0 [V]). As described above, the voltage stabilizing device 1 can stabilize the output voltage V2 with respect to the input voltage V1 in a wide range by combining the transformer circuit 2 and the cutoff circuit 3.
  • the device of the prior art document 1 has a function of transforming the input voltage and outputting it only to disconnect the power system from the electrical equipment when the system voltage falls outside the specified range set between the predetermined upper and lower limits. Not done.
  • Vmax 270 [V]
  • the above Vmax 270 [V] is a voltage value exceeding the rated voltage of use of the electric equipment.
  • the power supply device 6 of the present embodiment includes a pair of output terminals 63 and 64 (a power supply device 6 side), a rectifier circuit 65, an insulation circuit 66, a step-down voltage in addition to the pair of connection terminals 61 and 62.
  • a circuit 67 and a control unit 68 (on the power supply device 6 side) are further provided.
  • the pair of connection terminals 61 and 62 are electrically connected to the pair of output terminals 51 and 52 of the voltage stabilizing device 1.
  • the pair of output terminals 63 and 64 are electrically connected to the electric device 8.
  • the rectifier circuit 65 is configured using a diode bridge.
  • the insulation circuit 66 is formed of an insulation type DC / DC converter such as a flyback method.
  • the step-down circuit 67 is composed of a DC / DC converter including a switching element.
  • the control unit 68 monitors and monitors the input voltage V3 between the pair of connection terminals 61 and 62, the voltage value of the output voltage V4 between the pair of output terminals 63 and 64, and the current value of the output current of the step-down circuit 67.
  • the switching element of the step-down circuit 67 is controlled according to the result.
  • the power supply device 6 is electrically connected between the voltage stabilizing device 1 and the electric device 8, and converts the AC voltage into a DC voltage and outputs it to the electric device 8 (AC adapter). It is. That is, the power supply device 6 is used together with an electric device 8 that operates by receiving a DC voltage supply, such as a personal computer, and converts the output voltage V2 of the voltage stabilizing device 1 into a DC voltage of a predetermined value and outputs an output voltage. It supplies to the electric equipment 8 as V4.
  • a DC voltage supply such as a personal computer
  • the power supply device 6 is configured to be operable if the voltage value of the input voltage V3 is within the applicable range.
  • the adaptation range is 100 [V] to 240 [V] as an example. If the voltage value of the input voltage V3 is within the applicable range, the power supply device 6 outputs a DC voltage of a predetermined magnitude (for example, 12 [V]) as the output voltage V4 from the step-down circuit 67. Further, in the power supply device 6, since the pair of connection terminals 61 and 62 and the pair of output terminals 63 and 64 are electrically insulated by the insulation circuit 66, the voltage stabilization device 1 and the electric device 8 Electrical insulation between the two is ensured.
  • the power supply device 6 supplies the output voltage V4 to the electric device 8 as long as the input voltage V3 having a certain level is input. Output is possible.
  • the magnitude of the output voltage V4 of the power supply device 6 is not necessarily a rated value (for example, 12 [V]), and may be smaller than the rated value.
  • the output voltage V2 is stabilized by transforming the input voltage V1 by the transformer circuit 2 for a certain degree of variation within the allowable range of the input voltage V1. Can be planned.
  • the voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52 in the cutoff circuit 3. And the output of the output voltage V2 is stopped.
  • the allowable range is a range in which only the upper limit Vmax is set without a lower limit
  • the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. There is no. Therefore, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
  • the output voltage V2 is stabilized by the transformer circuit 2 transforming the input voltage V1 with respect to a certain degree of fluctuation in the allowable range of the input voltage V1.
  • the power supply device 6 becomes operable.
  • the cutoff circuit 3 stops outputting the output voltage V2, and the power supply device 6 stops its operation.
  • the allowable range is a range in which only the upper limit Vmax is set without a lower limit
  • the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. There is no. Therefore, according to the power supply system 100, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
  • the voltage stabilizing device 1 and the power supply system 100 have an overvoltage protection function because the output of the output voltage V2 is stopped only when the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax of the allowable range. It can be said.
  • the voltage stabilizing device 1 and the power supply system 100 also function as an OVR (Overvoltage Relay) device.
  • the transformer circuit 2 is configured to transform the voltage between the input voltage V1 and the output voltage V2 in accordance with the magnitude relationship between the voltage value of the input voltage V1 and the voltage threshold value set within the allowable range. It is preferable that the output voltage V2 is stabilized by switching the ratio. According to this configuration, it is possible to adjust to what extent the output voltage V2 is stabilized depending on the setting of the voltage threshold value.
  • the configuration in which the transformer circuit 2 stabilizes the output voltage V2 by switching the transformation ratio between the input voltage V1 and the output voltage V2 is not an essential configuration for the voltage stabilizing device 1 and can be omitted as appropriate. .
  • the transformer circuit 2 is configured to be in the first state if the voltage value of the input voltage V1 is less than the voltage threshold Vth1, and to be in the second state if the voltage value of the input voltage V1 is equal to or greater than the voltage threshold Vth1. It is preferable.
  • the first state is a state where the input voltage V1 is output as it is as the output voltage V2
  • the second state is a state where the input voltage V1 is stepped down and output as the output voltage V2.
  • the transformer circuit 2 since the transformer circuit 2 only needs to be able to switch the transformation ratio in two stages, the number of components (switches, etc.) of the transformer circuit 2 can be minimized, and the transformer circuit 2 Simplification can be achieved.
  • the voltage stabilizing device 1 when the voltage stabilizing device 1 is used together with the power supply device 6 adapted to a voltage in a relatively wide adaptation range (for example, 100 [V] to 240 [V]) as in this embodiment, the voltage stabilization device 1 is within the adaptation range. The fluctuation of the output voltage V2 is allowed. Therefore, even if the output voltage V ⁇ b> 2 slightly varies due to only two steps of the transformation ratio switched by the transformer circuit 2, there is no problem in the operation of the power supply device 6. Note that the fact that there is only one voltage threshold is not essential for the voltage stabilizing device 1, and two or more voltage thresholds may be set. This will be described in the “Comparative Example” section below.
  • the transformer circuit 2 includes the transformer 23, the first switch 21, the second switch 22, and the first switch according to the comparison result between the voltage value of the input voltage V1 and the voltage threshold value Vth1. 21 and a control unit 24 for controlling the second switch 22.
  • the first switch 21 is electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23, and the second switch 22 includes the pair of input terminals 41 and 42 and the pair of output terminals 51, 52 is electrically connected.
  • the secondary winding of the transformer 23 is electrically connected between the pair of output terminals 51 and 52.
  • the control unit 24 turns off the first switch 21 and turns on the second switch 22 so that the transformer circuit 2 is in the first state. It is configured. Furthermore, if the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the control unit 24 turns on the first switch 21 and turns off the second switch 22 to set the transformer circuit 2 in the second state. It is configured as follows.
  • the process for switching the transformation ratio switching between the first state and the second state
  • the process of the control unit 24 is performed. It becomes relatively easy.
  • the input voltage V1 becomes the output voltage V2 as it is without passing through the transformer 23, so that power loss and heat generation in the transformer 23 are reduced as compared with the configuration in which power is always supplied through the transformer 23.
  • the 1st switch 21 is provided in the primary side (a pair of input terminals 41 and 42 side) of the transformer 23, when the 1st switch 21 turns off, it will be in the state by which the electricity supply to the transformer 23 was stopped.
  • the voltage stabilizing device 1 stops energization of the transformer 23 when the transformer circuit 2 is in the first state and when the cutoff circuit 3 is in the cutoff state, and eliminates power loss and heat generation in the transformer 23. be able to.
  • the voltage stabilizing device 1 can also stop energization of the transformer 23 when an abnormality of the transformer 23 occurs, for example, an insulation failure of the winding. This point will be described in the column of the third embodiment. Note that the provision of the first switch 21 on the primary side of the transformer 23 is not essential for the voltage stabilizing device 1, and the first switch 21 may be provided on the secondary side of the transformer 23. This point will be described in the column of the second embodiment.
  • the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding.
  • the impedance of the shunt winding which is a shared part of the primary winding and the secondary winding, is small, voltage fluctuation is small.
  • the wire diameter of the winding can be made smaller than that of the insulating transformer. Therefore, by using a single-winding transformer for the transformer 23, the transformer 23 can be made smaller and lighter than when an insulating transformer is used.
  • the voltage stabilizing device 10 of the comparative example is a point in which the transformer circuit 2 can switch between three or more steps of the transformation ratio, and the allowable range is a range in which not only the upper limit Vmax but also the lower limit Vmin (see FIG. 6) is set. Thus, it is different from the voltage stabilizing device 1 of the present embodiment. Furthermore, in the voltage stabilizing device 10 of the comparative example, a plurality of first switches 21 (1) , 21 (2) ,... 21 (n) (n is an integer of 2 or more) are provided on the secondary side of the transformer 23. This is also different from the voltage stabilizing device 1 of the present embodiment. In the voltage stabilizing device 10, the same components as those of the voltage stabilizing device 1 are denoted by common reference numerals, and the description thereof is omitted as appropriate.
  • the transformer 23 is a single-winding transformer having a plurality of taps 233 in one winding having both ends of the first terminal 231 and the second terminal 232.
  • a portion between one tap 233 of the winding and the second terminal 232 is a primary winding, and the entire winding (between the first terminal 231 and the second terminal 232) is two.
  • the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) correspond to the first terminal 231 and the plurality of taps 233 of the winding in a one-to-one correspondence with the transformer 23 and the first output.
  • the terminal 51 is electrically connected.
  • the control unit 24 selectively turns on any of the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) and the second switch 22, thereby transforming the transformation ratio ( V1 / V2) is switched.
  • the horizontal axis represents the input voltage V1
  • the vertical axis represents the output voltage V2.
  • the relationship between the voltage value of the input voltage V1 and the voltage value of the output voltage V2 is represented (both are effective values).
  • three voltage thresholds Vth1, Vth2, and Vth3 are set as voltage thresholds.
  • the voltage threshold Vth1 is 240 [V]
  • the voltage threshold Vth2 is 170 [V]
  • the voltage threshold Vth3 is 200 [V]
  • the upper limit Vmax of the allowable range is 270 [V]
  • the lower limit Vmin is 140 [V].
  • the allowable range includes a first range Z11 from the lower limit Vmin to the voltage threshold Vth2, a second range Z12 from the voltage threshold Vth2 to the voltage threshold Vth3, a third range Z13 from the voltage threshold Vth3 to the voltage threshold Vth1, and a voltage threshold.
  • the range is a combination of the fourth range Z14 from Vth1 to the upper limit Vmax.
  • the transformation ratio of the transformer circuit 2 (in accordance with the comparison result between the voltage value of the input voltage V1 and the three voltage thresholds Vth1, Vth2, and Vth3) V1 / V2) is switched.
  • the transformation ratio (V1 / V2) is “1”.
  • the input voltage V1 is output as it is as the output voltage V2.
  • the transformation ratio (V1 / V2) is smaller than “1”, and the input voltage V1 is boosted by the transformer circuit 2. Output as output voltage V2.
  • the transformation ratio (V1 / V2) is further smaller than when the voltage value of the input voltage V1 is in the second range Z12.
  • the transformation ratio (V1 / V2) is greater than “1”, and the input voltage V1 is stepped down by the transformer circuit 2 and output as the output voltage V2.
  • the voltage stabilizing device 10 transforms the input voltage V1 by the transformer circuit 2 to change the output voltage V2 within a certain range (here, 180 [V] to Within a range of about 240 [V]. Further, when the voltage value of the input voltage V1 deviates from the allowable range, the voltage stabilizing device 10 stops the output of the output voltage V2 in the cutoff circuit 3, and sets the output voltage V2 within a certain range (here, the threshold value Vth1 or less, For example, it can be within 0 [V]).
  • the frequency of the electric device 8 stopping operation can be reduced in the present embodiment. That is, in the present embodiment, the allowable range is a range in which only the upper limit Vmax is set without a lower limit, so that the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. The frequency with which the electrical device 8 stops operating is reduced.
  • the voltage stabilizing device 1 of the present embodiment can suppress the number of components (switches, etc.) of the transformer circuit 2 to a smaller extent because the number of switching stages of the transformation ratio in the transformer circuit 2 is smaller than in the comparative example.
  • the transformer circuit 2 has the first state in which the input voltage V1 becomes the output voltage V2 without passing through the transformer 23, and the input voltage V1 is transformed (step-down) by the transformer 23. It only switches between two states, the second state). Therefore, in the present embodiment, the first switch 21 can be provided on the primary side (the pair of input terminals 41 and 42 side) of the transformer 23.
  • the voltage stabilization device 10 of the comparative example alternatively turns on any of the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) and the second switch 22.
  • the transformation ratio of the transformer circuit 2 is switched. Therefore, in the comparative example, the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) cannot be provided on the primary side (the pair of input terminals 41 and 42 side) of the transformer 23. Therefore, in the comparative example, in order to realize a state in which the power supply to the transformer 23 is stopped, a switch for switching the transformation ratio of the transformer circuit 2 (a plurality of first switches 21 (1) , 21 (2) , ... a switch different from 21 (n) and the second switch 22) is required on the primary side of the transformer 23.
  • two or more voltage thresholds may be set as in the comparative example.
  • the voltage stabilizing device 1 keeps the output voltage V2 when the voltage value of the input voltage V1 is within the allowable range within a narrower range than when the voltage threshold value is one. Is possible.
  • FIGS. FIG. 7 and FIG. 8 show different types of voltage stabilization devices 1, FIG. 7 shows a wall-mounted type voltage stabilization device 1, and FIG. 8 shows a table tap type voltage stabilization device 1.
  • the wall-mounted voltage stabilizing device 1 shown in FIG. 7 includes a housing 91 that houses at least the transformer circuit 2 and the cutoff circuit 3.
  • the casing 91 is attached to the wall W1.
  • the voltage stabilizing device 1 shown in FIG. 7 is installed with the housing 91 embedded in the wall W1 with at least the front surface of the housing 91 exposed.
  • the voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a ground input terminal 43 on the back surface of the casing 91, and a pair of indoor wiring and grounding wires that are electrically connected to the system power supply 7 are provided.
  • the pair of input terminals 41 and 42 and the ground input terminal 43 are electrically connected.
  • An outlet 92 is provided on the front surface of the casing 91. Three outlets 921, 922, and 923 are formed in the outlet 92.
  • the pair of output terminals 51 and 52 and the ground feed terminal 53 are provided in the housing 91 so as to correspond to the three insertion ports 921, 922 and 923 on a one-to-one basis. Therefore, when the plug of the power supply device 6 is connected to the outlet 92, the pair of connection terminals 61 and 62 of the power supply device 6 are electrically connected to the pair of output terminals 51 and 52.
  • the wall-mounted voltage stabilizing device 1 has a manual switch 93 for turning on / off the outlet 92 on the front surface of the casing 91.
  • the manual switch 93 is electrically connected between the pair of input terminals 41 and 42 and the transformer circuit 2 and is turned off to electrically disconnect the transformer circuit 2 from the pair of input terminals 41 and 42. It is configured as follows. In the example of FIG. 7, the manual switch 93 is disposed on the right side of the outlet 92.
  • a display unit 98 using a light emitting diode or the like is provided on the front surface of the housing 91.
  • the display unit 98 is configured to switch the display depending on, for example, the operation state (first state and second state) of the transformer circuit 2 and the operation state (steady state and cutoff state) of the cutoff circuit 3.
  • the wall-mounting type voltage stabilizing device 1 since it is used by being directly electrically connected to the indoor wiring, it is a cable for electrically connecting the wall-mounted outlet. Is unnecessary and can be installed with good appearance. Moreover, since the wall-mounted voltage stabilizing device 1 can be used by connecting a plug to the outlet 92 on the front surface of the housing 91, it can be used in the same manner as a normal wall-mounted outlet, and is easy to use.
  • the wall-mounted voltage stabilizing device 1 is not limited to the embedded type as shown in FIG. 7, but may be an exposed type that is attached on the wall surface.
  • the table tap type voltage stabilizing device 1 shown in FIG. 8 includes a case 94 that houses at least the transformer circuit 2 and the cutoff circuit 3.
  • the voltage stabilizing device 1 further includes a power plug 95 and a cable 96.
  • the power plug 95 has three pins including a pair of input terminals 41 and 42 and a ground input terminal 43.
  • the cable 96 electrically connects the pair of input terminals 41 and 42 and the ground input terminal 43 in the power plug 95 to the transformer circuit 2 and the ground feed terminal 53 in the case 94.
  • the pair of input terminals 41 and 42 and the ground input terminal 43 are electrically connected to the system power supply 7 and the ground line by connecting the power plug 95 to the wall outlet.
  • An outlet 97 is provided on the upper surface of the case 94. Three outlets 971, 972 and 973 are formed in the outlet 97.
  • the pair of output terminals 51 and 52 and the ground feed terminal 53 are provided in the case 94 so as to correspond to the three insertion ports 971, 972 and 973 on a one-to-one basis. Therefore, when the plug of the power supply device 6 is connected to the outlet 97, the pair of connection terminals 61 and 62 of the power supply device 6 are electrically connected to the pair of output terminals 51 and 52.
  • a display unit 99 using a light emitting diode or the like is provided on the upper surface of the case 94.
  • the display unit 99 is configured such that the display is switched depending on, for example, the operation state (first state and second state) of the transformer circuit 2 and the operation state (steady state and cutoff state) of the cutoff circuit 3.
  • the plug of the power supply device 6 can be connected to a place where there is no existing wall outlet.
  • the table tap type voltage stabilizing device 1 can be used by connecting a plug to an outlet 97 provided in the case 94, it can be used in the same manner as a normal table tap, and is easy to use.
  • the voltage stabilizing device 1 may be used not only for ordinary houses but also in offices, commercial facilities, and the like. Further, the voltage stabilization device 1 is not limited to a configuration that is electrically connected to the system power supply 7, but is a configuration that is electrically connected to a distributed power source such as a solar power generation device, a private power generation facility, or a power storage facility. May be.
  • the private power generation equipment and power storage equipment here are not limited to equipment installed in ordinary houses, offices, commercial facilities, and the like, but also include equipment installed in vehicles, ships, airplanes, and the like.
  • the transformer 23 is a single-winding transformer, the primary side and the secondary side of the transformer 23 are not electrically insulated.
  • the configuration is not limited to this, and the primary winding and the secondary winding are not limited.
  • An insulating transformer in which the wire is electrically insulated may be used as the transformer 23.
  • the pair of input terminals 41 and 42 that are the primary side of the transformer 23 and the pair of output terminals 51 and 52 that are the secondary side of the transformer 23 are electrically insulated.
  • a part of the transformer circuit 2 (the first switch 21, the second switch 22, and the control unit 24) is also used as the cutoff circuit 3 is shown.
  • the present invention is not limited to this example.
  • a cutoff circuit 3 may be provided.
  • a switch for switching between the steady state and the cutoff state of the cutoff circuit 3 is provided. .
  • the first switch 21 and the second switch 22 are not limited to electromagnetic relay contacts, but may be switches having no mechanical contacts, such as semiconductor switches. Furthermore, the 1st switch 21 and the 2nd switch 22 may be comprised by one switch which has c contact (switching contact), for example. In this case, the transformer circuit 2 can switch between the first state and the second state by switching the contacts.
  • the power supply device 6 is not limited to a power adapter, and may be a power supply unit (power supply circuit) built in the electrical device 8, for example.
  • “more than” indicates that the voltage value is equal to the voltage threshold value, and that the voltage value exceeds the voltage threshold value. Including both.
  • “more than” here may be synonymous with “greater than” including only when the voltage value exceeds the voltage threshold value or the like. In other words, whether or not the voltage value is equal to the voltage threshold value or the like can be arbitrarily changed depending on the setting of the voltage threshold value or the like, so there is no technical difference between “greater than” or “greater than”. Similarly, “less than” may be synonymous with “below”.
  • the monitoring unit 242 uses the detection value (voltage value of the output voltage V2) acquired from the second detection unit 12 as a backup of the detection value (voltage value of the input voltage V1) acquired from the first detection unit 11, for example. be able to.
  • the voltage value of the output voltage V2 exceeds the upper limit Vmax by comparing the voltage value of the output voltage V2 with the upper limit Vmax (Vth1 in this embodiment) of the allowable range.
  • the interruption circuit 3 stops the output of the output voltage V2. This improves the certainty that the voltage value of the output voltage V2 can be prevented from exceeding the upper limit of the adaptive range.
  • the 2nd detection part 12 is not a structure essential to the voltage stabilization apparatus 1, and can be abbreviate
  • the voltage stabilization device 1 of the present embodiment is different from that of the first embodiment in that the first switch 21 is provided on the secondary side (the pair of output terminals 51 and 52 side) of the transformer 23. This is different from the voltage stabilizing device 1.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
  • the first switch 21 is electrically connected between the pair of output terminals 51 and 52 and the secondary winding of the transformer 23. Specifically, one end of the first switch 21 is electrically connected directly to the first output terminal 51, and the other end of the first switch 21 is electrically connected to one end (tap 233) of the secondary winding of the transformer 23. Connected directly to. The other end (second terminal 232) of the secondary winding of the transformer 23 is electrically directly connected to the second output terminal 52. In other words, the first switch 21 and the secondary winding of the transformer 23 are electrically connected in series between the pair of output terminals 51 and 52 so that the first switch 21 is on the first output terminal 51 side. ing.
  • the primary winding of the transformer 23 is electrically connected between the pair of input terminals 41 and 42. Specifically, one end (first terminal 231) of the primary winding of the transformer 23 is electrically connected directly to the first input terminal 41, and the other end (second terminal 232) of the primary winding of the transformer 23 is connected to the first input terminal 41.
  • the second input terminal 42 is electrically connected directly. Thereby, one end (first terminal 231) of the primary winding of the transformer 23 is electrically connected to the first output terminal 51 via the second switch 22.
  • the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding, the second terminal 232 is connected to the second input terminal 42 and the second winding. Both the output terminal 52 and the output terminal 52 are electrically connected.
  • the first switch 21 is provided on the secondary side (the pair of output terminals 51 and 52 side) of the transformer 23, so that the first switch 21 is turned off. In addition, energization of the transformer 23 can be continued.
  • the voltage stabilizing device 1 of the present embodiment is different from the voltage stabilizing device 1 of the first embodiment in that it further includes a function of protecting the voltage stabilizing device 1 when overcurrent, overheating, or contact welding occurs.
  • the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
  • the voltage stabilizing device 1 further includes an overcurrent protection unit 243, an overheat protection unit 244, a current sensor 13, a temperature sensor 14, and a protection switch 15, as shown in FIG.
  • the protection switch 15 consists of an electromagnetic relay contact.
  • the drive unit 241 of the control unit 24 is configured to switch the protection switch 15 on and off by giving a drive signal to the electromagnetic relay.
  • the current sensor 13 is formed of a current transformer, for example, and measures a current (output current) flowing through at least one measurement point set between the first input terminal 41 and the first output terminal 51.
  • the current sensor 13 outputs an electrical signal corresponding to the current value of the output current to the overcurrent protection unit 243.
  • the current sensor 13 has a measurement point electrically connected between the first input terminal 41 and the first output terminal 51 even when the transformer circuit 2 is in either the first state or the second state. It is desirable to measure the flowing current (output current).
  • the current sensor 13 only needs to measure the current flowing through one measurement point regardless of whether the transformer circuit 2 is in the first state or the second state.
  • the current measurement point is preferably set between the intersection A and the output terminal 51 where A is the intersection of the secondary winding of the transformer 23 and the first output terminal 51.
  • the overcurrent protection unit 243 is provided in the control unit 24 here.
  • the overcurrent protection unit 243 acquires the detection value (electric signal corresponding to the current value of the output current) output from the current sensor 13, compares the current value based on the acquired detection value with a predetermined current threshold, The drive unit 241 is controlled according to the comparison result.
  • the overcurrent protection unit 243 reduces the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the current value of the output current output from the pair of output terminals 51 and 52 is equal to or greater than the current threshold. It is configured. Specifically, if the current value based on the detected value (electric signal corresponding to the current value of the output current) acquired from the current sensor 13 is less than the current threshold, the overcurrent protection unit 243 passes the drive unit 241. The protection switch 15 is turned on. On the other hand, if the current value based on the detection value (electric signal corresponding to the current value of the output current) acquired from the current sensor 13 is equal to or greater than the current threshold value, the overcurrent protection unit 243 is protected via the drive unit 241. Is turned off to interrupt the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 (reduced to 0 [A]).
  • the temperature sensor 14 is configured using, for example, a thermistor, measures the temperature of the transformer circuit 2, and outputs an electrical signal corresponding to the temperature to the overheat protection unit 244.
  • the temperature sensor 14 is disposed so as to be in contact with the transformer 23, and measures the temperature of the transformer 23 serving as a heat generation source in the transformer circuit 2. Thereby, abnormal heat generation of the transformer due to overcurrent, insulation failure, or the like can be detected.
  • the overheat protection unit 244 is provided in the control unit 24 here.
  • the overheat protection unit 244 acquires a detection value (electric signal corresponding to temperature) from the temperature sensor 14, compares the temperature based on the acquired detection value (electric signal corresponding to temperature) with a predetermined temperature threshold, and compares
  • the drive unit 241 is controlled according to the result.
  • the overheat protection unit 244 is configured to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the temperature of the transformer circuit 2 becomes equal to or higher than the temperature threshold. Specifically, the overheat protection unit 244 turns on the protection switch 15 via the drive unit 241 if the temperature based on the detection value (electric signal corresponding to the temperature) acquired from the temperature sensor 14 is less than the temperature threshold. To. On the other hand, if the temperature based on the detection value (electric signal corresponding to the temperature) acquired from the temperature sensor 14 is equal to or higher than the temperature threshold value, the overheat protection unit 244 turns off the protection switch 15 via the drive unit 241 and makes a pair Current input to the transformer circuit 2 is cut off (reduced to 0 [A]).
  • the voltage stabilizing device 1 of the present embodiment includes a detection unit for protecting the transformer circuit 2 when welding occurs at a contact included in at least one of the first switch 21 and the second switch 22; A protection unit is provided.
  • the monitoring unit 242 of the control unit 24 is also used as a detection unit and a protection unit.
  • the detection unit (monitoring unit 242) detects whether or not welding has occurred at a contact included in at least one of the first switch 21 and the second switch 22.
  • the protection unit (monitoring unit 242) is configured to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the detection unit detects the occurrence of welding.
  • the detection unit (monitoring unit 242) is configured to acquire a detection value (a voltage value of the input voltage V1 or the output voltage V2) from each of the first detection unit 11 and the second detection unit 12. ing. Further, the detection unit (monitoring unit 242) determines matching / mismatching between the acquired detection values (the voltage value of the input voltage V1 and the voltage value of the output voltage V2) and the drive signal from the drive unit 241.
  • the transformer circuit 2 when the drive unit 241 outputs a drive signal for turning on the first switch 21 and turning off the second switch 22, the transformer circuit 2 is in the second state, and the input voltage V1 and the output voltage V2 at this time The transformation ratio between and should be consistent with the known transformation ratio in the second state. In this case, if the transformation ratio between the input voltage V1 and the output voltage V2 does not match the transformation ratio in the second state (that is, if there is a mismatch), the detection unit (monitoring unit 242) 2 It is determined that welding has occurred at the contact of the switch 22.
  • the drive unit 241 when the drive unit 241 outputs a drive signal for turning off both the first switch 21 and the second switch 22, the cutoff circuit 3 is in a cutoff state, and the output voltage V2 at this time is 0 [V]. It should be. In this case, if the output voltage V2 is equal to or higher than a predetermined value (that is, if it is inconsistent), the detection unit (monitoring unit 242) is welded to at least one contact between the first switch 21 and the second switch 22. Judge that it has occurred. The detection unit is also provided when the output voltage V2 does not change within a predetermined time after the drive unit 241 outputs a drive signal for switching either the first switch 21 or the second switch 22 from OFF to ON. (Monitoring unit 242) can detect the occurrence of welding.
  • a predetermined value that is, if it is inconsistent
  • the protection unit When the detection unit (monitoring unit 242) determines that no welding has occurred at the contact point, the protection unit (monitoring unit 242) turns on the protection switch 15 via the drive unit 241. On the other hand, when the detection unit (monitoring unit 242) determines that welding has occurred at the contact point, the protection unit (monitoring unit 242) turns off the protection switch 15 via the drive unit 241 and inputs a pair of inputs. The current input from the terminals 41 and 42 to the transformer circuit 2 is cut off (reduced to 0 [A]).
  • the threshold setting unit may be a memory that stores a current threshold or a temperature threshold, or may be a constant voltage source that generates a reference voltage corresponding to the current threshold or the temperature threshold.
  • the voltage stabilizing device 1 When overcurrent, overheating, or contact welding occurs, that is, when the protection switch 15 is turned off, the voltage stabilizing device 1 is displayed on the display unit 98 (see FIG. 7) or the display unit 99 (see FIG. 8). It is preferable to be configured to perform notification (display).
  • the overcurrent protection unit 243 uses the first current threshold as the current threshold when the transformer circuit 2 is in the first state, and when the transformer circuit 2 is in the second state.
  • the second current threshold is used as the current threshold.
  • the first current threshold Ith1 (see FIG. 11) and the second current threshold Ith2 (see FIG. 11) are different values.
  • the first current threshold Ith1 is larger than the second current threshold Ith2 (Ith1> Ith2).
  • the overcurrent protection unit 243 reduces the input current to the transformer circuit 2 when the output current of the voltage stabilizing device 1 exceeds the rated value, thereby reducing the output current of the voltage stabilizing device 1 below the rated value. It has a function of limiting and protecting the voltage stabilizing device 1.
  • the rated value of the output current of the voltage stabilizing device 1 is determined by the magnitude of the current that can be passed through the transformer 23. Therefore, in the first state where no current flows through the transformer 23, the output current is allowed to a larger current value than in the second state. Therefore, in the present embodiment, the overcurrent protection unit 243 sets different current threshold values (first current threshold value Ith1 and second current threshold value Ith2) depending on whether the transformer circuit 2 is in the first state or the second state. Used.
  • the horizontal axis represents the input voltage V1
  • the vertical axis represents the output voltage V2 or the upper limit value of the output current
  • the relationship between the input voltage V1 and the output voltage V2 in the upper stage and the relationship between the input voltage V1 and the upper limit value of the output current in the lower stage.
  • Bottom are effective values.
  • the range where the voltage value of the input voltage V1 is 100 [V] or more is illustrated.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is within the first range Z1 less than the voltage threshold value Vth1, the transformer circuit 2 is in the first state, so the overcurrent protection unit 243 sets the current threshold value as the current threshold value.
  • One current threshold Ith1 is used. Therefore, in the first range Z1, the output current of the voltage stabilizing device 1 is limited to be less than the first current threshold Ith1.
  • the transformer circuit 2 when the voltage value of the input voltage V1 is in the second range Z2 that is equal to or higher than the voltage threshold Vth1 and less than the upper limit Vmax, the transformer circuit 2 is in the second state, and thus the overcurrent protection unit 243 sets the second current threshold A current threshold Ith2 is used. Therefore, in the second range Z2, the output current of the voltage stabilizing device 1 is limited to be less than the second current threshold Ith2.
  • the second current threshold Ith2 is set according to the rated value of the output current of the voltage stabilizing device 1.
  • the current threshold can be set as appropriate and may be set to infinity. Setting the current threshold value to infinity is synonymous with disabling the function of the overcurrent protection unit 243. Therefore, if the first current threshold Ith1 is set to infinity, the overcurrent protection unit 243 does not operate when the transformer circuit 2 is in the first state, and the transformer circuit 2 is in the second state. Only the overcurrent protection unit 243 operates.
  • the input current to the transformer circuit 2 is reduced when overcurrent, overheating, or contact welding occurs, so that the voltage stabilization device 1 is protected. Become.
  • the voltage stabilizing device 1 changes from the pair of input terminals 41 and 42 to the transformer circuit. It is preferable to provide an overcurrent protection unit 243 that reduces the current input to the power supply 2. According to this configuration, for example, when a heavy load is electrically connected to the pair of output terminals 51 and 52 of the voltage stabilizing device 1 and an overcurrent occurs, the overcurrent protection unit 243 inputs the voltage to the transformer circuit 2. Therefore, the voltage stabilizing device 1 can be protected by reducing the generated current, and as a result, the electric device 8 can be protected.
  • the overcurrent protection unit 243 uses the first current threshold Ith1 as the current threshold when the transformer circuit 2 is in the first state, and when the transformer circuit 2 is in the second state. More preferably, the second current threshold Ith2 is used as the current threshold.
  • the first current threshold Ith1 and the second current threshold Ith2 are different values. According to this configuration, in the first state where no current flows through the transformer 23, the output current can be allowed to a larger current value than in the second state. Therefore, the overcurrent protection unit 243 can widen the allowable output current range depending on the state of the transformer circuit 2 while suppressing heat generation in the transformer 23 caused by the overcurrent. As a result, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops its operation can be reduced while protecting the voltage stabilizing device 1.
  • the overcurrent protection unit 243 is not an essential component of the voltage stabilizing device 1, and the overcurrent protection unit 243 can be omitted as appropriate. Even when the overcurrent protection unit 243 is provided, it is not essential for the overcurrent protection unit 243 to use different current threshold values in the first state and the second state. The same current threshold may be used in the first state and the second state.
  • the voltage stabilizing device 1 overheats to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the temperature of the transformer circuit 2 is equal to or higher than a predetermined temperature threshold. It is preferable to include a protection unit 244. According to this configuration, for example, when the temperature of the transformer circuit 2 rises due to heat generated by the transformer 23, the current input to the transformer circuit 2 is reduced by the overheat protection unit 244 to protect the voltage stabilization device 1. be able to. Note that the overheat protection unit 244 is not an essential component of the voltage stabilizing device 1, and the overheat protection unit 244 can be omitted as appropriate.
  • the voltage stabilization device 1 preferably includes a detection unit (monitoring unit 242) and a protection unit (monitoring unit 242).
  • the detection unit (monitoring unit 242) detects whether or not welding has occurred at a contact included in at least one of the first switch 21 and the second switch 22.
  • the protection unit (monitoring unit 242) reduces the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the detection unit detects the occurrence of the welding. According to this configuration, for example, when contact welding occurs in the second switch 22, the current input to the transformer circuit 2 is reduced by the protection unit (monitoring unit 242) to protect the voltage stabilization device 1. be able to.
  • a detection part and a protection part are not an essential structure for the voltage stabilization apparatus 1, and a detection part and a protection part can be abbreviate
  • the overcurrent protection unit 243, the overheat protection unit 244, the detection unit (monitoring unit 242), and the protection unit (monitoring unit 242) may be provided separately from the control unit 24.
  • the overcurrent protection unit 243 may include a function as the current sensor 13
  • the overheat protection unit 244 may include a function as the temperature sensor 14.
  • each of the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) are not limited to a configuration that indirectly reduces the current input to the transformer circuit 2 by turning on and off the protection switch 15.
  • the structure which reduces the electric current input into the transformer circuit 2 directly may be sufficient. That is, each of the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) includes a current reduction unit corresponding to the protection switch 15, and is input to the transformer circuit 2 at the current reduction unit. The current may be reduced directly.
  • the protection switch 15 is not limited to a contact of an electromagnetic relay, and may be a switch having no mechanical contact, such as a semiconductor switch.
  • the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) are not limited to a configuration that cuts off the current that is input from the pair of input terminals 41 and 42 to the transformer circuit 2, and the current is not limited. It may be configured to reduce the current by limiting.
  • “over” indicates that the current value or the like is equal to the threshold value, and the current value or the like is the threshold value. Includes both exceeding and exceeding.
  • the present invention is not limited thereto, and “more than” here may be synonymous with “greater than” including only when the current value exceeds the threshold value. That is, whether or not to include the case where the current value is equal to the current threshold value can be arbitrarily changed depending on the setting of the current threshold value, so there is no technical difference between “greater than” or “greater than”.
  • the detection unit acquires a detection value (current value of output current) obtained by converting the electrical signal output from the current sensor 13, and drives the acquired detection value (current value of output current) and driving. It may be configured to detect whether or not welding has occurred at the contact point based on matching / mismatching with the drive signal from the unit 241.
  • the configuration of the third embodiment described above is not limited to the first embodiment (including the modification example described in the first embodiment), and can be applied in combination with the second embodiment. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A voltage stabilization device equipped with a transformer circuit (2) and a breaker circuit (3). The transformer circuit (2) is electrically connected between a pair of input terminals (41, 42) and a pair of output terminals (51, 52). The transformer circuit (2) transforms an input voltage (V1) input to the pair of input terminals (41, 42) to obtain an output voltage (V2) such that the output voltage (V2) output from the pair of output terminals (51, 52) is stable. The breaker circuit (3) breaks the electrical connection between the pair of input terminals (41, 42) and the pair of output terminals (51, 52) when the voltage value of the input voltage (V1) deviates from a prescribed allowable range. This allowable range is one for which only an upper limit is set.

Description

電圧安定化装置、およびそれを用いた電源システムVoltage stabilizer and power supply system using the same
 本発明は、一般に電圧安定化装置、およびそれを用いた電源システムに関し、より詳細には出力電圧を安定させる電圧安定化装置、およびそれを用いた電源システムに関する。 The present invention generally relates to a voltage stabilizing device and a power supply system using the same, and more particularly to a voltage stabilizing device that stabilizes an output voltage and a power supply system using the same.
 従来、国や地域によっては、電力系統から需要家(facility)に供給される電圧(以下、「系統電圧」という)が安定せず大幅に変動することがある。このように系統電圧が大幅に変動する環境下においては、電圧安定化装置(いわゆるボルテージスタビライザ)が用いられている。電圧安定化装置は、電力系統と電気機器との間に電気的に接続され、電気機器へ供給される出力電圧の電圧値が電気機器の定格範囲内に収まるように、出力電圧の安定化を行う。これにより、電気機器に対して定格範囲の上限を超えるような大きな電圧が供給されることを防止でき、系統電圧が安定せず大幅に変動する環境下でも、電気機器が保護される。 Conventionally, in some countries and regions, the voltage (hereinafter referred to as “system voltage”) supplied from the power system to the customer (facility) may not be stable and may fluctuate significantly. In such an environment where the system voltage fluctuates greatly, a voltage stabilizing device (so-called voltage stabilizer) is used. The voltage stabilizer is electrically connected between the power system and the electrical equipment, and stabilizes the output voltage so that the voltage value of the output voltage supplied to the electrical equipment is within the rated range of the electrical equipment. Do. Thereby, it is possible to prevent a large voltage exceeding the upper limit of the rated range from being supplied to the electric device, and the electric device is protected even in an environment where the system voltage is not stable and varies greatly.
 この種の電圧安定化装置の一例として、系統電圧が、所定の上限と下限との間に設定された規定範囲外となった場合に電力系統を電気機器から電気的に切り離すように構成された装置が提案されている(たとえば特許文献1参照)。特許文献1に記載の装置は、系統電圧が規定範囲内に戻って所定時間が経過した場合、電力系統を電気機器に電気的に再接続する。 As an example of this type of voltage stabilizing device, the system is configured to electrically disconnect the power system from the electrical equipment when the system voltage falls outside a specified range set between a predetermined upper limit and a lower limit. An apparatus has been proposed (see, for example, Patent Document 1). The device described in Patent Document 1 electrically reconnects the power system to the electrical device when the system voltage returns to within the specified range and a predetermined time has elapsed.
米国特許第4707760号明細書US Pat. No. 4,707,760
 しかし、特許文献1の装置では、系統電圧の許容範囲が上下限に設定されている為系統電圧が不安定な場合に、電気機器が頻繁に動作を停止してしまう可能性がある。 However, in the device of Patent Document 1, since the allowable range of the system voltage is set to the upper and lower limits, there is a possibility that the electrical equipment frequently stops operating when the system voltage is unstable.
 本発明は上記事由に鑑みてなされており、電気機器の保護を図りながらも、電気機器が動作を停止する頻度を低減できる電圧安定化装置、およびそれを用いた電源システムを提供することを目的とする。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a voltage stabilizing device capable of reducing the frequency with which an electric device stops operating while protecting the electric device, and a power supply system using the same. And
 本発明の電圧安定化装置は、一対の入力端子と一対の出力端子との間に電気的に接続され、前記一対の出力端子から出力される出力電圧が安定するように、前記一対の入力端子に入力される入力電圧を変圧して前記出力電圧とする変圧回路と、前記入力電圧の電圧値が所定の許容範囲を逸脱した場合に、前記一対の入力端子と前記一対の出力端子との間を電気的に遮断する遮断回路と、を備え、前記許容範囲は、上限のみが設定された範囲であることを特徴とする。 The voltage stabilizer of the present invention is electrically connected between a pair of input terminals and a pair of output terminals, and the pair of input terminals so that the output voltage output from the pair of output terminals is stabilized. A transformer circuit that transforms an input voltage input to the output voltage into the output voltage, and when the voltage value of the input voltage deviates from a predetermined allowable range, between the pair of input terminals and the pair of output terminals. And the allowable range is a range in which only an upper limit is set.
 本発明の電源システムは、上記の電圧安定化装置と、前記一対の出力端子が電気的に接続される一対の接続端子を有した電源装置とを備え、前記電源装置は、前記一対の接続端子に入力される電圧の電圧値が所定の電圧範囲内にあれば動作可能となるように構成されており、前記電圧安定化装置の前記出力電圧の電圧値が前記電圧範囲の上限を超えないように、前記許容範囲の上限が設定されていることを特徴とする。 A power supply system of the present invention includes the above-described voltage stabilization device and a power supply device having a pair of connection terminals to which the pair of output terminals are electrically connected, and the power supply device includes the pair of connection terminals. Is configured to be operable if the voltage value of the input voltage is within a predetermined voltage range, so that the voltage value of the output voltage of the voltage stabilizing device does not exceed the upper limit of the voltage range. In addition, an upper limit of the allowable range is set.
 本発明の電圧安定化装置は、電気機器の保護を図りながらも、電気機器が動作を停止する頻度を低減できる、という利点がある。 The voltage stabilization device of the present invention has an advantage that the frequency with which the electric device stops operating can be reduced while protecting the electric device.
 本発明の電源システムは、電気機器の保護を図りながらも、電気機器が動作を停止する頻度を低減できる、という利点がある。 The power supply system of the present invention has an advantage that the frequency with which an electric device stops operating can be reduced while protecting the electric device.
図1は実施形態1に係る電源システムの概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of the power supply system according to the first embodiment. 図2は実施形態1に係る電圧安定化装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the first embodiment. 図3は実施形態1に係る電圧安定化装置の入力電圧-出力電圧の関係を示す図である。FIG. 3 is a diagram illustrating the relationship between the input voltage and the output voltage of the voltage stabilization apparatus according to the first embodiment. 図4は実施形態1に係る電源装置の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the power supply device according to the first embodiment. 図5は実施形態1の比較例としての電圧安定化装置の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a voltage stabilizing device as a comparative example of the first embodiment. 図6は実施形態1の比較例としての電圧安定化装置の入力電圧-出力電圧の関係を示す図である。FIG. 6 is a diagram showing the relationship between the input voltage and the output voltage of the voltage stabilizing device as a comparative example of the first embodiment. 図7は実施形態1に係る壁付けタイプの電圧安定化装置の外観を示す斜視図である。FIG. 7 is a perspective view showing the appearance of the wall-mounted voltage stabilizing device according to the first embodiment. 図8は実施形態1に係るテーブルタップタイプの電圧安定化装置の外観を示す斜視図である。FIG. 8 is a perspective view showing an appearance of the table tap type voltage stabilizer according to the first embodiment. 図9は実施形態2に係る電圧安定化装置の構成を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the second embodiment. 図10は実施形態3に係る電圧安定化装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of the voltage stabilization apparatus according to the third embodiment. 図11は実施形態3に係る電圧安定化装置の入力電圧-出力電圧の関係、並びに入力電圧-出力電流の上限値の関係を示す図である。FIG. 11 is a diagram illustrating the relationship between the input voltage and the output voltage and the relationship between the input voltage and the upper limit value of the output current of the voltage stabilizing device according to the third embodiment.
 (実施形態1)
 <電圧安定化装置の概要>
 電圧安定化装置は、系統電圧が大幅に変動する環境下で用いられる。電圧安定化装置は、電力系統と電気機器との間に電気的に接続され、電気機器へ供給される出力電圧の電圧値が電気機器の定格範囲内に収まるように、出力電圧の安定化を行うことで、電気機器を保護する。なお、ここでいう「出力電圧の安定化」とは出力電圧の電圧値が大幅に変動しないように抑制されている状態を意味し、出力電圧が定電圧に維持される状態だけではなく、ある範囲内に収まる状態をも含む。
(Embodiment 1)
<Outline of voltage stabilizer>
The voltage stabilizing device is used in an environment where the system voltage varies greatly. The voltage stabilizer is electrically connected between the power system and the electrical equipment, and stabilizes the output voltage so that the voltage value of the output voltage supplied to the electrical equipment is within the rated range of the electrical equipment. Doing so protects electrical equipment. Here, “stabilization of output voltage” means a state in which the voltage value of the output voltage is suppressed so as not to fluctuate significantly, and is not limited to a state in which the output voltage is maintained at a constant voltage. Including states that fall within the range.
 本実施形態では、電圧安定化装置は戸建住宅あるいは集合住宅の住戸のような一般住宅用であると仮定する。さらに、本実施形態では、電力系統が単相二線式であって、交流電圧である系統電圧の定格値が実効値で220〔V〕であると仮定する。以下、電圧値(電圧の大きさ)に関する記載は、とくに断りがない限り全て実効値とする。 In this embodiment, it is assumed that the voltage stabilization device is for a general house such as a detached house or a dwelling unit of an apartment house. Furthermore, in this embodiment, it is assumed that the power system is a single-phase two-wire system, and the rated value of the system voltage that is an AC voltage is 220 [V] in terms of effective value. Hereinafter, all the descriptions regarding the voltage value (voltage magnitude) are effective values unless otherwise specified.
 また、電圧安定化装置が電気的に接続される電気機器は、たとえばテレビ受像機やパソコン(パーソナルコンピュータ)、洗濯機、冷蔵庫等の家電機器である。とくに本実施形態では、電圧安定化装置は、いわゆるグローバル電圧に対応した電源装置(いわゆるグローバル電源)と共に用いられ、電源装置と共に電源システムを構成する。ここでいう「グローバル電圧」は、系統電圧の定格値が異なる複数の国に対応するように定められた電圧の範囲であって、たとえば100〔V〕~240〔V〕である。本実施形態においては、電源装置は、電圧安定化装置と電気機器との間に電気的に接続され、交流電圧を直流電圧に変換して電気機器に出力する電源アダプタ(ACアダプタ)である。 Further, the electrical equipment to which the voltage stabilizing device is electrically connected is, for example, a household electrical appliance such as a television receiver, a personal computer (PC), a washing machine, a refrigerator, or the like. In particular, in the present embodiment, the voltage stabilizing device is used together with a power supply device corresponding to a so-called global voltage (so-called global power supply), and constitutes a power supply system together with the power supply device. The “global voltage” here is a voltage range determined so as to correspond to a plurality of countries having different rated values of the system voltage, and is, for example, 100 [V] to 240 [V]. In the present embodiment, the power supply device is a power supply adapter (AC adapter) that is electrically connected between the voltage stabilizing device and the electric device, converts an alternating voltage into a direct current voltage, and outputs the converted voltage to the electric device.
 本実施形態の電圧安定化装置1は、図1に示すように、変圧回路2と、遮断回路3とを備えている。 The voltage stabilizing device 1 of this embodiment includes a transformer circuit 2 and a cutoff circuit 3 as shown in FIG.
 変圧回路2は、一対の入力端子41,42と一対の出力端子51,52との間に電気的に接続されている。変圧回路2は、一対の出力端子51,52から出力される出力電圧V2が安定するように、一対の入力端子41,42に入力される入力電圧V1を変圧して出力電圧V2とする。 The transformer circuit 2 is electrically connected between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52. The transformer circuit 2 transforms the input voltage V1 input to the pair of input terminals 41 and 42 into the output voltage V2 so that the output voltage V2 output from the pair of output terminals 51 and 52 is stabilized.
 遮断回路3は、入力電圧V1の電圧値が所定の許容範囲を逸脱した場合に、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断する。ここで、許容範囲は、上限のみが設定された範囲である。 The shutoff circuit 3 electrically shuts off the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 when the voltage value of the input voltage V1 deviates from a predetermined allowable range. Here, the allowable range is a range in which only an upper limit is set.
 ここで、「出力電圧V2が安定する」とは、出力電圧V2の電圧値が大幅に変動しないように出力電圧V2の電圧値の変動が抑制されている状態を意味し、出力電圧V2が定電圧に維持される状態だけでなく、出力電圧V2がある範囲内に収まる状態を含む。また、「入力電圧V1を変圧」は、変圧比が「1」の場合、つまり入力電圧V1と出力電圧V2とで電圧値が等しくなる場合も含む。また、本実施形態における「端子」は、必ずしも、電線を電気的に接続するための部品として実体を有しなくてもよく、たとえば電子部品のリードや、回路基板に含まれる導体の一部であってもよい。 Here, “the output voltage V2 is stable” means a state in which the fluctuation of the voltage value of the output voltage V2 is suppressed so that the voltage value of the output voltage V2 does not fluctuate significantly. This includes not only a state where the voltage is maintained, but also a state where the output voltage V2 falls within a certain range. Further, “transforming the input voltage V1” includes the case where the transformation ratio is “1”, that is, the case where the voltage value is equal between the input voltage V1 and the output voltage V2. In addition, the “terminal” in the present embodiment does not necessarily have an entity as a part for electrically connecting electric wires, for example, a lead of an electronic component or a part of a conductor included in a circuit board. There may be.
 本実施形態の電圧安定化装置1は、図1に示すように、一対の入力端子41,42が系統電源7に電気的に接続される。これにより、電圧安定化装置1には系統電源7から入力電圧V1が入力されることになる。また、電圧安定化装置1は、一対の出力端子51,52が電源装置6を介して電気機器8に電気的に接続される。これにより、電圧安定化装置1から電源装置6を介して電気機器8に電力が供給されることになる。 In the voltage stabilizing device 1 of this embodiment, a pair of input terminals 41 and 42 are electrically connected to the system power supply 7 as shown in FIG. As a result, the input voltage V <b> 1 is input from the system power supply 7 to the voltage stabilizing device 1. In the voltage stabilizing device 1, the pair of output terminals 51 and 52 are electrically connected to the electrical device 8 through the power supply device 6. As a result, electric power is supplied from the voltage stabilizing device 1 to the electric device 8 via the power supply device 6.
 要するに、電圧安定化装置1は、入力電圧V1の許容範囲内におけるある程度の変動については、変圧回路2にて入力電圧V1を変圧することで出力電圧V2の安定化を図る。また、電圧安定化装置1は、入力電圧V1の電圧値が大幅に変動して許容範囲を逸脱した場合には、遮断回路3にて一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断し、出力電圧V2の出力を停止する。ここで、許容範囲は下限がなく上限のみが設定された範囲であるので、入力電圧V1の電圧値がどれだけ低下しても、遮断回路3によって出力電圧V2の出力が停止されることはない。したがって、この電圧安定化装置1によれば、電気機器8の保護を図りながらも、電気機器8が動作を停止する頻度を低減できる、という利点がある。 In short, the voltage stabilizing device 1 stabilizes the output voltage V2 by transforming the input voltage V1 by the transformer circuit 2 for a certain degree of variation within the allowable range of the input voltage V1. In addition, when the voltage value of the input voltage V1 greatly fluctuates and deviates from the allowable range, the voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52 in the cutoff circuit 3. And the output of the output voltage V2 is stopped. Here, since the allowable range is a range in which only the upper limit is set without a lower limit, the output of the output voltage V2 is not stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. . Therefore, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
 <電源システムの全体構成>
 本実施形態の電源システム100は、図1に示すように、上記の電圧安定化装置1と、電源装置6とを備えている。
<Overall configuration of power supply system>
As shown in FIG. 1, the power supply system 100 of the present embodiment includes the voltage stabilizing device 1 and the power supply device 6.
 電源装置6は、一対の出力端子51,52が電気的に接続される一対の接続端子61,62(図4参照)を有している。電源装置6は、一対の接続端子61,62に入力される電圧の電圧値が所定の電圧範囲内にあれば動作可能となるように構成されている。ここで、電圧安定化装置1の出力電圧V2の電圧値が上記電圧範囲の上限を超えないように、入力電圧V1の許容範囲の上限が設定されている。 The power supply device 6 has a pair of connection terminals 61 and 62 (see FIG. 4) to which the pair of output terminals 51 and 52 are electrically connected. The power supply device 6 is configured to be operable if the voltage value of the voltage input to the pair of connection terminals 61 and 62 is within a predetermined voltage range. Here, the upper limit of the allowable range of the input voltage V1 is set so that the voltage value of the output voltage V2 of the voltage stabilizing device 1 does not exceed the upper limit of the voltage range.
 ここでいう「所定の電圧範囲」は、たとえばグローバル電圧に相当する範囲(一例として100〔V〕~240〔V〕)であり、「電源装置6」は、グローバル電圧に対応したいわゆるグローバル電源である。なお、以下では電源装置6が動作可能な「所定の電圧範囲」を「適応範囲」という。 Here, the “predetermined voltage range” is, for example, a range corresponding to a global voltage (for example, 100 [V] to 240 [V]), and the “power supply device 6” is a so-called global power supply corresponding to the global voltage. is there. Hereinafter, a “predetermined voltage range” in which the power supply device 6 can operate is referred to as an “adaptive range”.
 要するに、電圧安定化装置1および電源装置6は、電圧安定化装置1が系統電源7側、電源装置6が電気機器8側となるように、系統電源7と電気機器8との間に電気的に接続される。これにより、電圧安定化装置1には系統電源7から入力電圧V1が入力されることになる。さらに、電圧安定化装置1の出力電圧V2は電源装置6に入力され、電源装置6から出力された電圧は電気機器8に供給されることになる。 In short, the voltage stabilization device 1 and the power supply device 6 are electrically connected between the system power supply 7 and the electrical device 8 so that the voltage stabilization device 1 is on the system power supply 7 side and the power supply device 6 is on the electrical device 8 side. Connected to. As a result, the input voltage V <b> 1 is input from the system power supply 7 to the voltage stabilizing device 1. Further, the output voltage V2 of the voltage stabilizing device 1 is input to the power supply device 6, and the voltage output from the power supply device 6 is supplied to the electric device 8.
 ここにおいて、電圧安定化装置1の出力電圧V2の電圧値が適応範囲の上限を超えないように、入力電圧V1の許容範囲の上限が設定されている。そのため、電圧安定化装置1の入力電圧V1が大幅に変動し一対の接続端子61,62に印加される出力電圧V2が適応範囲の上限を超える前に、電圧安定化装置1の遮断回路3が作動して出力電圧V2の出力が停止する。 Here, the upper limit of the allowable range of the input voltage V1 is set so that the voltage value of the output voltage V2 of the voltage stabilizing device 1 does not exceed the upper limit of the adaptive range. Therefore, before the output voltage V2 applied to the pair of connection terminals 61 and 62 exceeds the upper limit of the adaptive range before the input voltage V1 of the voltage stabilizer 1 fluctuates significantly, the cutoff circuit 3 of the voltage stabilizer 1 Operates and the output of the output voltage V2 stops.
 したがって、この電源システム100によれば、入力電圧V1の許容範囲内におけるある程度の変動については、変圧回路2が入力電圧V1を変圧することで出力電圧V2が安定化され、電源装置6は動作可能になる。また、入力電圧V1の電圧値が大幅に変動して許容範囲を逸脱した場合には、遮断回路3が出力電圧V2の出力を停止して、電源装置6は動作を停止する。ここで、許容範囲は下限がなく上限のみが設定された範囲であるので、入力電圧V1の電圧値がどれだけ低下しても、遮断回路3によって出力電圧V2の出力が停止されることはない。したがって、この電源システム100によれば、電気機器8の保護を図りながらも、電気機器8が動作を停止する頻度を低減できる、という利点がある。 Therefore, according to the power supply system 100, for a certain degree of fluctuation in the allowable range of the input voltage V1, the output voltage V2 is stabilized by the transformation circuit 2 transforming the input voltage V1, and the power supply device 6 can operate. become. When the voltage value of the input voltage V1 fluctuates greatly and deviates from the allowable range, the cutoff circuit 3 stops outputting the output voltage V2, and the power supply device 6 stops its operation. Here, since the allowable range is a range in which only the upper limit is set without a lower limit, the output of the output voltage V2 is not stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. . Therefore, according to the power supply system 100, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
 以下、本実施形態に係る電圧安定化装置1、およびそれを用いた電源システム100について詳しく説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は、下記実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 Hereinafter, the voltage stabilizing device 1 according to the present embodiment and the power supply system 100 using the same will be described in detail. However, the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not deviated from this embodiment. Various changes can be made in accordance with the design or the like as long as they are not.
 <電圧安定化装置の具体例>
 本実施形態の電圧安定化装置1は、図2に示すように、一対の入力端子41,42、一対の出力端子51,52、変圧回路2、および遮断回路3に加えて、第1検出部11、第2検出部12、接地入力端子43、および接地送り端子53をさらに備えている。
<Specific example of voltage stabilizer>
As shown in FIG. 2, the voltage stabilization device 1 of the present embodiment includes a first detection unit in addition to the pair of input terminals 41 and 42, the pair of output terminals 51 and 52, the transformer circuit 2, and the cutoff circuit 3. 11, a second detection unit 12, a ground input terminal 43, and a ground feed terminal 53.
 <<入力端子>>
 一対の入力端子41,42は、第1の入力端子41と第2の入力端子42とで構成されており、系統電源7に電気的に接続される。これにより、一対の入力端子41,42間には、系統電源7から印加される系統電圧が入力電圧V1として現れることになる。また、接地入力端子43は、接地極用の端子であって、接地線が電気的に接続される。
<< Input terminal >>
The pair of input terminals 41, 42 includes a first input terminal 41 and a second input terminal 42, and is electrically connected to the system power supply 7. Thereby, between the pair of input terminals 41 and 42, the system voltage applied from the system power supply 7 appears as the input voltage V1. The ground input terminal 43 is a terminal for a ground electrode, and is electrically connected to a ground line.
 <<出力端子>>
 一対の出力端子51,52は、第1の入力端子41に対応する第1の出力端子51と、第2の入力端子42に対応する第2の出力端子52とで構成されている。第1の出力端子51は、変圧回路2および遮断回路3を介して、第1の入力端子41と電気的に接続されている。第2の出力端子52は、第2の入力端子42に対して電気的に直接接続されている。これにより、一対の出力端子51,52間には、入力電圧V1に基づく電圧が出力電圧V2として現れることになる。また、接地送り端子53は、接地極用の送り端子であって、接地入力端子43に対して電気的に直接接続されている。なお、本実施形態でいう「直接接続」とは、電気的な観点から直接的に接続されること、つまり他の回路素子を介さずに接続されることを意味する。
<< Output terminal >>
The pair of output terminals 51 and 52 includes a first output terminal 51 corresponding to the first input terminal 41 and a second output terminal 52 corresponding to the second input terminal 42. The first output terminal 51 is electrically connected to the first input terminal 41 via the transformer circuit 2 and the cutoff circuit 3. The second output terminal 52 is electrically connected directly to the second input terminal 42. As a result, a voltage based on the input voltage V1 appears between the pair of output terminals 51 and 52 as the output voltage V2. The ground feed terminal 53 is a feed terminal for the ground electrode, and is electrically connected directly to the ground input terminal 43. Note that “direct connection” in the present embodiment means direct connection from an electrical point of view, that is, connection without passing through other circuit elements.
 下記「遮断回路」の欄で説明するが、本実施形態では変圧回路2の一部が遮断回路3に兼用されている。そのため、図2に示すように第1の出力端子51が変圧回路2を介して第1の入力端子41に電気的に接続されていることは、第1の出力端子51が変圧回路2および遮断回路3を介して第1の入力端子41に電気的に接続されていることと同義である。 As will be described in the section of “cut-off circuit” below, a part of the transformer circuit 2 is also used as the cut-off circuit 3 in this embodiment. Therefore, as shown in FIG. 2, the first output terminal 51 is electrically connected to the first input terminal 41 via the transformer circuit 2, so that the first output terminal 51 is disconnected from the transformer circuit 2. This is synonymous with being electrically connected to the first input terminal 41 via the circuit 3.
 <<検出部>>
 第1検出部11は、一対の入力端子41,42間に電気的に接続され、入力電圧V1の電圧値を検出する機能を有している。第2検出部12は、一対の出力端子51,52間に電気的に接続され、出力電圧V2の電圧値を検出する機能を有している。第1検出部11および第2検出部12の各々は、たとえば整流平滑回路および一対の分圧抵抗を用いて構成され、検出値(入力電圧V1あるいは出力電圧V2の電圧値)に応じた電圧を、制御部24に対して出力する。制御部24については、下記「変圧回路」の欄で説明する。
<< Detector >>
The 1st detection part 11 is electrically connected between a pair of input terminals 41 and 42, and has a function which detects the voltage value of the input voltage V1. The second detection unit 12 is electrically connected between the pair of output terminals 51 and 52 and has a function of detecting the voltage value of the output voltage V2. Each of the first detection unit 11 and the second detection unit 12 is configured using, for example, a rectifying / smoothing circuit and a pair of voltage dividing resistors, and outputs a voltage corresponding to a detection value (the voltage value of the input voltage V1 or the output voltage V2). And output to the control unit 24. The control unit 24 will be described in the section “Transformer circuit” below.
 なお、本実施形態において、第1検出部11および第2検出部12の検出値(入力電圧V1あるいは出力電圧V2の電圧値)は、入力電圧V1および出力電圧V2の実効値であると仮定する。 In the present embodiment, the detection values of the first detection unit 11 and the second detection unit 12 (the voltage value of the input voltage V1 or the output voltage V2) are assumed to be effective values of the input voltage V1 and the output voltage V2. .
 <<変圧回路>>
 変圧回路2は、第1スイッチ21と、第2スイッチ22と、トランス23と、制御部24とを有している。制御部24は、第1スイッチ21および第2スイッチ22を制御する。本実施形態では、第1スイッチ21および第2スイッチ22はそれぞれ電磁リレーの接点からなる。制御部24は電磁リレーに駆動信号を与えることにより第1スイッチ21および第2スイッチ22のそれぞれについてオン・オフを切り替える。なお、ここでいう「接点」は、互いに接離する一対の接点を意味する。
<< Transformer circuit >>
The transformer circuit 2 includes a first switch 21, a second switch 22, a transformer 23, and a control unit 24. The control unit 24 controls the first switch 21 and the second switch 22. In the present embodiment, the first switch 21 and the second switch 22 are each composed of a contact of an electromagnetic relay. The control unit 24 turns on / off each of the first switch 21 and the second switch 22 by giving a drive signal to the electromagnetic relay. The “contact point” here means a pair of contact points that are close to each other.
 また、本実施形態では、トランス23は、1つの巻線を一次巻線と二次巻線とに共用した単巻トランス(オートトランス)である。そのため、トランス23は、両端を第1端子231および第2端子232とする1つの巻線を有し、この巻線の途中にタップ233を有している。トランス23は、巻線の全体(第1端子231と第2端子232との間)が一次巻線となり、巻線のうち第2端子232とタップ233との間の部分が二次巻線となる。つまり、巻線のうち第2端子232とタップ233との間の部分は、一次巻線と二次巻線との共用部分である分路巻線となる。なお、ここでは図示を省略しているが、トランス23はコアを有している。 In this embodiment, the transformer 23 is a single-winding transformer (auto transformer) in which one winding is shared by the primary winding and the secondary winding. Therefore, the transformer 23 has one winding whose both ends are the first terminal 231 and the second terminal 232, and has a tap 233 in the middle of this winding. In the transformer 23, the entire winding (between the first terminal 231 and the second terminal 232) is a primary winding, and the portion of the winding between the second terminal 232 and the tap 233 is a secondary winding. Become. That is, a portion of the winding between the second terminal 232 and the tap 233 is a shunt winding that is a shared portion of the primary winding and the secondary winding. Although not shown here, the transformer 23 has a core.
 第1スイッチ21は、第1の入力端子41と、トランス23の一次巻線との間に電気的に接続されている。具体的には、第1スイッチ21の一端は第1の入力端子41と電気的に直接接続され、第1スイッチ21の他端はトランス23の一次巻線の一端(第1端子231)と電気的に直接接続されている。トランス23の一次巻線の他端(第2端子232)は、第2の入力端子42と電気的に直接接続されている。言い換えれば、第1スイッチ21とトランス23の一次巻線とは、第1スイッチ21が第1の入力端子41側となるように、一対の入力端子41,42間において電気的に直列接続されている。ただし、第1スイッチ21は、一対の入力端子41,42と、トランス23の一次巻線との間に電気的に接続されていればよく、第2の入力端子42と、トランス23の一次巻線との間に電気的に接続されていてもよい。 The first switch 21 is electrically connected between the first input terminal 41 and the primary winding of the transformer 23. Specifically, one end of the first switch 21 is electrically connected directly to the first input terminal 41, and the other end of the first switch 21 is electrically connected to one end (first terminal 231) of the primary winding of the transformer 23. Directly connected. The other end (second terminal 232) of the primary winding of the transformer 23 is electrically connected directly to the second input terminal 42. In other words, the first switch 21 and the primary winding of the transformer 23 are electrically connected in series between the pair of input terminals 41 and 42 such that the first switch 21 is on the first input terminal 41 side. Yes. However, the first switch 21 only needs to be electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23, and the second input terminal 42 and the primary winding of the transformer 23 are sufficient. It may be electrically connected between the wires.
 第2スイッチ22は、第1の入力端子41と第1の出力端子51との間に電気的に接続されている。具体的には、第2スイッチ22の一端は第1の入力端子41と電気的に直接接続され、第2スイッチ22の他端は第1の出力端子51と電気的に直接接続されている。ただし、第2スイッチ22は、一対の入力端子41,42と、一対の出力端子51,52との間に電気的に接続されていればよく、第2の入力端子42と第2の出力端子52との間に電気的に接続されていてもよい。 The second switch 22 is electrically connected between the first input terminal 41 and the first output terminal 51. Specifically, one end of the second switch 22 is electrically connected directly to the first input terminal 41, and the other end of the second switch 22 is electrically connected directly to the first output terminal 51. However, the 2nd switch 22 should just be electrically connected between a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52, and the 2nd input terminal 42 and the 2nd output terminal And 52 may be electrically connected.
 トランス23の二次巻線は、一対の出力端子51,52間に電気的に接続されている。具体的には、トランス23の二次巻線の一端(タップ233)は第1の出力端子51と電気的に直接接続され、トランス23の二次巻線の他端(第2端子232)は第2の出力端子52と電気的に直接接続されている。これにより、トランス23の二次巻線の一端(タップ233)は、第2スイッチ22を介して第1の入力端子41と電気的に接続されることになる。なお、本実施形態では、トランス23は1つの巻線を一次巻線と二次巻線とに共用した単巻トランスであるから、第2端子232は、第2の入力端子42と第2の出力端子52との両方に対して、電気的に接続されることになる。 The secondary winding of the transformer 23 is electrically connected between the pair of output terminals 51 and 52. Specifically, one end (tap 233) of the secondary winding of the transformer 23 is electrically connected directly to the first output terminal 51, and the other end (second terminal 232) of the secondary winding of the transformer 23 is connected to the first output terminal 51. The second output terminal 52 is directly electrically connected. Thus, one end (tap 233) of the secondary winding of the transformer 23 is electrically connected to the first input terminal 41 via the second switch 22. In the present embodiment, since the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding, the second terminal 232 is connected to the second input terminal 42 and the second winding. Both the output terminal 52 and the output terminal 52 are electrically connected.
 ここにおいて、トランス23は、一次巻線に印加される電圧(以下、「一次側電圧」ともいう)と、二次側巻線に発生する電圧(以下、「二次側電圧」ともいう)との比である変圧比(一次側電圧/二次側電圧)が、「1」より大きい降圧トランスである。そのため、トランス23の一次巻線に一次側電圧としての交流電圧が印加されると、この交流電圧が降圧されて二次側電圧としてトランス23の二次巻線から出力されることになる。一次側電圧と二次側電圧との変圧比は、トランス23の一次巻線の巻数N1と二次巻線の巻数N2との巻数比(N1/N2)と略等しい。 Here, the transformer 23 includes a voltage applied to the primary winding (hereinafter also referred to as “primary side voltage”) and a voltage generated in the secondary winding (hereinafter also referred to as “secondary side voltage”). The step-down transformer has a transformation ratio (primary side voltage / secondary side voltage) greater than “1”. Therefore, when an AC voltage as a primary voltage is applied to the primary winding of the transformer 23, the AC voltage is stepped down and output as a secondary voltage from the secondary winding of the transformer 23. The transformation ratio between the primary side voltage and the secondary side voltage is substantially equal to the turn ratio (N1 / N2) between the number of turns N1 of the primary winding of the transformer 23 and the number of turns N2 of the secondary winding.
 上記構成により、第1スイッチ21がオフで第2スイッチ22がオンの状態では、変圧回路2は、一対の入力端子41,42に一対の出力端子51,52が電気的に直接接続された状態(以下、「第1状態」という)となる。第1状態においては、一対の入力端子41,42には、トランス23を介さずに一対の出力端子51,52が電気的に直接接続される。そのため、第1状態では、変圧回路2は、入力電圧V1をそのまま出力電圧V2として出力する(つまりV1=V2)。つまり、第1状態での入力電圧V1と出力電圧V2との変圧比(V1/V2)は「1」である。 With the above configuration, when the first switch 21 is off and the second switch 22 is on, the transformer circuit 2 is in a state where the pair of output terminals 51 and 52 are electrically directly connected to the pair of input terminals 41 and 42. (Hereinafter referred to as “first state”). In the first state, the pair of output terminals 51 and 52 are electrically directly connected to the pair of input terminals 41 and 42 without the transformer 23 interposed therebetween. Therefore, in the first state, the transformer circuit 2 outputs the input voltage V1 as it is as the output voltage V2 (that is, V1 = V2). That is, the transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2 in the first state is “1”.
 一方、第1スイッチ21がオンで第2スイッチ22がオフの状態では、変圧回路2は、一対の入力端子41,42間にトランス23の一次巻線が電気的に接続された状態(以下、「第2状態」という)となる。第2状態においては、第1の入力端子41と第1の出力端子51との間が第2スイッチ22によって切り離され、一対の入力端子41,42には、トランス23を介して一対の出力端子51,52が電気的に接続される。そのため、第2状態では、変圧回路2は、入力電圧V1を降圧して出力電圧V2として出力する(つまりV1>V2)。つまり、第2状態での入力電圧V1と出力電圧V2との変圧比(V1/V2)は「1」よりも大きな値となる。 On the other hand, when the first switch 21 is on and the second switch 22 is off, the transformer circuit 2 is in a state where the primary winding of the transformer 23 is electrically connected between the pair of input terminals 41 and 42 (hereinafter, (Referred to as “second state”). In the second state, the first input terminal 41 and the first output terminal 51 are disconnected by the second switch 22, and the pair of input terminals 41 and 42 are connected to the pair of output terminals via the transformer 23. 51 and 52 are electrically connected. Therefore, in the second state, the transformer circuit 2 steps down the input voltage V1 and outputs it as the output voltage V2 (that is, V1> V2). That is, the transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2 in the second state is a value larger than “1”.
 ところで、本実施形態においては、変圧回路2は、入力電圧V1の電圧値が許容範囲内に設定された電圧閾値以上になると、入力電圧V1と出力電圧V2との間の変圧比(V1/V2)を切り替えることで、出力電圧V2を安定させるように構成されている。さらに、本実施形態では、上記電圧閾値は「Vth1」(図3参照)の1つだけ設定されている。そして、変圧回路2は、入力電圧V1の電圧値が電圧閾値Vth1未満であれば、入力電圧V1をそのまま出力電圧V2として出力する状態、つまり上述した第1状態となるように構成されている。また、変圧回路2は、入力電圧V1の電圧値が電圧閾値Vth1以上であれば、入力電圧V1を降圧して出力電圧V2として出力する状態、つまり上述した第2状態となるように構成されている。すなわち、変圧回路2は、第1状態と第2状態とが切り替わることにより、入力電圧V1と出力電圧V2との間の変圧比(V1/V2)を切り替えて、出力電圧V2を安定させる。 By the way, in the present embodiment, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold set within the allowable range, the transformer circuit 2 has a transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2. ) To stabilize the output voltage V2. Furthermore, in the present embodiment, only one voltage threshold value “Vth1” (see FIG. 3) is set. Then, when the voltage value of the input voltage V1 is less than the voltage threshold Vth1, the transformer circuit 2 is configured to output the input voltage V1 as it is as the output voltage V2, that is, the first state described above. Further, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the transformer circuit 2 is configured to step down the input voltage V1 and output it as the output voltage V2, that is, the second state described above. Yes. That is, the transformer circuit 2 switches the first state and the second state, thereby switching the transformation ratio (V1 / V2) between the input voltage V1 and the output voltage V2, thereby stabilizing the output voltage V2.
 このように、変圧回路2は、入力電圧V1の電圧値と電圧閾値Vth1との比較結果に応じて、第1状態と第2状態とを切り替えるように構成されている。第1状態と第2状態との切り替えは、以下に説明するように制御部24によって行われる。 As described above, the transformer circuit 2 is configured to switch between the first state and the second state in accordance with the comparison result between the voltage value of the input voltage V1 and the voltage threshold value Vth1. Switching between the first state and the second state is performed by the control unit 24 as described below.
 制御部24は、駆動部241と、監視部242とを有している。制御部24は、たとえばマイコン(マイクロコンピュータ)を用いて構成され、マイコンのメモリに記憶されているプログラムをCPU(Central Processing Unit)で実行することにより、駆動部241および監視部242としての機能を実現する。プログラムは、予めマイコンのメモリに記録されていてもよいし、メモリカードのような記録媒体に記録されて提供されたり、電気通信回線を通して提供されたりしてもよい。 The control unit 24 includes a drive unit 241 and a monitoring unit 242. The control unit 24 is configured using, for example, a microcomputer (microcomputer), and functions as the drive unit 241 and the monitoring unit 242 by executing a program stored in the memory of the microcomputer with a CPU (Central Processing Unit). Realize. The program may be recorded in advance in a memory of a microcomputer, may be provided by being recorded on a recording medium such as a memory card, or may be provided through an electric communication line.
 駆動部241は、上述したように電磁リレーに駆動信号を与えることにより、第1スイッチ21および第2スイッチ22のオン・オフを切り替えるように構成されている。駆動部241は、監視部242からの入力に従って、第1スイッチ21および第2スイッチ22のそれぞれのオン・オフを決定し、駆動信号を生成する。電磁リレーは、駆動部241からの駆動信号に従って、第1スイッチ21および第2スイッチ22のオン・オフを切り替える。 The drive unit 241 is configured to turn on and off the first switch 21 and the second switch 22 by giving a drive signal to the electromagnetic relay as described above. The drive unit 241 determines on / off of each of the first switch 21 and the second switch 22 according to the input from the monitoring unit 242, and generates a drive signal. The electromagnetic relay switches the first switch 21 and the second switch 22 on and off in accordance with a drive signal from the drive unit 241.
 監視部242は、第1検出部11および第2検出部12の各々から、検出値(入力電圧V1あるいは出力電圧V2の電圧値)を取得するように構成されている。さらに、監視部242は、取得した検出値(入力電圧V1あるいは出力電圧V2の電圧値)を、所定の値(たとえば電圧閾値Vth1)と比較し、比較結果に応じて駆動部241を制御するように構成されている。ここでいう「所定の値」には、変圧回路2の第1状態と第2状態との切り替えに用いられる上記電圧閾値Vth1の他に、許容範囲の上限Vmax(図3参照)が含まれている。上記電圧閾値Vth1は許容範囲内に設定されているので、電圧閾値Vth1と許容範囲の上限Vmaxとは「Vth1<Vmax」の関係にある。さらに、電圧閾値Vth1は、系統電圧の定格値(ここでは220〔V〕)よりも大きな値である。 The monitoring unit 242 is configured to acquire a detection value (voltage value of the input voltage V1 or the output voltage V2) from each of the first detection unit 11 and the second detection unit 12. Furthermore, the monitoring unit 242 compares the acquired detection value (the voltage value of the input voltage V1 or the output voltage V2) with a predetermined value (for example, the voltage threshold value Vth1), and controls the driving unit 241 according to the comparison result. It is configured. The “predetermined value” here includes the upper limit Vmax (see FIG. 3) of the allowable range in addition to the voltage threshold Vth1 used for switching between the first state and the second state of the transformer circuit 2. Yes. Since the voltage threshold Vth1 is set within the allowable range, the voltage threshold Vth1 and the upper limit Vmax of the allowable range have a relationship of “Vth1 <Vmax”. Furthermore, the voltage threshold Vth1 is a value larger than the rated value of the system voltage (here, 220 [V]).
 制御部24は、入力電圧V1の電圧値が電圧閾値Vth1未満であれば、第1スイッチ21をオフにして第2スイッチ22をオンにすることで、変圧回路2を第1状態とするように構成されている。したがって、入力電圧V1の電圧値が電圧閾値Vth1未満であるときには、変圧回路2は第1状態となり、入力電圧V1をそのまま出力電圧V2として出力する。また、制御部24は、入力電圧V1の電圧値が電圧閾値Vth1以上であれば、第1スイッチ21をオンにして第2スイッチ22をオフにすることで、変圧回路2を第2状態とするように構成されている。したがって、入力電圧V1の電圧値が電圧閾値Vth1以上であるときには、変圧回路2は第2状態となり、入力電圧V1を降圧して出力電圧V2として出力する。 If the voltage value of the input voltage V1 is less than the voltage threshold value Vth1, the control unit 24 turns off the first switch 21 and turns on the second switch 22 so that the transformer circuit 2 is in the first state. It is configured. Therefore, when the voltage value of the input voltage V1 is less than the voltage threshold Vth1, the transformer circuit 2 is in the first state and outputs the input voltage V1 as it is as the output voltage V2. Further, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the control unit 24 turns on the first switch 21 and turns off the second switch 22, thereby setting the transformer circuit 2 in the second state. It is configured as follows. Therefore, when the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the transformer circuit 2 enters the second state, and steps down the input voltage V1 and outputs it as the output voltage V2.
 なお、電圧閾値Vth1や許容範囲の上限Vmaxは、閾値設定部により設定(規定)される。閾値設定部は、電圧閾値Vth1や許容範囲の上限Vmaxを記憶したメモリであってもよいし、電圧閾値Vth1や許容範囲の上限Vmaxに相当する基準電圧を発生する定電圧源であってもよい。 Note that the voltage threshold Vth1 and the upper limit Vmax of the allowable range are set (defined) by the threshold setting unit. The threshold setting unit may be a memory that stores the voltage threshold Vth1 and the upper limit Vmax of the allowable range, or may be a constant voltage source that generates a reference voltage corresponding to the voltage threshold Vth1 and the upper limit Vmax of the allowable range. .
 <<遮断回路>>
 遮断回路3は、第1スイッチ21と、第2スイッチ22と、制御部24とを有している。すなわち、本実施形態においては、変圧回路2の一部(第1スイッチ21、第2スイッチ22、制御部24)が遮断回路3に兼用されている。
<< Cut-off circuit >>
The cutoff circuit 3 includes a first switch 21, a second switch 22, and a control unit 24. That is, in this embodiment, a part of the transformer circuit 2 (the first switch 21, the second switch 22, and the control unit 24) is also used as the cutoff circuit 3.
 第1スイッチ21は、上述したように一対の入力端子41,42とトランス23の一次巻線との間に電気的に接続されている。第2スイッチ22は、上述したように一対の入力端子41,42と一対の出力端子51,52との間に電気的に接続されている。したがって、第1スイッチ21および第2スイッチ22の両方がオフすることで、遮断回路3は、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断する(切り離す)ことができる。 The first switch 21 is electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23 as described above. The second switch 22 is electrically connected between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 as described above. Accordingly, when both the first switch 21 and the second switch 22 are turned off, the blocking circuit 3 electrically disconnects (disconnects) the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52. )be able to.
 ここで、遮断回路3は、入力電圧V1の電圧値が許容範囲を逸脱した場合に、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断するように構成されている。つまり、遮断回路3は、入力電圧V1の電圧値が許容範囲内にあれば、一対の入力端子41,42と一対の出力端子51,52との間を電気的に接続した状態(以下、「定常状態」という)となる。また、遮断回路3は、入力電圧V1の電圧値が許容範囲を逸脱すれば、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断した状態(以下、「遮断状態」という)となる。 Here, the cutoff circuit 3 is configured to electrically cut off between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 when the voltage value of the input voltage V1 deviates from the allowable range. Has been. That is, when the voltage value of the input voltage V1 is within an allowable range, the cutoff circuit 3 is in a state in which the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 are electrically connected (hereinafter, “ It is called “steady state”. Further, when the voltage value of the input voltage V1 deviates from the allowable range, the cutoff circuit 3 electrically disconnects between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52 (hereinafter, “ It is called “blocking state”.
 許容範囲は、下限がなく、上限のみが設定された範囲である。そのため、電圧値が許容範囲内にあることは、電圧値が許容範囲の上限未満であることと同義であり、電圧値が許容値を逸脱することは、電圧値が許容範囲の上限以上であることと同義である。そこで、遮断回路3は、入力電圧V1の電圧値と許容範囲の上限Vmax(図3参照)との比較結果に応じて、定常状態と遮断状態とを切り替えるように構成されている。定常状態と遮断状態との切り替えは、以下に説明するように制御部24によって行われる。 The allowable range is a range where there is no lower limit and only the upper limit is set. Therefore, the voltage value being within the allowable range is synonymous with the voltage value being less than the upper limit of the allowable range, and the voltage value deviating from the allowable value is greater than or equal to the upper limit of the allowable range. It is synonymous with that. Therefore, the cutoff circuit 3 is configured to switch between the steady state and the cutoff state according to the comparison result between the voltage value of the input voltage V1 and the upper limit Vmax (see FIG. 3) of the allowable range. Switching between the steady state and the cutoff state is performed by the control unit 24 as described below.
 すなわち、制御部24は、遮断回路3に特有の機能として、入力電圧V1の電圧値が許容範囲を逸脱した場合に、第1スイッチ21および第2スイッチ22の両方をオフにすることで、遮断回路3を遮断状態とする機能を有している。具体的には、制御部24は、監視部242にて取得した検出値(入力電圧V1の電圧値)を許容範囲の上限Vmaxと比較し、入力電圧V1の電圧値が上限Vmax以上であれば、駆動部241にて第1スイッチ21および第2スイッチ22の両方をオフにする。したがって、入力電圧V1の電圧値が許容範囲を逸脱したときには、遮断回路3は遮断状態となり、出力電圧V2の出力を停止する。なお、入力電圧V1の電圧値が許容範囲内にある場合、遮断回路3は定常状態となるため、制御部24は、第1スイッチ21と第2スイッチ22との一方をオンにすることで、変圧回路2を第1状態あるいは第2状態とする。 That is, as a function unique to the cutoff circuit 3, the control unit 24 turns off both the first switch 21 and the second switch 22 when the voltage value of the input voltage V1 deviates from the allowable range. It has a function to turn off the circuit 3. Specifically, the control unit 24 compares the detection value (voltage value of the input voltage V1) acquired by the monitoring unit 242 with the upper limit Vmax of the allowable range, and if the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax. The drive unit 241 turns off both the first switch 21 and the second switch 22. Therefore, when the voltage value of the input voltage V1 deviates from the allowable range, the cutoff circuit 3 enters the cutoff state and stops outputting the output voltage V2. Note that when the voltage value of the input voltage V1 is within the allowable range, the cutoff circuit 3 is in a steady state, so the control unit 24 turns on one of the first switch 21 and the second switch 22, The transformer circuit 2 is set to the first state or the second state.
 また、制御部24は、遮断回路(第1スイッチ21および第2スイッチ22)3よりも一対の入力端子41,42側から、動作用電力を受けるように構成されている。これにより、遮断回路3が遮断状態であっても制御部24に電力供給されるため、制御部24は常時、動作可能である。 Further, the control unit 24 is configured to receive power for operation from the pair of input terminals 41 and 42 rather than the cutoff circuit (first switch 21 and second switch 22) 3. As a result, even when the cutoff circuit 3 is in the cutoff state, power is supplied to the control unit 24, so that the control unit 24 can always operate.
 <<動作>>
 次に、上述したように構成される電圧安定化装置1の動作について、図3を参照して説明する。図3では、横軸を入力電圧V1、縦軸を出力電圧V2として、入力電圧V1の電圧値と出力電圧V2の電圧値との関係を表している(いずれも実効値)。ここでは一例として、電圧閾値Vth1は240〔V〕であり、許容範囲の上限Vmaxは270〔V〕である。許容範囲は、電圧閾値Vth1未満の範囲である第1範囲Z1と、電圧閾値Vth1以上で上限Vmax未満である第2範囲Z2とを合わせた範囲となる。
<< Operation >>
Next, the operation of the voltage stabilizing device 1 configured as described above will be described with reference to FIG. In FIG. 3, the horizontal axis represents the input voltage V1 and the vertical axis represents the output voltage V2, and the relationship between the voltage value of the input voltage V1 and the voltage value of the output voltage V2 is represented (both are effective values). Here, as an example, the voltage threshold Vth1 is 240 [V], and the upper limit Vmax of the allowable range is 270 [V]. The allowable range is a range obtained by combining the first range Z1 that is less than the voltage threshold Vth1 and the second range Z2 that is greater than or equal to the voltage threshold Vth1 and less than the upper limit Vmax.
 この電圧安定化装置1において、入力電圧V1の電圧値が電圧閾値Vth1未満の第1範囲Z1内にある場合、変圧回路2が第1状態となり、遮断回路3が定常状態となる。この場合、入力電圧V1はそのまま出力電圧V2として出力されることになる。そのため、第1範囲Z1内においては、入力電圧V1の電圧値と出力電圧V2の電圧値とは等しくなる。 In this voltage stabilizing device 1, when the voltage value of the input voltage V1 is within the first range Z1 less than the voltage threshold Vth1, the transformer circuit 2 is in the first state, and the cutoff circuit 3 is in the steady state. In this case, the input voltage V1 is output as it is as the output voltage V2. Therefore, in the first range Z1, the voltage value of the input voltage V1 is equal to the voltage value of the output voltage V2.
 また、入力電圧V1の電圧値が電圧閾値Vth1以上で上限Vmax未満の第2範囲Z2内にある場合、変圧回路2が第2状態となり、遮断回路3が定常状態となる。この場合、入力電圧V1は変圧回路2にて降圧され出力電圧V2として出力されることになる。そのため、第2範囲Z2内においては、入力電圧V1の電圧値よりも出力電圧V2の電圧値が小さくなる。ここで、第2状態にある変圧回路2の変圧比(つまりトランス23の変圧比)は、上限Vmax(入力電圧V1の電圧値が第2範囲Z2内で最大)となったときの出力電圧V2の電圧値が電圧閾値Vth1(ここでは240〔V〕)以下となるように、設定されている。 Also, when the voltage value of the input voltage V1 is within the second range Z2 that is equal to or higher than the voltage threshold Vth1 and less than the upper limit Vmax, the transformer circuit 2 is in the second state, and the cutoff circuit 3 is in the steady state. In this case, the input voltage V1 is stepped down by the transformer circuit 2 and output as the output voltage V2. Therefore, the voltage value of the output voltage V2 is smaller than the voltage value of the input voltage V1 within the second range Z2. Here, the transformation ratio of the transformer circuit 2 in the second state (that is, the transformation ratio of the transformer 23) is the upper limit Vmax (the output voltage V2 when the voltage value of the input voltage V1 is the maximum within the second range Z2). Is set to be equal to or lower than the voltage threshold Vth1 (240 [V] in this case).
 一方、電圧安定化装置1において、入力電圧V1の電圧値が許容範囲の上限Vmax以上である場合、遮断回路3が遮断状態となる。この場合、遮断回路3が、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断する。そのため、入力電圧V1の電圧値が上限Vmaxをどれだけ上回っているかにかかわらず、出力電圧V2の出力が停止され、出力電圧V2の電圧値は0〔V〕となる。 On the other hand, in the voltage stabilization device 1, when the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax of the allowable range, the cutoff circuit 3 enters a cutoff state. In this case, the blocking circuit 3 electrically blocks between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52. Therefore, regardless of how much the voltage value of the input voltage V1 exceeds the upper limit Vmax, the output of the output voltage V2 is stopped and the voltage value of the output voltage V2 becomes 0 [V].
 要するに、電圧安定化装置1は、入力電圧V1の電圧値が許容範囲(第1範囲Z1および第2範囲Z2)内にあれば、変圧回路2にて入力電圧V1を変圧して、出力電圧V2をある範囲(ここでは電圧閾値Vth1以下)内に収めることができる。さらに、電圧安定化装置1は、入力電圧V1の電圧値が許容範囲(第1範囲Z1および第2範囲Z2)を逸脱すると、遮断回路3にて出力電圧V2の出力を停止して、出力電圧V2をある範囲(ここでは閾値Vth1以下、例えば0〔V〕)内に収めることができる。このように電圧安定化装置1は、変圧回路2と遮断回路3とを組み合わせることにより、広範囲の入力電圧V1に対して、出力電圧V2の安定化を図ることができる。 In short, if the voltage value of the input voltage V1 is within the allowable range (first range Z1 and second range Z2), the voltage stabilizing device 1 transforms the input voltage V1 by the transformer circuit 2 and outputs the output voltage V2. Can be within a certain range (here, the voltage threshold Vth1 or less). Furthermore, when the voltage value of the input voltage V1 deviates from the allowable range (the first range Z1 and the second range Z2), the voltage stabilizing device 1 stops the output of the output voltage V2 in the cutoff circuit 3, and the output voltage V2 can be within a certain range (here, the threshold value Vth1 or less, for example, 0 [V]). As described above, the voltage stabilizing device 1 can stabilize the output voltage V2 with respect to the input voltage V1 in a wide range by combining the transformer circuit 2 and the cutoff circuit 3.
 先行文献1の装置は系統電圧が所定の上限と下限の間に設定された規定範囲外となった場合に電力系統を電気機器から切り離すのみであり、入力電圧を変圧して出力する機能を有していない。これは、例えば最大で上記Vmax(270〔V〕)の電圧を電気機器に対し出力し続けることを意味する。上記Vmax(270〔V〕)は電気機器の使用定格電圧を超える電圧値である。電気機器がそのような状態に長期間もしくは多数回さらされると電気機器内にある電子部品が劣化し、短寿命となる可能性がある。 The device of the prior art document 1 has a function of transforming the input voltage and outputting it only to disconnect the power system from the electrical equipment when the system voltage falls outside the specified range set between the predetermined upper and lower limits. Not done. This means that, for example, the maximum voltage Vmax (270 [V]) is continuously output to the electric device. The above Vmax (270 [V]) is a voltage value exceeding the rated voltage of use of the electric equipment. When an electric device is exposed to such a state for a long time or many times, an electronic component in the electric device may be deteriorated, resulting in a short life.
 それに対し本実施形態では変圧回路2と遮断回路3とを組み合わせることにより、広範囲の入力電圧V1に対して、安定した出力電圧V2を電気機器に提供することができる。これにより、上記懸念事項を低減できる、という利点がある。 On the other hand, in the present embodiment, by combining the transformer circuit 2 and the cutoff circuit 3, it is possible to provide a stable output voltage V2 to an electric device with respect to a wide range of input voltage V1. Thereby, there exists an advantage that the said concern can be reduced.
 <電源装置の具体例>
 本実施形態の電源装置6は、図4に示すように、一対の接続端子61,62に加えて、一対の(電源装置6側)出力端子63,64、整流回路65、絶縁回路66、降圧回路67、および(電源装置6側)制御部68をさらに備えている。
<Specific examples of power supply>
As shown in FIG. 4, the power supply device 6 of the present embodiment includes a pair of output terminals 63 and 64 (a power supply device 6 side), a rectifier circuit 65, an insulation circuit 66, a step-down voltage in addition to the pair of connection terminals 61 and 62. A circuit 67 and a control unit 68 (on the power supply device 6 side) are further provided.
 一対の接続端子61,62は、電圧安定化装置1の一対の出力端子51,52に電気的に接続される。一対の出力端子63,64は、電気機器8に電気的に接続される。整流回路65はダイオードブリッジを用いて構成されている。絶縁回路66は、フライバック方式などの絶縁型DC/DCコンバータからなる。降圧回路67は、スイッチング素子を含むDC/DCコンバータからなる。制御部68は、一対の接続端子61,62間の入力電圧V3、並びに一対の出力端子63,64間の出力電圧V4の電圧値、および降圧回路67の出力電流の電流値を監視し、監視結果に応じて降圧回路67のスイッチング素子を制御する。 The pair of connection terminals 61 and 62 are electrically connected to the pair of output terminals 51 and 52 of the voltage stabilizing device 1. The pair of output terminals 63 and 64 are electrically connected to the electric device 8. The rectifier circuit 65 is configured using a diode bridge. The insulation circuit 66 is formed of an insulation type DC / DC converter such as a flyback method. The step-down circuit 67 is composed of a DC / DC converter including a switching element. The control unit 68 monitors and monitors the input voltage V3 between the pair of connection terminals 61 and 62, the voltage value of the output voltage V4 between the pair of output terminals 63 and 64, and the current value of the output current of the step-down circuit 67. The switching element of the step-down circuit 67 is controlled according to the result.
 本実施形態において、電源装置6は、電圧安定化装置1と電気機器8との間に電気的に接続され、交流電圧を直流電圧に変換して電気機器8に出力する電源アダプタ(ACアダプタ)である。すなわち、電源装置6は、たとえばパーソナルコンピュータのように直流電圧の供給を受けて動作する電気機器8と共に用いられ、電圧安定化装置1の出力電圧V2を所定値の直流電圧に変換して出力電圧V4として電気機器8に供給する。 In the present embodiment, the power supply device 6 is electrically connected between the voltage stabilizing device 1 and the electric device 8, and converts the AC voltage into a DC voltage and outputs it to the electric device 8 (AC adapter). It is. That is, the power supply device 6 is used together with an electric device 8 that operates by receiving a DC voltage supply, such as a personal computer, and converts the output voltage V2 of the voltage stabilizing device 1 into a DC voltage of a predetermined value and outputs an output voltage. It supplies to the electric equipment 8 as V4.
 この電源装置6は、入力電圧V3の電圧値が適応範囲内にあれば動作可能となるように構成されている。本実施形態では、適応範囲は一例として100〔V〕~240〔V〕である。電源装置6は、入力電圧V3の電圧値が適応範囲内にあれば、降圧回路67から所定の大きさ(たとえば12〔V〕)の直流電圧を出力電圧V4として出力する。さらに、この電源装置6においては、一対の接続端子61,62と一対の出力端子63,64との間が絶縁回路66で電気的に絶縁されているため、電圧安定化装置1と電気機器8との間の電気的な絶縁が確保される。 The power supply device 6 is configured to be operable if the voltage value of the input voltage V3 is within the applicable range. In this embodiment, the adaptation range is 100 [V] to 240 [V] as an example. If the voltage value of the input voltage V3 is within the applicable range, the power supply device 6 outputs a DC voltage of a predetermined magnitude (for example, 12 [V]) as the output voltage V4 from the step-down circuit 67. Further, in the power supply device 6, since the pair of connection terminals 61 and 62 and the pair of output terminals 63 and 64 are electrically insulated by the insulation circuit 66, the voltage stabilization device 1 and the electric device 8 Electrical insulation between the two is ensured.
 電源装置6は、入力電圧V3の電圧値が適応範囲の下限(100〔V〕)を下回る場合でも、ある程度の大きさの入力電圧V3が入力されていれば、電気機器8に出力電圧V4を出力可能である。ただし、この場合に、電源装置6の出力電圧V4の大きさが定格値(たとえば12〔V〕)であることは必須ではなく、定格値よりも小さくなってもよい。 Even if the voltage value of the input voltage V3 falls below the lower limit (100 [V]) of the adaptive range, the power supply device 6 supplies the output voltage V4 to the electric device 8 as long as the input voltage V3 having a certain level is input. Output is possible. However, in this case, the magnitude of the output voltage V4 of the power supply device 6 is not necessarily a rated value (for example, 12 [V]), and may be smaller than the rated value.
 <効果>
 以上説明した本実施形態の電圧安定化装置1によれば、入力電圧V1の許容範囲内におけるある程度の変動については、変圧回路2にて入力電圧V1を変圧することで出力電圧V2の安定化を図ることができる。また、電圧安定化装置1は、入力電圧V1の電圧値が大幅に変動して許容範囲を逸脱した場合には、遮断回路3にて一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断し、出力電圧V2の出力を停止する。ここで、上記許容範囲は下限がなく上限Vmaxのみが設定された範囲であるので、入力電圧V1の電圧値がどれだけ低下しても、遮断回路3によって出力電圧V2の出力が停止されることはない。したがって、この電圧安定化装置1によれば、電気機器8の保護を図りながらも、電気機器8が動作を停止する頻度を低減できる、という利点がある。
<Effect>
According to the voltage stabilizing device 1 of the present embodiment described above, the output voltage V2 is stabilized by transforming the input voltage V1 by the transformer circuit 2 for a certain degree of variation within the allowable range of the input voltage V1. Can be planned. In addition, when the voltage value of the input voltage V1 greatly fluctuates and deviates from the allowable range, the voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a pair of output terminals 51 and 52 in the cutoff circuit 3. And the output of the output voltage V2 is stopped. Here, since the allowable range is a range in which only the upper limit Vmax is set without a lower limit, the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. There is no. Therefore, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
 また、電圧安定化装置1を用いた電源システム100によれば、入力電圧V1の許容範囲内におけるある程度の変動については、変圧回路2が入力電圧V1を変圧することで出力電圧V2が安定化され、電源装置6は動作可能になる。また、入力電圧V1の電圧値が大幅に変動して許容範囲を逸脱した場合には、遮断回路3が出力電圧V2の出力を停止して、電源装置6は動作を停止する。ここで、上記許容範囲は下限がなく上限Vmaxのみが設定された範囲であるので、入力電圧V1の電圧値がどれだけ低下しても、遮断回路3によって出力電圧V2の出力が停止されることはない。したがって、この電源システム100によれば、電気機器8の保護を図りながらも、電気機器8が動作を停止する頻度を低減できる、という利点がある。 Further, according to the power supply system 100 using the voltage stabilizing device 1, the output voltage V2 is stabilized by the transformer circuit 2 transforming the input voltage V1 with respect to a certain degree of fluctuation in the allowable range of the input voltage V1. The power supply device 6 becomes operable. When the voltage value of the input voltage V1 fluctuates greatly and deviates from the allowable range, the cutoff circuit 3 stops outputting the output voltage V2, and the power supply device 6 stops its operation. Here, since the allowable range is a range in which only the upper limit Vmax is set without a lower limit, the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. There is no. Therefore, according to the power supply system 100, there is an advantage that the frequency with which the electric device 8 stops operating can be reduced while the electric device 8 is protected.
 以上より、電圧安定化装置1および電源システム100は、入力電圧V1の電圧値が許容範囲の上限Vmax以上である場合のみ出力電圧V2の出力を停止することから、過電圧保護機能を有していると言える。 As described above, the voltage stabilizing device 1 and the power supply system 100 have an overvoltage protection function because the output of the output voltage V2 is stopped only when the voltage value of the input voltage V1 is equal to or higher than the upper limit Vmax of the allowable range. It can be said.
 したがって、電圧安定化装置1および電源システム100は、OVR(Overvoltage relay)装置としても機能すると言える。 Therefore, it can be said that the voltage stabilizing device 1 and the power supply system 100 also function as an OVR (Overvoltage Relay) device.
 また、本実施形態のように、変圧回路2は、入力電圧V1の電圧値と許容範囲内に設定された電圧閾値との大小関係に応じて、入力電圧V1と出力電圧V2との間の変圧比を切り替えることで、出力電圧V2を安定させるように構成されていることが好ましい。この構成によれば、電圧閾値の設定如何により、出力電圧V2をどの程度の範囲に安定させるかを調節することができる。ただし、変圧回路2が入力電圧V1と出力電圧V2との間の変圧比を切り替えることで出力電圧V2を安定させる、という構成は電圧安定化装置1に必須の構成ではなく、適宜省略可能である。 Further, as in the present embodiment, the transformer circuit 2 is configured to transform the voltage between the input voltage V1 and the output voltage V2 in accordance with the magnitude relationship between the voltage value of the input voltage V1 and the voltage threshold value set within the allowable range. It is preferable that the output voltage V2 is stabilized by switching the ratio. According to this configuration, it is possible to adjust to what extent the output voltage V2 is stabilized depending on the setting of the voltage threshold value. However, the configuration in which the transformer circuit 2 stabilizes the output voltage V2 by switching the transformation ratio between the input voltage V1 and the output voltage V2 is not an essential configuration for the voltage stabilizing device 1 and can be omitted as appropriate. .
 また、本実施形態のように、上記電圧閾値は1つだけ設定されていることが好ましい。この場合、変圧回路2は、入力電圧V1の電圧値が電圧閾値Vth1未満であれば第1状態となり、入力電圧V1の電圧値が電圧閾値Vth1以上であれば第2状態となるように構成されていることが好ましい。第1状態は、入力電圧V1をそのまま出力電圧V2として出力する状態であり、第2状態は、入力電圧V1を降圧して出力電圧V2として出力する状態である。 Further, it is preferable that only one voltage threshold is set as in the present embodiment. In this case, the transformer circuit 2 is configured to be in the first state if the voltage value of the input voltage V1 is less than the voltage threshold Vth1, and to be in the second state if the voltage value of the input voltage V1 is equal to or greater than the voltage threshold Vth1. It is preferable. The first state is a state where the input voltage V1 is output as it is as the output voltage V2, and the second state is a state where the input voltage V1 is stepped down and output as the output voltage V2.
 この構成によれば、変圧回路2は、変圧比が2段階で切替可能であればよいので、変圧回路2の構成部品(スイッチなど)の数を最小限に抑えることができ、変圧回路2の簡略化を図ることができる。とくに、本実施形態のように、電圧安定化装置1が、比較的広い適応範囲(たとえば100〔V〕~240〔V〕)の電圧に適応した電源装置6と共に用いられる場合、適応範囲内での出力電圧V2の変動は許容されることになる。したがって、変圧回路2で切り替えられる変圧比が2段階だけであることにより出力電圧V2に多少の変動が生じたとしても、電源装置6の動作に支障はない。なお、電圧閾値が1つだけであることは電圧安定化装置1に必須の構成ではなく、電圧閾値は2つ以上設定されていてもよい。この点については、下記「比較例」の欄で説明する。 According to this configuration, since the transformer circuit 2 only needs to be able to switch the transformation ratio in two stages, the number of components (switches, etc.) of the transformer circuit 2 can be minimized, and the transformer circuit 2 Simplification can be achieved. In particular, when the voltage stabilizing device 1 is used together with the power supply device 6 adapted to a voltage in a relatively wide adaptation range (for example, 100 [V] to 240 [V]) as in this embodiment, the voltage stabilization device 1 is within the adaptation range. The fluctuation of the output voltage V2 is allowed. Therefore, even if the output voltage V <b> 2 slightly varies due to only two steps of the transformation ratio switched by the transformer circuit 2, there is no problem in the operation of the power supply device 6. Note that the fact that there is only one voltage threshold is not essential for the voltage stabilizing device 1, and two or more voltage thresholds may be set. This will be described in the “Comparative Example” section below.
 また、本実施形態のように、変圧回路2は、トランス23と、第1スイッチ21と、第2スイッチ22と、入力電圧V1の電圧値と電圧閾値Vth1との比較結果に応じて第1スイッチ21および第2スイッチ22を制御する制御部24とを有することが好ましい。第1スイッチ21は、一対の入力端子41,42とトランス23の一次巻線との間に電気的に接続され、第2スイッチ22は、一対の入力端子41,42と一対の出力端子51,52との間に電気的に接続されている。トランス23の二次巻線は、一対の出力端子51,52間に電気的に接続されている。制御部24は、入力電圧V1の電圧値が電圧閾値Vth1未満であれば、第1スイッチ21をオフにして第2スイッチ22をオンにすることで変圧回路2を上記第1状態とするように構成されている。さらに、制御部24は、入力電圧V1の電圧値が電圧閾値Vth1以上であれば、第1スイッチ21をオンにして第2スイッチ22をオフにすることで変圧回路2を上記第2状態とするように構成されている。 Further, as in the present embodiment, the transformer circuit 2 includes the transformer 23, the first switch 21, the second switch 22, and the first switch according to the comparison result between the voltage value of the input voltage V1 and the voltage threshold value Vth1. 21 and a control unit 24 for controlling the second switch 22. The first switch 21 is electrically connected between the pair of input terminals 41 and 42 and the primary winding of the transformer 23, and the second switch 22 includes the pair of input terminals 41 and 42 and the pair of output terminals 51, 52 is electrically connected. The secondary winding of the transformer 23 is electrically connected between the pair of output terminals 51 and 52. If the voltage value of the input voltage V1 is less than the voltage threshold Vth1, the control unit 24 turns off the first switch 21 and turns on the second switch 22 so that the transformer circuit 2 is in the first state. It is configured. Furthermore, if the voltage value of the input voltage V1 is equal to or higher than the voltage threshold Vth1, the control unit 24 turns on the first switch 21 and turns off the second switch 22 to set the transformer circuit 2 in the second state. It is configured as follows.
 この構成によれば、変圧比の切り替え(第1状態と第2状態との切り替え)のための処理が、第1スイッチ21および第2スイッチ22の切り替えだけで済むので、制御部24の処理が比較的簡単になる。しかも、第1状態においては、入力電圧V1がトランス23を通さずにそのまま出力電圧V2となるので、常にトランス23を通して電力が供給される構成に比べて、トランス23での電力損失並びに発熱が低減される、という利点がある。また、第1スイッチ21がトランス23の一次側(一対の入力端子41,42側)に設けられるので、第1スイッチ21がオフすることで、トランス23への通電が停止された状態となる。そのため、電圧安定化装置1は、変圧回路2が第1状態にあるとき、および遮断回路3が遮断状態にあるときには、トランス23への通電を停止し、トランス23での電力損失並びに発熱をなくすことができる。電圧安定化装置1は、たとえば巻線の絶縁不良など、トランス23の異常の発生時にトランス23への通電を停止することも可能である。この点については、実施形態3の欄で説明する。なお、第1スイッチ21がトランス23の一次側に設けられることは電圧安定化装置1に必須の構成ではなく、第1スイッチ21がトランス23の二次側に設けられていてもよい。この点については、実施形態2の欄で説明する。 According to this configuration, since the process for switching the transformation ratio (switching between the first state and the second state) only needs to be performed by switching the first switch 21 and the second switch 22, the process of the control unit 24 is performed. It becomes relatively easy. Moreover, in the first state, the input voltage V1 becomes the output voltage V2 as it is without passing through the transformer 23, so that power loss and heat generation in the transformer 23 are reduced as compared with the configuration in which power is always supplied through the transformer 23. There is an advantage that. Moreover, since the 1st switch 21 is provided in the primary side (a pair of input terminals 41 and 42 side) of the transformer 23, when the 1st switch 21 turns off, it will be in the state by which the electricity supply to the transformer 23 was stopped. Therefore, the voltage stabilizing device 1 stops energization of the transformer 23 when the transformer circuit 2 is in the first state and when the cutoff circuit 3 is in the cutoff state, and eliminates power loss and heat generation in the transformer 23. be able to. The voltage stabilizing device 1 can also stop energization of the transformer 23 when an abnormality of the transformer 23 occurs, for example, an insulation failure of the winding. This point will be described in the column of the third embodiment. Note that the provision of the first switch 21 on the primary side of the transformer 23 is not essential for the voltage stabilizing device 1, and the first switch 21 may be provided on the secondary side of the transformer 23. This point will be described in the column of the second embodiment.
 また、本実施形態では、トランス23は、1つの巻線を一次巻線と二次巻線とに共用した単巻トランスである。単巻トランスでは、一次巻線と二次巻線との共用部分である分路巻線のインピーダンスが小さいため、電圧変動が小さい。また、分路巻線では一次巻線と二次巻線との巻数比に応じた電流しか流れないため、絶縁トランスに比べて巻線の線径を小さくすることができる。したがって、トランス23に単巻トランスを用いることで、絶縁トランスを用いる場合に比べてトランス23の小型化および軽量化が可能になる。 In this embodiment, the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding. In the single-winding transformer, since the impedance of the shunt winding, which is a shared part of the primary winding and the secondary winding, is small, voltage fluctuation is small. Further, since only the current corresponding to the turn ratio between the primary winding and the secondary winding flows in the shunt winding, the wire diameter of the winding can be made smaller than that of the insulating transformer. Therefore, by using a single-winding transformer for the transformer 23, the transformer 23 can be made smaller and lighter than when an insulating transformer is used.
 <比較例>
 次に、図5に示す比較例としての電圧安定化装置10について説明する。
<Comparative example>
Next, a voltage stabilizing device 10 as a comparative example shown in FIG. 5 will be described.
 比較例の電圧安定化装置10は、変圧回路2が3段階以上の変圧比を切替可能な点、並びに許容範囲が上限Vmaxだけでなく下限Vmin(図6参照)も設定された範囲である点で、本実施形態の電圧安定化装置1と相違する。さらに、比較例の電圧安定化装置10は、複数の第1スイッチ21(1),21(2),…21(n)(nは2以上の整数)がトランス23の二次側に設けられている点でも、本実施形態の電圧安定化装置1と相違する。電圧安定化装置10において電圧安定化装置1と同様の構成については、共通の符号を付して適宜説明を省略する。 The voltage stabilizing device 10 of the comparative example is a point in which the transformer circuit 2 can switch between three or more steps of the transformation ratio, and the allowable range is a range in which not only the upper limit Vmax but also the lower limit Vmin (see FIG. 6) is set. Thus, it is different from the voltage stabilizing device 1 of the present embodiment. Furthermore, in the voltage stabilizing device 10 of the comparative example, a plurality of first switches 21 (1) , 21 (2) ,... 21 (n) (n is an integer of 2 or more) are provided on the secondary side of the transformer 23. This is also different from the voltage stabilizing device 1 of the present embodiment. In the voltage stabilizing device 10, the same components as those of the voltage stabilizing device 1 are denoted by common reference numerals, and the description thereof is omitted as appropriate.
 電圧安定化装置10においては、トランス23は、両端を第1端子231および第2端子232とする1つの巻線に、複数のタップ233を有する単巻トランスである。ここでは、トランス23は、巻線の一のタップ233と第2端子232との間の部分が一次巻線となり、巻線の全体(第1端子231と第2端子232との間)が二次巻線となることで、トランス23での昇圧が可能である。複数の第1スイッチ21(1),21(2),…21(n)は、巻線の第1端子231および複数のタップ233と一対一に対応するように、トランス23と第1の出力端子51との間に電気的に接続されている。制御部24は、複数の第1スイッチ21(1),21(2),…21(n)および第2スイッチ22のいずれかを択一的にオンすることにより、変圧回路2の変圧比(V1/V2)を切り替える。 In the voltage stabilizing device 10, the transformer 23 is a single-winding transformer having a plurality of taps 233 in one winding having both ends of the first terminal 231 and the second terminal 232. Here, in the transformer 23, a portion between one tap 233 of the winding and the second terminal 232 is a primary winding, and the entire winding (between the first terminal 231 and the second terminal 232) is two. By using the next winding, boosting by the transformer 23 is possible. The plurality of first switches 21 (1) , 21 (2) ,... 21 (n) correspond to the first terminal 231 and the plurality of taps 233 of the winding in a one-to-one correspondence with the transformer 23 and the first output. The terminal 51 is electrically connected. The control unit 24 selectively turns on any of the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) and the second switch 22, thereby transforming the transformation ratio ( V1 / V2) is switched.
 このように構成される電圧安定化装置10の動作について、図6を参照して説明する。図6では、横軸を入力電圧V1、縦軸を出力電圧V2として、入力電圧V1の電圧値と出力電圧V2の電圧値との関係を表している(いずれも実効値)。また、電圧閾値としては、Vth1,Vth2,Vth3の3つの電圧閾値が設定されている。ここでは一例として、電圧閾値Vth1は240〔V〕、電圧閾値Vth2は170〔V〕、電圧閾値Vth3は200〔V〕であり、許容範囲の上限Vmaxは270〔V〕、下限Vminは140〔V〕である。許容範囲は、下限Vminから電圧閾値Vth2までの第1範囲Z11と、電圧閾値Vth2から電圧閾値Vth3までの第2範囲Z12と、電圧閾値Vth3から電圧閾値Vth1までの第3範囲Z13と、電圧閾値Vth1から上限Vmaxまでの第4範囲Z14とを合わせた範囲となる。 The operation of the voltage stabilizing device 10 configured as described above will be described with reference to FIG. In FIG. 6, the horizontal axis represents the input voltage V1, and the vertical axis represents the output voltage V2. The relationship between the voltage value of the input voltage V1 and the voltage value of the output voltage V2 is represented (both are effective values). In addition, three voltage thresholds Vth1, Vth2, and Vth3 are set as voltage thresholds. As an example, the voltage threshold Vth1 is 240 [V], the voltage threshold Vth2 is 170 [V], the voltage threshold Vth3 is 200 [V], the upper limit Vmax of the allowable range is 270 [V], and the lower limit Vmin is 140 [V]. V]. The allowable range includes a first range Z11 from the lower limit Vmin to the voltage threshold Vth2, a second range Z12 from the voltage threshold Vth2 to the voltage threshold Vth3, a third range Z13 from the voltage threshold Vth3 to the voltage threshold Vth1, and a voltage threshold. The range is a combination of the fourth range Z14 from Vth1 to the upper limit Vmax.
 この電圧安定化装置10においては、入力電圧V1の電圧値が許容範囲の上限Vmax以上である場合だけでなく、入力電圧V1の電圧値が許容範囲の下限Vmin未満である場合にも、遮断回路3が遮断状態となる。これらの場合、遮断回路3が、一対の入力端子41,42と一対の出力端子51,52との間を電気的に遮断するため、出力電圧V2の出力が停止され、出力電圧V2の電圧値は0〔V〕となる。 In this voltage stabilizing device 10, not only when the voltage value of the input voltage V1 is not less than the upper limit Vmax of the allowable range, but also when the voltage value of the input voltage V1 is less than the lower limit Vmin of the allowable range, 3 is in a cut-off state. In these cases, since the cutoff circuit 3 electrically cuts off between the pair of input terminals 41 and 42 and the pair of output terminals 51 and 52, the output of the output voltage V2 is stopped, and the voltage value of the output voltage V2 Becomes 0 [V].
 また、入力電圧V1の電圧値が許容範囲内にある場合、入力電圧V1の電圧値と電圧閾値Vth1,Vth2,Vth3の3つの電圧閾値との比較結果に応じて、変圧回路2の変圧比(V1/V2)が切り替わる。図6の例では、入力電圧V1の電圧値が、系統電圧の定格値(ここでは220〔V〕)が含まれる第3範囲Z13にあるときに、変圧比(V1/V2)が「1」となり、入力電圧V1はそのまま出力電圧V2として出力される。 Further, when the voltage value of the input voltage V1 is within the allowable range, the transformation ratio of the transformer circuit 2 (in accordance with the comparison result between the voltage value of the input voltage V1 and the three voltage thresholds Vth1, Vth2, and Vth3) V1 / V2) is switched. In the example of FIG. 6, when the voltage value of the input voltage V1 is in the third range Z13 including the rated value of the system voltage (here, 220 [V]), the transformation ratio (V1 / V2) is “1”. Thus, the input voltage V1 is output as it is as the output voltage V2.
 入力電圧V1の電圧値が、第1範囲Z11および第2範囲Z12のいずれかにあるときには、変圧比(V1/V2)が「1」より小さくなり、入力電圧V1は変圧回路2にて昇圧され出力電圧V2として出力される。とくに、入力電圧V1の電圧値が第1範囲Z11にあるときには、入力電圧V1の電圧値が第2範囲Z12にあるときによりもさらに変圧比(V1/V2)が小さくなる。また、入力電圧V1の電圧値が、第4範囲Z14にあるときには、変圧比(V1/V2)が「1」より大きくなり、入力電圧V1は変圧回路2にて降圧され出力電圧V2として出力される。 When the voltage value of the input voltage V1 is in one of the first range Z11 and the second range Z12, the transformation ratio (V1 / V2) is smaller than “1”, and the input voltage V1 is boosted by the transformer circuit 2. Output as output voltage V2. In particular, when the voltage value of the input voltage V1 is in the first range Z11, the transformation ratio (V1 / V2) is further smaller than when the voltage value of the input voltage V1 is in the second range Z12. When the voltage value of the input voltage V1 is in the fourth range Z14, the transformation ratio (V1 / V2) is greater than “1”, and the input voltage V1 is stepped down by the transformer circuit 2 and output as the output voltage V2. The
 要するに、電圧安定化装置10は、入力電圧V1の電圧値が許容範囲内にあれば、変圧回路2にて入力電圧V1を変圧して、出力電圧V2をある範囲(ここでは180〔V〕~240〔V〕程度の範囲)内に収めることができる。さらに、電圧安定化装置10は、入力電圧V1の電圧値が許容範囲を逸脱すると、遮断回路3にて出力電圧V2の出力を停止して、出力電圧V2をある範囲(ここでは閾値Vth1以下、例えば0〔V〕)内に収めることができる。 In short, if the voltage value of the input voltage V1 is within the allowable range, the voltage stabilizing device 10 transforms the input voltage V1 by the transformer circuit 2 to change the output voltage V2 within a certain range (here, 180 [V] to Within a range of about 240 [V]. Further, when the voltage value of the input voltage V1 deviates from the allowable range, the voltage stabilizing device 10 stops the output of the output voltage V2 in the cutoff circuit 3, and sets the output voltage V2 within a certain range (here, the threshold value Vth1 or less, For example, it can be within 0 [V]).
 以上説明したような比較例の電圧安定化装置10を、本実施形態の電圧安定化装置1と比較すると、本実施形態の方が、電気機器8が動作を停止する頻度を低減できることになる。すなわち、本実施形態では、許容範囲は下限がなく上限Vmaxのみが設定された範囲であるので、入力電圧V1の電圧値がどれだけ低下しても、遮断回路3によって出力電圧V2の出力が停止されることはなく、電気機器8が動作を停止する頻度が低減する。 When the voltage stabilizing device 10 of the comparative example as described above is compared with the voltage stabilizing device 1 of the present embodiment, the frequency of the electric device 8 stopping operation can be reduced in the present embodiment. That is, in the present embodiment, the allowable range is a range in which only the upper limit Vmax is set without a lower limit, so that the output of the output voltage V2 is stopped by the cutoff circuit 3 no matter how much the voltage value of the input voltage V1 decreases. The frequency with which the electrical device 8 stops operating is reduced.
 また、本実施形態の電圧安定化装置1は、比較例に比べて変圧回路2での変圧比の切替段数が少ない分、変圧回路2の構成部品(スイッチなど)の数を少なく抑えることができる。しかも、本実施形態の電圧安定化装置1では、変圧回路2が、入力電圧V1がトランス23を通さずにそのまま出力電圧V2となる第1状態と、入力電圧V1がトランス23にて変圧(降圧)される第2状態との二つの状態を切り替えるだけである。そのため、本実施形態では、第1スイッチ21をトランス23の一次側(一対の入力端子41,42側)に設けることが可能である。これに対して、比較例の電圧安定化装置10は、複数の第1スイッチ21(1),21(2),…21(n)および第2スイッチ22のいずれかを択一的にオンすることにより、変圧回路2の変圧比を切り替えている。そのため、比較例においては、複数の第1スイッチ21(1),21(2),…21(n)をトランス23の一次側(一対の入力端子41,42側)に設けることはできない。したがって、比較例において、トランス23への通電が停止された状態を実現するためには、変圧回路2の変圧比の切替用のスイッチ(複数の第1スイッチ21(1),21(2),…21(n)および第2スイッチ22)とは別のスイッチが、トランス23の一次側に必要となる。 In addition, the voltage stabilizing device 1 of the present embodiment can suppress the number of components (switches, etc.) of the transformer circuit 2 to a smaller extent because the number of switching stages of the transformation ratio in the transformer circuit 2 is smaller than in the comparative example. . In addition, in the voltage stabilizing device 1 of the present embodiment, the transformer circuit 2 has the first state in which the input voltage V1 becomes the output voltage V2 without passing through the transformer 23, and the input voltage V1 is transformed (step-down) by the transformer 23. It only switches between two states, the second state). Therefore, in the present embodiment, the first switch 21 can be provided on the primary side (the pair of input terminals 41 and 42 side) of the transformer 23. On the other hand, the voltage stabilization device 10 of the comparative example alternatively turns on any of the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) and the second switch 22. Thus, the transformation ratio of the transformer circuit 2 is switched. Therefore, in the comparative example, the plurality of first switches 21 (1) , 21 (2) ,... 21 (n) cannot be provided on the primary side (the pair of input terminals 41 and 42 side) of the transformer 23. Therefore, in the comparative example, in order to realize a state in which the power supply to the transformer 23 is stopped, a switch for switching the transformation ratio of the transformer circuit 2 (a plurality of first switches 21 (1) , 21 (2) , ... a switch different from 21 (n) and the second switch 22) is required on the primary side of the transformer 23.
 なお、本実施形態の電圧安定化装置1においても、上記比較例と同様に電圧閾値は2つ以上設定されていてもよい。この場合、電圧安定化装置1は、上記比較例と同様に、入力電圧V1の電圧値が許容範囲内にあるときの出力電圧V2を、電圧閾値が1つの場合よりも狭い範囲内に収めることが可能となる。 In the voltage stabilizing device 1 of the present embodiment, two or more voltage thresholds may be set as in the comparative example. In this case, as in the comparative example, the voltage stabilizing device 1 keeps the output voltage V2 when the voltage value of the input voltage V1 is within the allowable range within a narrower range than when the voltage threshold value is one. Is possible.
 <外観>
 次に、本実施形態の電圧安定化装置1の外観形状について、図7および図8を参照して説明する。図7と図8とは異なるタイプの電圧安定化装置1を表しており、図7は壁付けタイプ、図8はテーブルタップタイプの電圧安定化装置1である。
<Appearance>
Next, the external shape of the voltage stabilizing device 1 of the present embodiment will be described with reference to FIGS. FIG. 7 and FIG. 8 show different types of voltage stabilization devices 1, FIG. 7 shows a wall-mounted type voltage stabilization device 1, and FIG. 8 shows a table tap type voltage stabilization device 1.
 <<壁付けタイプ>>
 図7に示す壁付けタイプの電圧安定化装置1は、少なくとも変圧回路2および遮断回路3を収納した筐体91を備えている。筐体91は、壁W1に取り付けられる。図7に示す電圧安定化装置1は、少なくとも筐体91の前面が露出するような状態で、筐体91が壁W1内に埋め込まれて設置される。この電圧安定化装置1は、筐体91の背面に一対の入力端子41,42および接地入力端子43を有しており、系統電源7に電気的に接続された一対の屋内配線並びに接地線が壁W1内において一対の入力端子41,42および接地入力端子43に電気的に接続される。
<< Wall-mounted type >>
The wall-mounted voltage stabilizing device 1 shown in FIG. 7 includes a housing 91 that houses at least the transformer circuit 2 and the cutoff circuit 3. The casing 91 is attached to the wall W1. The voltage stabilizing device 1 shown in FIG. 7 is installed with the housing 91 embedded in the wall W1 with at least the front surface of the housing 91 exposed. The voltage stabilizing device 1 has a pair of input terminals 41 and 42 and a ground input terminal 43 on the back surface of the casing 91, and a pair of indoor wiring and grounding wires that are electrically connected to the system power supply 7 are provided. In the wall W1, the pair of input terminals 41 and 42 and the ground input terminal 43 are electrically connected.
 筐体91の前面には、アウトレット(コンセント)92が設けられている。アウトレット92には、3つの差込口921,922,923が形成されている。一対の出力端子51,52並びに接地送り端子53は、3つの差込口921,922,923に一対一で対応するように、筐体91内に設けられている。そのため、電源装置6のプラグがアウトレット92に接続されることにより、一対の出力端子51,52に、電源装置6の一対の接続端子61,62が電気的に接続されることになる。 An outlet 92 is provided on the front surface of the casing 91. Three outlets 921, 922, and 923 are formed in the outlet 92. The pair of output terminals 51 and 52 and the ground feed terminal 53 are provided in the housing 91 so as to correspond to the three insertion ports 921, 922 and 923 on a one-to-one basis. Therefore, when the plug of the power supply device 6 is connected to the outlet 92, the pair of connection terminals 61 and 62 of the power supply device 6 are electrically connected to the pair of output terminals 51 and 52.
 また、壁付けタイプの電圧安定化装置1は、アウトレット92の通電をオン・オフする手動スイッチ93を筐体91の前面に有している。手動スイッチ93は、たとえば一対の入力端子41,42と変圧回路2との間に電気的に接続され、オフ状態となることで、一対の入力端子41,42から変圧回路2を電気的に切り離すように構成されている。図7の例では、手動スイッチ93はアウトレット92の右側に配置されている。 The wall-mounted voltage stabilizing device 1 has a manual switch 93 for turning on / off the outlet 92 on the front surface of the casing 91. For example, the manual switch 93 is electrically connected between the pair of input terminals 41 and 42 and the transformer circuit 2 and is turned off to electrically disconnect the transformer circuit 2 from the pair of input terminals 41 and 42. It is configured as follows. In the example of FIG. 7, the manual switch 93 is disposed on the right side of the outlet 92.
 また、筐体91の前面には発光ダイオードなどを用いた表示部98が設けられている。表示部98は、たとえば変圧回路2の動作状態(第1状態と第2状態)や、遮断回路3の動作状態(定常状態と遮断状態)によって表示が切り替わるように構成されている。 Further, a display unit 98 using a light emitting diode or the like is provided on the front surface of the housing 91. The display unit 98 is configured to switch the display depending on, for example, the operation state (first state and second state) of the transformer circuit 2 and the operation state (steady state and cutoff state) of the cutoff circuit 3.
 以上説明したような壁付けタイプの電圧安定化装置1によれば、屋内配線に対して電気的に直接接続して使用されるので、壁付アウトレットとの間を電気的に接続するためのケーブルが不要であり、見映えよく設置可能である。しかも、壁付けタイプの電圧安定化装置1は、筐体91前面のアウトレット92にプラグを接続することで使用できるので、通常の壁付アウトレットと同様に使用でき、使い勝手がよい。なお、壁付けタイプの電圧安定化装置1は、図7に示すような埋込型に限らず、壁面上に取り付けられる露出型であってもよい。 According to the wall-mounting type voltage stabilizing device 1 as described above, since it is used by being directly electrically connected to the indoor wiring, it is a cable for electrically connecting the wall-mounted outlet. Is unnecessary and can be installed with good appearance. Moreover, since the wall-mounted voltage stabilizing device 1 can be used by connecting a plug to the outlet 92 on the front surface of the housing 91, it can be used in the same manner as a normal wall-mounted outlet, and is easy to use. The wall-mounted voltage stabilizing device 1 is not limited to the embedded type as shown in FIG. 7, but may be an exposed type that is attached on the wall surface.
 <<テーブルタップタイプ>>
 図8に示すテーブルタップタイプの電圧安定化装置1は、少なくとも変圧回路2および遮断回路3を収納したケース94を備えている。この電圧安定化装置1は、電源プラグ95とケーブル96とをさらに備えている。電源プラグ95は、一対の入力端子41,42および接地入力端子43からなる3本のピンを有している。ケーブル96は、電源プラグ95における一対の入力端子41,42および接地入力端子43と、ケース94内の変圧回路2および接地送り端子53との間を電気的に接続する。この電圧安定化装置1は、電源プラグ95が壁付アウトレットに接続されることにより、一対の入力端子41,42および接地入力端子43が系統電源7および接地線に電気的に接続される。
<< Table tap type >>
The table tap type voltage stabilizing device 1 shown in FIG. 8 includes a case 94 that houses at least the transformer circuit 2 and the cutoff circuit 3. The voltage stabilizing device 1 further includes a power plug 95 and a cable 96. The power plug 95 has three pins including a pair of input terminals 41 and 42 and a ground input terminal 43. The cable 96 electrically connects the pair of input terminals 41 and 42 and the ground input terminal 43 in the power plug 95 to the transformer circuit 2 and the ground feed terminal 53 in the case 94. In the voltage stabilizing device 1, the pair of input terminals 41 and 42 and the ground input terminal 43 are electrically connected to the system power supply 7 and the ground line by connecting the power plug 95 to the wall outlet.
 ケース94の上面には、アウトレット(コンセント)97が設けられている。アウトレット97には、3つの差込口971,972,973が形成されている。一対の出力端子51,52並びに接地送り端子53は、3つの差込口971,972,973に一対一で対応するように、ケース94内に設けられている。そのため、電源装置6のプラグがアウトレット97に接続されることにより、一対の出力端子51,52に、電源装置6の一対の接続端子61,62が電気的に接続されることになる。 An outlet 97 is provided on the upper surface of the case 94. Three outlets 971, 972 and 973 are formed in the outlet 97. The pair of output terminals 51 and 52 and the ground feed terminal 53 are provided in the case 94 so as to correspond to the three insertion ports 971, 972 and 973 on a one-to-one basis. Therefore, when the plug of the power supply device 6 is connected to the outlet 97, the pair of connection terminals 61 and 62 of the power supply device 6 are electrically connected to the pair of output terminals 51 and 52.
 また、ケース94の上面には発光ダイオードなどを用いた表示部99が設けられている。表示部99は、たとえば変圧回路2の動作状態(第1状態と第2状態)や、遮断回路3の動作状態(定常状態と遮断状態)によって表示が切り替わるように構成されている。 Also, a display unit 99 using a light emitting diode or the like is provided on the upper surface of the case 94. The display unit 99 is configured such that the display is switched depending on, for example, the operation state (first state and second state) of the transformer circuit 2 and the operation state (steady state and cutoff state) of the cutoff circuit 3.
 以上説明したようなテーブルタップタイプの電圧安定化装置1によれば、既設の壁付アウトレットがない場所に、電源装置6のプラグを接続できる。しかも、テーブルタップタイプの電圧安定化装置1は、ケース94に設けたアウトレット97にプラグを接続することで使用できるので、通常のテーブルタップと同様に使用でき、使い勝手がよい。 According to the table tap type voltage stabilizing device 1 as described above, the plug of the power supply device 6 can be connected to a place where there is no existing wall outlet. In addition, since the table tap type voltage stabilizing device 1 can be used by connecting a plug to an outlet 97 provided in the case 94, it can be used in the same manner as a normal table tap, and is easy to use.
 <変形例>
 電圧安定化装置1は、一般住宅用に限らず、オフィス、商業施設等に用いられてもよい。また、電圧安定化装置1は、系統電源7に電気的に接続される構成に限らず、太陽光発電装置などの分散電源、あるいは自家発電設備、蓄電設備に電気的に接続される構成であってもよい。ここでいう自家発電設備および蓄電設備には、一般住宅や、オフィス、商業施設等に設置される設備に限らず、車両や船舶、航空機などに搭載されている設備も含む。
<Modification>
The voltage stabilizing device 1 may be used not only for ordinary houses but also in offices, commercial facilities, and the like. Further, the voltage stabilization device 1 is not limited to a configuration that is electrically connected to the system power supply 7, but is a configuration that is electrically connected to a distributed power source such as a solar power generation device, a private power generation facility, or a power storage facility. May be. The private power generation equipment and power storage equipment here are not limited to equipment installed in ordinary houses, offices, commercial facilities, and the like, but also include equipment installed in vehicles, ships, airplanes, and the like.
 また、本実施形態では、トランス23が単巻トランスであるので、トランス23の一次側と二次側とは電気的に絶縁されていないが、この構成に限らず、一次巻線と二次巻線とが電気的に絶縁された絶縁トランスがトランス23として用いられてもよい。この場合、トランス23の一次側である一対の入力端子41,42と、トランス23の二次側である一対の出力端子51,52とは、電気的に絶縁されることになる。 In this embodiment, since the transformer 23 is a single-winding transformer, the primary side and the secondary side of the transformer 23 are not electrically insulated. However, the configuration is not limited to this, and the primary winding and the secondary winding are not limited. An insulating transformer in which the wire is electrically insulated may be used as the transformer 23. In this case, the pair of input terminals 41 and 42 that are the primary side of the transformer 23 and the pair of output terminals 51 and 52 that are the secondary side of the transformer 23 are electrically insulated.
 また、本実施形態では、変圧回路2の一部(第1スイッチ21、第2スイッチ22、制御部24)が遮断回路3に兼用された例を示したが、この例に限らず、変圧回路2とは別に遮断回路3が設けられていてもよい。この場合、変圧回路2の第1状態と第2状態とを切り替えるための第1スイッチ21および第2スイッチ22とは別に、遮断回路3の定常状態と遮断状態とを切り替えるためのスイッチが設けられる。 In the present embodiment, an example in which a part of the transformer circuit 2 (the first switch 21, the second switch 22, and the control unit 24) is also used as the cutoff circuit 3 is shown. However, the present invention is not limited to this example. In addition to 2, a cutoff circuit 3 may be provided. In this case, in addition to the first switch 21 and the second switch 22 for switching between the first state and the second state of the transformer circuit 2, a switch for switching between the steady state and the cutoff state of the cutoff circuit 3 is provided. .
 また、第1スイッチ21および第2スイッチ22は、電磁リレーの接点に限らず、たとえば半導体スイッチなど、機械式の接点を有しないスイッチであってもよい。さらに、第1スイッチ21と第2スイッチ22とは、たとえばc接点(切替接点)を有する1つのスイッチで構成されていてもよい。この場合、変圧回路2は、接点の切り替えにより、第1状態と第2状態とを切り替えることができる。 The first switch 21 and the second switch 22 are not limited to electromagnetic relay contacts, but may be switches having no mechanical contacts, such as semiconductor switches. Furthermore, the 1st switch 21 and the 2nd switch 22 may be comprised by one switch which has c contact (switching contact), for example. In this case, the transformer circuit 2 can switch between the first state and the second state by switching the contacts.
 電源装置6は、電源アダプタに限らず、たとえば電気機器8に内蔵された電源ユニット(電源回路)であってもよい。 The power supply device 6 is not limited to a power adapter, and may be a power supply unit (power supply circuit) built in the electrical device 8, for example.
 また、電圧値と、電圧閾値等(電圧閾値あるいは許容範囲の上限)との比較において、「以上」としているところは、電圧値が電圧閾値等と等しい場合、および電圧値が電圧閾値等を超えている場合との両方を含む。ただし、これに限らず、ここでいう「以上」は、電圧値が電圧閾値等を超えている場合のみを含む「より大きい」と同義であってもよい。つまり、電圧値が電圧閾値等と等しい場合を含むか否かは、電圧閾値等の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。同様に、「未満」においても「以下」と同義であってもよい。 In comparison between the voltage value and the voltage threshold value (voltage threshold value or upper limit of the allowable range), “more than” indicates that the voltage value is equal to the voltage threshold value, and that the voltage value exceeds the voltage threshold value. Including both. However, the present invention is not limited thereto, and “more than” here may be synonymous with “greater than” including only when the voltage value exceeds the voltage threshold value or the like. In other words, whether or not the voltage value is equal to the voltage threshold value or the like can be arbitrarily changed depending on the setting of the voltage threshold value or the like, so there is no technical difference between “greater than” or “greater than”. Similarly, “less than” may be synonymous with “below”.
 また、監視部242は、第2検出部12から取得した検出値(出力電圧V2の電圧値)を、たとえば第1検出部11から取得する検出値(入力電圧V1の電圧値)のバックアップとして用いることができる。とくに、定常状態と遮断状態との切り替えに際しては、出力電圧V2の電圧値を許容範囲の上限Vmax(本実施形態ではVth1)と比較することで、出力電圧V2の電圧値が上限Vmaxを超える場合に遮断回路3が出力電圧V2の出力を停止することが好ましい。これにより、出力電圧V2の電圧値が適応範囲の上限を超えることを防止できる確実性が向上する。ただし、第2検出部12は電圧安定化装置1に必須の構成ではなく、適宜省略可能である。 In addition, the monitoring unit 242 uses the detection value (voltage value of the output voltage V2) acquired from the second detection unit 12 as a backup of the detection value (voltage value of the input voltage V1) acquired from the first detection unit 11, for example. be able to. In particular, when switching between the steady state and the cut-off state, the voltage value of the output voltage V2 exceeds the upper limit Vmax by comparing the voltage value of the output voltage V2 with the upper limit Vmax (Vth1 in this embodiment) of the allowable range. It is preferable that the interruption circuit 3 stops the output of the output voltage V2. This improves the certainty that the voltage value of the output voltage V2 can be prevented from exceeding the upper limit of the adaptive range. However, the 2nd detection part 12 is not a structure essential to the voltage stabilization apparatus 1, and can be abbreviate | omitted suitably.
 (実施形態2)
 本実施形態の電圧安定化装置1は、図9に示すように、第1スイッチ21がトランス23の二次側(一対の出力端子51,52側)に設けられている点で、実施形態1の電圧安定化装置1と相違する。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 2)
As shown in FIG. 9, the voltage stabilization device 1 of the present embodiment is different from that of the first embodiment in that the first switch 21 is provided on the secondary side (the pair of output terminals 51 and 52 side) of the transformer 23. This is different from the voltage stabilizing device 1. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
 本実施形態においては、第1スイッチ21は、一対の出力端子51,52と、トランス23の二次巻線との間に電気的に接続されている。具体的には、第1スイッチ21の一端は第1の出力端子51と電気的に直接接続され、第1スイッチ21の他端はトランス23の二次巻線の一端(タップ233)と電気的に直接接続されている。トランス23の二次巻線の他端(第2端子232)は、第2の出力端子52と電気的に直接接続されている。言い換えれば、第1スイッチ21とトランス23の二次巻線とは、第1スイッチ21が第1の出力端子51側となるように、一対の出力端子51,52間において電気的に直列接続されている。 In the present embodiment, the first switch 21 is electrically connected between the pair of output terminals 51 and 52 and the secondary winding of the transformer 23. Specifically, one end of the first switch 21 is electrically connected directly to the first output terminal 51, and the other end of the first switch 21 is electrically connected to one end (tap 233) of the secondary winding of the transformer 23. Connected directly to. The other end (second terminal 232) of the secondary winding of the transformer 23 is electrically directly connected to the second output terminal 52. In other words, the first switch 21 and the secondary winding of the transformer 23 are electrically connected in series between the pair of output terminals 51 and 52 so that the first switch 21 is on the first output terminal 51 side. ing.
 トランス23の一次巻線は、一対の入力端子41,42間に電気的に接続されている。具体的には、トランス23の一次巻線の一端(第1端子231)は第1の入力端子41と電気的に直接接続され、トランス23の一次巻線の他端(第2端子232)は第2の入力端子42と電気的に直接接続されている。これにより、トランス23の一次巻線の一端(第1端子231)は、第2スイッチ22を介して第1の出力端子51と電気的に接続されることになる。なお、本実施形態では、トランス23は1つの巻線を一次巻線と二次巻線とに共用した単巻トランスであるから、第2端子232は、第2の入力端子42と第2の出力端子52との両方に対して、電気的に接続されることになる。 The primary winding of the transformer 23 is electrically connected between the pair of input terminals 41 and 42. Specifically, one end (first terminal 231) of the primary winding of the transformer 23 is electrically connected directly to the first input terminal 41, and the other end (second terminal 232) of the primary winding of the transformer 23 is connected to the first input terminal 41. The second input terminal 42 is electrically connected directly. Thereby, one end (first terminal 231) of the primary winding of the transformer 23 is electrically connected to the first output terminal 51 via the second switch 22. In the present embodiment, since the transformer 23 is a single-winding transformer in which one winding is shared by the primary winding and the secondary winding, the second terminal 232 is connected to the second input terminal 42 and the second winding. Both the output terminal 52 and the output terminal 52 are electrically connected.
 以上説明した本実施形態の電圧安定化装置1によれば、第1スイッチ21がトランス23の二次側(一対の出力端子51,52側)に設けられるので、第1スイッチ21がオフしても、トランス23への通電を継続することができる。 According to the voltage stabilizing device 1 of the present embodiment described above, the first switch 21 is provided on the secondary side (the pair of output terminals 51 and 52 side) of the transformer 23, so that the first switch 21 is turned off. In addition, energization of the transformer 23 can be continued.
 その他の構成および機能は実施形態1(変形例を含む)と同様である。 Other configurations and functions are the same as those in the first embodiment (including the modified example).
 (実施形態3)
 本実施形態の電圧安定化装置1は、過電流や過熱、接点溶着の発生時に電圧安定化装置1を保護する機能をさらに備える点で、実施形態1の電圧安定化装置1と相違する。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 3)
The voltage stabilizing device 1 of the present embodiment is different from the voltage stabilizing device 1 of the first embodiment in that it further includes a function of protecting the voltage stabilizing device 1 when overcurrent, overheating, or contact welding occurs. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
 本実施形態においては、電圧安定化装置1は、図10に示すように、過電流保護部243、過熱保護部244、電流センサ13、温度センサ14、および保護スイッチ15をさらに備えている。 In the present embodiment, the voltage stabilizing device 1 further includes an overcurrent protection unit 243, an overheat protection unit 244, a current sensor 13, a temperature sensor 14, and a protection switch 15, as shown in FIG.
 保護スイッチ15は電磁リレーの接点からなる。制御部24の駆動部241は電磁リレーに駆動信号を与えることにより保護スイッチ15のオン・オフを切り替えるように構成されている。 The protection switch 15 consists of an electromagnetic relay contact. The drive unit 241 of the control unit 24 is configured to switch the protection switch 15 on and off by giving a drive signal to the electromagnetic relay.
 電流センサ13は、たとえば変流器からなり、第1の入力端子41と第1の出力端子51との間に設定された少なくとも1つの測定点を流れる電流(出力電流)を測定する。電流センサ13は、出力電流の電流値に応じた電気信号を、過電流保護部243に対して出力する。なお、電流センサ13は、変圧回路2が第1状態および第2状態のいずれかの場合でも第1の入力端子41と第1の出力端子51との間に電気的に接続される測定点を流れる電流(出力電流)を測定することが望ましい。これによって、変圧回路2が第1状態および第2状態のいずれの場合でも、電流センサ13は1つの測定点を流れる電流のみを測定すればよい。例えば、電流の測定点は、トランス23の二次巻線と第1の出力端子51との交点をAとした場合、交点Aから出力端子51の間に設定することが望ましい。 The current sensor 13 is formed of a current transformer, for example, and measures a current (output current) flowing through at least one measurement point set between the first input terminal 41 and the first output terminal 51. The current sensor 13 outputs an electrical signal corresponding to the current value of the output current to the overcurrent protection unit 243. Note that the current sensor 13 has a measurement point electrically connected between the first input terminal 41 and the first output terminal 51 even when the transformer circuit 2 is in either the first state or the second state. It is desirable to measure the flowing current (output current). Thus, the current sensor 13 only needs to measure the current flowing through one measurement point regardless of whether the transformer circuit 2 is in the first state or the second state. For example, the current measurement point is preferably set between the intersection A and the output terminal 51 where A is the intersection of the secondary winding of the transformer 23 and the first output terminal 51.
 過電流保護部243は、ここでは制御部24に設けられている。過電流保護部243は、電流センサ13から出力された検出値(出力電流の電流値に応じた電気信号)を取得し、取得した検出値に基づいた電流値を所定の電流閾値と比較し、比較結果に応じて駆動部241を制御するように構成されている。 The overcurrent protection unit 243 is provided in the control unit 24 here. The overcurrent protection unit 243 acquires the detection value (electric signal corresponding to the current value of the output current) output from the current sensor 13, compares the current value based on the acquired detection value with a predetermined current threshold, The drive unit 241 is controlled according to the comparison result.
 過電流保護部243は、一対の出力端子51,52から出力される出力電流の電流値が電流閾値以上になると、一対の入力端子41,42から変圧回路2へ入力される電流を低減させるように構成されている。具体的には、過電流保護部243は、電流センサ13から取得した検出値(出力電流の電流値に応じた電気信号)に基づいた電流値が電流閾値未満であれば、駆動部241を介して保護スイッチ15をオンにする。一方、電流センサ13から取得した検出値(出力電流の電流値に応じた電気信号)に基づく電流値が電流閾値以上であれば、過電流保護部243は、駆動部241を介して保護スイッチ15をオフにして一対の入力端子41,42から変圧回路2へ入力される電流を遮断する(0〔A〕まで低減させる)。 The overcurrent protection unit 243 reduces the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the current value of the output current output from the pair of output terminals 51 and 52 is equal to or greater than the current threshold. It is configured. Specifically, if the current value based on the detected value (electric signal corresponding to the current value of the output current) acquired from the current sensor 13 is less than the current threshold, the overcurrent protection unit 243 passes the drive unit 241. The protection switch 15 is turned on. On the other hand, if the current value based on the detection value (electric signal corresponding to the current value of the output current) acquired from the current sensor 13 is equal to or greater than the current threshold value, the overcurrent protection unit 243 is protected via the drive unit 241. Is turned off to interrupt the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 (reduced to 0 [A]).
 また、温度センサ14は、たとえばサーミスタを用いて構成され、変圧回路2の温度を測定し、温度に応じた電気信号を、過熱保護部244に対して出力する。ここでは、温度センサ14は、トランス23に接するように配置され、変圧回路2の中での発熱源となるトランス23の温度を測定する。これにより、過電流、絶縁不良等によるトランスの異常発熱を検知することができる。 The temperature sensor 14 is configured using, for example, a thermistor, measures the temperature of the transformer circuit 2, and outputs an electrical signal corresponding to the temperature to the overheat protection unit 244. Here, the temperature sensor 14 is disposed so as to be in contact with the transformer 23, and measures the temperature of the transformer 23 serving as a heat generation source in the transformer circuit 2. Thereby, abnormal heat generation of the transformer due to overcurrent, insulation failure, or the like can be detected.
 過熱保護部244は、ここでは制御部24に設けられている。過熱保護部244は、温度センサ14から検出値(温度に応じた電気信号)を取得し、取得した検出値(温度に応じた電気信号)に基づいた温度を所定の温度閾値と比較し、比較結果に応じて駆動部241を制御するように構成されている。 The overheat protection unit 244 is provided in the control unit 24 here. The overheat protection unit 244 acquires a detection value (electric signal corresponding to temperature) from the temperature sensor 14, compares the temperature based on the acquired detection value (electric signal corresponding to temperature) with a predetermined temperature threshold, and compares The drive unit 241 is controlled according to the result.
 過熱保護部244は、変圧回路2の温度が温度閾値以上になると、一対の入力端子41,42から変圧回路2へ入力される電流を低減させるように構成されている。具体的には、過熱保護部244は、温度センサ14から取得した検出値(温度に応じた電気信号)に基づいた温度が温度閾値未満であれば、駆動部241を介して保護スイッチ15をオンにする。一方、温度センサ14から取得した検出値(温度に応じた電気信号)に基づいた温度が温度閾値以上であれば、過熱保護部244は、駆動部241を介して保護スイッチ15をオフにして一対の入力端子41,42から変圧回路2へ入力される電流を遮断する(0〔A〕まで低減させる)。 The overheat protection unit 244 is configured to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the temperature of the transformer circuit 2 becomes equal to or higher than the temperature threshold. Specifically, the overheat protection unit 244 turns on the protection switch 15 via the drive unit 241 if the temperature based on the detection value (electric signal corresponding to the temperature) acquired from the temperature sensor 14 is less than the temperature threshold. To. On the other hand, if the temperature based on the detection value (electric signal corresponding to the temperature) acquired from the temperature sensor 14 is equal to or higher than the temperature threshold value, the overheat protection unit 244 turns off the protection switch 15 via the drive unit 241 and makes a pair Current input to the transformer circuit 2 is cut off (reduced to 0 [A]).
 さらに、本実施形態の電圧安定化装置1は、第1スイッチ21と第2スイッチ22との少なくとも一方に含まれる接点に溶着が発生している場合に変圧回路2を保護するための検知部および保護部を備えている。本実施形態では、制御部24の監視部242が検知部および保護部として兼用されている。 Furthermore, the voltage stabilizing device 1 of the present embodiment includes a detection unit for protecting the transformer circuit 2 when welding occurs at a contact included in at least one of the first switch 21 and the second switch 22; A protection unit is provided. In the present embodiment, the monitoring unit 242 of the control unit 24 is also used as a detection unit and a protection unit.
 検知部(監視部242)は、第1スイッチ21と第2スイッチ22との少なくとも一方に含まれる接点に溶着が発生しているか否かを検知する。保護部(監視部242)は、上記検知部で溶着の発生が検知されると一対の入力端子41,42から変圧回路2へ入力される電流を低減させるように構成されている。具体的には、検知部(監視部242)は、第1検出部11および第2検出部12の各々から、検出値(入力電圧V1あるいは出力電圧V2の電圧値)を取得するように構成されている。さらに、検知部(監視部242)は、取得した検出値(入力電圧V1の電圧値および出力電圧V2の電圧値)と、駆動部241からの駆動信号との整合・不整合を判断する。 The detection unit (monitoring unit 242) detects whether or not welding has occurred at a contact included in at least one of the first switch 21 and the second switch 22. The protection unit (monitoring unit 242) is configured to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the detection unit detects the occurrence of welding. Specifically, the detection unit (monitoring unit 242) is configured to acquire a detection value (a voltage value of the input voltage V1 or the output voltage V2) from each of the first detection unit 11 and the second detection unit 12. ing. Further, the detection unit (monitoring unit 242) determines matching / mismatching between the acquired detection values (the voltage value of the input voltage V1 and the voltage value of the output voltage V2) and the drive signal from the drive unit 241.
 たとえば、駆動部241が第1スイッチ21をオンし、第2スイッチ22をオフする駆動信号を出力している場合、変圧回路2は第2状態にあり、このときの入力電圧V1と出力電圧V2との間の変圧比は、既知である第2状態での変圧比に一致するはずである。この場合に、入力電圧V1と出力電圧V2との間の変圧比が、第2状態での変圧比と一致しなれば(つまり不整合であれば)、検知部(監視部242)は、第2スイッチ22の接点に溶着が発生していると判断する。また、駆動部241が第1スイッチ21および第2スイッチ22の両方をオフする駆動信号を出力している場合、遮断回路3は遮断状態にあり、このときの出力電圧V2は0〔V〕のはずである。この場合に、出力電圧V2が所定値以上であれば(つまり不整合であれば)、検知部(監視部242)は、第1スイッチ21と第2スイッチ22との少なくとも一方の接点に溶着が発生していると判断する。また、駆動部241が第1スイッチ21および第2スイッチ22のいずれかをオフからオンに切り替える駆動信号を出力してから所定時間内に、出力電圧V2が変化しなかった場合にも、検知部(監視部242)は溶着の発生を検知できる。 For example, when the drive unit 241 outputs a drive signal for turning on the first switch 21 and turning off the second switch 22, the transformer circuit 2 is in the second state, and the input voltage V1 and the output voltage V2 at this time The transformation ratio between and should be consistent with the known transformation ratio in the second state. In this case, if the transformation ratio between the input voltage V1 and the output voltage V2 does not match the transformation ratio in the second state (that is, if there is a mismatch), the detection unit (monitoring unit 242) 2 It is determined that welding has occurred at the contact of the switch 22. Further, when the drive unit 241 outputs a drive signal for turning off both the first switch 21 and the second switch 22, the cutoff circuit 3 is in a cutoff state, and the output voltage V2 at this time is 0 [V]. It should be. In this case, if the output voltage V2 is equal to or higher than a predetermined value (that is, if it is inconsistent), the detection unit (monitoring unit 242) is welded to at least one contact between the first switch 21 and the second switch 22. Judge that it has occurred. The detection unit is also provided when the output voltage V2 does not change within a predetermined time after the drive unit 241 outputs a drive signal for switching either the first switch 21 or the second switch 22 from OFF to ON. (Monitoring unit 242) can detect the occurrence of welding.
 検知部(監視部242)にて接点に溶着が発生してないと判断されると、保護部(監視部242)は、駆動部241を介して保護スイッチ15をオンにする。一方、検知部(監視部242)にて接点に溶着が発生していると判断されると、保護部(監視部242)は、駆動部241を介して保護スイッチ15をオフにして一対の入力端子41,42から変圧回路2へ入力される電流を遮断する(0〔A〕まで低減させる)。 When the detection unit (monitoring unit 242) determines that no welding has occurred at the contact point, the protection unit (monitoring unit 242) turns on the protection switch 15 via the drive unit 241. On the other hand, when the detection unit (monitoring unit 242) determines that welding has occurred at the contact point, the protection unit (monitoring unit 242) turns off the protection switch 15 via the drive unit 241 and inputs a pair of inputs. The current input from the terminals 41 and 42 to the transformer circuit 2 is cut off (reduced to 0 [A]).
 なお、電流閾値や温度閾値は、閾値設定部により設定(規定)される。閾値設定部は、電流閾値や温度閾値を記憶したメモリであってもよいし、電流閾値や温度閾値に相当する基準電圧を発生する定電圧源であってもよい。 Note that the current threshold and the temperature threshold are set (specified) by the threshold setting unit. The threshold setting unit may be a memory that stores a current threshold or a temperature threshold, or may be a constant voltage source that generates a reference voltage corresponding to the current threshold or the temperature threshold.
 また、過電流や過熱、接点溶着の発生時、つまり保護スイッチ15がオフする場合には、電圧安定化装置1は、表示部98(図7参照)や表示部99(図8参照)にて、報知(表示)を行うように構成されていることが好ましい。 When overcurrent, overheating, or contact welding occurs, that is, when the protection switch 15 is turned off, the voltage stabilizing device 1 is displayed on the display unit 98 (see FIG. 7) or the display unit 99 (see FIG. 8). It is preferable to be configured to perform notification (display).
 ところで、本実施形態においては、過電流保護部243は、変圧回路2が第1状態にある場合には上記電流閾値として第1電流閾値を用い、変圧回路2が第2状態にある場合には上記電流閾値として第2電流閾値を用いるように構成されている。上記第1電流閾値Ith1(図11参照)と上記第2電流閾値Ith2(図11参照)とは互いに異なる値である。本実施形態では、第1電流閾値Ith1は第2電流閾値Ith2よりも大きな値である(Ith1>Ith2)。 By the way, in this embodiment, the overcurrent protection unit 243 uses the first current threshold as the current threshold when the transformer circuit 2 is in the first state, and when the transformer circuit 2 is in the second state. The second current threshold is used as the current threshold. The first current threshold Ith1 (see FIG. 11) and the second current threshold Ith2 (see FIG. 11) are different values. In the present embodiment, the first current threshold Ith1 is larger than the second current threshold Ith2 (Ith1> Ith2).
 すなわち、過電流保護部243は、電圧安定化装置1の出力電流が定格値を超える場合に変圧回路2への入力電流を低減させることによって、電圧安定化装置1の出力電流を定格値以下に制限し、電圧安定化装置1を保護する機能を有している。ここで、電圧安定化装置1の出力電流の定格値は、トランス23に流すことができる電流の大きさによって決まっている。そのため、トランス23に電流が流れない第1状態であれば、第2状態に比べて、より大きな電流値まで出力電流が許容されることになる。そこで、本実施形態では、変圧回路2が第1状態にある場合と第2状態にある場合とで、過電流保護部243は異なる電流閾値(第1電流閾値Ith1および第2電流閾値Ith2)を用いている。 In other words, the overcurrent protection unit 243 reduces the input current to the transformer circuit 2 when the output current of the voltage stabilizing device 1 exceeds the rated value, thereby reducing the output current of the voltage stabilizing device 1 below the rated value. It has a function of limiting and protecting the voltage stabilizing device 1. Here, the rated value of the output current of the voltage stabilizing device 1 is determined by the magnitude of the current that can be passed through the transformer 23. Therefore, in the first state where no current flows through the transformer 23, the output current is allowed to a larger current value than in the second state. Therefore, in the present embodiment, the overcurrent protection unit 243 sets different current threshold values (first current threshold value Ith1 and second current threshold value Ith2) depending on whether the transformer circuit 2 is in the first state or the second state. Used.
 過電流保護部243の動作について、図11を参照して説明する。図11では、横軸を入力電圧V1、縦軸を出力電圧V2あるいは出力電流の上限値として、上段に入力電圧V1-出力電圧V2の関係、下段に入力電圧V1-出力電流の上限値の関係を表している(いずれも実効値)。ここでは、入力電圧V1の電圧値が100〔V〕以上の範囲についてのみ図示している。 The operation of the overcurrent protection unit 243 will be described with reference to FIG. In FIG. 11, the horizontal axis represents the input voltage V1, the vertical axis represents the output voltage V2 or the upper limit value of the output current, the relationship between the input voltage V1 and the output voltage V2 in the upper stage, and the relationship between the input voltage V1 and the upper limit value of the output current in the lower stage. (Both are effective values). Here, only the range where the voltage value of the input voltage V1 is 100 [V] or more is illustrated.
 図11に示すように、入力電圧V1の電圧値が電圧閾値Vth1未満の第1範囲Z1内にある場合、変圧回路2が第1状態となるため、過電流保護部243は、電流閾値として第1電流閾値Ith1を用いる。そのため、第1範囲Z1内においては、電圧安定化装置1の出力電流は第1電流閾値Ith1未満に制限される。 As shown in FIG. 11, when the voltage value of the input voltage V1 is within the first range Z1 less than the voltage threshold value Vth1, the transformer circuit 2 is in the first state, so the overcurrent protection unit 243 sets the current threshold value as the current threshold value. One current threshold Ith1 is used. Therefore, in the first range Z1, the output current of the voltage stabilizing device 1 is limited to be less than the first current threshold Ith1.
 また、入力電圧V1の電圧値が電圧閾値Vth1以上で上限Vmax未満の第2範囲Z2内にある場合、変圧回路2が第2状態となるため、過電流保護部243は、電流閾値として第2電流閾値Ith2を用いる。そのため、第2範囲Z2内においては、電圧安定化装置1の出力電流は第2電流閾値Ith2未満に制限される。ここで、第2電流閾値Ith2は、電圧安定化装置1の出力電流の定格値に合わせて設定されている。 Further, when the voltage value of the input voltage V1 is in the second range Z2 that is equal to or higher than the voltage threshold Vth1 and less than the upper limit Vmax, the transformer circuit 2 is in the second state, and thus the overcurrent protection unit 243 sets the second current threshold A current threshold Ith2 is used. Therefore, in the second range Z2, the output current of the voltage stabilizing device 1 is limited to be less than the second current threshold Ith2. Here, the second current threshold Ith2 is set according to the rated value of the output current of the voltage stabilizing device 1.
 なお、電流閾値は、適宜設定可能であって、無限大に設定されていてもよい。電流閾値が無限大に設定されることは、過電流保護部243の機能が無効化されることと同義である。そのため、第1電流閾値Ith1が無限大に設定されていれば、変圧回路2が第1状態にある場合には過電流保護部243は動作せず、変圧回路2が第2状態にある場合にのみ過電流保護部243が動作することになる。 The current threshold can be set as appropriate and may be set to infinity. Setting the current threshold value to infinity is synonymous with disabling the function of the overcurrent protection unit 243. Therefore, if the first current threshold Ith1 is set to infinity, the overcurrent protection unit 243 does not operate when the transformer circuit 2 is in the first state, and the transformer circuit 2 is in the second state. Only the overcurrent protection unit 243 operates.
 <効果>
 以上説明した本実施形態の電圧安定化装置1によれば、過電流や過熱、接点溶着の発生時に、変圧回路2への入力電流が低減するので、電圧安定化装置1が保護されることになる。
<Effect>
According to the voltage stabilization device 1 of the present embodiment described above, the input current to the transformer circuit 2 is reduced when overcurrent, overheating, or contact welding occurs, so that the voltage stabilization device 1 is protected. Become.
 つまり本実施形態のように、電圧安定化装置1は、一対の出力端子51,52から出力される出力電流の電流値が所定の電流閾値以上になると、一対の入力端子41,42から変圧回路2へ入力される電流を低減させる過電流保護部243を備えることが好ましい。この構成によれば、電圧安定化装置1の一対の出力端子51,52にたとえば重負荷が電気的に接続され、過電流が生じた場合に、過電流保護部243にて変圧回路2へ入力される電流を低減させて、電圧安定化装置1を保護することができ、結果として電気機器8を保護することができる。 That is, as in the present embodiment, when the current value of the output current output from the pair of output terminals 51 and 52 exceeds a predetermined current threshold value, the voltage stabilizing device 1 changes from the pair of input terminals 41 and 42 to the transformer circuit. It is preferable to provide an overcurrent protection unit 243 that reduces the current input to the power supply 2. According to this configuration, for example, when a heavy load is electrically connected to the pair of output terminals 51 and 52 of the voltage stabilizing device 1 and an overcurrent occurs, the overcurrent protection unit 243 inputs the voltage to the transformer circuit 2. Therefore, the voltage stabilizing device 1 can be protected by reducing the generated current, and as a result, the electric device 8 can be protected.
 また、本実施形態のように、過電流保護部243は、変圧回路2が上記第1状態にある場合には上記電流閾値として第1電流閾値Ith1を用い、上記第2状態にある場合には上記電流閾値として第2電流閾値Ith2を用いるように構成されていることがより好ましい。第1電流閾値Ith1と第2電流閾値Ith2とは互いに異なる値である。この構成によれば、トランス23に電流が流れない第1状態においては、第2状態に比べて、より大きな電流値まで出力電流を許容することができる。したがって、過電流保護部243は、過電流に起因したトランス23での発熱等を抑制しながらも、変圧回路2の状態によって、許容する出力電流の範囲を広げることができる。その結果、この電圧安定化装置1によれば、電圧安定化装置1の保護を図りながらも、電気機器8が動作を停止する頻度を低減できる、という利点がある。 Further, as in the present embodiment, the overcurrent protection unit 243 uses the first current threshold Ith1 as the current threshold when the transformer circuit 2 is in the first state, and when the transformer circuit 2 is in the second state. More preferably, the second current threshold Ith2 is used as the current threshold. The first current threshold Ith1 and the second current threshold Ith2 are different values. According to this configuration, in the first state where no current flows through the transformer 23, the output current can be allowed to a larger current value than in the second state. Therefore, the overcurrent protection unit 243 can widen the allowable output current range depending on the state of the transformer circuit 2 while suppressing heat generation in the transformer 23 caused by the overcurrent. As a result, according to the voltage stabilizing device 1, there is an advantage that the frequency with which the electric device 8 stops its operation can be reduced while protecting the voltage stabilizing device 1.
 なお、過電流保護部243は電圧安定化装置1に必須の構成ではなく、過電流保護部243は適宜省略可能である。また、過電流保護部243が設けられている場合でも、過電流保護部243が第1状態と第2状態とで異なる電流閾値を用いることは必須の構成ではなく、過電流保護部243は第1状態と第2状態とで同じ電流閾値を用いてもよい。 Note that the overcurrent protection unit 243 is not an essential component of the voltage stabilizing device 1, and the overcurrent protection unit 243 can be omitted as appropriate. Even when the overcurrent protection unit 243 is provided, it is not essential for the overcurrent protection unit 243 to use different current threshold values in the first state and the second state. The same current threshold may be used in the first state and the second state.
 また、本実施形態のように、電圧安定化装置1は、変圧回路2の温度が所定の温度閾値以上になると、一対の入力端子41,42から変圧回路2へ入力される電流を低減させる過熱保護部244を備えることが好ましい。この構成によれば、たとえばトランス23の発熱により変圧回路2の温度が上昇した場合に、過熱保護部244にて変圧回路2へ入力される電流を低減させて、電圧安定化装置1を保護することができる。なお、過熱保護部244は電圧安定化装置1に必須の構成ではなく、過熱保護部244は適宜省略可能である。 Further, as in the present embodiment, the voltage stabilizing device 1 overheats to reduce the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the temperature of the transformer circuit 2 is equal to or higher than a predetermined temperature threshold. It is preferable to include a protection unit 244. According to this configuration, for example, when the temperature of the transformer circuit 2 rises due to heat generated by the transformer 23, the current input to the transformer circuit 2 is reduced by the overheat protection unit 244 to protect the voltage stabilization device 1. be able to. Note that the overheat protection unit 244 is not an essential component of the voltage stabilizing device 1, and the overheat protection unit 244 can be omitted as appropriate.
 また、本実施形態のように、電圧安定化装置1は、検知部(監視部242)と保護部(監視部242)とを備えることが好ましい。検知部(監視部242)は、第1スイッチ21と第2スイッチ22との少なくとも一方に含まれる接点に溶着が発生しているか否かを検知する。保護部(監視部242)は、上記検知部で上記溶着の発生が検知されると一対の入力端子41,42から変圧回路2へ入力される電流を低減させる。この構成によれば、たとえば第2スイッチ22で接点溶着が発生した場合に、保護部(監視部242)にて変圧回路2へ入力される電流を低減させて、電圧安定化装置1を保護することができる。なお、検知部および保護部は電圧安定化装置1に必須の構成ではなく、検知部および保護部は適宜省略可能である。 Further, as in the present embodiment, the voltage stabilization device 1 preferably includes a detection unit (monitoring unit 242) and a protection unit (monitoring unit 242). The detection unit (monitoring unit 242) detects whether or not welding has occurred at a contact included in at least one of the first switch 21 and the second switch 22. The protection unit (monitoring unit 242) reduces the current input from the pair of input terminals 41 and 42 to the transformer circuit 2 when the detection unit detects the occurrence of the welding. According to this configuration, for example, when contact welding occurs in the second switch 22, the current input to the transformer circuit 2 is reduced by the protection unit (monitoring unit 242) to protect the voltage stabilization device 1. be able to. In addition, a detection part and a protection part are not an essential structure for the voltage stabilization apparatus 1, and a detection part and a protection part can be abbreviate | omitted suitably.
 その他の構成および機能は実施形態1(実施形態1に記載の変形例を含む)と同様である。 Other configurations and functions are the same as those in the first embodiment (including the modification described in the first embodiment).
 <変形例>
 過電流保護部243、過熱保護部244、検知部(監視部242)、および保護部(監視部242)は、制御部24と別に設けられていてもよい。この場合に、過電流保護部243においては、電流センサ13としての機能を含んでいてもよいし、過熱保護部244においては、温度センサ14としての機能を含んでいてもよい。
<Modification>
The overcurrent protection unit 243, the overheat protection unit 244, the detection unit (monitoring unit 242), and the protection unit (monitoring unit 242) may be provided separately from the control unit 24. In this case, the overcurrent protection unit 243 may include a function as the current sensor 13, and the overheat protection unit 244 may include a function as the temperature sensor 14.
 また、過電流保護部243、過熱保護部244、および保護部(監視部242)は、保護スイッチ15のオン・オフにより変圧回路2へ入力される電流を間接的に低減させる構成に限らず、変圧回路2へ入力される電流を直接的に低減させる構成であってもよい。つまり、過電流保護部243、過熱保護部244、および保護部(監視部242)は、それぞれ保護スイッチ15に相当する電流低減部を含み、この電流低減部にて、変圧回路2へ入力される電流を直接的に低減させてもよい。 Further, the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) are not limited to a configuration that indirectly reduces the current input to the transformer circuit 2 by turning on and off the protection switch 15. The structure which reduces the electric current input into the transformer circuit 2 directly may be sufficient. That is, each of the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) includes a current reduction unit corresponding to the protection switch 15, and is input to the transformer circuit 2 at the current reduction unit. The current may be reduced directly.
 また、保護スイッチ15は、電磁リレーの接点に限らず、たとえば半導体スイッチなど、機械式の接点を有しないスイッチであってもよい。この場合、過電流保護部243、過熱保護部244、および保護部(監視部242)は、一対の入力端子41,42から変圧回路2へ入力される電流を遮断する構成に限らず、電流を制限することで、電流を低減させるように構成されていてもよい。 Further, the protection switch 15 is not limited to a contact of an electromagnetic relay, and may be a switch having no mechanical contact, such as a semiconductor switch. In this case, the overcurrent protection unit 243, the overheat protection unit 244, and the protection unit (monitoring unit 242) are not limited to a configuration that cuts off the current that is input from the pair of input terminals 41 and 42 to the transformer circuit 2, and the current is not limited. It may be configured to reduce the current by limiting.
 また、電流値等(電流値や温度)と、閾値(電流閾値あるいは温度閾値)との比較において、「以上」としているところは、電流値等が閾値と等しい場合、および電流値等が閾値を超えている場合との両方を含む。ただし、これに限らず、ここでいう「以上」は、電流値等が閾値を超えている場合のみを含む「より大きい」と同義であってもよい。つまり、電流値が電流閾値と等しい場合を含むか否かは、電流閾値の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。 In addition, in the comparison between the current value or the like (current value or temperature) and the threshold value (current threshold value or temperature threshold value), “over” indicates that the current value or the like is equal to the threshold value, and the current value or the like is the threshold value. Includes both exceeding and exceeding. However, the present invention is not limited thereto, and “more than” here may be synonymous with “greater than” including only when the current value exceeds the threshold value. That is, whether or not to include the case where the current value is equal to the current threshold value can be arbitrarily changed depending on the setting of the current threshold value, so there is no technical difference between “greater than” or “greater than”.
 また、検知部(監視部242)は、電流センサ13から出力された電気信号を変換した検出値(出力電流の電流値)を取得し、取得した検出値(出力電流の電流値)と、駆動部241からの駆動信号との整合・不整合から、接点に溶着が発生しているか否かを検知する構成であってもよい。 The detection unit (monitoring unit 242) acquires a detection value (current value of output current) obtained by converting the electrical signal output from the current sensor 13, and drives the acquired detection value (current value of output current) and driving. It may be configured to detect whether or not welding has occurred at the contact point based on matching / mismatching with the drive signal from the unit 241.
 以上説明した実施形態3(実施形態3に記載の変形例を含む)の構成は、実施形態1(実施形態1に記載の変形例を含む)に限らず、実施形態2と組み合わせても適用可能である。 The configuration of the third embodiment described above (including the modification example described in the third embodiment) is not limited to the first embodiment (including the modification example described in the first embodiment), and can be applied in combination with the second embodiment. It is.
 1 電圧安定化装置
 2 変圧回路
 3 遮断回路
 21 第1スイッチ
 22 第2スイッチ
 23 トランス
 24 制御部
 242 監視部(検知部、保護部)
 243 過電流保護部
 244 過熱保護部
 41,42 一対の入力端子
 51,52 一対の出力端子
 6 電源装置
 61,62 一対の接続端子
 100 電源システム
 Ith1 第1電流閾値
 Ith2 第2電流閾値
 V1 入力電圧
 V2 出力電圧
 Vmax 許容範囲の上限
 Vth1 電圧閾値
DESCRIPTION OF SYMBOLS 1 Voltage stabilization apparatus 2 Transformer circuit 3 Cutoff circuit 21 1st switch 22 2nd switch 23 Transformer 24 Control part 242 Monitoring part (detection part, protection part)
243 Overcurrent protection unit 244 Overheat protection unit 41, 42 A pair of input terminals 51, 52 A pair of output terminals 6 A power supply device 61, 62 A pair of connection terminals 100 Power supply system Ith1 First current threshold Ith2 Second current threshold V1 Input voltage V2 Output voltage Vmax Upper limit of allowable range Vth1 Voltage threshold

Claims (9)

  1.  一対の入力端子と一対の出力端子との間に電気的に接続され、前記一対の出力端子から出力される出力電圧が安定するように、前記一対の入力端子に入力される入力電圧を変圧して前記出力電圧とする変圧回路と、
     前記入力電圧の電圧値が所定の許容範囲を逸脱した場合に、前記一対の入力端子と前記一対の出力端子との間を電気的に遮断する遮断回路と、を備え、
     前記許容範囲は、上限のみが設定された範囲である
     ことを特徴とする電圧安定化装置。
    An electrical voltage is electrically connected between the pair of input terminals and the pair of output terminals, and the input voltage input to the pair of input terminals is transformed so that the output voltage output from the pair of output terminals is stabilized. A transformer circuit for the output voltage,
    A cutoff circuit that electrically cuts off between the pair of input terminals and the pair of output terminals when a voltage value of the input voltage deviates from a predetermined allowable range;
    The voltage stabilizing device, wherein the allowable range is a range in which only an upper limit is set.
  2.  前記変圧回路は、前記入力電圧の電圧値と前記許容範囲内に設定された電圧閾値との大小関係に応じて、前記入力電圧と前記出力電圧との間の変圧比を切り替えることで、前記出力電圧を安定させるように構成されている
     ことを特徴とする請求項1に記載の電圧安定化装置。
    The transformer circuit switches the output ratio by switching a transformation ratio between the input voltage and the output voltage according to a magnitude relationship between a voltage value of the input voltage and a voltage threshold set within the allowable range. The voltage stabilization device according to claim 1, wherein the voltage stabilization device is configured to stabilize the voltage.
  3.  前記電圧閾値は1つだけ設定されており、
     前記変圧回路は、前記入力電圧の電圧値が前記電圧閾値未満であれば、前記入力電圧をそのまま前記出力電圧として出力する第1状態となり、前記入力電圧の電圧値が前記電圧閾値以上であれば、前記入力電圧を降圧して前記出力電圧として出力する第2状態となるように構成されている
     ことを特徴とする請求項2に記載の電圧安定化装置。
    Only one voltage threshold is set,
    If the voltage value of the input voltage is less than the voltage threshold, the transformer circuit is in a first state in which the input voltage is directly output as the output voltage, and if the voltage value of the input voltage is equal to or greater than the voltage threshold. The voltage stabilization device according to claim 2, wherein the voltage stabilization device is configured to be in a second state in which the input voltage is stepped down and output as the output voltage.
  4.  前記変圧回路は、
     トランスと、前記一対の入力端子と前記トランスの一次巻線との間に電気的に接続された第1スイッチと、前記一対の入力端子と前記一対の出力端子との間に電気的に接続された第2スイッチと、前記入力電圧の電圧値と前記電圧閾値との比較結果に応じて前記第1スイッチおよび前記第2スイッチを制御する制御部とを有し、
     前記トランスの二次巻線は、前記一対の出力端子間に電気的に接続されており、
     前記制御部は、前記入力電圧の電圧値が前記電圧閾値未満であれば、前記第1スイッチをオフにして前記第2スイッチをオンにすることで前記変圧回路を前記第1状態とし、前記入力電圧の電圧値が前記電圧閾値以上であれば、前記第1スイッチをオンにして前記第2スイッチをオフにすることで前記変圧回路を前記第2状態とするように構成されている
     ことを特徴とする請求項3に記載の電圧安定化装置。
    The transformer circuit is:
    A transformer, a first switch electrically connected between the pair of input terminals and the primary winding of the transformer, and electrically connected between the pair of input terminals and the pair of output terminals. A second switch, and a control unit that controls the first switch and the second switch according to a comparison result between the voltage value of the input voltage and the voltage threshold,
    The secondary winding of the transformer is electrically connected between the pair of output terminals,
    If the voltage value of the input voltage is less than the voltage threshold, the control unit sets the transformer circuit to the first state by turning off the first switch and turning on the second switch, and the input When the voltage value of the voltage is equal to or higher than the voltage threshold, the transformer circuit is configured to be in the second state by turning on the first switch and turning off the second switch. The voltage stabilization device according to claim 3.
  5.  前記一対の出力端子から出力される出力電流の電流値が所定の電流閾値以上になると、前記一対の入力端子から前記変圧回路へ入力される電流を低減させる過電流保護部をさらに備える
     ことを特徴とする請求項1に記載の電圧安定化装置。
    An overcurrent protection unit that reduces current input from the pair of input terminals to the transformer circuit when a current value of an output current output from the pair of output terminals exceeds a predetermined current threshold value. The voltage stabilization device according to claim 1.
  6.  前記一対の出力端子から出力される出力電流の電流値が所定の電流閾値以上になると、前記一対の入力端子から前記変圧回路へ入力される電流を低減させる過電流保護部をさらに備え、
     前記過電流保護部は、前記変圧回路が前記第1状態にある場合には前記電流閾値として第1電流閾値を用い、前記第2状態にある場合には前記電流閾値として第2電流閾値を用いるように構成されており、前記第1電流閾値と前記第2電流閾値とは互いに異なる値である
     ことを特徴とする請求項3に記載の電圧安定化装置。
    When the current value of the output current output from the pair of output terminals is equal to or greater than a predetermined current threshold, the overcurrent protection unit further reduces the current input from the pair of input terminals to the transformer circuit,
    The overcurrent protection unit uses a first current threshold as the current threshold when the transformer circuit is in the first state, and uses a second current threshold as the current threshold when in the second state. The voltage stabilization device according to claim 3, wherein the first current threshold value and the second current threshold value are different from each other.
  7.  前記変圧回路の温度が所定の温度閾値以上になると、前記一対の入力端子から前記変圧回路へ入力される電流を低減させる過熱保護部をさらに備える
     ことを特徴とする請求項1に記載の電圧安定化装置。
    The voltage stabilization according to claim 1, further comprising: an overheat protection unit that reduces a current input from the pair of input terminals to the transformer circuit when a temperature of the transformer circuit becomes equal to or higher than a predetermined temperature threshold. Device.
  8.  前記第1スイッチと前記第2スイッチとの少なくとも一方に含まれる接点に溶着が発生しているか否かを検知する検知部と、前記検知部で前記溶着の発生が検知されると前記一対の入力端子から前記変圧回路へ入力される電流を低減させる保護部とをさらに備える
     ことを特徴とする請求項4に記載の電圧安定化装置。
    A detection unit that detects whether or not welding has occurred at a contact included in at least one of the first switch and the second switch, and the pair of inputs when the detection of the welding is detected by the detection unit The voltage stabilizing device according to claim 4, further comprising a protection unit that reduces a current input from a terminal to the transformer circuit.
  9.  請求項1に記載の電圧安定化装置と、
     前記一対の出力端子が電気的に接続される一対の接続端子を有した電源装置とを備え、
     前記電源装置は、前記一対の接続端子に入力される電圧の電圧値が所定の電圧範囲内にあれば動作可能となるように構成されており、
     前記電圧安定化装置の前記出力電圧の電圧値が前記電圧範囲の上限を超えないように、前記許容範囲の上限が設定されている
     ことを特徴とする電源システム。
    A voltage stabilizing device according to claim 1;
    A power supply device having a pair of connection terminals to which the pair of output terminals are electrically connected,
    The power supply device is configured to be operable if a voltage value of a voltage input to the pair of connection terminals is within a predetermined voltage range,
    The upper limit of the allowable range is set so that the voltage value of the output voltage of the voltage stabilizing device does not exceed the upper limit of the voltage range.
PCT/JP2016/000996 2015-03-18 2016-02-25 Voltage stabilization device and power supply system using same WO2016147574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055144 2015-03-18
JP2015055144A JP2016178726A (en) 2015-03-18 2015-03-18 Voltage stability device and power supply system using the same

Publications (1)

Publication Number Publication Date
WO2016147574A1 true WO2016147574A1 (en) 2016-09-22

Family

ID=56919602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000996 WO2016147574A1 (en) 2015-03-18 2016-02-25 Voltage stabilization device and power supply system using same

Country Status (2)

Country Link
JP (1) JP2016178726A (en)
WO (1) WO2016147574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041547A1 (en) 2021-09-14 2023-03-23 Przedsiebiorstwo Cr-Gama Spolka Z Ograniczona Odpowiedzialnoscia A phase voltage regulator and a method for regulating phase voltage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343366B1 (en) * 2017-04-21 2018-06-13 株式会社Aerial Lab Industries Information transmission method at the time of disaster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345624A (en) * 2005-06-08 2006-12-21 Sharp Corp Undervoltage/overvoltage protection circuit for control power circuits
JP2014176198A (en) * 2013-03-08 2014-09-22 Canon Inc Power-supply device and image formation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345624A (en) * 2005-06-08 2006-12-21 Sharp Corp Undervoltage/overvoltage protection circuit for control power circuits
JP2014176198A (en) * 2013-03-08 2014-09-22 Canon Inc Power-supply device and image formation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041547A1 (en) 2021-09-14 2023-03-23 Przedsiebiorstwo Cr-Gama Spolka Z Ograniczona Odpowiedzialnoscia A phase voltage regulator and a method for regulating phase voltage

Also Published As

Publication number Publication date
JP2016178726A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
US5182547A (en) Neutral wire current monitoring for three-phase four-wire power distribution system
US20080238573A1 (en) Coupling Circuit and Network Device for Power Line Communication
WO2010150706A1 (en) Apparatus for protecting direct current branch circuit
US20060175903A1 (en) Sensing socket assembly
US20040024545A1 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
KR101738618B1 (en) Multiconcent and control method thereof
WO2016147574A1 (en) Voltage stabilization device and power supply system using same
US20090128348A1 (en) Overload alarm device and method thereof
KR100789915B1 (en) An apparatus and a method for breaking standby power in a multi-tab
EP2244353B1 (en) Energy saving device
KR200442470Y1 (en) Short circuit protect and electric shock protect device
US20170207049A1 (en) System for actively detecting alternating current load
US20180145508A1 (en) Power distribution apparatus and operation method for the same
KR102071837B1 (en) Apparatus for controlling output voltage of single type converter
KR101446502B1 (en) Uninterruptible power supply and system using zero-phase harmonic reduction apparutus
CN108475993B (en) Power restoration system and method
JP2005287277A (en) Power supply control system
US20180294642A1 (en) Protection earth connection detector
JPH05325774A (en) Demand receptacle device
US11894638B2 (en) Solid state protective smart plug device
KR102237081B1 (en) Zero-phase harmonic reduction apparatus having overheat and overload protection function and control process
JP5587127B2 (en) Cord short circuit detection circuit and outlet device
US11022993B2 (en) Energy supply apparatus
KR100600439B1 (en) Automatic power supply cutoff apparatus
CN118226330A (en) Zero-breaking control circuit and zero-breaking control equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764407

Country of ref document: EP

Kind code of ref document: A1